1
0
mirror of https://github.com/samba-team/samba.git synced 2025-01-12 09:18:10 +03:00
samba-mirror/source4/heimdal/lib/hcrypto/des.c
2008-10-28 08:53:09 +01:00

1186 lines
33 KiB
C

/*
* Copyright (c) 2005 Kungliga Tekniska Högskolan
* (Royal Institute of Technology, Stockholm, Sweden).
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* 3. Neither the name of the Institute nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE INSTITUTE AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE INSTITUTE OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
/**
* @page page_des DES - Data Encryption Standard crypto interface
*
* See the library functions here: @ref hcrypto_des
*
* DES was created by IBM, modififed by NSA and then adopted by NBS
* (now NIST) and published ad FIPS PUB 46 (updated by FIPS 46-1).
*
* Since the 19th May 2005 DES was withdrawn by NIST and should no
* longer be used. See @ref page_evp for replacement encryption
* algorithms and interfaces.
*
* Read more the iteresting history of DES on Wikipedia
* http://www.wikipedia.org/wiki/Data_Encryption_Standard .
*
* @section des_keygen DES key generation
*
* To generate a DES key safely you have to use the code-snippet
* below. This is because the DES_random_key() can fail with an
* abort() in case of and failure to start the random generator.
*
* There is a replacement function DES_new_random_key(), however that
* function does not exists in OpenSSL.
*
* @code
* DES_cblock key;
* do {
* if (RAND_rand(&key, sizeof(key)) != 1)
* goto failure;
* DES_set_odd_parity(key);
* } while (DES_is_weak_key(&key));
* @endcode
*
* @section des_impl DES implementation history
*
* There was no complete BSD licensed, fast, GPL compatible
* implementation of DES, so Love wrote the part that was missing,
* fast key schedule setup and adapted the interface to the orignal
* libdes.
*
* The document that got me started for real was "Efficient
* Implementation of the Data Encryption Standard" by Dag Arne Osvik.
* I never got to the PC1 transformation was working, instead I used
* table-lookup was used for all key schedule setup. The document was
* very useful since it de-mystified other implementations for me.
*
* The core DES function (SBOX + P transformation) is from Richard
* Outerbridge public domain DES implementation. My sanity is saved
* thanks to his work. Thank you Richard.
*/
#ifdef HAVE_CONFIG_H
#include <config.h>
RCSID("$Id$");
#endif
#define HC_DEPRECATED
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <krb5-types.h>
#include <assert.h>
#include "des.h"
#include "ui.h"
static void desx(uint32_t [2], DES_key_schedule *, int);
static void IP(uint32_t [2]);
static void FP(uint32_t [2]);
#include "des-tables.h"
#define ROTATE_LEFT28(x,one) \
if (one) { \
x = ( ((x)<<(1)) & 0xffffffe) | ((x) >> 27); \
} else { \
x = ( ((x)<<(2)) & 0xffffffc) | ((x) >> 26); \
}
/**
* Set the parity of the key block, used to generate a des key from a
* random key. See @ref des_keygen.
*
* @param key key to fixup the parity for.
* @ingroup hcrypto_des
*/
void
DES_set_odd_parity(DES_cblock *key)
{
unsigned int i;
for (i = 0; i < DES_CBLOCK_LEN; i++)
(*key)[i] = odd_parity[(*key)[i]];
}
/**
* Check if the key have correct parity.
*
* @param key key to check the parity.
* @return 1 on success, 0 on failure.
* @ingroup hcrypto_des
*/
int HC_DEPRECATED
DES_check_key_parity(DES_cblock *key)
{
unsigned int i;
for (i = 0; i < DES_CBLOCK_LEN; i++)
if ((*key)[i] != odd_parity[(*key)[i]])
return 0;
return 1;
}
/*
*
*/
/* FIPS 74 */
static DES_cblock weak_keys[] = {
{0x01,0x01,0x01,0x01,0x01,0x01,0x01,0x01}, /* weak keys */
{0xFE,0xFE,0xFE,0xFE,0xFE,0xFE,0xFE,0xFE},
{0x1F,0x1F,0x1F,0x1F,0x0E,0x0E,0x0E,0x0E},
{0xE0,0xE0,0xE0,0xE0,0xF1,0xF1,0xF1,0xF1},
{0x01,0xFE,0x01,0xFE,0x01,0xFE,0x01,0xFE}, /* semi-weak keys */
{0xFE,0x01,0xFE,0x01,0xFE,0x01,0xFE,0x01},
{0x1F,0xE0,0x1F,0xE0,0x0E,0xF1,0x0E,0xF1},
{0xE0,0x1F,0xE0,0x1F,0xF1,0x0E,0xF1,0x0E},
{0x01,0xE0,0x01,0xE0,0x01,0xF1,0x01,0xF1},
{0xE0,0x01,0xE0,0x01,0xF1,0x01,0xF1,0x01},
{0x1F,0xFE,0x1F,0xFE,0x0E,0xFE,0x0E,0xFE},
{0xFE,0x1F,0xFE,0x1F,0xFE,0x0E,0xFE,0x0E},
{0x01,0x1F,0x01,0x1F,0x01,0x0E,0x01,0x0E},
{0x1F,0x01,0x1F,0x01,0x0E,0x01,0x0E,0x01},
{0xE0,0xFE,0xE0,0xFE,0xF1,0xFE,0xF1,0xFE},
{0xFE,0xE0,0xFE,0xE0,0xFE,0xF1,0xFE,0xF1}
};
/**
* Checks if the key is any of the weaks keys that makes DES attacks
* trival.
*
* @param key key to check.
*
* @return 1 if the key is weak, 0 otherwise.
* @ingroup hcrypto_des
*/
int
DES_is_weak_key(DES_cblock *key)
{
int i;
for (i = 0; i < sizeof(weak_keys)/sizeof(weak_keys[0]); i++) {
if (memcmp(weak_keys[i], key, DES_CBLOCK_LEN) == 0)
return 1;
}
return 0;
}
/**
* Setup a des key schedule from a key. Deprecated function, use
* DES_set_key_unchecked() or DES_set_key_checked() instead.
*
* @param key a key to initialize the key schedule with.
* @param ks a key schedule to initialize.
*
* @return 0 on success
* @ingroup hcrypto_des
*/
int HC_DEPRECATED
DES_set_key(DES_cblock *key, DES_key_schedule *ks)
{
return DES_set_key_checked(key, ks);
}
/**
* Setup a des key schedule from a key. The key is no longer needed
* after this transaction and can cleared.
*
* Does NOT check that the key is weak for or have wrong parity.
*
* @param key a key to initialize the key schedule with.
* @param ks a key schedule to initialize.
*
* @return 0 on success
* @ingroup hcrypto_des
*/
int
DES_set_key_unchecked(DES_cblock *key, DES_key_schedule *ks)
{
uint32_t t1, t2;
uint32_t c, d;
int shifts[16] = { 1, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1 };
uint32_t *k = &ks->ks[0];
int i;
t1 = (*key)[0] << 24 | (*key)[1] << 16 | (*key)[2] << 8 | (*key)[3];
t2 = (*key)[4] << 24 | (*key)[5] << 16 | (*key)[6] << 8 | (*key)[7];
c = (pc1_c_3[(t1 >> (5 )) & 0x7] << 3)
| (pc1_c_3[(t1 >> (5 + 8 )) & 0x7] << 2)
| (pc1_c_3[(t1 >> (5 + 8 + 8 )) & 0x7] << 1)
| (pc1_c_3[(t1 >> (5 + 8 + 8 + 8)) & 0x7] << 0)
| (pc1_c_4[(t2 >> (4 )) & 0xf] << 3)
| (pc1_c_4[(t2 >> (4 + 8 )) & 0xf] << 2)
| (pc1_c_4[(t2 >> (4 + 8 + 8 )) & 0xf] << 1)
| (pc1_c_4[(t2 >> (4 + 8 + 8 + 8)) & 0xf] << 0);
d = (pc1_d_3[(t2 >> (1 )) & 0x7] << 3)
| (pc1_d_3[(t2 >> (1 + 8 )) & 0x7] << 2)
| (pc1_d_3[(t2 >> (1 + 8 + 8 )) & 0x7] << 1)
| (pc1_d_3[(t2 >> (1 + 8 + 8 + 8)) & 0x7] << 0)
| (pc1_d_4[(t1 >> (1 )) & 0xf] << 3)
| (pc1_d_4[(t1 >> (1 + 8 )) & 0xf] << 2)
| (pc1_d_4[(t1 >> (1 + 8 + 8 )) & 0xf] << 1)
| (pc1_d_4[(t1 >> (1 + 8 + 8 + 8)) & 0xf] << 0);
for (i = 0; i < 16; i++) {
uint32_t kc, kd;
ROTATE_LEFT28(c, shifts[i]);
ROTATE_LEFT28(d, shifts[i]);
kc = pc2_c_1[(c >> 22) & 0x3f] |
pc2_c_2[((c >> 16) & 0x30) | ((c >> 15) & 0xf)] |
pc2_c_3[((c >> 9 ) & 0x3c) | ((c >> 8 ) & 0x3)] |
pc2_c_4[((c >> 2 ) & 0x20) | ((c >> 1) & 0x18) | (c & 0x7)];
kd = pc2_d_1[(d >> 22) & 0x3f] |
pc2_d_2[((d >> 15) & 0x30) | ((d >> 14) & 0xf)] |
pc2_d_3[ (d >> 7 ) & 0x3f] |
pc2_d_4[((d >> 1 ) & 0x3c) | ((d ) & 0x3)];
/* Change to byte order used by the S boxes */
*k = (kc & 0x00fc0000L) << 6;
*k |= (kc & 0x00000fc0L) << 10;
*k |= (kd & 0x00fc0000L) >> 10;
*k++ |= (kd & 0x00000fc0L) >> 6;
*k = (kc & 0x0003f000L) << 12;
*k |= (kc & 0x0000003fL) << 16;
*k |= (kd & 0x0003f000L) >> 4;
*k++ |= (kd & 0x0000003fL);
}
return 0;
}
/**
* Just like DES_set_key_unchecked() except checking that the key is
* not weak for or have correct parity.
*
* @param key a key to initialize the key schedule with.
* @param ks a key schedule to initialize.
*
* @return 0 on success, -1 on invalid parity, -2 on weak key.
* @ingroup hcrypto_des
*/
int
DES_set_key_checked(DES_cblock *key, DES_key_schedule *ks)
{
if (!DES_check_key_parity(key)) {
memset(ks, 0, sizeof(*ks));
return -1;
}
if (DES_is_weak_key(key)) {
memset(ks, 0, sizeof(*ks));
return -2;
}
return DES_set_key_unchecked(key, ks);
}
/**
* Compatibility function for eay libdes, works just like
* DES_set_key_checked().
*
* @param key a key to initialize the key schedule with.
* @param ks a key schedule to initialize.
*
* @return 0 on success, -1 on invalid parity, -2 on weak key.
* @ingroup hcrypto_des
*/
int
DES_key_sched(DES_cblock *key, DES_key_schedule *ks)
{
return DES_set_key_checked(key, ks);
}
/*
*
*/
static void
load(const unsigned char *b, uint32_t v[2])
{
v[0] = b[0] << 24;
v[0] |= b[1] << 16;
v[0] |= b[2] << 8;
v[0] |= b[3] << 0;
v[1] = b[4] << 24;
v[1] |= b[5] << 16;
v[1] |= b[6] << 8;
v[1] |= b[7] << 0;
}
static void
store(const uint32_t v[2], unsigned char *b)
{
b[0] = (v[0] >> 24) & 0xff;
b[1] = (v[0] >> 16) & 0xff;
b[2] = (v[0] >> 8) & 0xff;
b[3] = (v[0] >> 0) & 0xff;
b[4] = (v[1] >> 24) & 0xff;
b[5] = (v[1] >> 16) & 0xff;
b[6] = (v[1] >> 8) & 0xff;
b[7] = (v[1] >> 0) & 0xff;
}
/**
* Encrypt/decrypt a block using DES. Also called ECB mode
*
* @param u data to encrypt
* @param ks key schedule to use
* @param encp if non zero, encrypt. if zero, decrypt.
*
* @ingroup hcrypto_des
*/
void
DES_encrypt(uint32_t u[2], DES_key_schedule *ks, int encp)
{
IP(u);
desx(u, ks, encp);
FP(u);
}
/**
* Encrypt/decrypt a block using DES.
*
* @param input data to encrypt
* @param output data to encrypt
* @param ks key schedule to use
* @param encp if non zero, encrypt. if zero, decrypt.
*
* @ingroup hcrypto_des
*/
void
DES_ecb_encrypt(DES_cblock *input, DES_cblock *output,
DES_key_schedule *ks, int encp)
{
uint32_t u[2];
load(*input, u);
DES_encrypt(u, ks, encp);
store(u, *output);
}
/**
* Encrypt/decrypt a block using DES in Chain Block Cipher mode (cbc).
*
* The IV must always be diffrent for diffrent input data blocks.
*
* @param in data to encrypt
* @param out data to encrypt
* @param length length of data
* @param ks key schedule to use
* @param iv initial vector to use
* @param encp if non zero, encrypt. if zero, decrypt.
*
* @ingroup hcrypto_des
*/
void
DES_cbc_encrypt(const void *in, void *out, long length,
DES_key_schedule *ks, DES_cblock *iv, int encp)
{
const unsigned char *input = in;
unsigned char *output = out;
uint32_t u[2];
uint32_t uiv[2];
load(*iv, uiv);
if (encp) {
while (length >= DES_CBLOCK_LEN) {
load(input, u);
u[0] ^= uiv[0]; u[1] ^= uiv[1];
DES_encrypt(u, ks, 1);
uiv[0] = u[0]; uiv[1] = u[1];
store(u, output);
length -= DES_CBLOCK_LEN;
input += DES_CBLOCK_LEN;
output += DES_CBLOCK_LEN;
}
if (length) {
unsigned char tmp[DES_CBLOCK_LEN];
memcpy(tmp, input, length);
memset(tmp + length, 0, DES_CBLOCK_LEN - length);
load(tmp, u);
u[0] ^= uiv[0]; u[1] ^= uiv[1];
DES_encrypt(u, ks, 1);
store(u, output);
}
} else {
uint32_t t[2];
while (length >= DES_CBLOCK_LEN) {
load(input, u);
t[0] = u[0]; t[1] = u[1];
DES_encrypt(u, ks, 0);
u[0] ^= uiv[0]; u[1] ^= uiv[1];
store(u, output);
uiv[0] = t[0]; uiv[1] = t[1];
length -= DES_CBLOCK_LEN;
input += DES_CBLOCK_LEN;
output += DES_CBLOCK_LEN;
}
if (length) {
unsigned char tmp[DES_CBLOCK_LEN];
memcpy(tmp, input, length);
memset(tmp + length, 0, DES_CBLOCK_LEN - length);
load(tmp, u);
DES_encrypt(u, ks, 0);
u[0] ^= uiv[0]; u[1] ^= uiv[1];
store(u, output);
}
}
uiv[0] = 0; u[0] = 0; uiv[1] = 0; u[1] = 0;
}
/**
* Encrypt/decrypt a block using DES in Propagating Cipher Block
* Chaining mode. This mode is only used for Kerberos 4, and it should
* stay that way.
*
* The IV must always be diffrent for diffrent input data blocks.
*
* @param in data to encrypt
* @param out data to encrypt
* @param length length of data
* @param ks key schedule to use
* @param iv initial vector to use
* @param encp if non zero, encrypt. if zero, decrypt.
*
* @ingroup hcrypto_des
*/
void
DES_pcbc_encrypt(const void *in, void *out, long length,
DES_key_schedule *ks, DES_cblock *iv, int encp)
{
const unsigned char *input = in;
unsigned char *output = out;
uint32_t u[2];
uint32_t uiv[2];
load(*iv, uiv);
if (encp) {
uint32_t t[2];
while (length >= DES_CBLOCK_LEN) {
load(input, u);
t[0] = u[0]; t[1] = u[1];
u[0] ^= uiv[0]; u[1] ^= uiv[1];
DES_encrypt(u, ks, 1);
uiv[0] = u[0] ^ t[0]; uiv[1] = u[1] ^ t[1];
store(u, output);
length -= DES_CBLOCK_LEN;
input += DES_CBLOCK_LEN;
output += DES_CBLOCK_LEN;
}
if (length) {
unsigned char tmp[DES_CBLOCK_LEN];
memcpy(tmp, input, length);
memset(tmp + length, 0, DES_CBLOCK_LEN - length);
load(tmp, u);
u[0] ^= uiv[0]; u[1] ^= uiv[1];
DES_encrypt(u, ks, 1);
store(u, output);
}
} else {
uint32_t t[2];
while (length >= DES_CBLOCK_LEN) {
load(input, u);
t[0] = u[0]; t[1] = u[1];
DES_encrypt(u, ks, 0);
u[0] ^= uiv[0]; u[1] ^= uiv[1];
store(u, output);
uiv[0] = t[0] ^ u[0]; uiv[1] = t[1] ^ u[1];
length -= DES_CBLOCK_LEN;
input += DES_CBLOCK_LEN;
output += DES_CBLOCK_LEN;
}
if (length) {
unsigned char tmp[DES_CBLOCK_LEN];
memcpy(tmp, input, length);
memset(tmp + length, 0, DES_CBLOCK_LEN - length);
load(tmp, u);
DES_encrypt(u, ks, 0);
u[0] ^= uiv[0]; u[1] ^= uiv[1];
}
}
uiv[0] = 0; u[0] = 0; uiv[1] = 0; u[1] = 0;
}
/*
*
*/
static void
_des3_encrypt(uint32_t u[2], DES_key_schedule *ks1, DES_key_schedule *ks2,
DES_key_schedule *ks3, int encp)
{
IP(u);
if (encp) {
desx(u, ks1, 1); /* IP + FP cancel out each other */
desx(u, ks2, 0);
desx(u, ks3, 1);
} else {
desx(u, ks3, 0);
desx(u, ks2, 1);
desx(u, ks1, 0);
}
FP(u);
}
/**
* Encrypt/decrypt a block using triple DES using EDE mode,
* encrypt/decrypt/encrypt.
*
* @param input data to encrypt
* @param output data to encrypt
* @param ks1 key schedule to use
* @param ks2 key schedule to use
* @param ks3 key schedule to use
* @param encp if non zero, encrypt. if zero, decrypt.
*
* @ingroup hcrypto_des
*/
void
DES_ecb3_encrypt(DES_cblock *input,
DES_cblock *output,
DES_key_schedule *ks1,
DES_key_schedule *ks2,
DES_key_schedule *ks3,
int encp)
{
uint32_t u[2];
load(*input, u);
_des3_encrypt(u, ks1, ks2, ks3, encp);
store(u, *output);
return;
}
/**
* Encrypt/decrypt using Triple DES in Chain Block Cipher mode (cbc).
*
* The IV must always be diffrent for diffrent input data blocks.
*
* @param in data to encrypt
* @param out data to encrypt
* @param length length of data
* @param ks1 key schedule to use
* @param ks2 key schedule to use
* @param ks3 key schedule to use
* @param iv initial vector to use
* @param encp if non zero, encrypt. if zero, decrypt.
*
* @ingroup hcrypto_des
*/
void
DES_ede3_cbc_encrypt(const void *in, void *out,
long length, DES_key_schedule *ks1,
DES_key_schedule *ks2, DES_key_schedule *ks3,
DES_cblock *iv, int encp)
{
const unsigned char *input = in;
unsigned char *output = out;
uint32_t u[2];
uint32_t uiv[2];
load(*iv, uiv);
if (encp) {
while (length >= DES_CBLOCK_LEN) {
load(input, u);
u[0] ^= uiv[0]; u[1] ^= uiv[1];
_des3_encrypt(u, ks1, ks2, ks3, 1);
uiv[0] = u[0]; uiv[1] = u[1];
store(u, output);
length -= DES_CBLOCK_LEN;
input += DES_CBLOCK_LEN;
output += DES_CBLOCK_LEN;
}
if (length) {
unsigned char tmp[DES_CBLOCK_LEN];
memcpy(tmp, input, length);
memset(tmp + length, 0, DES_CBLOCK_LEN - length);
load(tmp, u);
u[0] ^= uiv[0]; u[1] ^= uiv[1];
_des3_encrypt(u, ks1, ks2, ks3, 1);
store(u, output);
}
} else {
uint32_t t[2];
while (length >= DES_CBLOCK_LEN) {
load(input, u);
t[0] = u[0]; t[1] = u[1];
_des3_encrypt(u, ks1, ks2, ks3, 0);
u[0] ^= uiv[0]; u[1] ^= uiv[1];
store(u, output);
uiv[0] = t[0]; uiv[1] = t[1];
length -= DES_CBLOCK_LEN;
input += DES_CBLOCK_LEN;
output += DES_CBLOCK_LEN;
}
if (length) {
unsigned char tmp[DES_CBLOCK_LEN];
memcpy(tmp, input, length);
memset(tmp + length, 0, DES_CBLOCK_LEN - length);
load(tmp, u);
_des3_encrypt(u, ks1, ks2, ks3, 0);
u[0] ^= uiv[0]; u[1] ^= uiv[1];
store(u, output);
}
}
store(uiv, *iv);
uiv[0] = 0; u[0] = 0; uiv[1] = 0; u[1] = 0;
}
/**
* Encrypt/decrypt using DES in cipher feedback mode with 64 bit
* feedback.
*
* The IV must always be diffrent for diffrent input data blocks.
*
* @param in data to encrypt
* @param out data to encrypt
* @param length length of data
* @param ks key schedule to use
* @param iv initial vector to use
* @param num offset into in cipher block encryption/decryption stop last time.
* @param encp if non zero, encrypt. if zero, decrypt.
*
* @ingroup hcrypto_des
*/
void
DES_cfb64_encrypt(const void *in, void *out,
long length, DES_key_schedule *ks, DES_cblock *iv,
int *num, int encp)
{
const unsigned char *input = in;
unsigned char *output = out;
unsigned char tmp[DES_CBLOCK_LEN];
uint32_t uiv[2];
load(*iv, uiv);
assert(*num >= 0 && *num < DES_CBLOCK_LEN);
if (encp) {
int i = *num;
while (length > 0) {
if (i == 0)
DES_encrypt(uiv, ks, 1);
store(uiv, tmp);
for (; i < DES_CBLOCK_LEN && i < length; i++) {
output[i] = tmp[i] ^ input[i];
}
if (i == DES_CBLOCK_LEN)
load(output, uiv);
output += i;
input += i;
length -= i;
if (i == DES_CBLOCK_LEN)
i = 0;
}
store(uiv, *iv);
*num = i;
} else {
int i = *num;
unsigned char c;
while (length > 0) {
if (i == 0) {
DES_encrypt(uiv, ks, 1);
store(uiv, tmp);
}
for (; i < DES_CBLOCK_LEN && i < length; i++) {
c = input[i];
output[i] = tmp[i] ^ input[i];
(*iv)[i] = c;
}
output += i;
input += i;
length -= i;
if (i == DES_CBLOCK_LEN) {
i = 0;
load(*iv, uiv);
}
}
store(uiv, *iv);
*num = i;
}
}
/**
* Crete a checksum using DES in CBC encryption mode. This mode is
* only used for Kerberos 4, and it should stay that way.
*
* The IV must always be diffrent for diffrent input data blocks.
*
* @param in data to checksum
* @param output the checksum
* @param length length of data
* @param ks key schedule to use
* @param iv initial vector to use
*
* @ingroup hcrypto_des
*/
uint32_t
DES_cbc_cksum(const void *in, DES_cblock *output,
long length, DES_key_schedule *ks, DES_cblock *iv)
{
const unsigned char *input = in;
uint32_t uiv[2];
uint32_t u[2] = { 0, 0 };
load(*iv, uiv);
while (length >= DES_CBLOCK_LEN) {
load(input, u);
u[0] ^= uiv[0]; u[1] ^= uiv[1];
DES_encrypt(u, ks, 1);
uiv[0] = u[0]; uiv[1] = u[1];
length -= DES_CBLOCK_LEN;
input += DES_CBLOCK_LEN;
}
if (length) {
unsigned char tmp[DES_CBLOCK_LEN];
memcpy(tmp, input, length);
memset(tmp + length, 0, DES_CBLOCK_LEN - length);
load(tmp, u);
u[0] ^= uiv[0]; u[1] ^= uiv[1];
DES_encrypt(u, ks, 1);
}
if (output)
store(u, *output);
uiv[0] = 0; u[0] = 0; uiv[1] = 0;
return u[1];
}
/*
*
*/
static unsigned char
bitswap8(unsigned char b)
{
unsigned char r = 0;
int i;
for (i = 0; i < 8; i++) {
r = r << 1 | (b & 1);
b = b >> 1;
}
return r;
}
/**
* Convert a string to a DES key. Use something like
* PKCS5_PBKDF2_HMAC_SHA1() to create key from passwords.
*
* @param str The string to convert to a key
* @param key the resulting key
*
* @ingroup hcrypto_des
*/
void
DES_string_to_key(const char *str, DES_cblock *key)
{
const unsigned char *s;
unsigned char *k;
DES_key_schedule ks;
size_t i, len;
memset(key, 0, sizeof(*key));
k = *key;
s = (const unsigned char *)str;
len = strlen(str);
for (i = 0; i < len; i++) {
if ((i % 16) < 8)
k[i % 8] ^= s[i] << 1;
else
k[7 - (i % 8)] ^= bitswap8(s[i]);
}
DES_set_odd_parity(key);
if (DES_is_weak_key(key))
k[7] ^= 0xF0;
DES_set_key(key, &ks);
DES_cbc_cksum(s, key, len, &ks, key);
memset(&ks, 0, sizeof(ks));
DES_set_odd_parity(key);
if (DES_is_weak_key(key))
k[7] ^= 0xF0;
}
/**
* Read password from prompt and create a DES key. Internal uses
* DES_string_to_key(). Really, go use a really string2key function
* like PKCS5_PBKDF2_HMAC_SHA1().
*
* @param key key to convert to
* @param prompt prompt to display user
* @param verify prompt twice.
*
* @return 1 on success, non 1 on failure.
*/
int
DES_read_password(DES_cblock *key, char *prompt, int verify)
{
char buf[512];
int ret;
ret = UI_UTIL_read_pw_string(buf, sizeof(buf) - 1, prompt, verify);
if (ret == 1)
DES_string_to_key(buf, key);
return ret;
}
/*
*
*/
void
_DES_ipfp_test(void)
{
DES_cblock k = "\x01\x02\x04\x08\x10\x20\x40\x80", k2;
uint32_t u[2] = { 1, 0 };
IP(u);
FP(u);
IP(u);
FP(u);
if (u[0] != 1 || u[1] != 0)
abort();
load(k, u);
store(u, k2);
if (memcmp(k, k2, 8) != 0)
abort();
}
/* D3DES (V5.09) -
*
* A portable, public domain, version of the Data Encryption Standard.
*
* Written with Symantec's THINK (Lightspeed) C by Richard Outerbridge.
* Thanks to: Dan Hoey for his excellent Initial and Inverse permutation
* code; Jim Gillogly & Phil Karn for the DES key schedule code; Dennis
* Ferguson, Eric Young and Dana How for comparing notes; and Ray Lau,
* for humouring me on.
*
* Copyright (c) 1988,1989,1990,1991,1992 by Richard Outerbridge.
* (GEnie : OUTER; CIS : [71755,204]) Graven Imagery, 1992.
*/
static uint32_t SP1[64] = {
0x01010400L, 0x00000000L, 0x00010000L, 0x01010404L,
0x01010004L, 0x00010404L, 0x00000004L, 0x00010000L,
0x00000400L, 0x01010400L, 0x01010404L, 0x00000400L,
0x01000404L, 0x01010004L, 0x01000000L, 0x00000004L,
0x00000404L, 0x01000400L, 0x01000400L, 0x00010400L,
0x00010400L, 0x01010000L, 0x01010000L, 0x01000404L,
0x00010004L, 0x01000004L, 0x01000004L, 0x00010004L,
0x00000000L, 0x00000404L, 0x00010404L, 0x01000000L,
0x00010000L, 0x01010404L, 0x00000004L, 0x01010000L,
0x01010400L, 0x01000000L, 0x01000000L, 0x00000400L,
0x01010004L, 0x00010000L, 0x00010400L, 0x01000004L,
0x00000400L, 0x00000004L, 0x01000404L, 0x00010404L,
0x01010404L, 0x00010004L, 0x01010000L, 0x01000404L,
0x01000004L, 0x00000404L, 0x00010404L, 0x01010400L,
0x00000404L, 0x01000400L, 0x01000400L, 0x00000000L,
0x00010004L, 0x00010400L, 0x00000000L, 0x01010004L };
static uint32_t SP2[64] = {
0x80108020L, 0x80008000L, 0x00008000L, 0x00108020L,
0x00100000L, 0x00000020L, 0x80100020L, 0x80008020L,
0x80000020L, 0x80108020L, 0x80108000L, 0x80000000L,
0x80008000L, 0x00100000L, 0x00000020L, 0x80100020L,
0x00108000L, 0x00100020L, 0x80008020L, 0x00000000L,
0x80000000L, 0x00008000L, 0x00108020L, 0x80100000L,
0x00100020L, 0x80000020L, 0x00000000L, 0x00108000L,
0x00008020L, 0x80108000L, 0x80100000L, 0x00008020L,
0x00000000L, 0x00108020L, 0x80100020L, 0x00100000L,
0x80008020L, 0x80100000L, 0x80108000L, 0x00008000L,
0x80100000L, 0x80008000L, 0x00000020L, 0x80108020L,
0x00108020L, 0x00000020L, 0x00008000L, 0x80000000L,
0x00008020L, 0x80108000L, 0x00100000L, 0x80000020L,
0x00100020L, 0x80008020L, 0x80000020L, 0x00100020L,
0x00108000L, 0x00000000L, 0x80008000L, 0x00008020L,
0x80000000L, 0x80100020L, 0x80108020L, 0x00108000L };
static uint32_t SP3[64] = {
0x00000208L, 0x08020200L, 0x00000000L, 0x08020008L,
0x08000200L, 0x00000000L, 0x00020208L, 0x08000200L,
0x00020008L, 0x08000008L, 0x08000008L, 0x00020000L,
0x08020208L, 0x00020008L, 0x08020000L, 0x00000208L,
0x08000000L, 0x00000008L, 0x08020200L, 0x00000200L,
0x00020200L, 0x08020000L, 0x08020008L, 0x00020208L,
0x08000208L, 0x00020200L, 0x00020000L, 0x08000208L,
0x00000008L, 0x08020208L, 0x00000200L, 0x08000000L,
0x08020200L, 0x08000000L, 0x00020008L, 0x00000208L,
0x00020000L, 0x08020200L, 0x08000200L, 0x00000000L,
0x00000200L, 0x00020008L, 0x08020208L, 0x08000200L,
0x08000008L, 0x00000200L, 0x00000000L, 0x08020008L,
0x08000208L, 0x00020000L, 0x08000000L, 0x08020208L,
0x00000008L, 0x00020208L, 0x00020200L, 0x08000008L,
0x08020000L, 0x08000208L, 0x00000208L, 0x08020000L,
0x00020208L, 0x00000008L, 0x08020008L, 0x00020200L };
static uint32_t SP4[64] = {
0x00802001L, 0x00002081L, 0x00002081L, 0x00000080L,
0x00802080L, 0x00800081L, 0x00800001L, 0x00002001L,
0x00000000L, 0x00802000L, 0x00802000L, 0x00802081L,
0x00000081L, 0x00000000L, 0x00800080L, 0x00800001L,
0x00000001L, 0x00002000L, 0x00800000L, 0x00802001L,
0x00000080L, 0x00800000L, 0x00002001L, 0x00002080L,
0x00800081L, 0x00000001L, 0x00002080L, 0x00800080L,
0x00002000L, 0x00802080L, 0x00802081L, 0x00000081L,
0x00800080L, 0x00800001L, 0x00802000L, 0x00802081L,
0x00000081L, 0x00000000L, 0x00000000L, 0x00802000L,
0x00002080L, 0x00800080L, 0x00800081L, 0x00000001L,
0x00802001L, 0x00002081L, 0x00002081L, 0x00000080L,
0x00802081L, 0x00000081L, 0x00000001L, 0x00002000L,
0x00800001L, 0x00002001L, 0x00802080L, 0x00800081L,
0x00002001L, 0x00002080L, 0x00800000L, 0x00802001L,
0x00000080L, 0x00800000L, 0x00002000L, 0x00802080L };
static uint32_t SP5[64] = {
0x00000100L, 0x02080100L, 0x02080000L, 0x42000100L,
0x00080000L, 0x00000100L, 0x40000000L, 0x02080000L,
0x40080100L, 0x00080000L, 0x02000100L, 0x40080100L,
0x42000100L, 0x42080000L, 0x00080100L, 0x40000000L,
0x02000000L, 0x40080000L, 0x40080000L, 0x00000000L,
0x40000100L, 0x42080100L, 0x42080100L, 0x02000100L,
0x42080000L, 0x40000100L, 0x00000000L, 0x42000000L,
0x02080100L, 0x02000000L, 0x42000000L, 0x00080100L,
0x00080000L, 0x42000100L, 0x00000100L, 0x02000000L,
0x40000000L, 0x02080000L, 0x42000100L, 0x40080100L,
0x02000100L, 0x40000000L, 0x42080000L, 0x02080100L,
0x40080100L, 0x00000100L, 0x02000000L, 0x42080000L,
0x42080100L, 0x00080100L, 0x42000000L, 0x42080100L,
0x02080000L, 0x00000000L, 0x40080000L, 0x42000000L,
0x00080100L, 0x02000100L, 0x40000100L, 0x00080000L,
0x00000000L, 0x40080000L, 0x02080100L, 0x40000100L };
static uint32_t SP6[64] = {
0x20000010L, 0x20400000L, 0x00004000L, 0x20404010L,
0x20400000L, 0x00000010L, 0x20404010L, 0x00400000L,
0x20004000L, 0x00404010L, 0x00400000L, 0x20000010L,
0x00400010L, 0x20004000L, 0x20000000L, 0x00004010L,
0x00000000L, 0x00400010L, 0x20004010L, 0x00004000L,
0x00404000L, 0x20004010L, 0x00000010L, 0x20400010L,
0x20400010L, 0x00000000L, 0x00404010L, 0x20404000L,
0x00004010L, 0x00404000L, 0x20404000L, 0x20000000L,
0x20004000L, 0x00000010L, 0x20400010L, 0x00404000L,
0x20404010L, 0x00400000L, 0x00004010L, 0x20000010L,
0x00400000L, 0x20004000L, 0x20000000L, 0x00004010L,
0x20000010L, 0x20404010L, 0x00404000L, 0x20400000L,
0x00404010L, 0x20404000L, 0x00000000L, 0x20400010L,
0x00000010L, 0x00004000L, 0x20400000L, 0x00404010L,
0x00004000L, 0x00400010L, 0x20004010L, 0x00000000L,
0x20404000L, 0x20000000L, 0x00400010L, 0x20004010L };
static uint32_t SP7[64] = {
0x00200000L, 0x04200002L, 0x04000802L, 0x00000000L,
0x00000800L, 0x04000802L, 0x00200802L, 0x04200800L,
0x04200802L, 0x00200000L, 0x00000000L, 0x04000002L,
0x00000002L, 0x04000000L, 0x04200002L, 0x00000802L,
0x04000800L, 0x00200802L, 0x00200002L, 0x04000800L,
0x04000002L, 0x04200000L, 0x04200800L, 0x00200002L,
0x04200000L, 0x00000800L, 0x00000802L, 0x04200802L,
0x00200800L, 0x00000002L, 0x04000000L, 0x00200800L,
0x04000000L, 0x00200800L, 0x00200000L, 0x04000802L,
0x04000802L, 0x04200002L, 0x04200002L, 0x00000002L,
0x00200002L, 0x04000000L, 0x04000800L, 0x00200000L,
0x04200800L, 0x00000802L, 0x00200802L, 0x04200800L,
0x00000802L, 0x04000002L, 0x04200802L, 0x04200000L,
0x00200800L, 0x00000000L, 0x00000002L, 0x04200802L,
0x00000000L, 0x00200802L, 0x04200000L, 0x00000800L,
0x04000002L, 0x04000800L, 0x00000800L, 0x00200002L };
static uint32_t SP8[64] = {
0x10001040L, 0x00001000L, 0x00040000L, 0x10041040L,
0x10000000L, 0x10001040L, 0x00000040L, 0x10000000L,
0x00040040L, 0x10040000L, 0x10041040L, 0x00041000L,
0x10041000L, 0x00041040L, 0x00001000L, 0x00000040L,
0x10040000L, 0x10000040L, 0x10001000L, 0x00001040L,
0x00041000L, 0x00040040L, 0x10040040L, 0x10041000L,
0x00001040L, 0x00000000L, 0x00000000L, 0x10040040L,
0x10000040L, 0x10001000L, 0x00041040L, 0x00040000L,
0x00041040L, 0x00040000L, 0x10041000L, 0x00001000L,
0x00000040L, 0x10040040L, 0x00001000L, 0x00041040L,
0x10001000L, 0x00000040L, 0x10000040L, 0x10040000L,
0x10040040L, 0x10000000L, 0x00040000L, 0x10001040L,
0x00000000L, 0x10041040L, 0x00040040L, 0x10000040L,
0x10040000L, 0x10001000L, 0x10001040L, 0x00000000L,
0x10041040L, 0x00041000L, 0x00041000L, 0x00001040L,
0x00001040L, 0x00040040L, 0x10000000L, 0x10041000L };
static void
IP(uint32_t v[2])
{
uint32_t work;
work = ((v[0] >> 4) ^ v[1]) & 0x0f0f0f0fL;
v[1] ^= work;
v[0] ^= (work << 4);
work = ((v[0] >> 16) ^ v[1]) & 0x0000ffffL;
v[1] ^= work;
v[0] ^= (work << 16);
work = ((v[1] >> 2) ^ v[0]) & 0x33333333L;
v[0] ^= work;
v[1] ^= (work << 2);
work = ((v[1] >> 8) ^ v[0]) & 0x00ff00ffL;
v[0] ^= work;
v[1] ^= (work << 8);
v[1] = ((v[1] << 1) | ((v[1] >> 31) & 1L)) & 0xffffffffL;
work = (v[0] ^ v[1]) & 0xaaaaaaaaL;
v[0] ^= work;
v[1] ^= work;
v[0] = ((v[0] << 1) | ((v[0] >> 31) & 1L)) & 0xffffffffL;
}
static void
FP(uint32_t v[2])
{
uint32_t work;
v[0] = (v[0] << 31) | (v[0] >> 1);
work = (v[1] ^ v[0]) & 0xaaaaaaaaL;
v[1] ^= work;
v[0] ^= work;
v[1] = (v[1] << 31) | (v[1] >> 1);
work = ((v[1] >> 8) ^ v[0]) & 0x00ff00ffL;
v[0] ^= work;
v[1] ^= (work << 8);
work = ((v[1] >> 2) ^ v[0]) & 0x33333333L;
v[0] ^= work;
v[1] ^= (work << 2);
work = ((v[0] >> 16) ^ v[1]) & 0x0000ffffL;
v[1] ^= work;
v[0] ^= (work << 16);
work = ((v[0] >> 4) ^ v[1]) & 0x0f0f0f0fL;
v[1] ^= work;
v[0] ^= (work << 4);
}
static void
desx(uint32_t block[2], DES_key_schedule *ks, int encp)
{
uint32_t *keys;
uint32_t fval, work, right, left;
int round;
left = block[0];
right = block[1];
if (encp) {
keys = &ks->ks[0];
for( round = 0; round < 8; round++ ) {
work = (right << 28) | (right >> 4);
work ^= *keys++;
fval = SP7[ work & 0x3fL];
fval |= SP5[(work >> 8) & 0x3fL];
fval |= SP3[(work >> 16) & 0x3fL];
fval |= SP1[(work >> 24) & 0x3fL];
work = right ^ *keys++;
fval |= SP8[ work & 0x3fL];
fval |= SP6[(work >> 8) & 0x3fL];
fval |= SP4[(work >> 16) & 0x3fL];
fval |= SP2[(work >> 24) & 0x3fL];
left ^= fval;
work = (left << 28) | (left >> 4);
work ^= *keys++;
fval = SP7[ work & 0x3fL];
fval |= SP5[(work >> 8) & 0x3fL];
fval |= SP3[(work >> 16) & 0x3fL];
fval |= SP1[(work >> 24) & 0x3fL];
work = left ^ *keys++;
fval |= SP8[ work & 0x3fL];
fval |= SP6[(work >> 8) & 0x3fL];
fval |= SP4[(work >> 16) & 0x3fL];
fval |= SP2[(work >> 24) & 0x3fL];
right ^= fval;
}
} else {
keys = &ks->ks[30];
for( round = 0; round < 8; round++ ) {
work = (right << 28) | (right >> 4);
work ^= *keys++;
fval = SP7[ work & 0x3fL];
fval |= SP5[(work >> 8) & 0x3fL];
fval |= SP3[(work >> 16) & 0x3fL];
fval |= SP1[(work >> 24) & 0x3fL];
work = right ^ *keys++;
fval |= SP8[ work & 0x3fL];
fval |= SP6[(work >> 8) & 0x3fL];
fval |= SP4[(work >> 16) & 0x3fL];
fval |= SP2[(work >> 24) & 0x3fL];
left ^= fval;
work = (left << 28) | (left >> 4);
keys -= 4;
work ^= *keys++;
fval = SP7[ work & 0x3fL];
fval |= SP5[(work >> 8) & 0x3fL];
fval |= SP3[(work >> 16) & 0x3fL];
fval |= SP1[(work >> 24) & 0x3fL];
work = left ^ *keys++;
fval |= SP8[ work & 0x3fL];
fval |= SP6[(work >> 8) & 0x3fL];
fval |= SP4[(work >> 16) & 0x3fL];
fval |= SP2[(work >> 24) & 0x3fL];
right ^= fval;
keys -= 4;
}
}
block[0] = right;
block[1] = left;
}