1
0
mirror of https://github.com/samba-team/samba.git synced 2025-01-12 09:18:10 +03:00
samba-mirror/source4/librpc/rpc/dcerpc_util.c
2008-04-03 02:28:31 +02:00

1439 lines
38 KiB
C

/*
Unix SMB/CIFS implementation.
dcerpc utility functions
Copyright (C) Andrew Tridgell 2003
Copyright (C) Jelmer Vernooij 2004
Copyright (C) Andrew Bartlett <abartlet@samba.org> 2005
Copyright (C) Rafal Szczesniak 2006
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include "includes.h"
#include "lib/events/events.h"
#include "libcli/composite/composite.h"
#include "librpc/gen_ndr/ndr_epmapper_c.h"
#include "librpc/gen_ndr/ndr_dcerpc.h"
#include "librpc/gen_ndr/ndr_misc.h"
#include "librpc/rpc/dcerpc_proto.h"
#include "auth/credentials/credentials.h"
#include "param/param.h"
/*
find a dcerpc call on an interface by name
*/
const struct ndr_interface_call *dcerpc_iface_find_call(const struct ndr_interface_table *iface,
const char *name)
{
int i;
for (i=0;i<iface->num_calls;i++) {
if (strcmp(iface->calls[i].name, name) == 0) {
return &iface->calls[i];
}
}
return NULL;
}
/*
push a ncacn_packet into a blob, potentially with auth info
*/
NTSTATUS ncacn_push_auth(DATA_BLOB *blob, TALLOC_CTX *mem_ctx,
struct smb_iconv_convenience *iconv_convenience,
struct ncacn_packet *pkt,
struct dcerpc_auth *auth_info)
{
struct ndr_push *ndr;
enum ndr_err_code ndr_err;
ndr = ndr_push_init_ctx(mem_ctx, iconv_convenience);
if (!ndr) {
return NT_STATUS_NO_MEMORY;
}
if (!(pkt->drep[0] & DCERPC_DREP_LE)) {
ndr->flags |= LIBNDR_FLAG_BIGENDIAN;
}
if (pkt->pfc_flags & DCERPC_PFC_FLAG_OBJECT_UUID) {
ndr->flags |= LIBNDR_FLAG_OBJECT_PRESENT;
}
if (auth_info) {
pkt->auth_length = auth_info->credentials.length;
} else {
pkt->auth_length = 0;
}
ndr_err = ndr_push_ncacn_packet(ndr, NDR_SCALARS|NDR_BUFFERS, pkt);
if (!NDR_ERR_CODE_IS_SUCCESS(ndr_err)) {
return ndr_map_error2ntstatus(ndr_err);
}
if (auth_info) {
ndr_err = ndr_push_dcerpc_auth(ndr, NDR_SCALARS|NDR_BUFFERS, auth_info);
if (!NDR_ERR_CODE_IS_SUCCESS(ndr_err)) {
return ndr_map_error2ntstatus(ndr_err);
}
}
*blob = ndr_push_blob(ndr);
/* fill in the frag length */
dcerpc_set_frag_length(blob, blob->length);
return NT_STATUS_OK;
}
#define MAX_PROTSEQ 10
static const struct {
const char *name;
enum dcerpc_transport_t transport;
int num_protocols;
enum epm_protocol protseq[MAX_PROTSEQ];
} transports[] = {
{ "ncacn_np", NCACN_NP, 3,
{ EPM_PROTOCOL_NCACN, EPM_PROTOCOL_SMB, EPM_PROTOCOL_NETBIOS }},
{ "ncacn_ip_tcp", NCACN_IP_TCP, 3,
{ EPM_PROTOCOL_NCACN, EPM_PROTOCOL_TCP, EPM_PROTOCOL_IP } },
{ "ncacn_http", NCACN_HTTP, 3,
{ EPM_PROTOCOL_NCACN, EPM_PROTOCOL_HTTP, EPM_PROTOCOL_IP } },
{ "ncadg_ip_udp", NCACN_IP_UDP, 3,
{ EPM_PROTOCOL_NCADG, EPM_PROTOCOL_UDP, EPM_PROTOCOL_IP } },
{ "ncalrpc", NCALRPC, 2,
{ EPM_PROTOCOL_NCALRPC, EPM_PROTOCOL_PIPE } },
{ "ncacn_unix_stream", NCACN_UNIX_STREAM, 2,
{ EPM_PROTOCOL_NCACN, EPM_PROTOCOL_UNIX_DS } },
{ "ncadg_unix_dgram", NCADG_UNIX_DGRAM, 2,
{ EPM_PROTOCOL_NCADG, EPM_PROTOCOL_UNIX_DS } },
{ "ncacn_at_dsp", NCACN_AT_DSP, 3,
{ EPM_PROTOCOL_NCACN, EPM_PROTOCOL_APPLETALK, EPM_PROTOCOL_DSP } },
{ "ncadg_at_ddp", NCADG_AT_DDP, 3,
{ EPM_PROTOCOL_NCADG, EPM_PROTOCOL_APPLETALK, EPM_PROTOCOL_DDP } },
{ "ncacn_vns_ssp", NCACN_VNS_SPP, 3,
{ EPM_PROTOCOL_NCACN, EPM_PROTOCOL_STREETTALK, EPM_PROTOCOL_VINES_SPP } },
{ "ncacn_vns_ipc", NCACN_VNS_IPC, 3,
{ EPM_PROTOCOL_NCACN, EPM_PROTOCOL_STREETTALK, EPM_PROTOCOL_VINES_IPC }, },
{ "ncadg_ipx", NCADG_IPX, 2,
{ EPM_PROTOCOL_NCADG, EPM_PROTOCOL_IPX },
},
{ "ncacn_spx", NCACN_SPX, 3,
/* I guess some MS programmer confused the identifier for
* EPM_PROTOCOL_UUID (0x0D or 13) with the one for
* EPM_PROTOCOL_SPX (0x13) here. -- jelmer*/
{ EPM_PROTOCOL_NCACN, EPM_PROTOCOL_NCALRPC, EPM_PROTOCOL_UUID },
},
};
static const struct {
const char *name;
uint32_t flag;
} ncacn_options[] = {
{"sign", DCERPC_SIGN},
{"seal", DCERPC_SEAL},
{"connect", DCERPC_CONNECT},
{"spnego", DCERPC_AUTH_SPNEGO},
{"ntlm", DCERPC_AUTH_NTLM},
{"krb5", DCERPC_AUTH_KRB5},
{"validate", DCERPC_DEBUG_VALIDATE_BOTH},
{"print", DCERPC_DEBUG_PRINT_BOTH},
{"padcheck", DCERPC_DEBUG_PAD_CHECK},
{"bigendian", DCERPC_PUSH_BIGENDIAN},
{"smb2", DCERPC_SMB2}
};
const char *epm_floor_string(TALLOC_CTX *mem_ctx, struct epm_floor *epm_floor)
{
struct ndr_syntax_id syntax;
NTSTATUS status;
switch(epm_floor->lhs.protocol) {
case EPM_PROTOCOL_UUID:
status = dcerpc_floor_get_lhs_data(epm_floor, &syntax);
if (NT_STATUS_IS_OK(status)) {
/* lhs is used: UUID */
char *uuidstr;
if (GUID_equal(&syntax.uuid, &ndr_transfer_syntax.uuid)) {
return "NDR";
}
if (GUID_equal(&syntax.uuid, &ndr64_transfer_syntax.uuid)) {
return "NDR64";
}
uuidstr = GUID_string(mem_ctx, &syntax.uuid);
return talloc_asprintf(mem_ctx, " uuid %s/0x%02x", uuidstr, syntax.if_version);
} else { /* IPX */
return talloc_asprintf(mem_ctx, "IPX:%s",
data_blob_hex_string(mem_ctx, &epm_floor->rhs.uuid.unknown));
}
case EPM_PROTOCOL_NCACN:
return "RPC-C";
case EPM_PROTOCOL_NCADG:
return "RPC";
case EPM_PROTOCOL_NCALRPC:
return "NCALRPC";
case EPM_PROTOCOL_DNET_NSP:
return "DNET/NSP";
case EPM_PROTOCOL_IP:
return talloc_asprintf(mem_ctx, "IP:%s", epm_floor->rhs.ip.ipaddr);
case EPM_PROTOCOL_PIPE:
return talloc_asprintf(mem_ctx, "PIPE:%s", epm_floor->rhs.pipe.path);
case EPM_PROTOCOL_SMB:
return talloc_asprintf(mem_ctx, "SMB:%s", epm_floor->rhs.smb.unc);
case EPM_PROTOCOL_UNIX_DS:
return talloc_asprintf(mem_ctx, "Unix:%s", epm_floor->rhs.unix_ds.path);
case EPM_PROTOCOL_NETBIOS:
return talloc_asprintf(mem_ctx, "NetBIOS:%s", epm_floor->rhs.netbios.name);
case EPM_PROTOCOL_NETBEUI:
return "NETBeui";
case EPM_PROTOCOL_SPX:
return "SPX";
case EPM_PROTOCOL_NB_IPX:
return "NB_IPX";
case EPM_PROTOCOL_HTTP:
return talloc_asprintf(mem_ctx, "HTTP:%d", epm_floor->rhs.http.port);
case EPM_PROTOCOL_TCP:
return talloc_asprintf(mem_ctx, "TCP:%d", epm_floor->rhs.tcp.port);
case EPM_PROTOCOL_UDP:
return talloc_asprintf(mem_ctx, "UDP:%d", epm_floor->rhs.udp.port);
default:
return talloc_asprintf(mem_ctx, "UNK(%02x):", epm_floor->lhs.protocol);
}
}
/*
form a binding string from a binding structure
*/
_PUBLIC_ char *dcerpc_binding_string(TALLOC_CTX *mem_ctx, const struct dcerpc_binding *b)
{
char *s = talloc_strdup(mem_ctx, "");
int i;
const char *t_name = NULL;
if (b->transport != NCA_UNKNOWN) {
for (i=0;i<ARRAY_SIZE(transports);i++) {
if (transports[i].transport == b->transport) {
t_name = transports[i].name;
}
}
if (!t_name) {
return NULL;
}
}
if (!GUID_all_zero(&b->object.uuid)) {
s = talloc_asprintf(s, "%s@",
GUID_string(mem_ctx, &b->object.uuid));
}
if (t_name != NULL) {
s = talloc_asprintf_append_buffer(s, "%s:", t_name);
if (s == NULL) {
return NULL;
}
}
if (b->host) {
s = talloc_asprintf_append_buffer(s, "%s", b->host);
}
if (!b->endpoint && !b->options && !b->flags) {
return s;
}
s = talloc_asprintf_append_buffer(s, "[");
if (b->endpoint) {
s = talloc_asprintf_append_buffer(s, "%s", b->endpoint);
}
/* this is a *really* inefficent way of dealing with strings,
but this is rarely called and the strings are always short,
so I don't care */
for (i=0;b->options && b->options[i];i++) {
s = talloc_asprintf_append_buffer(s, ",%s", b->options[i]);
if (!s) return NULL;
}
for (i=0;i<ARRAY_SIZE(ncacn_options);i++) {
if (b->flags & ncacn_options[i].flag) {
s = talloc_asprintf_append_buffer(s, ",%s", ncacn_options[i].name);
if (!s) return NULL;
}
}
s = talloc_asprintf_append_buffer(s, "]");
return s;
}
/*
parse a binding string into a dcerpc_binding structure
*/
_PUBLIC_ NTSTATUS dcerpc_parse_binding(TALLOC_CTX *mem_ctx, const char *s, struct dcerpc_binding **b_out)
{
struct dcerpc_binding *b;
char *options;
char *p;
int i, j, comma_count;
b = talloc(mem_ctx, struct dcerpc_binding);
if (!b) {
return NT_STATUS_NO_MEMORY;
}
p = strchr(s, '@');
if (p && PTR_DIFF(p, s) == 36) { /* 36 is the length of a UUID */
NTSTATUS status;
status = GUID_from_string(s, &b->object.uuid);
if (NT_STATUS_IS_ERR(status)) {
DEBUG(0, ("Failed parsing UUID\n"));
return status;
}
s = p + 1;
} else {
ZERO_STRUCT(b->object);
}
b->object.if_version = 0;
p = strchr(s, ':');
if (p == NULL) {
b->transport = NCA_UNKNOWN;
} else {
char *type = talloc_strndup(mem_ctx, s, PTR_DIFF(p, s));
if (!type) {
return NT_STATUS_NO_MEMORY;
}
for (i=0;i<ARRAY_SIZE(transports);i++) {
if (strcasecmp(type, transports[i].name) == 0) {
b->transport = transports[i].transport;
break;
}
}
if (i==ARRAY_SIZE(transports)) {
DEBUG(0,("Unknown dcerpc transport '%s'\n", type));
return NT_STATUS_INVALID_PARAMETER;
}
talloc_free(type);
s = p+1;
}
p = strchr(s, '[');
if (p) {
b->host = talloc_strndup(b, s, PTR_DIFF(p, s));
options = talloc_strdup(mem_ctx, p+1);
if (options[strlen(options)-1] != ']') {
return NT_STATUS_INVALID_PARAMETER;
}
options[strlen(options)-1] = 0;
} else {
b->host = talloc_strdup(b, s);
options = NULL;
}
if (!b->host) {
return NT_STATUS_NO_MEMORY;
}
b->target_hostname = b->host;
b->options = NULL;
b->flags = 0;
b->assoc_group_id = 0;
b->endpoint = NULL;
if (!options) {
*b_out = b;
return NT_STATUS_OK;
}
comma_count = count_chars(options, ',');
b->options = talloc_array(b, const char *, comma_count+2);
if (!b->options) {
return NT_STATUS_NO_MEMORY;
}
for (i=0; (p = strchr(options, ',')); i++) {
b->options[i] = talloc_strndup(b, options, PTR_DIFF(p, options));
if (!b->options[i]) {
return NT_STATUS_NO_MEMORY;
}
options = p+1;
}
b->options[i] = options;
b->options[i+1] = NULL;
/* some options are pre-parsed for convenience */
for (i=0;b->options[i];i++) {
for (j=0;j<ARRAY_SIZE(ncacn_options);j++) {
if (strcasecmp(ncacn_options[j].name, b->options[i]) == 0) {
int k;
b->flags |= ncacn_options[j].flag;
for (k=i;b->options[k];k++) {
b->options[k] = b->options[k+1];
}
i--;
break;
}
}
}
if (b->options[0]) {
/* Endpoint is first option */
b->endpoint = b->options[0];
if (strlen(b->endpoint) == 0) b->endpoint = NULL;
for (i=0;b->options[i];i++) {
b->options[i] = b->options[i+1];
}
}
if (b->options[0] == NULL)
b->options = NULL;
*b_out = b;
return NT_STATUS_OK;
}
_PUBLIC_ NTSTATUS dcerpc_floor_get_lhs_data(struct epm_floor *epm_floor, struct ndr_syntax_id *syntax)
{
TALLOC_CTX *mem_ctx = talloc_init("floor_get_lhs_data");
struct ndr_pull *ndr = ndr_pull_init_blob(&epm_floor->lhs.lhs_data, mem_ctx, NULL);
enum ndr_err_code ndr_err;
uint16_t if_version=0;
ndr->flags |= LIBNDR_FLAG_NOALIGN;
ndr_err = ndr_pull_GUID(ndr, NDR_SCALARS | NDR_BUFFERS, &syntax->uuid);
if (!NDR_ERR_CODE_IS_SUCCESS(ndr_err)) {
talloc_free(mem_ctx);
return ndr_map_error2ntstatus(ndr_err);
}
ndr_err = ndr_pull_uint16(ndr, NDR_SCALARS, &if_version);
if (!NDR_ERR_CODE_IS_SUCCESS(ndr_err)) {
talloc_free(mem_ctx);
return ndr_map_error2ntstatus(ndr_err);
}
syntax->if_version = if_version;
talloc_free(mem_ctx);
return NT_STATUS_OK;
}
static DATA_BLOB dcerpc_floor_pack_lhs_data(TALLOC_CTX *mem_ctx, const struct ndr_syntax_id *syntax)
{
struct ndr_push *ndr = ndr_push_init_ctx(mem_ctx, NULL);
ndr->flags |= LIBNDR_FLAG_NOALIGN;
ndr_push_GUID(ndr, NDR_SCALARS | NDR_BUFFERS, &syntax->uuid);
ndr_push_uint16(ndr, NDR_SCALARS, syntax->if_version);
return ndr_push_blob(ndr);
}
const char *dcerpc_floor_get_rhs_data(TALLOC_CTX *mem_ctx, struct epm_floor *epm_floor)
{
switch (epm_floor->lhs.protocol) {
case EPM_PROTOCOL_TCP:
if (epm_floor->rhs.tcp.port == 0) return NULL;
return talloc_asprintf(mem_ctx, "%d", epm_floor->rhs.tcp.port);
case EPM_PROTOCOL_UDP:
if (epm_floor->rhs.udp.port == 0) return NULL;
return talloc_asprintf(mem_ctx, "%d", epm_floor->rhs.udp.port);
case EPM_PROTOCOL_HTTP:
if (epm_floor->rhs.http.port == 0) return NULL;
return talloc_asprintf(mem_ctx, "%d", epm_floor->rhs.http.port);
case EPM_PROTOCOL_IP:
return talloc_strdup(mem_ctx, epm_floor->rhs.ip.ipaddr);
case EPM_PROTOCOL_NCACN:
return NULL;
case EPM_PROTOCOL_NCADG:
return NULL;
case EPM_PROTOCOL_SMB:
if (strlen(epm_floor->rhs.smb.unc) == 0) return NULL;
return talloc_strdup(mem_ctx, epm_floor->rhs.smb.unc);
case EPM_PROTOCOL_PIPE:
if (strlen(epm_floor->rhs.pipe.path) == 0) return NULL;
return talloc_strdup(mem_ctx, epm_floor->rhs.pipe.path);
case EPM_PROTOCOL_NETBIOS:
if (strlen(epm_floor->rhs.netbios.name) == 0) return NULL;
return talloc_strdup(mem_ctx, epm_floor->rhs.netbios.name);
case EPM_PROTOCOL_NCALRPC:
return NULL;
case EPM_PROTOCOL_VINES_SPP:
return talloc_asprintf(mem_ctx, "%d", epm_floor->rhs.vines_spp.port);
case EPM_PROTOCOL_VINES_IPC:
return talloc_asprintf(mem_ctx, "%d", epm_floor->rhs.vines_ipc.port);
case EPM_PROTOCOL_STREETTALK:
return talloc_strdup(mem_ctx, epm_floor->rhs.streettalk.streettalk);
case EPM_PROTOCOL_UNIX_DS:
if (strlen(epm_floor->rhs.unix_ds.path) == 0) return NULL;
return talloc_strdup(mem_ctx, epm_floor->rhs.unix_ds.path);
case EPM_PROTOCOL_NULL:
return NULL;
default:
DEBUG(0,("Unsupported lhs protocol %d\n", epm_floor->lhs.protocol));
break;
}
return NULL;
}
static NTSTATUS dcerpc_floor_set_rhs_data(TALLOC_CTX *mem_ctx,
struct epm_floor *epm_floor,
const char *data)
{
switch (epm_floor->lhs.protocol) {
case EPM_PROTOCOL_TCP:
epm_floor->rhs.tcp.port = atoi(data);
return NT_STATUS_OK;
case EPM_PROTOCOL_UDP:
epm_floor->rhs.udp.port = atoi(data);
return NT_STATUS_OK;
case EPM_PROTOCOL_HTTP:
epm_floor->rhs.http.port = atoi(data);
return NT_STATUS_OK;
case EPM_PROTOCOL_IP:
epm_floor->rhs.ip.ipaddr = talloc_strdup(mem_ctx, data);
NT_STATUS_HAVE_NO_MEMORY(epm_floor->rhs.ip.ipaddr);
return NT_STATUS_OK;
case EPM_PROTOCOL_NCACN:
epm_floor->rhs.ncacn.minor_version = 0;
return NT_STATUS_OK;
case EPM_PROTOCOL_NCADG:
epm_floor->rhs.ncadg.minor_version = 0;
return NT_STATUS_OK;
case EPM_PROTOCOL_SMB:
epm_floor->rhs.smb.unc = talloc_strdup(mem_ctx, data);
NT_STATUS_HAVE_NO_MEMORY(epm_floor->rhs.smb.unc);
return NT_STATUS_OK;
case EPM_PROTOCOL_PIPE:
epm_floor->rhs.pipe.path = talloc_strdup(mem_ctx, data);
NT_STATUS_HAVE_NO_MEMORY(epm_floor->rhs.pipe.path);
return NT_STATUS_OK;
case EPM_PROTOCOL_NETBIOS:
epm_floor->rhs.netbios.name = talloc_strdup(mem_ctx, data);
NT_STATUS_HAVE_NO_MEMORY(epm_floor->rhs.netbios.name);
return NT_STATUS_OK;
case EPM_PROTOCOL_NCALRPC:
return NT_STATUS_OK;
case EPM_PROTOCOL_VINES_SPP:
epm_floor->rhs.vines_spp.port = atoi(data);
return NT_STATUS_OK;
case EPM_PROTOCOL_VINES_IPC:
epm_floor->rhs.vines_ipc.port = atoi(data);
return NT_STATUS_OK;
case EPM_PROTOCOL_STREETTALK:
epm_floor->rhs.streettalk.streettalk = talloc_strdup(mem_ctx, data);
NT_STATUS_HAVE_NO_MEMORY(epm_floor->rhs.streettalk.streettalk);
return NT_STATUS_OK;
case EPM_PROTOCOL_UNIX_DS:
epm_floor->rhs.unix_ds.path = talloc_strdup(mem_ctx, data);
NT_STATUS_HAVE_NO_MEMORY(epm_floor->rhs.unix_ds.path);
return NT_STATUS_OK;
case EPM_PROTOCOL_NULL:
return NT_STATUS_OK;
default:
DEBUG(0,("Unsupported lhs protocol %d\n", epm_floor->lhs.protocol));
break;
}
return NT_STATUS_NOT_SUPPORTED;
}
enum dcerpc_transport_t dcerpc_transport_by_endpoint_protocol(int prot)
{
int i;
/* Find a transport that has 'prot' as 4th protocol */
for (i=0;i<ARRAY_SIZE(transports);i++) {
if (transports[i].num_protocols >= 2 &&
transports[i].protseq[1] == prot) {
return transports[i].transport;
}
}
/* Unknown transport */
return (unsigned int)-1;
}
_PUBLIC_ enum dcerpc_transport_t dcerpc_transport_by_tower(struct epm_tower *tower)
{
int i;
/* Find a transport that matches this tower */
for (i=0;i<ARRAY_SIZE(transports);i++) {
int j;
if (transports[i].num_protocols != tower->num_floors - 2) {
continue;
}
for (j = 0; j < transports[i].num_protocols; j++) {
if (transports[i].protseq[j] != tower->floors[j+2].lhs.protocol) {
break;
}
}
if (j == transports[i].num_protocols) {
return transports[i].transport;
}
}
/* Unknown transport */
return (unsigned int)-1;
}
_PUBLIC_ NTSTATUS dcerpc_binding_from_tower(TALLOC_CTX *mem_ctx,
struct epm_tower *tower,
struct dcerpc_binding **b_out)
{
NTSTATUS status;
struct dcerpc_binding *binding;
binding = talloc(mem_ctx, struct dcerpc_binding);
NT_STATUS_HAVE_NO_MEMORY(binding);
ZERO_STRUCT(binding->object);
binding->options = NULL;
binding->host = NULL;
binding->target_hostname = NULL;
binding->flags = 0;
binding->assoc_group_id = 0;
binding->transport = dcerpc_transport_by_tower(tower);
if (binding->transport == (unsigned int)-1) {
return NT_STATUS_NOT_SUPPORTED;
}
if (tower->num_floors < 1) {
return NT_STATUS_OK;
}
/* Set object uuid */
status = dcerpc_floor_get_lhs_data(&tower->floors[0], &binding->object);
if (!NT_STATUS_IS_OK(status)) {
DEBUG(1, ("Error pulling object uuid and version: %s", nt_errstr(status)));
return status;
}
/* Ignore floor 1, it contains the NDR version info */
binding->options = NULL;
/* Set endpoint */
if (tower->num_floors >= 4) {
binding->endpoint = dcerpc_floor_get_rhs_data(mem_ctx, &tower->floors[3]);
} else {
binding->endpoint = NULL;
}
/* Set network address */
if (tower->num_floors >= 5) {
binding->host = dcerpc_floor_get_rhs_data(mem_ctx, &tower->floors[4]);
NT_STATUS_HAVE_NO_MEMORY(binding->host);
binding->target_hostname = binding->host;
}
*b_out = binding;
return NT_STATUS_OK;
}
_PUBLIC_ NTSTATUS dcerpc_binding_build_tower(TALLOC_CTX *mem_ctx, struct dcerpc_binding *binding, struct epm_tower *tower)
{
const enum epm_protocol *protseq = NULL;
int num_protocols = -1, i;
NTSTATUS status;
/* Find transport */
for (i=0;i<ARRAY_SIZE(transports);i++) {
if (transports[i].transport == binding->transport) {
protseq = transports[i].protseq;
num_protocols = transports[i].num_protocols;
break;
}
}
if (num_protocols == -1) {
DEBUG(0, ("Unable to find transport with id '%d'\n", binding->transport));
return NT_STATUS_UNSUCCESSFUL;
}
tower->num_floors = 2 + num_protocols;
tower->floors = talloc_array(mem_ctx, struct epm_floor, tower->num_floors);
/* Floor 0 */
tower->floors[0].lhs.protocol = EPM_PROTOCOL_UUID;
tower->floors[0].lhs.lhs_data = dcerpc_floor_pack_lhs_data(mem_ctx, &binding->object);
tower->floors[0].rhs.uuid.unknown = data_blob_talloc_zero(mem_ctx, 2);
/* Floor 1 */
tower->floors[1].lhs.protocol = EPM_PROTOCOL_UUID;
tower->floors[1].lhs.lhs_data = dcerpc_floor_pack_lhs_data(mem_ctx,
&ndr_transfer_syntax);
tower->floors[1].rhs.uuid.unknown = data_blob_talloc_zero(mem_ctx, 2);
/* Floor 2 to num_protocols */
for (i = 0; i < num_protocols; i++) {
tower->floors[2 + i].lhs.protocol = protseq[i];
tower->floors[2 + i].lhs.lhs_data = data_blob_talloc(mem_ctx, NULL, 0);
ZERO_STRUCT(tower->floors[2 + i].rhs);
dcerpc_floor_set_rhs_data(mem_ctx, &tower->floors[2 + i], "");
}
/* The 4th floor contains the endpoint */
if (num_protocols >= 2 && binding->endpoint) {
status = dcerpc_floor_set_rhs_data(mem_ctx, &tower->floors[3], binding->endpoint);
if (NT_STATUS_IS_ERR(status)) {
return status;
}
}
/* The 5th contains the network address */
if (num_protocols >= 3 && binding->host) {
if (is_ipaddress(binding->host)) {
status = dcerpc_floor_set_rhs_data(mem_ctx, &tower->floors[4],
binding->host);
} else {
/* note that we don't attempt to resolve the
name here - when we get a hostname here we
are in the client code, and want to put in
a wildcard all-zeros IP for the server to
fill in */
status = dcerpc_floor_set_rhs_data(mem_ctx, &tower->floors[4],
"0.0.0.0");
}
if (NT_STATUS_IS_ERR(status)) {
return status;
}
}
return NT_STATUS_OK;
}
struct epm_map_binding_state {
struct dcerpc_binding *binding;
const struct ndr_interface_table *table;
struct dcerpc_pipe *pipe;
struct policy_handle handle;
struct GUID guid;
struct epm_twr_t twr;
struct epm_twr_t *twr_r;
struct epm_Map r;
};
static void continue_epm_recv_binding(struct composite_context *ctx);
static void continue_epm_map(struct rpc_request *req);
/*
Stage 2 of epm_map_binding: Receive connected rpc pipe and send endpoint
mapping rpc request
*/
static void continue_epm_recv_binding(struct composite_context *ctx)
{
struct rpc_request *map_req;
struct composite_context *c = talloc_get_type(ctx->async.private_data,
struct composite_context);
struct epm_map_binding_state *s = talloc_get_type(c->private_data,
struct epm_map_binding_state);
/* receive result of rpc pipe connect request */
c->status = dcerpc_pipe_connect_b_recv(ctx, c, &s->pipe);
if (!composite_is_ok(c)) return;
s->pipe->conn->flags |= DCERPC_NDR_REF_ALLOC;
/* prepare requested binding parameters */
s->binding->object = s->table->syntax_id;
c->status = dcerpc_binding_build_tower(s->pipe, s->binding, &s->twr.tower);
if (!composite_is_ok(c)) return;
/* with some nice pretty paper around it of course */
s->r.in.object = &s->guid;
s->r.in.map_tower = &s->twr;
s->r.in.entry_handle = &s->handle;
s->r.in.max_towers = 1;
s->r.out.entry_handle = &s->handle;
/* send request for an endpoint mapping - a rpc request on connected pipe */
map_req = dcerpc_epm_Map_send(s->pipe, c, &s->r);
if (composite_nomem(map_req, c)) return;
composite_continue_rpc(c, map_req, continue_epm_map, c);
}
/*
Stage 3 of epm_map_binding: Receive endpoint mapping and provide binding details
*/
static void continue_epm_map(struct rpc_request *req)
{
struct composite_context *c = talloc_get_type(req->async.private_data,
struct composite_context);
struct epm_map_binding_state *s = talloc_get_type(c->private_data,
struct epm_map_binding_state);
/* receive result of a rpc request */
c->status = dcerpc_ndr_request_recv(req);
if (!composite_is_ok(c)) return;
/* check the details */
if (s->r.out.result != 0 || *s->r.out.num_towers != 1) {
composite_error(c, NT_STATUS_PORT_UNREACHABLE);
return;
}
s->twr_r = s->r.out.towers[0].twr;
if (s->twr_r == NULL) {
composite_error(c, NT_STATUS_PORT_UNREACHABLE);
return;
}
if (s->twr_r->tower.num_floors != s->twr.tower.num_floors ||
s->twr_r->tower.floors[3].lhs.protocol != s->twr.tower.floors[3].lhs.protocol) {
composite_error(c, NT_STATUS_PORT_UNREACHABLE);
return;
}
/* get received endpoint */
s->binding->endpoint = talloc_reference(s->binding,
dcerpc_floor_get_rhs_data(c, &s->twr_r->tower.floors[3]));
if (composite_nomem(s->binding->endpoint, c)) return;
composite_done(c);
}
/*
Request for endpoint mapping of dcerpc binding - try to request for endpoint
unless there is default one.
*/
struct composite_context *dcerpc_epm_map_binding_send(TALLOC_CTX *mem_ctx,
struct dcerpc_binding *binding,
const struct ndr_interface_table *table,
struct event_context *ev,
struct loadparm_context *lp_ctx)
{
struct composite_context *c;
struct epm_map_binding_state *s;
struct composite_context *pipe_connect_req;
struct cli_credentials *anon_creds;
struct event_context *new_ev = NULL;
NTSTATUS status;
struct dcerpc_binding *epmapper_binding;
int i;
/* Try to find event context in memory context in case passed
* event_context (argument) was NULL. If there's none, just
* create a new one.
*/
if (ev == NULL) {
ev = event_context_find(mem_ctx);
if (ev == NULL) {
new_ev = event_context_init(mem_ctx);
if (new_ev == NULL) return NULL;
ev = new_ev;
}
}
/* composite context allocation and setup */
c = composite_create(mem_ctx, ev);
if (c == NULL) {
talloc_free(new_ev);
return NULL;
}
talloc_steal(c, new_ev);
s = talloc_zero(c, struct epm_map_binding_state);
if (composite_nomem(s, c)) return c;
c->private_data = s;
s->binding = binding;
s->table = table;
/* anonymous credentials for rpc connection used to get endpoint mapping */
anon_creds = cli_credentials_init(mem_ctx);
cli_credentials_set_event_context(anon_creds, ev);
cli_credentials_set_anonymous(anon_creds);
/*
First, check if there is a default endpoint specified in the IDL
*/
if (table != NULL) {
struct dcerpc_binding *default_binding;
/* Find one of the default pipes for this interface */
for (i = 0; i < table->endpoints->count; i++) {
status = dcerpc_parse_binding(mem_ctx, table->endpoints->names[i], &default_binding);
if (NT_STATUS_IS_OK(status)) {
if (binding->transport == NCA_UNKNOWN)
binding->transport = default_binding->transport;
if (default_binding->transport == binding->transport &&
default_binding->endpoint) {
binding->endpoint = talloc_reference(binding, default_binding->endpoint);
talloc_free(default_binding);
composite_done(c);
return c;
} else {
talloc_free(default_binding);
}
}
}
}
epmapper_binding = talloc_zero(c, struct dcerpc_binding);
if (composite_nomem(epmapper_binding, c)) return c;
/* basic endpoint mapping data */
epmapper_binding->transport = binding->transport;
epmapper_binding->host = talloc_reference(epmapper_binding, binding->host);
epmapper_binding->target_hostname = epmapper_binding->host;
epmapper_binding->options = NULL;
epmapper_binding->flags = 0;
epmapper_binding->assoc_group_id = 0;
epmapper_binding->endpoint = NULL;
/* initiate rpc pipe connection */
pipe_connect_req = dcerpc_pipe_connect_b_send(c, epmapper_binding,
&ndr_table_epmapper,
anon_creds, c->event_ctx,
lp_ctx);
if (composite_nomem(pipe_connect_req, c)) return c;
composite_continue(c, pipe_connect_req, continue_epm_recv_binding, c);
return c;
}
/*
Receive result of endpoint mapping request
*/
NTSTATUS dcerpc_epm_map_binding_recv(struct composite_context *c)
{
NTSTATUS status = composite_wait(c);
talloc_free(c);
return status;
}
/*
Get endpoint mapping for rpc connection
*/
_PUBLIC_ NTSTATUS dcerpc_epm_map_binding(TALLOC_CTX *mem_ctx, struct dcerpc_binding *binding,
const struct ndr_interface_table *table, struct event_context *ev,
struct loadparm_context *lp_ctx)
{
struct composite_context *c;
c = dcerpc_epm_map_binding_send(mem_ctx, binding, table, ev, lp_ctx);
return dcerpc_epm_map_binding_recv(c);
}
struct pipe_auth_state {
struct dcerpc_pipe *pipe;
struct dcerpc_binding *binding;
const struct ndr_interface_table *table;
struct loadparm_context *lp_ctx;
struct cli_credentials *credentials;
};
static void continue_auth_schannel(struct composite_context *ctx);
static void continue_auth(struct composite_context *ctx);
static void continue_auth_none(struct composite_context *ctx);
static void continue_ntlmssp_connection(struct composite_context *ctx);
static void continue_spnego_after_wrong_pass(struct composite_context *ctx);
/*
Stage 2 of pipe_auth: Receive result of schannel bind request
*/
static void continue_auth_schannel(struct composite_context *ctx)
{
struct composite_context *c = talloc_get_type(ctx->async.private_data,
struct composite_context);
c->status = dcerpc_bind_auth_schannel_recv(ctx);
if (!composite_is_ok(c)) return;
composite_done(c);
}
/*
Stage 2 of pipe_auth: Receive result of authenticated bind request
*/
static void continue_auth(struct composite_context *ctx)
{
struct composite_context *c = talloc_get_type(ctx->async.private_data,
struct composite_context);
c->status = dcerpc_bind_auth_recv(ctx);
if (!composite_is_ok(c)) return;
composite_done(c);
}
/*
Stage 2 of pipe_auth: Receive result of authenticated bind request, but handle fallbacks:
SPNEGO -> NTLMSSP
*/
static void continue_auth_auto(struct composite_context *ctx)
{
struct composite_context *c = talloc_get_type(ctx->async.private_data,
struct composite_context);
struct pipe_auth_state *s = talloc_get_type(c->private_data, struct pipe_auth_state);
struct composite_context *sec_conn_req;
c->status = dcerpc_bind_auth_recv(ctx);
if (NT_STATUS_EQUAL(c->status, NT_STATUS_INVALID_PARAMETER)) {
/*
* Retry with NTLMSSP auth as fallback
* send a request for secondary rpc connection
*/
sec_conn_req = dcerpc_secondary_connection_send(s->pipe,
s->binding);
composite_continue(c, sec_conn_req, continue_ntlmssp_connection, c);
return;
} else if (NT_STATUS_EQUAL(c->status, NT_STATUS_LOGON_FAILURE)) {
if (cli_credentials_wrong_password(s->credentials)) {
/*
* Retry SPNEGO with a better password
* send a request for secondary rpc connection
*/
sec_conn_req = dcerpc_secondary_connection_send(s->pipe,
s->binding);
composite_continue(c, sec_conn_req, continue_spnego_after_wrong_pass, c);
return;
}
}
if (!composite_is_ok(c)) return;
composite_done(c);
}
/*
Stage 3 of pipe_auth (fallback to NTLMSSP case): Receive secondary
rpc connection (the first one can't be used any more, due to the
bind nak) and perform authenticated bind request
*/
static void continue_ntlmssp_connection(struct composite_context *ctx)
{
struct composite_context *c;
struct pipe_auth_state *s;
struct composite_context *auth_req;
struct dcerpc_pipe *p2;
c = talloc_get_type(ctx->async.private_data, struct composite_context);
s = talloc_get_type(c->private_data, struct pipe_auth_state);
/* receive secondary rpc connection */
c->status = dcerpc_secondary_connection_recv(ctx, &p2);
if (!composite_is_ok(c)) return;
talloc_steal(s, p2);
talloc_steal(p2, s->pipe);
s->pipe = p2;
/* initiate a authenticated bind */
auth_req = dcerpc_bind_auth_send(c, s->pipe, s->table,
s->credentials, s->lp_ctx,
DCERPC_AUTH_TYPE_NTLMSSP,
dcerpc_auth_level(s->pipe->conn),
s->table->authservices->names[0]);
composite_continue(c, auth_req, continue_auth, c);
}
/*
Stage 3 of pipe_auth (retry on wrong password): Receive secondary
rpc connection (the first one can't be used any more, due to the
bind nak) and perform authenticated bind request
*/
static void continue_spnego_after_wrong_pass(struct composite_context *ctx)
{
struct composite_context *c;
struct pipe_auth_state *s;
struct composite_context *auth_req;
struct dcerpc_pipe *p2;
c = talloc_get_type(ctx->async.private_data, struct composite_context);
s = talloc_get_type(c->private_data, struct pipe_auth_state);
/* receive secondary rpc connection */
c->status = dcerpc_secondary_connection_recv(ctx, &p2);
if (!composite_is_ok(c)) return;
talloc_steal(s, p2);
talloc_steal(p2, s->pipe);
s->pipe = p2;
/* initiate a authenticated bind */
auth_req = dcerpc_bind_auth_send(c, s->pipe, s->table,
s->credentials, s->lp_ctx, DCERPC_AUTH_TYPE_SPNEGO,
dcerpc_auth_level(s->pipe->conn),
s->table->authservices->names[0]);
composite_continue(c, auth_req, continue_auth, c);
}
/*
Stage 2 of pipe_auth: Receive result of non-authenticated bind request
*/
static void continue_auth_none(struct composite_context *ctx)
{
struct composite_context *c = talloc_get_type(ctx->async.private_data,
struct composite_context);
c->status = dcerpc_bind_auth_none_recv(ctx);
if (!composite_is_ok(c)) return;
composite_done(c);
}
/*
Request to perform an authenticated bind if required. Authentication
is determined using credentials passed and binding flags.
*/
struct composite_context *dcerpc_pipe_auth_send(struct dcerpc_pipe *p,
struct dcerpc_binding *binding,
const struct ndr_interface_table *table,
struct cli_credentials *credentials,
struct loadparm_context *lp_ctx)
{
struct composite_context *c;
struct pipe_auth_state *s;
struct composite_context *auth_schannel_req;
struct composite_context *auth_req;
struct composite_context *auth_none_req;
struct dcerpc_connection *conn;
uint8_t auth_type;
/* composite context allocation and setup */
c = composite_create(p, p->conn->event_ctx);
if (c == NULL) return NULL;
s = talloc_zero(c, struct pipe_auth_state);
if (composite_nomem(s, c)) return c;
c->private_data = s;
/* store parameters in state structure */
s->binding = binding;
s->table = table;
s->credentials = credentials;
s->pipe = p;
s->lp_ctx = lp_ctx;
conn = s->pipe->conn;
conn->flags = binding->flags;
/* remember the binding string for possible secondary connections */
conn->binding_string = dcerpc_binding_string(p, binding);
if (cli_credentials_is_anonymous(s->credentials)) {
auth_none_req = dcerpc_bind_auth_none_send(c, s->pipe, s->table);
composite_continue(c, auth_none_req, continue_auth_none, c);
return c;
}
if ((binding->flags & DCERPC_SCHANNEL) &&
!cli_credentials_get_netlogon_creds(s->credentials)) {
/* If we don't already have netlogon credentials for
* the schannel bind, then we have to get these
* first */
auth_schannel_req = dcerpc_bind_auth_schannel_send(c, s->pipe, s->table,
s->credentials, s->lp_ctx,
dcerpc_auth_level(conn));
composite_continue(c, auth_schannel_req, continue_auth_schannel, c);
return c;
}
/*
* we rely on the already authenticated CIFS connection
* if not doing sign or seal
*/
if (conn->transport.transport == NCACN_NP &&
!(s->binding->flags & (DCERPC_SIGN|DCERPC_SEAL))) {
auth_none_req = dcerpc_bind_auth_none_send(c, s->pipe, s->table);
composite_continue(c, auth_none_req, continue_auth_none, c);
return c;
}
/* Perform an authenticated DCE-RPC bind
*/
if (!(conn->flags & (DCERPC_SIGN|DCERPC_SEAL))) {
/*
we are doing an authenticated connection,
but not using sign or seal. We must force
the CONNECT dcerpc auth type as a NONE auth
type doesn't allow authentication
information to be passed.
*/
conn->flags |= DCERPC_CONNECT;
}
if (s->binding->flags & DCERPC_AUTH_SPNEGO) {
auth_type = DCERPC_AUTH_TYPE_SPNEGO;
} else if (s->binding->flags & DCERPC_AUTH_KRB5) {
auth_type = DCERPC_AUTH_TYPE_KRB5;
} else if (s->binding->flags & DCERPC_SCHANNEL) {
auth_type = DCERPC_AUTH_TYPE_SCHANNEL;
} else if (s->binding->flags & DCERPC_AUTH_NTLM) {
auth_type = DCERPC_AUTH_TYPE_NTLMSSP;
} else {
/* try SPNEGO with fallback to NTLMSSP */
auth_req = dcerpc_bind_auth_send(c, s->pipe, s->table,
s->credentials, s->lp_ctx, DCERPC_AUTH_TYPE_SPNEGO,
dcerpc_auth_level(conn),
s->table->authservices->names[0]);
composite_continue(c, auth_req, continue_auth_auto, c);
return c;
}
auth_req = dcerpc_bind_auth_send(c, s->pipe, s->table,
s->credentials, s->lp_ctx, auth_type,
dcerpc_auth_level(conn),
s->table->authservices->names[0]);
composite_continue(c, auth_req, continue_auth, c);
return c;
}
/*
Receive result of authenticated bind request on dcerpc pipe
This returns *p, which may be different to the one originally
supllied, as it rebinds to a new pipe due to authentication fallback
*/
NTSTATUS dcerpc_pipe_auth_recv(struct composite_context *c, TALLOC_CTX *mem_ctx,
struct dcerpc_pipe **p)
{
NTSTATUS status;
struct pipe_auth_state *s = talloc_get_type(c->private_data,
struct pipe_auth_state);
status = composite_wait(c);
if (!NT_STATUS_IS_OK(status)) {
char *uuid_str = GUID_string(s->pipe, &s->table->syntax_id.uuid);
DEBUG(0, ("Failed to bind to uuid %s - %s\n", uuid_str, nt_errstr(status)));
talloc_free(uuid_str);
} else {
talloc_steal(mem_ctx, s->pipe);
*p = s->pipe;
}
talloc_free(c);
return status;
}
/*
Perform an authenticated bind if needed - sync version
This may change *p, as it rebinds to a new pipe due to authentication fallback
*/
_PUBLIC_ NTSTATUS dcerpc_pipe_auth(TALLOC_CTX *mem_ctx,
struct dcerpc_pipe **p,
struct dcerpc_binding *binding,
const struct ndr_interface_table *table,
struct cli_credentials *credentials,
struct loadparm_context *lp_ctx)
{
struct composite_context *c;
c = dcerpc_pipe_auth_send(*p, binding, table, credentials, lp_ctx);
return dcerpc_pipe_auth_recv(c, mem_ctx, p);
}
NTSTATUS dcerpc_generic_session_key(struct dcerpc_connection *c,
DATA_BLOB *session_key)
{
/* this took quite a few CPU cycles to find ... */
session_key->data = discard_const_p(unsigned char, "SystemLibraryDTC");
session_key->length = 16;
return NT_STATUS_OK;
}
/*
fetch the user session key - may be default (above) or the SMB session key
*/
_PUBLIC_ NTSTATUS dcerpc_fetch_session_key(struct dcerpc_pipe *p,
DATA_BLOB *session_key)
{
return p->conn->security_state.session_key(p->conn, session_key);
}
/*
log a rpc packet in a format suitable for ndrdump. This is especially useful
for sealed packets, where ethereal cannot easily see the contents
this triggers on a debug level of >= 10
*/
_PUBLIC_ void dcerpc_log_packet(const struct ndr_interface_table *ndr,
uint32_t opnum, uint32_t flags,
DATA_BLOB *pkt)
{
const int num_examples = 20;
int i;
if (DEBUGLEVEL < 10) return;
for (i=0;i<num_examples;i++) {
char *name=NULL;
asprintf(&name, "%s/rpclog/%s-%u.%d.%s",
lp_lockdir(global_loadparm), ndr->name, opnum, i,
(flags&NDR_IN)?"in":"out");
if (name == NULL) {
return;
}
if (!file_exist(name)) {
if (file_save(name, pkt->data, pkt->length)) {
DEBUG(10,("Logged rpc packet to %s\n", name));
}
free(name);
break;
}
free(name);
}
}
/*
create a secondary context from a primary connection
this uses dcerpc_alter_context() to create a new dcerpc context_id
*/
_PUBLIC_ NTSTATUS dcerpc_secondary_context(struct dcerpc_pipe *p,
struct dcerpc_pipe **pp2,
const struct ndr_interface_table *table)
{
NTSTATUS status;
struct dcerpc_pipe *p2;
p2 = talloc_zero(p, struct dcerpc_pipe);
if (p2 == NULL) {
return NT_STATUS_NO_MEMORY;
}
p2->conn = talloc_reference(p2, p->conn);
p2->request_timeout = p->request_timeout;
p2->context_id = ++p->conn->next_context_id;
p2->syntax = table->syntax_id;
p2->transfer_syntax = ndr_transfer_syntax;
p2->binding = talloc_reference(p2, p->binding);
status = dcerpc_alter_context(p2, p2, &p2->syntax, &p2->transfer_syntax);
if (!NT_STATUS_IS_OK(status)) {
talloc_free(p2);
return status;
}
*pp2 = p2;
return NT_STATUS_OK;
}