mirror of
https://github.com/samba-team/samba.git
synced 2024-12-25 23:21:54 +03:00
a7250eb142
Signed-off-by: Stefan Metzmacher <metze@samba.org>
232 lines
8.7 KiB
C
232 lines
8.7 KiB
C
/*
|
|
Unix SMB/CIFS implementation.
|
|
SMB Byte handling
|
|
Copyright (C) Andrew Tridgell 1992-1998
|
|
|
|
This program is free software; you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation; either version 3 of the License, or
|
|
(at your option) any later version.
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
#ifndef _BYTEORDER_H
|
|
#define _BYTEORDER_H
|
|
|
|
/*
|
|
This file implements macros for machine independent short and
|
|
int manipulation
|
|
|
|
Here is a description of this file that I emailed to the samba list once:
|
|
|
|
> I am confused about the way that byteorder.h works in Samba. I have
|
|
> looked at it, and I would have thought that you might make a distinction
|
|
> between LE and BE machines, but you only seem to distinguish between 386
|
|
> and all other architectures.
|
|
>
|
|
> Can you give me a clue?
|
|
|
|
sure.
|
|
|
|
The distinction between 386 and other architectures is only there as
|
|
an optimisation. You can take it out completely and it will make no
|
|
difference. The routines (macros) in byteorder.h are totally byteorder
|
|
independent. The 386 optimsation just takes advantage of the fact that
|
|
the x86 processors don't care about alignment, so we don't have to
|
|
align ints on int boundaries etc. If there are other processors out
|
|
there that aren't alignment sensitive then you could also define
|
|
CAREFUL_ALIGNMENT=0 on those processors as well.
|
|
|
|
Ok, now to the macros themselves. I'll take a simple example, say we
|
|
want to extract a 2 byte integer from a SMB packet and put it into a
|
|
type called uint16_t that is in the local machines byte order, and you
|
|
want to do it with only the assumption that uint16_t is _at_least_ 16
|
|
bits long (this last condition is very important for architectures
|
|
that don't have any int types that are 2 bytes long)
|
|
|
|
You do this:
|
|
|
|
#define CVAL(buf,pos) (((uint8_t *)(buf))[pos])
|
|
#define PVAL(buf,pos) ((unsigned int)CVAL(buf,pos))
|
|
#define SVAL(buf,pos) (PVAL(buf,pos)|PVAL(buf,(pos)+1)<<8)
|
|
|
|
then to extract a uint16_t value at offset 25 in a buffer you do this:
|
|
|
|
char *buffer = foo_bar();
|
|
uint16_t xx = SVAL(buffer,25);
|
|
|
|
We are using the byteoder independence of the ANSI C bitshifts to do
|
|
the work. A good optimising compiler should turn this into efficient
|
|
code, especially if it happens to have the right byteorder :-)
|
|
|
|
I know these macros can be made a bit tidier by removing some of the
|
|
casts, but you need to look at byteorder.h as a whole to see the
|
|
reasoning behind them. byteorder.h defines the following macros:
|
|
|
|
SVAL(buf,pos) - extract a 2 byte SMB value
|
|
IVAL(buf,pos) - extract a 4 byte SMB value
|
|
BVAL(buf,pos) - extract a 8 byte SMB value
|
|
SVALS(buf,pos) - signed version of SVAL()
|
|
IVALS(buf,pos) - signed version of IVAL()
|
|
BVALS(buf,pos) - signed version of BVAL()
|
|
|
|
SSVAL(buf,pos,val) - put a 2 byte SMB value into a buffer
|
|
SIVAL(buf,pos,val) - put a 4 byte SMB value into a buffer
|
|
SBVAL(buf,pos,val) - put a 8 byte SMB value into a buffer
|
|
SSVALS(buf,pos,val) - signed version of SSVAL()
|
|
SIVALS(buf,pos,val) - signed version of SIVAL()
|
|
SBVALS(buf,pos,val) - signed version of SBVAL()
|
|
|
|
RSVAL(buf,pos) - like SVAL() but for NMB byte ordering
|
|
RSVALS(buf,pos) - like SVALS() but for NMB byte ordering
|
|
RIVAL(buf,pos) - like IVAL() but for NMB byte ordering
|
|
RIVALS(buf,pos) - like IVALS() but for NMB byte ordering
|
|
RSSVAL(buf,pos,val) - like SSVAL() but for NMB ordering
|
|
RSIVAL(buf,pos,val) - like SIVAL() but for NMB ordering
|
|
RSIVALS(buf,pos,val) - like SIVALS() but for NMB ordering
|
|
|
|
it also defines lots of intermediate macros, just ignore those :-)
|
|
|
|
*/
|
|
|
|
|
|
/*
|
|
on powerpc we can use the magic instructions to load/store
|
|
in little endian
|
|
*/
|
|
#if (defined(__powerpc__) && defined(__GNUC__))
|
|
static __inline__ uint16_t ld_le16(const uint16_t *addr)
|
|
{
|
|
uint16_t val;
|
|
__asm__ ("lhbrx %0,0,%1" : "=r" (val) : "r" (addr), "m" (*addr));
|
|
return val;
|
|
}
|
|
|
|
static __inline__ void st_le16(uint16_t *addr, const uint16_t val)
|
|
{
|
|
__asm__ ("sthbrx %1,0,%2" : "=m" (*addr) : "r" (val), "r" (addr));
|
|
}
|
|
|
|
static __inline__ uint32_t ld_le32(const uint32_t *addr)
|
|
{
|
|
uint32_t val;
|
|
__asm__ ("lwbrx %0,0,%1" : "=r" (val) : "r" (addr), "m" (*addr));
|
|
return val;
|
|
}
|
|
|
|
static __inline__ void st_le32(uint32_t *addr, const uint32_t val)
|
|
{
|
|
__asm__ ("stwbrx %1,0,%2" : "=m" (*addr) : "r" (val), "r" (addr));
|
|
}
|
|
#define HAVE_ASM_BYTEORDER 1
|
|
#else
|
|
#define HAVE_ASM_BYTEORDER 0
|
|
#endif
|
|
|
|
|
|
|
|
#undef CAREFUL_ALIGNMENT
|
|
|
|
/* we know that the 386 can handle misalignment and has the "right"
|
|
byteorder */
|
|
#if defined(__i386__)
|
|
#define CAREFUL_ALIGNMENT 0
|
|
#endif
|
|
|
|
#ifndef CAREFUL_ALIGNMENT
|
|
#define CAREFUL_ALIGNMENT 1
|
|
#endif
|
|
|
|
#define CVAL(buf,pos) ((unsigned int)(((const uint8_t *)(buf))[pos]))
|
|
#define CVAL_NC(buf,pos) (((uint8_t *)(buf))[pos]) /* Non-const version of CVAL */
|
|
#define PVAL(buf,pos) (CVAL(buf,pos))
|
|
#define SCVAL(buf,pos,val) (CVAL_NC(buf,pos) = (val))
|
|
|
|
#if HAVE_ASM_BYTEORDER
|
|
|
|
#define _PTRPOS(buf,pos) (((const uint8_t *)(buf))+(pos))
|
|
#define SVAL(buf,pos) ld_le16((const uint16_t *)_PTRPOS(buf,pos))
|
|
#define IVAL(buf,pos) ld_le32((const uint32_t *)_PTRPOS(buf,pos))
|
|
#define SSVAL(buf,pos,val) st_le16((uint16_t *)_PTRPOS(buf,pos), val)
|
|
#define SIVAL(buf,pos,val) st_le32((uint32_t *)_PTRPOS(buf,pos), val)
|
|
#define SVALS(buf,pos) ((int16_t)SVAL(buf,pos))
|
|
#define IVALS(buf,pos) ((int32_t)IVAL(buf,pos))
|
|
#define SSVALS(buf,pos,val) SSVAL((buf),(pos),((int16_t)(val)))
|
|
#define SIVALS(buf,pos,val) SIVAL((buf),(pos),((int32_t)(val)))
|
|
|
|
#elif CAREFUL_ALIGNMENT
|
|
|
|
#define SVAL(buf,pos) (PVAL(buf,pos)|PVAL(buf,(pos)+1)<<8)
|
|
#define IVAL(buf,pos) (SVAL(buf,pos)|SVAL(buf,(pos)+2)<<16)
|
|
#define SSVALX(buf,pos,val) (CVAL_NC(buf,pos)=(uint8_t)((val)&0xFF),CVAL_NC(buf,pos+1)=(uint8_t)((val)>>8))
|
|
#define SIVALX(buf,pos,val) (SSVALX(buf,pos,val&0xFFFF),SSVALX(buf,pos+2,val>>16))
|
|
#define SVALS(buf,pos) ((int16_t)SVAL(buf,pos))
|
|
#define IVALS(buf,pos) ((int32_t)IVAL(buf,pos))
|
|
#define SSVAL(buf,pos,val) SSVALX((buf),(pos),((uint16_t)(val)))
|
|
#define SIVAL(buf,pos,val) SIVALX((buf),(pos),((uint32_t)(val)))
|
|
#define SSVALS(buf,pos,val) SSVALX((buf),(pos),((int16_t)(val)))
|
|
#define SIVALS(buf,pos,val) SIVALX((buf),(pos),((int32_t)(val)))
|
|
|
|
#else /* not CAREFUL_ALIGNMENT */
|
|
|
|
/* this handles things for architectures like the 386 that can handle
|
|
alignment errors */
|
|
/*
|
|
WARNING: This section is dependent on the length of int16_t and int32_t
|
|
being correct
|
|
*/
|
|
|
|
/* get single value from an SMB buffer */
|
|
#define SVAL(buf,pos) (*(const uint16_t *)((const char *)(buf) + (pos)))
|
|
#define SVAL_NC(buf,pos) (*(uint16_t *)((char *)(buf) + (pos))) /* Non const version of above. */
|
|
#define IVAL(buf,pos) (*(const uint32_t *)((const char *)(buf) + (pos)))
|
|
#define IVAL_NC(buf,pos) (*(uint32_t *)((char *)(buf) + (pos))) /* Non const version of above. */
|
|
#define SVALS(buf,pos) (*(const int16_t *)((const char *)(buf) + (pos)))
|
|
#define SVALS_NC(buf,pos) (*(int16_t *)((char *)(buf) + (pos))) /* Non const version of above. */
|
|
#define IVALS(buf,pos) (*(const int32_t *)((const char *)(buf) + (pos)))
|
|
#define IVALS_NC(buf,pos) (*(int32_t *)((char *)(buf) + (pos))) /* Non const version of above. */
|
|
|
|
/* store single value in an SMB buffer */
|
|
#define SSVAL(buf,pos,val) SVAL_NC(buf,pos)=((uint16_t)(val))
|
|
#define SIVAL(buf,pos,val) IVAL_NC(buf,pos)=((uint32_t)(val))
|
|
#define SSVALS(buf,pos,val) SVALS_NC(buf,pos)=((int16_t)(val))
|
|
#define SIVALS(buf,pos,val) IVALS_NC(buf,pos)=((int32_t)(val))
|
|
|
|
#endif /* not CAREFUL_ALIGNMENT */
|
|
|
|
/* now the reverse routines - these are used in nmb packets (mostly) */
|
|
#define SREV(x) ((((x)&0xFF)<<8) | (((x)>>8)&0xFF))
|
|
#define IREV(x) ((SREV(x)<<16) | (SREV((x)>>16)))
|
|
|
|
#define RSVAL(buf,pos) SREV(SVAL(buf,pos))
|
|
#define RSVALS(buf,pos) SREV(SVALS(buf,pos))
|
|
#define RIVAL(buf,pos) IREV(IVAL(buf,pos))
|
|
#define RIVALS(buf,pos) IREV(IVALS(buf,pos))
|
|
#define RSSVAL(buf,pos,val) SSVAL(buf,pos,SREV(val))
|
|
#define RSSVALS(buf,pos,val) SSVALS(buf,pos,SREV(val))
|
|
#define RSIVAL(buf,pos,val) SIVAL(buf,pos,IREV(val))
|
|
#define RSIVALS(buf,pos,val) SIVALS(buf,pos,IREV(val))
|
|
|
|
/* Alignment macros. */
|
|
#define ALIGN4(p,base) ((p) + ((4 - (PTR_DIFF((p), (base)) & 3)) & 3))
|
|
#define ALIGN2(p,base) ((p) + ((2 - (PTR_DIFF((p), (base)) & 1)) & 1))
|
|
|
|
|
|
/* macros for accessing SMB protocol elements */
|
|
#define VWV(vwv) ((vwv)*2)
|
|
|
|
/* 64 bit macros */
|
|
#define BVAL(p, ofs) (IVAL(p,ofs) | (((uint64_t)IVAL(p,(ofs)+4)) << 32))
|
|
#define BVALS(p, ofs) ((int64_t)BVAL(p,ofs))
|
|
#define SBVAL(p, ofs, v) (SIVAL(p,ofs,(v)&0xFFFFFFFF), SIVAL(p,(ofs)+4,((uint64_t)(v))>>32))
|
|
#define SBVALS(p, ofs, v) (SBVAL(p,ofs,(uint64_t)v))
|
|
|
|
#endif /* _BYTEORDER_H */
|