mirror of
https://github.com/samba-team/samba.git
synced 2025-01-11 05:18:09 +03:00
fb55d84ebb
clang complains: ../../lib/util/genrand_util.c:99:9: error: variable 'num_chars' set but not used [-Werror,-Wunused-but-set-variable] size_t num_chars = 0; ^ That is, the variable is initialised and incremented but the value is never used. Signed-off-by: Martin Schwenke <martin@meltin.net> Reviewed-by: Volker Lendecke <vl@samba.org>
507 lines
11 KiB
C
507 lines
11 KiB
C
/*
|
|
Unix SMB/CIFS implementation.
|
|
|
|
Functions to create reasonable random numbers for crypto use.
|
|
|
|
Copyright (C) Jeremy Allison 2001
|
|
|
|
This program is free software; you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation; either version 3 of the License, or
|
|
(at your option) any later version.
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
#include "includes.h"
|
|
#include "system/locale.h"
|
|
|
|
/**
|
|
* @file
|
|
* @brief Random number generation
|
|
*/
|
|
|
|
/**
|
|
generate a single random uint32_t
|
|
**/
|
|
_PUBLIC_ uint32_t generate_random(void)
|
|
{
|
|
uint8_t v[4];
|
|
generate_random_buffer(v, 4);
|
|
return IVAL(v, 0);
|
|
}
|
|
|
|
/**
|
|
@brief generate a random uint64
|
|
**/
|
|
_PUBLIC_ uint64_t generate_random_u64(void)
|
|
{
|
|
uint8_t v[8];
|
|
generate_random_buffer(v, 8);
|
|
return BVAL(v, 0);
|
|
}
|
|
|
|
_PUBLIC_ uint64_t generate_unique_u64(uint64_t veto_value)
|
|
{
|
|
static struct generate_unique_u64_state {
|
|
uint64_t next_value;
|
|
int pid;
|
|
} generate_unique_u64_state;
|
|
|
|
int pid = getpid();
|
|
|
|
if (unlikely(pid != generate_unique_u64_state.pid)) {
|
|
generate_unique_u64_state = (struct generate_unique_u64_state) {
|
|
.pid = pid,
|
|
.next_value = veto_value,
|
|
};
|
|
}
|
|
|
|
while (unlikely(generate_unique_u64_state.next_value == veto_value)) {
|
|
generate_nonce_buffer(
|
|
(void *)&generate_unique_u64_state.next_value,
|
|
sizeof(generate_unique_u64_state.next_value));
|
|
}
|
|
|
|
return generate_unique_u64_state.next_value++;
|
|
}
|
|
|
|
/**
|
|
Microsoft composed the following rules (among others) for quality
|
|
checks. This is an abridgment from
|
|
http://msdn.microsoft.com/en-us/subscriptions/cc786468%28v=ws.10%29.aspx:
|
|
|
|
Passwords must contain characters from three of the following five
|
|
categories:
|
|
|
|
- Uppercase characters of European languages (A through Z, with
|
|
diacritic marks, Greek and Cyrillic characters)
|
|
- Lowercase characters of European languages (a through z, sharp-s,
|
|
with diacritic marks, Greek and Cyrillic characters)
|
|
- Base 10 digits (0 through 9)
|
|
- Nonalphanumeric characters: ~!@#$%^&*_-+=`|\(){}[]:;"'<>,.?/
|
|
- Any Unicode character that is categorized as an alphabetic character
|
|
but is not uppercase or lowercase. This includes Unicode characters
|
|
from Asian languages.
|
|
|
|
Note: for now do not check if the unicode category is
|
|
alphabetic character
|
|
**/
|
|
_PUBLIC_ bool check_password_quality(const char *pwd)
|
|
{
|
|
size_t ofs = 0;
|
|
size_t num_digits = 0;
|
|
size_t num_upper = 0;
|
|
size_t num_lower = 0;
|
|
size_t num_nonalpha = 0;
|
|
size_t num_unicode = 0;
|
|
size_t num_categories = 0;
|
|
|
|
if (pwd == NULL) {
|
|
return false;
|
|
}
|
|
|
|
while (true) {
|
|
const char *s = &pwd[ofs];
|
|
size_t len = 0;
|
|
codepoint_t c;
|
|
|
|
c = next_codepoint(s, &len);
|
|
if (c == INVALID_CODEPOINT) {
|
|
return false;
|
|
} else if (c == 0) {
|
|
break;
|
|
}
|
|
ofs += len;
|
|
|
|
if (len == 1) {
|
|
const char *na = "~!@#$%^&*_-+=`|\\(){}[]:;\"'<>,.?/";
|
|
|
|
if (isdigit(c)) {
|
|
num_digits += 1;
|
|
continue;
|
|
}
|
|
|
|
if (isupper(c)) {
|
|
num_upper += 1;
|
|
continue;
|
|
}
|
|
|
|
if (islower(c)) {
|
|
num_lower += 1;
|
|
continue;
|
|
}
|
|
|
|
if (strchr(na, c)) {
|
|
num_nonalpha += 1;
|
|
continue;
|
|
}
|
|
|
|
/*
|
|
* the rest does not belong to
|
|
* a category.
|
|
*/
|
|
continue;
|
|
}
|
|
|
|
if (isupper_m(c)) {
|
|
num_upper += 1;
|
|
continue;
|
|
}
|
|
|
|
if (islower_m(c)) {
|
|
num_lower += 1;
|
|
continue;
|
|
}
|
|
|
|
/*
|
|
* Note: for now do not check if the unicode category is
|
|
* alphabetic character
|
|
*
|
|
* We would have to import the details from
|
|
* ftp://ftp.unicode.org/Public/6.3.0/ucd/UnicodeData-6.3.0d1.txt
|
|
*/
|
|
num_unicode += 1;
|
|
continue;
|
|
}
|
|
|
|
if (num_digits > 0) {
|
|
num_categories += 1;
|
|
}
|
|
if (num_upper > 0) {
|
|
num_categories += 1;
|
|
}
|
|
if (num_lower > 0) {
|
|
num_categories += 1;
|
|
}
|
|
if (num_nonalpha > 0) {
|
|
num_categories += 1;
|
|
}
|
|
if (num_unicode > 0) {
|
|
num_categories += 1;
|
|
}
|
|
|
|
if (num_categories >= 3) {
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
/**
|
|
Use the random number generator to generate a random string.
|
|
**/
|
|
|
|
_PUBLIC_ char *generate_random_str_list(TALLOC_CTX *mem_ctx, size_t len, const char *list)
|
|
{
|
|
size_t i;
|
|
size_t list_len = strlen(list);
|
|
|
|
char *retstr = talloc_array(mem_ctx, char, len + 1);
|
|
if (!retstr) return NULL;
|
|
|
|
generate_secret_buffer((uint8_t *)retstr, len);
|
|
for (i = 0; i < len; i++) {
|
|
retstr[i] = list[retstr[i] % list_len];
|
|
}
|
|
retstr[i] = '\0';
|
|
|
|
return retstr;
|
|
}
|
|
|
|
/**
|
|
* Generate a random text string consisting of the specified length.
|
|
* The returned string will be allocated.
|
|
*
|
|
* Characters used are: ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+_-#.,
|
|
*/
|
|
|
|
_PUBLIC_ char *generate_random_str(TALLOC_CTX *mem_ctx, size_t len)
|
|
{
|
|
char *retstr;
|
|
const char *c_list = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+_-#.,";
|
|
|
|
again:
|
|
retstr = generate_random_str_list(mem_ctx, len, c_list);
|
|
if (!retstr) return NULL;
|
|
|
|
/* we need to make sure the random string passes basic quality tests
|
|
or it might be rejected by windows as a password */
|
|
if (len >= 7 && !check_password_quality(retstr)) {
|
|
talloc_free(retstr);
|
|
goto again;
|
|
}
|
|
|
|
return retstr;
|
|
}
|
|
|
|
/**
|
|
* Generate a random text password (based on printable ascii characters).
|
|
*/
|
|
|
|
_PUBLIC_ char *generate_random_password(TALLOC_CTX *mem_ctx, size_t min, size_t max)
|
|
{
|
|
char *retstr;
|
|
/* This list does not include { or } because they cause
|
|
* problems for our provision (it can create a substring
|
|
* ${...}, and for Fedora DS (which treats {...} at the start
|
|
* of a stored password as special
|
|
* -- Andrew Bartlett 2010-03-11
|
|
*/
|
|
const char *c_list = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+_-#.,@$%&!?:;<=>()[]~";
|
|
size_t len = max;
|
|
size_t diff;
|
|
|
|
if (min > max) {
|
|
errno = EINVAL;
|
|
return NULL;
|
|
}
|
|
|
|
diff = max - min;
|
|
|
|
if (diff > 0 ) {
|
|
size_t tmp;
|
|
|
|
generate_secret_buffer((uint8_t *)&tmp, sizeof(tmp));
|
|
|
|
tmp %= diff;
|
|
|
|
len = min + tmp;
|
|
}
|
|
|
|
again:
|
|
retstr = generate_random_str_list(mem_ctx, len, c_list);
|
|
if (!retstr) return NULL;
|
|
|
|
/* we need to make sure the random string passes basic quality tests
|
|
or it might be rejected by windows as a password */
|
|
if (len >= 7 && !check_password_quality(retstr)) {
|
|
talloc_free(retstr);
|
|
goto again;
|
|
}
|
|
|
|
return retstr;
|
|
}
|
|
|
|
/**
|
|
* Generate a random machine password (based on random utf16 characters,
|
|
* converted to utf8). min must be at least 14, max must be at most 255.
|
|
*
|
|
* If 'unix charset' is not utf8, the password consist of random ascii
|
|
* values!
|
|
*/
|
|
|
|
_PUBLIC_ char *generate_random_machine_password(TALLOC_CTX *mem_ctx, size_t min, size_t max)
|
|
{
|
|
TALLOC_CTX *frame = NULL;
|
|
struct generate_random_machine_password_state {
|
|
uint8_t password_buffer[256 * 2];
|
|
uint8_t tmp;
|
|
} *state;
|
|
char *new_pw = NULL;
|
|
size_t len = max;
|
|
char *utf8_pw = NULL;
|
|
size_t utf8_len = 0;
|
|
char *unix_pw = NULL;
|
|
size_t unix_len = 0;
|
|
size_t diff;
|
|
size_t i;
|
|
bool ok;
|
|
int cmp;
|
|
|
|
if (max > 255) {
|
|
errno = EINVAL;
|
|
return NULL;
|
|
}
|
|
|
|
if (min < 14) {
|
|
errno = EINVAL;
|
|
return NULL;
|
|
}
|
|
|
|
if (min > max) {
|
|
errno = EINVAL;
|
|
return NULL;
|
|
}
|
|
|
|
frame = talloc_stackframe_pool(2048);
|
|
state = talloc_zero(frame, struct generate_random_machine_password_state);
|
|
|
|
diff = max - min;
|
|
|
|
if (diff > 0) {
|
|
size_t tmp;
|
|
|
|
generate_secret_buffer((uint8_t *)&tmp, sizeof(tmp));
|
|
|
|
tmp %= diff;
|
|
|
|
len = min + tmp;
|
|
}
|
|
|
|
/*
|
|
* Create a random machine account password
|
|
* We create a random buffer and convert that to utf8.
|
|
* This is similar to what windows is doing.
|
|
*
|
|
* In future we may store the raw random buffer,
|
|
* but for now we need to pass the password as
|
|
* char pointer through some layers.
|
|
*
|
|
* As most kerberos keys are derived from the
|
|
* utf8 password we need to fallback to
|
|
* ASCII passwords if "unix charset" is not utf8.
|
|
*/
|
|
generate_secret_buffer(state->password_buffer, len * 2);
|
|
for (i = 0; i < len; i++) {
|
|
size_t idx = i*2;
|
|
uint16_t c;
|
|
|
|
/*
|
|
* both MIT krb5 and HEIMDAL only
|
|
* handle codepoints up to 0xffff.
|
|
*
|
|
* It means we need to avoid
|
|
* 0xD800 - 0xDBFF (high surrogate)
|
|
* and
|
|
* 0xDC00 - 0xDFFF (low surrogate)
|
|
* in the random utf16 data.
|
|
*
|
|
* 55296 0xD800 0154000 0b1101100000000000
|
|
* 57343 0xDFFF 0157777 0b1101111111111111
|
|
* 8192 0x2000 020000 0b10000000000000
|
|
*
|
|
* The above values show that we can check
|
|
* for 0xD800 and just add 0x2000 to avoid
|
|
* the surrogate ranges.
|
|
*
|
|
* The rest will be handled by CH_UTF16MUNGED
|
|
* see utf16_munged_pull().
|
|
*/
|
|
c = SVAL(state->password_buffer, idx);
|
|
if (c & 0xD800) {
|
|
c |= 0x2000;
|
|
}
|
|
SSVAL(state->password_buffer, idx, c);
|
|
}
|
|
ok = convert_string_talloc(frame,
|
|
CH_UTF16MUNGED, CH_UTF8,
|
|
state->password_buffer, len * 2,
|
|
(void *)&utf8_pw, &utf8_len);
|
|
if (!ok) {
|
|
DEBUG(0, ("%s: convert_string_talloc() failed\n",
|
|
__func__));
|
|
TALLOC_FREE(frame);
|
|
return NULL;
|
|
}
|
|
|
|
ok = convert_string_talloc(frame,
|
|
CH_UTF16MUNGED, CH_UNIX,
|
|
state->password_buffer, len * 2,
|
|
(void *)&unix_pw, &unix_len);
|
|
if (!ok) {
|
|
goto ascii_fallback;
|
|
}
|
|
|
|
if (utf8_len != unix_len) {
|
|
goto ascii_fallback;
|
|
}
|
|
|
|
cmp = memcmp((const uint8_t *)utf8_pw,
|
|
(const uint8_t *)unix_pw,
|
|
utf8_len);
|
|
if (cmp != 0) {
|
|
goto ascii_fallback;
|
|
}
|
|
|
|
new_pw = talloc_strdup(mem_ctx, utf8_pw);
|
|
if (new_pw == NULL) {
|
|
TALLOC_FREE(frame);
|
|
return NULL;
|
|
}
|
|
talloc_set_name_const(new_pw, __func__);
|
|
TALLOC_FREE(frame);
|
|
return new_pw;
|
|
|
|
ascii_fallback:
|
|
for (i = 0; i < len; i++) {
|
|
/*
|
|
* truncate to ascii
|
|
*/
|
|
state->tmp = state->password_buffer[i] & 0x7f;
|
|
if (state->tmp == 0) {
|
|
state->tmp = state->password_buffer[i] >> 1;
|
|
}
|
|
if (state->tmp == 0) {
|
|
state->tmp = 0x01;
|
|
}
|
|
state->password_buffer[i] = state->tmp;
|
|
}
|
|
state->password_buffer[i] = '\0';
|
|
|
|
new_pw = talloc_strdup(mem_ctx, (const char *)state->password_buffer);
|
|
if (new_pw == NULL) {
|
|
TALLOC_FREE(frame);
|
|
return NULL;
|
|
}
|
|
talloc_set_name_const(new_pw, __func__);
|
|
TALLOC_FREE(frame);
|
|
return new_pw;
|
|
}
|
|
|
|
/**
|
|
* Generate an array of unique text strings all of the same length.
|
|
* The returned string will be allocated.
|
|
* Returns NULL if the number of unique combinations cannot be created.
|
|
*
|
|
* Characters used are: abcdefghijklmnopqrstuvwxyz0123456789+_-#.,
|
|
*/
|
|
_PUBLIC_ char** generate_unique_strs(TALLOC_CTX *mem_ctx, size_t len,
|
|
uint32_t num)
|
|
{
|
|
const char *c_list = "abcdefghijklmnopqrstuvwxyz0123456789+_-#.,";
|
|
const unsigned c_size = 42;
|
|
size_t i, j;
|
|
unsigned rem;
|
|
char ** strs = NULL;
|
|
|
|
if (num == 0 || len == 0)
|
|
return NULL;
|
|
|
|
strs = talloc_array(mem_ctx, char *, num);
|
|
if (strs == NULL) return NULL;
|
|
|
|
for (i = 0; i < num; i++) {
|
|
char *retstr = (char *)talloc_size(strs, len + 1);
|
|
if (retstr == NULL) {
|
|
talloc_free(strs);
|
|
return NULL;
|
|
}
|
|
rem = i;
|
|
for (j = 0; j < len; j++) {
|
|
retstr[j] = c_list[rem % c_size];
|
|
rem = rem / c_size;
|
|
}
|
|
retstr[j] = 0;
|
|
strs[i] = retstr;
|
|
if (rem != 0) {
|
|
/* we were not able to fit the number of
|
|
* combinations asked for in the length
|
|
* specified */
|
|
DEBUG(0,(__location__ ": Too many combinations %u for length %u\n",
|
|
num, (unsigned)len));
|
|
|
|
talloc_free(strs);
|
|
return NULL;
|
|
}
|
|
}
|
|
|
|
return strs;
|
|
}
|