1
0
mirror of https://github.com/samba-team/samba.git synced 2025-01-04 05:18:06 +03:00
samba-mirror/ctdb/server/ctdb_vacuum.c
Ronnie Sahlberg 2e8aac6689 Merge commit 'rusty/ports-from-1.0.112' into foo
(This used to be ctdb commit 13e58d92f5f1723e850a82ae030d0ca57e89b1ee)
2010-08-19 13:17:56 +10:00

926 lines
27 KiB
C

/*
ctdb vacuuming events
Copyright (C) Ronnie Sahlberg 2009
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, see <http://www.gnu.org/licenses/>.
*/
#include "includes.h"
#include "lib/tevent/tevent.h"
#include "lib/tdb/include/tdb.h"
#include "system/network.h"
#include "system/filesys.h"
#include "system/dir.h"
#include "../include/ctdb_private.h"
#include "db_wrap.h"
#include "lib/util/dlinklist.h"
#include "lib/tevent/tevent.h"
#include "../include/ctdb_private.h"
#include "../common/rb_tree.h"
#define TIMELIMIT() timeval_current_ofs(10, 0)
#define TUNINGDBNAME "vactune.tdb"
enum vacuum_child_status { VACUUM_RUNNING, VACUUM_OK, VACUUM_ERROR, VACUUM_TIMEOUT};
struct ctdb_vacuum_child_context {
struct ctdb_vacuum_child_context *next, *prev;
struct ctdb_vacuum_handle *vacuum_handle;
/* fd child writes status to */
int fd[2];
pid_t child_pid;
enum vacuum_child_status status;
struct timeval start_time;
};
struct ctdb_vacuum_handle {
struct ctdb_db_context *ctdb_db;
struct ctdb_vacuum_child_context *child_ctx;
};
/* a list of records to possibly delete */
struct vacuum_data {
uint32_t vacuum_limit;
uint32_t repack_limit;
struct ctdb_context *ctdb;
struct ctdb_db_context *ctdb_db;
struct tdb_context *dest_db;
trbt_tree_t *delete_tree;
uint32_t delete_count;
struct ctdb_marshall_buffer **list;
struct timeval start;
bool traverse_error;
bool vacuum;
uint32_t total;
uint32_t vacuumed;
uint32_t copied;
};
/* tuning information stored for every db */
struct vacuum_tuning_data {
uint32_t last_num_repack;
uint32_t last_num_empty;
uint32_t last_interval;
uint32_t new_interval;
struct timeval last_start;
double last_duration;
};
/* this structure contains the information for one record to be deleted */
struct delete_record_data {
struct ctdb_context *ctdb;
struct ctdb_db_context *ctdb_db;
struct ctdb_ltdb_header hdr;
TDB_DATA key;
};
struct delete_records_list {
struct ctdb_marshall_buffer *records;
};
static void ctdb_vacuum_event(struct event_context *ev, struct timed_event *te,
struct timeval t, void *private_data);
/*
* traverse function for gathering the records that can be deleted
*/
static int vacuum_traverse(struct tdb_context *tdb, TDB_DATA key, TDB_DATA data, void *private)
{
struct vacuum_data *vdata = talloc_get_type(private, struct vacuum_data);
struct ctdb_context *ctdb = vdata->ctdb;
struct ctdb_db_context *ctdb_db = vdata->ctdb_db;
uint32_t lmaster;
struct ctdb_ltdb_header *hdr;
struct ctdb_rec_data *rec;
size_t old_size;
lmaster = ctdb_lmaster(ctdb, &key);
if (lmaster >= ctdb->vnn_map->size) {
return 0;
}
if (data.dsize != sizeof(struct ctdb_ltdb_header)) {
/* its not a deleted record */
return 0;
}
hdr = (struct ctdb_ltdb_header *)data.dptr;
if (hdr->dmaster != ctdb->pnn) {
return 0;
}
/* is this a records we could possibly delete? I.e.
if the record is empty and also we are both lmaster
and dmaster for the record we should be able to delete it
*/
if (lmaster == ctdb->pnn) {
uint32_t hash;
hash = ctdb_hash(&key);
if (trbt_lookup32(vdata->delete_tree, hash)) {
DEBUG(DEBUG_DEBUG, (__location__ " Hash collission when vacuuming, skipping this record.\n"));
}
else {
struct delete_record_data *dd;
/* store key and header indexed by the key hash */
dd = talloc_zero(vdata->delete_tree, struct delete_record_data);
if (dd == NULL) {
DEBUG(DEBUG_ERR,(__location__ " Out of memory\n"));
return -1;
}
dd->ctdb = ctdb;
dd->ctdb_db = ctdb_db;
dd->key.dsize = key.dsize;
dd->key.dptr = talloc_memdup(dd, key.dptr, key.dsize);
if (dd->key.dptr == NULL) {
DEBUG(DEBUG_ERR,(__location__ " Out of memory\n"));
return -1;
}
dd->hdr = *hdr;
trbt_insert32(vdata->delete_tree, hash, dd);
vdata->delete_count++;
}
}
/* add the record to the blob ready to send to the nodes */
rec = ctdb_marshall_record(vdata->list[lmaster], ctdb->pnn, key, NULL, tdb_null);
if (rec == NULL) {
DEBUG(DEBUG_ERR,(__location__ " Out of memory\n"));
vdata->traverse_error = true;
return -1;
}
old_size = talloc_get_size(vdata->list[lmaster]);
vdata->list[lmaster] = talloc_realloc_size(NULL, vdata->list[lmaster],
old_size + rec->length);
if (vdata->list[lmaster] == NULL) {
DEBUG(DEBUG_ERR,(__location__ " Failed to expand\n"));
vdata->traverse_error = true;
return -1;
}
vdata->list[lmaster]->count++;
memcpy(old_size+(uint8_t *)vdata->list[lmaster], rec, rec->length);
talloc_free(rec);
vdata->total++;
return 0;
}
/*
* traverse the tree of records to delete and marshall them into
* a blob
*/
static void delete_traverse(void *param, void *data)
{
struct delete_record_data *dd = talloc_get_type(data, struct delete_record_data);
struct delete_records_list *recs = talloc_get_type(param, struct delete_records_list);
struct ctdb_rec_data *rec;
size_t old_size;
rec = ctdb_marshall_record(dd, recs->records->db_id, dd->key, &dd->hdr, tdb_null);
if (rec == NULL) {
DEBUG(DEBUG_ERR, (__location__ " failed to marshall record\n"));
return;
}
old_size = talloc_get_size(recs->records);
recs->records = talloc_realloc_size(NULL, recs->records, old_size + rec->length);
if (recs->records == NULL) {
DEBUG(DEBUG_ERR,(__location__ " Failed to expand\n"));
return;
}
recs->records->count++;
memcpy(old_size+(uint8_t *)(recs->records), rec, rec->length);
}
/*
* read-only traverse the database in order to find
* records that can be deleted and try to delete these
* records on the other nodes
* this executes in the child context
*/
static int ctdb_vacuum_db(struct ctdb_db_context *ctdb_db, struct vacuum_data *vdata)
{
struct ctdb_context *ctdb = ctdb_db->ctdb;
const char *name = ctdb_db->db_name;
int ret, i, pnn;
ret = ctdb_ctrl_getvnnmap(ctdb, TIMELIMIT(), CTDB_CURRENT_NODE, ctdb, &ctdb->vnn_map);
if (ret != 0) {
DEBUG(DEBUG_ERR, ("Unable to get vnnmap from local node\n"));
return ret;
}
pnn = ctdb_ctrl_getpnn(ctdb, TIMELIMIT(), CTDB_CURRENT_NODE);
if (pnn == -1) {
DEBUG(DEBUG_ERR, ("Unable to get pnn from local node\n"));
return -1;
}
ctdb->pnn = pnn;
/* the list needs to be of length num_nodes */
vdata->list = talloc_array(vdata, struct ctdb_marshall_buffer *, ctdb->vnn_map->size);
if (vdata->list == NULL) {
DEBUG(DEBUG_ERR,(__location__ " Out of memory\n"));
return -1;
}
for (i = 0; i < ctdb->vnn_map->size; i++) {
vdata->list[i] = (struct ctdb_marshall_buffer *)
talloc_zero_size(vdata->list,
offsetof(struct ctdb_marshall_buffer, data));
if (vdata->list[i] == NULL) {
DEBUG(DEBUG_ERR,(__location__ " Out of memory\n"));
return -1;
}
vdata->list[i]->db_id = ctdb_db->db_id;
}
/* read-only traverse, looking for records that might be able to be vacuumed */
if (tdb_traverse_read(ctdb_db->ltdb->tdb, vacuum_traverse, vdata) == -1 ||
vdata->traverse_error) {
DEBUG(DEBUG_ERR,(__location__ " Traverse error in vacuuming '%s'\n", name));
return -1;
}
for ( i = 0; i < ctdb->vnn_map->size; i++) {
if (vdata->list[i]->count == 0) {
continue;
}
/* for records where we are not the lmaster, tell the lmaster to fetch the record */
if (ctdb->vnn_map->map[i] != ctdb->pnn) {
TDB_DATA data;
DEBUG(DEBUG_INFO,("Found %u records for lmaster %u in '%s'\n",
vdata->list[i]->count, i, name));
data.dsize = talloc_get_size(vdata->list[i]);
data.dptr = (void *)vdata->list[i];
if (ctdb_client_send_message(ctdb, ctdb->vnn_map->map[i], CTDB_SRVID_VACUUM_FETCH, data) != 0) {
DEBUG(DEBUG_ERR,(__location__ " Failed to send vacuum fetch message to %u\n",
ctdb->vnn_map->map[i]));
return -1;
}
continue;
}
}
/* Process all records we can delete (if any) */
if (vdata->delete_count > 0) {
struct delete_records_list *recs;
TDB_DATA indata, outdata;
int32_t res;
recs = talloc_zero(vdata, struct delete_records_list);
if (recs == NULL) {
DEBUG(DEBUG_ERR,(__location__ " Out of memory\n"));
return -1;
}
recs->records = (struct ctdb_marshall_buffer *)
talloc_zero_size(vdata,
offsetof(struct ctdb_marshall_buffer, data));
if (recs->records == NULL) {
DEBUG(DEBUG_ERR,(__location__ " Out of memory\n"));
return -1;
}
recs->records->db_id = ctdb_db->db_id;
/*
* traverse the tree of all records we want to delete and
* create a blob we can send to the other nodes.
*/
trbt_traversearray32(vdata->delete_tree, 1, delete_traverse, recs);
indata.dsize = talloc_get_size(recs->records);
indata.dptr = (void *)recs->records;
/*
* now tell all the other nodes to delete all these records
* (if possible)
*/
for (i = 0; i < ctdb->vnn_map->size; i++) {
struct ctdb_marshall_buffer *records;
struct ctdb_rec_data *rec;
if (ctdb->vnn_map->map[i] == ctdb->pnn) {
/* we dont delete the records on the local node just yet */
continue;
}
ret = ctdb_control(ctdb, ctdb->vnn_map->map[i], 0,
CTDB_CONTROL_TRY_DELETE_RECORDS, 0,
indata, recs, &outdata, &res,
NULL, NULL);
if (ret != 0 || res != 0) {
DEBUG(DEBUG_ERR,("Failed to delete records on node %u\n", ctdb->vnn_map->map[i]));
return -1;
}
/*
* outdata countains the list of records coming back
* from the node which the node could not delete
*/
records = (struct ctdb_marshall_buffer *)outdata.dptr;
rec = (struct ctdb_rec_data *)&records->data[0];
while (records->count-- > 1) {
TDB_DATA reckey, recdata;
struct ctdb_ltdb_header *rechdr;
reckey.dptr = &rec->data[0];
reckey.dsize = rec->keylen;
recdata.dptr = &rec->data[reckey.dsize];
recdata.dsize = rec->datalen;
if (recdata.dsize < sizeof(struct ctdb_ltdb_header)) {
DEBUG(DEBUG_CRIT,(__location__ " bad ltdb record\n"));
return -1;
}
rechdr = (struct ctdb_ltdb_header *)recdata.dptr;
recdata.dptr += sizeof(*rechdr);
recdata.dsize -= sizeof(*rechdr);
/*
* that other node couldnt delete the record
* so we should delete it and thereby remove it from the tree
*/
talloc_free(trbt_lookup32(vdata->delete_tree, ctdb_hash(&reckey)));
rec = (struct ctdb_rec_data *)(rec->length + (uint8_t *)rec);
}
}
/*
* The only records remaining in the tree would be those
* records where all other nodes could successfully
* delete them, so we can safely delete them on the
* lmaster as well. Deletion implictely happens while
* we repack the database. The repack algorithm revisits
* the tree in order to find the records that don't need
* to be copied / repacked.
*/
}
/* this ensures we run our event queue */
ctdb_ctrl_getpnn(ctdb, TIMELIMIT(), CTDB_CURRENT_NODE);
return 0;
}
/*
* traverse function for repacking
*/
static int repack_traverse(struct tdb_context *tdb, TDB_DATA key, TDB_DATA data, void *private)
{
struct vacuum_data *vdata = (struct vacuum_data *)private;
if (vdata->vacuum) {
uint32_t hash = ctdb_hash(&key);
struct delete_record_data *kd;
/*
* check if we can ignore this record because it's in the delete_tree
*/
kd = (struct delete_record_data *)trbt_lookup32(vdata->delete_tree, hash);
/*
* there might be hash collisions so we have to compare the keys here to be sure
*/
if (kd && kd->key.dsize == key.dsize && memcmp(kd->key.dptr, key.dptr, key.dsize) == 0) {
struct ctdb_ltdb_header *hdr = (struct ctdb_ltdb_header *)data.dptr;
/*
* we have to check if the record hasn't changed in the meantime in order to
* savely remove it from the database
*/
if (data.dsize == sizeof(struct ctdb_ltdb_header) &&
hdr->dmaster == kd->ctdb->pnn &&
ctdb_lmaster(kd->ctdb, &(kd->key)) == kd->ctdb->pnn &&
kd->hdr.rsn == hdr->rsn) {
vdata->vacuumed++;
return 0;
}
}
}
if (tdb_store(vdata->dest_db, key, data, TDB_INSERT) != 0) {
vdata->traverse_error = true;
return -1;
}
vdata->copied++;
return 0;
}
/*
* repack a tdb
*/
static int ctdb_repack_tdb(struct tdb_context *tdb, TALLOC_CTX *mem_ctx, struct vacuum_data *vdata)
{
struct tdb_context *tmp_db;
if (tdb_transaction_start(tdb) != 0) {
DEBUG(DEBUG_ERR,(__location__ " Failed to start transaction\n"));
return -1;
}
tmp_db = tdb_open("tmpdb", tdb_hash_size(tdb),
TDB_INTERNAL|TDB_DISALLOW_NESTING,
O_RDWR|O_CREAT, 0);
if (tmp_db == NULL) {
DEBUG(DEBUG_ERR,(__location__ " Failed to create tmp_db\n"));
tdb_transaction_cancel(tdb);
return -1;
}
vdata->traverse_error = false;
vdata->dest_db = tmp_db;
vdata->vacuum = true;
vdata->vacuumed = 0;
vdata->copied = 0;
/*
* repack and vacuum on-the-fly by not writing the records that are
* no longer needed
*/
if (tdb_traverse_read(tdb, repack_traverse, vdata) == -1) {
DEBUG(DEBUG_ERR,(__location__ " Failed to traverse copying out\n"));
tdb_transaction_cancel(tdb);
tdb_close(tmp_db);
return -1;
}
DEBUG(DEBUG_INFO,(__location__ " %u records vacuumed\n", vdata->vacuumed));
if (vdata->traverse_error) {
DEBUG(DEBUG_ERR,(__location__ " Error during traversal\n"));
tdb_transaction_cancel(tdb);
tdb_close(tmp_db);
return -1;
}
if (tdb_wipe_all(tdb) != 0) {
DEBUG(DEBUG_ERR,(__location__ " Failed to wipe database\n"));
tdb_transaction_cancel(tdb);
tdb_close(tmp_db);
return -1;
}
vdata->traverse_error = false;
vdata->dest_db = tdb;
vdata->vacuum = false;
vdata->copied = 0;
if (tdb_traverse_read(tmp_db, repack_traverse, vdata) == -1) {
DEBUG(DEBUG_ERR,(__location__ " Failed to traverse copying back\n"));
tdb_transaction_cancel(tdb);
tdb_close(tmp_db);
return -1;
}
if (vdata->traverse_error) {
DEBUG(DEBUG_ERR,(__location__ " Error during second traversal\n"));
tdb_transaction_cancel(tdb);
tdb_close(tmp_db);
return -1;
}
tdb_close(tmp_db);
if (tdb_transaction_commit(tdb) != 0) {
DEBUG(DEBUG_ERR,(__location__ " Failed to commit\n"));
return -1;
}
DEBUG(DEBUG_INFO,(__location__ " %u records copied\n", vdata->copied));
return 0;
}
static int update_tuning_db(struct ctdb_db_context *ctdb_db, struct vacuum_data *vdata, uint32_t freelist)
{
TALLOC_CTX *tmp_ctx = talloc_new(NULL);
TDB_CONTEXT *tune_tdb;
TDB_DATA key, value;
struct vacuum_tuning_data tdata;
struct vacuum_tuning_data *tptr;
char *vac_dbname;
int flags;
vac_dbname = talloc_asprintf(tmp_ctx, "%s/%s.%u",
ctdb_db->ctdb->db_directory_state,
TUNINGDBNAME, ctdb_db->ctdb->pnn);
if (vac_dbname == NULL) {
DEBUG(DEBUG_CRIT,(__location__ " Out of memory error while allocating '%s'\n", vac_dbname));
talloc_free(tmp_ctx);
return -1;
}
flags = ctdb_db->ctdb->valgrinding ? TDB_NOMMAP : 0;
flags |= TDB_DISALLOW_NESTING;
tune_tdb = tdb_open(vac_dbname, 0,
flags,
O_RDWR|O_CREAT, 0600);
if (tune_tdb == NULL) {
DEBUG(DEBUG_ERR,(__location__ " Failed to create/open %s\n", TUNINGDBNAME));
talloc_free(tmp_ctx);
return -1;
}
if (tdb_transaction_start(tune_tdb) != 0) {
DEBUG(DEBUG_ERR,(__location__ " Failed to start transaction\n"));
tdb_close(tune_tdb);
return -1;
}
key.dptr = discard_const(ctdb_db->db_name);
key.dsize = strlen(ctdb_db->db_name);
value = tdb_fetch(tune_tdb, key);
if (value.dptr != NULL && value.dsize == sizeof(struct vacuum_tuning_data)) {
tptr = (struct vacuum_tuning_data *)value.dptr;
tdata = *tptr;
/*
* re-calc new vacuum interval:
* in case no limit was reached we continously increase the interval
* until vacuum_max_interval is reached
* in case a limit was reached we divide the current interval by 2
* unless vacuum_min_interval is reached
*/
if (freelist < vdata->repack_limit &&
vdata->delete_count < vdata->vacuum_limit) {
if (tdata.last_interval < ctdb_db->ctdb->tunable.vacuum_max_interval) {
tdata.new_interval = tdata.last_interval * 110 / 100;
DEBUG(DEBUG_INFO,("Increasing vacuum interval %u -> %u for %s\n",
tdata.last_interval, tdata.new_interval, ctdb_db->db_name));
}
} else {
tdata.new_interval = tdata.last_interval / 2;
if (tdata.new_interval < ctdb_db->ctdb->tunable.vacuum_min_interval ||
tdata.new_interval > ctdb_db->ctdb->tunable.vacuum_max_interval) {
tdata.new_interval = ctdb_db->ctdb->tunable.vacuum_min_interval;
}
DEBUG(DEBUG_INFO,("Decreasing vacuum interval %u -> %u for %s\n",
tdata.last_interval, tdata.new_interval, ctdb_db->db_name));
}
tdata.last_interval = tdata.new_interval;
} else {
DEBUG(DEBUG_ERR,(__location__ " Cannot find tunedb record for %s. Using default interval\n", ctdb_db->db_name));
tdata.last_num_repack = freelist;
tdata.last_num_empty = vdata->delete_count;
tdata.last_interval = ctdb_db->ctdb->tunable.vacuum_default_interval;
}
if (value.dptr != NULL) {
free(value.dptr);
}
tdata.last_start = vdata->start;
tdata.last_duration = timeval_elapsed(&vdata->start);
value.dptr = (unsigned char *)&tdata;
value.dsize = sizeof(tdata);
if (tdb_store(tune_tdb, key, value, 0) != 0) {
DEBUG(DEBUG_ERR,(__location__ " Unable to store tundb record for %s\n", ctdb_db->db_name));
tdb_transaction_cancel(tune_tdb);
tdb_close(tune_tdb);
talloc_free(tmp_ctx);
return -1;
}
tdb_transaction_commit(tune_tdb);
tdb_close(tune_tdb);
talloc_free(tmp_ctx);
return 0;
}
/*
* repack and vaccum a db
* called from the child context
*/
static int ctdb_repack_db(struct ctdb_db_context *ctdb_db, TALLOC_CTX *mem_ctx)
{
uint32_t repack_limit = ctdb_db->ctdb->tunable.repack_limit;
uint32_t vacuum_limit = ctdb_db->ctdb->tunable.vacuum_limit;
const char *name = ctdb_db->db_name;
int size;
struct vacuum_data *vdata;
size = tdb_freelist_size(ctdb_db->ltdb->tdb);
if (size == -1) {
DEBUG(DEBUG_ERR,(__location__ " Failed to get freelist size for '%s'\n", name));
return -1;
}
vdata = talloc_zero(mem_ctx, struct vacuum_data);
if (vdata == NULL) {
DEBUG(DEBUG_ERR,(__location__ " Out of memory\n"));
return -1;
}
vdata->ctdb = ctdb_db->ctdb;
vdata->vacuum_limit = vacuum_limit;
vdata->repack_limit = repack_limit;
vdata->delete_tree = trbt_create(vdata, 0);
vdata->ctdb_db = ctdb_db;
if (vdata->delete_tree == NULL) {
DEBUG(DEBUG_ERR,(__location__ " Out of memory\n"));
talloc_free(vdata);
return -1;
}
vdata->start = timeval_current();
/*
* gather all records that can be deleted in vdata
*/
if (ctdb_vacuum_db(ctdb_db, vdata) != 0) {
DEBUG(DEBUG_ERR,(__location__ " Failed to vacuum '%s'\n", name));
}
/*
* decide if a repack is necessary
*/
if (size < repack_limit && vdata->delete_count < vacuum_limit) {
update_tuning_db(ctdb_db, vdata, size);
talloc_free(vdata);
return 0;
}
DEBUG(DEBUG_INFO,("Repacking %s with %u freelist entries and %u records to delete\n",
name, size, vdata->delete_count));
/*
* repack and implicitely get rid of the records we can delete
*/
if (ctdb_repack_tdb(ctdb_db->ltdb->tdb, mem_ctx, vdata) != 0) {
DEBUG(DEBUG_ERR,(__location__ " Failed to repack '%s'\n", name));
update_tuning_db(ctdb_db, vdata, size);
talloc_free(vdata);
return -1;
}
update_tuning_db(ctdb_db, vdata, size);
talloc_free(vdata);
return 0;
}
static int get_vacuum_interval(struct ctdb_db_context *ctdb_db)
{
TALLOC_CTX *tmp_ctx = talloc_new(NULL);
TDB_CONTEXT *tdb;
TDB_DATA key, value;
char *vac_dbname;
uint interval = ctdb_db->ctdb->tunable.vacuum_default_interval;
struct ctdb_context *ctdb = ctdb_db->ctdb;
int flags;
vac_dbname = talloc_asprintf(tmp_ctx, "%s/%s.%u", ctdb->db_directory, TUNINGDBNAME, ctdb->pnn);
if (vac_dbname == NULL) {
DEBUG(DEBUG_CRIT,(__location__ " Out of memory error while allocating '%s'\n", vac_dbname));
talloc_free(tmp_ctx);
return interval;
}
flags = ctdb_db->ctdb->valgrinding ? TDB_NOMMAP : 0;
flags |= TDB_DISALLOW_NESTING;
tdb = tdb_open(vac_dbname, 0,
flags,
O_RDWR|O_CREAT, 0600);
if (!tdb) {
DEBUG(DEBUG_ERR,("Unable to open/create database %s using default interval\n", vac_dbname));
talloc_free(tmp_ctx);
return interval;
}
key.dptr = discard_const(ctdb_db->db_name);
key.dsize = strlen(ctdb_db->db_name);
value = tdb_fetch(tdb, key);
if (value.dptr != NULL) {
if (value.dsize == sizeof(struct vacuum_tuning_data)) {
struct vacuum_tuning_data *tptr = (struct vacuum_tuning_data *)value.dptr;
interval = tptr->new_interval;
if (interval < ctdb->tunable.vacuum_min_interval) {
interval = ctdb->tunable.vacuum_min_interval;
}
if (interval > ctdb->tunable.vacuum_max_interval) {
interval = ctdb->tunable.vacuum_max_interval;
}
}
free(value.dptr);
}
tdb_close(tdb);
talloc_free(tmp_ctx);
return interval;
}
static int vacuum_child_destructor(struct ctdb_vacuum_child_context *child_ctx)
{
double l = timeval_elapsed(&child_ctx->start_time);
struct ctdb_db_context *ctdb_db = child_ctx->vacuum_handle->ctdb_db;
struct ctdb_context *ctdb = ctdb_db->ctdb;
DEBUG(DEBUG_INFO,("Vacuuming took %.3f seconds for database %s\n", l, ctdb_db->db_name));
if (child_ctx->child_pid != -1) {
kill(child_ctx->child_pid, SIGKILL);
}
DLIST_REMOVE(ctdb->vacuumers, child_ctx);
event_add_timed(ctdb->ev, child_ctx->vacuum_handle,
timeval_current_ofs(get_vacuum_interval(ctdb_db), 0),
ctdb_vacuum_event, child_ctx->vacuum_handle);
return 0;
}
/*
* this event is generated when a vacuum child process times out
*/
static void vacuum_child_timeout(struct event_context *ev, struct timed_event *te,
struct timeval t, void *private_data)
{
struct ctdb_vacuum_child_context *child_ctx = talloc_get_type(private_data, struct ctdb_vacuum_child_context);
DEBUG(DEBUG_ERR,("Vacuuming child process timed out for db %s\n", child_ctx->vacuum_handle->ctdb_db->db_name));
child_ctx->status = VACUUM_TIMEOUT;
talloc_free(child_ctx);
}
/*
* this event is generated when a vacuum child process has completed
*/
static void vacuum_child_handler(struct event_context *ev, struct fd_event *fde,
uint16_t flags, void *private_data)
{
struct ctdb_vacuum_child_context *child_ctx = talloc_get_type(private_data, struct ctdb_vacuum_child_context);
char c = 0;
int ret;
DEBUG(DEBUG_INFO,("Vacuuming child process %d finished for db %s\n", child_ctx->child_pid, child_ctx->vacuum_handle->ctdb_db->db_name));
child_ctx->child_pid = -1;
ret = read(child_ctx->fd[0], &c, 1);
if (ret != 1 || c != 0) {
child_ctx->status = VACUUM_ERROR;
DEBUG(DEBUG_ERR, ("A vacuum child process failed with an error for database %s. ret=%d c=%d\n", child_ctx->vacuum_handle->ctdb_db->db_name, ret, c));
} else {
child_ctx->status = VACUUM_OK;
}
talloc_free(child_ctx);
}
/*
* this event is called every time we need to start a new vacuum process
*/
static void
ctdb_vacuum_event(struct event_context *ev, struct timed_event *te,
struct timeval t, void *private_data)
{
struct ctdb_vacuum_handle *vacuum_handle = talloc_get_type(private_data, struct ctdb_vacuum_handle);
struct ctdb_db_context *ctdb_db = vacuum_handle->ctdb_db;
struct ctdb_context *ctdb = ctdb_db->ctdb;
struct ctdb_vacuum_child_context *child_ctx;
struct tevent_fd *fde;
int ret;
/* we dont vacuum if we are in recovery mode, or db frozen */
if (ctdb->recovery_mode == CTDB_RECOVERY_ACTIVE ||
ctdb->freeze_mode[ctdb_db->priority] != CTDB_FREEZE_NONE) {
DEBUG(DEBUG_INFO, ("Not vacuuming %s (%s)\n", ctdb_db->db_name,
ctdb->recovery_mode == CTDB_RECOVERY_ACTIVE ? "in recovery"
: ctdb->freeze_mode[ctdb_db->priority] == CTDB_FREEZE_PENDING
? "freeze pending"
: "frozen"));
event_add_timed(ctdb->ev, vacuum_handle, timeval_current_ofs(ctdb->tunable.vacuum_default_interval, 0), ctdb_vacuum_event, vacuum_handle);
return;
}
child_ctx = talloc(vacuum_handle, struct ctdb_vacuum_child_context);
if (child_ctx == NULL) {
DEBUG(DEBUG_CRIT, (__location__ " Failed to allocate child context for vacuuming of %s\n", ctdb_db->db_name));
ctdb_fatal(ctdb, "Out of memory when crating vacuum child context. Shutting down\n");
}
ret = pipe(child_ctx->fd);
if (ret != 0) {
talloc_free(child_ctx);
DEBUG(DEBUG_ERR, ("Failed to create pipe for vacuum child process.\n"));
event_add_timed(ctdb->ev, vacuum_handle, timeval_current_ofs(ctdb->tunable.vacuum_default_interval, 0), ctdb_vacuum_event, vacuum_handle);
return;
}
child_ctx->child_pid = fork();
if (child_ctx->child_pid == (pid_t)-1) {
close(child_ctx->fd[0]);
close(child_ctx->fd[1]);
talloc_free(child_ctx);
DEBUG(DEBUG_ERR, ("Failed to fork vacuum child process.\n"));
event_add_timed(ctdb->ev, vacuum_handle, timeval_current_ofs(ctdb->tunable.vacuum_default_interval, 0), ctdb_vacuum_event, vacuum_handle);
return;
}
if (child_ctx->child_pid == 0) {
char cc = 0;
close(child_ctx->fd[0]);
DEBUG(DEBUG_INFO,("Vacuuming child process %d for db %s started\n", getpid(), ctdb_db->db_name));
if (switch_from_server_to_client(ctdb, "vacuum-%s", ctdb_db->db_name) != 0) {
DEBUG(DEBUG_CRIT, (__location__ "ERROR: failed to switch vacuum daemon into client mode. Shutting down.\n"));
_exit(1);
}
/*
* repack the db
*/
cc = ctdb_repack_db(ctdb_db, child_ctx);
write(child_ctx->fd[1], &cc, 1);
_exit(0);
}
set_close_on_exec(child_ctx->fd[0]);
close(child_ctx->fd[1]);
child_ctx->status = VACUUM_RUNNING;
child_ctx->start_time = timeval_current();
DLIST_ADD(ctdb->vacuumers, child_ctx);
talloc_set_destructor(child_ctx, vacuum_child_destructor);
event_add_timed(ctdb->ev, child_ctx,
timeval_current_ofs(ctdb->tunable.vacuum_max_run_time, 0),
vacuum_child_timeout, child_ctx);
DEBUG(DEBUG_DEBUG, (__location__ " Created PIPE FD:%d to child vacuum process\n", child_ctx->fd[0]));
fde = event_add_fd(ctdb->ev, child_ctx, child_ctx->fd[0],
EVENT_FD_READ, vacuum_child_handler, child_ctx);
tevent_fd_set_auto_close(fde);
vacuum_handle->child_ctx = child_ctx;
child_ctx->vacuum_handle = vacuum_handle;
}
void ctdb_stop_vacuuming(struct ctdb_context *ctdb)
{
/* Simply free them all. */
while (ctdb->vacuumers) {
DEBUG(DEBUG_INFO, ("Aborting vacuuming for %s (%i)\n",
ctdb->vacuumers->vacuum_handle->ctdb_db->db_name,
(int)ctdb->vacuumers->child_pid));
/* vacuum_child_destructor kills it, removes from list */
talloc_free(ctdb->vacuumers);
}
}
/* this function initializes the vacuuming context for a database
* starts the vacuuming events
*/
int ctdb_vacuum_init(struct ctdb_db_context *ctdb_db)
{
if (ctdb_db->persistent != 0) {
DEBUG(DEBUG_ERR,("Vacuuming is disabled for persistent database %s\n", ctdb_db->db_name));
return 0;
}
ctdb_db->vacuum_handle = talloc(ctdb_db, struct ctdb_vacuum_handle);
CTDB_NO_MEMORY(ctdb_db->ctdb, ctdb_db->vacuum_handle);
ctdb_db->vacuum_handle->ctdb_db = ctdb_db;
event_add_timed(ctdb_db->ctdb->ev, ctdb_db->vacuum_handle,
timeval_current_ofs(get_vacuum_interval(ctdb_db), 0),
ctdb_vacuum_event, ctdb_db->vacuum_handle);
return 0;
}