1
0
mirror of https://github.com/samba-team/samba.git synced 2025-01-04 05:18:06 +03:00
samba-mirror/lib/talloc/talloc.h

1322 lines
46 KiB
C

#ifndef _TALLOC_H_
#define _TALLOC_H_
/*
Unix SMB/CIFS implementation.
Samba temporary memory allocation functions
Copyright (C) Andrew Tridgell 2004-2005
Copyright (C) Stefan Metzmacher 2006
** NOTE! The following LGPL license applies to the talloc
** library. This does NOT imply that all of Samba is released
** under the LGPL
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 3 of the License, or (at your option) any later version.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with this library; if not, see <http://www.gnu.org/licenses/>.
*/
#include <stdlib.h>
#include <stdio.h>
#include <stdarg.h>
/** \mainpage
*
* \section intro_sec Introduction
*
* Talloc is a hierarchical, reference counted memory pool system with
* destructors. Quite a mouthful really, but not too bad once you get used to
* it.
*
* Perhaps the biggest difference from other memory pool systems is that there
* is no distinction between a "talloc context" and a "talloc pointer". Any
* pointer returned from talloc() is itself a valid talloc context. This means
* you can do this:
*
* \code
* struct foo *X = talloc(mem_ctx, struct foo);
* X->name = talloc_strdup(X, "foo");
* \endcode
*
* and the pointer X->name would be a "child" of the talloc context "X" which
* is itself a child of mem_ctx. So if you do talloc_free(mem_ctx) then it is
* all destroyed, whereas if you do talloc_free(X) then just X and X->name are
* destroyed, and if you do talloc_free(X->name) then just the name element of
* X is destroyed.
*
* If you think about this, then what this effectively gives you is an n-ary
* tree, where you can free any part of the tree with talloc_free().
*
* To start, you should probably first look at the definitions of
* ::TALLOC_CTX, talloc_init(), talloc() and talloc_free().
*
* \section named_blocks Named blocks
*
* Every talloc chunk has a name that can be used as a dynamic type-checking
* system. If for some reason like a callback function you had to cast a
* "struct foo *" to a "void *" variable, later you can safely reassign the
* "void *" pointer to a "struct foo *" by using the talloc_get_type() or
* talloc_get_type_abort() macros.
*
* \code
* struct foo *X = talloc_get_type_abort(ptr, struct foo);
* \endcode
*
* This will abort if "ptr" does not contain a pointer that has been created
* with talloc(mem_ctx, struct foo).
*
* \section multi_threading Multi-Threading
*
* talloc itself does not deal with threads. It is thread-safe (assuming the
* underlying "malloc" is), as long as each thread uses different memory
* contexts.
*
* If two threads uses the same context then they need to synchronize in order
* to be safe. In particular:
*
*
* - when using talloc_enable_leak_report(), giving directly NULL as a
* parent context implicitly refers to a hidden "null context" global
* variable, so this should not be used in a multi-threaded environment
* without proper synchronization
* - the context returned by talloc_autofree_context() is also global so
* shouldn't be used by several threads simultaneously without
* synchronization.
*/
/** \defgroup talloc_basic Basic Talloc Routines
*
* This module contains the basic talloc routines that are used in everyday
* programming.
*/
/**
* \defgroup talloc_ref Talloc References
*
* This module contains the definitions around talloc references
*/
/**
* \defgroup talloc_array Array routines
*
* Talloc contains some handy helpers for handling Arrays conveniently
*/
/**
* \defgroup talloc_string String handling routines
*
* Talloc contains some handy string handling functions
*/
/**
* \defgroup talloc_debug Debugging support routines
*
* To aid memory debugging, talloc contains routines to inspect the currently
* allocated memory hierarchy.
*/
/**
* \defgroup talloc_internal Internal routines
*
* To achieve type-safety, talloc.h defines a lot of macros with type
* casts. These macros define the user interface to the internal routines you
* find here. You should not really use these routines directly but go through
* the external API.
*/
/**
* \defgroup talloc_undoc Default group of undocumented stuff
*
* This should be empty...
*/
/*\{*/
/**
* \typedef TALLOC_CTX
* \brief Define a talloc parent type
* \ingroup talloc_basic
*
* As talloc is a hierarchial memory allocator, every talloc chunk is a
* potential parent to other talloc chunks. So defining a separate type for a
* talloc chunk is not strictly necessary. TALLOC_CTX is defined nevertheless,
* as it provides an indicator for function arguments. You will frequently
* write code like
*
* \code
* struct foo *foo_create(TALLOC_CTX *mem_ctx)
* {
* struct foo *result;
* result = talloc(mem_ctx, struct foo);
* if (result == NULL) return NULL;
* ... initialize foo ...
* return result;
* }
* \endcode
*
* In this type of allocating functions it is handy to have a general
* TALLOC_CTX type to indicate which parent to put allocated structures on.
*/
typedef void TALLOC_CTX;
/*
this uses a little trick to allow __LINE__ to be stringified
*/
#ifndef __location__
#define __TALLOC_STRING_LINE1__(s) #s
#define __TALLOC_STRING_LINE2__(s) __TALLOC_STRING_LINE1__(s)
#define __TALLOC_STRING_LINE3__ __TALLOC_STRING_LINE2__(__LINE__)
#define __location__ __FILE__ ":" __TALLOC_STRING_LINE3__
#endif
#ifndef TALLOC_DEPRECATED
#define TALLOC_DEPRECATED 0
#endif
#ifndef PRINTF_ATTRIBUTE
#if (__GNUC__ >= 3)
/** Use gcc attribute to check printf fns. a1 is the 1-based index of
* the parameter containing the format, and a2 the index of the first
* argument. Note that some gcc 2.x versions don't handle this
* properly **/
#define PRINTF_ATTRIBUTE(a1, a2) __attribute__ ((format (__printf__, a1, a2)))
#else
#define PRINTF_ATTRIBUTE(a1, a2)
#endif
#endif
/**
* \def talloc_set_destructor
* \brief Assign a function to be called when a chunk is freed
* \param ptr The talloc chunk to add a destructor to
* \param function The destructor function to be called
* \ingroup talloc_basic
*
* The function talloc_set_destructor() sets the "destructor" for the pointer
* "ptr". A destructor is a function that is called when the memory used by a
* pointer is about to be released. The destructor receives the pointer as an
* argument, and should return 0 for success and -1 for failure.
*
* The destructor can do anything it wants to, including freeing other pieces
* of memory. A common use for destructors is to clean up operating system
* resources (such as open file descriptors) contained in the structure the
* destructor is placed on.
*
* You can only place one destructor on a pointer. If you need more than one
* destructor then you can create a zero-length child of the pointer and place
* an additional destructor on that.
*
* To remove a destructor call talloc_set_destructor() with NULL for the
* destructor.
*
* If your destructor attempts to talloc_free() the pointer that it is the
* destructor for then talloc_free() will return -1 and the free will be
* ignored. This would be a pointless operation anyway, as the destructor is
* only called when the memory is just about to go away.
*/
/**
* \def talloc_steal(ctx, ptr)
* \brief Change a talloc chunk's parent
* \param ctx The new parent context
* \param ptr The talloc chunk to move
* \return ptr
* \ingroup talloc_basic
*
* The talloc_steal() function changes the parent context of a talloc
* pointer. It is typically used when the context that the pointer is
* currently a child of is going to be freed and you wish to keep the
* memory for a longer time.
*
* The talloc_steal() function returns the pointer that you pass it. It
* does not have any failure modes.
*
* NOTE: It is possible to produce loops in the parent/child relationship
* if you are not careful with talloc_steal(). No guarantees are provided
* as to your sanity or the safety of your data if you do this.
*
* To make the changed hierarchy less error-prone, you might consider to use
* talloc_move().
*
* talloc_steal (ctx, NULL) will return NULL with no sideeffects.
*/
/* try to make talloc_set_destructor() and talloc_steal() type safe,
if we have a recent gcc */
#if (__GNUC__ >= 3)
#define _TALLOC_TYPEOF(ptr) __typeof__(ptr)
#define talloc_set_destructor(ptr, function) \
do { \
int (*_talloc_destructor_fn)(_TALLOC_TYPEOF(ptr)) = (function); \
_talloc_set_destructor((ptr), (int (*)(void *))_talloc_destructor_fn); \
} while(0)
/* this extremely strange macro is to avoid some braindamaged warning
stupidity in gcc 4.1.x */
#define talloc_steal(ctx, ptr) ({ _TALLOC_TYPEOF(ptr) __talloc_steal_ret = (_TALLOC_TYPEOF(ptr))_talloc_steal((ctx),(ptr)); __talloc_steal_ret; })
#else
#define talloc_set_destructor(ptr, function) \
_talloc_set_destructor((ptr), (int (*)(void *))(function))
#define _TALLOC_TYPEOF(ptr) void *
#define talloc_steal(ctx, ptr) (_TALLOC_TYPEOF(ptr))_talloc_steal((ctx),(ptr))
#endif
/**
* \def talloc_reference(ctx, ptr)
* \brief Create an additional talloc parent to a pointer
* \param ctx The additional parent
* \param ptr The pointer you want to create an additional parent for
* \return ptr
* \ingroup talloc_ref
*
* The talloc_reference() function makes "context" an additional parent of
* "ptr".
*
* The return value of talloc_reference() is always the original pointer
* "ptr", unless talloc ran out of memory in creating the reference in which
* case it will return NULL (each additional reference consumes around 48
* bytes of memory on intel x86 platforms).
*
* If "ptr" is NULL, then the function is a no-op, and simply returns NULL.
*
* After creating a reference you can free it in one of the following ways:
*
* - you can talloc_free() any parent of the original pointer. That
* will reduce the number of parents of this pointer by 1, and will
* cause this pointer to be freed if it runs out of parents.
*
* - you can talloc_free() the pointer itself. That will destroy the
* most recently established parent to the pointer and leave the
* pointer as a child of its current parent.
*
* For more control on which parent to remove, see talloc_unlink()
*/
#define talloc_reference(ctx, ptr) (_TALLOC_TYPEOF(ptr))_talloc_reference((ctx),(ptr))
/**
* \def talloc_move(ctx, ptr)
* \brief Change a talloc chunk's parent
* \param ctx The new parent context
* \param ptr Pointer to the talloc chunk to move
* \return ptr
* \ingroup talloc_basic
*
* talloc_move() has the same effect as talloc_steal(), and additionally sets
* the source pointer to NULL. You would use it like this:
*
* \code
* struct foo *X = talloc(tmp_ctx, struct foo);
* struct foo *Y;
* Y = talloc_move(new_ctx, &X);
* \endcode
*/
#define talloc_move(ctx, ptr) (_TALLOC_TYPEOF(*(ptr)))_talloc_move((ctx),(void *)(ptr))
/* useful macros for creating type checked pointers */
/**
* \def talloc(ctx, type)
* \brief Main entry point to allocate structures
* \param ctx The talloc context to hang the result off
* \param type The type that we want to allocate
* \return Pointer to a piece of memory, properly cast to "type *"
* \ingroup talloc_basic
*
* The talloc() macro is the core of the talloc library. It takes a memory
* context and a type, and returns a pointer to a new area of memory of the
* given type.
*
* The returned pointer is itself a talloc context, so you can use it as the
* context argument to more calls to talloc if you wish.
*
* The returned pointer is a "child" of the supplied context. This means that
* if you talloc_free() the context then the new child disappears as
* well. Alternatively you can free just the child.
*
* The context argument to talloc() can be NULL, in which case a new top
* level context is created.
*/
#define talloc(ctx, type) (type *)talloc_named_const(ctx, sizeof(type), #type)
/**
* \def talloc_size(ctx, size)
* \brief Untyped allocation
* \param ctx The talloc context to hang the result off
* \param size Number of char's that you want to allocate
* \return The allocated memory chunk
* \ingroup talloc_basic
*
* The function talloc_size() should be used when you don't have a convenient
* type to pass to talloc(). Unlike talloc(), it is not type safe (as it
* returns a void *), so you are on your own for type checking.
*/
#define talloc_size(ctx, size) talloc_named_const(ctx, size, __location__)
/**
* \def talloc_ptrtype(ctx, ptr)
* \brief Allocate into a typed pointer
* \param ctx The talloc context to hang the result off
* \param ptr The pointer you want to assign the result to
* \result The allocated memory chunk, properly cast
* \ingroup talloc_basic
*
* The talloc_ptrtype() macro should be used when you have a pointer and
* want to allocate memory to point at with this pointer. When compiling
* with gcc >= 3 it is typesafe. Note this is a wrapper of talloc_size()
* and talloc_get_name() will return the current location in the source file.
* and not the type.
*/
#define talloc_ptrtype(ctx, ptr) (_TALLOC_TYPEOF(ptr))talloc_size(ctx, sizeof(*(ptr)))
/**
* \def talloc_new(ctx)
* \brief Allocate a new 0-sized talloc chunk
* \param ctx The talloc parent context
* \return A new talloc chunk
* \ingroup talloc_basic
*
* This is a utility macro that creates a new memory context hanging off an
* exiting context, automatically naming it "talloc_new: __location__" where
* __location__ is the source line it is called from. It is particularly
* useful for creating a new temporary working context.
*/
#define talloc_new(ctx) talloc_named_const(ctx, 0, "talloc_new: " __location__)
/**
* \def talloc_zero(ctx, type)
* \brief Allocate a 0-initizialized structure
* \param ctx The talloc context to hang the result off
* \param type The type that we want to allocate
* \return Pointer to a piece of memory, properly cast to "type *"
* \ingroup talloc_basic
*
* The talloc_zero() macro is equivalent to:
*
* \code
* ptr = talloc(ctx, type);
* if (ptr) memset(ptr, 0, sizeof(type));
* \endcode
*/
#define talloc_zero(ctx, type) (type *)_talloc_zero(ctx, sizeof(type), #type)
/**
* \def talloc_zero_size(ctx, size)
* \brief Untyped, 0-initialized allocation
* \param ctx The talloc context to hang the result off
* \param size Number of char's that you want to allocate
* \return The allocated memory chunk
* \ingroup talloc_basic
*
* The talloc_zero_size() macro is equivalent to:
*
* \code
* ptr = talloc_size(ctx, size);
* if (ptr) memset(ptr, 0, size);
* \endcode
*/
#define talloc_zero_size(ctx, size) _talloc_zero(ctx, size, __location__)
#define talloc_zero_array(ctx, type, count) (type *)_talloc_zero_array(ctx, sizeof(type), count, #type)
/**
* \def talloc_array(ctx, type, count)
* \brief Allocate an array
* \param ctx The talloc context to hang the result off
* \param type The type that we want to allocate
* \param count The number of "type" elements you want to allocate
* \return The allocated result, properly cast to "type *"
* \ingroup talloc_array
*
* The talloc_array() macro is equivalent to::
*
* \code
* (type *)talloc_size(ctx, sizeof(type) * count);
* \endcode
*
* except that it provides integer overflow protection for the multiply,
* returning NULL if the multiply overflows.
*/
#define talloc_array(ctx, type, count) (type *)_talloc_array(ctx, sizeof(type), count, #type)
/**
* \def talloc_array_size(ctx, size, count)
* \brief Allocate an array
* \param ctx The talloc context to hang the result off
* \param size The size of an array element
* \param count The number of "type" elements you want to allocate
* \return The allocated result, properly cast to "type *"
* \ingroup talloc_array
*
* The talloc_array_size() function is useful when the type is not
* known. It operates in the same way as talloc_array(), but takes a size
* instead of a type.
*/
#define talloc_array_size(ctx, size, count) _talloc_array(ctx, size, count, __location__)
/**
* \def talloc_array_ptrtype(ctx, ptr, count)
* \brief Allocate an array into a typed pointer
* \param ctx The talloc context to hang the result off
* \param ptr The pointer you want to assign the result to
* \param count The number of elements you want to allocate
* \result The allocated memory chunk, properly cast
* \ingroup talloc_array
*
* The talloc_array_ptrtype() macro should be used when you have a pointer to
* an array and want to allocate memory of an array to point at with this
* pointer. When compiling with gcc >= 3 it is typesafe. Note this is a
* wrapper of talloc_array_size() and talloc_get_name() will return the
* current location in the source file. and not the type.
*/
#define talloc_array_ptrtype(ctx, ptr, count) (_TALLOC_TYPEOF(ptr))talloc_array_size(ctx, sizeof(*(ptr)), count)
/**
* \def talloc_array_length(ctx)
* \brief Return the number of elements in a talloc'ed array
* \param ctx The talloc'ed array
* \return The number of elements in ctx
* \ingroup talloc_array
*
* A talloc chunk carries its own size, so for talloc'ed arrays it is not
* necessary to store the number of elements explicitly.
*/
#define talloc_array_length(ctx) ((ctx) ? talloc_get_size(ctx)/sizeof(*ctx) : 0)
/**
* \def talloc_realloc(ctx, p, type, count)
* \brief Change the size of a talloc array
* \param ctx The parent context used if "p" is NULL
* \param p The chunk to be resized
* \param type The type of the array element inside p
* \param count The intended number of array elements
* \return The new array
* \ingroup talloc_array
*
* The talloc_realloc() macro changes the size of a talloc
* pointer. The "count" argument is the number of elements of type "type"
* that you want the resulting pointer to hold.
*
* talloc_realloc() has the following equivalences::
*
* \code
* talloc_realloc(context, NULL, type, 1) ==> talloc(context, type);
* talloc_realloc(context, NULL, type, N) ==> talloc_array(context, type, N);
* talloc_realloc(context, ptr, type, 0) ==> talloc_free(ptr);
* \endcode
*
* The "context" argument is only used if "ptr" is NULL, otherwise it is
* ignored.
*
* talloc_realloc() returns the new pointer, or NULL on failure. The call
* will fail either due to a lack of memory, or because the pointer has
* more than one parent (see talloc_reference()).
*/
#define talloc_realloc(ctx, p, type, count) (type *)_talloc_realloc_array(ctx, p, sizeof(type), count, #type)
/**
* \def talloc_realloc_size(ctx, ptr, size)
* \brief Untyped realloc
* \param ctx The parent context used if "ptr" is NULL
* \param ptr The chunk to be resized
* \param size The new chunk size
* \return The new chunk
* \ingroup talloc_array
*
* The talloc_realloc_size() function is useful when the type is not known so
* the typesafe talloc_realloc() cannot be used.
*/
#define talloc_realloc_size(ctx, ptr, size) _talloc_realloc(ctx, ptr, size, __location__)
/**
* \def talloc_memdup(t, p, size)
* \brief Duplicate a memory area into a talloc chunk
* \param t The talloc context to hang the result off
* \param p The memory chunk you want to duplicate
* \param size Number of char's that you want copy
* \return The allocated memory chunk
* \ingroup talloc_basic
*
* The talloc_memdup() function is equivalent to::
*
* \code
* ptr = talloc_size(ctx, size);
* if (ptr) memcpy(ptr, p, size);
* \endcode
*/
#define talloc_memdup(t, p, size) _talloc_memdup(t, p, size, __location__)
/**
* \def talloc_set_type(ptr, type)
* \brief Assign a type to a talloc chunk
* \param ptr The talloc chunk to assign the type to
* \param type The type to assign
* \ingroup talloc_basic
*
* This macro allows you to force the name of a pointer to be a
* particular type. This can be used in conjunction with
* talloc_get_type() to do type checking on void* pointers.
*
* It is equivalent to this::
*
* \code
* talloc_set_name_const(ptr, #type)
* \endcode
*/
#define talloc_set_type(ptr, type) talloc_set_name_const(ptr, #type)
/**
* \def talloc_get_type(ptr, type)
* \brief Get a typed pointer out of a talloc pointer
* \param ptr The talloc pointer to check
* \param type The type to check against
* \return ptr, properly cast, or NULL
* \ingroup talloc_basic
*
* This macro allows you to do type checking on talloc pointers. It is
* particularly useful for void* private pointers. It is equivalent to
* this:
*
* \code
* (type *)talloc_check_name(ptr, #type)
* \endcode
*/
#define talloc_get_type(ptr, type) (type *)talloc_check_name(ptr, #type)
/**
* \def talloc_get_type_abort(ptr, type)
* \brief Helper macro to safely turn a void * into a typed pointer
* \param ptr The void * to convert
* \param type The type that this chunk contains
* \return Same value as ptr, type-checked and properly cast
* \ingroup talloc_basic
*
* This macro is used together with talloc(mem_ctx, struct foo). If you had to
* assing the talloc chunk pointer to some void * variable,
* talloc_get_type_abort() is the recommended way to get the convert the void
* pointer back to a typed pointer.
*/
#define talloc_get_type_abort(ptr, type) (type *)_talloc_get_type_abort(ptr, #type, __location__)
/**
* \def talloc_find_parent_bytype(ptr, type)
* \brief Find a parent context by type
* \param ptr The talloc chunk to start from
* \param type The type of the parent to look for
* \ingroup talloc_basic
*
* Find a parent memory context of the current context that has the given
* name. This can be very useful in complex programs where it may be
* difficult to pass all information down to the level you need, but you
* know the structure you want is a parent of another context.
*
* Like talloc_find_parent_byname() but takes a type, making it typesafe.
*/
#define talloc_find_parent_bytype(ptr, type) (type *)talloc_find_parent_byname(ptr, #type)
#if TALLOC_DEPRECATED
#define talloc_zero_p(ctx, type) talloc_zero(ctx, type)
#define talloc_p(ctx, type) talloc(ctx, type)
#define talloc_array_p(ctx, type, count) talloc_array(ctx, type, count)
#define talloc_realloc_p(ctx, p, type, count) talloc_realloc(ctx, p, type, count)
#define talloc_destroy(ctx) talloc_free(ctx)
#define talloc_append_string(c, s, a) (s?talloc_strdup_append(s,a):talloc_strdup(c, a))
#endif
/**
* \def TALLOC_FREE(ctx)
* \brief talloc_free a chunk and NULL out the pointer
* \param ctx The chunk to be freed
* \ingroup talloc_basic
*
* TALLOC_FREE() frees a pointer and sets it to NULL. Use this if you want
* immediate feedback (i.e. crash) if you use a pointer after having free'ed
* it.
*/
#define TALLOC_FREE(ctx) do { talloc_free(ctx); ctx=NULL; } while(0)
/**
* \brief Allocate untyped, unnamed memory
* \param context The talloc context to hang the result off
* \param size Number of char's that you want to allocate
* \return The allocated memory chunk
* \ingroup talloc_internal
*
* Essentially the same as talloc_size() without setting the chunk name to the
* current file/line number.
*/
void *_talloc(const void *context, size_t size);
/**
* \brief Allocate a talloc pool
* \param context The talloc context to hang the result off
* \param size Size of the talloc pool
* \result The talloc pool
* \ingroup talloc_basic
*
* A talloc pool is a pure optimization for specific situations. In the
* release process for Samba 3.2 we found out that we had become considerably
* slower than Samba 3.0 was. Profiling showed that malloc(3) was a large CPU
* consumer in benchmarks. For Samba 3.2 we have internally converted many
* static buffers to dynamically allocated ones, so malloc(3) being beaten
* more was no surprise. But it made us slower.
*
* talloc_pool() is an optimization to call malloc(3) a lot less for the use
* pattern Samba has: The SMB protocol is mainly a request/response protocol
* where we have to allocate a certain amount of memory per request and free
* that after the SMB reply is sent to the client.
*
* talloc_pool() creates a talloc chunk that you can use as a talloc parent
* exactly as you would use any other ::TALLOC_CTX. The difference is that
* when you talloc a child of this pool, no malloc(3) is done. Instead, talloc
* just increments a pointer inside the talloc_pool. This also works
* recursively. If you use the child of the talloc pool as a parent for
* grand-children, their memory is also taken from the talloc pool.
*
* If you talloc_free() children of a talloc pool, the memory is not given
* back to the system. Instead, free(3) is only called if the talloc_pool()
* itself is released with talloc_free().
*
* The downside of a talloc pool is that if you talloc_move() a child of a
* talloc pool to a talloc parent outside the pool, the whole pool memory is
* not free(3)'ed until that moved chunk is also talloc_free()ed.
*/
void *talloc_pool(const void *context, size_t size);
void _talloc_set_destructor(const void *ptr, int (*destructor)(void *));
/**
* \brief Increase the reference count of a talloc chunk
* \param ptr
* \return success?
* \ingroup talloc_ref
*
* The talloc_increase_ref_count(ptr) function is exactly equivalent to:
*
* \code
* talloc_reference(NULL, ptr);
* \endcode
*
* You can use either syntax, depending on which you think is clearer in
* your code.
*
* It returns 0 on success and -1 on failure.
*/
int talloc_increase_ref_count(const void *ptr);
/**
* \brief Return the number of references to a talloc chunk
* \param ptr The chunk you are interested in
* \return Number of refs
* \ingroup talloc_ref
*/
size_t talloc_reference_count(const void *ptr);
void *_talloc_reference(const void *context, const void *ptr);
/**
* \brief Remove a specific parent from a talloc chunk
* \param context The talloc parent to remove
* \param ptr The talloc ptr you want to remove the parent from
* \ingroup talloc_ref
*
* The talloc_unlink() function removes a specific parent from ptr. The
* context passed must either be a context used in talloc_reference() with
* this pointer, or must be a direct parent of ptr.
*
* Note that if the parent has already been removed using talloc_free() then
* this function will fail and will return -1. Likewise, if "ptr" is NULL,
* then the function will make no modifications and return -1.
*
* Usually you can just use talloc_free() instead of talloc_unlink(), but
* sometimes it is useful to have the additional control on which parent is
* removed.
*/
int talloc_unlink(const void *context, void *ptr);
/**
* \brief Assign a name to a talloc chunk
* \param ptr The talloc chunk to assign a name to
* \param fmt Format string for the name
* \param ... printf-style additional arguments
* \return The assigned name
* \ingroup talloc_basic
*
* Each talloc pointer has a "name". The name is used principally for
* debugging purposes, although it is also possible to set and get the name on
* a pointer in as a way of "marking" pointers in your code.
*
* The main use for names on pointer is for "talloc reports". See
* talloc_report() and talloc_report_full() for details. Also see
* talloc_enable_leak_report() and talloc_enable_leak_report_full().
*
* The talloc_set_name() function allocates memory as a child of the
* pointer. It is logically equivalent to:
*
* \code
* talloc_set_name_const(ptr, talloc_asprintf(ptr, fmt, ...));
* \endcode
*
* Note that multiple calls to talloc_set_name() will allocate more memory
* without releasing the name. All of the memory is released when the ptr is
* freed using talloc_free().
*/
const char *talloc_set_name(const void *ptr, const char *fmt, ...) PRINTF_ATTRIBUTE(2,3);
/**
* \brief Assign a name to a talloc chunk
* \param ptr The talloc chunk to assign a name to
* \param name Format string for the name
* \ingroup talloc_basic
*
* The function talloc_set_name_const() is just like talloc_set_name(), but it
* takes a string constant, and is much faster. It is extensively used by the
* "auto naming" macros, such as talloc_p().
*
* This function does not allocate any memory. It just copies the supplied
* pointer into the internal representation of the talloc ptr. This means you
* must not pass a name pointer to memory that will disappear before the ptr
* is freed with talloc_free().
*/
void talloc_set_name_const(const void *ptr, const char *name);
/**
* \brief Create a named talloc chunk
* \param context The talloc context to hang the result off
* \param size Number of char's that you want to allocate
* \param fmt Format string for the name
* \param ... printf-style additional arguments
* \return The allocated memory chunk
* \ingroup talloc_basic
*
* The talloc_named() function creates a named talloc pointer. It is
* equivalent to:
*
* \code
* ptr = talloc_size(context, size);
* talloc_set_name(ptr, fmt, ....);
* \endcode
*
*/
void *talloc_named(const void *context, size_t size,
const char *fmt, ...) PRINTF_ATTRIBUTE(3,4);
/**
* \brief Basic routine to allocate a chunk of memory
* \param context The parent context
* \param size The number of char's that we want to allocate
* \param name The name the talloc block has
* \return The allocated chunk
* \ingroup talloc_basic
*
* This is equivalent to:
*
* \code
* ptr = talloc_size(context, size);
* talloc_set_name_const(ptr, name);
* \endcode
*/
void *talloc_named_const(const void *context, size_t size, const char *name);
/**
* \brief Return the name of a talloc chunk
* \param ptr The talloc chunk
* \return The name
* \ingroup talloc_basic
*
* This returns the current name for the given talloc pointer. See
* talloc_set_name() for details.
*/
const char *talloc_get_name(const void *ptr);
/**
* \brief Verify that a talloc chunk carries a specified name
* \param ptr The talloc chunk to check
* \param name The name to check agains
* \ingroup talloc_basic
*
* This function checks if a pointer has the specified name. If it does
* then the pointer is returned. It it doesn't then NULL is returned.
*/
void *talloc_check_name(const void *ptr, const char *name);
void *_talloc_get_type_abort(const void *ptr, const char *name, const char *location);
/**
* \brief Return the parent chunk of a pointer
* \param ptr The talloc pointer to inspect
* \return The talloc parent of "ptr"
* \ingroup talloc_basic
*
* Return the parent chunk of a pointer
*/
void *talloc_parent(const void *ptr);
/**
* \brief Return a talloc chunk's parent name
* \param ptr The talloc pointer to inspect
* \return The name of ptr's parent chunk
* \ingroup talloc_basic
*
* Return a talloc chunk's parent name
*/
const char *talloc_parent_name(const void *ptr);
/**
* \brief Create a new top level talloc context
* \param fmt Format string for the name
* \param ... printf-style additional arguments
* \return The allocated memory chunk
* \ingroup talloc_basic
*
* This function creates a zero length named talloc context as a top level
* context. It is equivalent to:
*
* \code
* talloc_named(NULL, 0, fmt, ...);
* \endcode
*/
void *talloc_init(const char *fmt, ...) PRINTF_ATTRIBUTE(1,2);
/**
* \brief Free a chunk of talloc memory
* \param ptr The chunk to be freed
* \return success?
* \ingroup talloc_basic
*
* The talloc_free() function frees a piece of talloc memory, and all its
* children. You can call talloc_free() on any pointer returned by talloc().
*
* The return value of talloc_free() indicates success or failure, with 0
* returned for success and -1 for failure. The only possible failure
* condition is if the pointer had a destructor attached to it and the
* destructor returned -1. See talloc_set_destructor() for details on
* destructors.
*
* If this pointer has an additional parent when talloc_free() is called
* then the memory is not actually released, but instead the most
* recently established parent is destroyed. See talloc_reference() for
* details on establishing additional parents.
*
* For more control on which parent is removed, see talloc_unlink()
*
* talloc_free() operates recursively on its children.
*/
int talloc_free(void *ptr);
/**
* \brief Free a talloc chunk's children
* \param ptr The chunk that you want to free the children of
* \return success?
* \ingroup talloc_basic
*
* The talloc_free_children() walks along the list of all children of a talloc
* context and talloc_free()s only the children, not the context itself.
*/
void talloc_free_children(void *ptr);
void *_talloc_realloc(const void *context, void *ptr, size_t size, const char *name);
void *_talloc_steal(const void *new_ctx, const void *ptr);
void *_talloc_move(const void *new_ctx, const void *pptr);
/**
* \brief Return the total size of a talloc chunk including its children
* \param ptr The talloc chunk
* \return The total size
* \ingroup talloc_basic
*
* The talloc_total_size() function returns the total size in bytes used
* by this pointer and all child pointers. Mostly useful for debugging.
*
* Passing NULL is allowed, but it will only give a meaningful result if
* talloc_enable_leak_report() or talloc_enable_leak_report_full() has
* been called.
*/
size_t talloc_total_size(const void *ptr);
/**
* \brief Return the number of talloc chunks hanging off a chunk
* \param ptr The talloc chunk
* \return The total size
* \ingroup talloc_basic
*
* The talloc_total_blocks() function returns the total memory block
* count used by this pointer and all child pointers. Mostly useful for
* debugging.
*
* Passing NULL is allowed, but it will only give a meaningful result if
* talloc_enable_leak_report() or talloc_enable_leak_report_full() has
* been called.
*/
size_t talloc_total_blocks(const void *ptr);
/**
* \brief Walk a complete talloc hierarchy
* \param ptr The talloc chunk
* \param depth Internal parameter to control recursion. Call with 0.
* \param max_depth Maximum recursion level.
* \param callback Function to be called on every chunk
* \param private_data Private pointer passed to callback
* \ingroup talloc_debug
*
* This provides a more flexible reports than talloc_report(). It
* will recursively call the callback for the entire tree of memory
* referenced by the pointer. References in the tree are passed with
* is_ref = 1 and the pointer that is referenced.
*
* You can pass NULL for the pointer, in which case a report is
* printed for the top level memory context, but only if
* talloc_enable_leak_report() or talloc_enable_leak_report_full()
* has been called.
*
* The recursion is stopped when depth >= max_depth.
* max_depth = -1 means only stop at leaf nodes.
*/
void talloc_report_depth_cb(const void *ptr, int depth, int max_depth,
void (*callback)(const void *ptr,
int depth, int max_depth,
int is_ref,
void *private_data),
void *private_data);
/**
* \brief Print a talloc hierarchy
* \param ptr The talloc chunk
* \param depth Internal parameter to control recursion. Call with 0.
* \param max_depth Maximum recursion level.
* \param f The file handle to print to
* \ingroup talloc_debug
*
* This provides a more flexible reports than talloc_report(). It
* will let you specify the depth and max_depth.
*/
void talloc_report_depth_file(const void *ptr, int depth, int max_depth, FILE *f);
/**
* \brief Print a summary report of all memory used by ptr
* \param ptr The talloc chunk
* \param f The file handle to print to
* \ingroup talloc_debug
*
* This provides a more detailed report than talloc_report(). It will
* recursively print the ensire tree of memory referenced by the
* pointer. References in the tree are shown by giving the name of the
* pointer that is referenced.
*
* You can pass NULL for the pointer, in which case a report is printed
* for the top level memory context, but only if
* talloc_enable_leak_report() or talloc_enable_leak_report_full() has
* been called.
*/
void talloc_report_full(const void *ptr, FILE *f);
/**
* \brief Print a summary report of all memory used by ptr
* \param ptr The talloc chunk
* \param f The file handle to print to
* \ingroup talloc_debug
*
* The talloc_report() function prints a summary report of all memory
* used by ptr. One line of report is printed for each immediate child of
* ptr, showing the total memory and number of blocks used by that child.
*
* You can pass NULL for the pointer, in which case a report is printed
* for the top level memory context, but only if
* talloc_enable_leak_report() or talloc_enable_leak_report_full() has
* been called.
*/
void talloc_report(const void *ptr, FILE *f);
/**
* \brief Enable tracking the use of NULL memory contexts
* \ingroup talloc_debug
*
* This enables tracking of the NULL memory context without enabling leak
* reporting on exit. Useful for when you want to do your own leak
* reporting call via talloc_report_null_full();
*/
void talloc_enable_null_tracking(void);
/**
* \brief Disable tracking of the NULL memory context
* \ingroup talloc_debug
*
* This disables tracking of the NULL memory context.
*/
void talloc_disable_null_tracking(void);
/**
* \brief Enable calling of talloc_report(NULL, stderr) when a program exits
* \ingroup talloc_debug
*
* This enables calling of talloc_report(NULL, stderr) when the program
* exits. In Samba4 this is enabled by using the --leak-report command
* line option.
*
* For it to be useful, this function must be called before any other
* talloc function as it establishes a "null context" that acts as the
* top of the tree. If you don't call this function first then passing
* NULL to talloc_report() or talloc_report_full() won't give you the
* full tree printout.
*
* Here is a typical talloc report:
*
\verbatim
talloc report on 'null_context' (total 267 bytes in 15 blocks)
libcli/auth/spnego_parse.c:55 contains 31 bytes in 2 blocks
libcli/auth/spnego_parse.c:55 contains 31 bytes in 2 blocks
iconv(UTF8,CP850) contains 42 bytes in 2 blocks
libcli/auth/spnego_parse.c:55 contains 31 bytes in 2 blocks
iconv(CP850,UTF8) contains 42 bytes in 2 blocks
iconv(UTF8,UTF-16LE) contains 45 bytes in 2 blocks
iconv(UTF-16LE,UTF8) contains 45 bytes in 2 blocks
\endverbatim
*/
void talloc_enable_leak_report(void);
/**
* \brief Enable calling of talloc_report(NULL, stderr) when a program exits
* \ingroup talloc_debug
*
* This enables calling of talloc_report_full(NULL, stderr) when the
* program exits. In Samba4 this is enabled by using the
* --leak-report-full command line option.
*
* For it to be useful, this function must be called before any other
* talloc function as it establishes a "null context" that acts as the
* top of the tree. If you don't call this function first then passing
* NULL to talloc_report() or talloc_report_full() won't give you the
* full tree printout.
*
* Here is a typical full report:
\verbatim
full talloc report on 'root' (total 18 bytes in 8 blocks)
p1 contains 18 bytes in 7 blocks (ref 0)
r1 contains 13 bytes in 2 blocks (ref 0)
reference to: p2
p2 contains 1 bytes in 1 blocks (ref 1)
x3 contains 1 bytes in 1 blocks (ref 0)
x2 contains 1 bytes in 1 blocks (ref 0)
x1 contains 1 bytes in 1 blocks (ref 0)
\endverbatim
*/
void talloc_enable_leak_report_full(void);
void *_talloc_zero(const void *ctx, size_t size, const char *name);
void *_talloc_memdup(const void *t, const void *p, size_t size, const char *name);
void *_talloc_array(const void *ctx, size_t el_size, unsigned count, const char *name);
void *_talloc_zero_array(const void *ctx, size_t el_size, unsigned count, const char *name);
void *_talloc_realloc_array(const void *ctx, void *ptr, size_t el_size, unsigned count, const char *name);
/**
* \brief Provide a function version of talloc_realloc_size
* \param context The parent context used if "ptr" is NULL
* \param ptr The chunk to be resized
* \param size The new chunk size
* \return The new chunk
* \ingroup talloc_array
*
* This is a non-macro version of talloc_realloc(), which is useful as
* libraries sometimes want a ralloc function pointer. A realloc()
* implementation encapsulates the functionality of malloc(), free() and
* realloc() in one call, which is why it is useful to be able to pass around
* a single function pointer.
*/
void *talloc_realloc_fn(const void *context, void *ptr, size_t size);
/**
* \brief Provide a talloc context that is freed at program exit
* \return A talloc context
* \ingroup talloc_basic
*
* This is a handy utility function that returns a talloc context
* which will be automatically freed on program exit. This can be used
* to reduce the noise in memory leak reports.
*/
void *talloc_autofree_context(void);
/**
* \brief Get the size of a talloc chunk
* \param ctx The talloc chunk
* \return The size
* \ingroup talloc_basic
*
* This function lets you know the amount of memory alloced so far by
* this context. It does NOT account for subcontext memory.
* This can be used to calculate the size of an array.
*/
size_t talloc_get_size(const void *ctx);
/**
* \brief Find a parent context by name
* \param ctx The talloc chunk to start from
* \param name The name of the parent we look for
* \ingroup talloc_basic
*
* Find a parent memory context of the current context that has the given
* name. This can be very useful in complex programs where it may be
* difficult to pass all information down to the level you need, but you
* know the structure you want is a parent of another context.
*/
void *talloc_find_parent_byname(const void *ctx, const char *name);
void talloc_show_parents(const void *context, FILE *file);
/**
* \brief Check if a context is parent of a talloc chunk
* \param context The assumed talloc context
* \param ptr The talloc chunk to check
* \return Is context an anchestor of ptr
* \ingroup talloc_basic
*
* talloc_is_parent() checks if context is referenced in the talloc
* hierarchy above ptr. Return 1 if this is the case, 0 if not.
*/
int talloc_is_parent(const void *context, const void *ptr);
/**
* \brief Duplicate a string into a talloc chunk
* \param t The talloc context to hang the result off
* \param p The string you want to duplicate
* \return The duplicated string
* \ingroup talloc_string
*
* The talloc_strdup() function is equivalent to:
*
* \code
* ptr = talloc_size(ctx, strlen(p)+1);
* if (ptr) memcpy(ptr, p, strlen(p)+1);
* \endcode
*
* This functions sets the name of the new pointer to the passed
* string. This is equivalent to:
*
* \code
* talloc_set_name_const(ptr, ptr)
* \endcode
*/
char *talloc_strdup(const void *t, const char *p);
char *talloc_strdup_append(char *s, const char *a);
char *talloc_strdup_append_buffer(char *s, const char *a);
/**
* \brief Duplicate a length-limited string into a talloc chunk
* \param t The talloc context to hang the result off
* \param p The string you want to duplicate
* \param n The maximum string length to duplicate
* \return The duplicated string
* \ingroup talloc_string
*
* The talloc_strndup() function is the talloc equivalent of the C
* library function strndup()
*
* This functions sets the name of the new pointer to the passed
* string. This is equivalent to:
*
* \code
* talloc_set_name_const(ptr, ptr)
* \endcode
*/
char *talloc_strndup(const void *t, const char *p, size_t n);
char *talloc_strndup_append(char *s, const char *a, size_t n);
char *talloc_strndup_append_buffer(char *s, const char *a, size_t n);
/**
* \brief Format a string given a va_list
* \param t The talloc context to hang the result off
* \param fmt The format string
* \param ap The parameters used to fill fmt
* \return The formatted string
* \ingroup talloc_string
*
* The talloc_vasprintf() function is the talloc equivalent of the C
* library function vasprintf()
*
* This functions sets the name of the new pointer to the new
* string. This is equivalent to:
*
* \code
* talloc_set_name_const(ptr, ptr)
* \endcode
*/
char *talloc_vasprintf(const void *t, const char *fmt, va_list ap) PRINTF_ATTRIBUTE(2,0);
char *talloc_vasprintf_append(char *s, const char *fmt, va_list ap) PRINTF_ATTRIBUTE(2,0);
char *talloc_vasprintf_append_buffer(char *s, const char *fmt, va_list ap) PRINTF_ATTRIBUTE(2,0);
/**
* \brief Format a string
* \param t The talloc context to hang the result off
* \param fmt The format string
* \param ... The parameters used to fill fmt
* \return The formatted string
* \ingroup talloc_string
*
* The talloc_asprintf() function is the talloc equivalent of the C
* library function asprintf()
*
* This functions sets the name of the new pointer to the new
* string. This is equivalent to:
*
* \code
* talloc_set_name_const(ptr, ptr)
* \endcode
*/
char *talloc_asprintf(const void *t, const char *fmt, ...) PRINTF_ATTRIBUTE(2,3);
/**
* \brief Append a formatted string to another string
* \param s The string to append to
* \param fmt The format string
* \param ... The parameters used to fill fmt
* \return The formatted string
* \ingroup talloc_string
*
* The talloc_asprintf_append() function appends the given formatted string to
* the given string. Use this varient when the string in the current talloc
* buffer may have been truncated in length.
*
* This functions sets the name of the new pointer to the new
* string. This is equivalent to:
*
* \code
* talloc_set_name_const(ptr, ptr)
* \endcode
*/
char *talloc_asprintf_append(char *s, const char *fmt, ...) PRINTF_ATTRIBUTE(2,3);
/**
* \brief Append a formatted string to another string
* \param s The string to append to
* \param fmt The format string
* \param ... The parameters used to fill fmt
* \return The formatted string
* \ingroup talloc_string
*
* The talloc_asprintf_append() function appends the given formatted string to
* the end of the currently allocated talloc buffer. This routine should be
* used if you create a large string step by step. talloc_asprintf() or
* talloc_asprintf_append() call strlen() at every
* step. talloc_asprintf_append_buffer() uses the existing buffer size of the
* talloc chunk to calculate where to append the string.
*
* This functions sets the name of the new pointer to the new
* string. This is equivalent to:
*
* \code
* talloc_set_name_const(ptr, ptr)
* \endcode
*/
char *talloc_asprintf_append_buffer(char *s, const char *fmt, ...) PRINTF_ATTRIBUTE(2,3);
void talloc_set_abort_fn(void (*abort_fn)(const char *reason));
#endif
/*\}*/