1
0
mirror of https://github.com/samba-team/samba.git synced 2025-01-11 05:18:09 +03:00
samba-mirror/lib/util/genrand_util.c
Stefan Metzmacher c25fb103ea lib/util: add generate_unique_u64() helper function
Signed-off-by: Stefan Metzmacher <metze@samba.org>
Reviewed-by: Volker Lendecke <vl@samba.org>
2020-07-08 09:42:39 +00:00

509 lines
11 KiB
C

/*
Unix SMB/CIFS implementation.
Functions to create reasonable random numbers for crypto use.
Copyright (C) Jeremy Allison 2001
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include "includes.h"
#include "system/locale.h"
/**
* @file
* @brief Random number generation
*/
/**
generate a single random uint32_t
**/
_PUBLIC_ uint32_t generate_random(void)
{
uint8_t v[4];
generate_random_buffer(v, 4);
return IVAL(v, 0);
}
/**
@brief generate a random uint64
**/
_PUBLIC_ uint64_t generate_random_u64(void)
{
uint8_t v[8];
generate_random_buffer(v, 8);
return BVAL(v, 0);
}
static struct generate_unique_u64_state {
uint64_t next_value;
int pid;
} generate_unique_u64_state;
_PUBLIC_ uint64_t generate_unique_u64(uint64_t veto_value)
{
int pid = getpid();
if (unlikely(pid != generate_unique_u64_state.pid)) {
generate_unique_u64_state = (struct generate_unique_u64_state) {
.pid = pid,
.next_value = veto_value,
};
}
while (unlikely(generate_unique_u64_state.next_value == veto_value)) {
generate_nonce_buffer(
(void *)&generate_unique_u64_state.next_value,
sizeof(generate_unique_u64_state.next_value));
}
return generate_unique_u64_state.next_value++;
}
/**
Microsoft composed the following rules (among others) for quality
checks. This is an abridgment from
http://msdn.microsoft.com/en-us/subscriptions/cc786468%28v=ws.10%29.aspx:
Passwords must contain characters from three of the following five
categories:
- Uppercase characters of European languages (A through Z, with
diacritic marks, Greek and Cyrillic characters)
- Lowercase characters of European languages (a through z, sharp-s,
with diacritic marks, Greek and Cyrillic characters)
- Base 10 digits (0 through 9)
- Nonalphanumeric characters: ~!@#$%^&*_-+=`|\(){}[]:;"'<>,.?/
- Any Unicode character that is categorized as an alphabetic character
but is not uppercase or lowercase. This includes Unicode characters
from Asian languages.
Note: for now do not check if the unicode category is
alphabetic character
**/
_PUBLIC_ bool check_password_quality(const char *pwd)
{
size_t ofs = 0;
size_t num_chars = 0;
size_t num_digits = 0;
size_t num_upper = 0;
size_t num_lower = 0;
size_t num_nonalpha = 0;
size_t num_unicode = 0;
size_t num_categories = 0;
if (pwd == NULL) {
return false;
}
while (true) {
const char *s = &pwd[ofs];
size_t len = 0;
codepoint_t c;
c = next_codepoint(s, &len);
if (c == INVALID_CODEPOINT) {
return false;
} else if (c == 0) {
break;
}
ofs += len;
num_chars += 1;
if (len == 1) {
const char *na = "~!@#$%^&*_-+=`|\\(){}[]:;\"'<>,.?/";
if (isdigit(c)) {
num_digits += 1;
continue;
}
if (isupper(c)) {
num_upper += 1;
continue;
}
if (islower(c)) {
num_lower += 1;
continue;
}
if (strchr(na, c)) {
num_nonalpha += 1;
continue;
}
/*
* the rest does not belong to
* a category.
*/
continue;
}
if (isupper_m(c)) {
num_upper += 1;
continue;
}
if (islower_m(c)) {
num_lower += 1;
continue;
}
/*
* Note: for now do not check if the unicode category is
* alphabetic character
*
* We would have to import the details from
* ftp://ftp.unicode.org/Public/6.3.0/ucd/UnicodeData-6.3.0d1.txt
*/
num_unicode += 1;
continue;
}
if (num_digits > 0) {
num_categories += 1;
}
if (num_upper > 0) {
num_categories += 1;
}
if (num_lower > 0) {
num_categories += 1;
}
if (num_nonalpha > 0) {
num_categories += 1;
}
if (num_unicode > 0) {
num_categories += 1;
}
if (num_categories >= 3) {
return true;
}
return false;
}
/**
Use the random number generator to generate a random string.
**/
_PUBLIC_ char *generate_random_str_list(TALLOC_CTX *mem_ctx, size_t len, const char *list)
{
size_t i;
size_t list_len = strlen(list);
char *retstr = talloc_array(mem_ctx, char, len + 1);
if (!retstr) return NULL;
generate_secret_buffer((uint8_t *)retstr, len);
for (i = 0; i < len; i++) {
retstr[i] = list[retstr[i] % list_len];
}
retstr[i] = '\0';
return retstr;
}
/**
* Generate a random text string consisting of the specified length.
* The returned string will be allocated.
*
* Characters used are: ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+_-#.,
*/
_PUBLIC_ char *generate_random_str(TALLOC_CTX *mem_ctx, size_t len)
{
char *retstr;
const char *c_list = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+_-#.,";
again:
retstr = generate_random_str_list(mem_ctx, len, c_list);
if (!retstr) return NULL;
/* we need to make sure the random string passes basic quality tests
or it might be rejected by windows as a password */
if (len >= 7 && !check_password_quality(retstr)) {
talloc_free(retstr);
goto again;
}
return retstr;
}
/**
* Generate a random text password (based on printable ascii characters).
*/
_PUBLIC_ char *generate_random_password(TALLOC_CTX *mem_ctx, size_t min, size_t max)
{
char *retstr;
/* This list does not include { or } because they cause
* problems for our provision (it can create a substring
* ${...}, and for Fedora DS (which treats {...} at the start
* of a stored password as special
* -- Andrew Bartlett 2010-03-11
*/
const char *c_list = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+_-#.,@$%&!?:;<=>()[]~";
size_t len = max;
size_t diff;
if (min > max) {
errno = EINVAL;
return NULL;
}
diff = max - min;
if (diff > 0 ) {
size_t tmp;
generate_secret_buffer((uint8_t *)&tmp, sizeof(tmp));
tmp %= diff;
len = min + tmp;
}
again:
retstr = generate_random_str_list(mem_ctx, len, c_list);
if (!retstr) return NULL;
/* we need to make sure the random string passes basic quality tests
or it might be rejected by windows as a password */
if (len >= 7 && !check_password_quality(retstr)) {
talloc_free(retstr);
goto again;
}
return retstr;
}
/**
* Generate a random machine password (based on random utf16 characters,
* converted to utf8). min must be at least 14, max must be at most 255.
*
* If 'unix charset' is not utf8, the password consist of random ascii
* values!
*/
_PUBLIC_ char *generate_random_machine_password(TALLOC_CTX *mem_ctx, size_t min, size_t max)
{
TALLOC_CTX *frame = NULL;
struct generate_random_machine_password_state {
uint8_t password_buffer[256 * 2];
uint8_t tmp;
} *state;
char *new_pw = NULL;
size_t len = max;
char *utf8_pw = NULL;
size_t utf8_len = 0;
char *unix_pw = NULL;
size_t unix_len = 0;
size_t diff;
size_t i;
bool ok;
int cmp;
if (max > 255) {
errno = EINVAL;
return NULL;
}
if (min < 14) {
errno = EINVAL;
return NULL;
}
if (min > max) {
errno = EINVAL;
return NULL;
}
frame = talloc_stackframe_pool(2048);
state = talloc_zero(frame, struct generate_random_machine_password_state);
diff = max - min;
if (diff > 0) {
size_t tmp;
generate_secret_buffer((uint8_t *)&tmp, sizeof(tmp));
tmp %= diff;
len = min + tmp;
}
/*
* Create a random machine account password
* We create a random buffer and convert that to utf8.
* This is similar to what windows is doing.
*
* In future we may store the raw random buffer,
* but for now we need to pass the password as
* char pointer through some layers.
*
* As most kerberos keys are derived from the
* utf8 password we need to fallback to
* ASCII passwords if "unix charset" is not utf8.
*/
generate_secret_buffer(state->password_buffer, len * 2);
for (i = 0; i < len; i++) {
size_t idx = i*2;
uint16_t c;
/*
* both MIT krb5 and HEIMDAL only
* handle codepoints up to 0xffff.
*
* It means we need to avoid
* 0xD800 - 0xDBFF (high surrogate)
* and
* 0xDC00 - 0xDFFF (low surrogate)
* in the random utf16 data.
*
* 55296 0xD800 0154000 0b1101100000000000
* 57343 0xDFFF 0157777 0b1101111111111111
* 8192 0x2000 020000 0b10000000000000
*
* The above values show that we can check
* for 0xD800 and just add 0x2000 to avoid
* the surrogate ranges.
*
* The rest will be handled by CH_UTF16MUNGED
* see utf16_munged_pull().
*/
c = SVAL(state->password_buffer, idx);
if (c & 0xD800) {
c |= 0x2000;
}
SSVAL(state->password_buffer, idx, c);
}
ok = convert_string_talloc(frame,
CH_UTF16MUNGED, CH_UTF8,
state->password_buffer, len * 2,
(void *)&utf8_pw, &utf8_len);
if (!ok) {
DEBUG(0, ("%s: convert_string_talloc() failed\n",
__func__));
TALLOC_FREE(frame);
return NULL;
}
ok = convert_string_talloc(frame,
CH_UTF16MUNGED, CH_UNIX,
state->password_buffer, len * 2,
(void *)&unix_pw, &unix_len);
if (!ok) {
goto ascii_fallback;
}
if (utf8_len != unix_len) {
goto ascii_fallback;
}
cmp = memcmp((const uint8_t *)utf8_pw,
(const uint8_t *)unix_pw,
utf8_len);
if (cmp != 0) {
goto ascii_fallback;
}
new_pw = talloc_strdup(mem_ctx, utf8_pw);
if (new_pw == NULL) {
TALLOC_FREE(frame);
return NULL;
}
talloc_set_name_const(new_pw, __func__);
TALLOC_FREE(frame);
return new_pw;
ascii_fallback:
for (i = 0; i < len; i++) {
/*
* truncate to ascii
*/
state->tmp = state->password_buffer[i] & 0x7f;
if (state->tmp == 0) {
state->tmp = state->password_buffer[i] >> 1;
}
if (state->tmp == 0) {
state->tmp = 0x01;
}
state->password_buffer[i] = state->tmp;
}
state->password_buffer[i] = '\0';
new_pw = talloc_strdup(mem_ctx, (const char *)state->password_buffer);
if (new_pw == NULL) {
TALLOC_FREE(frame);
return NULL;
}
talloc_set_name_const(new_pw, __func__);
TALLOC_FREE(frame);
return new_pw;
}
/**
* Generate an array of unique text strings all of the same length.
* The returned string will be allocated.
* Returns NULL if the number of unique combinations cannot be created.
*
* Characters used are: abcdefghijklmnopqrstuvwxyz0123456789+_-#.,
*/
_PUBLIC_ char** generate_unique_strs(TALLOC_CTX *mem_ctx, size_t len,
uint32_t num)
{
const char *c_list = "abcdefghijklmnopqrstuvwxyz0123456789+_-#.,";
const unsigned c_size = 42;
size_t i, j;
unsigned rem;
char ** strs = NULL;
if (num == 0 || len == 0)
return NULL;
strs = talloc_array(mem_ctx, char *, num);
if (strs == NULL) return NULL;
for (i = 0; i < num; i++) {
char *retstr = (char *)talloc_size(strs, len + 1);
if (retstr == NULL) {
talloc_free(strs);
return NULL;
}
rem = i;
for (j = 0; j < len; j++) {
retstr[j] = c_list[rem % c_size];
rem = rem / c_size;
}
retstr[j] = 0;
strs[i] = retstr;
if (rem != 0) {
/* we were not able to fit the number of
* combinations asked for in the length
* specified */
DEBUG(0,(__location__ ": Too many combinations %u for length %u\n",
num, (unsigned)len));
talloc_free(strs);
return NULL;
}
}
return strs;
}