mirror of
https://github.com/samba-team/samba.git
synced 2025-01-20 14:03:59 +03:00
663 lines
19 KiB
C
663 lines
19 KiB
C
/*
|
|
* Unix SMB/CIFS implementation.
|
|
* Support for OneFS system interfaces.
|
|
*
|
|
* Copyright (C) Tim Prouty, 2008
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation; either version 3 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; if not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
#include "includes.h"
|
|
#include "onefs.h"
|
|
#include "onefs_config.h"
|
|
#include "oplock_onefs.h"
|
|
|
|
#include <ifs/ifs_syscalls.h>
|
|
#include <isi_acl/isi_acl_util.h>
|
|
#include <sys/isi_acl.h>
|
|
|
|
/*
|
|
* Initialize the sm_lock struct before passing it to ifs_createfile.
|
|
*/
|
|
static void smlock_init(connection_struct *conn, struct sm_lock *sml,
|
|
bool isexe, uint32_t access_mask, uint32_t share_access,
|
|
uint32_t create_options)
|
|
{
|
|
sml->sm_type.doc = false;
|
|
sml->sm_type.isexe = isexe;
|
|
sml->sm_type.statonly = is_stat_open(access_mask);
|
|
sml->sm_type.access_mask = access_mask;
|
|
sml->sm_type.share_access = share_access;
|
|
|
|
/*
|
|
* private_options was previously used for DENY_DOS/DENY_FCB checks in
|
|
* the kernel, but are now properly handled by fcb_or_dos_open. In
|
|
* these cases, ifs_createfile will return a sharing violation, which
|
|
* gives fcb_or_dos_open the chance to open a duplicate file handle.
|
|
*/
|
|
sml->sm_type.private_options = 0;
|
|
|
|
/* 1 second delay is handled in onefs_open.c by deferring the open */
|
|
sml->sm_timeout = timeval_set(0, 0);
|
|
}
|
|
|
|
static void smlock_dump(int debuglevel, const struct sm_lock *sml)
|
|
{
|
|
if (sml == NULL) {
|
|
DEBUG(debuglevel, ("sml == NULL\n"));
|
|
return;
|
|
}
|
|
|
|
DEBUG(debuglevel,
|
|
("smlock: doc=%s, isexec=%s, statonly=%s, access_mask=0x%x, "
|
|
"share_access=0x%x, private_options=0x%x timeout=%d/%d\n",
|
|
sml->sm_type.doc ? "True" : "False",
|
|
sml->sm_type.isexe ? "True" : "False",
|
|
sml->sm_type.statonly ? "True" : "False",
|
|
sml->sm_type.access_mask,
|
|
sml->sm_type.share_access,
|
|
sml->sm_type.private_options,
|
|
(int)sml->sm_timeout.tv_sec,
|
|
(int)sml->sm_timeout.tv_usec));
|
|
}
|
|
|
|
/**
|
|
* External interface to ifs_createfile
|
|
*/
|
|
int onefs_sys_create_file(connection_struct *conn,
|
|
int base_fd,
|
|
const char *path,
|
|
uint32_t access_mask,
|
|
uint32_t open_access_mask,
|
|
uint32_t share_access,
|
|
uint32_t create_options,
|
|
int flags,
|
|
mode_t mode,
|
|
int oplock_request,
|
|
uint64_t id,
|
|
struct security_descriptor *sd,
|
|
uint32_t dos_flags,
|
|
int *granted_oplock)
|
|
{
|
|
struct sm_lock sml, *psml = NULL;
|
|
enum oplock_type onefs_oplock;
|
|
enum oplock_type onefs_granted_oplock = OPLOCK_NONE;
|
|
struct ifs_security_descriptor ifs_sd = {}, *pifs_sd = NULL;
|
|
int secinfo = 0;
|
|
int ret_fd = -1;
|
|
uint32_t onefs_dos_attributes;
|
|
struct ifs_createfile_flags cf_flags = CF_FLAGS_NONE;
|
|
|
|
START_PROFILE(syscall_createfile);
|
|
|
|
/* Setup security descriptor and get secinfo. */
|
|
if (sd != NULL) {
|
|
NTSTATUS status;
|
|
|
|
secinfo = (get_sec_info(sd) & IFS_SEC_INFO_KNOWN_MASK);
|
|
|
|
status = onefs_samba_sd_to_sd(secinfo, sd, &ifs_sd, SNUM(conn));
|
|
|
|
if (!NT_STATUS_IS_OK(status)) {
|
|
DEBUG(1, ("SD initialization failure: %s",
|
|
nt_errstr(status)));
|
|
errno = EINVAL;
|
|
goto out;
|
|
}
|
|
|
|
pifs_sd = &ifs_sd;
|
|
}
|
|
|
|
/* Stripping off private bits will be done for us. */
|
|
onefs_oplock = onefs_samba_oplock_to_oplock(oplock_request);
|
|
|
|
if (!lp_oplocks(SNUM(conn))) {
|
|
SMB_ASSERT(onefs_oplock == OPLOCK_NONE);
|
|
}
|
|
|
|
/* Convert samba dos flags to UF_DOS_* attributes. */
|
|
onefs_dos_attributes = dos_attributes_to_stat_dos_flags(dos_flags);
|
|
|
|
/**
|
|
* Deal with kernel creating Default ACLs. (Isilon bug 47447.)
|
|
*
|
|
* 1) "nt acl support = no", default_acl = no
|
|
* 2) "inherit permissions = yes", default_acl = no
|
|
*/
|
|
if (lp_nt_acl_support(SNUM(conn)) && !lp_inherit_perms(SNUM(conn)))
|
|
cf_flags = cf_flags_or(cf_flags, CF_FLAGS_DEFAULT_ACL);
|
|
|
|
/*
|
|
* Some customer workflows require the execute bit to be ignored.
|
|
*/
|
|
if (lp_parm_bool(SNUM(conn), PARM_ONEFS_TYPE,
|
|
PARM_ALLOW_EXECUTE_ALWAYS,
|
|
PARM_ALLOW_EXECUTE_ALWAYS_DEFAULT) &&
|
|
(open_access_mask & FILE_EXECUTE)) {
|
|
|
|
DEBUG(3, ("Stripping execute bit from %s: (0x%x)\n", path,
|
|
open_access_mask));
|
|
|
|
/* Strip execute. */
|
|
open_access_mask &= ~FILE_EXECUTE;
|
|
|
|
/*
|
|
* Add READ_DATA, so we're not left with desired_access=0. An
|
|
* execute call should imply the client will read the data.
|
|
*/
|
|
open_access_mask |= FILE_READ_DATA;
|
|
|
|
DEBUGADD(3, ("New stripped access mask: 0x%x\n",
|
|
open_access_mask));
|
|
}
|
|
|
|
DEBUG(10,("onefs_sys_create_file: base_fd = %d, "
|
|
"open_access_mask = 0x%x, flags = 0x%x, mode = 0%o, "
|
|
"desired_oplock = %s, id = 0x%x, secinfo = 0x%x, sd = %p, "
|
|
"dos_attributes = 0x%x, path = %s, "
|
|
"default_acl=%s\n", base_fd,
|
|
(unsigned int)open_access_mask,
|
|
(unsigned int)flags,
|
|
(unsigned int)mode,
|
|
onefs_oplock_str(onefs_oplock),
|
|
(unsigned int)id,
|
|
(unsigned int)secinfo, sd,
|
|
(unsigned int)onefs_dos_attributes, path,
|
|
cf_flags_and_bool(cf_flags, CF_FLAGS_DEFAULT_ACL) ?
|
|
"true" : "false"));
|
|
|
|
/* Initialize smlock struct for files/dirs but not internal opens */
|
|
if (!(oplock_request & INTERNAL_OPEN_ONLY)) {
|
|
smlock_init(conn, &sml, is_executable(path), access_mask,
|
|
share_access, create_options);
|
|
psml = &sml;
|
|
}
|
|
|
|
smlock_dump(10, psml);
|
|
|
|
ret_fd = ifs_createfile(base_fd, path,
|
|
(enum ifs_ace_rights)open_access_mask, flags & ~O_ACCMODE, mode,
|
|
onefs_oplock, id, psml, secinfo, pifs_sd, onefs_dos_attributes,
|
|
cf_flags, &onefs_granted_oplock);
|
|
|
|
DEBUG(10,("onefs_sys_create_file(%s): ret_fd = %d, "
|
|
"onefs_granted_oplock = %s\n",
|
|
ret_fd < 0 ? strerror(errno) : "success", ret_fd,
|
|
onefs_oplock_str(onefs_granted_oplock)));
|
|
|
|
if (granted_oplock) {
|
|
*granted_oplock =
|
|
onefs_oplock_to_samba_oplock(onefs_granted_oplock);
|
|
}
|
|
|
|
out:
|
|
END_PROFILE(syscall_createfile);
|
|
aclu_free_sd(pifs_sd, false);
|
|
|
|
return ret_fd;
|
|
}
|
|
|
|
/**
|
|
* FreeBSD based sendfile implementation that allows for atomic semantics.
|
|
*/
|
|
static ssize_t onefs_sys_do_sendfile(int tofd, int fromfd,
|
|
const DATA_BLOB *header, SMB_OFF_T offset, size_t count, bool atomic)
|
|
{
|
|
size_t total=0;
|
|
struct sf_hdtr hdr;
|
|
struct iovec hdtrl;
|
|
size_t hdr_len = 0;
|
|
int flags = 0;
|
|
|
|
if (atomic) {
|
|
flags = SF_ATOMIC;
|
|
}
|
|
|
|
hdr.headers = &hdtrl;
|
|
hdr.hdr_cnt = 1;
|
|
hdr.trailers = NULL;
|
|
hdr.trl_cnt = 0;
|
|
|
|
/* Set up the header iovec. */
|
|
if (header) {
|
|
hdtrl.iov_base = header->data;
|
|
hdtrl.iov_len = hdr_len = header->length;
|
|
} else {
|
|
hdtrl.iov_base = NULL;
|
|
hdtrl.iov_len = 0;
|
|
}
|
|
|
|
total = count;
|
|
while (total + hdtrl.iov_len) {
|
|
SMB_OFF_T nwritten;
|
|
int ret;
|
|
|
|
/*
|
|
* FreeBSD sendfile returns 0 on success, -1 on error.
|
|
* Remember, the tofd and fromfd are reversed..... :-).
|
|
* nwritten includes the header data sent.
|
|
*/
|
|
|
|
do {
|
|
ret = sendfile(fromfd, tofd, offset, total, &hdr,
|
|
&nwritten, flags);
|
|
} while (ret == -1 && errno == EINTR);
|
|
|
|
/* On error we're done. */
|
|
if (ret == -1) {
|
|
return -1;
|
|
}
|
|
|
|
/*
|
|
* If this was an ATOMIC sendfile, nwritten doesn't
|
|
* necessarily indicate an error. It could mean count > than
|
|
* what sendfile can handle atomically (usually 64K) or that
|
|
* there was a short read due to the file being truncated.
|
|
*/
|
|
if (nwritten == 0) {
|
|
return atomic ? 0 : -1;
|
|
}
|
|
|
|
/*
|
|
* An atomic sendfile should never send partial data!
|
|
*/
|
|
if (atomic && nwritten != total + hdtrl.iov_len) {
|
|
DEBUG(0,("Atomic sendfile() sent partial data: "
|
|
"%llu of %d\n", nwritten,
|
|
total + hdtrl.iov_len));
|
|
return -1;
|
|
}
|
|
|
|
/*
|
|
* If this was a short (signal interrupted) write we may need
|
|
* to subtract it from the header data, or null out the header
|
|
* data altogether if we wrote more than hdtrl.iov_len bytes.
|
|
* We change nwritten to be the number of file bytes written.
|
|
*/
|
|
|
|
if (hdtrl.iov_base && hdtrl.iov_len) {
|
|
if (nwritten >= hdtrl.iov_len) {
|
|
nwritten -= hdtrl.iov_len;
|
|
hdtrl.iov_base = NULL;
|
|
hdtrl.iov_len = 0;
|
|
} else {
|
|
hdtrl.iov_base =
|
|
(caddr_t)hdtrl.iov_base + nwritten;
|
|
hdtrl.iov_len -= nwritten;
|
|
nwritten = 0;
|
|
}
|
|
}
|
|
total -= nwritten;
|
|
offset += nwritten;
|
|
}
|
|
return count + hdr_len;
|
|
}
|
|
|
|
/**
|
|
* Handles the subtleties of using sendfile with CIFS.
|
|
*/
|
|
ssize_t onefs_sys_sendfile(connection_struct *conn, int tofd, int fromfd,
|
|
const DATA_BLOB *header, SMB_OFF_T offset,
|
|
size_t count)
|
|
{
|
|
bool atomic = false;
|
|
ssize_t ret = 0;
|
|
|
|
START_PROFILE_BYTES(syscall_sendfile, count);
|
|
|
|
if (lp_parm_bool(SNUM(conn), PARM_ONEFS_TYPE,
|
|
PARM_ATOMIC_SENDFILE,
|
|
PARM_ATOMIC_SENDFILE_DEFAULT)) {
|
|
atomic = true;
|
|
}
|
|
|
|
/* Try the sendfile */
|
|
ret = onefs_sys_do_sendfile(tofd, fromfd, header, offset, count,
|
|
atomic);
|
|
|
|
/* If the sendfile wasn't atomic, we're done. */
|
|
if (!atomic) {
|
|
DEBUG(10, ("non-atomic sendfile read %ul bytes", ret));
|
|
END_PROFILE(syscall_sendfile);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Atomic sendfile takes care to not write anything to the socket
|
|
* until all of the requested bytes have been read from the file.
|
|
* There are two atomic cases that need to be handled.
|
|
*
|
|
* 1. The file was truncated causing less data to be read than was
|
|
* requested. In this case, we return back to the caller to
|
|
* indicate 0 bytes were written to the socket. This should
|
|
* prompt the caller to fallback to the standard read path: read
|
|
* the data, create a header that indicates how many bytes were
|
|
* actually read, and send the header/data back to the client.
|
|
*
|
|
* This saves us from standard sendfile behavior of sending a
|
|
* header promising more data then will actually be sent. The
|
|
* only two options are to close the socket and kill the client
|
|
* connection, or write a bunch of 0s. Closing the client
|
|
* connection is bad because there could actually be multiple
|
|
* sessions multiplexed from the same client that are all dropped
|
|
* because of a truncate. Writing the remaining data as 0s also
|
|
* isn't good, because the client will have an incorrect version
|
|
* of the file. If the file is written back to the server, the 0s
|
|
* will be written back. Fortunately, atomic sendfile allows us
|
|
* to avoid making this choice in most cases.
|
|
*
|
|
* 2. One downside of atomic sendfile, is that there is a limit on
|
|
* the number of bytes that can be sent atomically. The kernel
|
|
* has a limited amount of mbuf space that it can read file data
|
|
* into without exhausting the system's mbufs, so a buffer of
|
|
* length xfsize is used. The xfsize at the time of writing this
|
|
* is 64K. xfsize bytes are read from the file, and subsequently
|
|
* written to the socket. This makes it impossible to do the
|
|
* sendfile atomically for a byte count > xfsize.
|
|
*
|
|
* To cope with large requests, atomic sendfile returns -1 with
|
|
* errno set to E2BIG. Since windows maxes out at 64K writes,
|
|
* this is currently only a concern with non-windows clients.
|
|
* Posix extensions allow the full 24bit bytecount field to be
|
|
* used in ReadAndX, and clients such as smbclient and the linux
|
|
* cifs client can request up to 16MB reads! There are a few
|
|
* options for handling large sendfile requests.
|
|
*
|
|
* a. Fall back to the standard read path. This is unacceptable
|
|
* because it would require prohibitively large mallocs.
|
|
*
|
|
* b. Fall back to using samba's fake_send_file which emulates
|
|
* the kernel sendfile in userspace. This still has the same
|
|
* problem of sending the header before all of the data has
|
|
* been read, so it doesn't buy us anything, and has worse
|
|
* performance than the kernel's zero-copy sendfile.
|
|
*
|
|
* c. Use non-atomic sendfile syscall to attempt a zero copy
|
|
* read, and hope that there isn't a short read due to
|
|
* truncation. In the case of a short read, there are two
|
|
* options:
|
|
*
|
|
* 1. Kill the client connection
|
|
*
|
|
* 2. Write zeros to the socket for the remaining bytes
|
|
* promised in the header.
|
|
*
|
|
* It is safer from a data corruption perspective to kill the
|
|
* client connection, so this is our default behavior, but if
|
|
* this causes problems this can be configured to write zeros
|
|
* via smb.conf.
|
|
*/
|
|
|
|
/* Handle case 1: short read -> truncated file. */
|
|
if (ret == 0) {
|
|
END_PROFILE(syscall_sendfile);
|
|
return ret;
|
|
}
|
|
|
|
/* Handle case 2: large read. */
|
|
if (ret == -1 && errno == E2BIG) {
|
|
|
|
if (!lp_parm_bool(SNUM(conn), PARM_ONEFS_TYPE,
|
|
PARM_SENDFILE_LARGE_READS,
|
|
PARM_SENDFILE_LARGE_READS_DEFAULT)) {
|
|
DEBUG(3, ("Not attempting non-atomic large sendfile: "
|
|
"%lu bytes\n", count));
|
|
END_PROFILE(syscall_sendfile);
|
|
return 0;
|
|
}
|
|
|
|
if (count < 0x10000) {
|
|
DEBUG(0, ("Count < 2^16 and E2BIG was returned! %lu",
|
|
count));
|
|
}
|
|
|
|
DEBUG(10, ("attempting non-atomic large sendfile: %lu bytes\n",
|
|
count));
|
|
|
|
/* Try a non-atomic sendfile. */
|
|
ret = onefs_sys_do_sendfile(tofd, fromfd, header, offset,
|
|
count, false);
|
|
/* Real error: kill the client connection. */
|
|
if (ret == -1) {
|
|
DEBUG(1, ("error on non-atomic large sendfile "
|
|
"(%lu bytes): %s\n", count,
|
|
strerror(errno)));
|
|
END_PROFILE(syscall_sendfile);
|
|
return ret;
|
|
}
|
|
|
|
/* Short read: kill the client connection. */
|
|
if (ret != count + header->length) {
|
|
DEBUG(1, ("short read on non-atomic large sendfile "
|
|
"(%lu of %lu bytes): %s\n", ret, count,
|
|
strerror(errno)));
|
|
|
|
/*
|
|
* Returning ret here would cause us to drop into the
|
|
* codepath that calls sendfile_short_send, which
|
|
* sends the client a bunch of zeros instead.
|
|
* Returning -1 kills the connection.
|
|
*/
|
|
if (lp_parm_bool(SNUM(conn), PARM_ONEFS_TYPE,
|
|
PARM_SENDFILE_SAFE,
|
|
PARM_SENDFILE_SAFE_DEFAULT)) {
|
|
END_PROFILE(syscall_sendfile);
|
|
return -1;
|
|
}
|
|
|
|
END_PROFILE(syscall_sendfile);
|
|
return ret;
|
|
}
|
|
|
|
DEBUG(10, ("non-atomic large sendfile successful\n"));
|
|
}
|
|
|
|
/* There was error in the atomic sendfile. */
|
|
if (ret == -1) {
|
|
DEBUG(1, ("error on %s sendfile (%lu bytes): %s\n",
|
|
atomic ? "atomic" : "non-atomic",
|
|
count, strerror(errno)));
|
|
}
|
|
|
|
END_PROFILE(syscall_sendfile);
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* Only talloc the spill buffer once (reallocing when necessary).
|
|
*/
|
|
static char *get_spill_buffer(size_t new_count)
|
|
{
|
|
static int cur_count = 0;
|
|
static char *spill_buffer = NULL;
|
|
|
|
/* If a sufficiently sized buffer exists, just return. */
|
|
if (new_count <= cur_count) {
|
|
SMB_ASSERT(spill_buffer);
|
|
return spill_buffer;
|
|
}
|
|
|
|
/* Allocate the first time. */
|
|
if (cur_count == 0) {
|
|
SMB_ASSERT(!spill_buffer);
|
|
spill_buffer = talloc_array(NULL, char, new_count);
|
|
if (spill_buffer) {
|
|
cur_count = new_count;
|
|
}
|
|
return spill_buffer;
|
|
}
|
|
|
|
/* A buffer exists, but it's not big enough, so realloc. */
|
|
SMB_ASSERT(spill_buffer);
|
|
spill_buffer = talloc_realloc(NULL, spill_buffer, char, new_count);
|
|
if (spill_buffer) {
|
|
cur_count = new_count;
|
|
}
|
|
return spill_buffer;
|
|
}
|
|
|
|
/**
|
|
* recvfile does zero-copy writes given an fd to write to, and a socket with
|
|
* some data to write. If recvfile read more than it was able to write, it
|
|
* spills the data into a buffer. After first reading any additional data
|
|
* from the socket into the buffer, the spill buffer is then written with a
|
|
* standard pwrite.
|
|
*/
|
|
ssize_t onefs_sys_recvfile(int fromfd, int tofd, SMB_OFF_T offset,
|
|
size_t count)
|
|
{
|
|
char *spill_buffer = NULL;
|
|
bool socket_drained = false;
|
|
int ret;
|
|
off_t total_rbytes = 0;
|
|
off_t total_wbytes = 0;
|
|
off_t rbytes;
|
|
off_t wbytes;
|
|
|
|
START_PROFILE_BYTES(syscall_recvfile, count);
|
|
|
|
DEBUG(10,("onefs_recvfile: from = %d, to = %d, offset=%llu, count = "
|
|
"%lu\n", fromfd, tofd, offset, count));
|
|
|
|
if (count == 0) {
|
|
END_PROFILE(syscall_recvfile);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Setup up a buffer for recvfile to spill data that has been read
|
|
* from the socket but not written.
|
|
*/
|
|
spill_buffer = get_spill_buffer(count);
|
|
if (spill_buffer == NULL) {
|
|
ret = -1;
|
|
goto out;
|
|
}
|
|
|
|
/*
|
|
* Keep trying recvfile until:
|
|
* - There is no data left to read on the socket, or
|
|
* - bytes read != bytes written, or
|
|
* - An error is returned that isn't EINTR/EAGAIN
|
|
*/
|
|
do {
|
|
/* Keep track of bytes read/written for recvfile */
|
|
rbytes = 0;
|
|
wbytes = 0;
|
|
|
|
DEBUG(10, ("calling recvfile loop, offset + total_wbytes = "
|
|
"%llu, count - total_rbytes = %llu\n",
|
|
offset + total_wbytes, count - total_rbytes));
|
|
|
|
ret = recvfile(tofd, fromfd, offset + total_wbytes,
|
|
count - total_wbytes, &rbytes, &wbytes, 0,
|
|
spill_buffer);
|
|
|
|
DEBUG(10, ("recvfile ret = %d, errno = %d, rbytes = %llu, "
|
|
"wbytes = %llu\n", ret, ret >= 0 ? 0 : errno,
|
|
rbytes, wbytes));
|
|
|
|
/* Update our progress so far */
|
|
total_rbytes += rbytes;
|
|
total_wbytes += wbytes;
|
|
|
|
} while ((count - total_rbytes) && (rbytes == wbytes) &&
|
|
(ret == -1 && (errno == EINTR || errno == EAGAIN)));
|
|
|
|
DEBUG(10, ("total_rbytes = %llu, total_wbytes = %llu\n",
|
|
total_rbytes, total_wbytes));
|
|
|
|
/* Log if recvfile didn't write everything it read. */
|
|
if (total_rbytes != total_wbytes) {
|
|
DEBUG(0, ("partial recvfile: total_rbytes=%llu but "
|
|
"total_wbytes=%llu, diff = %llu\n", total_rbytes,
|
|
total_wbytes, total_rbytes - total_wbytes));
|
|
SMB_ASSERT(total_rbytes > total_wbytes);
|
|
}
|
|
|
|
/*
|
|
* If there is still data on the socket, read it off.
|
|
*/
|
|
while (total_rbytes < count) {
|
|
|
|
DEBUG(0, ("shallow recvfile, reading %llu\n",
|
|
count - total_rbytes));
|
|
|
|
/*
|
|
* Read the remaining data into the spill buffer. recvfile
|
|
* may already have some data in the spill buffer, so start
|
|
* filling the buffer at total_rbytes - total_wbytes.
|
|
*/
|
|
ret = sys_read(fromfd,
|
|
spill_buffer + (total_rbytes - total_wbytes),
|
|
count - total_rbytes);
|
|
|
|
if (ret == -1) {
|
|
DEBUG(0, ("shallow recvfile read failed: %s\n",
|
|
strerror(errno)));
|
|
/* Socket is dead, so treat as if it were drained. */
|
|
socket_drained = true;
|
|
goto out;
|
|
}
|
|
|
|
/* Data was read so update the rbytes */
|
|
total_rbytes += ret;
|
|
}
|
|
|
|
if (total_rbytes != count) {
|
|
smb_panic("Unread recvfile data still on the socket!");
|
|
}
|
|
|
|
/*
|
|
* Now write any spilled data + the extra data read off the socket.
|
|
*/
|
|
while (total_wbytes < count) {
|
|
|
|
DEBUG(0, ("partial recvfile, writing %llu\n", count - total_wbytes));
|
|
|
|
ret = sys_pwrite(tofd, spill_buffer, count - total_wbytes,
|
|
offset + total_wbytes);
|
|
|
|
if (ret == -1) {
|
|
DEBUG(0, ("partial recvfile write failed: %s\n",
|
|
strerror(errno)));
|
|
goto out;
|
|
}
|
|
|
|
/* Data was written so update the wbytes */
|
|
total_wbytes += ret;
|
|
}
|
|
|
|
/* Success! */
|
|
ret = total_wbytes;
|
|
|
|
out:
|
|
|
|
END_PROFILE(syscall_recvfile);
|
|
|
|
/* Make sure we always try to drain the socket. */
|
|
if (!socket_drained && count - total_rbytes) {
|
|
int saved_errno = errno;
|
|
|
|
if (drain_socket(fromfd, count - total_rbytes) !=
|
|
count - total_rbytes) {
|
|
/* Socket is dead! */
|
|
DEBUG(0, ("drain socket failed: %d\n", errno));
|
|
}
|
|
errno = saved_errno;
|
|
}
|
|
|
|
return ret;
|
|
}
|