1
0
mirror of https://github.com/samba-team/samba.git synced 2025-02-04 17:47:26 +03:00
samba-mirror/source4/librpc/rpc/dcerpc_util.c
Andrew Bartlett 7f0a396e3b r15504: Revert -r 15500 and -r 15503 until I'm awake, and can get my head
around the mess that is composite functions...

Async might be all the rage, but it's bloody painful to debug.

Andrew Bartlett
(This used to be commit 756e1dad7ce54b83f8170db3434bfcfc4afe7e65)
2007-10-10 14:05:43 -05:00

1393 lines
37 KiB
C

/*
Unix SMB/CIFS implementation.
dcerpc utility functions
Copyright (C) Andrew Tridgell 2003
Copyright (C) Jelmer Vernooij 2004
Copyright (C) Andrew Bartlett <abartlet@samba.org> 2005
Copyright (C) Rafal Szczesniak 2006
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/
#include "includes.h"
#include "lib/events/events.h"
#include "libcli/composite/composite.h"
#include "librpc/gen_ndr/ndr_epmapper_c.h"
#include "librpc/gen_ndr/ndr_dcerpc.h"
#include "librpc/gen_ndr/ndr_misc.h"
#include "auth/credentials/credentials.h"
/*
find a dcerpc call on an interface by name
*/
const struct dcerpc_interface_call *dcerpc_iface_find_call(const struct dcerpc_interface_table *iface,
const char *name)
{
int i;
for (i=0;i<iface->num_calls;i++) {
if (strcmp(iface->calls[i].name, name) == 0) {
return &iface->calls[i];
}
}
return NULL;
}
/*
push a ncacn_packet into a blob, potentially with auth info
*/
NTSTATUS ncacn_push_auth(DATA_BLOB *blob, TALLOC_CTX *mem_ctx,
struct ncacn_packet *pkt,
struct dcerpc_auth *auth_info)
{
NTSTATUS status;
struct ndr_push *ndr;
ndr = ndr_push_init_ctx(mem_ctx);
if (!ndr) {
return NT_STATUS_NO_MEMORY;
}
if (!(pkt->drep[0] & DCERPC_DREP_LE)) {
ndr->flags |= LIBNDR_FLAG_BIGENDIAN;
}
if (pkt->pfc_flags & DCERPC_PFC_FLAG_ORPC) {
ndr->flags |= LIBNDR_FLAG_OBJECT_PRESENT;
}
if (auth_info) {
pkt->auth_length = auth_info->credentials.length;
} else {
pkt->auth_length = 0;
}
status = ndr_push_ncacn_packet(ndr, NDR_SCALARS|NDR_BUFFERS, pkt);
if (!NT_STATUS_IS_OK(status)) {
return status;
}
if (auth_info) {
status = ndr_push_dcerpc_auth(ndr, NDR_SCALARS|NDR_BUFFERS, auth_info);
}
*blob = ndr_push_blob(ndr);
/* fill in the frag length */
dcerpc_set_frag_length(blob, blob->length);
return NT_STATUS_OK;
}
#define MAX_PROTSEQ 10
static const struct {
const char *name;
enum dcerpc_transport_t transport;
int num_protocols;
enum epm_protocol protseq[MAX_PROTSEQ];
} transports[] = {
{ "ncacn_np", NCACN_NP, 3,
{ EPM_PROTOCOL_NCACN, EPM_PROTOCOL_SMB, EPM_PROTOCOL_NETBIOS }},
{ "ncacn_ip_tcp", NCACN_IP_TCP, 3,
{ EPM_PROTOCOL_NCACN, EPM_PROTOCOL_TCP, EPM_PROTOCOL_IP } },
{ "ncacn_http", NCACN_HTTP, 3,
{ EPM_PROTOCOL_NCACN, EPM_PROTOCOL_HTTP, EPM_PROTOCOL_IP } },
{ "ncadg_ip_udp", NCACN_IP_UDP, 3,
{ EPM_PROTOCOL_NCADG, EPM_PROTOCOL_UDP, EPM_PROTOCOL_IP } },
{ "ncalrpc", NCALRPC, 2,
{ EPM_PROTOCOL_NCALRPC, EPM_PROTOCOL_PIPE } },
{ "ncacn_unix_stream", NCACN_UNIX_STREAM, 2,
{ EPM_PROTOCOL_NCACN, EPM_PROTOCOL_UNIX_DS } },
{ "ncadg_unix_dgram", NCADG_UNIX_DGRAM, 2,
{ EPM_PROTOCOL_NCADG, EPM_PROTOCOL_UNIX_DS } },
{ "ncacn_at_dsp", NCACN_AT_DSP, 3,
{ EPM_PROTOCOL_NCACN, EPM_PROTOCOL_APPLETALK, EPM_PROTOCOL_DSP } },
{ "ncadg_at_ddp", NCADG_AT_DDP, 3,
{ EPM_PROTOCOL_NCADG, EPM_PROTOCOL_APPLETALK, EPM_PROTOCOL_DDP } },
{ "ncacn_vns_ssp", NCACN_VNS_SPP, 3,
{ EPM_PROTOCOL_NCACN, EPM_PROTOCOL_STREETTALK, EPM_PROTOCOL_VINES_SPP } },
{ "ncacn_vns_ipc", NCACN_VNS_IPC, 3,
{ EPM_PROTOCOL_NCACN, EPM_PROTOCOL_STREETTALK, EPM_PROTOCOL_VINES_IPC }, },
{ "ncadg_ipx", NCADG_IPX, 2,
{ EPM_PROTOCOL_NCADG, EPM_PROTOCOL_IPX },
},
{ "ncacn_spx", NCACN_SPX, 3,
/* I guess some MS programmer confused the identifier for
* EPM_PROTOCOL_UUID (0x0D or 13) with the one for
* EPM_PROTOCOL_SPX (0x13) here. -- jelmer*/
{ EPM_PROTOCOL_NCACN, EPM_PROTOCOL_NCALRPC, EPM_PROTOCOL_UUID },
},
};
static const struct {
const char *name;
uint32_t flag;
} ncacn_options[] = {
{"sign", DCERPC_SIGN},
{"seal", DCERPC_SEAL},
{"connect", DCERPC_CONNECT},
{"spnego", DCERPC_AUTH_SPNEGO},
{"ntlm", DCERPC_AUTH_NTLM},
{"krb5", DCERPC_AUTH_KRB5},
{"validate", DCERPC_DEBUG_VALIDATE_BOTH},
{"print", DCERPC_DEBUG_PRINT_BOTH},
{"padcheck", DCERPC_DEBUG_PAD_CHECK},
{"bigendian", DCERPC_PUSH_BIGENDIAN},
{"smb2", DCERPC_SMB2}
};
const char *epm_floor_string(TALLOC_CTX *mem_ctx, struct epm_floor *epm_floor)
{
struct dcerpc_syntax_id syntax;
NTSTATUS status;
switch(epm_floor->lhs.protocol) {
case EPM_PROTOCOL_UUID:
status = dcerpc_floor_get_lhs_data(epm_floor, &syntax);
if (NT_STATUS_IS_OK(status)) {
/* lhs is used: UUID */
char *uuidstr;
if (GUID_equal(&syntax.uuid, &ndr_transfer_syntax.uuid)) {
return "NDR";
}
if (GUID_equal(&syntax.uuid, &ndr64_transfer_syntax.uuid)) {
return "NDR64";
}
uuidstr = GUID_string(mem_ctx, &syntax.uuid);
return talloc_asprintf(mem_ctx, " uuid %s/0x%02x", uuidstr, syntax.if_version);
} else { /* IPX */
return talloc_asprintf(mem_ctx, "IPX:%s",
data_blob_hex_string(mem_ctx, &epm_floor->rhs.uuid.unknown));
}
case EPM_PROTOCOL_NCACN:
return "RPC-C";
case EPM_PROTOCOL_NCADG:
return "RPC";
case EPM_PROTOCOL_NCALRPC:
return "NCALRPC";
case EPM_PROTOCOL_DNET_NSP:
return "DNET/NSP";
case EPM_PROTOCOL_IP:
return talloc_asprintf(mem_ctx, "IP:%s", epm_floor->rhs.ip.ipaddr);
case EPM_PROTOCOL_PIPE:
return talloc_asprintf(mem_ctx, "PIPE:%s", epm_floor->rhs.pipe.path);
case EPM_PROTOCOL_SMB:
return talloc_asprintf(mem_ctx, "SMB:%s", epm_floor->rhs.smb.unc);
case EPM_PROTOCOL_UNIX_DS:
return talloc_asprintf(mem_ctx, "Unix:%s", epm_floor->rhs.unix_ds.path);
case EPM_PROTOCOL_NETBIOS:
return talloc_asprintf(mem_ctx, "NetBIOS:%s", epm_floor->rhs.netbios.name);
case EPM_PROTOCOL_NETBEUI:
return "NETBeui";
case EPM_PROTOCOL_SPX:
return "SPX";
case EPM_PROTOCOL_NB_IPX:
return "NB_IPX";
case EPM_PROTOCOL_HTTP:
return talloc_asprintf(mem_ctx, "HTTP:%d", epm_floor->rhs.http.port);
case EPM_PROTOCOL_TCP:
return talloc_asprintf(mem_ctx, "TCP:%d", epm_floor->rhs.tcp.port);
case EPM_PROTOCOL_UDP:
return talloc_asprintf(mem_ctx, "UDP:%d", epm_floor->rhs.udp.port);
default:
return talloc_asprintf(mem_ctx, "UNK(%02x):", epm_floor->lhs.protocol);
}
}
/*
form a binding string from a binding structure
*/
const char *dcerpc_binding_string(TALLOC_CTX *mem_ctx, const struct dcerpc_binding *b)
{
char *s = talloc_strdup(mem_ctx, "");
int i;
const char *t_name=NULL;
for (i=0;i<ARRAY_SIZE(transports);i++) {
if (transports[i].transport == b->transport) {
t_name = transports[i].name;
}
}
if (!t_name) {
return NULL;
}
if (!GUID_all_zero(&b->object.uuid)) {
s = talloc_asprintf(s, "%s@",
GUID_string(mem_ctx, &b->object.uuid));
}
s = talloc_asprintf_append(s, "%s:", t_name);
if (!s) return NULL;
if (b->host) {
s = talloc_asprintf_append(s, "%s", b->host);
}
if (!b->endpoint && !b->options && !b->flags) {
return s;
}
s = talloc_asprintf_append(s, "[");
if (b->endpoint) {
s = talloc_asprintf_append(s, "%s", b->endpoint);
}
/* this is a *really* inefficent way of dealing with strings,
but this is rarely called and the strings are always short,
so I don't care */
for (i=0;b->options && b->options[i];i++) {
s = talloc_asprintf_append(s, ",%s", b->options[i]);
if (!s) return NULL;
}
for (i=0;i<ARRAY_SIZE(ncacn_options);i++) {
if (b->flags & ncacn_options[i].flag) {
s = talloc_asprintf_append(s, ",%s", ncacn_options[i].name);
if (!s) return NULL;
}
}
s = talloc_asprintf_append(s, "]");
return s;
}
/*
parse a binding string into a dcerpc_binding structure
*/
NTSTATUS dcerpc_parse_binding(TALLOC_CTX *mem_ctx, const char *s, struct dcerpc_binding **b_out)
{
struct dcerpc_binding *b;
char *options, *type;
char *p;
int i, j, comma_count;
b = talloc(mem_ctx, struct dcerpc_binding);
if (!b) {
return NT_STATUS_NO_MEMORY;
}
p = strchr(s, '@');
if (p && PTR_DIFF(p, s) == 36) { /* 36 is the length of a UUID */
NTSTATUS status;
status = GUID_from_string(s, &b->object.uuid);
if (NT_STATUS_IS_ERR(status)) {
DEBUG(0, ("Failed parsing UUID\n"));
return status;
}
s = p + 1;
} else {
ZERO_STRUCT(b->object);
}
b->object.if_version = 0;
p = strchr(s, ':');
if (!p) {
return NT_STATUS_INVALID_PARAMETER;
}
type = talloc_strndup(mem_ctx, s, PTR_DIFF(p, s));
if (!type) {
return NT_STATUS_NO_MEMORY;
}
for (i=0;i<ARRAY_SIZE(transports);i++) {
if (strcasecmp(type, transports[i].name) == 0) {
b->transport = transports[i].transport;
break;
}
}
if (i==ARRAY_SIZE(transports)) {
DEBUG(0,("Unknown dcerpc transport '%s'\n", type));
return NT_STATUS_INVALID_PARAMETER;
}
s = p+1;
p = strchr(s, '[');
if (p) {
b->host = talloc_strndup(b, s, PTR_DIFF(p, s));
options = talloc_strdup(mem_ctx, p+1);
if (options[strlen(options)-1] != ']') {
return NT_STATUS_INVALID_PARAMETER;
}
options[strlen(options)-1] = 0;
} else {
b->host = talloc_strdup(b, s);
options = NULL;
}
if (!b->host) {
return NT_STATUS_NO_MEMORY;
}
b->options = NULL;
b->flags = 0;
b->endpoint = NULL;
if (!options) {
*b_out = b;
return NT_STATUS_OK;
}
comma_count = count_chars(options, ',');
b->options = talloc_array(b, const char *, comma_count+2);
if (!b->options) {
return NT_STATUS_NO_MEMORY;
}
for (i=0; (p = strchr(options, ',')); i++) {
b->options[i] = talloc_strndup(b, options, PTR_DIFF(p, options));
if (!b->options[i]) {
return NT_STATUS_NO_MEMORY;
}
options = p+1;
}
b->options[i] = options;
b->options[i+1] = NULL;
/* some options are pre-parsed for convenience */
for (i=0;b->options[i];i++) {
for (j=0;j<ARRAY_SIZE(ncacn_options);j++) {
if (strcasecmp(ncacn_options[j].name, b->options[i]) == 0) {
int k;
b->flags |= ncacn_options[j].flag;
for (k=i;b->options[k];k++) {
b->options[k] = b->options[k+1];
}
i--;
break;
}
}
}
if (b->options[0]) {
/* Endpoint is first option */
b->endpoint = b->options[0];
if (strlen(b->endpoint) == 0) b->endpoint = NULL;
for (i=0;b->options[i];i++) {
b->options[i] = b->options[i+1];
}
}
if (b->options[0] == NULL)
b->options = NULL;
*b_out = b;
return NT_STATUS_OK;
}
NTSTATUS dcerpc_floor_get_lhs_data(struct epm_floor *epm_floor, struct dcerpc_syntax_id *syntax)
{
TALLOC_CTX *mem_ctx = talloc_init("floor_get_lhs_data");
struct ndr_pull *ndr = ndr_pull_init_blob(&epm_floor->lhs.lhs_data, mem_ctx);
NTSTATUS status;
uint16_t if_version=0;
ndr->flags |= LIBNDR_FLAG_NOALIGN;
status = ndr_pull_GUID(ndr, NDR_SCALARS | NDR_BUFFERS, &syntax->uuid);
if (NT_STATUS_IS_ERR(status)) {
talloc_free(mem_ctx);
return status;
}
status = ndr_pull_uint16(ndr, NDR_SCALARS, &if_version);
syntax->if_version = if_version;
talloc_free(mem_ctx);
return status;
}
static DATA_BLOB dcerpc_floor_pack_lhs_data(TALLOC_CTX *mem_ctx, const struct dcerpc_syntax_id *syntax)
{
struct ndr_push *ndr = ndr_push_init_ctx(mem_ctx);
ndr->flags |= LIBNDR_FLAG_NOALIGN;
ndr_push_GUID(ndr, NDR_SCALARS | NDR_BUFFERS, &syntax->uuid);
ndr_push_uint16(ndr, NDR_SCALARS, syntax->if_version);
return ndr_push_blob(ndr);
}
const char *dcerpc_floor_get_rhs_data(TALLOC_CTX *mem_ctx, struct epm_floor *epm_floor)
{
switch (epm_floor->lhs.protocol) {
case EPM_PROTOCOL_TCP:
if (epm_floor->rhs.tcp.port == 0) return NULL;
return talloc_asprintf(mem_ctx, "%d", epm_floor->rhs.tcp.port);
case EPM_PROTOCOL_UDP:
if (epm_floor->rhs.udp.port == 0) return NULL;
return talloc_asprintf(mem_ctx, "%d", epm_floor->rhs.udp.port);
case EPM_PROTOCOL_HTTP:
if (epm_floor->rhs.http.port == 0) return NULL;
return talloc_asprintf(mem_ctx, "%d", epm_floor->rhs.http.port);
case EPM_PROTOCOL_IP:
return talloc_strdup(mem_ctx, epm_floor->rhs.ip.ipaddr);
case EPM_PROTOCOL_NCACN:
return NULL;
case EPM_PROTOCOL_NCADG:
return NULL;
case EPM_PROTOCOL_SMB:
if (strlen(epm_floor->rhs.smb.unc) == 0) return NULL;
return talloc_strdup(mem_ctx, epm_floor->rhs.smb.unc);
case EPM_PROTOCOL_PIPE:
if (strlen(epm_floor->rhs.pipe.path) == 0) return NULL;
return talloc_strdup(mem_ctx, epm_floor->rhs.pipe.path);
case EPM_PROTOCOL_NETBIOS:
if (strlen(epm_floor->rhs.netbios.name) == 0) return NULL;
return talloc_strdup(mem_ctx, epm_floor->rhs.netbios.name);
case EPM_PROTOCOL_NCALRPC:
return NULL;
case EPM_PROTOCOL_VINES_SPP:
return talloc_asprintf(mem_ctx, "%d", epm_floor->rhs.vines_spp.port);
case EPM_PROTOCOL_VINES_IPC:
return talloc_asprintf(mem_ctx, "%d", epm_floor->rhs.vines_ipc.port);
case EPM_PROTOCOL_STREETTALK:
return talloc_strdup(mem_ctx, epm_floor->rhs.streettalk.streettalk);
case EPM_PROTOCOL_UNIX_DS:
if (strlen(epm_floor->rhs.unix_ds.path) == 0) return NULL;
return talloc_strdup(mem_ctx, epm_floor->rhs.unix_ds.path);
case EPM_PROTOCOL_NULL:
return NULL;
default:
DEBUG(0,("Unsupported lhs protocol %d\n", epm_floor->lhs.protocol));
break;
}
return NULL;
}
static NTSTATUS dcerpc_floor_set_rhs_data(TALLOC_CTX *mem_ctx, struct epm_floor *epm_floor, const char *data)
{
switch (epm_floor->lhs.protocol) {
case EPM_PROTOCOL_TCP:
epm_floor->rhs.tcp.port = atoi(data);
return NT_STATUS_OK;
case EPM_PROTOCOL_UDP:
epm_floor->rhs.udp.port = atoi(data);
return NT_STATUS_OK;
case EPM_PROTOCOL_HTTP:
epm_floor->rhs.http.port = atoi(data);
return NT_STATUS_OK;
case EPM_PROTOCOL_IP:
epm_floor->rhs.ip.ipaddr = talloc_strdup(mem_ctx, data);
NT_STATUS_HAVE_NO_MEMORY(epm_floor->rhs.ip.ipaddr);
return NT_STATUS_OK;
case EPM_PROTOCOL_NCACN:
epm_floor->rhs.ncacn.minor_version = 0;
return NT_STATUS_OK;
case EPM_PROTOCOL_NCADG:
epm_floor->rhs.ncadg.minor_version = 0;
return NT_STATUS_OK;
case EPM_PROTOCOL_SMB:
epm_floor->rhs.smb.unc = talloc_strdup(mem_ctx, data);
NT_STATUS_HAVE_NO_MEMORY(epm_floor->rhs.smb.unc);
return NT_STATUS_OK;
case EPM_PROTOCOL_PIPE:
epm_floor->rhs.pipe.path = talloc_strdup(mem_ctx, data);
NT_STATUS_HAVE_NO_MEMORY(epm_floor->rhs.pipe.path);
return NT_STATUS_OK;
case EPM_PROTOCOL_NETBIOS:
epm_floor->rhs.netbios.name = talloc_strdup(mem_ctx, data);
NT_STATUS_HAVE_NO_MEMORY(epm_floor->rhs.netbios.name);
return NT_STATUS_OK;
case EPM_PROTOCOL_NCALRPC:
return NT_STATUS_OK;
case EPM_PROTOCOL_VINES_SPP:
epm_floor->rhs.vines_spp.port = atoi(data);
return NT_STATUS_OK;
case EPM_PROTOCOL_VINES_IPC:
epm_floor->rhs.vines_ipc.port = atoi(data);
return NT_STATUS_OK;
case EPM_PROTOCOL_STREETTALK:
epm_floor->rhs.streettalk.streettalk = talloc_strdup(mem_ctx, data);
NT_STATUS_HAVE_NO_MEMORY(epm_floor->rhs.streettalk.streettalk);
return NT_STATUS_OK;
case EPM_PROTOCOL_UNIX_DS:
epm_floor->rhs.unix_ds.path = talloc_strdup(mem_ctx, data);
NT_STATUS_HAVE_NO_MEMORY(epm_floor->rhs.unix_ds.path);
return NT_STATUS_OK;
case EPM_PROTOCOL_NULL:
return NT_STATUS_OK;
default:
DEBUG(0,("Unsupported lhs protocol %d\n", epm_floor->lhs.protocol));
break;
}
return NT_STATUS_NOT_SUPPORTED;
}
enum dcerpc_transport_t dcerpc_transport_by_endpoint_protocol(int prot)
{
int i;
/* Find a transport that has 'prot' as 4th protocol */
for (i=0;i<ARRAY_SIZE(transports);i++) {
if (transports[i].num_protocols >= 2 &&
transports[i].protseq[1] == prot) {
return transports[i].transport;
}
}
/* Unknown transport */
return -1;
}
enum dcerpc_transport_t dcerpc_transport_by_tower(struct epm_tower *tower)
{
int i;
/* Find a transport that matches this tower */
for (i=0;i<ARRAY_SIZE(transports);i++) {
int j;
if (transports[i].num_protocols != tower->num_floors - 2) {
continue;
}
for (j = 0; j < transports[i].num_protocols; j++) {
if (transports[i].protseq[j] != tower->floors[j+2].lhs.protocol) {
break;
}
}
if (j == transports[i].num_protocols) {
return transports[i].transport;
}
}
/* Unknown transport */
return -1;
}
NTSTATUS dcerpc_binding_from_tower(TALLOC_CTX *mem_ctx, struct epm_tower *tower, struct dcerpc_binding **b_out)
{
NTSTATUS status;
struct dcerpc_binding *binding;
binding = talloc(mem_ctx, struct dcerpc_binding);
NT_STATUS_HAVE_NO_MEMORY(binding);
ZERO_STRUCT(binding->object);
binding->options = NULL;
binding->host = NULL;
binding->flags = 0;
binding->transport = dcerpc_transport_by_tower(tower);
if (binding->transport == -1) {
return NT_STATUS_NOT_SUPPORTED;
}
if (tower->num_floors < 1) {
return NT_STATUS_OK;
}
/* Set object uuid */
status = dcerpc_floor_get_lhs_data(&tower->floors[0], &binding->object);
if (!NT_STATUS_IS_OK(status)) {
DEBUG(1, ("Error pulling object uuid and version: %s", nt_errstr(status)));
return status;
}
/* Ignore floor 1, it contains the NDR version info */
binding->options = NULL;
/* Set endpoint */
if (tower->num_floors >= 4) {
binding->endpoint = dcerpc_floor_get_rhs_data(mem_ctx, &tower->floors[3]);
} else {
binding->endpoint = NULL;
}
/* Set network address */
if (tower->num_floors >= 5) {
binding->host = dcerpc_floor_get_rhs_data(mem_ctx, &tower->floors[4]);
}
*b_out = binding;
return NT_STATUS_OK;
}
NTSTATUS dcerpc_binding_build_tower(TALLOC_CTX *mem_ctx, struct dcerpc_binding *binding, struct epm_tower *tower)
{
const enum epm_protocol *protseq = NULL;
int num_protocols = -1, i;
NTSTATUS status;
/* Find transport */
for (i=0;i<ARRAY_SIZE(transports);i++) {
if (transports[i].transport == binding->transport) {
protseq = transports[i].protseq;
num_protocols = transports[i].num_protocols;
break;
}
}
if (num_protocols == -1) {
DEBUG(0, ("Unable to find transport with id '%d'\n", binding->transport));
return NT_STATUS_UNSUCCESSFUL;
}
tower->num_floors = 2 + num_protocols;
tower->floors = talloc_array(mem_ctx, struct epm_floor, tower->num_floors);
/* Floor 0 */
tower->floors[0].lhs.protocol = EPM_PROTOCOL_UUID;
tower->floors[0].lhs.lhs_data = dcerpc_floor_pack_lhs_data(mem_ctx, &binding->object);
tower->floors[0].rhs.uuid.unknown = data_blob_talloc_zero(mem_ctx, 2);
/* Floor 1 */
tower->floors[1].lhs.protocol = EPM_PROTOCOL_UUID;
tower->floors[1].lhs.lhs_data = dcerpc_floor_pack_lhs_data(mem_ctx,
&ndr_transfer_syntax);
tower->floors[1].rhs.uuid.unknown = data_blob_talloc_zero(mem_ctx, 2);
/* Floor 2 to num_protocols */
for (i = 0; i < num_protocols; i++) {
tower->floors[2 + i].lhs.protocol = protseq[i];
tower->floors[2 + i].lhs.lhs_data = data_blob_talloc(mem_ctx, NULL, 0);
ZERO_STRUCT(tower->floors[2 + i].rhs);
dcerpc_floor_set_rhs_data(mem_ctx, &tower->floors[2 + i], "");
}
/* The 4th floor contains the endpoint */
if (num_protocols >= 2 && binding->endpoint) {
status = dcerpc_floor_set_rhs_data(mem_ctx, &tower->floors[3], binding->endpoint);
if (NT_STATUS_IS_ERR(status)) {
return status;
}
}
/* The 5th contains the network address */
if (num_protocols >= 3 && binding->host) {
if (is_ipaddress(binding->host)) {
status = dcerpc_floor_set_rhs_data(mem_ctx, &tower->floors[4],
binding->host);
} else {
/* note that we don't attempt to resolve the
name here - when we get a hostname here we
are in the client code, and want to put in
a wildcard all-zeros IP for the server to
fill in */
status = dcerpc_floor_set_rhs_data(mem_ctx, &tower->floors[4],
"0.0.0.0");
}
if (NT_STATUS_IS_ERR(status)) {
return status;
}
}
return NT_STATUS_OK;
}
struct epm_map_binding_state {
struct dcerpc_binding *binding;
const struct dcerpc_interface_table *table;
struct dcerpc_pipe *pipe;
struct policy_handle handle;
struct GUID guid;
struct epm_twr_t twr;
struct epm_twr_t *twr_r;
struct epm_Map r;
};
static void continue_epm_recv_binding(struct composite_context *ctx);
static void continue_epm_map(struct rpc_request *req);
/*
Stage 2 of epm_map_binding: Receive connected rpc pipe and send endpoint
mapping rpc request
*/
static void continue_epm_recv_binding(struct composite_context *ctx)
{
struct rpc_request *map_req;
struct composite_context *c = talloc_get_type(ctx->async.private_data,
struct composite_context);
struct epm_map_binding_state *s = talloc_get_type(c->private_data,
struct epm_map_binding_state);
/* receive result of rpc pipe connect request */
c->status = dcerpc_pipe_connect_b_recv(ctx, c, &s->pipe);
if (!composite_is_ok(c)) return;
/* prepare requested binding parameters */
s->binding->object = s->table->syntax_id;
c->status = dcerpc_binding_build_tower(s->pipe, s->binding, &s->twr.tower);
if (!composite_is_ok(c)) return;
/* with some nice pretty paper around it of course */
s->r.in.object = &s->guid;
s->r.in.map_tower = &s->twr;
s->r.in.entry_handle = &s->handle;
s->r.in.max_towers = 1;
s->r.out.entry_handle = &s->handle;
/* send request for an endpoint mapping - a rpc request on connected pipe */
map_req = dcerpc_epm_Map_send(s->pipe, c, &s->r);
if (composite_nomem(map_req, c)) return;
composite_continue_rpc(c, map_req, continue_epm_map, c);
}
/*
Stage 3 of epm_map_binding: Receive endpoint mapping and provide binding details
*/
static void continue_epm_map(struct rpc_request *req)
{
struct composite_context *c = talloc_get_type(req->async.private,
struct composite_context);
struct epm_map_binding_state *s = talloc_get_type(c->private_data,
struct epm_map_binding_state);
/* receive result of a rpc request */
c->status = dcerpc_ndr_request_recv(req);
if (!composite_is_ok(c)) return;
/* check the details */
if (s->r.out.result != 0 || s->r.out.num_towers != 1) {
composite_error(c, NT_STATUS_PORT_UNREACHABLE);
return;
}
s->twr_r = s->r.out.towers[0].twr;
if (s->twr_r == NULL) {
composite_error(c, NT_STATUS_PORT_UNREACHABLE);
return;
}
if (s->twr_r->tower.num_floors != s->twr.tower.num_floors ||
s->twr_r->tower.floors[3].lhs.protocol != s->twr.tower.floors[3].lhs.protocol) {
composite_error(c, NT_STATUS_PORT_UNREACHABLE);
return;
}
/* get received endpoint */
s->binding->endpoint = talloc_reference(s->binding,
dcerpc_floor_get_rhs_data(c, &s->twr_r->tower.floors[3]));
composite_done(c);
}
/*
Request for endpoint mapping of dcerpc binding - try to request for endpoint
unless there is default one.
*/
struct composite_context *dcerpc_epm_map_binding_send(TALLOC_CTX *mem_ctx,
struct dcerpc_binding *binding,
const struct dcerpc_interface_table *table,
struct event_context *ev)
{
struct composite_context *c;
struct epm_map_binding_state *s;
struct composite_context *pipe_connect_req;
struct cli_credentials *anon_creds;
NTSTATUS status;
struct dcerpc_binding *epmapper_binding;
int i;
/* composite context allocation and setup */
c = talloc_zero(mem_ctx, struct composite_context);
if (c == NULL) return NULL;
s = talloc_zero(c, struct epm_map_binding_state);
if (composite_nomem(s, c)) return c;
c->state = COMPOSITE_STATE_IN_PROGRESS;
c->private_data = s;
c->event_ctx = ev;
/* Try to find event context in memory context in case passed
* event_context (argument) was NULL. If there's none, just
* create a new one.
*/
if (c->event_ctx == NULL) {
c->event_ctx = event_context_find(mem_ctx);
}
s->binding = binding;
s->table = table;
/* anonymous credentials for rpc connection used to get endpoint mapping */
anon_creds = cli_credentials_init(mem_ctx);
cli_credentials_set_conf(anon_creds);
cli_credentials_set_anonymous(anon_creds);
/*
First, check if there is a default endpoint specified in the IDL
*/
if (table) {
struct dcerpc_binding *default_binding;
/* Find one of the default pipes for this interface */
for (i = 0; i < table->endpoints->count; i++) {
status = dcerpc_parse_binding(mem_ctx, table->endpoints->names[i], &default_binding);
if (NT_STATUS_IS_OK(status)) {
if (default_binding->transport == binding->transport && default_binding->endpoint) {
binding->endpoint = talloc_reference(binding, default_binding->endpoint);
talloc_free(default_binding);
composite_done(c);
return c;
} else {
talloc_free(default_binding);
}
}
}
}
epmapper_binding = talloc_zero(c, struct dcerpc_binding);
if (composite_nomem(epmapper_binding, c)) return c;
/* basic endpoint mapping data */
epmapper_binding->transport = binding->transport;
epmapper_binding->host = talloc_reference(epmapper_binding, binding->host);
epmapper_binding->options = NULL;
epmapper_binding->flags = 0;
epmapper_binding->endpoint = NULL;
/* initiate rpc pipe connection */
pipe_connect_req = dcerpc_pipe_connect_b_send(c, epmapper_binding, &dcerpc_table_epmapper,
anon_creds, c->event_ctx);
if (composite_nomem(pipe_connect_req, c)) return c;
composite_continue(c, pipe_connect_req, continue_epm_recv_binding, c);
return c;
}
/*
Receive result of endpoint mapping request
*/
NTSTATUS dcerpc_epm_map_binding_recv(struct composite_context *c)
{
NTSTATUS status = composite_wait(c);
talloc_free(c);
return status;
}
/*
Get endpoint mapping for rpc connection
*/
NTSTATUS dcerpc_epm_map_binding(TALLOC_CTX *mem_ctx, struct dcerpc_binding *binding,
const struct dcerpc_interface_table *table, struct event_context *ev)
{
struct composite_context *c;
c = dcerpc_epm_map_binding_send(mem_ctx, binding, table, ev);
return dcerpc_epm_map_binding_recv(c);
}
struct pipe_auth_state {
struct dcerpc_pipe *pipe;
struct dcerpc_binding *binding;
const struct dcerpc_interface_table *table;
struct cli_credentials *credentials;
};
static void continue_auth_schannel(struct composite_context *ctx);
static void continue_auth(struct composite_context *ctx);
static void continue_auth_none(struct composite_context *ctx);
static void continue_ntlmssp_connection(struct composite_context *ctx);
static void continue_spnego_after_wrong_pass(struct composite_context *ctx);
/*
Stage 2 of pipe_auth: Receive result of schannel bind request
*/
static void continue_auth_schannel(struct composite_context *ctx)
{
struct composite_context *c = talloc_get_type(ctx->async.private_data,
struct composite_context);
c->status = dcerpc_bind_auth_schannel_recv(ctx);
if (!composite_is_ok(c)) return;
composite_done(c);
}
/*
Stage 2 of pipe_auth: Receive result of authenticated bind request
*/
static void continue_auth(struct composite_context *ctx)
{
struct composite_context *c = talloc_get_type(ctx->async.private_data,
struct composite_context);
c->status = dcerpc_bind_auth_recv(ctx);
if (!composite_is_ok(c)) return;
composite_done(c);
}
/*
Stage 2 of pipe_auth: Receive result of authenticated bind request, but handle fallbacks:
SPNEGO -> NTLMSSP
*/
static void continue_auth_auto(struct composite_context *ctx)
{
struct composite_context *c = talloc_get_type(ctx->async.private_data,
struct composite_context);
c->status = dcerpc_bind_auth_recv(ctx);
if (NT_STATUS_EQUAL(c->status, NT_STATUS_INVALID_PARAMETER)) {
struct pipe_auth_state *s = talloc_get_type(c->private_data, struct pipe_auth_state);
struct composite_context *sec_conn_req;
/* send a request for secondary rpc connection */
sec_conn_req = dcerpc_secondary_connection_send(s->pipe,
s->binding);
if (composite_nomem(sec_conn_req, c)) return;
composite_continue(c, sec_conn_req, continue_ntlmssp_connection, c);
return;
} else if (NT_STATUS_EQUAL(c->status, NT_STATUS_LOGON_FAILURE)) {
struct pipe_auth_state *s = talloc_get_type(c->private_data, struct pipe_auth_state);
struct composite_context *sec_conn_req;
if (cli_credentials_wrong_password(s->credentials)) {
/* send a request for secondary rpc connection */
sec_conn_req = dcerpc_secondary_connection_send(s->pipe,
s->binding);
if (composite_nomem(sec_conn_req, c)) return;
composite_continue(c, sec_conn_req, continue_spnego_after_wrong_pass, c);
}
}
if (!composite_is_ok(c)) return;
composite_done(c);
}
/*
Stage 3 of pipe_auth (fallback to NTLMSSP case): Receive secondary
rpc connection (the first one can't be used any more, due to the
bind nak) and perform authenticated bind request
*/
static void continue_ntlmssp_connection(struct composite_context *ctx)
{
struct composite_context *c;
struct pipe_auth_state *s;
struct composite_context *auth_req;
struct dcerpc_pipe *p2;
c = talloc_get_type(ctx->async.private_data, struct composite_context);
s = talloc_get_type(c->private_data, struct pipe_auth_state);
/* receive secondary rpc connection */
c->status = dcerpc_secondary_connection_recv(ctx, &p2);
talloc_steal(s, p2);
talloc_steal(p2, s->pipe);
s->pipe = p2;
if (!composite_is_ok(c)) return;
/* initiate a authenticated bind */
auth_req = dcerpc_bind_auth_send(c, s->pipe, s->table,
s->credentials, DCERPC_AUTH_TYPE_NTLMSSP,
dcerpc_auth_level(s->pipe->conn),
s->table->authservices->names[0]);
if (composite_nomem(auth_req, c)) return;
composite_continue(c, auth_req, continue_auth, c);
}
/*
Stage 3 of pipe_auth (retry on wrong password): Receive secondary
rpc connection (the first one can't be used any more, due to the
bind nak) and perform authenticated bind request
*/
static void continue_spnego_after_wrong_pass(struct composite_context *ctx)
{
struct composite_context *c;
struct pipe_auth_state *s;
struct composite_context *auth_req;
struct dcerpc_pipe *p2;
c = talloc_get_type(ctx->async.private_data, struct composite_context);
s = talloc_get_type(c->private_data, struct pipe_auth_state);
/* receive secondary rpc connection */
c->status = dcerpc_secondary_connection_recv(ctx, &p2);
talloc_steal(s, p2);
talloc_steal(p2, s->pipe);
s->pipe = p2;
if (!composite_is_ok(c)) return;
/* initiate a authenticated bind */
auth_req = dcerpc_bind_auth_send(c, s->pipe, s->table,
s->credentials, DCERPC_AUTH_TYPE_SPNEGO,
dcerpc_auth_level(s->pipe->conn),
s->table->authservices->names[0]);
if (composite_nomem(auth_req, c)) return;
composite_continue(c, auth_req, continue_auth, c);
}
/*
Stage 2 of pipe_auth: Receive result of non-authenticated bind request
*/
static void continue_auth_none(struct composite_context *ctx)
{
struct composite_context *c = talloc_get_type(ctx->async.private_data,
struct composite_context);
c->status = dcerpc_bind_auth_none_recv(ctx);
if (!composite_is_ok(c)) return;
composite_done(c);
}
/*
Request to perform an authenticated bind if required. Authentication
is determined using credentials passed and binding flags.
*/
struct composite_context *dcerpc_pipe_auth_send(struct dcerpc_pipe *p,
struct dcerpc_binding *binding,
const struct dcerpc_interface_table *table,
struct cli_credentials *credentials)
{
struct composite_context *c;
struct pipe_auth_state *s;
struct composite_context *auth_schannel_req;
struct composite_context *auth_req;
struct composite_context *auth_none_req;
struct dcerpc_connection *conn;
/* composite context allocation and setup */
c = talloc_zero(NULL, struct composite_context);
if (c == NULL) return NULL;
s = talloc_zero(c, struct pipe_auth_state);
if (composite_nomem(s, c)) return c;
c->state = COMPOSITE_STATE_IN_PROGRESS;
c->private_data = s;
c->event_ctx = p->conn->event_ctx;
/* store parameters in state structure */
s->binding = binding;
s->table = table;
s->credentials = credentials;
s->pipe = p;
conn = s->pipe->conn;
conn->flags = binding->flags;
/* remember the binding string for possible secondary connections */
conn->binding_string = dcerpc_binding_string(p, binding);
if (!cli_credentials_is_anonymous(s->credentials) &&
(binding->flags & DCERPC_SCHANNEL) &&
!cli_credentials_get_netlogon_creds(s->credentials)) {
/* If we don't already have netlogon credentials for
* the schannel bind, then we have to get these
* first */
auth_schannel_req = dcerpc_bind_auth_schannel_send(c, s->pipe, s->table,
s->credentials,
dcerpc_auth_level(conn));
if (composite_nomem(auth_schannel_req, c)) return c;
composite_continue(c, auth_schannel_req, continue_auth_schannel, c);
} else if (!cli_credentials_is_anonymous(s->credentials) &&
!(conn->transport.transport == NCACN_NP &&
!(s->binding->flags & DCERPC_SIGN) &&
!(s->binding->flags & DCERPC_SEAL))) {
/* Perform an authenticated DCE-RPC bind, except where
* we ask for a connection on NCACN_NP, and that
* connection is not signed or sealed. For that case
* we rely on the already authenticated CIFS connection
*/
uint8_t auth_type;
if ((conn->flags & (DCERPC_SIGN|DCERPC_SEAL)) == 0) {
/*
we are doing an authenticated connection,
but not using sign or seal. We must force
the CONNECT dcerpc auth type as a NONE auth
type doesn't allow authentication
information to be passed.
*/
conn->flags |= DCERPC_CONNECT;
}
if (s->binding->flags & DCERPC_AUTH_SPNEGO) {
auth_type = DCERPC_AUTH_TYPE_SPNEGO;
} else if (s->binding->flags & DCERPC_AUTH_KRB5) {
auth_type = DCERPC_AUTH_TYPE_KRB5;
} else if (s->binding->flags & DCERPC_SCHANNEL) {
auth_type = DCERPC_AUTH_TYPE_SCHANNEL;
} else if (s->binding->flags & DCERPC_AUTH_NTLM) {
auth_type = DCERPC_AUTH_TYPE_NTLMSSP;
} else {
auth_req = dcerpc_bind_auth_send(c, s->pipe, s->table,
s->credentials, DCERPC_AUTH_TYPE_SPNEGO,
dcerpc_auth_level(conn),
s->table->authservices->names[0]);
if (composite_nomem(auth_req, c)) return c;
composite_continue(c, auth_req, continue_auth_auto, c);
return c;
}
auth_req = dcerpc_bind_auth_send(c, s->pipe, s->table,
s->credentials, auth_type,
dcerpc_auth_level(conn),
s->table->authservices->names[0]);
if (composite_nomem(auth_req, c)) return c;
composite_continue(c, auth_req, continue_auth, c);
} else {
auth_none_req = dcerpc_bind_auth_none_send(c, s->pipe, s->table);
if (composite_nomem(auth_none_req, c)) return c;
composite_continue(c, auth_none_req, continue_auth_none, c);
}
return c;
}
/*
Receive result of authenticated bind request on dcerpc pipe
This returns *p, which may be different to the one originally
supllied, as it rebinds to a new pipe due to authentication fallback
*/
NTSTATUS dcerpc_pipe_auth_recv(struct composite_context *c, TALLOC_CTX *mem_ctx,
struct dcerpc_pipe **p)
{
NTSTATUS status;
struct pipe_auth_state *s = talloc_get_type(c->private_data,
struct pipe_auth_state);
status = composite_wait(c);
if (!NT_STATUS_IS_OK(status)) {
char *uuid_str = GUID_string(s->pipe, &s->table->syntax_id.uuid);
DEBUG(0, ("Failed to bind to uuid %s - %s\n", uuid_str, nt_errstr(status)));
talloc_free(uuid_str);
} else {
talloc_steal(mem_ctx, s->pipe);
*p = s->pipe;
}
talloc_free(c);
return status;
}
/*
Perform an authenticated bind if needed - sync version
This may change *p, as it rebinds to a new pipe due to authentication fallback
*/
NTSTATUS dcerpc_pipe_auth(TALLOC_CTX *mem_ctx,
struct dcerpc_pipe **p,
struct dcerpc_binding *binding,
const struct dcerpc_interface_table *table,
struct cli_credentials *credentials)
{
struct composite_context *c;
c = dcerpc_pipe_auth_send(*p, binding, table, credentials);
return dcerpc_pipe_auth_recv(c, mem_ctx, p);
}
NTSTATUS dcerpc_generic_session_key(struct dcerpc_connection *c,
DATA_BLOB *session_key)
{
/* this took quite a few CPU cycles to find ... */
session_key->data = discard_const_p(unsigned char, "SystemLibraryDTC");
session_key->length = 16;
return NT_STATUS_OK;
}
/*
fetch the user session key - may be default (above) or the SMB session key
*/
NTSTATUS dcerpc_fetch_session_key(struct dcerpc_pipe *p,
DATA_BLOB *session_key)
{
return p->conn->security_state.session_key(p->conn, session_key);
}
/*
log a rpc packet in a format suitable for ndrdump. This is especially useful
for sealed packets, where ethereal cannot easily see the contents
this triggers on a debug level of >= 10
*/
void dcerpc_log_packet(const struct dcerpc_interface_table *ndr,
uint32_t opnum, uint32_t flags, DATA_BLOB *pkt)
{
const int num_examples = 20;
int i;
if (DEBUGLEVEL < 10) return;
for (i=0;i<num_examples;i++) {
char *name=NULL;
asprintf(&name, "%s/rpclog/%s-%u.%d.%s",
lp_lockdir(), ndr->name, opnum, i,
(flags&NDR_IN)?"in":"out");
if (name == NULL) {
return;
}
if (!file_exist(name)) {
if (file_save(name, pkt->data, pkt->length)) {
DEBUG(10,("Logged rpc packet to %s\n", name));
}
free(name);
break;
}
free(name);
}
}
/*
create a secondary context from a primary connection
this uses dcerpc_alter_context() to create a new dcerpc context_id
*/
NTSTATUS dcerpc_secondary_context(struct dcerpc_pipe *p,
struct dcerpc_pipe **pp2,
const struct dcerpc_interface_table *table)
{
NTSTATUS status;
struct dcerpc_pipe *p2;
p2 = talloc_zero(p, struct dcerpc_pipe);
if (p2 == NULL) {
return NT_STATUS_NO_MEMORY;
}
p2->conn = talloc_reference(p2, p->conn);
p2->request_timeout = p->request_timeout;
p2->context_id = ++p->conn->next_context_id;
p2->syntax = table->syntax_id;
p2->transfer_syntax = ndr_transfer_syntax;
status = dcerpc_alter_context(p2, p2, &p2->syntax, &p2->transfer_syntax);
if (!NT_STATUS_IS_OK(status)) {
talloc_free(p2);
return status;
}
*pp2 = p2;
return status;
}