1
0
mirror of https://github.com/samba-team/samba.git synced 2025-01-07 17:18:11 +03:00
samba-mirror/lib/ldb/tests/ldb_kv_ops_test.c
Andreas Schneider e79e943824 ldb:tests: Add missing null check for ldb_kv_private
Signed-off-by: Andreas Schneider <asn@samba.org>
Reviewed-by: Gary Lockyer <gary@samba.org>

Autobuild-User(master): Andreas Schneider <asn@cryptomilk.org>
Autobuild-Date(master): Fri Dec  6 11:13:24 UTC 2019 on sn-devel-184
2019-12-06 11:13:24 +00:00

1814 lines
40 KiB
C

/*
* Tests exercising the ldb key value operations.
*
* Copyright (C) Andrew Bartlett <abartlet@samba.org> 2018
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
*/
/*
* from cmocka.c:
* These headers or their equivalents should be included prior to
* including
* this header file.
*
* #include <stdarg.h>
* #include <stddef.h>
* #include <setjmp.h>
*
* This allows test applications to use custom definitions of C standard
* library functions and types.
*
*/
/*
* A KV module is expected to have the following behaviour
*
* - A transaction must be open to perform any read, write or delete operation
* - Writes and Deletes should not be visible until a transaction is commited
* - Nested transactions are not permitted
* - transactions can be rolled back and commited.
* - supports iteration over all records in the database
* - supports the update_in_iterate operation allowing entries to be
* re-keyed.
* - has a get_size implementation that returns an estimate of the number of
* records in the database. Note that this can be an estimate rather than
* an accurate size.
*/
#include <stdarg.h>
#include <stddef.h>
#include <stdint.h>
#include <setjmp.h>
#include <cmocka.h>
#include <errno.h>
#include <unistd.h>
#include <talloc.h>
#include <tevent.h>
#include <ldb.h>
#include <ldb_module.h>
#include <ldb_private.h>
#include <string.h>
#include <ctype.h>
#include <sys/wait.h>
#include "ldb_tdb/ldb_tdb.h"
#include "ldb_key_value/ldb_kv.h"
#define DEFAULT_BE "tdb"
#ifndef TEST_BE
#define TEST_BE DEFAULT_BE
#endif /* TEST_BE */
#define NUM_RECS 1024
struct test_ctx {
struct tevent_context *ev;
struct ldb_context *ldb;
const char *dbfile;
const char *lockfile; /* lockfile is separate */
const char *dbpath;
};
static void unlink_old_db(struct test_ctx *test_ctx)
{
int ret;
errno = 0;
ret = unlink(test_ctx->lockfile);
if (ret == -1 && errno != ENOENT) {
fail();
}
errno = 0;
ret = unlink(test_ctx->dbfile);
if (ret == -1 && errno != ENOENT) {
fail();
}
}
static int noconn_setup(void **state)
{
struct test_ctx *test_ctx;
test_ctx = talloc_zero(NULL, struct test_ctx);
assert_non_null(test_ctx);
test_ctx->ev = tevent_context_init(test_ctx);
assert_non_null(test_ctx->ev);
test_ctx->ldb = ldb_init(test_ctx, test_ctx->ev);
assert_non_null(test_ctx->ldb);
test_ctx->dbfile = talloc_strdup(test_ctx, "kvopstest.ldb");
assert_non_null(test_ctx->dbfile);
test_ctx->lockfile = talloc_asprintf(test_ctx, "%s-lock",
test_ctx->dbfile);
assert_non_null(test_ctx->lockfile);
test_ctx->dbpath = talloc_asprintf(test_ctx,
TEST_BE"://%s", test_ctx->dbfile);
assert_non_null(test_ctx->dbpath);
unlink_old_db(test_ctx);
*state = test_ctx;
return 0;
}
static int noconn_teardown(void **state)
{
struct test_ctx *test_ctx = talloc_get_type_abort(*state,
struct test_ctx);
unlink_old_db(test_ctx);
talloc_free(test_ctx);
return 0;
}
static int setup(void **state)
{
struct test_ctx *test_ctx;
int ret;
struct ldb_ldif *ldif;
const char *index_ldif = \
"dn: @INDEXLIST\n"
"@IDXGUID: objectUUID\n"
"@IDX_DN_GUID: GUID\n"
"\n";
noconn_setup((void **) &test_ctx);
ret = ldb_connect(test_ctx->ldb, test_ctx->dbpath, 0, NULL);
assert_int_equal(ret, 0);
while ((ldif = ldb_ldif_read_string(test_ctx->ldb, &index_ldif))) {
ret = ldb_add(test_ctx->ldb, ldif->msg);
assert_int_equal(ret, LDB_SUCCESS);
}
*state = test_ctx;
return 0;
}
static int teardown(void **state)
{
struct test_ctx *test_ctx = talloc_get_type_abort(*state,
struct test_ctx);
noconn_teardown((void **) &test_ctx);
return 0;
}
static struct ldb_kv_private *get_ldb_kv(struct ldb_context *ldb)
{
void *data = NULL;
struct ldb_kv_private *ldb_kv = NULL;
data = ldb_module_get_private(ldb->modules);
assert_non_null(data);
ldb_kv = talloc_get_type(data, struct ldb_kv_private);
assert_non_null(ldb_kv);
return ldb_kv;
}
static int parse(struct ldb_val key,
struct ldb_val data,
void *private_data)
{
struct ldb_val* read = private_data;
/* Yes, we leak this. That is OK */
read->data = talloc_size(NULL,
data.length);
assert_non_null(read->data);
memcpy(read->data, data.data, data.length);
read->length = data.length;
return LDB_SUCCESS;
}
/*
* Parse function that just returns the int we pass it.
*/
static int parse_return(struct ldb_val key,
struct ldb_val data,
void *private_data)
{
int *rcode = private_data;
return *rcode;
}
/*
* Test that data can be written to the kv store and be read back.
*/
static void test_add_get(void **state)
{
int ret;
struct test_ctx *test_ctx = talloc_get_type_abort(*state,
struct test_ctx);
struct ldb_kv_private *ldb_kv = get_ldb_kv(test_ctx->ldb);
uint8_t key_val[] = "TheKey";
struct ldb_val key = {
.data = key_val,
.length = sizeof(key_val)
};
uint8_t value[] = "The record contents";
struct ldb_val data = {
.data = value,
.length = sizeof(value)
};
struct ldb_val read;
int rcode;
int flags = 0;
TALLOC_CTX *tmp_ctx;
tmp_ctx = talloc_new(test_ctx);
assert_non_null(tmp_ctx);
/*
* Begin a transaction
*/
ret = ldb_kv->kv_ops->begin_write(ldb_kv);
assert_int_equal(ret, 0);
/*
* Write the record
*/
ret = ldb_kv->kv_ops->store(ldb_kv, key, data, flags);
assert_int_equal(ret, 0);
/*
* Commit the transaction
*/
ret = ldb_kv->kv_ops->finish_write(ldb_kv);
assert_int_equal(ret, 0);
/*
* And now read it back
*/
ret = ldb_kv->kv_ops->lock_read(test_ctx->ldb->modules);
assert_int_equal(ret, 0);
ret = ldb_kv->kv_ops->fetch_and_parse(ldb_kv, key, parse, &read);
assert_int_equal(ret, 0);
assert_int_equal(sizeof(value), read.length);
assert_memory_equal(value, read.data, sizeof(value));
/*
* Now check that the error code we return in the
* parse function is returned by fetch_and_parse.
*/
for (rcode=0; rcode<50; rcode++) {
ret = ldb_kv->kv_ops->fetch_and_parse(ldb_kv, key,
parse_return,
&rcode);
assert_int_equal(ret, rcode);
}
ret = ldb_kv->kv_ops->unlock_read(test_ctx->ldb->modules);
assert_int_equal(ret, 0);
talloc_free(tmp_ctx);
}
/*
* Test that attempts to read data without a read transaction fail.
*/
static void test_read_outside_transaction(void **state)
{
int ret;
struct test_ctx *test_ctx = talloc_get_type_abort(*state,
struct test_ctx);
struct ldb_kv_private *ldb_kv = get_ldb_kv(test_ctx->ldb);
uint8_t key_val[] = "TheKey";
struct ldb_val key = {
.data = key_val,
.length = sizeof(key_val)
};
uint8_t value[] = "The record contents";
struct ldb_val data = {
.data = value,
.length = sizeof(value)
};
struct ldb_val read;
int flags = 0;
TALLOC_CTX *tmp_ctx;
tmp_ctx = talloc_new(test_ctx);
assert_non_null(tmp_ctx);
/*
* Begin a transaction
*/
ret = ldb_kv->kv_ops->begin_write(ldb_kv);
assert_int_equal(ret, 0);
/*
* Write the record
*/
ret = ldb_kv->kv_ops->store(ldb_kv, key, data, flags);
assert_int_equal(ret, 0);
/*
* Commit the transaction
*/
ret = ldb_kv->kv_ops->finish_write(ldb_kv);
assert_int_equal(ret, 0);
/*
* And now read it back
* Note there is no read transaction active
*/
ret = ldb_kv->kv_ops->fetch_and_parse(ldb_kv, key, parse, &read);
assert_int_equal(ret, LDB_ERR_PROTOCOL_ERROR);
talloc_free(tmp_ctx);
}
/*
* Test that data can be deleted from the kv store
*/
static void test_delete(void **state)
{
int ret;
struct test_ctx *test_ctx = talloc_get_type_abort(*state,
struct test_ctx);
struct ldb_kv_private *ldb_kv = get_ldb_kv(test_ctx->ldb);
uint8_t key_val[] = "TheKey";
struct ldb_val key = {
.data = key_val,
.length = sizeof(key_val)
};
uint8_t value[] = "The record contents";
struct ldb_val data = {
.data = value,
.length = sizeof(value)
};
struct ldb_val read;
int flags = 0;
TALLOC_CTX *tmp_ctx;
tmp_ctx = talloc_new(test_ctx);
assert_non_null(tmp_ctx);
/*
* Begin a transaction
*/
ret = ldb_kv->kv_ops->begin_write(ldb_kv);
assert_int_equal(ret, 0);
/*
* Write the record
*/
ret = ldb_kv->kv_ops->store(ldb_kv, key, data, flags);
assert_int_equal(ret, 0);
/*
* Commit the transaction
*/
ret = ldb_kv->kv_ops->finish_write(ldb_kv);
assert_int_equal(ret, 0);
/*
* And now read it back
*/
ret = ldb_kv->kv_ops->lock_read(test_ctx->ldb->modules);
assert_int_equal(ret, 0);
ret = ldb_kv->kv_ops->fetch_and_parse(ldb_kv, key, parse, &read);
assert_int_equal(ret, 0);
assert_int_equal(sizeof(value), read.length);
assert_memory_equal(value, read.data, sizeof(value));
ret = ldb_kv->kv_ops->unlock_read(test_ctx->ldb->modules);
assert_int_equal(ret, 0);
/*
* Begin a transaction
*/
ret = ldb_kv->kv_ops->begin_write(ldb_kv);
assert_int_equal(ret, 0);
/*
* Now delete it.
*/
ret = ldb_kv->kv_ops->delete (ldb_kv, key);
assert_int_equal(ret, 0);
/*
* Commit the transaction
*/
ret = ldb_kv->kv_ops->finish_write(ldb_kv);
assert_int_equal(ret, 0);
/*
* And now try to read it back
*/
ret = ldb_kv->kv_ops->lock_read(test_ctx->ldb->modules);
assert_int_equal(ret, 0);
ret = ldb_kv->kv_ops->fetch_and_parse(ldb_kv, key, parse, &read);
assert_int_equal(ret, LDB_ERR_NO_SUCH_OBJECT);
ret = ldb_kv->kv_ops->unlock_read(test_ctx->ldb->modules);
assert_int_equal(ret, 0);
talloc_free(tmp_ctx);
}
/*
* Check that writes are correctly rolled back when a transaction
* is rolled back.
*/
static void test_transaction_abort_write(void **state)
{
int ret;
struct test_ctx *test_ctx = talloc_get_type_abort(*state,
struct test_ctx);
struct ldb_kv_private *ldb_kv = get_ldb_kv(test_ctx->ldb);
uint8_t key_val[] = "TheKey";
struct ldb_val key = {
.data = key_val,
.length = sizeof(key_val)
};
uint8_t value[] = "The record contents";
struct ldb_val data = {
.data = value,
.length = sizeof(value)
};
struct ldb_val read;
int flags = 0;
TALLOC_CTX *tmp_ctx;
tmp_ctx = talloc_new(test_ctx);
assert_non_null(tmp_ctx);
/*
* Begin a transaction
*/
ret = ldb_kv->kv_ops->begin_write(ldb_kv);
assert_int_equal(ret, 0);
/*
* Write the record
*/
ret = ldb_kv->kv_ops->store(ldb_kv, key, data, flags);
assert_int_equal(ret, 0);
/*
* And now read it back
*/
ret = ldb_kv->kv_ops->fetch_and_parse(ldb_kv, key, parse, &read);
assert_int_equal(ret, 0);
assert_int_equal(sizeof(value), read.length);
assert_memory_equal(value, read.data, sizeof(value));
/*
* Now abort the transaction
*/
ret = ldb_kv->kv_ops->abort_write(ldb_kv);
assert_int_equal(ret, 0);
/*
* And now read it back, should not be there
*/
ret = ldb_kv->kv_ops->lock_read(test_ctx->ldb->modules);
assert_int_equal(ret, 0);
ret = ldb_kv->kv_ops->fetch_and_parse(ldb_kv, key, parse, &read);
assert_int_equal(ret, LDB_ERR_NO_SUCH_OBJECT);
ret = ldb_kv->kv_ops->unlock_read(test_ctx->ldb->modules);
assert_int_equal(ret, 0);
talloc_free(tmp_ctx);
}
/*
* Check that deletes are correctly rolled back when a transaction is
* aborted.
*/
static void test_transaction_abort_delete(void **state)
{
int ret;
struct test_ctx *test_ctx = talloc_get_type_abort(*state,
struct test_ctx);
struct ldb_kv_private *ldb_kv = get_ldb_kv(test_ctx->ldb);
uint8_t key_val[] = "TheKey";
struct ldb_val key = {
.data = key_val,
.length = sizeof(key_val)
};
uint8_t value[] = "The record contents";
struct ldb_val data = {
.data = value,
.length = sizeof(value)
};
struct ldb_val read;
int flags = 0;
TALLOC_CTX *tmp_ctx;
tmp_ctx = talloc_new(test_ctx);
assert_non_null(tmp_ctx);
/*
* Begin a transaction
*/
ret = ldb_kv->kv_ops->begin_write(ldb_kv);
assert_int_equal(ret, 0);
/*
* Write the record
*/
ret = ldb_kv->kv_ops->store(ldb_kv, key, data, flags);
assert_int_equal(ret, 0);
/*
* Commit the transaction
*/
ret = ldb_kv->kv_ops->finish_write(ldb_kv);
assert_int_equal(ret, 0);
/*
* And now read it back
*/
ret = ldb_kv->kv_ops->lock_read(test_ctx->ldb->modules);
assert_int_equal(ret, 0);
ret = ldb_kv->kv_ops->fetch_and_parse(ldb_kv, key, parse, &read);
assert_int_equal(ret, 0);
assert_int_equal(sizeof(value), read.length);
assert_memory_equal(value, read.data, sizeof(value));
ret = ldb_kv->kv_ops->unlock_read(test_ctx->ldb->modules);
assert_int_equal(ret, 0);
/*
* Begin a transaction
*/
ret = ldb_kv->kv_ops->begin_write(ldb_kv);
assert_int_equal(ret, 0);
/*
* Now delete it.
*/
ret = ldb_kv->kv_ops->delete (ldb_kv, key);
assert_int_equal(ret, 0);
/*
* And now read it back
*/
ret = ldb_kv->kv_ops->fetch_and_parse(ldb_kv, key, parse, &read);
assert_int_equal(ret, LDB_ERR_NO_SUCH_OBJECT);
/*
* Abort the transaction
*/
ret = ldb_kv->kv_ops->abort_write(ldb_kv);
assert_int_equal(ret, 0);
/*
* And now try to read it back
*/
ret = ldb_kv->kv_ops->lock_read(test_ctx->ldb->modules);
assert_int_equal(ret, 0);
ret = ldb_kv->kv_ops->fetch_and_parse(ldb_kv, key, parse, &read);
assert_int_equal(ret, 0);
assert_int_equal(sizeof(value), read.length);
assert_memory_equal(value, read.data, sizeof(value));
ret = ldb_kv->kv_ops->unlock_read(test_ctx->ldb->modules);
assert_int_equal(ret, 0);
talloc_free(tmp_ctx);
}
/*
* Test that writes outside a transaction fail
*/
static void test_write_outside_transaction(void **state)
{
int ret;
struct test_ctx *test_ctx = talloc_get_type_abort(*state,
struct test_ctx);
struct ldb_kv_private *ldb_kv = get_ldb_kv(test_ctx->ldb);
uint8_t key_val[] = "TheKey";
struct ldb_val key = {
.data = key_val,
.length = sizeof(key_val)
};
uint8_t value[] = "The record contents";
struct ldb_val data = {
.data = value,
.length = sizeof(value)
};
int flags = 0;
TALLOC_CTX *tmp_ctx;
tmp_ctx = talloc_new(test_ctx);
assert_non_null(tmp_ctx);
/*
* Attempt to write the record
*/
ret = ldb_kv->kv_ops->store(ldb_kv, key, data, flags);
assert_int_equal(ret, LDB_ERR_PROTOCOL_ERROR);
talloc_free(tmp_ctx);
}
/*
* Test data can not be deleted outside a transaction
*/
static void test_delete_outside_transaction(void **state)
{
int ret;
struct test_ctx *test_ctx = talloc_get_type_abort(*state,
struct test_ctx);
struct ldb_kv_private *ldb_kv = get_ldb_kv(test_ctx->ldb);
uint8_t key_val[] = "TheKey";
struct ldb_val key = {
.data = key_val,
.length = sizeof(key_val)
};
uint8_t value[] = "The record contents";
struct ldb_val data = {
.data = value,
.length = sizeof(value)
};
struct ldb_val read;
int flags = 0;
TALLOC_CTX *tmp_ctx;
tmp_ctx = talloc_new(test_ctx);
assert_non_null(tmp_ctx);
/*
* Begin a transaction
*/
ret = ldb_kv->kv_ops->begin_write(ldb_kv);
assert_int_equal(ret, 0);
/*
* Write the record
*/
ret = ldb_kv->kv_ops->store(ldb_kv, key, data, flags);
assert_int_equal(ret, 0);
/*
* Commit the transaction
*/
ret = ldb_kv->kv_ops->finish_write(ldb_kv);
assert_int_equal(ret, 0);
/*
* And now read it back
*/
ret = ldb_kv->kv_ops->lock_read(test_ctx->ldb->modules);
assert_int_equal(ret, 0);
ret = ldb_kv->kv_ops->fetch_and_parse(ldb_kv, key, parse, &read);
assert_int_equal(ret, 0);
assert_int_equal(sizeof(value), read.length);
assert_memory_equal(value, read.data, sizeof(value));
ret = ldb_kv->kv_ops->unlock_read(test_ctx->ldb->modules);
assert_int_equal(ret, 0);
/*
* Now attempt to delete a record
*/
ret = ldb_kv->kv_ops->delete (ldb_kv, key);
assert_int_equal(ret, LDB_ERR_PROTOCOL_ERROR);
/*
* And now read it back
*/
ret = ldb_kv->kv_ops->lock_read(test_ctx->ldb->modules);
assert_int_equal(ret, 0);
ret = ldb_kv->kv_ops->fetch_and_parse(ldb_kv, key, parse, &read);
assert_int_equal(ret, 0);
assert_int_equal(sizeof(value), read.length);
assert_memory_equal(value, read.data, sizeof(value));
ret = ldb_kv->kv_ops->unlock_read(test_ctx->ldb->modules);
assert_int_equal(ret, 0);
talloc_free(tmp_ctx);
}
static int traverse_fn(struct ldb_kv_private *ldb_kv,
struct ldb_val key,
struct ldb_val data,
void *ctx)
{
int *visits = ctx;
int i;
if (strncmp("key ", (char *) key.data, 4) == 0) {
i = strtol((char *) &key.data[4], NULL, 10);
visits[i]++;
}
return LDB_SUCCESS;
}
/*
* Test that iterate visits all the records.
*/
static void test_iterate(void **state)
{
int ret;
struct test_ctx *test_ctx = talloc_get_type_abort(*state,
struct test_ctx);
struct ldb_kv_private *ldb_kv = get_ldb_kv(test_ctx->ldb);
int i;
int num_recs = 1024;
int visits[num_recs];
TALLOC_CTX *tmp_ctx;
tmp_ctx = talloc_new(test_ctx);
assert_non_null(tmp_ctx);
/*
* Begin a transaction
*/
ret = ldb_kv->kv_ops->begin_write(ldb_kv);
assert_int_equal(ret, 0);
/*
* Write the records
*/
for (i = 0; i < num_recs; i++) {
struct ldb_val key;
struct ldb_val rec;
int flags = 0;
visits[i] = 0;
key.data = (uint8_t *)talloc_asprintf(tmp_ctx, "key %04d", i);
key.length = strlen((char *)key.data) + 1;
rec.data = (uint8_t *) talloc_asprintf(tmp_ctx,
"data for record (%04d)",
i);
rec.length = strlen((char *)rec.data) + 1;
ret = ldb_kv->kv_ops->store(ldb_kv, key, rec, flags);
assert_int_equal(ret, 0);
TALLOC_FREE(key.data);
TALLOC_FREE(rec.data);
}
/*
* Commit the transaction
*/
ret = ldb_kv->kv_ops->finish_write(ldb_kv);
assert_int_equal(ret, 0);
/*
* Now iterate over the kv store and ensure that all the
* records are visited.
*/
ret = ldb_kv->kv_ops->lock_read(test_ctx->ldb->modules);
assert_int_equal(ret, 0);
ret = ldb_kv->kv_ops->iterate(ldb_kv, traverse_fn, visits);
for (i = 0; i <num_recs; i++) {
assert_int_equal(1, visits[i]);
}
ret = ldb_kv->kv_ops->unlock_read(test_ctx->ldb->modules);
assert_int_equal(ret, 0);
TALLOC_FREE(tmp_ctx);
}
static void do_iterate_range_test(void **state, int range_start,
int range_end, bool fail)
{
int ret;
struct test_ctx *test_ctx = talloc_get_type_abort(*state,
struct test_ctx);
struct ldb_kv_private *ldb_kv = NULL;
int i;
int num_recs = 1024;
int skip_recs = 10;
int visits[num_recs];
struct ldb_val sk, ek;
TALLOC_CTX *tmp_ctx;
ldb_kv = get_ldb_kv(test_ctx->ldb);
assert_non_null(ldb_kv);
for (i = 0; i < num_recs; i++){
visits[i] = 0;
}
/*
* No iterate_range on tdb
*/
if (strcmp(TEST_BE, "tdb") == 0) {
return;
}
tmp_ctx = talloc_new(test_ctx);
assert_non_null(tmp_ctx);
/*
* Begin a transaction
*/
ret = ldb_kv->kv_ops->begin_write(ldb_kv);
assert_int_equal(ret, 0);
/*
* Write the records
*/
for (i = skip_recs; i <= num_recs - skip_recs; i++) {
struct ldb_val key;
struct ldb_val rec;
int flags = 0;
key.data = (uint8_t *)talloc_asprintf(tmp_ctx,
"key %04d",
i);
key.length = strlen((char *)key.data);
rec.data = (uint8_t *)talloc_asprintf(tmp_ctx,
"data for record (%04d)",
i);
rec.length = strlen((char *)rec.data) + 1;
ret = ldb_kv->kv_ops->store(ldb_kv, key, rec, flags);
assert_int_equal(ret, 0);
TALLOC_FREE(key.data);
TALLOC_FREE(rec.data);
}
/*
* Commit the transaction
*/
ret = ldb_kv->kv_ops->finish_write(ldb_kv);
assert_int_equal(ret, 0);
sk.data = (uint8_t *)talloc_asprintf(tmp_ctx, "key %04d", range_start);
sk.length = strlen((char *)sk.data);
ek.data = (uint8_t *)talloc_asprintf(tmp_ctx, "key %04d", range_end);
ek.length = strlen((char *)ek.data) + 1;
ret = ldb_kv->kv_ops->lock_read(test_ctx->ldb->modules);
assert_int_equal(ret, 0);
ret = ldb_kv->kv_ops->iterate_range(ldb_kv, sk, ek,
traverse_fn, visits);
if (fail){
assert_int_equal(ret, LDB_ERR_PROTOCOL_ERROR);
TALLOC_FREE(tmp_ctx);
return;
} else{
assert_int_equal(ret, 0);
}
for (i = 0; i < num_recs; i++) {
if (i >= skip_recs && i <= num_recs - skip_recs &&
i >= range_start && i <= range_end){
assert_int_equal(1, visits[i]);
} else {
assert_int_equal(0, visits[i]);
}
}
ret = ldb_kv->kv_ops->unlock_read(test_ctx->ldb->modules);
assert_int_equal(ret, 0);
TALLOC_FREE(tmp_ctx);
}
/*
* Test that iterate_range visits all the records between two keys.
*/
static void test_iterate_range(void **state)
{
do_iterate_range_test(state, 300, 900, false);
/*
* test start_key = end_key
*/
do_iterate_range_test(state, 20, 20, false);
/*
* test reverse range fails
*/
do_iterate_range_test(state, 50, 40, true);
/*
* keys are between 10-1014 so test with keys outside that range
*/
do_iterate_range_test(state, 0, 20, false);
do_iterate_range_test(state, 1010, 1030, false);
do_iterate_range_test(state, 0, 1030, false);
}
struct update_context {
struct ldb_context* ldb;
int visits[NUM_RECS];
};
static int update_fn(struct ldb_kv_private *ldb_kv,
struct ldb_val key,
struct ldb_val data,
void *ctx)
{
struct ldb_val new_key;
struct ldb_module *module = NULL;
struct update_context *context =NULL;
int ret = LDB_SUCCESS;
TALLOC_CTX *tmp_ctx;
tmp_ctx = talloc_new(ldb_kv);
assert_non_null(tmp_ctx);
context = talloc_get_type_abort(ctx, struct update_context);
module = talloc_zero(tmp_ctx, struct ldb_module);
module->ldb = context->ldb;
if (strncmp("key ", (char *) key.data, 4) == 0) {
int i = strtol((char *) &key.data[4], NULL, 10);
context->visits[i]++;
new_key.data = talloc_memdup(tmp_ctx, key.data, key.length);
new_key.length = key.length;
new_key.data[0] = 'K';
ret = ldb_kv->kv_ops->update_in_iterate(
ldb_kv, key, new_key, data, &module);
}
TALLOC_FREE(tmp_ctx);
return ret;
}
/*
* Test that update_in_iterate behaves as expected.
*/
static void test_update_in_iterate(void **state)
{
int ret;
struct test_ctx *test_ctx = talloc_get_type_abort(*state,
struct test_ctx);
struct ldb_kv_private *ldb_kv = get_ldb_kv(test_ctx->ldb);
int i;
struct update_context *context = NULL;
TALLOC_CTX *tmp_ctx;
tmp_ctx = talloc_new(test_ctx);
assert_non_null(tmp_ctx);
context = talloc_zero(tmp_ctx, struct update_context);
assert_non_null(context);
context->ldb = test_ctx->ldb;
/*
* Begin a transaction
*/
ret = ldb_kv->kv_ops->begin_write(ldb_kv);
assert_int_equal(ret, 0);
/*
* Write the records
*/
for (i = 0; i < NUM_RECS; i++) {
struct ldb_val key;
struct ldb_val rec;
int flags = 0;
key.data = (uint8_t *)talloc_asprintf(tmp_ctx, "key %04d", i);
key.length = strlen((char *)key.data) + 1;
rec.data = (uint8_t *) talloc_asprintf(tmp_ctx,
"data for record (%04d)",
i);
rec.length = strlen((char *)rec.data) + 1;
ret = ldb_kv->kv_ops->store(ldb_kv, key, rec, flags);
assert_int_equal(ret, 0);
TALLOC_FREE(key.data);
TALLOC_FREE(rec.data);
}
/*
* Commit the transaction
*/
ret = ldb_kv->kv_ops->finish_write(ldb_kv);
assert_int_equal(ret, 0);
/*
* Now iterate over the kv store and ensure that all the
* records are visited.
*/
/*
* Needs to be done inside a transaction
*/
ret = ldb_kv->kv_ops->begin_write(ldb_kv);
assert_int_equal(ret, 0);
ret = ldb_kv->kv_ops->iterate(ldb_kv, update_fn, context);
for (i = 0; i < NUM_RECS; i++) {
assert_int_equal(1, context->visits[i]);
}
ret = ldb_kv->kv_ops->finish_write(ldb_kv);
assert_int_equal(ret, 0);
TALLOC_FREE(tmp_ctx);
}
/*
* Ensure that writes are not visible until the transaction has been
* committed.
*/
static void test_write_transaction_isolation(void **state)
{
int ret;
struct test_ctx *test_ctx = talloc_get_type_abort(*state,
struct test_ctx);
struct ldb_kv_private *ldb_kv = get_ldb_kv(test_ctx->ldb);
struct ldb_val key;
struct ldb_val val;
const char *KEY1 = "KEY01";
const char *VAL1 = "VALUE01";
const char *KEY2 = "KEY02";
const char *VAL2 = "VALUE02";
/*
* Pipes etc to co-ordinate the processes
*/
int to_child[2];
int to_parent[2];
char buf[2];
pid_t pid, w_pid;
int wstatus;
TALLOC_CTX *tmp_ctx;
tmp_ctx = talloc_new(test_ctx);
assert_non_null(tmp_ctx);
/*
* Add a record to the database
*/
ret = ldb_kv->kv_ops->begin_write(ldb_kv);
assert_int_equal(ret, 0);
key.data = (uint8_t *)talloc_strdup(tmp_ctx, KEY1);
key.length = strlen(KEY1) + 1;
val.data = (uint8_t *)talloc_strdup(tmp_ctx, VAL1);
val.length = strlen(VAL1) + 1;
ret = ldb_kv->kv_ops->store(ldb_kv, key, val, 0);
assert_int_equal(ret, 0);
ret = ldb_kv->kv_ops->finish_write(ldb_kv);
assert_int_equal(ret, 0);
ret = pipe(to_child);
assert_int_equal(ret, 0);
ret = pipe(to_parent);
assert_int_equal(ret, 0);
/*
* Now fork a new process
*/
pid = fork();
if (pid == 0) {
struct ldb_context *ldb = NULL;
close(to_child[1]);
close(to_parent[0]);
/*
* Wait for the transaction to start
*/
ret = read(to_child[0], buf, 2);
if (ret != 2) {
print_error(__location__": read returned (%d)\n",
ret);
exit(LDB_ERR_OPERATIONS_ERROR);
}
ldb = ldb_init(test_ctx, test_ctx->ev);
ret = ldb_connect(ldb, test_ctx->dbpath, 0, NULL);
if (ret != LDB_SUCCESS) {
print_error(__location__": ldb_connect returned (%d)\n",
ret);
exit(ret);
}
ldb_kv = get_ldb_kv(ldb);
ret = ldb_kv->kv_ops->lock_read(ldb->modules);
if (ret != LDB_SUCCESS) {
print_error(__location__": lock_read returned (%d)\n",
ret);
exit(ret);
}
/*
* Check that KEY1 is there
*/
key.data = (uint8_t *)talloc_strdup(tmp_ctx, KEY1);
key.length = strlen(KEY1) + 1;
ret = ldb_kv->kv_ops->fetch_and_parse(ldb_kv, key, parse, &val);
if (ret != LDB_SUCCESS) {
print_error(__location__": fetch_and_parse returned "
"(%d)\n",
ret);
exit(ret);
}
if ((strlen(VAL1) + 1) != val.length) {
print_error(__location__": KEY1 value lengths different"
", expected (%d) actual(%d)\n",
(int)(strlen(VAL1) + 1), (int)val.length);
exit(LDB_ERR_OPERATIONS_ERROR);
}
if (memcmp(VAL1, val.data, strlen(VAL1)) != 0) {
print_error(__location__": KEY1 values different, "
"expected (%s) actual(%s)\n",
VAL1,
val.data);
exit(LDB_ERR_OPERATIONS_ERROR);
}
ret = ldb_kv->kv_ops->unlock_read(ldb->modules);
if (ret != LDB_SUCCESS) {
print_error(__location__": unlock_read returned (%d)\n",
ret);
exit(ret);
}
/*
* Check that KEY2 is not there
*/
key.data = (uint8_t *)talloc_strdup(tmp_ctx, KEY2);
key.length = strlen(KEY2 + 1);
ret = ldb_kv->kv_ops->lock_read(ldb->modules);
if (ret != LDB_SUCCESS) {
print_error(__location__": lock_read returned (%d)\n",
ret);
exit(ret);
}
ret = ldb_kv->kv_ops->fetch_and_parse(ldb_kv, key, parse, &val);
if (ret != LDB_ERR_NO_SUCH_OBJECT) {
print_error(__location__": fetch_and_parse returned "
"(%d)\n",
ret);
exit(ret);
}
ret = ldb_kv->kv_ops->unlock_read(ldb->modules);
if (ret != LDB_SUCCESS) {
print_error(__location__": unlock_read returned (%d)\n",
ret);
exit(ret);
}
/*
* Signal the other process to commit the transaction
*/
ret = write(to_parent[1], "GO", 2);
if (ret != 2) {
print_error(__location__": write returned (%d)\n",
ret);
exit(LDB_ERR_OPERATIONS_ERROR);
}
/*
* Wait for the transaction to be commited
*/
ret = read(to_child[0], buf, 2);
if (ret != 2) {
print_error(__location__": read returned (%d)\n",
ret);
exit(LDB_ERR_OPERATIONS_ERROR);
}
/*
* Check that KEY1 is there
*/
ret = ldb_kv->kv_ops->lock_read(ldb->modules);
if (ret != LDB_SUCCESS) {
print_error(__location__": unlock_read returned (%d)\n",
ret);
exit(ret);
}
key.data = (uint8_t *)talloc_strdup(tmp_ctx, KEY1);
key.length = strlen(KEY1) + 1;
ret = ldb_kv->kv_ops->fetch_and_parse(ldb_kv, key, parse, &val);
if (ret != LDB_SUCCESS) {
print_error(__location__": fetch_and_parse returned "
"(%d)\n",
ret);
exit(ret);
}
if ((strlen(VAL1) + 1) != val.length) {
print_error(__location__": KEY1 value lengths different"
", expected (%d) actual(%d)\n",
(int)(strlen(VAL1) + 1), (int)val.length);
exit(LDB_ERR_OPERATIONS_ERROR);
}
if (memcmp(VAL1, val.data, strlen(VAL1)) != 0) {
print_error(__location__": KEY1 values different, "
"expected (%s) actual(%s)\n",
VAL1,
val.data);
exit(LDB_ERR_OPERATIONS_ERROR);
}
ret = ldb_kv->kv_ops->unlock_read(ldb->modules);
if (ret != LDB_SUCCESS) {
print_error(__location__": unlock_read returned (%d)\n",
ret);
exit(ret);
}
/*
* Check that KEY2 is there
*/
ret = ldb_kv->kv_ops->lock_read(ldb->modules);
if (ret != LDB_SUCCESS) {
print_error(__location__": unlock_read returned (%d)\n",
ret);
exit(ret);
}
key.data = (uint8_t *)talloc_strdup(tmp_ctx, KEY2);
key.length = strlen(KEY2) + 1;
ret = ldb_kv->kv_ops->fetch_and_parse(ldb_kv, key, parse, &val);
if (ret != LDB_SUCCESS) {
print_error(__location__": fetch_and_parse returned "
"(%d)\n",
ret);
exit(ret);
}
if ((strlen(VAL2) + 1) != val.length) {
print_error(__location__": KEY2 value lengths different"
", expected (%d) actual(%d)\n",
(int)(strlen(VAL2) + 1), (int)val.length);
exit(LDB_ERR_OPERATIONS_ERROR);
}
if (memcmp(VAL2, val.data, strlen(VAL2)) != 0) {
print_error(__location__": KEY2 values different, "
"expected (%s) actual(%s)\n",
VAL2,
val.data);
exit(LDB_ERR_OPERATIONS_ERROR);
}
ret = ldb_kv->kv_ops->unlock_read(ldb->modules);
if (ret != LDB_SUCCESS) {
print_error(__location__": unlock_read returned (%d)\n",
ret);
exit(ret);
}
exit(0);
}
close(to_child[0]);
close(to_parent[1]);
/*
* Begin a transaction and add a record to the database
* but leave the transaction open
*/
ret = ldb_kv->kv_ops->begin_write(ldb_kv);
assert_int_equal(ret, 0);
key.data = (uint8_t *)talloc_strdup(tmp_ctx, KEY2);
key.length = strlen(KEY2) + 1;
val.data = (uint8_t *)talloc_strdup(tmp_ctx, VAL2);
val.length = strlen(VAL2) + 1;
ret = ldb_kv->kv_ops->store(ldb_kv, key, val, 0);
assert_int_equal(ret, 0);
/*
* Signal the child process
*/
ret = write(to_child[1], "GO", 2);
assert_int_equal(2, ret);
/*
* Wait for the child process to check the DB state while the
* transaction is active
*/
ret = read(to_parent[0], buf, 2);
assert_int_equal(2, ret);
/*
* commit the transaction
*/
ret = ldb_kv->kv_ops->finish_write(ldb_kv);
assert_int_equal(0, ret);
/*
* Signal the child process
*/
ret = write(to_child[1], "GO", 2);
assert_int_equal(2, ret);
w_pid = waitpid(pid, &wstatus, 0);
assert_int_equal(pid, w_pid);
assert_true(WIFEXITED(wstatus));
assert_int_equal(WEXITSTATUS(wstatus), 0);
TALLOC_FREE(tmp_ctx);
}
/*
* Ensure that deletes are not visible until the transaction has been
* committed.
*/
static void test_delete_transaction_isolation(void **state)
{
int ret;
struct test_ctx *test_ctx = talloc_get_type_abort(*state,
struct test_ctx);
struct ldb_kv_private *ldb_kv = get_ldb_kv(test_ctx->ldb);
struct ldb_val key;
struct ldb_val val;
const char *KEY1 = "KEY01";
const char *VAL1 = "VALUE01";
const char *KEY2 = "KEY02";
const char *VAL2 = "VALUE02";
/*
* Pipes etc to co-ordinate the processes
*/
int to_child[2];
int to_parent[2];
char buf[2];
pid_t pid, w_pid;
int wstatus;
TALLOC_CTX *tmp_ctx;
tmp_ctx = talloc_new(test_ctx);
assert_non_null(tmp_ctx);
/*
* Add records to the database
*/
ret = ldb_kv->kv_ops->begin_write(ldb_kv);
assert_int_equal(ret, 0);
key.data = (uint8_t *)talloc_strdup(tmp_ctx, KEY1);
key.length = strlen(KEY1) + 1;
val.data = (uint8_t *)talloc_strdup(tmp_ctx, VAL1);
val.length = strlen(VAL1) + 1;
ret = ldb_kv->kv_ops->store(ldb_kv, key, val, 0);
assert_int_equal(ret, 0);
key.data = (uint8_t *)talloc_strdup(tmp_ctx, KEY2);
key.length = strlen(KEY2) + 1;
val.data = (uint8_t *)talloc_strdup(tmp_ctx, VAL2);
val.length = strlen(VAL2) + 1;
ret = ldb_kv->kv_ops->store(ldb_kv, key, val, 0);
assert_int_equal(ret, 0);
ret = ldb_kv->kv_ops->finish_write(ldb_kv);
assert_int_equal(ret, 0);
ret = pipe(to_child);
assert_int_equal(ret, 0);
ret = pipe(to_parent);
assert_int_equal(ret, 0);
/*
* Now fork a new process
*/
pid = fork();
if (pid == 0) {
struct ldb_context *ldb = NULL;
close(to_child[1]);
close(to_parent[0]);
/*
* Wait for the transaction to be started
*/
ret = read(to_child[0], buf, 2);
if (ret != 2) {
print_error(__location__": read returned (%d)\n",
ret);
exit(LDB_ERR_OPERATIONS_ERROR);
}
ldb = ldb_init(test_ctx, test_ctx->ev);
ret = ldb_connect(ldb, test_ctx->dbpath, 0, NULL);
if (ret != LDB_SUCCESS) {
print_error(__location__": ldb_connect returned (%d)\n",
ret);
exit(ret);
}
ldb_kv = get_ldb_kv(ldb);
ret = ldb_kv->kv_ops->lock_read(ldb->modules);
if (ret != LDB_SUCCESS) {
print_error(__location__": lock_read returned (%d)\n",
ret);
exit(ret);
}
/*
* Check that KEY1 is there
*/
key.data = (uint8_t *)talloc_strdup(tmp_ctx, KEY1);
key.length = strlen(KEY1) + 1;
ret = ldb_kv->kv_ops->fetch_and_parse(ldb_kv, key, parse, &val);
if (ret != LDB_SUCCESS) {
print_error(__location__": fetch_and_parse returned "
"(%d)\n",
ret);
exit(ret);
}
if ((strlen(VAL1) + 1) != val.length) {
print_error(__location__": KEY1 value lengths different"
", expected (%d) actual(%d)\n",
(int)(strlen(VAL1) + 1), (int)val.length);
exit(LDB_ERR_OPERATIONS_ERROR);
}
if (memcmp(VAL1, val.data, strlen(VAL1)) != 0) {
print_error(__location__": KEY1 values different, "
"expected (%s) actual(%s)\n",
VAL1,
val.data);
exit(LDB_ERR_OPERATIONS_ERROR);
}
/*
* Check that KEY2 is there
*/
key.data = (uint8_t *)talloc_strdup(tmp_ctx, KEY2);
key.length = strlen(KEY2) + 1;
ret = ldb_kv->kv_ops->fetch_and_parse(ldb_kv, key, parse, &val);
if (ret != LDB_SUCCESS) {
print_error(__location__": fetch_and_parse returned "
"(%d)\n",
ret);
exit(ret);
}
if ((strlen(VAL2) + 1) != val.length) {
print_error(__location__": KEY2 value lengths different"
", expected (%d) actual(%d)\n",
(int)(strlen(VAL2) + 1), (int)val.length);
exit(LDB_ERR_OPERATIONS_ERROR);
}
if (memcmp(VAL2, val.data, strlen(VAL2)) != 0) {
print_error(__location__": KEY2 values different, "
"expected (%s) actual(%s)\n",
VAL2,
val.data);
exit(LDB_ERR_OPERATIONS_ERROR);
}
ret = ldb_kv->kv_ops->unlock_read(ldb->modules);
if (ret != LDB_SUCCESS) {
print_error(__location__": unlock_read returned (%d)\n",
ret);
exit(ret);
}
/*
* Signal the other process to commit the transaction
*/
ret = write(to_parent[1], "GO", 2);
if (ret != 2) {
print_error(__location__": write returned (%d)\n",
ret);
exit(LDB_ERR_OPERATIONS_ERROR);
}
/*
* Wait for the transaction to be commited
*/
ret = read(to_child[0], buf, 2);
if (ret != 2) {
print_error(__location__": read returned (%d)\n",
ret);
exit(LDB_ERR_OPERATIONS_ERROR);
}
/*
* Check that KEY1 is there
*/
ret = ldb_kv->kv_ops->lock_read(ldb->modules);
if (ret != LDB_SUCCESS) {
print_error(__location__": unlock_read returned (%d)\n",
ret);
exit(ret);
}
key.data = (uint8_t *)talloc_strdup(tmp_ctx, KEY1);
key.length = strlen(KEY1) + 1;
ret = ldb_kv->kv_ops->fetch_and_parse(ldb_kv, key, parse, &val);
if (ret != LDB_SUCCESS) {
print_error(__location__": fetch_and_parse returned "
"(%d)\n",
ret);
exit(ret);
}
if ((strlen(VAL1) + 1) != val.length) {
print_error(__location__": KEY1 value lengths different"
", expected (%d) actual(%d)\n",
(int)(strlen(VAL1) + 1), (int)val.length);
exit(LDB_ERR_OPERATIONS_ERROR);
}
if (memcmp(VAL1, val.data, strlen(VAL1)) != 0) {
print_error(__location__": KEY1 values different, "
"expected (%s) actual(%s)\n",
VAL1,
val.data);
exit(LDB_ERR_OPERATIONS_ERROR);
}
ret = ldb_kv->kv_ops->unlock_read(ldb->modules);
if (ret != LDB_SUCCESS) {
print_error(__location__": unlock_read returned (%d)\n",
ret);
exit(ret);
}
/*
* Check that KEY2 is not there
*/
key.data = (uint8_t *)talloc_strdup(tmp_ctx, KEY2);
key.length = strlen(KEY2 + 1);
ret = ldb_kv->kv_ops->lock_read(ldb->modules);
if (ret != LDB_SUCCESS) {
print_error(__location__": lock_read returned (%d)\n",
ret);
exit(ret);
}
ret = ldb_kv->kv_ops->fetch_and_parse(ldb_kv, key, parse, &val);
if (ret != LDB_ERR_NO_SUCH_OBJECT) {
print_error(__location__": fetch_and_parse returned "
"(%d)\n",
ret);
exit(ret);
}
ret = ldb_kv->kv_ops->unlock_read(ldb->modules);
if (ret != LDB_SUCCESS) {
print_error(__location__": unlock_read returned (%d)\n",
ret);
exit(ret);
}
TALLOC_FREE(tmp_ctx);
exit(0);
}
close(to_child[0]);
close(to_parent[1]);
/*
* Begin a transaction and delete a record from the database
* but leave the transaction open
*/
ret = ldb_kv->kv_ops->begin_write(ldb_kv);
assert_int_equal(ret, 0);
key.data = (uint8_t *)talloc_strdup(tmp_ctx, KEY2);
key.length = strlen(KEY2) + 1;
ret = ldb_kv->kv_ops->delete (ldb_kv, key);
assert_int_equal(ret, 0);
/*
* Signal the child process
*/
ret = write(to_child[1], "GO", 2);
assert_int_equal(2, ret);
/*
* Wait for the child process to check the DB state while the
* transaction is active
*/
ret = read(to_parent[0], buf, 2);
assert_int_equal(2, ret);
/*
* commit the transaction
*/
ret = ldb_kv->kv_ops->finish_write(ldb_kv);
assert_int_equal(0, ret);
/*
* Signal the child process
*/
ret = write(to_child[1], "GO", 2);
assert_int_equal(2, ret);
w_pid = waitpid(pid, &wstatus, 0);
assert_int_equal(pid, w_pid);
assert_true(WIFEXITED(wstatus));
assert_int_equal(WEXITSTATUS(wstatus), 0);
TALLOC_FREE(tmp_ctx);
}
/*
* Test that get_size returns a sensible estimate of the number of records
* in the database.
*/
static void test_get_size(void **state)
{
int ret;
struct test_ctx *test_ctx = talloc_get_type_abort(*state,
struct test_ctx);
struct ldb_kv_private *ldb_kv = get_ldb_kv(test_ctx->ldb);
uint8_t key_val[] = "TheKey";
struct ldb_val key = {
.data = key_val,
.length = sizeof(key_val)
};
uint8_t value[] = "The record contents";
struct ldb_val data = {
.data = value,
.length = sizeof(value)
};
size_t size = 0;
int flags = 0;
TALLOC_CTX *tmp_ctx;
tmp_ctx = talloc_new(test_ctx);
assert_non_null(tmp_ctx);
size = ldb_kv->kv_ops->get_size(ldb_kv);
#if defined(TEST_LMDB)
assert_int_equal(2, size);
#else
/*
* The tdb implementation of get_size over estimates for sparse files
* which is perfectly acceptable for it's intended use.
*/
assert_in_range(size, 2500, 5000);
#endif
/*
* Begin a transaction
*/
ret = ldb_kv->kv_ops->begin_write(ldb_kv);
assert_int_equal(ret, 0);
/*
* Write the record
*/
ret = ldb_kv->kv_ops->store(ldb_kv, key, data, flags);
assert_int_equal(ret, 0);
/*
* Commit the transaction
*/
ret = ldb_kv->kv_ops->finish_write(ldb_kv);
assert_int_equal(ret, 0);
size = ldb_kv->kv_ops->get_size(ldb_kv);
#ifdef TEST_LMDB
assert_int_equal(3, size);
#else
/*
* The tdb implementation of get_size over estimates for sparse files
* which is perfectly acceptable for it's intended use.
*/
assert_in_range(size, 2500, 5000);
#endif
talloc_free(tmp_ctx);
}
int main(int argc, const char **argv)
{
const struct CMUnitTest tests[] = {
cmocka_unit_test_setup_teardown(
test_add_get,
setup,
teardown),
cmocka_unit_test_setup_teardown(
test_delete,
setup,
teardown),
cmocka_unit_test_setup_teardown(
test_transaction_abort_write,
setup,
teardown),
cmocka_unit_test_setup_teardown(
test_transaction_abort_delete,
setup,
teardown),
cmocka_unit_test_setup_teardown(
test_read_outside_transaction,
setup,
teardown),
cmocka_unit_test_setup_teardown(
test_write_outside_transaction,
setup,
teardown),
cmocka_unit_test_setup_teardown(
test_delete_outside_transaction,
setup,
teardown),
cmocka_unit_test_setup_teardown(
test_iterate,
setup,
teardown),
cmocka_unit_test_setup_teardown(
test_iterate_range,
setup,
teardown),
cmocka_unit_test_setup_teardown(
test_update_in_iterate,
setup,
teardown),
cmocka_unit_test_setup_teardown(
test_write_transaction_isolation,
setup,
teardown),
cmocka_unit_test_setup_teardown(
test_delete_transaction_isolation,
setup,
teardown),
cmocka_unit_test_setup_teardown(
test_get_size,
setup,
teardown),
};
return cmocka_run_group_tests(tests, NULL, NULL);
}