1
0
mirror of https://github.com/samba-team/samba.git synced 2024-12-25 23:21:54 +03:00
samba-mirror/lib/ccan/tally/tally.c
Volker Lendecke f7b820c359 Adapt tally_histogram to Samba coding conventions
Autobuild-User: Volker Lendecke <vlendec@samba.org>
Autobuild-Date: Wed Aug 10 21:12:59 CEST 2011 on sn-devel-104
2011-08-10 21:12:59 +02:00

522 lines
12 KiB
C

/* Licensed under LGPLv3+ - see LICENSE file for details */
#include <ccan/tally/tally.h>
#include <ccan/build_assert/build_assert.h>
#include <ccan/likely/likely.h>
#include <stdint.h>
#include <limits.h>
#include <string.h>
#include <stdio.h>
#include <assert.h>
#include <stdlib.h>
#define SIZET_BITS (sizeof(size_t)*CHAR_BIT)
/* We use power of 2 steps. I tried being tricky, but it got buggy. */
struct tally {
ssize_t min, max;
size_t total[2];
/* This allows limited frequency analysis. */
unsigned buckets, step_bits;
size_t counts[1 /* Actually: [buckets] */ ];
};
struct tally *tally_new(unsigned buckets)
{
struct tally *tally;
/* There is always 1 bucket. */
if (buckets == 0) {
buckets = 1;
}
/* Overly cautious check for overflow. */
if (sizeof(*tally) * buckets / sizeof(*tally) != buckets) {
return NULL;
}
tally = (struct tally *)malloc(
sizeof(*tally) + sizeof(tally->counts[0])*(buckets-1));
if (tally == NULL) {
return NULL;
}
tally->max = ((size_t)1 << (SIZET_BITS - 1));
tally->min = ~tally->max;
tally->total[0] = tally->total[1] = 0;
tally->buckets = buckets;
tally->step_bits = 0;
memset(tally->counts, 0, sizeof(tally->counts[0])*buckets);
return tally;
}
static unsigned bucket_of(ssize_t min, unsigned step_bits, ssize_t val)
{
/* Don't over-shift. */
if (step_bits == SIZET_BITS) {
return 0;
}
assert(step_bits < SIZET_BITS);
return (size_t)(val - min) >> step_bits;
}
/* Return the min value in bucket b. */
static ssize_t bucket_min(ssize_t min, unsigned step_bits, unsigned b)
{
/* Don't over-shift. */
if (step_bits == SIZET_BITS) {
return min;
}
assert(step_bits < SIZET_BITS);
return min + ((ssize_t)b << step_bits);
}
/* Does shifting by this many bits truncate the number? */
static bool shift_overflows(size_t num, unsigned bits)
{
if (bits == 0) {
return false;
}
return ((num << bits) >> 1) != (num << (bits - 1));
}
/* When min or max change, we may need to shuffle the frequency counts. */
static void renormalize(struct tally *tally,
ssize_t new_min, ssize_t new_max)
{
size_t range, spill;
unsigned int i, old_min;
/* Uninitialized? Don't do anything... */
if (tally->max < tally->min) {
goto update;
}
/* If we don't have sufficient range, increase step bits until
* buckets cover entire range of ssize_t anyway. */
range = (new_max - new_min) + 1;
while (!shift_overflows(tally->buckets, tally->step_bits)
&& range > ((size_t)tally->buckets << tally->step_bits)) {
/* Collapse down. */
for (i = 1; i < tally->buckets; i++) {
tally->counts[i/2] += tally->counts[i];
tally->counts[i] = 0;
}
tally->step_bits++;
}
/* Now if minimum has dropped, move buckets up. */
old_min = bucket_of(new_min, tally->step_bits, tally->min);
memmove(tally->counts + old_min,
tally->counts,
sizeof(tally->counts[0]) * (tally->buckets - old_min));
memset(tally->counts, 0, sizeof(tally->counts[0]) * old_min);
/* If we moved boundaries, adjust buckets to that ratio. */
spill = (tally->min - new_min) % (1 << tally->step_bits);
for (i = 0; i < tally->buckets-1; i++) {
size_t adjust = (tally->counts[i] >> tally->step_bits) * spill;
tally->counts[i] -= adjust;
tally->counts[i+1] += adjust;
}
update:
tally->min = new_min;
tally->max = new_max;
}
void tally_add(struct tally *tally, ssize_t val)
{
ssize_t new_min = tally->min, new_max = tally->max;
bool need_renormalize = false;
if (val < tally->min) {
new_min = val;
need_renormalize = true;
}
if (val > tally->max) {
new_max = val;
need_renormalize = true;
}
if (need_renormalize) {
renormalize(tally, new_min, new_max);
}
/* 128-bit arithmetic! If we didn't want exact mean, we could just
* pull it out of counts. */
if (val > 0 && tally->total[0] + val < tally->total[0]) {
tally->total[1]++;
} else if (val < 0 && tally->total[0] + val > tally->total[0]) {
tally->total[1]--;
}
tally->total[0] += val;
tally->counts[bucket_of(tally->min, tally->step_bits, val)]++;
}
size_t tally_num(const struct tally *tally)
{
size_t i, num = 0;
for (i = 0; i < tally->buckets; i++) {
num += tally->counts[i];
}
return num;
}
ssize_t tally_min(const struct tally *tally)
{
return tally->min;
}
ssize_t tally_max(const struct tally *tally)
{
return tally->max;
}
/* FIXME: Own ccan module please! */
static unsigned fls64(uint64_t val)
{
#if HAVE_BUILTIN_CLZL
if (val <= ULONG_MAX) {
/* This is significantly faster! */
return val ? sizeof(long) * CHAR_BIT - __builtin_clzl(val) : 0;
} else {
#endif
uint64_t r = 64;
if (!val) {
return 0;
}
if (!(val & 0xffffffff00000000ull)) {
val <<= 32;
r -= 32;
}
if (!(val & 0xffff000000000000ull)) {
val <<= 16;
r -= 16;
}
if (!(val & 0xff00000000000000ull)) {
val <<= 8;
r -= 8;
}
if (!(val & 0xf000000000000000ull)) {
val <<= 4;
r -= 4;
}
if (!(val & 0xc000000000000000ull)) {
val <<= 2;
r -= 2;
}
if (!(val & 0x8000000000000000ull)) {
val <<= 1;
r -= 1;
}
return r;
#if HAVE_BUILTIN_CLZL
}
#endif
}
/* This is stolen straight from Hacker's Delight. */
static uint64_t divlu64(uint64_t u1, uint64_t u0, uint64_t v)
{
const uint64_t b = 4294967296ULL; /* Number base (32 bits). */
uint32_t un[4], /* Dividend and divisor */
vn[2]; /* normalized and broken */
/* up into halfwords. */
uint32_t q[2]; /* Quotient as halfwords. */
uint64_t un1, un0, /* Dividend and divisor */
vn0; /* as fullwords. */
uint64_t qhat; /* Estimated quotient digit. */
uint64_t rhat; /* A remainder. */
uint64_t p; /* Product of two digits. */
int64_t s, i, j, t, k;
if (u1 >= v) { /* If overflow, return the largest */
return (uint64_t)-1; /* possible quotient. */
}
s = 64 - fls64(v); /* 0 <= s <= 63. */
vn0 = v << s; /* Normalize divisor. */
vn[1] = vn0 >> 32; /* Break divisor up into */
vn[0] = vn0 & 0xFFFFFFFF; /* two 32-bit halves. */
// Shift dividend left.
un1 = ((u1 << s) | (u0 >> (64 - s))) & (-s >> 63);
un0 = u0 << s;
un[3] = un1 >> 32; /* Break dividend up into */
un[2] = un1; /* four 32-bit halfwords */
un[1] = un0 >> 32; /* Note: storing into */
un[0] = un0; /* halfwords truncates. */
for (j = 1; j >= 0; j--) {
/* Compute estimate qhat of q[j]. */
qhat = (un[j+2]*b + un[j+1])/vn[1];
rhat = (un[j+2]*b + un[j+1]) - qhat*vn[1];
again:
if (qhat >= b || qhat*vn[0] > b*rhat + un[j]) {
qhat = qhat - 1;
rhat = rhat + vn[1];
if (rhat < b) {
goto again;
}
}
/* Multiply and subtract. */
k = 0;
for (i = 0; i < 2; i++) {
p = qhat*vn[i];
t = un[i+j] - k - (p & 0xFFFFFFFF);
un[i+j] = t;
k = (p >> 32) - (t >> 32);
}
t = un[j+2] - k;
un[j+2] = t;
q[j] = qhat; /* Store quotient digit. */
if (t < 0) { /* If we subtracted too */
q[j] = q[j] - 1; /* much, add back. */
k = 0;
for (i = 0; i < 2; i++) {
t = un[i+j] + vn[i] + k;
un[i+j] = t;
k = t >> 32;
}
un[j+2] = un[j+2] + k;
}
} /* End j. */
return q[1]*b + q[0];
}
static int64_t divls64(int64_t u1, uint64_t u0, int64_t v)
{
int64_t q, uneg, vneg, diff, borrow;
uneg = u1 >> 63; /* -1 if u < 0. */
if (uneg) { /* Compute the absolute */
u0 = -u0; /* value of the dividend u. */
borrow = (u0 != 0);
u1 = -u1 - borrow;
}
vneg = v >> 63; /* -1 if v < 0. */
v = (v ^ vneg) - vneg; /* Absolute value of v. */
if ((uint64_t)u1 >= (uint64_t)v) {
goto overflow;
}
q = divlu64(u1, u0, v);
diff = uneg ^ vneg; /* Negate q if signs of */
q = (q ^ diff) - diff; /* u and v differed. */
if ((diff ^ q) < 0 && q != 0) { /* If overflow, return the
largest */
overflow: /* possible neg. quotient. */
q = 0x8000000000000000ULL;
}
return q;
}
ssize_t tally_mean(const struct tally *tally)
{
size_t count = tally_num(tally);
if (!count) {
return 0;
}
if (sizeof(tally->total[0]) == sizeof(uint32_t)) {
/* Use standard 64-bit arithmetic. */
int64_t total = tally->total[0]
| (((uint64_t)tally->total[1]) << 32);
return total / count;
}
return divls64(tally->total[1], tally->total[0], count);
}
ssize_t tally_total(const struct tally *tally, ssize_t *overflow)
{
if (overflow) {
*overflow = tally->total[1];
return tally->total[0];
}
/* If result is negative, make sure we can represent it. */
if (tally->total[1] & ((size_t)1 << (SIZET_BITS-1))) {
/* Must have only underflowed once, and must be able to
* represent result at ssize_t. */
if ((~tally->total[1])+1 != 0
|| (ssize_t)tally->total[0] >= 0) {
/* Underflow, return minimum. */
return (ssize_t)((size_t)1 << (SIZET_BITS - 1));
}
} else {
/* Result is positive, must not have overflowed, and must be
* able to represent as ssize_t. */
if (tally->total[1] || (ssize_t)tally->total[0] < 0) {
/* Overflow. Return maximum. */
return (ssize_t)~((size_t)1 << (SIZET_BITS - 1));
}
}
return tally->total[0];
}
static ssize_t bucket_range(const struct tally *tally, unsigned b, size_t *err)
{
ssize_t min, max;
min = bucket_min(tally->min, tally->step_bits, b);
if (b == tally->buckets - 1) {
max = tally->max;
} else {
max = bucket_min(tally->min, tally->step_bits, b+1) - 1;
}
/* FIXME: Think harder about cumulative error; is this enough?. */
*err = (max - min + 1) / 2;
/* Avoid overflow. */
return min + (max - min) / 2;
}
ssize_t tally_approx_median(const struct tally *tally, size_t *err)
{
size_t count = tally_num(tally), total = 0;
unsigned int i;
for (i = 0; i < tally->buckets; i++) {
total += tally->counts[i];
if (total * 2 >= count) {
break;
}
}
return bucket_range(tally, i, err);
}
ssize_t tally_approx_mode(const struct tally *tally, size_t *err)
{
unsigned int i, min_best = 0, max_best = 0;
for (i = 0; i < tally->buckets; i++) {
if (tally->counts[i] > tally->counts[min_best]) {
min_best = max_best = i;
} else if (tally->counts[i] == tally->counts[min_best]) {
max_best = i;
}
}
/* We can have more than one best, making our error huge. */
if (min_best != max_best) {
ssize_t min, max;
min = bucket_range(tally, min_best, err);
max = bucket_range(tally, max_best, err);
max += *err;
*err += (size_t)(max - min);
return min + (max - min) / 2;
}
return bucket_range(tally, min_best, err);
}
static unsigned get_max_bucket(const struct tally *tally)
{
unsigned int i;
for (i = tally->buckets; i > 0; i--) {
if (tally->counts[i-1]) {
break;
}
}
return i;
}
char *tally_histogram(const struct tally *tally,
unsigned width, unsigned height)
{
unsigned int i, count, max_bucket, largest_bucket;
struct tally *tmp;
char *graph, *p;
assert(width >= TALLY_MIN_HISTO_WIDTH);
assert(height >= TALLY_MIN_HISTO_HEIGHT);
/* Ignore unused buckets. */
max_bucket = get_max_bucket(tally);
/* FIXME: It'd be nice to smooth here... */
if (height >= max_bucket) {
height = max_bucket;
tmp = NULL;
} else {
/* We create a temporary then renormalize so < height. */
/* FIXME: Antialias properly! */
tmp = tally_new(tally->buckets);
if (!tmp) {
return NULL;
}
tmp->min = tally->min;
tmp->max = tally->max;
tmp->step_bits = tally->step_bits;
memcpy(tmp->counts, tally->counts,
sizeof(tally->counts[0]) * tmp->buckets);
while ((max_bucket = get_max_bucket(tmp)) >= height) {
renormalize(tmp, tmp->min, tmp->max * 2);
}
/* Restore max */
tmp->max = tally->max;
tally = tmp;
height = max_bucket;
}
/* Figure out longest line, for scale. */
largest_bucket = 0;
for (i = 0; i < tally->buckets; i++) {
if (tally->counts[i] > largest_bucket) {
largest_bucket = tally->counts[i];
}
}
p = graph = (char *)malloc(height * (width + 1) + 1);
if (!graph) {
free(tmp);
return NULL;
}
for (i = 0; i < height; i++) {
unsigned covered = 1, row;
/* People expect minimum at the bottom. */
row = height - i - 1;
count = (double)tally->counts[row] / largest_bucket * (width-1)+1;
if (row == 0) {
covered = snprintf(p, width, "%zi", tally->min);
} else if (row == height - 1) {
covered = snprintf(p, width, "%zi", tally->max);
} else if (row == bucket_of(tally->min, tally->step_bits, 0)) {
*p = '+';
} else {
*p = '|';
}
if (covered > width) {
covered = width;
}
p += covered;
if (count > covered) {
count -= covered;
} else {
count = 0;
}
memset(p, '*', count);
p += count;
*p = '\n';
p++;
}
*p = '\0';
free(tmp);
return graph;
}