mirror of
https://github.com/samba-team/samba.git
synced 2025-01-14 19:24:43 +03:00
244 lines
9.4 KiB
C
244 lines
9.4 KiB
C
/*
|
|
Unix SMB/Netbios implementation.
|
|
Version 1.9.
|
|
SMB Byte handling
|
|
Copyright (C) Andrew Tridgell 1992-1998
|
|
|
|
This program is free software; you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation; either version 2 of the License, or
|
|
(at your option) any later version.
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with this program; if not, write to the Free Software
|
|
Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
|
|
*/
|
|
|
|
/*
|
|
This file implements macros for machine independent short and
|
|
int manipulation
|
|
|
|
Here is a description of this file that I emailed to the samba list once:
|
|
|
|
> I am confused about the way that byteorder.h works in Samba. I have
|
|
> looked at it, and I would have thought that you might make a distinction
|
|
> between LE and BE machines, but you only seem to distinguish between 386
|
|
> and all other architectures.
|
|
>
|
|
> Can you give me a clue?
|
|
|
|
sure.
|
|
|
|
The distinction between 386 and other architectures is only there as
|
|
an optimisation. You can take it out completely and it will make no
|
|
difference. The routines (macros) in byteorder.h are totally byteorder
|
|
independent. The 386 optimsation just takes advantage of the fact that
|
|
the x86 processors don't care about alignment, so we don't have to
|
|
align ints on int boundaries etc. If there are other processors out
|
|
there that aren't alignment sensitive then you could also define
|
|
CAREFUL_ALIGNMENT=0 on those processors as well.
|
|
|
|
Ok, now to the macros themselves. I'll take a simple example, say we
|
|
want to extract a 2 byte integer from a SMB packet and put it into a
|
|
type called uint16 that is in the local machines byte order, and you
|
|
want to do it with only the assumption that uint16 is _at_least_ 16
|
|
bits long (this last condition is very important for architectures
|
|
that don't have any int types that are 2 bytes long)
|
|
|
|
You do this:
|
|
|
|
#define CVAL(buf,pos) (((unsigned char *)(buf))[pos])
|
|
#define PVAL(buf,pos) ((unsigned)CVAL(buf,pos))
|
|
#define SVAL(buf,pos) (PVAL(buf,pos)|PVAL(buf,(pos)+1)<<8)
|
|
|
|
then to extract a uint16 value at offset 25 in a buffer you do this:
|
|
|
|
char *buffer = foo_bar();
|
|
uint16 xx = SVAL(buffer,25);
|
|
|
|
We are using the byteoder independence of the ANSI C bitshifts to do
|
|
the work. A good optimising compiler should turn this into efficient
|
|
code, especially if it happens to have the right byteorder :-)
|
|
|
|
I know these macros can be made a bit tidier by removing some of the
|
|
casts, but you need to look at byteorder.h as a whole to see the
|
|
reasoning behind them. byteorder.h defines the following macros:
|
|
|
|
SVAL(buf,pos) - extract a 2 byte SMB value
|
|
IVAL(buf,pos) - extract a 4 byte SMB value
|
|
SVALS(buf,pos) signed version of SVAL()
|
|
IVALS(buf,pos) signed version of IVAL()
|
|
|
|
SSVAL(buf,pos,val) - put a 2 byte SMB value into a buffer
|
|
SIVAL(buf,pos,val) - put a 4 byte SMB value into a buffer
|
|
SSVALS(buf,pos,val) - signed version of SSVAL()
|
|
SIVALS(buf,pos,val) - signed version of SIVAL()
|
|
|
|
RSVAL(buf,pos) - like SVAL() but for NMB byte ordering
|
|
RIVAL(buf,pos) - like IVAL() but for NMB byte ordering
|
|
RSSVAL(buf,pos,val) - like SSVAL() but for NMB ordering
|
|
RSIVAL(buf,pos,val) - like SIVAL() but for NMB ordering
|
|
|
|
it also defines lots of intermediate macros, just ignore those :-)
|
|
|
|
*/
|
|
|
|
/* some switch macros that do both store and read to and from SMB buffers */
|
|
|
|
#define RW_PCVAL(read,inbuf,outbuf,len) \
|
|
if (read) { PCVAL (inbuf,0,outbuf,len) } \
|
|
else { PSCVAL(inbuf,0,outbuf,len) }
|
|
|
|
#define RW_PIVAL(read,inbuf,outbuf,len) \
|
|
if (read) { PIVAL (inbuf,0,outbuf,len) } \
|
|
else { PSIVAL(inbuf,0,outbuf,len) }
|
|
|
|
#define RW_PSVAL(read,inbuf,outbuf,len) \
|
|
if (read) { PSVAL (inbuf,0,outbuf,len) } \
|
|
else { PSSVAL(inbuf,0,outbuf,len) }
|
|
|
|
#define RW_CVAL(read, inbuf, outbuf, offset) \
|
|
if (read) (outbuf) = CVAL (inbuf,offset); \
|
|
else SCVAL(inbuf,offset,outbuf);
|
|
|
|
#define RW_IVAL(read, inbuf, outbuf, offset) \
|
|
if (read) (outbuf)= IVAL (inbuf,offset); \
|
|
else SIVAL(inbuf,offset,outbuf);
|
|
|
|
#define RW_SVAL(read, inbuf, outbuf, offset) \
|
|
if (read) (outbuf)= SVAL (inbuf,offset); \
|
|
else SSVAL(inbuf,offset,outbuf);
|
|
|
|
#undef CAREFUL_ALIGNMENT
|
|
|
|
/* we know that the 386 can handle misalignment and has the "right"
|
|
byteorder */
|
|
#ifdef __i386__
|
|
#define CAREFUL_ALIGNMENT 0
|
|
#endif
|
|
|
|
#ifndef CAREFUL_ALIGNMENT
|
|
#define CAREFUL_ALIGNMENT 1
|
|
#endif
|
|
|
|
#define CVAL(buf,pos) (((unsigned char *)(buf))[pos])
|
|
#define PVAL(buf,pos) ((unsigned)CVAL(buf,pos))
|
|
#define SCVAL(buf,pos,val) (CVAL(buf,pos) = (val))
|
|
|
|
|
|
#if CAREFUL_ALIGNMENT
|
|
|
|
#define SVAL(buf,pos) (PVAL(buf,pos)|PVAL(buf,(pos)+1)<<8)
|
|
#define IVAL(buf,pos) (SVAL(buf,pos)|SVAL(buf,(pos)+2)<<16)
|
|
#define SSVALX(buf,pos,val) (CVAL(buf,pos)=(val)&0xFF,CVAL(buf,pos+1)=(val)>>8)
|
|
#define SIVALX(buf,pos,val) (SSVALX(buf,pos,val&0xFFFF),SSVALX(buf,pos+2,val>>16))
|
|
#define SVALS(buf,pos) ((int16)SVAL(buf,pos))
|
|
#define IVALS(buf,pos) ((int32)IVAL(buf,pos))
|
|
#define SSVAL(buf,pos,val) SSVALX((buf),(pos),((uint16)(val)))
|
|
#define SIVAL(buf,pos,val) SIVALX((buf),(pos),((uint32)(val)))
|
|
#define SSVALS(buf,pos,val) SSVALX((buf),(pos),((int16)(val)))
|
|
#define SIVALS(buf,pos,val) SIVALX((buf),(pos),((int32)(val)))
|
|
|
|
#else
|
|
|
|
/* this handles things for architectures like the 386 that can handle
|
|
alignment errors */
|
|
/*
|
|
WARNING: This section is dependent on the length of int16 and int32
|
|
being correct
|
|
*/
|
|
|
|
/* get single value from an SMB buffer */
|
|
#define SVAL(buf,pos) (*(uint16 *)((char *)(buf) + (pos)))
|
|
#define IVAL(buf,pos) (*(uint32 *)((char *)(buf) + (pos)))
|
|
#define SVALS(buf,pos) (*(int16 *)((char *)(buf) + (pos)))
|
|
#define IVALS(buf,pos) (*(int32 *)((char *)(buf) + (pos)))
|
|
|
|
/* store single value in an SMB buffer */
|
|
#define SSVAL(buf,pos,val) SVAL(buf,pos)=((uint16)(val))
|
|
#define SIVAL(buf,pos,val) IVAL(buf,pos)=((uint32)(val))
|
|
#define SSVALS(buf,pos,val) SVALS(buf,pos)=((int16)(val))
|
|
#define SIVALS(buf,pos,val) IVALS(buf,pos)=((int32)(val))
|
|
|
|
#endif
|
|
|
|
|
|
/* macros for reading / writing arrays */
|
|
|
|
#define SMBMACRO(macro,buf,pos,val,len,size) \
|
|
{ int l; for (l = 0; l < (len); l++) (val)[l] = macro((buf), (pos) + (size)*l); }
|
|
|
|
#define SSMBMACRO(macro,buf,pos,val,len,size) \
|
|
{ int l; for (l = 0; l < (len); l++) macro((buf), (pos) + (size)*l, (val)[l]); }
|
|
|
|
/* reads multiple data from an SMB buffer */
|
|
#define PCVAL(buf,pos,val,len) SMBMACRO(CVAL,buf,pos,val,len,1)
|
|
#define PSVAL(buf,pos,val,len) SMBMACRO(SVAL,buf,pos,val,len,2)
|
|
#define PIVAL(buf,pos,val,len) SMBMACRO(IVAL,buf,pos,val,len,4)
|
|
#define PCVALS(buf,pos,val,len) SMBMACRO(CVALS,buf,pos,val,len,1)
|
|
#define PSVALS(buf,pos,val,len) SMBMACRO(SVALS,buf,pos,val,len,2)
|
|
#define PIVALS(buf,pos,val,len) SMBMACRO(IVALS,buf,pos,val,len,4)
|
|
|
|
/* stores multiple data in an SMB buffer */
|
|
#define PSCVAL(buf,pos,val,len) SSMBMACRO(SCVAL,buf,pos,val,len,1)
|
|
#define PSSVAL(buf,pos,val,len) SSMBMACRO(SSVAL,buf,pos,val,len,2)
|
|
#define PSIVAL(buf,pos,val,len) SSMBMACRO(SIVAL,buf,pos,val,len,4)
|
|
#define PSCVALS(buf,pos,val,len) SSMBMACRO(SCVALS,buf,pos,val,len,1)
|
|
#define PSSVALS(buf,pos,val,len) SSMBMACRO(SSVALS,buf,pos,val,len,2)
|
|
#define PSIVALS(buf,pos,val,len) SSMBMACRO(SIVALS,buf,pos,val,len,4)
|
|
|
|
|
|
/* now the reverse routines - these are used in nmb packets (mostly) */
|
|
#define SREV(x) ((((x)&0xFF)<<8) | (((x)>>8)&0xFF))
|
|
#define IREV(x) ((SREV(x)<<16) | (SREV((x)>>16)))
|
|
|
|
#define RSVAL(buf,pos) SREV(SVAL(buf,pos))
|
|
#define RIVAL(buf,pos) IREV(IVAL(buf,pos))
|
|
#define RSSVAL(buf,pos,val) SSVAL(buf,pos,SREV(val))
|
|
#define RSIVAL(buf,pos,val) SIVAL(buf,pos,IREV(val))
|
|
|
|
#define DBG_RW_PCVAL(charmode,string,depth,base,read,inbuf,outbuf,len) \
|
|
RW_PCVAL(read,inbuf,outbuf,len) \
|
|
DEBUG(5,("%s%04x %s: ", \
|
|
tab_depth(depth), base,string)); \
|
|
if (charmode) print_asc(5, (unsigned char*)(outbuf), (len)); else \
|
|
{ int idx; for (idx = 0; idx < len; idx++) { DEBUG(5,("%02x ", (outbuf)[idx])); } } \
|
|
DEBUG(5,("\n"));
|
|
|
|
#define DBG_RW_PSVAL(charmode,string,depth,base,read,inbuf,outbuf,len) \
|
|
RW_PSVAL(read,inbuf,outbuf,len) \
|
|
DEBUG(5,("%s%04x %s: ", \
|
|
tab_depth(depth), base,string)); \
|
|
if (charmode) print_asc(5, (unsigned char*)(outbuf), 2*(len)); else \
|
|
{ int idx; for (idx = 0; idx < len; idx++) { DEBUG(5,("%04x ", (outbuf)[idx])); } } \
|
|
DEBUG(5,("\n"));
|
|
|
|
#define DBG_RW_PIVAL(charmode,string,depth,base,read,inbuf,outbuf,len) \
|
|
RW_PIVAL(read,inbuf,outbuf,len) \
|
|
DEBUG(5,("%s%04x %s: ", \
|
|
tab_depth(depth), base,string)); \
|
|
if (charmode) print_asc(5, (unsigned char*)(outbuf), 4*(len)); else \
|
|
{ int idx; for (idx = 0; idx < len; idx++) { DEBUG(5,("%08x ", (outbuf)[idx])); } } \
|
|
DEBUG(5,("\n"));
|
|
|
|
#define DBG_RW_CVAL(string,depth,base,read,inbuf,outbuf) \
|
|
RW_CVAL(read,inbuf,outbuf,0) \
|
|
DEBUG(5,("%s%04x %s: %02x\n", \
|
|
tab_depth(depth), base, string, outbuf));
|
|
|
|
#define DBG_RW_SVAL(string,depth,base,read,inbuf,outbuf) \
|
|
RW_SVAL(read,inbuf,outbuf,0) \
|
|
DEBUG(5,("%s%04x %s: %04x\n", \
|
|
tab_depth(depth), base, string, outbuf));
|
|
|
|
#define DBG_RW_IVAL(string,depth,base,read,inbuf,outbuf) \
|
|
RW_IVAL(read,inbuf,outbuf,0) \
|
|
DEBUG(5,("%s%04x %s: %08x\n", \
|
|
tab_depth(depth), base, string, outbuf));
|
|
|