1
0
mirror of https://github.com/samba-team/samba.git synced 2025-01-07 17:18:11 +03:00
samba-mirror/lib/util/charset/util_unistr.c
Douglas Bagnall f914f53913 util:charset: s/the the\b/the/ in comments
Signed-off-by: Douglas Bagnall <douglas.bagnall@catalyst.net.nz>
Reviewed-by: Volker Lendecke <vl@samba.org>
2024-11-06 10:57:35 +00:00

844 lines
20 KiB
C
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/*
Unix SMB/CIFS implementation.
Samba utility functions
Copyright (C) Andrew Tridgell 1992-2001
Copyright (C) Simo Sorce 2001
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include "replace.h"
#include "system/locale.h"
#include "charset.h"
#include "lib/util/byteorder.h"
#include "lib/util/fault.h"
#include "lib/util/tsort.h"
/**
String replace.
NOTE: oldc and newc must be 7 bit characters
**/
_PUBLIC_ void string_replace_m(char *s, char oldc, char newc)
{
struct smb_iconv_handle *ic = get_iconv_handle();
while (s && *s) {
size_t size;
codepoint_t c = next_codepoint_handle(ic, s, &size);
if (c == oldc) {
*s = newc;
}
s += size;
}
}
/**
Convert a string to lower case, allocated with talloc
**/
_PUBLIC_ char *strlower_talloc_handle(struct smb_iconv_handle *iconv_handle,
TALLOC_CTX *ctx, const char *src)
{
size_t size=0;
char *dest;
if(src == NULL) {
return NULL;
}
/* this takes advantage of the fact that upper/lower can't
change the length of a character by more than 1 byte */
dest = talloc_array(ctx, char, 2*(strlen(src))+1);
if (dest == NULL) {
return NULL;
}
while (*src) {
size_t c_size;
codepoint_t c = next_codepoint_handle(iconv_handle, src, &c_size);
src += c_size;
c = tolower_m(c);
c_size = push_codepoint_handle(iconv_handle, dest+size, c);
if (c_size == -1) {
talloc_free(dest);
return NULL;
}
size += c_size;
}
dest[size] = 0;
/* trim it so talloc_append_string() works */
dest = talloc_realloc(ctx, dest, char, size+1);
talloc_set_name_const(dest, dest);
return dest;
}
_PUBLIC_ char *strlower_talloc(TALLOC_CTX *ctx, const char *src)
{
struct smb_iconv_handle *iconv_handle = get_iconv_handle();
return strlower_talloc_handle(iconv_handle, ctx, src);
}
/**
Convert a string to UPPER case, allocated with talloc
source length limited to n bytes, iconv handle supplied
**/
_PUBLIC_ char *strupper_talloc_n_handle(struct smb_iconv_handle *iconv_handle,
TALLOC_CTX *ctx, const char *src, size_t n)
{
size_t size=0;
char *dest;
if (!src) {
return NULL;
}
/* this takes advantage of the fact that upper/lower can't
change the length of a character by more than 1 byte */
dest = talloc_array(ctx, char, 2*(n+1));
if (dest == NULL) {
return NULL;
}
while (n && *src) {
size_t c_size;
codepoint_t c = next_codepoint_handle_ext(iconv_handle, src, n,
CH_UNIX, &c_size);
src += c_size;
n -= c_size;
c = toupper_m(c);
c_size = push_codepoint_handle(iconv_handle, dest+size, c);
if (c_size == -1) {
talloc_free(dest);
return NULL;
}
size += c_size;
}
dest[size] = 0;
/* trim it so talloc_append_string() works */
dest = talloc_realloc(ctx, dest, char, size+1);
talloc_set_name_const(dest, dest);
return dest;
}
/**
Convert a string to UPPER case, allocated with talloc
source length limited to n bytes
**/
_PUBLIC_ char *strupper_talloc_n(TALLOC_CTX *ctx, const char *src, size_t n)
{
struct smb_iconv_handle *iconv_handle = get_iconv_handle();
return strupper_talloc_n_handle(iconv_handle, ctx, src, n);
}
/**
Convert a string to UPPER case, allocated with talloc
**/
_PUBLIC_ char *strupper_talloc(TALLOC_CTX *ctx, const char *src)
{
return strupper_talloc_n(ctx, src, src?strlen(src):0);
}
/**
talloc_strdup() a unix string to upper case.
**/
_PUBLIC_ char *talloc_strdup_upper(TALLOC_CTX *ctx, const char *src)
{
return strupper_talloc(ctx, src);
}
/*
* strncasecmp_ldb() works like a *bit* like strncasecmp, with various
* tricks to suit the way LDB compares strings. The differences are:
*
* 0. each string has it's own length.
*
* 1. consecutive spaces are collapsed down to one space, so that
* "a b" equals "a b". (this is why each string needs its own
* length). Leading and trailing spaces are removed altogether.
*
* 2. Comparisons are done in UPPER CASE, as Windows does, not in
* lowercase as POSIX would have it.
*
* 3. An invalid byte compares higher than any real character. For example,
* "hello\xc2\xff" would sort higher than "hello\xcd\xb6", because CD
* B6 is a valid sequence and C2 FF is not.
*
* 4. If two strings become invalid on the same character, the rest
* of the string is compared via ldb ASCII case fold rules.
*
* For example, "hellō\xC2\xFFworld" < " hElLŌ\xFE ", because the
* strings are equal up to 'ō' by utf-8 casefold, but the "\xc2\xff" and
* "\xfe" are invalid sequences. At that point, we skip to the byte-by-byte
* (but space-eating, casefolding) comparison, and 0xc2 < 0xff.
*/
#define EAT_SPACE(s, len, ends_in_space) \
do { \
while (len) { \
if (*s != ' ') { \
break; \
} \
s++; \
len--; \
} \
ends_in_space = (len == 0 || *s == '\0'); \
} while(0)
_PUBLIC_ int strncasecmp_ldb(const char *s1,
size_t len1,
const char *s2,
size_t len2)
{
struct smb_iconv_handle *iconv_handle = get_iconv_handle();
codepoint_t c1, c2;
size_t cs1, cs2;
bool ends_in_space1, ends_in_space2;
int ret;
bool end1, end2;
EAT_SPACE(s1, len1, ends_in_space1);
EAT_SPACE(s2, len2, ends_in_space2);
/*
* if ends_in_space was set, the string was empty or only
* spaces (which we treat as equivalent).
*/
if (ends_in_space1 && ends_in_space2) {
return 0;
}
if (ends_in_space1) {
return -1;
}
if (ends_in_space2) {
return 1;
}
while (true) {
/*
* If the next byte is a space, we eat all the spaces,
* and say we found a single codepoint. If the spaces
* were at the end of the string, the codepoint is 0,
* as if there were no spaces. Otherwise it is 0x20,
* as if there was one space.
*
* Setting the codepoint to 0 will break the loop, but
* only after codepoints have been found in both strings.
*/
if (len1 == 0 || *s1 == 0) {
c1 = 0;
} else if (*s1 == ' ') {
EAT_SPACE(s1, len1, ends_in_space1);
c1 = ends_in_space1 ? 0 : ' ';
} else if ((*s1 & 0x80) == 0) {
c1 = *s1;
s1++;
len1--;
} else {
c1 = next_codepoint_handle_ext(iconv_handle, s1, len1,
CH_UNIX, &cs1);
if (c1 != INVALID_CODEPOINT) {
s1 += cs1;
len1 -= cs1;
}
}
if (len2 == 0 || *s2 == 0) {
c2 = 0;
} else if (*s2 == ' ') {
EAT_SPACE(s2, len2, ends_in_space2);
c2 = ends_in_space2 ? 0 : ' ';
} else if ((*s2 & 0x80) == 0) {
c2 = *s2;
s2++;
len2--;
} else {
c2 = next_codepoint_handle_ext(iconv_handle, s2, len2,
CH_UNIX, &cs2);
if (c2 != INVALID_CODEPOINT) {
s2 += cs2;
len2 -= cs2;
}
}
if (c1 == 0 || c2 == 0 ||
c1 == INVALID_CODEPOINT || c2 == INVALID_CODEPOINT) {
break;
}
if (c1 == c2) {
continue;
}
c1 = toupper_m(c1);
c2 = toupper_m(c2);
if (c1 != c2) {
break;
}
}
/*
* Either a difference has been found, or one or both strings have
* ended or hit invalid codepoints.
*/
ret = NUMERIC_CMP(c1, c2);
if (ret != 0) {
return ret;
}
/*
* the strings are equal up to here, but one might be longer.
*/
end1 = len1 == 0 || *s1 == 0;
end2 = len2 == 0 || *s2 == 0;
if (end1 && end2) {
return 0;
}
if (end1) {
return -1;
}
if (end2) {
return -1;
}
/*
* By elimination, if we got here, we have INVALID_CODEPOINT on both
* sides.
*
* THere is no perfect option, but what we choose to do is continue on
* with ascii case fold (as if calling ldb_comparison_fold_ascii()
* which is private to ldb, so we can't just defer to it).
*/
while (true) {
if (len1 == 0 || *s1 == 0) {
c1 = 0;
} else if (*s1 == ' ') {
EAT_SPACE(s1, len1, ends_in_space1);
c1 = ends_in_space1 ? 0 : ' ';
} else {
c1 = *s1;
s1++;
len1--;
c1 = ('a' <= c1 && c1 <= 'z') ? c1 ^ 0x20 : c1;
}
if (len2 == 0 || *s2 == 0) {
c2 = 0;
} else if (*s2 == ' ') {
EAT_SPACE(s2, len2, ends_in_space2);
c2 = ends_in_space2 ? 0 : ' ';
} else {
c2 = *s2;
s2++;
len2--;
c2 = ('a' <= c2 && c2 <= 'z') ? c2 ^ 0x20 : c2;
}
if (c1 == 0 || c2 == 0 || c1 != c2) {
break;
}
}
return NUMERIC_CMP(c1, c2);
}
#undef EAT_SPACE
/**
Find the number of 'c' chars in a string
**/
_PUBLIC_ size_t count_chars_m(const char *s, char c)
{
struct smb_iconv_handle *ic = get_iconv_handle();
size_t count = 0;
while (*s) {
size_t size;
codepoint_t c2 = next_codepoint_handle(ic, s, &size);
if (c2 == c) count++;
s += size;
}
return count;
}
size_t ucs2_align(const void *base_ptr, const void *p, int flags)
{
if (flags & (STR_NOALIGN|STR_ASCII)) {
return 0;
}
return PTR_DIFF(p, base_ptr) & 1;
}
/**
return the number of bytes occupied by a buffer in CH_UTF16 format
**/
size_t utf16_len(const void *buf)
{
size_t len;
for (len = 0; PULL_LE_U16(buf,len); len += 2) ;
return len;
}
/**
return the number of bytes occupied by a buffer in CH_UTF16 format
the result includes the null termination
**/
size_t utf16_null_terminated_len(const void *buf)
{
return utf16_len(buf) + 2;
}
/**
return the number of bytes occupied by a buffer in CH_UTF16 format
limited by 'n' bytes
**/
size_t utf16_len_n(const void *src, size_t n)
{
size_t len;
for (len = 0; (len+2 <= n) && PULL_LE_U16(src, len); len += 2) ;
return len;
}
/**
return the number of bytes occupied by a buffer in CH_UTF16 format
the result includes the null termination
limited by 'n' bytes
**/
size_t utf16_null_terminated_len_n(const void *src, size_t n)
{
size_t len;
len = utf16_len_n(src, n);
if (len+2 <= n) {
len += 2;
}
return len;
}
unsigned char *talloc_utf16_strlendup(TALLOC_CTX *mem_ctx, const char *str, size_t len)
{
unsigned char *new_str = NULL;
/* Check for overflow. */
if (len > SIZE_MAX - 2) {
return NULL;
}
/*
* Allocate the new string, including space for the
* UTF16 null terminator.
*/
new_str = talloc_size(mem_ctx, len + 2);
if (new_str == NULL) {
return NULL;
}
memcpy(new_str, str, len);
/*
* Ensure that the UTF16 string is
* nullterminated.
*/
new_str[len] = '\0';
new_str[len + 1] = '\0';
return new_str;
}
unsigned char *talloc_utf16_strdup(TALLOC_CTX *mem_ctx, const char *str)
{
if (str == NULL) {
return NULL;
}
return talloc_utf16_strlendup(mem_ctx, str, utf16_len(str));
}
unsigned char *talloc_utf16_strndup(TALLOC_CTX *mem_ctx, const char *str, size_t n)
{
if (str == NULL) {
return NULL;
}
return talloc_utf16_strlendup(mem_ctx, str, utf16_len_n(str, n));
}
/**
* Determine the length and validity of a utf-8 string.
*
* @param input the string pointer
* @param maxlen maximum size of the string
* @param byte_len receives the length of the valid section
* @param char_len receives the number of unicode characters in the valid section
* @param utf16_len receives the number of bytes the string would need in UTF16 encoding.
*
* @return true if the input is valid up to maxlen, or a '\0' byte, otherwise false.
*/
bool utf8_check(const char *input, size_t maxlen,
size_t *byte_len,
size_t *char_len,
size_t *utf16_len)
{
const uint8_t *s = (const uint8_t *)input;
size_t i;
size_t chars = 0;
size_t long_chars = 0;
uint32_t codepoint;
uint8_t a, b, c, d;
for (i = 0; i < maxlen; i++, chars++) {
if (s[i] == 0) {
break;
}
if (s[i] < 0x80) {
continue;
}
if ((s[i] & 0xe0) == 0xc0) {
/* 110xxxxx 10xxxxxx */
a = s[i];
if (maxlen - i < 2) {
goto error;
}
b = s[i + 1];
if ((b & 0xc0) != 0x80) {
goto error;
}
codepoint = (a & 31) << 6 | (b & 63);
if (codepoint < 0x80) {
goto error;
}
i++;
continue;
}
if ((s[i] & 0xf0) == 0xe0) {
/* 1110xxxx 10xxxxxx 10xxxxxx */
if (maxlen - i < 3) {
goto error;
}
a = s[i];
b = s[i + 1];
c = s[i + 2];
if ((b & 0xc0) != 0x80 || (c & 0xc0) != 0x80) {
goto error;
}
codepoint = (c & 63) | (b & 63) << 6 | (a & 15) << 12;
if (codepoint < 0x800) {
goto error;
}
if (codepoint >= 0xd800 && codepoint <= 0xdfff) {
/*
* This is an invalid codepoint, per
* RFC3629, as it encodes part of a
* UTF-16 surrogate pair for a
* character over U+10000, which ought
* to have been encoded as a four byte
* utf-8 sequence.
*/
goto error;
}
i += 2;
continue;
}
if ((s[i] & 0xf8) == 0xf0) {
/* 11110xxx 10xxxxxx 10xxxxxx 10xxxxxx */
if (maxlen - i < 4) {
goto error;
}
a = s[i];
b = s[i + 1];
c = s[i + 2];
d = s[i + 3];
if ((b & 0xc0) != 0x80 ||
(c & 0xc0) != 0x80 ||
(d & 0xc0) != 0x80) {
goto error;
}
codepoint = (d & 63) | (c & 63) << 6 | (b & 63) << 12 | (a & 7) << 18;
if (codepoint < 0x10000 || codepoint > 0x10ffff) {
goto error;
}
/* this one will need two UTF16 characters */
long_chars++;
i += 3;
continue;
}
/*
* If it wasn't handled yet, it's wrong.
*/
goto error;
}
*byte_len = i;
*char_len = chars;
*utf16_len = chars + long_chars;
return true;
error:
*byte_len = i;
*char_len = chars;
*utf16_len = chars + long_chars;
return false;
}
/**
* Copy a string from a char* unix src to a dos codepage string destination.
*
* @converted_size the number of bytes occupied by the string in the destination.
* @return bool true if success.
*
* @param flags can include
* <dl>
* <dt>STR_TERMINATE</dt> <dd>means include the null termination</dd>
* <dt>STR_UPPER</dt> <dd>means uppercase in the destination</dd>
* </dl>
*
* @param dest_len the maximum length in bytes allowed in the
* destination. If @p dest_len is -1 then no maximum is used.
**/
static bool push_ascii_string(void *dest, const char *src, size_t dest_len, int flags, size_t *converted_size)
{
size_t src_len;
bool ret;
if (flags & STR_UPPER) {
char *tmpbuf = strupper_talloc(NULL, src);
if (tmpbuf == NULL) {
return false;
}
ret = push_ascii_string(dest, tmpbuf, dest_len, flags & ~STR_UPPER, converted_size);
talloc_free(tmpbuf);
return ret;
}
src_len = strlen(src);
if (flags & (STR_TERMINATE | STR_TERMINATE_ASCII))
src_len++;
return convert_string(CH_UNIX, CH_DOS, src, src_len, dest, dest_len, converted_size);
}
/**
* Copy a string from a dos codepage source to a unix char* destination.
*
* The resulting string in "dest" is always null terminated.
*
* @param flags can have:
* <dl>
* <dt>STR_TERMINATE</dt>
* <dd>STR_TERMINATE means the string in @p src
* is null terminated, and src_len is ignored.</dd>
* </dl>
*
* @param src_len is the length of the source area in bytes.
* @returns the number of bytes occupied by the string in @p src.
**/
static ssize_t pull_ascii_string(char *dest, const void *src, size_t dest_len, size_t src_len, int flags)
{
size_t size = 0;
if (flags & (STR_TERMINATE | STR_TERMINATE_ASCII)) {
if (src_len == (size_t)-1) {
src_len = strlen((const char *)src) + 1;
} else {
size_t len = strnlen((const char *)src, src_len);
if (len < src_len)
len++;
src_len = len;
}
}
/* We're ignoring the return here.. */
(void)convert_string(CH_DOS, CH_UNIX, src, src_len, dest, dest_len, &size);
if (dest_len)
dest[MIN(size, dest_len-1)] = 0;
return src_len;
}
/**
* Copy a string from a char* src to a unicode destination.
*
* @returns the number of bytes occupied by the string in the destination.
*
* @param flags can have:
*
* <dl>
* <dt>STR_TERMINATE <dd>means include the null termination.
* <dt>STR_UPPER <dd>means uppercase in the destination.
* <dt>STR_NOALIGN <dd>means don't do alignment.
* </dl>
*
* @param dest_len is the maximum length allowed in the
* destination. If dest_len is -1 then no maximum is used.
**/
static ssize_t push_ucs2(void *dest, const char *src, size_t dest_len, int flags)
{
size_t len=0;
size_t src_len = strlen(src);
size_t size = 0;
bool ret;
if (flags & STR_UPPER) {
char *tmpbuf = strupper_talloc(NULL, src);
ssize_t retval;
if (tmpbuf == NULL) {
return -1;
}
retval = push_ucs2(dest, tmpbuf, dest_len, flags & ~STR_UPPER);
talloc_free(tmpbuf);
return retval;
}
if (flags & STR_TERMINATE)
src_len++;
if (ucs2_align(NULL, dest, flags)) {
*(char *)dest = 0;
dest = (void *)((char *)dest + 1);
if (dest_len) dest_len--;
len++;
}
/* ucs2 is always a multiple of 2 bytes */
dest_len &= ~1;
ret = convert_string(CH_UNIX, CH_UTF16, src, src_len, dest, dest_len, &size);
if (ret == false) {
return 0;
}
len += size;
return (ssize_t)len;
}
/**
Copy a string from a ucs2 source to a unix char* destination.
Flags can have:
STR_TERMINATE means the string in src is null terminated.
STR_NOALIGN means don't try to align.
if STR_TERMINATE is set then src_len is ignored if it is -1.
src_len is the length of the source area in bytes
Return the number of bytes occupied by the string in src.
The resulting string in "dest" is always null terminated.
**/
static size_t pull_ucs2(char *dest, const void *src, size_t dest_len, size_t src_len, int flags)
{
size_t size = 0;
if (ucs2_align(NULL, src, flags)) {
src = (const void *)((const char *)src + 1);
if (src_len > 0)
src_len--;
}
if (flags & STR_TERMINATE) {
if (src_len == (size_t)-1) {
src_len = utf16_null_terminated_len(src);
} else {
src_len = utf16_null_terminated_len_n(src, src_len);
}
}
/* ucs2 is always a multiple of 2 bytes */
if (src_len != (size_t)-1)
src_len &= ~1;
/* We're ignoring the return here.. */
(void)convert_string(CH_UTF16, CH_UNIX, src, src_len, dest, dest_len, &size);
if (dest_len)
dest[MIN(size, dest_len-1)] = 0;
return src_len;
}
/**
Copy a string from a char* src to a unicode or ascii
dos codepage destination choosing unicode or ascii based on the
flags in the SMB buffer starting at base_ptr.
Return the number of bytes occupied by the string in the destination.
flags can have:
STR_TERMINATE means include the null termination.
STR_UPPER means uppercase in the destination.
STR_ASCII use ascii even with unicode packet.
STR_NOALIGN means don't do alignment.
dest_len is the maximum length allowed in the destination. If dest_len
is -1 then no maximum is used.
**/
_PUBLIC_ ssize_t push_string(void *dest, const char *src, size_t dest_len, int flags)
{
if (flags & STR_ASCII) {
size_t size = 0;
if (push_ascii_string(dest, src, dest_len, flags, &size)) {
return (ssize_t)size;
} else {
return (ssize_t)-1;
}
} else if (flags & STR_UNICODE) {
return push_ucs2(dest, src, dest_len, flags);
} else {
smb_panic("push_string requires either STR_ASCII or STR_UNICODE flag to be set");
return -1;
}
}
/**
Copy a string from a unicode or ascii source (depending on
the packet flags) to a char* destination.
Flags can have:
STR_TERMINATE means the string in src is null terminated.
STR_UNICODE means to force as unicode.
STR_ASCII use ascii even with unicode packet.
STR_NOALIGN means don't do alignment.
if STR_TERMINATE is set then src_len is ignored is it is -1
src_len is the length of the source area in bytes.
Return the number of bytes occupied by the string in src.
The resulting string in "dest" is always null terminated.
**/
_PUBLIC_ ssize_t pull_string(char *dest, const void *src, size_t dest_len, size_t src_len, int flags)
{
if (flags & STR_ASCII) {
return pull_ascii_string(dest, src, dest_len, src_len, flags);
} else if (flags & STR_UNICODE) {
return pull_ucs2(dest, src, dest_len, src_len, flags);
} else {
smb_panic("pull_string requires either STR_ASCII or STR_UNICODE flag to be set");
return -1;
}
}