mirror of
https://github.com/samba-team/samba.git
synced 2025-01-10 01:18:15 +03:00
03ca8c25d0
Commit 6b4d94c987
was a previous attempt
to fix this issue.
Signed-off-by: Joseph Sutton <josephsutton@catalyst.net.nz>
Reviewed-by: Andrew Bartlett <abartlet@samba.org>
2046 lines
52 KiB
C
2046 lines
52 KiB
C
/*
|
|
* Samba compression library - LGPLv3
|
|
*
|
|
* Copyright © Catalyst IT 2022
|
|
*
|
|
* Written by Douglas Bagnall <douglas.bagnall@catalyst.net.nz>
|
|
* and Joseph Sutton <josephsutton@catalyst.net.nz>
|
|
*
|
|
* ** NOTE! The following LGPL license applies to this file.
|
|
* ** It does NOT imply that all of Samba is released under the LGPL
|
|
*
|
|
* This library is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU Lesser General Public
|
|
* License as published by the Free Software Foundation; either
|
|
* version 3 of the License, or (at your option) any later version.
|
|
*
|
|
* This library is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
* Lesser General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU Lesser General Public
|
|
* License along with this library; if not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
#include <talloc.h>
|
|
|
|
#include "replace.h"
|
|
#include "lzxpress_huffman.h"
|
|
#include "lib/util/stable_sort.h"
|
|
#include "lib/util/debug.h"
|
|
#include "lib/util/byteorder.h"
|
|
#include "lib/util/bytearray.h"
|
|
|
|
/*
|
|
* DEBUG_NO_LZ77_MATCHES toggles the encoding of matches as matches. If it is
|
|
* false the potential match is written as a series of literals, which is a
|
|
* valid but usually inefficient encoding. This is useful for isolating a
|
|
* problem to either the LZ77 or the Huffman stage.
|
|
*/
|
|
#ifndef DEBUG_NO_LZ77_MATCHES
|
|
#define DEBUG_NO_LZ77_MATCHES false
|
|
#endif
|
|
|
|
/*
|
|
* DEBUG_HUFFMAN_TREE forces the drawing of ascii art huffman trees during
|
|
* compression and decompression.
|
|
*
|
|
* These trees will also be drawn at DEBUG level 10, but that doesn't work
|
|
* with cmocka tests.
|
|
*/
|
|
#ifndef DEBUG_HUFFMAN_TREE
|
|
#define DEBUG_HUFFMAN_TREE false
|
|
#endif
|
|
|
|
#if DEBUG_HUFFMAN_TREE
|
|
#define DBG(...) fprintf(stderr, __VA_ARGS__)
|
|
#else
|
|
#define DBG(...) DBG_INFO(__VA_ARGS__)
|
|
#endif
|
|
|
|
|
|
#define LZXPRESS_ERROR -1LL
|
|
|
|
/*
|
|
* We won't encode a match length longer than MAX_MATCH_LENGTH.
|
|
*
|
|
* Reports are that Windows has a limit at 64M.
|
|
*/
|
|
#define MAX_MATCH_LENGTH (64 * 1024 * 1024)
|
|
|
|
|
|
struct bitstream {
|
|
const uint8_t *bytes;
|
|
size_t byte_pos;
|
|
size_t byte_size;
|
|
uint32_t bits;
|
|
int remaining_bits;
|
|
uint16_t *table;
|
|
};
|
|
|
|
|
|
#if ! defined __has_builtin
|
|
#define __has_builtin(x) 0
|
|
#endif
|
|
|
|
/*
|
|
* bitlen_nonzero_16() returns the bit number of the most significant bit, or
|
|
* put another way, the integer log base 2. Log(0) is undefined; the argument
|
|
* has to be non-zero!
|
|
* 1 -> 0
|
|
* 2,3 -> 1
|
|
* 4-7 -> 2
|
|
* 1024 -> 10, etc
|
|
*
|
|
* Probably this is handled by a compiler intrinsic function that maps to a
|
|
* dedicated machine instruction.
|
|
*/
|
|
|
|
static inline int bitlen_nonzero_16(uint16_t x)
|
|
{
|
|
#if __has_builtin(__builtin_clz)
|
|
|
|
/* __builtin_clz returns the number of leading zeros */
|
|
return (sizeof(unsigned int) * CHAR_BIT) - 1
|
|
- __builtin_clz((unsigned int) x);
|
|
|
|
#else
|
|
|
|
int count = -1;
|
|
while(x) {
|
|
x >>= 1;
|
|
count++;
|
|
}
|
|
return count;
|
|
|
|
#endif
|
|
}
|
|
|
|
|
|
struct lzxhuff_compressor_context {
|
|
const uint8_t *input_bytes;
|
|
size_t input_size;
|
|
size_t input_pos;
|
|
size_t prev_block_pos;
|
|
uint8_t *output;
|
|
size_t available_size;
|
|
size_t output_pos;
|
|
};
|
|
|
|
static int compare_huffman_node_count(struct huffman_node *a,
|
|
struct huffman_node *b)
|
|
{
|
|
return a->count - b->count;
|
|
}
|
|
|
|
static int compare_huffman_node_depth(struct huffman_node *a,
|
|
struct huffman_node *b)
|
|
{
|
|
int c = a->depth - b->depth;
|
|
if (c != 0) {
|
|
return c;
|
|
}
|
|
return (int)a->symbol - (int)b->symbol;
|
|
}
|
|
|
|
|
|
#define HASH_MASK ((1 << LZX_HUFF_COMP_HASH_BITS) - 1)
|
|
|
|
static inline uint16_t three_byte_hash(const uint8_t *bytes)
|
|
{
|
|
/*
|
|
* MS-XCA says "three byte hash", but does not specify it.
|
|
*
|
|
* This one is just cobbled together, but has quite good distribution
|
|
* in the 12-14 bit forms, which is what we care about most.
|
|
* e.g: 13 bit: median 2048, min 2022, max 2074, stddev 6.0
|
|
*/
|
|
uint16_t a = bytes[0];
|
|
uint16_t b = bytes[1] ^ 0x2e;
|
|
uint16_t c = bytes[2] ^ 0x55;
|
|
uint16_t ca = c - a;
|
|
uint16_t d = ((a + b) << 8) ^ (ca << 5) ^ (c + b) ^ (0xcab + a);
|
|
return d & HASH_MASK;
|
|
}
|
|
|
|
|
|
static inline uint16_t encode_match(size_t len, size_t offset)
|
|
{
|
|
uint16_t code = 256;
|
|
code |= MIN(len - 3, 15);
|
|
code |= bitlen_nonzero_16(offset) << 4;
|
|
return code;
|
|
}
|
|
|
|
/*
|
|
* debug_huffman_tree() uses debug_huffman_tree_print() to draw the Huffman
|
|
* tree in ascii art.
|
|
*
|
|
* Note that the Huffman tree is probably not the same as that implied by the
|
|
* canonical Huffman encoding that is finally used. That tree would be the
|
|
* same shape, but with the left and right toggled to sort the branches by
|
|
* length, after which the symbols for each length sorted by value.
|
|
*/
|
|
|
|
static void debug_huffman_tree_print(struct huffman_node *node,
|
|
int *trail, int depth)
|
|
{
|
|
if (node->left == NULL) {
|
|
/* time to print a row */
|
|
int j;
|
|
bool branched = false;
|
|
int row[17];
|
|
char c[100];
|
|
int s = node->symbol;
|
|
char code[17];
|
|
if (depth > 15) {
|
|
fprintf(stderr,
|
|
" \033[1;31m Max depth exceeded! (%d)\033[0m "
|
|
" symbol %#3x claimed depth %d count %d\n",
|
|
depth, node->symbol, node->depth, node->count);
|
|
return;
|
|
}
|
|
for (j = depth - 1; j >= 0; j--) {
|
|
if (branched) {
|
|
if (trail[j] == -1) {
|
|
row[j] = -3;
|
|
} else {
|
|
row[j] = -2;
|
|
}
|
|
} else if (trail[j] == -1) {
|
|
row[j] = -1;
|
|
branched = true;
|
|
} else {
|
|
row[j] = trail[j];
|
|
}
|
|
}
|
|
for (j = 0; j < depth; j++) {
|
|
switch (row[j]) {
|
|
case -3:
|
|
code[j] = '1';
|
|
fprintf(stderr, " ");
|
|
break;
|
|
case -2:
|
|
code[j] = '0';
|
|
fprintf(stderr, " │ ");
|
|
break;
|
|
case -1:
|
|
code[j] = '1';
|
|
fprintf(stderr, " ╰─");
|
|
break;
|
|
default:
|
|
code[j] = '0';
|
|
fprintf(stderr, "%5d─┬─", row[j]);
|
|
break;
|
|
}
|
|
}
|
|
code[depth] = 0;
|
|
if (s < 32) {
|
|
snprintf(c, sizeof(c),
|
|
"\033[1;32m%02x\033[0m \033[1;33m%c%c%c\033[0m",
|
|
s,
|
|
0xE2, 0x90, 0x80 + s); /* utf-8 for symbol */
|
|
} else if (s < 127) {
|
|
snprintf(c, sizeof(c),
|
|
"\033[1;32m%2x\033[0m '\033[10;32m%c\033[0m'",
|
|
s, s);
|
|
} else if (s < 256) {
|
|
snprintf(c, sizeof(c), "\033[1;32m%2x\033[0m", s);
|
|
} else {
|
|
uint16_t len = (s & 15) + 3;
|
|
uint16_t dbits = ((s >> 4) & 15) + 1;
|
|
snprintf(c, sizeof(c),
|
|
" \033[0;33mlen:%2d%s, "
|
|
"dist:%d-%d \033[0m \033[1;32m%3x\033[0m%s",
|
|
len,
|
|
len == 18 ? "+" : "",
|
|
1 << (dbits - 1),
|
|
(1 << dbits) - 1,
|
|
s,
|
|
s == 256 ? " \033[1;31mEOF\033[0m" : "");
|
|
|
|
}
|
|
|
|
fprintf(stderr, "──%5d %s \033[2;37m%s\033[0m\n",
|
|
node->count, c, code);
|
|
return;
|
|
}
|
|
trail[depth] = node->count;
|
|
debug_huffman_tree_print(node->left, trail, depth + 1);
|
|
trail[depth] = -1;
|
|
debug_huffman_tree_print(node->right, trail, depth + 1);
|
|
}
|
|
|
|
|
|
/*
|
|
* If DEBUG_HUFFMAN_TREE is defined true, debug_huffman_tree()
|
|
* will print a tree looking something like this:
|
|
*
|
|
* 7─┬─── 3 len:18+, dist:1-1 10f 0
|
|
* ╰─ 4─┬─ 2─┬─── 1 61 'a' 100
|
|
* │ ╰─── 1 62 'b' 101
|
|
* ╰─ 2─┬─── 1 63 'c' 110
|
|
* ╰─── 1 len: 3, dist:1-1 100 EOF 111
|
|
*
|
|
* This is based off a Huffman root node, and the tree may not be the same as
|
|
* the canonical tree.
|
|
*/
|
|
static void debug_huffman_tree(struct huffman_node *root)
|
|
{
|
|
int trail[17];
|
|
debug_huffman_tree_print(root, trail, 0);
|
|
}
|
|
|
|
|
|
/*
|
|
* If DEBUG_HUFFMAN_TREE is defined true, debug_huffman_tree_from_table()
|
|
* will print something like this based on a decoding symbol table.
|
|
*
|
|
* Tree from decoding table 9 nodes → 5 codes
|
|
* 10000─┬─── 5000 len:18+, dist:1-1 10f 0
|
|
* ╰─ 5000─┬─ 2500─┬─── 1250 61 'a' 100
|
|
* │ ╰─── 1250 62 'b' 101
|
|
* ╰─ 2500─┬─── 1250 63 'c' 110
|
|
* ╰─── 1250 len: 3, dist:1-1 100 EOF 111
|
|
*
|
|
* This is the canonical form of the Huffman tree where the actual counts
|
|
* aren't known (we use "10000" to help indicate relative frequencies).
|
|
*/
|
|
static void debug_huffman_tree_from_table(uint16_t *table)
|
|
{
|
|
int trail[17];
|
|
struct huffman_node nodes[1024] = {{0}};
|
|
uint16_t codes[1024];
|
|
size_t n = 1;
|
|
size_t i = 0;
|
|
codes[0] = 0;
|
|
nodes[0].count = 10000;
|
|
|
|
while (i < n) {
|
|
uint16_t index = codes[i];
|
|
struct huffman_node *node = &nodes[i];
|
|
if (table[index] == 0xffff) {
|
|
/* internal node */
|
|
index <<= 1;
|
|
/* left */
|
|
index++;
|
|
codes[n] = index;
|
|
node->left = nodes + n;
|
|
nodes[n].count = node->count >> 1;
|
|
n++;
|
|
/*right*/
|
|
index++;
|
|
codes[n] = index;
|
|
node->right = nodes + n;
|
|
nodes[n].count = node->count >> 1;
|
|
n++;
|
|
} else {
|
|
/* leaf node */
|
|
node->symbol = table[index] & 511;
|
|
}
|
|
i++;
|
|
}
|
|
|
|
fprintf(stderr,
|
|
"\033[1;34m Tree from decoding table\033[0m "
|
|
"%zu nodes → %zu codes\n",
|
|
n, (n + 1) / 2);
|
|
debug_huffman_tree_print(nodes, trail, 0);
|
|
}
|
|
|
|
|
|
static bool depth_walk(struct huffman_node *n, uint32_t depth)
|
|
{
|
|
bool ok;
|
|
if (n->left == NULL) {
|
|
/* this is a leaf, record the depth */
|
|
n->depth = depth;
|
|
return true;
|
|
}
|
|
if (depth > 14) {
|
|
return false;
|
|
}
|
|
ok = (depth_walk(n->left, depth + 1) &&
|
|
depth_walk(n->right, depth + 1));
|
|
|
|
return ok;
|
|
}
|
|
|
|
|
|
static bool check_and_record_depths(struct huffman_node *root)
|
|
{
|
|
return depth_walk(root, 0);
|
|
}
|
|
|
|
|
|
static bool encode_values(struct huffman_node *leaves,
|
|
size_t n_leaves,
|
|
uint16_t symbol_values[512])
|
|
{
|
|
size_t i;
|
|
/*
|
|
* See, we have a leading 1 in our internal code representation, which
|
|
* indicates the code length.
|
|
*/
|
|
uint32_t code = 1;
|
|
uint32_t code_len = 0;
|
|
memset(symbol_values, 0, sizeof(uint16_t) * 512);
|
|
for (i = 0; i < n_leaves; i++) {
|
|
code <<= leaves[i].depth - code_len;
|
|
code_len = leaves[i].depth;
|
|
|
|
symbol_values[leaves[i].symbol] = code;
|
|
code++;
|
|
}
|
|
/*
|
|
* The last code should be 11111... with code_len + 1 ones. The final
|
|
* code++ will wrap this round to 1000... with code_len + 1 zeroes.
|
|
*/
|
|
|
|
if (code != 2 << code_len) {
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
|
|
static int generate_huffman_codes(struct huffman_node *leaf_nodes,
|
|
struct huffman_node *internal_nodes,
|
|
uint16_t symbol_values[512])
|
|
{
|
|
size_t head_leaf = 0;
|
|
size_t head_branch = 0;
|
|
size_t tail_branch = 0;
|
|
struct huffman_node *huffman_root = NULL;
|
|
size_t i, j;
|
|
size_t n_leaves = 0;
|
|
|
|
/*
|
|
* Before we sort the nodes, we can eliminate the unused ones.
|
|
*/
|
|
for (i = 0; i < 512; i++) {
|
|
if (leaf_nodes[i].count) {
|
|
leaf_nodes[n_leaves] = leaf_nodes[i];
|
|
n_leaves++;
|
|
}
|
|
}
|
|
if (n_leaves == 0) {
|
|
return LZXPRESS_ERROR;
|
|
}
|
|
if (n_leaves == 1) {
|
|
/*
|
|
* There is *almost* no way this should happen, and it would
|
|
* ruin the tree (because the shortest possible codes are 1
|
|
* bit long, and there are two of them).
|
|
*
|
|
* The only way to get here is in an internal block in a
|
|
* 3-or-more block message (i.e. > 128k), which consists
|
|
* entirely of a match starting in the previous block (if it
|
|
* was the end block, it would have the EOF symbol).
|
|
*
|
|
* What we do is add a dummy symbol which is this one XOR 256.
|
|
* It won't be used in the stream but will balance the tree.
|
|
*/
|
|
leaf_nodes[1] = leaf_nodes[0];
|
|
leaf_nodes[1].symbol ^= 0x100;
|
|
n_leaves = 2;
|
|
}
|
|
|
|
/* note, in sort we're using internal_nodes as auxiliary space */
|
|
stable_sort(leaf_nodes,
|
|
internal_nodes,
|
|
n_leaves,
|
|
sizeof(struct huffman_node),
|
|
(samba_compare_fn_t)compare_huffman_node_count);
|
|
|
|
/*
|
|
* This outer loop is for re-quantizing the counts if the tree is too
|
|
* tall (>15), which we need to do because the final encoding can't
|
|
* express a tree that deep.
|
|
*
|
|
* In theory, this should be a 'while (true)' loop, but we chicken
|
|
* out with 10 iterations, just in case.
|
|
*
|
|
* In practice it will almost always resolve in the first round; if
|
|
* not then, in the second or third. Remember we'll looking at 64k or
|
|
* less, so the rarest we can have is 1 in 64k; each round of
|
|
* quantization effectively doubles its frequency to 1 in 32k, 1 in
|
|
* 16k, etc, until we're treating the rare symbol as actually quite
|
|
* common.
|
|
*/
|
|
for (j = 0; j < 10; j++) {
|
|
bool less_than_15_bits;
|
|
while (true) {
|
|
struct huffman_node *a = NULL;
|
|
struct huffman_node *b = NULL;
|
|
size_t leaf_len = n_leaves - head_leaf;
|
|
size_t internal_len = tail_branch - head_branch;
|
|
|
|
if (leaf_len + internal_len == 1) {
|
|
/*
|
|
* We have the complete tree. The root will be
|
|
* an internal node unless there is just one
|
|
* symbol, which is already impossible.
|
|
*/
|
|
if (unlikely(leaf_len == 1)) {
|
|
return LZXPRESS_ERROR;
|
|
} else {
|
|
huffman_root = \
|
|
&internal_nodes[head_branch];
|
|
}
|
|
break;
|
|
}
|
|
/*
|
|
* We know here we have at least two nodes, and we
|
|
* want to select the two lowest scoring ones. Those
|
|
* have to be either a) the head of each queue, or b)
|
|
* the first two nodes of either queue.
|
|
*
|
|
* The complicating factors are: a) we need to check
|
|
* the length of each queue, and b) in the case of
|
|
* ties, we prefer to pair leaves with leaves.
|
|
*
|
|
* Note a complication we don't have: the leaf node
|
|
* queue never grows, and the subtree queue starts
|
|
* empty and cannot grow beyond n - 1. It feeds on
|
|
* itself. We don't need to think about overflow.
|
|
*/
|
|
if (leaf_len == 0) {
|
|
/* two from subtrees */
|
|
a = &internal_nodes[head_branch];
|
|
b = &internal_nodes[head_branch + 1];
|
|
head_branch += 2;
|
|
} else if (internal_len == 0) {
|
|
/* two from nodes */
|
|
a = &leaf_nodes[head_leaf];
|
|
b = &leaf_nodes[head_leaf + 1];
|
|
head_leaf += 2;
|
|
} else if (leaf_len == 1 && internal_len == 1) {
|
|
/* one of each */
|
|
a = &leaf_nodes[head_leaf];
|
|
b = &internal_nodes[head_branch];
|
|
head_branch++;
|
|
head_leaf++;
|
|
} else {
|
|
/*
|
|
* Take the lowest head, twice, checking for
|
|
* length after taking the first one.
|
|
*/
|
|
if (leaf_nodes[head_leaf].count >
|
|
internal_nodes[head_branch].count) {
|
|
a = &internal_nodes[head_branch];
|
|
head_branch++;
|
|
if (internal_len == 1) {
|
|
b = &leaf_nodes[head_leaf];
|
|
head_leaf++;
|
|
goto done;
|
|
}
|
|
} else {
|
|
a = &leaf_nodes[head_leaf];
|
|
head_leaf++;
|
|
if (leaf_len == 1) {
|
|
b = &internal_nodes[head_branch];
|
|
head_branch++;
|
|
goto done;
|
|
}
|
|
}
|
|
/* the other node */
|
|
if (leaf_nodes[head_leaf].count >
|
|
internal_nodes[head_branch].count) {
|
|
b = &internal_nodes[head_branch];
|
|
head_branch++;
|
|
} else {
|
|
b = &leaf_nodes[head_leaf];
|
|
head_leaf++;
|
|
}
|
|
}
|
|
done:
|
|
/*
|
|
* Now we add a new node to the subtrees list that
|
|
* combines the score of node_a and node_b, and points
|
|
* to them as children.
|
|
*/
|
|
internal_nodes[tail_branch].count = a->count + b->count;
|
|
internal_nodes[tail_branch].left = a;
|
|
internal_nodes[tail_branch].right = b;
|
|
tail_branch++;
|
|
if (tail_branch == n_leaves) {
|
|
/*
|
|
* We're not getting here, no way, never ever.
|
|
* Unless we made a terrible mistake.
|
|
*
|
|
* That is, in a binary tree with n leaves,
|
|
* there are ALWAYS n-1 internal nodes.
|
|
*/
|
|
return LZXPRESS_ERROR;
|
|
}
|
|
}
|
|
if (CHECK_DEBUGLVL(10) || DEBUG_HUFFMAN_TREE) {
|
|
debug_huffman_tree(huffman_root);
|
|
}
|
|
/*
|
|
* We have a tree, and need to turn it into a lookup table,
|
|
* and see if it is shallow enough (<= 15).
|
|
*/
|
|
less_than_15_bits = check_and_record_depths(huffman_root);
|
|
if (less_than_15_bits) {
|
|
/*
|
|
* Now the leaf nodes know how deep they are, and we
|
|
* no longer need the internal nodes.
|
|
*
|
|
* We need to sort the nodes of equal depth, so that
|
|
* they are sorted by depth first, and symbol value
|
|
* second. The internal_nodes can again be auxiliary
|
|
* memory.
|
|
*/
|
|
stable_sort(
|
|
leaf_nodes,
|
|
internal_nodes,
|
|
n_leaves,
|
|
sizeof(struct huffman_node),
|
|
(samba_compare_fn_t)compare_huffman_node_depth);
|
|
|
|
encode_values(leaf_nodes, n_leaves, symbol_values);
|
|
|
|
return n_leaves;
|
|
}
|
|
|
|
/*
|
|
* requantize by halving and rounding up, so that small counts
|
|
* become relatively bigger. This will lead to a flatter tree.
|
|
*/
|
|
for (i = 0; i < n_leaves; i++) {
|
|
leaf_nodes[i].count >>= 1;
|
|
leaf_nodes[i].count += 1;
|
|
}
|
|
head_leaf = 0;
|
|
head_branch = 0;
|
|
tail_branch = 0;
|
|
}
|
|
return LZXPRESS_ERROR;
|
|
}
|
|
|
|
/*
|
|
* LZX_HUFF_COMP_HASH_SEARCH_ATTEMPTS is how far ahead to search in the
|
|
* circular hash table for a match, before we give up. A bigger number will
|
|
* generally lead to better but slower compression, but a stupidly big number
|
|
* will just be worse.
|
|
*
|
|
* If you're fiddling with this, consider also fiddling with
|
|
* LZX_HUFF_COMP_HASH_BITS.
|
|
*/
|
|
#define LZX_HUFF_COMP_HASH_SEARCH_ATTEMPTS 5
|
|
|
|
static inline void store_match(uint16_t *hash_table,
|
|
uint16_t h,
|
|
uint16_t offset)
|
|
{
|
|
int i;
|
|
uint16_t o = hash_table[h];
|
|
uint16_t h2;
|
|
uint16_t worst_h;
|
|
int worst_score;
|
|
|
|
if (o == 0xffff) {
|
|
/* there is nothing there yet */
|
|
hash_table[h] = offset;
|
|
return;
|
|
}
|
|
for (i = 1; i < LZX_HUFF_COMP_HASH_SEARCH_ATTEMPTS; i++) {
|
|
h2 = (h + i) & HASH_MASK;
|
|
if (hash_table[h2] == 0xffff) {
|
|
hash_table[h2] = offset;
|
|
return;
|
|
}
|
|
}
|
|
/*
|
|
* There are no slots, but we really want to store this, so we'll kick
|
|
* out the one with the longest distance.
|
|
*/
|
|
worst_h = h;
|
|
worst_score = offset - o;
|
|
for (i = 1; i < LZX_HUFF_COMP_HASH_SEARCH_ATTEMPTS; i++) {
|
|
int score;
|
|
h2 = (h + i) & HASH_MASK;
|
|
o = hash_table[h2];
|
|
score = offset - o;
|
|
if (score > worst_score) {
|
|
worst_score = score;
|
|
worst_h = h2;
|
|
}
|
|
}
|
|
hash_table[worst_h] = offset;
|
|
}
|
|
|
|
|
|
/*
|
|
* Yes, struct match looks a lot like a DATA_BLOB.
|
|
*/
|
|
struct match {
|
|
const uint8_t *there;
|
|
size_t length;
|
|
};
|
|
|
|
|
|
static inline struct match lookup_match(uint16_t *hash_table,
|
|
uint16_t h,
|
|
const uint8_t *data,
|
|
const uint8_t *here,
|
|
size_t max_len)
|
|
{
|
|
int i;
|
|
uint16_t o = hash_table[h];
|
|
uint16_t h2;
|
|
size_t len;
|
|
const uint8_t *there = NULL;
|
|
struct match best = {0};
|
|
|
|
for (i = 0; i < LZX_HUFF_COMP_HASH_SEARCH_ATTEMPTS; i++) {
|
|
h2 = (h + i) & HASH_MASK;
|
|
o = hash_table[h2];
|
|
if (o == 0xffff) {
|
|
/*
|
|
* in setting this, we would never have stepped over
|
|
* an 0xffff, so we won't now.
|
|
*/
|
|
break;
|
|
}
|
|
there = data + o;
|
|
if (here - there > 65534 || there > here) {
|
|
continue;
|
|
}
|
|
|
|
/*
|
|
* When we already have a long match, we can try to avoid
|
|
* measuring out another long, but shorter match.
|
|
*/
|
|
if (best.length > 1000 &&
|
|
there[best.length - 1] != best.there[best.length - 1]) {
|
|
continue;
|
|
}
|
|
|
|
for (len = 0;
|
|
len < max_len && here[len] == there[len];
|
|
len++) {
|
|
/* counting */
|
|
}
|
|
if (len > 2) {
|
|
/*
|
|
* As a tiebreaker, we prefer the closer match which
|
|
* is likely to encode smaller (and certainly no worse).
|
|
*/
|
|
if (len > best.length ||
|
|
(len == best.length && there > best.there)) {
|
|
best.length = len;
|
|
best.there = there;
|
|
}
|
|
}
|
|
}
|
|
return best;
|
|
}
|
|
|
|
|
|
|
|
static ssize_t lz77_encode_block(struct lzxhuff_compressor_context *cmp_ctx,
|
|
struct lzxhuff_compressor_mem *cmp_mem,
|
|
uint16_t *hash_table,
|
|
uint16_t *prev_hash_table)
|
|
{
|
|
uint16_t *intermediate = cmp_mem->intermediate;
|
|
struct huffman_node *leaf_nodes = cmp_mem->leaf_nodes;
|
|
uint16_t *symbol_values = cmp_mem->symbol_values;
|
|
size_t i, j, intermediate_len;
|
|
const uint8_t *data = cmp_ctx->input_bytes + cmp_ctx->input_pos;
|
|
const uint8_t *prev_block = NULL;
|
|
size_t remaining_size = cmp_ctx->input_size - cmp_ctx->input_pos;
|
|
size_t block_end = MIN(65536, remaining_size);
|
|
struct match match;
|
|
int n_symbols;
|
|
|
|
if (cmp_ctx->input_size < cmp_ctx->input_pos) {
|
|
return LZXPRESS_ERROR;
|
|
}
|
|
|
|
if (cmp_ctx->prev_block_pos != cmp_ctx->input_pos) {
|
|
prev_block = cmp_ctx->input_bytes + cmp_ctx->prev_block_pos;
|
|
} else if (prev_hash_table != NULL) {
|
|
/* we've got confused! hash and block should go together */
|
|
return LZXPRESS_ERROR;
|
|
}
|
|
|
|
/*
|
|
* leaf_nodes is used to count the symbols seen, for later Huffman
|
|
* encoding.
|
|
*/
|
|
for (i = 0; i < 512; i++) {
|
|
leaf_nodes[i] = (struct huffman_node) {
|
|
.symbol = i
|
|
};
|
|
}
|
|
|
|
j = 0;
|
|
|
|
if (remaining_size < 41 || DEBUG_NO_LZ77_MATCHES) {
|
|
/*
|
|
* There is no point doing a hash table and looking for
|
|
* matches in this tiny block (remembering we are committed to
|
|
* using 32 bits, so there's a good chance we wouldn't even
|
|
* save a byte). The threshold of 41 matches Windows.
|
|
* If remaining_size < 3, we *can't* do the hash.
|
|
*/
|
|
i = 0;
|
|
} else {
|
|
/*
|
|
* We use 0xffff as the unset value for table, because it is
|
|
* not a valid match offset (and 0x0 is).
|
|
*/
|
|
memset(hash_table, 0xff, sizeof(cmp_mem->hash_table1));
|
|
|
|
for (i = 0; i <= block_end - 3; i++) {
|
|
uint16_t code;
|
|
const uint8_t *here = data + i;
|
|
uint16_t h = three_byte_hash(here);
|
|
size_t max_len = MIN(remaining_size - i, MAX_MATCH_LENGTH);
|
|
match = lookup_match(hash_table,
|
|
h,
|
|
data,
|
|
here,
|
|
max_len);
|
|
|
|
if (match.there == NULL && prev_hash_table != NULL) {
|
|
/*
|
|
* If this is not the first block,
|
|
* backreferences can look into the previous
|
|
* block (but only as far as 65535 bytes, so
|
|
* the end of this block cannot see the start
|
|
* of the last one).
|
|
*/
|
|
match = lookup_match(prev_hash_table,
|
|
h,
|
|
prev_block,
|
|
here,
|
|
remaining_size - i);
|
|
}
|
|
|
|
store_match(hash_table, h, i);
|
|
|
|
if (match.there == NULL) {
|
|
/* add a literal and move on. */
|
|
uint8_t c = data[i];
|
|
leaf_nodes[c].count++;
|
|
intermediate[j] = c;
|
|
j++;
|
|
continue;
|
|
}
|
|
|
|
/* a real match */
|
|
if (match.length <= 65538) {
|
|
intermediate[j] = 0xffff;
|
|
intermediate[j + 1] = match.length - 3;
|
|
intermediate[j + 2] = here - match.there;
|
|
j += 3;
|
|
} else {
|
|
size_t m = match.length - 3;
|
|
intermediate[j] = 0xfffe;
|
|
intermediate[j + 1] = m & 0xffff;
|
|
intermediate[j + 2] = m >> 16;
|
|
intermediate[j + 3] = here - match.there;
|
|
j += 4;
|
|
}
|
|
code = encode_match(match.length, here - match.there);
|
|
leaf_nodes[code].count++;
|
|
i += match.length - 1; /* `- 1` for the loop i++ */
|
|
/*
|
|
* A match can take us past the intended block length,
|
|
* extending the block. We don't need to do anything
|
|
* special for this case -- the loops will naturally
|
|
* do the right thing.
|
|
*/
|
|
}
|
|
}
|
|
|
|
/*
|
|
* There might be some bytes at the end.
|
|
*/
|
|
for (; i < block_end; i++) {
|
|
leaf_nodes[data[i]].count++;
|
|
intermediate[j] = data[i];
|
|
j++;
|
|
}
|
|
|
|
if (i == remaining_size) {
|
|
/* add a trailing EOF marker (256) */
|
|
intermediate[j] = 0xffff;
|
|
intermediate[j + 1] = 0;
|
|
intermediate[j + 2] = 1;
|
|
j += 3;
|
|
leaf_nodes[256].count++;
|
|
}
|
|
|
|
intermediate_len = j;
|
|
|
|
cmp_ctx->prev_block_pos = cmp_ctx->input_pos;
|
|
cmp_ctx->input_pos += i;
|
|
|
|
/* fill in the symbols table */
|
|
n_symbols = generate_huffman_codes(leaf_nodes,
|
|
cmp_mem->internal_nodes,
|
|
symbol_values);
|
|
if (n_symbols < 0) {
|
|
return n_symbols;
|
|
}
|
|
|
|
return intermediate_len;
|
|
}
|
|
|
|
|
|
|
|
static ssize_t write_huffman_table(uint16_t symbol_values[512],
|
|
uint8_t *output,
|
|
size_t available_size)
|
|
{
|
|
size_t i;
|
|
|
|
if (available_size < 256) {
|
|
return LZXPRESS_ERROR;
|
|
}
|
|
|
|
for (i = 0; i < 256; i++) {
|
|
uint8_t b = 0;
|
|
uint16_t even = symbol_values[i * 2];
|
|
uint16_t odd = symbol_values[i * 2 + 1];
|
|
if (even != 0) {
|
|
b = bitlen_nonzero_16(even);
|
|
}
|
|
if (odd != 0) {
|
|
b |= bitlen_nonzero_16(odd) << 4;
|
|
}
|
|
output[i] = b;
|
|
}
|
|
return i;
|
|
}
|
|
|
|
|
|
struct write_context {
|
|
uint8_t *dest;
|
|
size_t dest_len;
|
|
size_t head; /* where lengths go */
|
|
size_t next_code; /* where symbol stream goes */
|
|
size_t pending_next_code; /* will be next_code */
|
|
unsigned bit_len;
|
|
uint32_t bits;
|
|
};
|
|
|
|
/*
|
|
* Write out 16 bits, little-endian, for write_huffman_codes()
|
|
*
|
|
* As you'll notice, there's a bit to do.
|
|
*
|
|
* We are collecting up bits in a uint32_t, then when there are 16 of them we
|
|
* write out a word into the stream, using a trio of offsets (wc->next_code,
|
|
* wc->pending_next_code, and wc->head) which dance around ensuring that the
|
|
* bitstream and the interspersed lengths are in the right places relative to
|
|
* each other.
|
|
*/
|
|
|
|
static inline bool write_bits(struct write_context *wc,
|
|
uint16_t code, uint16_t length)
|
|
{
|
|
wc->bits <<= length;
|
|
wc->bits |= code;
|
|
wc->bit_len += length;
|
|
if (wc->bit_len > 16) {
|
|
uint32_t w = wc->bits >> (wc->bit_len - 16);
|
|
wc->bit_len -= 16;
|
|
if (wc->next_code + 2 > wc->dest_len ||
|
|
unlikely(wc->bit_len > 16)) {
|
|
return false;
|
|
}
|
|
wc->dest[wc->next_code] = w & 0xff;
|
|
wc->dest[wc->next_code + 1] = (w >> 8) & 0xff;
|
|
wc->next_code = wc->pending_next_code;
|
|
wc->pending_next_code = wc->head;
|
|
wc->head += 2;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
|
|
static inline bool write_code(struct write_context *wc, uint16_t code)
|
|
{
|
|
int code_bit_len = bitlen_nonzero_16(code);
|
|
if (unlikely(code == 0)) {
|
|
return false;
|
|
}
|
|
code &= (1 << code_bit_len) - 1;
|
|
return write_bits(wc, code, code_bit_len);
|
|
}
|
|
|
|
static inline bool write_byte(struct write_context *wc, uint8_t byte)
|
|
{
|
|
if (wc->head + 1 > wc->dest_len) {
|
|
return false;
|
|
}
|
|
wc->dest[wc->head] = byte;
|
|
wc->head++;
|
|
return true;
|
|
}
|
|
|
|
|
|
static inline bool write_long_len(struct write_context *wc, size_t len)
|
|
{
|
|
if (len < 65535) {
|
|
if (wc->head + 3 > wc->dest_len) {
|
|
return false;
|
|
}
|
|
wc->dest[wc->head] = 255;
|
|
wc->dest[wc->head + 1] = len & 255;
|
|
wc->dest[wc->head + 2] = len >> 8;
|
|
wc->head += 3;
|
|
} else {
|
|
if (wc->head + 7 > wc->dest_len) {
|
|
return false;
|
|
}
|
|
wc->dest[wc->head] = 255;
|
|
wc->dest[wc->head + 1] = 0;
|
|
wc->dest[wc->head + 2] = 0;
|
|
wc->dest[wc->head + 3] = len & 255;
|
|
wc->dest[wc->head + 4] = (len >> 8) & 255;
|
|
wc->dest[wc->head + 5] = (len >> 16) & 255;
|
|
wc->dest[wc->head + 6] = (len >> 24) & 255;
|
|
wc->head += 7;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
static ssize_t write_compressed_bytes(uint16_t symbol_values[512],
|
|
uint16_t *intermediate,
|
|
size_t intermediate_len,
|
|
uint8_t *dest,
|
|
size_t dest_len)
|
|
{
|
|
bool ok;
|
|
size_t i;
|
|
size_t end;
|
|
struct write_context wc = {
|
|
.head = 4,
|
|
.pending_next_code = 2,
|
|
.dest = dest,
|
|
.dest_len = dest_len
|
|
};
|
|
for (i = 0; i < intermediate_len; i++) {
|
|
uint16_t c = intermediate[i];
|
|
size_t len;
|
|
uint16_t distance;
|
|
uint16_t code_len = 0;
|
|
uint16_t code_dist = 0;
|
|
if (c < 256) {
|
|
ok = write_code(&wc, symbol_values[c]);
|
|
if (!ok) {
|
|
return LZXPRESS_ERROR;
|
|
}
|
|
continue;
|
|
}
|
|
|
|
if (c == 0xfffe) {
|
|
if (i > intermediate_len - 4) {
|
|
return LZXPRESS_ERROR;
|
|
}
|
|
|
|
len = intermediate[i + 1];
|
|
len |= (uint32_t)intermediate[i + 2] << 16;
|
|
distance = intermediate[i + 3];
|
|
i += 3;
|
|
} else if (c == 0xffff) {
|
|
if (i > intermediate_len - 3) {
|
|
return LZXPRESS_ERROR;
|
|
}
|
|
len = intermediate[i + 1];
|
|
distance = intermediate[i + 2];
|
|
i += 2;
|
|
} else {
|
|
return LZXPRESS_ERROR;
|
|
}
|
|
if (unlikely(distance == 0)) {
|
|
return LZXPRESS_ERROR;
|
|
}
|
|
/* len has already had 3 subtracted */
|
|
if (len >= 15) {
|
|
/*
|
|
* We are going to need to write extra length
|
|
* bytes into the stream, but we don't do it
|
|
* now, we do it after the code has been
|
|
* written (and before the distance bits).
|
|
*/
|
|
code_len = 15;
|
|
} else {
|
|
code_len = len;
|
|
}
|
|
code_dist = bitlen_nonzero_16(distance);
|
|
c = 256 | (code_dist << 4) | code_len;
|
|
if (c > 511) {
|
|
return LZXPRESS_ERROR;
|
|
}
|
|
|
|
ok = write_code(&wc, symbol_values[c]);
|
|
if (!ok) {
|
|
return LZXPRESS_ERROR;
|
|
}
|
|
|
|
if (code_len == 15) {
|
|
if (len >= 270) {
|
|
ok = write_long_len(&wc, len);
|
|
} else {
|
|
ok = write_byte(&wc, len - 15);
|
|
}
|
|
if (! ok) {
|
|
return LZXPRESS_ERROR;
|
|
}
|
|
}
|
|
if (code_dist != 0) {
|
|
uint16_t dist_bits = distance - (1 << code_dist);
|
|
ok = write_bits(&wc, dist_bits, code_dist);
|
|
if (!ok) {
|
|
return LZXPRESS_ERROR;
|
|
}
|
|
}
|
|
}
|
|
/*
|
|
* There are some intricacies around flushing the bits and returning
|
|
* the length.
|
|
*
|
|
* If the returned length is not exactly right and there is another
|
|
* block, that block will read its huffman table from the wrong place,
|
|
* and have all the symbol codes out by a multiple of 4.
|
|
*/
|
|
end = wc.head;
|
|
if (wc.bit_len == 0) {
|
|
end -= 2;
|
|
}
|
|
ok = write_bits(&wc, 0, 16 - wc.bit_len);
|
|
if (!ok) {
|
|
return LZXPRESS_ERROR;
|
|
}
|
|
for (i = 0; i < 2; i++) {
|
|
/*
|
|
* Flush out the bits with zeroes. It doesn't matter if we do
|
|
* a round too many, as we have buffer space, and have already
|
|
* determined the returned length (end).
|
|
*/
|
|
ok = write_bits(&wc, 0, 16);
|
|
if (!ok) {
|
|
return LZXPRESS_ERROR;
|
|
}
|
|
}
|
|
return end;
|
|
}
|
|
|
|
|
|
static ssize_t lzx_huffman_compress_block(struct lzxhuff_compressor_context *cmp_ctx,
|
|
struct lzxhuff_compressor_mem *cmp_mem,
|
|
size_t block_no)
|
|
{
|
|
ssize_t intermediate_size;
|
|
uint16_t *hash_table = NULL;
|
|
uint16_t *back_window_hash_table = NULL;
|
|
ssize_t bytes_written;
|
|
|
|
if (cmp_ctx->available_size - cmp_ctx->output_pos < 260) {
|
|
/* huffman block + 4 bytes */
|
|
return LZXPRESS_ERROR;
|
|
}
|
|
|
|
/*
|
|
* For LZ77 compression, we keep a hash table for the previous block,
|
|
* via alternation after the first block.
|
|
*
|
|
* LZ77 writes into the intermediate buffer in the cmp_mem context.
|
|
*/
|
|
if (block_no == 0) {
|
|
hash_table = cmp_mem->hash_table1;
|
|
back_window_hash_table = NULL;
|
|
} else if (block_no & 1) {
|
|
hash_table = cmp_mem->hash_table2;
|
|
back_window_hash_table = cmp_mem->hash_table1;
|
|
} else {
|
|
hash_table = cmp_mem->hash_table1;
|
|
back_window_hash_table = cmp_mem->hash_table2;
|
|
}
|
|
|
|
intermediate_size = lz77_encode_block(cmp_ctx,
|
|
cmp_mem,
|
|
hash_table,
|
|
back_window_hash_table);
|
|
|
|
if (intermediate_size < 0) {
|
|
return intermediate_size;
|
|
}
|
|
|
|
/*
|
|
* Write the 256 byte Huffman table, based on the counts gained in
|
|
* LZ77 phase.
|
|
*/
|
|
bytes_written = write_huffman_table(
|
|
cmp_mem->symbol_values,
|
|
cmp_ctx->output + cmp_ctx->output_pos,
|
|
cmp_ctx->available_size - cmp_ctx->output_pos);
|
|
|
|
if (bytes_written != 256) {
|
|
return LZXPRESS_ERROR;
|
|
}
|
|
cmp_ctx->output_pos += 256;
|
|
|
|
/*
|
|
* Write the compressed bytes using the LZ77 matches and Huffman codes
|
|
* worked out in the previous steps.
|
|
*/
|
|
bytes_written = write_compressed_bytes(
|
|
cmp_mem->symbol_values,
|
|
cmp_mem->intermediate,
|
|
intermediate_size,
|
|
cmp_ctx->output + cmp_ctx->output_pos,
|
|
cmp_ctx->available_size - cmp_ctx->output_pos);
|
|
|
|
if (bytes_written < 0) {
|
|
return bytes_written;
|
|
}
|
|
|
|
cmp_ctx->output_pos += bytes_written;
|
|
return bytes_written;
|
|
}
|
|
|
|
/*
|
|
* lzxpress_huffman_max_compressed_size()
|
|
*
|
|
* Return the most bytes the compression can take, to allow
|
|
* pre-allocation.
|
|
*/
|
|
size_t lzxpress_huffman_max_compressed_size(size_t input_size)
|
|
{
|
|
/*
|
|
* In the worst case, the output size should be about the same as the
|
|
* input size, plus the 256 byte header per 64k block. We aim for
|
|
* ample, but within the order of magnitude.
|
|
*/
|
|
return input_size + (input_size / 8) + 270;
|
|
}
|
|
|
|
/*
|
|
* lzxpress_huffman_compress_talloc()
|
|
*
|
|
* This is the convenience function that allocates the compressor context and
|
|
* output memory for you. The return value is the number of bytes written to
|
|
* the location indicated by the output pointer.
|
|
*
|
|
* The maximum input_size is effectively around 227MB due to the need to guess
|
|
* an upper bound on the output size that hits an internal limitation in
|
|
* talloc.
|
|
*
|
|
* @param mem_ctx TALLOC_CTX parent for the compressed buffer.
|
|
* @param input_bytes memory to be compressed.
|
|
* @param input_size length of the input buffer.
|
|
* @param output destination pointer for the compressed data.
|
|
*
|
|
* @return the number of bytes written or -1 on error.
|
|
*/
|
|
|
|
ssize_t lzxpress_huffman_compress_talloc(TALLOC_CTX *mem_ctx,
|
|
const uint8_t *input_bytes,
|
|
size_t input_size,
|
|
uint8_t **output)
|
|
{
|
|
struct lzxhuff_compressor_mem *cmp = NULL;
|
|
size_t alloc_size = lzxpress_huffman_max_compressed_size(input_size);
|
|
|
|
ssize_t output_size;
|
|
|
|
*output = talloc_array(mem_ctx, uint8_t, alloc_size);
|
|
if (*output == NULL) {
|
|
return LZXPRESS_ERROR;
|
|
}
|
|
|
|
cmp = talloc(mem_ctx, struct lzxhuff_compressor_mem);
|
|
if (cmp == NULL) {
|
|
TALLOC_FREE(*output);
|
|
return LZXPRESS_ERROR;
|
|
}
|
|
|
|
output_size = lzxpress_huffman_compress(cmp,
|
|
input_bytes,
|
|
input_size,
|
|
*output,
|
|
alloc_size);
|
|
|
|
talloc_free(cmp);
|
|
|
|
if (output_size < 0) {
|
|
TALLOC_FREE(*output);
|
|
return LZXPRESS_ERROR;
|
|
}
|
|
|
|
*output = talloc_realloc(mem_ctx, *output, uint8_t, output_size);
|
|
if (*output == NULL) {
|
|
return LZXPRESS_ERROR;
|
|
}
|
|
|
|
return output_size;
|
|
}
|
|
|
|
/*
|
|
* lzxpress_huffman_compress()
|
|
*
|
|
* This is the inconvenience function, slightly faster and fiddlier than
|
|
* lzxpress_huffman_compress_talloc().
|
|
*
|
|
* To use this, you need to have allocated (but not initialised) a `struct
|
|
* lzxhuff_compressor_mem`, and an output buffer. If the buffer is not big
|
|
* enough (per `output_size`), you'll get a negative return value, otherwise
|
|
* the number of bytes actually consumed, which will always be at least 260.
|
|
*
|
|
* The `struct lzxhuff_compressor_mem` is reusable -- it is basically a
|
|
* collection of uninitialised memory buffers. The total size is less than
|
|
* 150k, so stack allocation is plausible.
|
|
*
|
|
* input_size and available_size are limited to the minimum of UINT32_MAX and
|
|
* SSIZE_MAX. On 64 bit machines that will be UINT32_MAX, or 4GB.
|
|
*
|
|
* @param cmp_mem a struct lzxhuff_compressor_mem.
|
|
* @param input_bytes memory to be compressed.
|
|
* @param input_size length of the input buffer.
|
|
* @param output destination for the compressed data.
|
|
* @param available_size allocated output bytes.
|
|
*
|
|
* @return the number of bytes written or -1 on error.
|
|
*/
|
|
ssize_t lzxpress_huffman_compress(struct lzxhuff_compressor_mem *cmp_mem,
|
|
const uint8_t *input_bytes,
|
|
size_t input_size,
|
|
uint8_t *output,
|
|
size_t available_size)
|
|
{
|
|
size_t i = 0;
|
|
struct lzxhuff_compressor_context cmp_ctx = {
|
|
.input_bytes = input_bytes,
|
|
.input_size = input_size,
|
|
.input_pos = 0,
|
|
.prev_block_pos = 0,
|
|
.output = output,
|
|
.available_size = available_size,
|
|
.output_pos = 0
|
|
};
|
|
|
|
if (input_size == 0) {
|
|
/*
|
|
* We can't deal with this for a number of reasons (e.g. it
|
|
* breaks the Huffman tree), and the output will be infinitely
|
|
* bigger than the input. The caller needs to go and think
|
|
* about what they're trying to do here.
|
|
*/
|
|
return LZXPRESS_ERROR;
|
|
}
|
|
|
|
if (input_size > SSIZE_MAX ||
|
|
input_size > UINT32_MAX ||
|
|
available_size > SSIZE_MAX ||
|
|
available_size > UINT32_MAX ||
|
|
available_size == 0) {
|
|
/*
|
|
* We use negative ssize_t to return errors, which is limiting
|
|
* on 32 bit machines; otherwise we adhere to Microsoft's 4GB
|
|
* limit.
|
|
*
|
|
* lzxpress_huffman_compress_talloc() will not get this far,
|
|
* having already have failed on talloc's 256 MB limit.
|
|
*/
|
|
return LZXPRESS_ERROR;
|
|
}
|
|
|
|
if (cmp_mem == NULL ||
|
|
output == NULL ||
|
|
input_bytes == NULL) {
|
|
return LZXPRESS_ERROR;
|
|
}
|
|
|
|
while (cmp_ctx.input_pos < cmp_ctx.input_size) {
|
|
ssize_t ret;
|
|
ret = lzx_huffman_compress_block(&cmp_ctx,
|
|
cmp_mem,
|
|
i);
|
|
if (ret < 0) {
|
|
return ret;
|
|
}
|
|
i++;
|
|
}
|
|
|
|
return cmp_ctx.output_pos;
|
|
}
|
|
|
|
static void debug_tree_codes(struct bitstream *input)
|
|
{
|
|
/*
|
|
*/
|
|
size_t head = 0;
|
|
size_t tail = 2;
|
|
size_t ffff_count = 0;
|
|
struct q {
|
|
uint16_t tree_code;
|
|
uint16_t code_code;
|
|
};
|
|
struct q queue[65536];
|
|
char bits[17];
|
|
uint16_t *t = input->table;
|
|
queue[0].tree_code = 1;
|
|
queue[0].code_code = 2;
|
|
queue[1].tree_code = 2;
|
|
queue[1].code_code = 3;
|
|
while (head < tail) {
|
|
struct q q = queue[head];
|
|
uint16_t x = t[q.tree_code];
|
|
if (x != 0xffff) {
|
|
int k;
|
|
uint16_t j = q.code_code;
|
|
size_t offset = bitlen_nonzero_16(j) - 1;
|
|
if (unlikely(j == 0)) {
|
|
DBG("BROKEN code is 0!\n");
|
|
return;
|
|
}
|
|
|
|
for (k = 0; k <= offset; k++) {
|
|
bool b = (j >> (offset - k)) & 1;
|
|
bits[k] = b ? '1' : '0';
|
|
}
|
|
bits[k] = 0;
|
|
DBG("%03x %s\n", x & 511, bits);
|
|
head++;
|
|
continue;
|
|
}
|
|
ffff_count++;
|
|
queue[tail].tree_code = q.tree_code * 2 + 1;
|
|
queue[tail].code_code = q.code_code * 2;
|
|
tail++;
|
|
queue[tail].tree_code = q.tree_code * 2 + 1 + 1;
|
|
queue[tail].code_code = q.code_code * 2 + 1;
|
|
tail++;
|
|
head++;
|
|
}
|
|
DBG("0xffff count: %zu\n", ffff_count);
|
|
}
|
|
|
|
/**
|
|
* Determines the sort order of one prefix_code_symbol relative to another
|
|
*/
|
|
static int compare_uint16(const uint16_t *a, const uint16_t *b)
|
|
{
|
|
if (*a < *b) {
|
|
return -1;
|
|
}
|
|
if (*a > *b) {
|
|
return 1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
|
|
static bool fill_decomp_table(struct bitstream *input)
|
|
{
|
|
/*
|
|
* There are 512 symbols, each encoded in 4 bits, which indicates
|
|
* their depth in the Huffman tree. The even numbers get the lower
|
|
* nibble of each byte, so that the byte hex values look backwards
|
|
* (i.e. 0xab encodes b then a). These are allocated Huffman codes in
|
|
* order of appearance, per depth.
|
|
*
|
|
* For example, if the first two bytes were:
|
|
*
|
|
* 0x23 0x53
|
|
*
|
|
* the first four codes have the lengths 3, 2, 3, 5.
|
|
* Let's call them A, B, C, D.
|
|
*
|
|
* Suppose there is no other codeword with length 1 (which is
|
|
* necessarily true in this example) or 2, but there might be others
|
|
* of length 3 or 4. Then we can say this about the codes:
|
|
*
|
|
* _ --*--_
|
|
* / \
|
|
* 0 1
|
|
* / \ / \
|
|
* 0 1 0 1
|
|
* B |\ / \ |\
|
|
* 0 1 0 1 0 1
|
|
* A C |\ /| | |\
|
|
*
|
|
* pos bits code
|
|
* A 3 010
|
|
* B 2 00
|
|
* C 3 011
|
|
* D 5 1????
|
|
*
|
|
* B has the shortest code, so takes the leftmost branch, 00. That
|
|
* ends the branch -- nothing else can start with 00. There are no
|
|
* more 2s, so we look at the 3s, starting as far left as possible. So
|
|
* A takes 010 and C takes 011. That means everything else has to
|
|
* start with 1xx. We don't know how many codewords of length 3 or 4
|
|
* there are; if there are none, D would end up with 10000, the
|
|
* leftmost available code of length 5. If the compressor is any good,
|
|
* there should be no unused leaf nodes left dangling at the end.
|
|
*
|
|
* (this is "Canonical Huffman Coding").
|
|
*
|
|
*
|
|
* But what symbols do these codes actually stand for?
|
|
* --------------------------------------------------
|
|
*
|
|
* Good question. The first 256 codes stand for the corresponding
|
|
* literal bytes. The codes from 256 to 511 stand for LZ77 matches,
|
|
* which have a distance and a length, encoded in a strange way that
|
|
* isn't entirely the purview of this function.
|
|
*
|
|
* What does the value 0 mean?
|
|
* ---------------------------
|
|
*
|
|
* The code does not occur. For example, if the next byte in the
|
|
* example above was 0x07, that would give the byte 0x04 a 7-long
|
|
* code, and no code to the 0x05 byte, which means we there is no way
|
|
* we going to see a 5 in the decoded stream.
|
|
*
|
|
* Isn't LZ77 + Huffman what zip/gzip/zlib do?
|
|
* -------------------------------------------
|
|
*
|
|
* Yes, DEFLATE is LZ77 + Huffman, but the details are quite different.
|
|
*/
|
|
uint16_t symbols[512];
|
|
uint16_t sort_mem[512];
|
|
size_t i, n_symbols;
|
|
ssize_t code;
|
|
uint16_t len = 0, prev_len;
|
|
const uint8_t *table_bytes = input->bytes + input->byte_pos;
|
|
|
|
if (input->byte_pos + 260 > input->byte_size) {
|
|
return false;
|
|
}
|
|
|
|
n_symbols = 0;
|
|
for (i = 0; i < 256; i++) {
|
|
uint16_t even = table_bytes[i] & 15;
|
|
uint16_t odd = table_bytes[i] >> 4;
|
|
if (even != 0) {
|
|
symbols[n_symbols] = (even << 9) + i * 2;
|
|
n_symbols++;
|
|
}
|
|
if (odd != 0) {
|
|
symbols[n_symbols] = (odd << 9) + i * 2 + 1;
|
|
n_symbols++;
|
|
}
|
|
}
|
|
input->byte_pos += 256;
|
|
if (n_symbols == 0) {
|
|
return false;
|
|
}
|
|
|
|
stable_sort(symbols, sort_mem, n_symbols, sizeof(uint16_t),
|
|
(samba_compare_fn_t)compare_uint16);
|
|
|
|
/*
|
|
* we're using an implicit binary tree, as you'd see in a heap.
|
|
* table[0] = unused
|
|
* table[1] = '0'
|
|
* table[2] = '1'
|
|
* table[3] = '00' <-- '00' and '01' are children of '0'
|
|
* table[4] = '01' <-- '0' is [0], children are [0 * 2 + {1,2}]
|
|
* table[5] = '10'
|
|
* table[6] = '11'
|
|
* table[7] = '000'
|
|
* table[8] = '001'
|
|
* table[9] = '010'
|
|
* table[10]= '011'
|
|
* table[11]= '100
|
|
*'
|
|
* table[1 << n - 1] = '0' * n
|
|
* table[1 << n - 1 + x] = n-bit wide x (left padded with '0')
|
|
* table[1 << n - 2] = '1' * (n - 1)
|
|
*
|
|
* table[i]->left = table[i*2 + 1]
|
|
* table[i]->right = table[i*2 + 2]
|
|
* table[0xffff] = unused (16 '0's, max len is 15)
|
|
*
|
|
* therefore e.g. table[70] = table[64 - 1 + 7]
|
|
* = table[1 << 6 - 1 + 7]
|
|
* = '000111' (binary 7, widened to 6 bits)
|
|
*
|
|
* and if '000111' is a code,
|
|
* '00011', '0001', '000', '00', '0' are unavailable prefixes.
|
|
* 34 16 7 3 1 are their indices
|
|
* and (i - 1) >> 1 is the path back from 70 through these.
|
|
*
|
|
* the lookup is
|
|
*
|
|
* 1 start with i = 0
|
|
* 2 extract a symbol bit (i = (i << 1) + bit + 1)
|
|
* 3 is table[i] == 0xffff?
|
|
* 4 yes -- goto 2
|
|
* 4 table[i] & 511 is the symbol, stop
|
|
*
|
|
* and the construction (here) is sort of the reverse.
|
|
*
|
|
* Most of this table is free space that can never be reached, and
|
|
* most of the activity is at the beginning (since all codes start
|
|
* there, and by design the shortest codes are the most common).
|
|
*/
|
|
for (i = 0; i < 32; i++) {
|
|
/* prefill the table head */
|
|
input->table[i] = 0xffff;
|
|
}
|
|
code = -1;
|
|
prev_len = 0;
|
|
for (i = 0; i < n_symbols; i++) {
|
|
uint16_t s = symbols[i];
|
|
uint16_t prefix;
|
|
len = (s >> 9) & 15;
|
|
s &= 511;
|
|
code++;
|
|
while (len != prev_len) {
|
|
code <<= 1;
|
|
code++;
|
|
prev_len++;
|
|
}
|
|
|
|
if (code >= 65535) {
|
|
return false;
|
|
}
|
|
input->table[code] = s;
|
|
for(prefix = (code - 1) >> 1;
|
|
prefix > 31;
|
|
prefix = (prefix - 1) >> 1) {
|
|
input->table[prefix] = 0xffff;
|
|
}
|
|
}
|
|
if (CHECK_DEBUGLVL(10)) {
|
|
debug_tree_codes(input);
|
|
}
|
|
|
|
/*
|
|
* check that the last code encodes 11111..., with right number of
|
|
* ones, pointing to the right symbol -- otherwise we have a dangling
|
|
* uninitialised symbol.
|
|
*/
|
|
if (code != (1 << (len + 1)) - 2) {
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
|
|
#define CHECK_READ_32(dest) \
|
|
do { \
|
|
if (input->byte_pos + 4 > input->byte_size) { \
|
|
return LZXPRESS_ERROR; \
|
|
} \
|
|
dest = PULL_LE_U32(input->bytes, input->byte_pos); \
|
|
input->byte_pos += 4; \
|
|
} while (0)
|
|
|
|
#define CHECK_READ_16(dest) \
|
|
do { \
|
|
if (input->byte_pos + 2 > input->byte_size) { \
|
|
return LZXPRESS_ERROR; \
|
|
} \
|
|
dest = PULL_LE_U16(input->bytes, input->byte_pos); \
|
|
input->byte_pos += 2; \
|
|
} while (0)
|
|
|
|
#define CHECK_READ_8(dest) \
|
|
do { \
|
|
if (input->byte_pos >= input->byte_size) { \
|
|
return LZXPRESS_ERROR; \
|
|
} \
|
|
dest = PULL_LE_U8(input->bytes, input->byte_pos); \
|
|
input->byte_pos++; \
|
|
} while(0)
|
|
|
|
|
|
static inline ssize_t pull_bits(struct bitstream *input)
|
|
{
|
|
if (input->byte_pos + 1 < input->byte_size) {
|
|
uint16_t tmp;
|
|
CHECK_READ_16(tmp);
|
|
input->remaining_bits += 16;
|
|
input->bits <<= 16;
|
|
input->bits |= tmp;
|
|
} else if (input->byte_pos < input->byte_size) {
|
|
uint8_t tmp;
|
|
CHECK_READ_8(tmp);
|
|
input->remaining_bits += 8;
|
|
input->bits <<= 8;
|
|
input->bits |= tmp;
|
|
} else {
|
|
return LZXPRESS_ERROR;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
|
|
/*
|
|
* Decompress a block. The actual decompressed size is returned (or -1 on
|
|
* error). The putative block length is 64k (or shorter, if the message ends
|
|
* first), but a match can run over the end, extending the block. That's why
|
|
* we need the overall output size as well as the block size. A match encoded
|
|
* in this block can point back to previous blocks, but not before the
|
|
* beginning of the message, so we also need the previously decoded size.
|
|
*
|
|
* The compressed block will have 256 bytes for the Huffman table, and at
|
|
* least 4 bytes of (possibly padded) encoded values.
|
|
*/
|
|
static ssize_t lzx_huffman_decompress_block(struct bitstream *input,
|
|
uint8_t *output,
|
|
size_t block_size,
|
|
size_t output_size,
|
|
size_t previous_size)
|
|
{
|
|
size_t output_pos = 0;
|
|
uint16_t symbol;
|
|
size_t index;
|
|
uint16_t distance_bits_wanted = 0;
|
|
size_t distance = 0;
|
|
size_t length = 0;
|
|
bool ok;
|
|
uint32_t tmp;
|
|
bool seen_eof_marker = false;
|
|
|
|
ok = fill_decomp_table(input);
|
|
if (! ok) {
|
|
return LZXPRESS_ERROR;
|
|
}
|
|
if (CHECK_DEBUGLVL(10) || DEBUG_HUFFMAN_TREE) {
|
|
debug_huffman_tree_from_table(input->table);
|
|
}
|
|
/*
|
|
* Always read 32 bits at the start, even if we don't need them.
|
|
*/
|
|
CHECK_READ_16(tmp);
|
|
CHECK_READ_16(input->bits);
|
|
input->bits |= tmp << 16;
|
|
input->remaining_bits = 32;
|
|
|
|
/*
|
|
* This loop iterates over individual *bits*. These are read from
|
|
* little-endian 16 bit words, most significant bit first.
|
|
*
|
|
* At points in the bitstream, the following are possible:
|
|
*
|
|
* # the source word is empty and needs to be refilled from the input
|
|
* stream.
|
|
* # an incomplete codeword is being extended.
|
|
* # a codeword is resolved, either as a literal or a match.
|
|
* # a literal is written.
|
|
* # a match is collecting distance bits.
|
|
* # the output stream is copied, as specified by a match.
|
|
* # input bytes are read for match lengths.
|
|
*
|
|
* Note that we *don't* specifically check for the EOF marker (symbol
|
|
* 256) in this loop, because the precondition for stopping for the
|
|
* EOF marker is that the output buffer is full (otherwise, you
|
|
* wouldn't know which 256 is EOF, rather than an actual symbol), and
|
|
* we *always* want to stop when the buffer is full. So we work out if
|
|
* there is an EOF in another loop after we stop writing.
|
|
*/
|
|
|
|
index = 0;
|
|
while (output_pos < block_size) {
|
|
uint16_t b;
|
|
if (input->remaining_bits == 16) {
|
|
ssize_t ret = pull_bits(input);
|
|
if (ret) {
|
|
return ret;
|
|
}
|
|
}
|
|
input->remaining_bits--;
|
|
|
|
b = (input->bits >> input->remaining_bits) & 1;
|
|
if (length == 0) {
|
|
/* not in a match; pulling a codeword */
|
|
index <<= 1;
|
|
index += b + 1;
|
|
if (input->table[index] == 0xffff) {
|
|
/* incomplete codeword, the common case */
|
|
continue;
|
|
}
|
|
/* found the symbol, reset the code string */
|
|
symbol = input->table[index] & 511;
|
|
index = 0;
|
|
if (symbol < 256) {
|
|
/* a literal, the easy case */
|
|
output[output_pos] = symbol;
|
|
output_pos++;
|
|
continue;
|
|
}
|
|
|
|
/* the beginning of a match */
|
|
distance_bits_wanted = (symbol >> 4) & 15;
|
|
distance = 1 << distance_bits_wanted;
|
|
length = symbol & 15;
|
|
if (length == 15) {
|
|
CHECK_READ_8(tmp);
|
|
length += tmp;
|
|
if (length == 255 + 15) {
|
|
/*
|
|
* note, we discard (don't add) the
|
|
* length so far.
|
|
*/
|
|
CHECK_READ_16(length);
|
|
if (length == 0) {
|
|
CHECK_READ_32(length);
|
|
}
|
|
}
|
|
}
|
|
length += 3;
|
|
} else {
|
|
/* we are pulling extra distance bits */
|
|
distance_bits_wanted--;
|
|
distance |= b << distance_bits_wanted;
|
|
}
|
|
|
|
if (distance_bits_wanted == 0) {
|
|
/*
|
|
* We have a complete match, and it is time to do the
|
|
* copy (byte by byte, because the ranges can overlap,
|
|
* and we might need to copy bytes we just copied in).
|
|
*
|
|
* It is possible that this match will extend beyond
|
|
* the end of the expected block. That's fine, so long
|
|
* as it doesn't extend past the total output size.
|
|
*/
|
|
size_t i;
|
|
size_t end = output_pos + length;
|
|
uint8_t *here = output + output_pos;
|
|
uint8_t *there = here - distance;
|
|
if (end > output_size ||
|
|
previous_size + output_pos < distance ||
|
|
unlikely(end < output_pos || there > here)) {
|
|
return LZXPRESS_ERROR;
|
|
}
|
|
for (i = 0; i < length; i++) {
|
|
here[i] = there[i];
|
|
}
|
|
output_pos += length;
|
|
distance = 0;
|
|
length = 0;
|
|
}
|
|
}
|
|
|
|
if (length != 0 || index != 0) {
|
|
/* it seems like we've hit an early end, mid-code */
|
|
return LZXPRESS_ERROR;
|
|
}
|
|
|
|
if (input->byte_pos + 256 < input->byte_size) {
|
|
/*
|
|
* This block is over, but it clearly isn't the last block, so
|
|
* we don't want to look for the EOF.
|
|
*/
|
|
return output_pos;
|
|
}
|
|
/*
|
|
* We won't write any more, but we try to read some more to make sure
|
|
* we're finishing in a good place. That means we want to see a 256
|
|
* symbol and then some number of zeroes, possibly zero, but as many
|
|
* as 32.
|
|
*
|
|
* In this we are perhaps a bit stricter than Windows, which
|
|
* apparently does not insist on the EOF marker, nor on a lack of
|
|
* trailing bytes.
|
|
*/
|
|
while (true) {
|
|
uint16_t b;
|
|
if (input->remaining_bits == 16) {
|
|
ssize_t ret;
|
|
if (input->byte_pos == input->byte_size) {
|
|
/* FIN */
|
|
break;
|
|
}
|
|
ret = pull_bits(input);
|
|
if (ret) {
|
|
return ret;
|
|
}
|
|
}
|
|
input->remaining_bits--;
|
|
b = (input->bits >> input->remaining_bits) & 1;
|
|
if (seen_eof_marker) {
|
|
/*
|
|
* we have read an EOF symbols. Now we just want to
|
|
* see zeroes.
|
|
*/
|
|
if (b != 0) {
|
|
return LZXPRESS_ERROR;
|
|
}
|
|
continue;
|
|
}
|
|
|
|
/* we're pulling in a symbol, which had better be 256 */
|
|
index <<= 1;
|
|
index += b + 1;
|
|
if (input->table[index] == 0xffff) {
|
|
continue;
|
|
}
|
|
|
|
symbol = input->table[index] & 511;
|
|
if (symbol != 256) {
|
|
return LZXPRESS_ERROR;
|
|
}
|
|
seen_eof_marker = true;
|
|
continue;
|
|
}
|
|
|
|
if (! seen_eof_marker) {
|
|
return LZXPRESS_ERROR;
|
|
}
|
|
|
|
return output_pos;
|
|
}
|
|
|
|
static ssize_t lzxpress_huffman_decompress_internal(struct bitstream *input,
|
|
uint8_t *output,
|
|
size_t output_size)
|
|
{
|
|
size_t output_pos = 0;
|
|
|
|
if (input->byte_size < 260) {
|
|
return LZXPRESS_ERROR;
|
|
}
|
|
|
|
while (input->byte_pos < input->byte_size) {
|
|
ssize_t block_output_pos;
|
|
ssize_t block_output_size;
|
|
size_t remaining_output_size = output_size - output_pos;
|
|
|
|
block_output_size = MIN(65536, remaining_output_size);
|
|
|
|
block_output_pos = lzx_huffman_decompress_block(
|
|
input,
|
|
output + output_pos,
|
|
block_output_size,
|
|
remaining_output_size,
|
|
output_pos);
|
|
|
|
if (block_output_pos < block_output_size) {
|
|
return LZXPRESS_ERROR;
|
|
}
|
|
output_pos += block_output_pos;
|
|
if (output_pos > output_size) {
|
|
/* not expecting to get here. */
|
|
return LZXPRESS_ERROR;
|
|
}
|
|
}
|
|
|
|
if (input->byte_pos != input->byte_size) {
|
|
return LZXPRESS_ERROR;
|
|
}
|
|
|
|
return output_pos;
|
|
}
|
|
|
|
|
|
/*
|
|
* lzxpress_huffman_decompress()
|
|
*
|
|
* output_size must be the expected length of the decompressed data.
|
|
* input_size and output_size are limited to the minimum of UINT32_MAX and
|
|
* SSIZE_MAX. On 64 bit machines that will be UINT32_MAX, or 4GB.
|
|
*
|
|
* @param input_bytes memory to be decompressed.
|
|
* @param input_size length of the compressed buffer.
|
|
* @param output destination for the decompressed data.
|
|
* @param output_size exact expected length of the decompressed data.
|
|
*
|
|
* @return the number of bytes written or -1 on error.
|
|
*/
|
|
|
|
ssize_t lzxpress_huffman_decompress(const uint8_t *input_bytes,
|
|
size_t input_size,
|
|
uint8_t *output,
|
|
size_t output_size)
|
|
{
|
|
uint16_t table[65536];
|
|
struct bitstream input = {
|
|
.bytes = input_bytes,
|
|
.byte_size = input_size,
|
|
.byte_pos = 0,
|
|
.bits = 0,
|
|
.remaining_bits = 0,
|
|
.table = table
|
|
};
|
|
|
|
if (input_size > SSIZE_MAX ||
|
|
input_size > UINT32_MAX ||
|
|
output_size > SSIZE_MAX ||
|
|
output_size > UINT32_MAX ||
|
|
input_size == 0 ||
|
|
output_size == 0 ||
|
|
input_bytes == NULL ||
|
|
output == NULL) {
|
|
/*
|
|
* We use negative ssize_t to return errors, which is limiting
|
|
* on 32 bit machines, and the 4GB limit exists on Windows.
|
|
*/
|
|
return LZXPRESS_ERROR;
|
|
}
|
|
|
|
return lzxpress_huffman_decompress_internal(&input,
|
|
output,
|
|
output_size);
|
|
}
|
|
|
|
|
|
/**
|
|
* lzxpress_huffman_decompress_talloc()
|
|
*
|
|
* The caller must provide the exact size of the expected output.
|
|
*
|
|
* The input_size is limited to the minimum of UINT32_MAX and SSIZE_MAX, but
|
|
* output_size is limited to 256MB due to a limit in talloc. This effectively
|
|
* limits input_size too, as non-crafted compressed data will not exceed the
|
|
* decompressed size by very much.
|
|
*
|
|
* @param mem_ctx TALLOC_CTX parent for the decompressed buffer.
|
|
* @param input_bytes memory to be decompressed.
|
|
* @param input_size length of the compressed buffer.
|
|
* @param output_size expected decompressed size.
|
|
*
|
|
* @return a talloc'ed buffer exactly output_size in length, or NULL.
|
|
*/
|
|
|
|
uint8_t *lzxpress_huffman_decompress_talloc(TALLOC_CTX *mem_ctx,
|
|
const uint8_t *input_bytes,
|
|
size_t input_size,
|
|
size_t output_size)
|
|
{
|
|
ssize_t result;
|
|
uint8_t *output = NULL;
|
|
struct bitstream input = {
|
|
.bytes = input_bytes,
|
|
.byte_size = input_size
|
|
};
|
|
|
|
output = talloc_array(mem_ctx, uint8_t, output_size);
|
|
if (output == NULL) {
|
|
return NULL;
|
|
}
|
|
|
|
input.table = talloc_array(mem_ctx, uint16_t, 65536);
|
|
if (input.table == NULL) {
|
|
talloc_free(output);
|
|
return NULL;
|
|
}
|
|
result = lzxpress_huffman_decompress_internal(&input,
|
|
output,
|
|
output_size);
|
|
talloc_free(input.table);
|
|
|
|
if (result != output_size) {
|
|
talloc_free(output);
|
|
return NULL;
|
|
}
|
|
return output;
|
|
}
|