1
0
mirror of https://github.com/samba-team/samba.git synced 2025-01-15 23:24:37 +03:00
Andrew Bartlett 4aabc4cdfd Move our NTLMSSP client code into ntlmssp.c. The intention is to provide a
relitivly useful external lib from this code, and to remove the dupicate
NTLMSSP code elsewhere in samba (RPC pipes, LDAP client).

The code I've replaced this with in cliconnect.c is relitivly ugly, and
I hope to replace it with a more general SPENGO layer at some later date.

Andrew Bartlett
(This used to be commit b2b66909ac2e251f8189e0696b6075dbf748521a)
2003-02-15 12:20:22 +00:00

429 lines
9.5 KiB
C

/*
Unix SMB/CIFS implementation.
simple SPNEGO routines
Copyright (C) Andrew Tridgell 2001
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/
#include "includes.h"
/* free an asn1 structure */
void asn1_free(ASN1_DATA *data)
{
SAFE_FREE(data->data);
}
/* write to the ASN1 buffer, advancing the buffer pointer */
BOOL asn1_write(ASN1_DATA *data, const void *p, int len)
{
if (data->has_error) return False;
if (data->length < data->ofs+len) {
uint8 *newp;
newp = Realloc(data->data, data->ofs+len);
if (!newp) {
SAFE_FREE(data->data);
data->has_error = True;
return False;
}
data->data = newp;
data->length = data->ofs+len;
}
memcpy(data->data + data->ofs, p, len);
data->ofs += len;
return True;
}
/* useful fn for writing a uint8 */
BOOL asn1_write_uint8(ASN1_DATA *data, uint8 v)
{
return asn1_write(data, &v, 1);
}
/* push a tag onto the asn1 data buffer. Used for nested structures */
BOOL asn1_push_tag(ASN1_DATA *data, uint8 tag)
{
struct nesting *nesting;
asn1_write_uint8(data, tag);
nesting = (struct nesting *)malloc(sizeof(struct nesting));
if (!nesting) {
data->has_error = True;
return False;
}
nesting->start = data->ofs;
nesting->next = data->nesting;
data->nesting = nesting;
return asn1_write_uint8(data, 0xff);
}
/* pop a tag */
BOOL asn1_pop_tag(ASN1_DATA *data)
{
struct nesting *nesting;
size_t len;
nesting = data->nesting;
if (!nesting) {
data->has_error = True;
return False;
}
len = data->ofs - (nesting->start+1);
/* yes, this is ugly. We don't know in advance how many bytes the length
of a tag will take, so we assumed 1 byte. If we were wrong then we
need to correct our mistake */
if (len > 255) {
data->data[nesting->start] = 0x82;
if (!asn1_write_uint8(data, 0)) return False;
if (!asn1_write_uint8(data, 0)) return False;
memmove(data->data+nesting->start+3, data->data+nesting->start+1, len);
data->data[nesting->start+1] = len>>8;
data->data[nesting->start+2] = len&0xff;
} else if (len > 127) {
data->data[nesting->start] = 0x81;
if (!asn1_write_uint8(data, 0)) return False;
memmove(data->data+nesting->start+2, data->data+nesting->start+1, len);
data->data[nesting->start+1] = len;
} else {
data->data[nesting->start] = len;
}
data->nesting = nesting->next;
free(nesting);
return True;
}
/* write an integer */
BOOL asn1_write_Integer(ASN1_DATA *data, int i)
{
if (!asn1_push_tag(data, ASN1_INTEGER)) return False;
do {
asn1_write_uint8(data, i);
i = i >> 8;
} while (i);
return asn1_pop_tag(data);
}
/* write an object ID to a ASN1 buffer */
BOOL asn1_write_OID(ASN1_DATA *data, const char *OID)
{
unsigned v, v2;
const char *p = (const char *)OID;
char *newp;
if (!asn1_push_tag(data, ASN1_OID))
return False;
v = strtol(p, &newp, 10);
p = newp;
v2 = strtol(p, &newp, 10);
p = newp;
if (!asn1_write_uint8(data, 40*v + v2))
return False;
while (*p) {
v = strtol(p, &newp, 10);
p = newp;
if (v >= (1<<28)) asn1_write_uint8(data, 0x80 | ((v>>28)&0xff));
if (v >= (1<<21)) asn1_write_uint8(data, 0x80 | ((v>>21)&0xff));
if (v >= (1<<14)) asn1_write_uint8(data, 0x80 | ((v>>14)&0xff));
if (v >= (1<<7)) asn1_write_uint8(data, 0x80 | ((v>>7)&0xff));
if (!asn1_write_uint8(data, v&0x7f))
return False;
}
return asn1_pop_tag(data);
}
/* write an octet string */
BOOL asn1_write_OctetString(ASN1_DATA *data, const void *p, size_t length)
{
asn1_push_tag(data, ASN1_OCTET_STRING);
asn1_write(data, p, length);
asn1_pop_tag(data);
return !data->has_error;
}
/* write a general string */
BOOL asn1_write_GeneralString(ASN1_DATA *data, const char *s)
{
asn1_push_tag(data, ASN1_GENERAL_STRING);
asn1_write(data, s, strlen(s));
asn1_pop_tag(data);
return !data->has_error;
}
/* write a BOOLEAN */
BOOL asn1_write_BOOLEAN(ASN1_DATA *data, BOOL v)
{
asn1_write_uint8(data, ASN1_BOOLEAN);
asn1_write_uint8(data, v);
return !data->has_error;
}
/* write a BOOLEAN - hmm, I suspect this one is the correct one, and the
above boolean is bogus. Need to check */
BOOL asn1_write_BOOLEAN2(ASN1_DATA *data, BOOL v)
{
asn1_push_tag(data, ASN1_BOOLEAN);
asn1_write_uint8(data, v);
asn1_pop_tag(data);
return !data->has_error;
}
/* check a BOOLEAN */
BOOL asn1_check_BOOLEAN(ASN1_DATA *data, BOOL v)
{
uint8 b = 0;
asn1_read_uint8(data, &b);
if (b != ASN1_BOOLEAN) {
data->has_error = True;
return False;
}
asn1_read_uint8(data, &b);
if (b != v) {
data->has_error = True;
return False;
}
return !data->has_error;
}
/* load a ASN1_DATA structure with a lump of data, ready to be parsed */
BOOL asn1_load(ASN1_DATA *data, DATA_BLOB blob)
{
ZERO_STRUCTP(data);
data->data = memdup(blob.data, blob.length);
if (!data->data) {
data->has_error = True;
return False;
}
data->length = blob.length;
return True;
}
/* read from a ASN1 buffer, advancing the buffer pointer */
BOOL asn1_read(ASN1_DATA *data, void *p, int len)
{
if (data->ofs + len > data->length) {
data->has_error = True;
return False;
}
memcpy(p, data->data + data->ofs, len);
data->ofs += len;
return True;
}
/* read a uint8 from a ASN1 buffer */
BOOL asn1_read_uint8(ASN1_DATA *data, uint8 *v)
{
return asn1_read(data, v, 1);
}
/* start reading a nested asn1 structure */
BOOL asn1_start_tag(ASN1_DATA *data, uint8 tag)
{
uint8 b;
struct nesting *nesting;
if (!asn1_read_uint8(data, &b))
return False;
if (b != tag) {
data->has_error = True;
return False;
}
nesting = (struct nesting *)malloc(sizeof(struct nesting));
if (!nesting) {
data->has_error = True;
return False;
}
if (!asn1_read_uint8(data, &b)) {
return False;
}
if (b & 0x80) {
int n = b & 0x7f;
if (!asn1_read_uint8(data, &b))
return False;
nesting->taglen = b;
while (n > 1) {
if (!asn1_read_uint8(data, &b))
return False;
nesting->taglen = (nesting->taglen << 8) | b;
n--;
}
} else {
nesting->taglen = b;
}
nesting->start = data->ofs;
nesting->next = data->nesting;
data->nesting = nesting;
return !data->has_error;
}
/* stop reading a tag */
BOOL asn1_end_tag(ASN1_DATA *data)
{
struct nesting *nesting;
/* make sure we read it all */
if (asn1_tag_remaining(data) != 0) {
data->has_error = True;
return False;
}
nesting = data->nesting;
if (!nesting) {
data->has_error = True;
return False;
}
data->nesting = nesting->next;
free(nesting);
return True;
}
/* work out how many bytes are left in this nested tag */
int asn1_tag_remaining(ASN1_DATA *data)
{
if (!data->nesting) {
data->has_error = True;
return -1;
}
return data->nesting->taglen - (data->ofs - data->nesting->start);
}
/* read an object ID from a ASN1 buffer */
BOOL asn1_read_OID(ASN1_DATA *data, char **OID)
{
uint8 b;
pstring oid;
fstring el;
if (!asn1_start_tag(data, ASN1_OID)) return False;
asn1_read_uint8(data, &b);
oid[0] = 0;
snprintf(el, sizeof(el), "%u", b/40);
pstrcat(oid, el);
snprintf(el, sizeof(el), " %u", b%40);
pstrcat(oid, el);
while (asn1_tag_remaining(data) > 0) {
unsigned v = 0;
do {
asn1_read_uint8(data, &b);
v = (v<<7) | (b&0x7f);
} while (!data->has_error && b & 0x80);
snprintf(el, sizeof(el), " %u", v);
pstrcat(oid, el);
}
asn1_end_tag(data);
*OID = strdup(oid);
return !data->has_error;
}
/* check that the next object ID is correct */
BOOL asn1_check_OID(ASN1_DATA *data, const char *OID)
{
char *id;
if (!asn1_read_OID(data, &id)) return False;
if (strcmp(id, OID) != 0) {
data->has_error = True;
return False;
}
free(id);
return True;
}
/* read a GeneralString from a ASN1 buffer */
BOOL asn1_read_GeneralString(ASN1_DATA *data, char **s)
{
int len;
if (!asn1_start_tag(data, ASN1_GENERAL_STRING)) return False;
len = asn1_tag_remaining(data);
*s = malloc(len+1);
if (! *s) {
data->has_error = True;
return False;
}
asn1_read(data, *s, len);
(*s)[len] = 0;
asn1_end_tag(data);
return !data->has_error;
}
/* read a octet string blob */
BOOL asn1_read_OctetString(ASN1_DATA *data, DATA_BLOB *blob)
{
int len;
ZERO_STRUCTP(blob);
if (!asn1_start_tag(data, ASN1_OCTET_STRING)) return False;
len = asn1_tag_remaining(data);
*blob = data_blob(NULL, len);
asn1_read(data, blob->data, len);
asn1_end_tag(data);
return !data->has_error;
}
/* read an interger */
BOOL asn1_read_Integer(ASN1_DATA *data, int *i)
{
uint8 b;
*i = 0;
if (!asn1_start_tag(data, ASN1_INTEGER)) return False;
while (asn1_tag_remaining(data)>0) {
asn1_read_uint8(data, &b);
*i = (*i << 8) + b;
}
return asn1_end_tag(data);
}
/* check a enumarted value is correct */
BOOL asn1_check_enumerated(ASN1_DATA *data, int v)
{
uint8 b;
if (!asn1_start_tag(data, ASN1_ENUMERATED)) return False;
asn1_read_uint8(data, &b);
asn1_end_tag(data);
if (v != b)
data->has_error = False;
return !data->has_error;
}
/* write an enumarted value to the stream */
BOOL asn1_write_enumerated(ASN1_DATA *data, uint8 v)
{
if (!asn1_push_tag(data, ASN1_ENUMERATED)) return False;
asn1_write_uint8(data, v);
asn1_pop_tag(data);
return !data->has_error;
}