mirror of
https://github.com/samba-team/samba.git
synced 2025-02-05 21:57:51 +03:00
53ac0f7c59
Causes: AES_set_encrypt_key() AES_set_decrypt_key() AES_encrypt() AES_decrypt() to probe for the Intel AES instructions at runtime (only once) and then call the hardware implementations if so, otherwise fall back to the software implementations. BUG: https://bugzilla.samba.org/show_bug.cgi?id=13008 Based on original work by Justin Maggard <jmaggard@netgear.com> Signed-off-by: Jeremy Allison <jra@samba.org> Reviewed-by: Stefan Metzmacher <metze@samba.org>
344 lines
8.6 KiB
C
344 lines
8.6 KiB
C
/*
|
|
* Copyright (c) 2003 Kungliga Tekniska Högskolan
|
|
* (Royal Institute of Technology, Stockholm, Sweden).
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
*
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
*
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
*
|
|
* 3. Neither the name of the Institute nor the names of its contributors
|
|
* may be used to endorse or promote products derived from this software
|
|
* without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE INSTITUTE AND CONTRIBUTORS ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE INSTITUTE OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*/
|
|
|
|
#include "replace.h"
|
|
#include "aes.h"
|
|
|
|
#ifdef SAMBA_RIJNDAEL
|
|
#include "rijndael-alg-fst.h"
|
|
|
|
#if defined(HAVE_AESNI_INTEL)
|
|
|
|
/*
|
|
* NB. HAVE_AESNI_INTEL is only defined if -lang-asm is
|
|
* available.
|
|
*/
|
|
|
|
static inline void __cpuid(unsigned int where[4], unsigned int leaf)
|
|
{
|
|
asm volatile("cpuid" :
|
|
"=a" (where[0]),
|
|
"=b" (where[1]),
|
|
"=c" (where[2]),
|
|
"=d" (where[3]): "a" (leaf));
|
|
}
|
|
|
|
/*
|
|
* has_intel_aes_instructions()
|
|
* return true if supports AES-NI and false if doesn't
|
|
*/
|
|
static bool has_intel_aes_instructions(void)
|
|
{
|
|
static int has_aes_instructions = -1;
|
|
unsigned int cpuid_results[4];
|
|
|
|
if (has_aes_instructions != -1) {
|
|
return (bool)has_aes_instructions;
|
|
}
|
|
|
|
__cpuid(cpuid_results, 0);
|
|
/*
|
|
* MSB LSB
|
|
* EBX = 'u' 'n' 'e' 'G'
|
|
* EDX = 'I' 'e' 'n' 'i'
|
|
* ECX = 'l' 'e' 't' 'n'
|
|
*/
|
|
if (memcmp((unsigned char *)&cpuid_results[1], "Genu", 4) != 0 ||
|
|
memcmp((unsigned char *)&cpuid_results[3],
|
|
"ineI", 4) != 0 ||
|
|
memcmp((unsigned char *)&cpuid_results[2],
|
|
"ntel", 4) != 0) {
|
|
has_aes_instructions = 0;
|
|
return (bool)has_aes_instructions;
|
|
}
|
|
|
|
__cpuid(cpuid_results, 1);
|
|
has_aes_instructions = !!(cpuid_results[2] & (1 << 25));
|
|
return (bool)has_aes_instructions;
|
|
}
|
|
|
|
/*
|
|
* Macro to ensure the AES key schedule starts on a 16 byte boundary.
|
|
*/
|
|
|
|
#define SET_ACC_CTX(k) \
|
|
do { \
|
|
(k)->u.aes_ni.acc_ctx = \
|
|
(struct crypto_aes_ctx *)(((unsigned long)(k)->u.aes_ni._acc_ctx + 15) & ~0xfUL); \
|
|
} while (0)
|
|
|
|
/*
|
|
* The next 4 functions call the Intel AES hardware implementations
|
|
* of:
|
|
*
|
|
* AES_set_encrypt_key()
|
|
* AES_set_decrypt_key()
|
|
* AES_encrypt()
|
|
* AES_decrypt()
|
|
*/
|
|
|
|
static int AES_set_encrypt_key_aesni(const unsigned char *userkey,
|
|
const int bits,
|
|
AES_KEY *key)
|
|
{
|
|
SET_ACC_CTX(key);
|
|
return aesni_set_key(key->u.aes_ni.acc_ctx, userkey, bits/8);
|
|
}
|
|
|
|
static int AES_set_decrypt_key_aesni(const unsigned char *userkey,
|
|
const int bits,
|
|
AES_KEY *key)
|
|
{
|
|
SET_ACC_CTX(key);
|
|
return aesni_set_key(key->u.aes_ni.acc_ctx, userkey, bits/8);
|
|
}
|
|
|
|
static void AES_encrypt_aesni(const unsigned char *in,
|
|
unsigned char *out,
|
|
const AES_KEY *key)
|
|
{
|
|
aesni_enc(key->u.aes_ni.acc_ctx, out, in);
|
|
}
|
|
|
|
static void AES_decrypt_aesni(const unsigned char *in,
|
|
unsigned char *out,
|
|
const AES_KEY *key)
|
|
{
|
|
aesni_dec(key->u.aes_ni.acc_ctx, out, in);
|
|
}
|
|
#else /* defined(HAVE_AESNI_INTEL) */
|
|
|
|
/*
|
|
* Dummy implementations if no Intel AES instructions present.
|
|
* Only has_intel_aes_instructions() will ever be called.
|
|
*/
|
|
|
|
static bool has_intel_aes_instructions(void)
|
|
{
|
|
return false;
|
|
}
|
|
|
|
static int AES_set_encrypt_key_aesni(const unsigned char *userkey,
|
|
const int bits,
|
|
AES_KEY *key)
|
|
{
|
|
return -1;
|
|
}
|
|
|
|
static int AES_set_decrypt_key_aesni(const unsigned char *userkey,
|
|
const int bits,
|
|
AES_KEY *key)
|
|
{
|
|
return -1;
|
|
}
|
|
|
|
static void AES_encrypt_aesni(const unsigned char *in,
|
|
unsigned char *out,
|
|
const AES_KEY *key)
|
|
{
|
|
abort();
|
|
}
|
|
|
|
static void AES_decrypt_aesni(const unsigned char *in,
|
|
unsigned char *out,
|
|
const AES_KEY *key)
|
|
{
|
|
abort();
|
|
}
|
|
#endif /* defined(HAVE_AENI_INTEL) */
|
|
|
|
/*
|
|
* The next 4 functions are the pure software implementations
|
|
* of:
|
|
*
|
|
* AES_set_encrypt_key()
|
|
* AES_set_decrypt_key()
|
|
* AES_encrypt()
|
|
* AES_decrypt()
|
|
*/
|
|
|
|
static int
|
|
AES_set_encrypt_key_rj(const unsigned char *userkey, const int bits, AES_KEY *key)
|
|
{
|
|
key->u.aes_rj.rounds = rijndaelKeySetupEnc(key->u.aes_rj.key, userkey, bits);
|
|
if (key->u.aes_rj.rounds == 0)
|
|
return -1;
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
AES_set_decrypt_key_rj(const unsigned char *userkey, const int bits, AES_KEY *key)
|
|
{
|
|
key->u.aes_rj.rounds = rijndaelKeySetupDec(key->u.aes_rj.key, userkey, bits);
|
|
if (key->u.aes_rj.rounds == 0)
|
|
return -1;
|
|
return 0;
|
|
}
|
|
|
|
static void
|
|
AES_encrypt_rj(const unsigned char *in, unsigned char *out, const AES_KEY *key)
|
|
{
|
|
rijndaelEncrypt(key->u.aes_rj.key, key->u.aes_rj.rounds, in, out);
|
|
}
|
|
|
|
static void
|
|
AES_decrypt_rj(const unsigned char *in, unsigned char *out, const AES_KEY *key)
|
|
{
|
|
rijndaelDecrypt(key->u.aes_rj.key, key->u.aes_rj.rounds, in, out);
|
|
}
|
|
|
|
/*
|
|
* The next 4 functions are the runtime switch for Intel AES hardware
|
|
* implementations of:
|
|
*
|
|
* AES_set_encrypt_key()
|
|
* AES_set_decrypt_key()
|
|
* AES_encrypt()
|
|
* AES_decrypt()
|
|
*
|
|
* If the hardware instructions don't exist, fall back to the software
|
|
* versions.
|
|
*/
|
|
|
|
int
|
|
AES_set_encrypt_key(const unsigned char *userkey, const int bits, AES_KEY *key)
|
|
{
|
|
if (has_intel_aes_instructions()) {
|
|
return AES_set_encrypt_key_aesni(userkey, bits, key);
|
|
}
|
|
return AES_set_encrypt_key_rj(userkey, bits, key);
|
|
}
|
|
|
|
int
|
|
AES_set_decrypt_key(const unsigned char *userkey, const int bits, AES_KEY *key)
|
|
{
|
|
if (has_intel_aes_instructions()) {
|
|
return AES_set_decrypt_key_aesni(userkey, bits, key);
|
|
}
|
|
return AES_set_decrypt_key_rj(userkey, bits, key);
|
|
}
|
|
|
|
void
|
|
AES_encrypt(const unsigned char *in, unsigned char *out, const AES_KEY *key)
|
|
{
|
|
if (has_intel_aes_instructions()) {
|
|
return AES_encrypt_aesni(in, out, key);
|
|
}
|
|
return AES_encrypt_rj(in, out, key);
|
|
}
|
|
|
|
void
|
|
AES_decrypt(const unsigned char *in, unsigned char *out, const AES_KEY *key)
|
|
{
|
|
if (has_intel_aes_instructions()) {
|
|
return AES_decrypt_aesni(in, out, key);
|
|
}
|
|
return AES_decrypt_rj(in, out, key);
|
|
}
|
|
|
|
#endif /* SAMBA_RIJNDAEL */
|
|
|
|
#ifdef SAMBA_AES_CBC_ENCRYPT
|
|
void
|
|
AES_cbc_encrypt(const unsigned char *in, unsigned char *out,
|
|
unsigned long size, const AES_KEY *key,
|
|
unsigned char *iv, int forward_encrypt)
|
|
{
|
|
unsigned char tmp[AES_BLOCK_SIZE];
|
|
int i;
|
|
|
|
if (forward_encrypt) {
|
|
while (size >= AES_BLOCK_SIZE) {
|
|
for (i = 0; i < AES_BLOCK_SIZE; i++)
|
|
tmp[i] = in[i] ^ iv[i];
|
|
AES_encrypt(tmp, out, key);
|
|
memcpy(iv, out, AES_BLOCK_SIZE);
|
|
size -= AES_BLOCK_SIZE;
|
|
in += AES_BLOCK_SIZE;
|
|
out += AES_BLOCK_SIZE;
|
|
}
|
|
if (size) {
|
|
for (i = 0; i < size; i++)
|
|
tmp[i] = in[i] ^ iv[i];
|
|
for (i = size; i < AES_BLOCK_SIZE; i++)
|
|
tmp[i] = iv[i];
|
|
AES_encrypt(tmp, out, key);
|
|
memcpy(iv, out, AES_BLOCK_SIZE);
|
|
}
|
|
} else {
|
|
while (size >= AES_BLOCK_SIZE) {
|
|
memcpy(tmp, in, AES_BLOCK_SIZE);
|
|
AES_decrypt(tmp, out, key);
|
|
for (i = 0; i < AES_BLOCK_SIZE; i++)
|
|
out[i] ^= iv[i];
|
|
memcpy(iv, tmp, AES_BLOCK_SIZE);
|
|
size -= AES_BLOCK_SIZE;
|
|
in += AES_BLOCK_SIZE;
|
|
out += AES_BLOCK_SIZE;
|
|
}
|
|
if (size) {
|
|
memcpy(tmp, in, AES_BLOCK_SIZE);
|
|
AES_decrypt(tmp, out, key);
|
|
for (i = 0; i < size; i++)
|
|
out[i] ^= iv[i];
|
|
memcpy(iv, tmp, AES_BLOCK_SIZE);
|
|
}
|
|
}
|
|
}
|
|
#endif /* SAMBA_AES_CBC_ENCRYPT */
|
|
|
|
#ifdef SAMBA_AES_CFB8_ENCRYPT
|
|
void
|
|
AES_cfb8_encrypt(const unsigned char *in, unsigned char *out,
|
|
unsigned long size, const AES_KEY *key,
|
|
unsigned char *iv, int forward_encrypt)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < size; i++) {
|
|
unsigned char tmp[AES_BLOCK_SIZE + 1];
|
|
|
|
memcpy(tmp, iv, AES_BLOCK_SIZE);
|
|
AES_encrypt(iv, iv, key);
|
|
if (!forward_encrypt) {
|
|
tmp[AES_BLOCK_SIZE] = in[i];
|
|
}
|
|
out[i] = in[i] ^ iv[0];
|
|
if (forward_encrypt) {
|
|
tmp[AES_BLOCK_SIZE] = out[i];
|
|
}
|
|
memcpy(iv, &tmp[1], AES_BLOCK_SIZE);
|
|
}
|
|
}
|
|
#endif /* SAMBA_AES_CFB8_ENCRYPT */
|