mirror of
https://github.com/samba-team/samba.git
synced 2024-12-27 03:21:53 +03:00
153cfb9c83
(This used to be commit 87c91e4362
)
771 lines
22 KiB
C
771 lines
22 KiB
C
/*
|
|
This bit of code was derived from the UFC-crypt package which
|
|
carries the following copyright
|
|
|
|
Modified for use by Samba by Andrew Tridgell, October 1994
|
|
|
|
Note that this routine is only faster on some machines. Under Linux 1.1.51
|
|
libc 4.5.26 I actually found this routine to be slightly slower.
|
|
|
|
Under SunOS I found a huge speedup by using these routines
|
|
(a factor of 20 or so)
|
|
|
|
Warning: I've had a report from Steve Kennedy <steve@gbnet.org>
|
|
that this crypt routine may sometimes get the wrong answer. Only
|
|
use UFC_CRYT if you really need it.
|
|
|
|
*/
|
|
|
|
#include "includes.h"
|
|
|
|
#ifndef HAVE_CRYPT
|
|
|
|
/*
|
|
* UFC-crypt: ultra fast crypt(3) implementation
|
|
*
|
|
* Copyright (C) 1991-1998, Free Software Foundation, Inc.
|
|
*
|
|
* This library is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU Lesser General Public
|
|
* License as published by the Free Software Foundation; either
|
|
* version 3 of the License, or (at your option) any later version.
|
|
*
|
|
* This library is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
* Library General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU Lesser General Public
|
|
* License along with this library; if not, see <http://www.gnu.org/licenses/>.
|
|
*
|
|
* @(#)crypt_util.c 2.31 02/08/92
|
|
*
|
|
* Support routines
|
|
*
|
|
*/
|
|
|
|
|
|
#ifndef long32
|
|
#define long32 int32
|
|
#endif
|
|
|
|
#ifndef long64
|
|
#define long64 int64
|
|
#endif
|
|
|
|
#ifndef ufc_long
|
|
#define ufc_long unsigned
|
|
#endif
|
|
|
|
#ifndef _UFC_64_
|
|
#define _UFC_32_
|
|
#endif
|
|
|
|
/*
|
|
* Permutation done once on the 56 bit
|
|
* key derived from the original 8 byte ASCII key.
|
|
*/
|
|
static int pc1[56] = {
|
|
57, 49, 41, 33, 25, 17, 9, 1, 58, 50, 42, 34, 26, 18,
|
|
10, 2, 59, 51, 43, 35, 27, 19, 11, 3, 60, 52, 44, 36,
|
|
63, 55, 47, 39, 31, 23, 15, 7, 62, 54, 46, 38, 30, 22,
|
|
14, 6, 61, 53, 45, 37, 29, 21, 13, 5, 28, 20, 12, 4
|
|
};
|
|
|
|
/*
|
|
* How much to rotate each 28 bit half of the pc1 permutated
|
|
* 56 bit key before using pc2 to give the i' key
|
|
*/
|
|
static int rots[16] = {
|
|
1, 1, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 1
|
|
};
|
|
|
|
/*
|
|
* Permutation giving the key
|
|
* of the i' DES round
|
|
*/
|
|
static int pc2[48] = {
|
|
14, 17, 11, 24, 1, 5, 3, 28, 15, 6, 21, 10,
|
|
23, 19, 12, 4, 26, 8, 16, 7, 27, 20, 13, 2,
|
|
41, 52, 31, 37, 47, 55, 30, 40, 51, 45, 33, 48,
|
|
44, 49, 39, 56, 34, 53, 46, 42, 50, 36, 29, 32
|
|
};
|
|
|
|
/*
|
|
* The E expansion table which selects
|
|
* bits from the 32 bit intermediate result.
|
|
*/
|
|
static int esel[48] = {
|
|
32, 1, 2, 3, 4, 5, 4, 5, 6, 7, 8, 9,
|
|
8, 9, 10, 11, 12, 13, 12, 13, 14, 15, 16, 17,
|
|
16, 17, 18, 19, 20, 21, 20, 21, 22, 23, 24, 25,
|
|
24, 25, 26, 27, 28, 29, 28, 29, 30, 31, 32, 1
|
|
};
|
|
static int e_inverse[64];
|
|
|
|
/*
|
|
* Permutation done on the
|
|
* result of sbox lookups
|
|
*/
|
|
static int perm32[32] = {
|
|
16, 7, 20, 21, 29, 12, 28, 17, 1, 15, 23, 26, 5, 18, 31, 10,
|
|
2, 8, 24, 14, 32, 27, 3, 9, 19, 13, 30, 6, 22, 11, 4, 25
|
|
};
|
|
|
|
/*
|
|
* The sboxes
|
|
*/
|
|
static int sbox[8][4][16]= {
|
|
{ { 14, 4, 13, 1, 2, 15, 11, 8, 3, 10, 6, 12, 5, 9, 0, 7 },
|
|
{ 0, 15, 7, 4, 14, 2, 13, 1, 10, 6, 12, 11, 9, 5, 3, 8 },
|
|
{ 4, 1, 14, 8, 13, 6, 2, 11, 15, 12, 9, 7, 3, 10, 5, 0 },
|
|
{ 15, 12, 8, 2, 4, 9, 1, 7, 5, 11, 3, 14, 10, 0, 6, 13 }
|
|
},
|
|
|
|
{ { 15, 1, 8, 14, 6, 11, 3, 4, 9, 7, 2, 13, 12, 0, 5, 10 },
|
|
{ 3, 13, 4, 7, 15, 2, 8, 14, 12, 0, 1, 10, 6, 9, 11, 5 },
|
|
{ 0, 14, 7, 11, 10, 4, 13, 1, 5, 8, 12, 6, 9, 3, 2, 15 },
|
|
{ 13, 8, 10, 1, 3, 15, 4, 2, 11, 6, 7, 12, 0, 5, 14, 9 }
|
|
},
|
|
|
|
{ { 10, 0, 9, 14, 6, 3, 15, 5, 1, 13, 12, 7, 11, 4, 2, 8 },
|
|
{ 13, 7, 0, 9, 3, 4, 6, 10, 2, 8, 5, 14, 12, 11, 15, 1 },
|
|
{ 13, 6, 4, 9, 8, 15, 3, 0, 11, 1, 2, 12, 5, 10, 14, 7 },
|
|
{ 1, 10, 13, 0, 6, 9, 8, 7, 4, 15, 14, 3, 11, 5, 2, 12 }
|
|
},
|
|
|
|
{ { 7, 13, 14, 3, 0, 6, 9, 10, 1, 2, 8, 5, 11, 12, 4, 15 },
|
|
{ 13, 8, 11, 5, 6, 15, 0, 3, 4, 7, 2, 12, 1, 10, 14, 9 },
|
|
{ 10, 6, 9, 0, 12, 11, 7, 13, 15, 1, 3, 14, 5, 2, 8, 4 },
|
|
{ 3, 15, 0, 6, 10, 1, 13, 8, 9, 4, 5, 11, 12, 7, 2, 14 }
|
|
},
|
|
|
|
{ { 2, 12, 4, 1, 7, 10, 11, 6, 8, 5, 3, 15, 13, 0, 14, 9 },
|
|
{ 14, 11, 2, 12, 4, 7, 13, 1, 5, 0, 15, 10, 3, 9, 8, 6 },
|
|
{ 4, 2, 1, 11, 10, 13, 7, 8, 15, 9, 12, 5, 6, 3, 0, 14 },
|
|
{ 11, 8, 12, 7, 1, 14, 2, 13, 6, 15, 0, 9, 10, 4, 5, 3 }
|
|
},
|
|
|
|
{ { 12, 1, 10, 15, 9, 2, 6, 8, 0, 13, 3, 4, 14, 7, 5, 11 },
|
|
{ 10, 15, 4, 2, 7, 12, 9, 5, 6, 1, 13, 14, 0, 11, 3, 8 },
|
|
{ 9, 14, 15, 5, 2, 8, 12, 3, 7, 0, 4, 10, 1, 13, 11, 6 },
|
|
{ 4, 3, 2, 12, 9, 5, 15, 10, 11, 14, 1, 7, 6, 0, 8, 13 }
|
|
},
|
|
|
|
{ { 4, 11, 2, 14, 15, 0, 8, 13, 3, 12, 9, 7, 5, 10, 6, 1 },
|
|
{ 13, 0, 11, 7, 4, 9, 1, 10, 14, 3, 5, 12, 2, 15, 8, 6 },
|
|
{ 1, 4, 11, 13, 12, 3, 7, 14, 10, 15, 6, 8, 0, 5, 9, 2 },
|
|
{ 6, 11, 13, 8, 1, 4, 10, 7, 9, 5, 0, 15, 14, 2, 3, 12 }
|
|
},
|
|
|
|
{ { 13, 2, 8, 4, 6, 15, 11, 1, 10, 9, 3, 14, 5, 0, 12, 7 },
|
|
{ 1, 15, 13, 8, 10, 3, 7, 4, 12, 5, 6, 11, 0, 14, 9, 2 },
|
|
{ 7, 11, 4, 1, 9, 12, 14, 2, 0, 6, 10, 13, 15, 3, 5, 8 },
|
|
{ 2, 1, 14, 7, 4, 10, 8, 13, 15, 12, 9, 0, 3, 5, 6, 11 }
|
|
}
|
|
};
|
|
|
|
/*
|
|
* This is the final
|
|
* permutation matrix
|
|
*/
|
|
static int final_perm[64] = {
|
|
40, 8, 48, 16, 56, 24, 64, 32, 39, 7, 47, 15, 55, 23, 63, 31,
|
|
38, 6, 46, 14, 54, 22, 62, 30, 37, 5, 45, 13, 53, 21, 61, 29,
|
|
36, 4, 44, 12, 52, 20, 60, 28, 35, 3, 43, 11, 51, 19, 59, 27,
|
|
34, 2, 42, 10, 50, 18, 58, 26, 33, 1, 41, 9, 49, 17, 57, 25
|
|
};
|
|
|
|
/*
|
|
* The 16 DES keys in BITMASK format
|
|
*/
|
|
#ifdef _UFC_32_
|
|
long32 _ufc_keytab[16][2];
|
|
#endif
|
|
|
|
#ifdef _UFC_64_
|
|
long64 _ufc_keytab[16];
|
|
#endif
|
|
|
|
|
|
#define ascii_to_bin(c) ((c)>='a'?(c-59):(c)>='A'?((c)-53):(c)-'.')
|
|
#define bin_to_ascii(c) ((c)>=38?((c)-38+'a'):(c)>=12?((c)-12+'A'):(c)+'.')
|
|
|
|
/* Macro to set a bit (0..23) */
|
|
#define BITMASK(i) ( (1<<(11-(i)%12+3)) << ((i)<12?16:0) )
|
|
|
|
/*
|
|
* sb arrays:
|
|
*
|
|
* Workhorses of the inner loop of the DES implementation.
|
|
* They do sbox lookup, shifting of this value, 32 bit
|
|
* permutation and E permutation for the next round.
|
|
*
|
|
* Kept in 'BITMASK' format.
|
|
*/
|
|
|
|
#ifdef _UFC_32_
|
|
long32 _ufc_sb0[8192], _ufc_sb1[8192], _ufc_sb2[8192], _ufc_sb3[8192];
|
|
static long32 *sb[4] = {_ufc_sb0, _ufc_sb1, _ufc_sb2, _ufc_sb3};
|
|
#endif
|
|
|
|
#ifdef _UFC_64_
|
|
long64 _ufc_sb0[4096], _ufc_sb1[4096], _ufc_sb2[4096], _ufc_sb3[4096];
|
|
static long64 *sb[4] = {_ufc_sb0, _ufc_sb1, _ufc_sb2, _ufc_sb3};
|
|
#endif
|
|
|
|
/*
|
|
* eperm32tab: do 32 bit permutation and E selection
|
|
*
|
|
* The first index is the byte number in the 32 bit value to be permuted
|
|
* - second - is the value of this byte
|
|
* - third - selects the two 32 bit values
|
|
*
|
|
* The table is used and generated internally in init_des to speed it up
|
|
*/
|
|
static ufc_long eperm32tab[4][256][2];
|
|
|
|
/*
|
|
* do_pc1: permform pc1 permutation in the key schedule generation.
|
|
*
|
|
* The first index is the byte number in the 8 byte ASCII key
|
|
* - second - - the two 28 bits halfs of the result
|
|
* - third - selects the 7 bits actually used of each byte
|
|
*
|
|
* The result is kept with 28 bit per 32 bit with the 4 most significant
|
|
* bits zero.
|
|
*/
|
|
static ufc_long do_pc1[8][2][128];
|
|
|
|
/*
|
|
* do_pc2: permform pc2 permutation in the key schedule generation.
|
|
*
|
|
* The first index is the septet number in the two 28 bit intermediate values
|
|
* - second - - - septet values
|
|
*
|
|
* Knowledge of the structure of the pc2 permutation is used.
|
|
*
|
|
* The result is kept with 28 bit per 32 bit with the 4 most significant
|
|
* bits zero.
|
|
*/
|
|
static ufc_long do_pc2[8][128];
|
|
|
|
/*
|
|
* efp: undo an extra e selection and do final
|
|
* permutation giving the DES result.
|
|
*
|
|
* Invoked 6 bit a time on two 48 bit values
|
|
* giving two 32 bit longs.
|
|
*/
|
|
static ufc_long efp[16][64][2];
|
|
|
|
static unsigned char bytemask[8] = {
|
|
0x80, 0x40, 0x20, 0x10, 0x08, 0x04, 0x02, 0x01
|
|
};
|
|
|
|
static ufc_long longmask[32] = {
|
|
0x80000000, 0x40000000, 0x20000000, 0x10000000,
|
|
0x08000000, 0x04000000, 0x02000000, 0x01000000,
|
|
0x00800000, 0x00400000, 0x00200000, 0x00100000,
|
|
0x00080000, 0x00040000, 0x00020000, 0x00010000,
|
|
0x00008000, 0x00004000, 0x00002000, 0x00001000,
|
|
0x00000800, 0x00000400, 0x00000200, 0x00000100,
|
|
0x00000080, 0x00000040, 0x00000020, 0x00000010,
|
|
0x00000008, 0x00000004, 0x00000002, 0x00000001
|
|
};
|
|
|
|
|
|
/*
|
|
* Silly rewrite of 'bzero'. I do so
|
|
* because some machines don't have
|
|
* bzero and some don't have memset.
|
|
*/
|
|
|
|
static void clearmem(char *start, int cnt)
|
|
{ while(cnt--)
|
|
*start++ = '\0';
|
|
}
|
|
|
|
static int initialized = 0;
|
|
|
|
/* lookup a 6 bit value in sbox */
|
|
|
|
#define s_lookup(i,s) sbox[(i)][(((s)>>4) & 0x2)|((s) & 0x1)][((s)>>1) & 0xf];
|
|
|
|
/*
|
|
* Initialize unit - may be invoked directly
|
|
* by fcrypt users.
|
|
*/
|
|
|
|
static void ufc_init_des(void)
|
|
{ int comes_from_bit;
|
|
int bit, sg;
|
|
ufc_long j;
|
|
ufc_long mask1, mask2;
|
|
|
|
/*
|
|
* Create the do_pc1 table used
|
|
* to affect pc1 permutation
|
|
* when generating keys
|
|
*/
|
|
for(bit = 0; bit < 56; bit++) {
|
|
comes_from_bit = pc1[bit] - 1;
|
|
mask1 = bytemask[comes_from_bit % 8 + 1];
|
|
mask2 = longmask[bit % 28 + 4];
|
|
for(j = 0; j < 128; j++) {
|
|
if(j & mask1)
|
|
do_pc1[comes_from_bit / 8][bit / 28][j] |= mask2;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Create the do_pc2 table used
|
|
* to affect pc2 permutation when
|
|
* generating keys
|
|
*/
|
|
for(bit = 0; bit < 48; bit++) {
|
|
comes_from_bit = pc2[bit] - 1;
|
|
mask1 = bytemask[comes_from_bit % 7 + 1];
|
|
mask2 = BITMASK(bit % 24);
|
|
for(j = 0; j < 128; j++) {
|
|
if(j & mask1)
|
|
do_pc2[comes_from_bit / 7][j] |= mask2;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Now generate the table used to do combined
|
|
* 32 bit permutation and e expansion
|
|
*
|
|
* We use it because we have to permute 16384 32 bit
|
|
* longs into 48 bit in order to initialize sb.
|
|
*
|
|
* Looping 48 rounds per permutation becomes
|
|
* just too slow...
|
|
*
|
|
*/
|
|
|
|
clearmem((char*)eperm32tab, sizeof(eperm32tab));
|
|
|
|
for(bit = 0; bit < 48; bit++) {
|
|
ufc_long inner_mask1,comes_from;
|
|
|
|
comes_from = perm32[esel[bit]-1]-1;
|
|
inner_mask1 = bytemask[comes_from % 8];
|
|
|
|
for(j = 256; j--;) {
|
|
if(j & inner_mask1)
|
|
eperm32tab[comes_from / 8][j][bit / 24] |= BITMASK(bit % 24);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Create the sb tables:
|
|
*
|
|
* For each 12 bit segment of an 48 bit intermediate
|
|
* result, the sb table precomputes the two 4 bit
|
|
* values of the sbox lookups done with the two 6
|
|
* bit halves, shifts them to their proper place,
|
|
* sends them through perm32 and finally E expands
|
|
* them so that they are ready for the next
|
|
* DES round.
|
|
*
|
|
*/
|
|
for(sg = 0; sg < 4; sg++) {
|
|
int j1, j2;
|
|
int s1, s2;
|
|
|
|
for(j1 = 0; j1 < 64; j1++) {
|
|
s1 = s_lookup(2 * sg, j1);
|
|
for(j2 = 0; j2 < 64; j2++) {
|
|
ufc_long to_permute, inx;
|
|
|
|
s2 = s_lookup(2 * sg + 1, j2);
|
|
to_permute = ((s1 << 4) | s2) << (24 - 8 * sg);
|
|
|
|
#ifdef _UFC_32_
|
|
inx = ((j1 << 6) | j2) << 1;
|
|
sb[sg][inx ] = eperm32tab[0][(to_permute >> 24) & 0xff][0];
|
|
sb[sg][inx+1] = eperm32tab[0][(to_permute >> 24) & 0xff][1];
|
|
sb[sg][inx ] |= eperm32tab[1][(to_permute >> 16) & 0xff][0];
|
|
sb[sg][inx+1] |= eperm32tab[1][(to_permute >> 16) & 0xff][1];
|
|
sb[sg][inx ] |= eperm32tab[2][(to_permute >> 8) & 0xff][0];
|
|
sb[sg][inx+1] |= eperm32tab[2][(to_permute >> 8) & 0xff][1];
|
|
sb[sg][inx ] |= eperm32tab[3][(to_permute) & 0xff][0];
|
|
sb[sg][inx+1] |= eperm32tab[3][(to_permute) & 0xff][1];
|
|
#endif
|
|
#ifdef _UFC_64_
|
|
inx = ((j1 << 6) | j2);
|
|
sb[sg][inx] =
|
|
((long64)eperm32tab[0][(to_permute >> 24) & 0xff][0] << 32) |
|
|
(long64)eperm32tab[0][(to_permute >> 24) & 0xff][1];
|
|
sb[sg][inx] |=
|
|
((long64)eperm32tab[1][(to_permute >> 16) & 0xff][0] << 32) |
|
|
(long64)eperm32tab[1][(to_permute >> 16) & 0xff][1];
|
|
sb[sg][inx] |=
|
|
((long64)eperm32tab[2][(to_permute >> 8) & 0xff][0] << 32) |
|
|
(long64)eperm32tab[2][(to_permute >> 8) & 0xff][1];
|
|
sb[sg][inx] |=
|
|
((long64)eperm32tab[3][(to_permute) & 0xff][0] << 32) |
|
|
(long64)eperm32tab[3][(to_permute) & 0xff][1];
|
|
#endif
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Create an inverse matrix for esel telling
|
|
* where to plug out bits if undoing it
|
|
*/
|
|
for(bit=48; bit--;) {
|
|
e_inverse[esel[bit] - 1 ] = bit;
|
|
e_inverse[esel[bit] - 1 + 32] = bit + 48;
|
|
}
|
|
|
|
/*
|
|
* create efp: the matrix used to
|
|
* undo the E expansion and effect final permutation
|
|
*/
|
|
clearmem((char*)efp, sizeof efp);
|
|
for(bit = 0; bit < 64; bit++) {
|
|
int o_bit, o_long;
|
|
ufc_long word_value, inner_mask1, inner_mask2;
|
|
int comes_from_f_bit, comes_from_e_bit;
|
|
int comes_from_word, bit_within_word;
|
|
|
|
/* See where bit i belongs in the two 32 bit long's */
|
|
o_long = bit / 32; /* 0..1 */
|
|
o_bit = bit % 32; /* 0..31 */
|
|
|
|
/*
|
|
* And find a bit in the e permutated value setting this bit.
|
|
*
|
|
* Note: the e selection may have selected the same bit several
|
|
* times. By the initialization of e_inverse, we only look
|
|
* for one specific instance.
|
|
*/
|
|
comes_from_f_bit = final_perm[bit] - 1; /* 0..63 */
|
|
comes_from_e_bit = e_inverse[comes_from_f_bit]; /* 0..95 */
|
|
comes_from_word = comes_from_e_bit / 6; /* 0..15 */
|
|
bit_within_word = comes_from_e_bit % 6; /* 0..5 */
|
|
|
|
inner_mask1 = longmask[bit_within_word + 26];
|
|
inner_mask2 = longmask[o_bit];
|
|
|
|
for(word_value = 64; word_value--;) {
|
|
if(word_value & inner_mask1)
|
|
efp[comes_from_word][word_value][o_long] |= inner_mask2;
|
|
}
|
|
}
|
|
initialized++;
|
|
}
|
|
|
|
/*
|
|
* Process the elements of the sb table permuting the
|
|
* bits swapped in the expansion by the current salt.
|
|
*/
|
|
|
|
#ifdef _UFC_32_
|
|
static void shuffle_sb(long32 *k, ufc_long saltbits)
|
|
{ ufc_long j;
|
|
long32 x;
|
|
for(j=4096; j--;) {
|
|
x = (k[0] ^ k[1]) & (long32)saltbits;
|
|
*k++ ^= x;
|
|
*k++ ^= x;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
#ifdef _UFC_64_
|
|
static void shuffle_sb(long64 *k, ufc_long saltbits)
|
|
{ ufc_long j;
|
|
long64 x;
|
|
for(j=4096; j--;) {
|
|
x = ((*k >> 32) ^ *k) & (long64)saltbits;
|
|
*k++ ^= (x << 32) | x;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* Setup the unit for a new salt
|
|
* Hopefully we'll not see a new salt in each crypt call.
|
|
*/
|
|
|
|
static unsigned char current_salt[3] = "&&"; /* invalid value */
|
|
static ufc_long current_saltbits = 0;
|
|
static int direction = 0;
|
|
|
|
static void setup_salt(const char *s1)
|
|
{ ufc_long i, j, saltbits;
|
|
const unsigned char *s2 = (const unsigned char *)s1;
|
|
|
|
if(!initialized)
|
|
ufc_init_des();
|
|
|
|
if(s2[0] == current_salt[0] && s2[1] == current_salt[1])
|
|
return;
|
|
current_salt[0] = s2[0]; current_salt[1] = s2[1];
|
|
|
|
/*
|
|
* This is the only crypt change to DES:
|
|
* entries are swapped in the expansion table
|
|
* according to the bits set in the salt.
|
|
*/
|
|
saltbits = 0;
|
|
for(i = 0; i < 2; i++) {
|
|
long c=ascii_to_bin(s2[i]);
|
|
if(c < 0 || c > 63)
|
|
c = 0;
|
|
for(j = 0; j < 6; j++) {
|
|
if((c >> j) & 0x1)
|
|
saltbits |= BITMASK(6 * i + j);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Permute the sb table values
|
|
* to reflect the changed e
|
|
* selection table
|
|
*/
|
|
shuffle_sb(_ufc_sb0, current_saltbits ^ saltbits);
|
|
shuffle_sb(_ufc_sb1, current_saltbits ^ saltbits);
|
|
shuffle_sb(_ufc_sb2, current_saltbits ^ saltbits);
|
|
shuffle_sb(_ufc_sb3, current_saltbits ^ saltbits);
|
|
|
|
current_saltbits = saltbits;
|
|
}
|
|
|
|
static void ufc_mk_keytab(char *key)
|
|
{ ufc_long v1, v2, *k1;
|
|
int i;
|
|
#ifdef _UFC_32_
|
|
long32 v, *k2 = &_ufc_keytab[0][0];
|
|
#endif
|
|
#ifdef _UFC_64_
|
|
long64 v, *k2 = &_ufc_keytab[0];
|
|
#endif
|
|
|
|
v1 = v2 = 0; k1 = &do_pc1[0][0][0];
|
|
for(i = 8; i--;) {
|
|
v1 |= k1[*key & 0x7f]; k1 += 128;
|
|
v2 |= k1[*key++ & 0x7f]; k1 += 128;
|
|
}
|
|
|
|
for(i = 0; i < 16; i++) {
|
|
k1 = &do_pc2[0][0];
|
|
|
|
v1 = (v1 << rots[i]) | (v1 >> (28 - rots[i]));
|
|
v = k1[(v1 >> 21) & 0x7f]; k1 += 128;
|
|
v |= k1[(v1 >> 14) & 0x7f]; k1 += 128;
|
|
v |= k1[(v1 >> 7) & 0x7f]; k1 += 128;
|
|
v |= k1[(v1 ) & 0x7f]; k1 += 128;
|
|
|
|
#ifdef _UFC_32_
|
|
*k2++ = v;
|
|
v = 0;
|
|
#endif
|
|
#ifdef _UFC_64_
|
|
v <<= 32;
|
|
#endif
|
|
|
|
v2 = (v2 << rots[i]) | (v2 >> (28 - rots[i]));
|
|
v |= k1[(v2 >> 21) & 0x7f]; k1 += 128;
|
|
v |= k1[(v2 >> 14) & 0x7f]; k1 += 128;
|
|
v |= k1[(v2 >> 7) & 0x7f]; k1 += 128;
|
|
v |= k1[(v2 ) & 0x7f];
|
|
|
|
*k2++ = v;
|
|
}
|
|
|
|
direction = 0;
|
|
}
|
|
|
|
/*
|
|
* Undo an extra E selection and do final permutations
|
|
*/
|
|
|
|
ufc_long *_ufc_dofinalperm(ufc_long l1, ufc_long l2, ufc_long r1, ufc_long r2)
|
|
{ ufc_long v1, v2, x;
|
|
static ufc_long ary[2];
|
|
|
|
x = (l1 ^ l2) & current_saltbits; l1 ^= x; l2 ^= x;
|
|
x = (r1 ^ r2) & current_saltbits; r1 ^= x; r2 ^= x;
|
|
|
|
v1=v2=0; l1 >>= 3; l2 >>= 3; r1 >>= 3; r2 >>= 3;
|
|
|
|
v1 |= efp[15][ r2 & 0x3f][0]; v2 |= efp[15][ r2 & 0x3f][1];
|
|
v1 |= efp[14][(r2 >>= 6) & 0x3f][0]; v2 |= efp[14][ r2 & 0x3f][1];
|
|
v1 |= efp[13][(r2 >>= 10) & 0x3f][0]; v2 |= efp[13][ r2 & 0x3f][1];
|
|
v1 |= efp[12][(r2 >>= 6) & 0x3f][0]; v2 |= efp[12][ r2 & 0x3f][1];
|
|
|
|
v1 |= efp[11][ r1 & 0x3f][0]; v2 |= efp[11][ r1 & 0x3f][1];
|
|
v1 |= efp[10][(r1 >>= 6) & 0x3f][0]; v2 |= efp[10][ r1 & 0x3f][1];
|
|
v1 |= efp[ 9][(r1 >>= 10) & 0x3f][0]; v2 |= efp[ 9][ r1 & 0x3f][1];
|
|
v1 |= efp[ 8][(r1 >>= 6) & 0x3f][0]; v2 |= efp[ 8][ r1 & 0x3f][1];
|
|
|
|
v1 |= efp[ 7][ l2 & 0x3f][0]; v2 |= efp[ 7][ l2 & 0x3f][1];
|
|
v1 |= efp[ 6][(l2 >>= 6) & 0x3f][0]; v2 |= efp[ 6][ l2 & 0x3f][1];
|
|
v1 |= efp[ 5][(l2 >>= 10) & 0x3f][0]; v2 |= efp[ 5][ l2 & 0x3f][1];
|
|
v1 |= efp[ 4][(l2 >>= 6) & 0x3f][0]; v2 |= efp[ 4][ l2 & 0x3f][1];
|
|
|
|
v1 |= efp[ 3][ l1 & 0x3f][0]; v2 |= efp[ 3][ l1 & 0x3f][1];
|
|
v1 |= efp[ 2][(l1 >>= 6) & 0x3f][0]; v2 |= efp[ 2][ l1 & 0x3f][1];
|
|
v1 |= efp[ 1][(l1 >>= 10) & 0x3f][0]; v2 |= efp[ 1][ l1 & 0x3f][1];
|
|
v1 |= efp[ 0][(l1 >>= 6) & 0x3f][0]; v2 |= efp[ 0][ l1 & 0x3f][1];
|
|
|
|
ary[0] = v1; ary[1] = v2;
|
|
return ary;
|
|
}
|
|
|
|
/*
|
|
* crypt only: convert from 64 bit to 11 bit ASCII
|
|
* prefixing with the salt
|
|
*/
|
|
|
|
static char *output_conversion(ufc_long v1, ufc_long v2, const char *salt)
|
|
{ static char outbuf[14];
|
|
int i, s;
|
|
|
|
outbuf[0] = salt[0];
|
|
outbuf[1] = salt[1] ? salt[1] : salt[0];
|
|
|
|
for(i = 0; i < 5; i++)
|
|
outbuf[i + 2] = bin_to_ascii((v1 >> (26 - 6 * i)) & 0x3f);
|
|
|
|
s = (v2 & 0xf) << 2;
|
|
v2 = (v2 >> 2) | ((v1 & 0x3) << 30);
|
|
|
|
for(i = 5; i < 10; i++)
|
|
outbuf[i + 2] = bin_to_ascii((v2 >> (56 - 6 * i)) & 0x3f);
|
|
|
|
outbuf[12] = bin_to_ascii(s);
|
|
outbuf[13] = 0;
|
|
|
|
return outbuf;
|
|
}
|
|
|
|
/*
|
|
* UNIX crypt function
|
|
*/
|
|
|
|
static ufc_long *_ufc_doit(ufc_long , ufc_long, ufc_long, ufc_long, ufc_long);
|
|
|
|
char *ufc_crypt(const char *key,const char *salt)
|
|
{ ufc_long *s;
|
|
char ktab[9];
|
|
|
|
/*
|
|
* Hack DES tables according to salt
|
|
*/
|
|
setup_salt(salt);
|
|
|
|
/*
|
|
* Setup key schedule
|
|
*/
|
|
clearmem(ktab, sizeof ktab);
|
|
StrnCpy(ktab, key, 8);
|
|
ufc_mk_keytab(ktab);
|
|
|
|
/*
|
|
* Go for the 25 DES encryptions
|
|
*/
|
|
s = _ufc_doit((ufc_long)0, (ufc_long)0,
|
|
(ufc_long)0, (ufc_long)0, (ufc_long)25);
|
|
|
|
/*
|
|
* And convert back to 6 bit ASCII
|
|
*/
|
|
return output_conversion(s[0], s[1], salt);
|
|
}
|
|
|
|
|
|
#ifdef _UFC_32_
|
|
|
|
/*
|
|
* 32 bit version
|
|
*/
|
|
|
|
extern long32 _ufc_keytab[16][2];
|
|
extern long32 _ufc_sb0[], _ufc_sb1[], _ufc_sb2[], _ufc_sb3[];
|
|
|
|
#define SBA(sb, v) (*(long32*)((char*)(sb)+(v)))
|
|
|
|
static ufc_long *_ufc_doit(ufc_long l1, ufc_long l2, ufc_long r1, ufc_long r2, ufc_long itr)
|
|
{ int i;
|
|
long32 s, *k;
|
|
|
|
while(itr--) {
|
|
k = &_ufc_keytab[0][0];
|
|
for(i=8; i--; ) {
|
|
s = *k++ ^ r1;
|
|
l1 ^= SBA(_ufc_sb1, s & 0xffff); l2 ^= SBA(_ufc_sb1, (s & 0xffff)+4);
|
|
l1 ^= SBA(_ufc_sb0, s >>= 16); l2 ^= SBA(_ufc_sb0, (s) +4);
|
|
s = *k++ ^ r2;
|
|
l1 ^= SBA(_ufc_sb3, s & 0xffff); l2 ^= SBA(_ufc_sb3, (s & 0xffff)+4);
|
|
l1 ^= SBA(_ufc_sb2, s >>= 16); l2 ^= SBA(_ufc_sb2, (s) +4);
|
|
|
|
s = *k++ ^ l1;
|
|
r1 ^= SBA(_ufc_sb1, s & 0xffff); r2 ^= SBA(_ufc_sb1, (s & 0xffff)+4);
|
|
r1 ^= SBA(_ufc_sb0, s >>= 16); r2 ^= SBA(_ufc_sb0, (s) +4);
|
|
s = *k++ ^ l2;
|
|
r1 ^= SBA(_ufc_sb3, s & 0xffff); r2 ^= SBA(_ufc_sb3, (s & 0xffff)+4);
|
|
r1 ^= SBA(_ufc_sb2, s >>= 16); r2 ^= SBA(_ufc_sb2, (s) +4);
|
|
}
|
|
s=l1; l1=r1; r1=s; s=l2; l2=r2; r2=s;
|
|
}
|
|
return _ufc_dofinalperm(l1, l2, r1, r2);
|
|
}
|
|
|
|
#endif
|
|
|
|
#ifdef _UFC_64_
|
|
|
|
/*
|
|
* 64 bit version
|
|
*/
|
|
|
|
extern long64 _ufc_keytab[16];
|
|
extern long64 _ufc_sb0[], _ufc_sb1[], _ufc_sb2[], _ufc_sb3[];
|
|
|
|
#define SBA(sb, v) (*(long64*)((char*)(sb)+(v)))
|
|
|
|
static ufc_long *_ufc_doit(ufc_long l1, ufc_long l2, ufc_long r1, ufc_long r2, ufc_long itr)
|
|
{ int i;
|
|
long64 l, r, s, *k;
|
|
|
|
l = (((long64)l1) << 32) | ((long64)l2);
|
|
r = (((long64)r1) << 32) | ((long64)r2);
|
|
|
|
while(itr--) {
|
|
k = &_ufc_keytab[0];
|
|
for(i=8; i--; ) {
|
|
s = *k++ ^ r;
|
|
l ^= SBA(_ufc_sb3, (s >> 0) & 0xffff);
|
|
l ^= SBA(_ufc_sb2, (s >> 16) & 0xffff);
|
|
l ^= SBA(_ufc_sb1, (s >> 32) & 0xffff);
|
|
l ^= SBA(_ufc_sb0, (s >> 48) & 0xffff);
|
|
|
|
s = *k++ ^ l;
|
|
r ^= SBA(_ufc_sb3, (s >> 0) & 0xffff);
|
|
r ^= SBA(_ufc_sb2, (s >> 16) & 0xffff);
|
|
r ^= SBA(_ufc_sb1, (s >> 32) & 0xffff);
|
|
r ^= SBA(_ufc_sb0, (s >> 48) & 0xffff);
|
|
}
|
|
s=l; l=r; r=s;
|
|
}
|
|
|
|
l1 = l >> 32; l2 = l & 0xffffffff;
|
|
r1 = r >> 32; r2 = r & 0xffffffff;
|
|
return _ufc_dofinalperm(l1, l2, r1, r2);
|
|
}
|
|
|
|
#endif
|
|
|
|
|
|
#else
|
|
int ufc_dummy_procedure(void);
|
|
int ufc_dummy_procedure(void) {return 0;}
|
|
#endif
|