1
0
mirror of https://github.com/samba-team/samba.git synced 2025-01-20 14:03:59 +03:00
Douglas Bagnall d9c192546f lib/compression/lzxpress: fix our slow compression
This uses the same hash table method as lzxpress_huffman, though the
code can't be directly reused as the sizes of the offsets is
different, and there is not a block processing step here.

This will worsen the compression ratio compared to the exhaustive
search we previously used, though we still perform better than
Windows. To put numbers on it, the test files used to compress to 0.91
of Windows' compression size, and now they compress to 0.96.

On the other hand this is many orders of magnitude faster. It is
difficult to say exactly how much faster -- while the testsuite time
has only improved 200-fold (from 7 minutes to 2 seconds), most of the
remaining 2 seconds is used in data generation and management, not
compression. OSSFuzz consistently finds new vectors that time out
after a minute; on these we'll see nearly an order of magnitude of
orders of magnitude inprovement.

Signed-off-by: Douglas Bagnall <douglas.bagnall@catalyst.net.nz>
Reviewed-by: Joseph Sutton <josephsutton@catalyst.net.nz>

Autobuild-User(master): Joseph Sutton <jsutton@samba.org>
Autobuild-Date(master): Fri Dec  2 00:00:04 UTC 2022 on sn-devel-184
2022-12-02 00:00:04 +00:00

508 lines
13 KiB
C

/*
* Copyright (C) Matthieu Suiche 2008
*
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* 3. Neither the name of the author nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
*/
#include "replace.h"
#include "lzxpress.h"
#include "../lib/util/byteorder.h"
#define __CHECK_BYTES(__size, __index, __needed) do { \
if (unlikely(__index >= __size)) { \
return -1; \
} else { \
uint32_t __avail = __size - __index; \
if (unlikely(__needed > __avail)) { \
return -1; \
} \
} \
} while(0)
/*
* LZX_PLAIN_COMP_HASH_BITS determines how big the hash table for finding
* matches will be.
*
* The window in which we look for matches is 8192 bytes. That means with
* random data a value of 13 is getting close to no collisions, while a 12
* will miss about half the possible matches. With compressible data there
* will generally be fewer and less diverse entries, so collisions are rarer.
*
* In the testsuite, bith 12 and 13 give better compression than Windows, but
* 12 is faster. 11 does not save time and costs accuracy. Thus we prefer 12.
*/
#define LZX_PLAIN_COMP_HASH_BITS 12
/*
* LZX_PLAIN_COMP_HASH_SEARCH_ATTEMPTS is how far ahead to search in the
* circular hash table for a match, before we give up. A bigger number will
* generally lead to better but slower compression, but a stupidly big number
* will just be worse.
*/
#define LZX_PLAIN_COMP_HASH_SEARCH_ATTEMPTS 5
#define HASH_MASK ((1 << LZX_PLAIN_COMP_HASH_BITS) - 1)
static inline uint16_t three_byte_hash(const uint8_t *bytes)
{
uint16_t a = bytes[0];
uint16_t b = bytes[1] ^ 0x2e;
uint16_t c = bytes[2] ^ 0x55;
uint16_t ca = c - a;
uint16_t d = ((a + b) << 8) ^ (ca << 5) ^ (c + b) ^ (0xcab + a);
return d & HASH_MASK;
}
static inline void store_match(uint32_t *hash_table,
uint16_t h,
uint32_t offset)
{
int i;
uint32_t o = hash_table[h];
uint16_t h2;
uint16_t worst_h;
int worst_score;
if (o >= offset) {
/* there is nothing there yet */
hash_table[h] = offset;
return;
}
for (i = 1; i < LZX_PLAIN_COMP_HASH_SEARCH_ATTEMPTS; i++) {
h2 = (h + i) & HASH_MASK;
if (hash_table[h2] >= offset) {
hash_table[h2] = offset;
return;
}
}
/*
* There are no slots, but we really want to store this, so we'll kick
* out the one with the longest distance.
*/
worst_h = h;
worst_score = offset - o;
for (i = 1; i < LZX_PLAIN_COMP_HASH_SEARCH_ATTEMPTS; i++) {
int score;
h2 = (h + i) & HASH_MASK;
o = hash_table[h2];
score = offset - o;
if (score > worst_score) {
worst_score = score;
worst_h = h2;
}
}
hash_table[worst_h] = offset;
}
struct match {
const uint8_t *there;
uint32_t length;
};
static inline struct match lookup_match(uint32_t *hash_table,
uint16_t h,
const uint8_t *data,
uint32_t offset,
size_t max_len)
{
int i;
uint32_t o;
uint16_t h2;
size_t len;
const uint8_t *there = NULL;
const uint8_t *here = data + offset;
struct match best = {0};
for (i = 0; i < LZX_PLAIN_COMP_HASH_SEARCH_ATTEMPTS; i++) {
h2 = (h + i) & HASH_MASK;
o = hash_table[h2];
if (o >= offset) {
/*
* Either this is 0xffffffff, or something is really
* wrong.
*
* In setting this, we would never have stepped over
* an 0xffffffff, so we won't now.
*/
break;
}
if (offset - o > 8192) {
/* Too far away to use */
continue;
}
there = data + o;
/*
* When we already have a long match, we can try to avoid
* measuring out another long, but shorter match.
*/
if (best.length > 1000 &&
there[best.length - 1] != best.there[best.length - 1]) {
continue;
}
for (len = 0;
len < max_len && here[len] == there[len];
len++) {
/* counting */
}
if (len > 2) {
if (len > best.length) {
best.length = len;
best.there = there;
}
}
}
return best;
}
struct write_context {
uint8_t *compressed;
uint32_t compressed_pos;
uint32_t max_compressed_size;
uint32_t indic;
uint32_t indic_bit;
uint32_t indic_pos;
uint32_t nibble_index;
};
#define CHECK_INPUT_BYTES(__needed) \
__CHECK_BYTES(uncompressed_size, uncompressed_pos, __needed)
#define CHECK_OUTPUT_BYTES(__needed) \
__CHECK_BYTES(wc->max_compressed_size, wc->compressed_pos, __needed)
static inline ssize_t push_indicator_bit(struct write_context *wc, uint32_t bit)
{
wc->indic = (wc->indic << 1) | bit;
wc->indic_bit += 1;
if (wc->indic_bit == 32) {
PUSH_LE_U32(wc->compressed, wc->indic_pos, wc->indic);
wc->indic_bit = 0;
CHECK_OUTPUT_BYTES(sizeof(uint32_t));
wc->indic_pos = wc->compressed_pos;
wc->compressed_pos += sizeof(uint32_t);
}
return wc->indic_pos;
}
static ssize_t encode_match(struct write_context *wc,
struct match match,
const uint8_t *here)
{
uint32_t match_len = match.length - 3;
uint32_t best_offset = here - match.there - 1;
uint16_t metadata;
if (best_offset > 8191) {
return -1;
}
CHECK_OUTPUT_BYTES(sizeof(uint16_t));
metadata = (uint16_t)((best_offset << 3) | MIN(match_len, 7));
PUSH_LE_U16(wc->compressed, wc->compressed_pos, metadata);
wc->compressed_pos += sizeof(uint16_t);
if (match_len >= 7) {
match_len -= 7;
if (wc->nibble_index == 0) {
wc->nibble_index = wc->compressed_pos;
CHECK_OUTPUT_BYTES(sizeof(uint8_t));
wc->compressed[wc->nibble_index] = MIN(match_len, 15);
wc->compressed_pos += sizeof(uint8_t);
} else {
wc->compressed[wc->nibble_index] |= MIN(match_len, 15) << 4;
wc->nibble_index = 0;
}
if (match_len >= 15) {
match_len -= 15;
CHECK_OUTPUT_BYTES(sizeof(uint8_t));
wc->compressed[wc->compressed_pos] = MIN(match_len, 255);
wc->compressed_pos += sizeof(uint8_t);
if (match_len >= 255) {
/* Additional match_len */
match_len += 7 + 15;
if (match_len < (1 << 16)) {
CHECK_OUTPUT_BYTES(sizeof(uint16_t));
PUSH_LE_U16(wc->compressed, wc->compressed_pos,
match_len);
wc->compressed_pos += sizeof(uint16_t);
} else {
CHECK_OUTPUT_BYTES(sizeof(uint16_t) +
sizeof(uint32_t));
PUSH_LE_U16(wc->compressed,
wc->compressed_pos, 0);
wc->compressed_pos += sizeof(uint16_t);
PUSH_LE_U32(wc->compressed,
wc->compressed_pos,
match_len);
wc->compressed_pos += sizeof(uint32_t);
}
}
}
}
return push_indicator_bit(wc, 1);
}
#undef CHECK_OUTPUT_BYTES
#define CHECK_OUTPUT_BYTES(__needed) \
__CHECK_BYTES(wc.max_compressed_size, wc.compressed_pos, __needed)
ssize_t lzxpress_compress(const uint8_t *uncompressed,
uint32_t uncompressed_size,
uint8_t *compressed,
uint32_t max_compressed_size)
{
/*
* This is the algorithm in [MS-XCA] 2.3 "Plain LZ77 Compression".
*
* It avoids Huffman encoding by including literal bytes inline when a
* match is not found. Every so often it includes a uint32 bit map
* flagging which positions contain matches and which contain
* literals. The encoding of matches is of variable size, depending on
* the match length; they are always at least 16 bits long, and can
* implicitly use unused half-bytes from earlier in the stream.
*/
ssize_t ret;
uint32_t uncompressed_pos;
struct write_context wc = {
.indic = 0,
.indic_pos = 0,
.indic_bit = 0,
.nibble_index = 0,
.compressed = compressed,
.compressed_pos = 0,
.max_compressed_size = max_compressed_size
};
uint32_t hash_table[1 << LZX_PLAIN_COMP_HASH_BITS];
memset(hash_table, 0xff, sizeof(hash_table));
if (!uncompressed_size) {
return 0;
}
uncompressed_pos = 0;
CHECK_OUTPUT_BYTES(sizeof(uint32_t));
PUSH_LE_U32(wc.compressed, wc.compressed_pos, 0);
wc.compressed_pos += sizeof(uint32_t);
while ((uncompressed_pos < uncompressed_size) &&
(wc.compressed_pos < wc.max_compressed_size)) {
/* maximum len we can encode into metadata */
const uint32_t max_len = MIN(0xFFFF + 3,
uncompressed_size - uncompressed_pos);
const uint8_t *here = uncompressed + uncompressed_pos;
uint16_t h;
struct match match = {0};
if (max_len >= 3) {
h = three_byte_hash(here);
match = lookup_match(hash_table,
h,
uncompressed,
uncompressed_pos,
max_len);
store_match(hash_table, h, uncompressed_pos);
} else {
match.there = NULL;
match.length = 0;
}
if (match.there == NULL) {
/*
* This is going to be a literal byte, which we flag
* by setting a bit in an indicator field somewhere
* earlier in the stream.
*/
CHECK_INPUT_BYTES(sizeof(uint8_t));
CHECK_OUTPUT_BYTES(sizeof(uint8_t));
wc.compressed[wc.compressed_pos++] = *here;
uncompressed_pos++;
ret = push_indicator_bit(&wc, 0);
if (ret < 0) {
return ret;
}
} else {
ret = encode_match(&wc, match, here);
if (ret < 0) {
return ret;
}
uncompressed_pos += match.length;
}
}
if (wc.indic_bit != 0) {
wc.indic <<= 32 - wc.indic_bit;
}
wc.indic |= UINT32_MAX >> wc.indic_bit;
PUSH_LE_U32(wc.compressed, wc.indic_pos, wc.indic);
return wc.compressed_pos;
}
ssize_t lzxpress_decompress(const uint8_t *input,
uint32_t input_size,
uint8_t *output,
uint32_t max_output_size)
{
/*
* This is the algorithm in [MS-XCA] 2.4 "Plain LZ77 Decompression
* Algorithm Details".
*/
uint32_t output_index, input_index;
uint32_t indicator, indicator_bit;
uint32_t nibble_index;
if (input_size == 0) {
return 0;
}
output_index = 0;
input_index = 0;
indicator = 0;
indicator_bit = 0;
nibble_index = 0;
#undef CHECK_INPUT_BYTES
#define CHECK_INPUT_BYTES(__needed) \
__CHECK_BYTES(input_size, input_index, __needed)
#undef CHECK_OUTPUT_BYTES
#define CHECK_OUTPUT_BYTES(__needed) \
__CHECK_BYTES(max_output_size, output_index, __needed)
do {
if (indicator_bit == 0) {
CHECK_INPUT_BYTES(sizeof(uint32_t));
indicator = PULL_LE_U32(input, input_index);
input_index += sizeof(uint32_t);
if (input_index == input_size) {
/*
* The compressor left room for indicator
* flags for data that doesn't exist.
*/
break;
}
indicator_bit = 32;
}
indicator_bit--;
/*
* check whether the bit specified by indicator_bit is set or not
* set in indicator. For example, if indicator_bit has value 4
* check whether the 4th bit of the value in indicator is set
*/
if (((indicator >> indicator_bit) & 1) == 0) {
CHECK_INPUT_BYTES(sizeof(uint8_t));
CHECK_OUTPUT_BYTES(sizeof(uint8_t));
output[output_index] = input[input_index];
input_index += sizeof(uint8_t);
output_index += sizeof(uint8_t);
} else {
uint32_t length;
uint32_t offset;
CHECK_INPUT_BYTES(sizeof(uint16_t));
length = PULL_LE_U16(input, input_index);
input_index += sizeof(uint16_t);
offset = (length >> 3) + 1;
length &= 7;
if (length == 7) {
if (nibble_index == 0) {
CHECK_INPUT_BYTES(sizeof(uint8_t));
nibble_index = input_index;
length = input[input_index] & 0xf;
input_index += sizeof(uint8_t);
} else {
length = input[nibble_index] >> 4;
nibble_index = 0;
}
if (length == 15) {
CHECK_INPUT_BYTES(sizeof(uint8_t));
length = input[input_index];
input_index += sizeof(uint8_t);
if (length == 255) {
CHECK_INPUT_BYTES(sizeof(uint16_t));
length = PULL_LE_U16(input, input_index);
input_index += sizeof(uint16_t);
if (length == 0) {
CHECK_INPUT_BYTES(sizeof(uint32_t));
length = PULL_LE_U32(input, input_index);
input_index += sizeof(uint32_t);
}
if (length < (15 + 7)) {
return -1;
}
length -= (15 + 7);
}
length += 15;
}
length += 7;
}
length += 3;
if (length == 0) {
return -1;
}
for (; length > 0; --length) {
if (offset > output_index) {
return -1;
}
CHECK_OUTPUT_BYTES(sizeof(uint8_t));
output[output_index] = output[output_index - offset];
output_index += sizeof(uint8_t);
}
}
} while ((output_index < max_output_size) && (input_index < (input_size)));
return output_index;
}