1
0
mirror of https://github.com/samba-team/samba.git synced 2025-01-26 10:04:02 +03:00
2008-10-28 08:53:09 +01:00

1702 lines
31 KiB
C

/*
* Copyright (c) 2006 - 2007 Kungliga Tekniska Högskolan
* (Royal Institute of Technology, Stockholm, Sweden).
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* 3. Neither the name of the Institute nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE INSTITUTE AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE INSTITUTE OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#ifdef HAVE_CONFIG_H
#include <config.h>
#endif
RCSID("$Id$");
#define HC_DEPRECATED
#define HC_DEPRECATED_CRYPTO
#include <sys/types.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <assert.h>
#include <evp.h>
#include <krb5-types.h>
#include "camellia.h"
#include <des.h>
#include <sha.h>
#include <rc2.h>
#include <rc4.h>
#include <md2.h>
#include <md4.h>
#include <md5.h>
/**
* @page page_evp EVP - generic crypto interface
*
* See the library functions here: @ref hcrypto_evp
*
* @section evp_cipher EVP Cipher
*
* The use of EVP_CipherInit_ex() and EVP_Cipher() is pretty easy to
* understand forward, then EVP_CipherUpdate() and
* EVP_CipherFinal_ex() really needs an example to explain @ref
* example_evp_cipher.c .
*
* @example example_evp_cipher.c
*
* This is an example how to use EVP_CipherInit_ex(),
* EVP_CipherUpdate() and EVP_CipherFinal_ex().
*/
struct hc_EVP_MD_CTX {
const EVP_MD *md;
ENGINE *engine;
void *ptr;
};
/**
* Return the output size of the message digest function.
*
* @param md the evp message
*
* @return size output size of the message digest function.
*
* @ingroup hcrypto_evp
*/
size_t
EVP_MD_size(const EVP_MD *md)
{
return md->hash_size;
}
/**
* Return the blocksize of the message digest function.
*
* @param md the evp message
*
* @return size size of the message digest block size
*
* @ingroup hcrypto_evp
*/
size_t
EVP_MD_block_size(const EVP_MD *md)
{
return md->block_size;
}
/**
* Allocate a messsage digest context object. Free with
* EVP_MD_CTX_destroy().
*
* @return a newly allocated message digest context object.
*
* @ingroup hcrypto_evp
*/
EVP_MD_CTX *
EVP_MD_CTX_create(void)
{
return calloc(1, sizeof(EVP_MD_CTX));
}
/**
* Initiate a messsage digest context object. Deallocate with
* EVP_MD_CTX_cleanup(). Please use EVP_MD_CTX_create() instead.
*
* @param ctx variable to initiate.
*
* @ingroup hcrypto_evp
*/
void HC_DEPRECATED
EVP_MD_CTX_init(EVP_MD_CTX *ctx)
{
memset(ctx, 0, sizeof(*ctx));
}
/**
* Free a messsage digest context object.
*
* @param ctx context to free.
*
* @ingroup hcrypto_evp
*/
void
EVP_MD_CTX_destroy(EVP_MD_CTX *ctx)
{
EVP_MD_CTX_cleanup(ctx);
free(ctx);
}
/**
* Free the resources used by the EVP_MD context.
*
* @param ctx the context to free the resources from.
*
* @return 1 on success.
*
* @ingroup hcrypto_evp
*/
int HC_DEPRECATED
EVP_MD_CTX_cleanup(EVP_MD_CTX *ctx)
{
if (ctx->md && ctx->md->cleanup)
(ctx->md->cleanup)(ctx);
ctx->md = NULL;
ctx->engine = NULL;
free(ctx->ptr);
memset(ctx, 0, sizeof(*ctx));
return 1;
}
/**
* Get the EVP_MD use for a specified context.
*
* @param ctx the EVP_MD context to get the EVP_MD for.
*
* @return the EVP_MD used for the context.
*
* @ingroup hcrypto_evp
*/
const EVP_MD *
EVP_MD_CTX_md(EVP_MD_CTX *ctx)
{
return ctx->md;
}
/**
* Return the output size of the message digest function.
*
* @param ctx the evp message digest context
*
* @return size output size of the message digest function.
*
* @ingroup hcrypto_evp
*/
size_t
EVP_MD_CTX_size(EVP_MD_CTX *ctx)
{
return EVP_MD_size(ctx->md);
}
/**
* Return the blocksize of the message digest function.
*
* @param ctx the evp message digest context
*
* @return size size of the message digest block size
*
* @ingroup hcrypto_evp
*/
size_t
EVP_MD_CTX_block_size(EVP_MD_CTX *ctx)
{
return EVP_MD_block_size(ctx->md);
}
/**
* Init a EVP_MD_CTX for use a specific message digest and engine.
*
* @param ctx the message digest context to init.
* @param md the message digest to use.
* @param engine the engine to use, NULL to use the default engine.
*
* @return 1 on success.
*
* @ingroup hcrypto_evp
*/
int
EVP_DigestInit_ex(EVP_MD_CTX *ctx, const EVP_MD *md, ENGINE *engine)
{
if (ctx->md != md || ctx->engine != engine) {
EVP_MD_CTX_cleanup(ctx);
ctx->md = md;
ctx->engine = engine;
ctx->ptr = calloc(1, md->ctx_size);
if (ctx->ptr == NULL)
return 0;
}
(ctx->md->init)(ctx->ptr);
return 1;
}
/**
* Update the digest with some data.
*
* @param ctx the context to update
* @param data the data to update the context with
* @param size length of data
*
* @return 1 on success.
*
* @ingroup hcrypto_evp
*/
int
EVP_DigestUpdate(EVP_MD_CTX *ctx, const void *data, size_t size)
{
(ctx->md->update)(ctx->ptr, data, size);
return 1;
}
/**
* Complete the message digest.
*
* @param ctx the context to complete.
* @param hash the output of the message digest function. At least
* EVP_MD_size().
* @param size the output size of hash.
*
* @return 1 on success.
*
* @ingroup hcrypto_evp
*/
int
EVP_DigestFinal_ex(EVP_MD_CTX *ctx, void *hash, unsigned int *size)
{
(ctx->md->final)(hash, ctx->ptr);
if (size)
*size = ctx->md->hash_size;
return 1;
}
/**
* Do the whole EVP_MD_CTX_create(), EVP_DigestInit_ex(),
* EVP_DigestUpdate(), EVP_DigestFinal_ex(), EVP_MD_CTX_destroy()
* dance in one call.
*
* @param data the data to update the context with
* @param dsize length of data
* @param hash output data of at least EVP_MD_size() length.
* @param hsize output length of hash.
* @param md message digest to use
* @param engine engine to use, NULL for default engine.
*
* @return 1 on success.
*
* @ingroup hcrypto_evp
*/
int
EVP_Digest(const void *data, size_t dsize, void *hash, unsigned int *hsize,
const EVP_MD *md, ENGINE *engine)
{
EVP_MD_CTX *ctx;
int ret;
ctx = EVP_MD_CTX_create();
if (ctx == NULL)
return 0;
ret = EVP_DigestInit_ex(ctx, md, engine);
if (ret != 1) {
EVP_MD_CTX_destroy(ctx);
return ret;
}
ret = EVP_DigestUpdate(ctx, data, dsize);
if (ret != 1) {
EVP_MD_CTX_destroy(ctx);
return ret;
}
ret = EVP_DigestFinal_ex(ctx, hash, hsize);
EVP_MD_CTX_destroy(ctx);
return ret;
}
/**
* The message digest SHA256
*
* @return the message digest type.
*
* @ingroup hcrypto_evp
*/
const EVP_MD *
EVP_sha256(void)
{
static const struct hc_evp_md sha256 = {
32,
64,
sizeof(SHA256_CTX),
(hc_evp_md_init)SHA256_Init,
(hc_evp_md_update)SHA256_Update,
(hc_evp_md_final)SHA256_Final,
NULL
};
return &sha256;
}
static const struct hc_evp_md sha1 = {
20,
64,
sizeof(SHA_CTX),
(hc_evp_md_init)SHA1_Init,
(hc_evp_md_update)SHA1_Update,
(hc_evp_md_final)SHA1_Final,
NULL
};
/**
* The message digest SHA1
*
* @return the message digest type.
*
* @ingroup hcrypto_evp
*/
const EVP_MD *
EVP_sha1(void)
{
return &sha1;
}
/**
* The message digest SHA1
*
* @return the message digest type.
*
* @ingroup hcrypto_evp
*/
const EVP_MD *
EVP_sha(void)
{
return &sha1;
}
/**
* The message digest MD5
*
* @return the message digest type.
*
* @ingroup hcrypto_evp
*/
const EVP_MD *
EVP_md5(void)
{
static const struct hc_evp_md md5 = {
16,
64,
sizeof(MD5_CTX),
(hc_evp_md_init)MD5_Init,
(hc_evp_md_update)MD5_Update,
(hc_evp_md_final)MD5_Final,
NULL
};
return &md5;
}
/**
* The message digest MD4
*
* @return the message digest type.
*
* @ingroup hcrypto_evp
*/
const EVP_MD *
EVP_md4(void)
{
static const struct hc_evp_md md4 = {
16,
64,
sizeof(MD4_CTX),
(hc_evp_md_init)MD4_Init,
(hc_evp_md_update)MD4_Update,
(hc_evp_md_final)MD4_Final,
NULL
};
return &md4;
}
/**
* The message digest MD2
*
* @return the message digest type.
*
* @ingroup hcrypto_evp
*/
const EVP_MD *
EVP_md2(void)
{
static const struct hc_evp_md md2 = {
16,
16,
sizeof(MD2_CTX),
(hc_evp_md_init)MD2_Init,
(hc_evp_md_update)MD2_Update,
(hc_evp_md_final)MD2_Final,
NULL
};
return &md2;
}
/*
*
*/
static void
null_Init (void *m)
{
}
static void
null_Update (void *m, const void * data, size_t size)
{
}
static void
null_Final(void *res, void *m)
{
}
/**
* The null message digest
*
* @return the message digest type.
*
* @ingroup hcrypto_evp
*/
const EVP_MD *
EVP_md_null(void)
{
static const struct hc_evp_md null = {
0,
0,
0,
(hc_evp_md_init)null_Init,
(hc_evp_md_update)null_Update,
(hc_evp_md_final)null_Final,
NULL
};
return &null;
}
#if 0
int EVP_DigestInit(EVP_MD_CTX *ctx, const EVP_MD *type);
int EVP_DigestFinal(EVP_MD_CTX *ctx,unsigned char *md,unsigned int *s);
int EVP_SignFinal(EVP_MD_CTX *, void *, size_t *, EVP_PKEY *);
int EVP_VerifyFinal(EVP_MD_CTX *, const void *, size_t, EVP_PKEY *);
#endif
/**
* Return the block size of the cipher.
*
* @param c cipher to get the block size from.
*
* @return the block size of the cipher.
*
* @ingroup hcrypto_evp
*/
size_t
EVP_CIPHER_block_size(const EVP_CIPHER *c)
{
return c->block_size;
}
/**
* Return the key size of the cipher.
*
* @param c cipher to get the key size from.
*
* @return the key size of the cipher.
*
* @ingroup hcrypto_evp
*/
size_t
EVP_CIPHER_key_length(const EVP_CIPHER *c)
{
return c->key_len;
}
/**
* Return the IV size of the cipher.
*
* @param c cipher to get the IV size from.
*
* @return the IV size of the cipher.
*
* @ingroup hcrypto_evp
*/
size_t
EVP_CIPHER_iv_length(const EVP_CIPHER *c)
{
return c->iv_len;
}
/**
* Initiate a EVP_CIPHER_CTX context. Clean up with
* EVP_CIPHER_CTX_cleanup().
*
* @param c the cipher initiate.
*
* @ingroup hcrypto_evp
*/
void
EVP_CIPHER_CTX_init(EVP_CIPHER_CTX *c)
{
memset(c, 0, sizeof(*c));
}
/**
* Clean up the EVP_CIPHER_CTX context.
*
* @param c the cipher to clean up.
*
* @return 1 on success.
*
* @ingroup hcrypto_evp
*/
int
EVP_CIPHER_CTX_cleanup(EVP_CIPHER_CTX *c)
{
if (c->cipher && c->cipher->cleanup)
c->cipher->cleanup(c);
if (c->cipher_data) {
free(c->cipher_data);
c->cipher_data = NULL;
}
return 1;
}
#if 0
int
EVP_CIPHER_CTX_set_key_length(EVP_CIPHER_CTX *c, int length)
{
return 0;
}
int
EVP_CIPHER_CTX_set_padding(EVP_CIPHER_CTX *c, int pad)
{
return 0;
}
#endif
/**
* Return the EVP_CIPHER for a EVP_CIPHER_CTX context.
*
* @param ctx the context to get the cipher type from.
*
* @return the EVP_CIPHER pointer.
*
* @ingroup hcrypto_evp
*/
const EVP_CIPHER *
EVP_CIPHER_CTX_cipher(EVP_CIPHER_CTX *ctx)
{
return ctx->cipher;
}
/**
* Return the block size of the cipher context.
*
* @param ctx cipher context to get the block size from.
*
* @return the block size of the cipher context.
*
* @ingroup hcrypto_evp
*/
size_t
EVP_CIPHER_CTX_block_size(const EVP_CIPHER_CTX *ctx)
{
return EVP_CIPHER_block_size(ctx->cipher);
}
/**
* Return the key size of the cipher context.
*
* @param ctx cipher context to get the key size from.
*
* @return the key size of the cipher context.
*
* @ingroup hcrypto_evp
*/
size_t
EVP_CIPHER_CTX_key_length(const EVP_CIPHER_CTX *ctx)
{
return EVP_CIPHER_key_length(ctx->cipher);
}
/**
* Return the IV size of the cipher context.
*
* @param ctx cipher context to get the IV size from.
*
* @return the IV size of the cipher context.
*
* @ingroup hcrypto_evp
*/
size_t
EVP_CIPHER_CTX_iv_length(const EVP_CIPHER_CTX *ctx)
{
return EVP_CIPHER_iv_length(ctx->cipher);
}
/**
* Get the flags for an EVP_CIPHER_CTX context.
*
* @param ctx the EVP_CIPHER_CTX to get the flags from
*
* @return the flags for an EVP_CIPHER_CTX.
*
* @ingroup hcrypto_evp
*/
unsigned long
EVP_CIPHER_CTX_flags(const EVP_CIPHER_CTX *ctx)
{
return ctx->cipher->flags;
}
/**
* Get the mode for an EVP_CIPHER_CTX context.
*
* @param ctx the EVP_CIPHER_CTX to get the mode from
*
* @return the mode for an EVP_CIPHER_CTX.
*
* @ingroup hcrypto_evp
*/
int
EVP_CIPHER_CTX_mode(const EVP_CIPHER_CTX *ctx)
{
return EVP_CIPHER_CTX_flags(ctx) & EVP_CIPH_MODE;
}
/**
* Get the app data for an EVP_CIPHER_CTX context.
*
* @param ctx the EVP_CIPHER_CTX to get the app data from
*
* @return the app data for an EVP_CIPHER_CTX.
*
* @ingroup hcrypto_evp
*/
void *
EVP_CIPHER_CTX_get_app_data(EVP_CIPHER_CTX *ctx)
{
return ctx->app_data;
}
/**
* Set the app data for an EVP_CIPHER_CTX context.
*
* @param ctx the EVP_CIPHER_CTX to set the app data for
* @param data the app data to set for an EVP_CIPHER_CTX.
*
* @ingroup hcrypto_evp
*/
void
EVP_CIPHER_CTX_set_app_data(EVP_CIPHER_CTX *ctx, void *data)
{
ctx->app_data = data;
}
/**
* Initiate the EVP_CIPHER_CTX context to encrypt or decrypt data.
* Clean up with EVP_CIPHER_CTX_cleanup().
*
* @param ctx context to initiate
* @param c cipher to use.
* @param engine crypto engine to use, NULL to select default.
* @param key the crypto key to use, NULL will use the previous value.
* @param iv the IV to use, NULL will use the previous value.
* @param encp non zero will encrypt, -1 use the previous value.
*
* @return 1 on success.
*
* @ingroup hcrypto_evp
*/
int
EVP_CipherInit_ex(EVP_CIPHER_CTX *ctx, const EVP_CIPHER *c, ENGINE *engine,
const void *key, const void *iv, int encp)
{
ctx->buf_len = 0;
if (encp == -1)
encp = ctx->encrypt;
else
ctx->encrypt = (encp ? 1 : 0);
if (c && (c != ctx->cipher)) {
EVP_CIPHER_CTX_cleanup(ctx);
ctx->cipher = c;
ctx->key_len = c->key_len;
ctx->cipher_data = malloc(c->ctx_size);
if (ctx->cipher_data == NULL && c->ctx_size != 0)
return 0;
/* assume block size is a multiple of 2 */
ctx->block_mask = EVP_CIPHER_block_size(c) - 1;
} else if (ctx->cipher == NULL) {
/* reuse of cipher, but not any cipher ever set! */
return 0;
}
switch (EVP_CIPHER_CTX_flags(ctx)) {
case EVP_CIPH_CBC_MODE:
assert(EVP_CIPHER_CTX_iv_length(ctx) <= sizeof(ctx->iv));
if (iv)
memcpy(ctx->oiv, iv, EVP_CIPHER_CTX_iv_length(ctx));
memcpy(ctx->iv, ctx->oiv, EVP_CIPHER_CTX_iv_length(ctx));
break;
default:
return 0;
}
if (key || (ctx->cipher->flags & EVP_CIPH_ALWAYS_CALL_INIT))
ctx->cipher->init(ctx, key, iv, encp);
return 1;
}
/**
* Encipher/decipher partial data
*
* @param ctx the cipher context.
* @param out output data from the operation.
* @param outlen output length
* @param in input data to the operation.
* @param inlen length of data.
*
* The output buffer length should at least be EVP_CIPHER_block_size()
* byte longer then the input length.
*
* See @ref evp_cipher for an example how to use this function.
*
* @return 1 on success.
*
* @ingroup hcrypto_evp
*/
int
EVP_CipherUpdate(EVP_CIPHER_CTX *ctx, void *out, int *outlen,
void *in, size_t inlen)
{
int ret, left, blocksize;
*outlen = 0;
/**
* If there in no spare bytes in the left from last Update and the
* input length is on the block boundery, the EVP_CipherUpdate()
* function can take a shortcut (and preformance gain) and
* directly encrypt the data, otherwise we hav to fix it up and
* store extra it the EVP_CIPHER_CTX.
*/
if (ctx->buf_len == 0 && (inlen & ctx->block_mask) == 0) {
ret = (*ctx->cipher->do_cipher)(ctx, out, in, inlen);
if (ret == 1)
*outlen = inlen;
else
*outlen = 0;
return ret;
}
blocksize = EVP_CIPHER_CTX_block_size(ctx);
left = blocksize - ctx->buf_len;
assert(left > 0);
if (ctx->buf_len) {
/* if total buffer is smaller then input, store locally */
if (inlen < left) {
memcpy(ctx->buf + ctx->buf_len, in, inlen);
ctx->buf_len += inlen;
return 1;
}
/* fill in local buffer and encrypt */
memcpy(ctx->buf + ctx->buf_len, in, left);
ret = (*ctx->cipher->do_cipher)(ctx, out, ctx->buf, blocksize);
memset(ctx->buf, 0, blocksize);
if (ret != 1)
return ret;
*outlen += blocksize;
inlen -= left;
in = ((unsigned char *)in) + left;
out = ((unsigned char *)out) + blocksize;
ctx->buf_len = 0;
}
if (inlen) {
ctx->buf_len = (inlen & ctx->block_mask);
inlen &= ~ctx->block_mask;
ret = (*ctx->cipher->do_cipher)(ctx, out, in, inlen);
if (ret != 1)
return ret;
*outlen += inlen;
in = ((unsigned char *)in) + inlen;
memcpy(ctx->buf, in, ctx->buf_len);
}
return 1;
}
/**
* Encipher/decipher final data
*
* @param ctx the cipher context.
* @param out output data from the operation.
* @param outlen output length
*
* The input length needs to be at least EVP_CIPHER_block_size() bytes
* long.
*
* See @ref evp_cipher for an example how to use this function.
*
* @return 1 on success.
*
* @ingroup hcrypto_evp
*/
int
EVP_CipherFinal_ex(EVP_CIPHER_CTX *ctx, void *out, int *outlen)
{
*outlen = 0;
if (ctx->buf_len) {
int ret, left, blocksize;
blocksize = EVP_CIPHER_CTX_block_size(ctx);
left = blocksize - ctx->buf_len;
assert(left > 0);
/* zero fill local buffer */
memset(ctx->buf + ctx->buf_len, 0, left);
ret = (*ctx->cipher->do_cipher)(ctx, out, ctx->buf, blocksize);
memset(ctx->buf, 0, blocksize);
if (ret != 1)
return ret;
*outlen += blocksize;
}
return 1;
}
/**
* Encipher/decipher data
*
* @param ctx the cipher context.
* @param out out data from the operation.
* @param in in data to the operation.
* @param size length of data.
*
* @return 1 on success.
*/
int
EVP_Cipher(EVP_CIPHER_CTX *ctx, void *out, const void *in,size_t size)
{
return ctx->cipher->do_cipher(ctx, out, in, size);
}
/*
*
*/
static int
enc_null_init(EVP_CIPHER_CTX *ctx,
const unsigned char * key,
const unsigned char * iv,
int encp)
{
return 1;
}
static int
enc_null_do_cipher(EVP_CIPHER_CTX *ctx,
unsigned char *out,
const unsigned char *in,
unsigned int size)
{
memmove(out, in, size);
return 1;
}
static int
enc_null_cleanup(EVP_CIPHER_CTX *ctx)
{
return 1;
}
/**
* The NULL cipher type, does no encryption/decryption.
*
* @return the null EVP_CIPHER pointer.
*
* @ingroup hcrypto_evp
*/
const EVP_CIPHER *
EVP_enc_null(void)
{
static const EVP_CIPHER enc_null = {
0,
0,
0,
0,
EVP_CIPH_CBC_MODE,
enc_null_init,
enc_null_do_cipher,
enc_null_cleanup,
0,
NULL,
NULL,
NULL,
NULL
};
return &enc_null;
}
/*
*
*/
struct rc2_cbc {
unsigned int maximum_effective_key;
RC2_KEY key;
};
static int
rc2_init(EVP_CIPHER_CTX *ctx,
const unsigned char * key,
const unsigned char * iv,
int encp)
{
struct rc2_cbc *k = ctx->cipher_data;
k->maximum_effective_key = EVP_CIPHER_CTX_key_length(ctx) * 8;
RC2_set_key(&k->key,
EVP_CIPHER_CTX_key_length(ctx),
key,
k->maximum_effective_key);
return 1;
}
static int
rc2_do_cipher(EVP_CIPHER_CTX *ctx,
unsigned char *out,
const unsigned char *in,
unsigned int size)
{
struct rc2_cbc *k = ctx->cipher_data;
RC2_cbc_encrypt(in, out, size, &k->key, ctx->iv, ctx->encrypt);
return 1;
}
static int
rc2_cleanup(EVP_CIPHER_CTX *ctx)
{
memset(ctx->cipher_data, 0, sizeof(struct rc2_cbc));
return 1;
}
/**
* The RC2 cipher type
*
* @return the RC2 EVP_CIPHER pointer.
*
* @ingroup hcrypto_evp
*/
const EVP_CIPHER *
EVP_rc2_cbc(void)
{
static const EVP_CIPHER rc2_cbc = {
0,
RC2_BLOCK_SIZE,
RC2_KEY_LENGTH,
RC2_BLOCK_SIZE,
EVP_CIPH_CBC_MODE,
rc2_init,
rc2_do_cipher,
rc2_cleanup,
sizeof(struct rc2_cbc),
NULL,
NULL,
NULL,
NULL
};
return &rc2_cbc;
}
/**
* The RC2-40 cipher type
*
* @return the RC2-40 EVP_CIPHER pointer.
*
* @ingroup hcrypto_evp
*/
const EVP_CIPHER *
EVP_rc2_40_cbc(void)
{
static const EVP_CIPHER rc2_40_cbc = {
0,
RC2_BLOCK_SIZE,
5,
RC2_BLOCK_SIZE,
EVP_CIPH_CBC_MODE,
rc2_init,
rc2_do_cipher,
rc2_cleanup,
sizeof(struct rc2_cbc),
NULL,
NULL,
NULL,
NULL
};
return &rc2_40_cbc;
}
/**
* The RC2-64 cipher type
*
* @return the RC2-64 EVP_CIPHER pointer.
*
* @ingroup hcrypto_evp
*/
const EVP_CIPHER *
EVP_rc2_64_cbc(void)
{
static const EVP_CIPHER rc2_64_cbc = {
0,
RC2_BLOCK_SIZE,
8,
RC2_BLOCK_SIZE,
EVP_CIPH_CBC_MODE,
rc2_init,
rc2_do_cipher,
rc2_cleanup,
sizeof(struct rc2_cbc),
NULL,
NULL,
NULL,
NULL
};
return &rc2_64_cbc;
}
/**
* The RC4 cipher type
*
* @return the RC4 EVP_CIPHER pointer.
*
* @ingroup hcrypto_evp
*/
const EVP_CIPHER *
EVP_rc4(void)
{
printf("evp rc4\n");
abort();
return NULL;
}
/**
* The RC4-40 cipher type
*
* @return the RC4-40 EVP_CIPHER pointer.
*
* @ingroup hcrypto_evp
*/
const EVP_CIPHER *
EVP_rc4_40(void)
{
printf("evp rc4_40\n");
abort();
return NULL;
}
/*
*
*/
static int
des_cbc_init(EVP_CIPHER_CTX *ctx,
const unsigned char * key,
const unsigned char * iv,
int encp)
{
DES_key_schedule *k = ctx->cipher_data;
DES_cblock deskey;
memcpy(&deskey, key, sizeof(deskey));
DES_set_key_unchecked(&deskey, k);
return 1;
}
static int
des_cbc_do_cipher(EVP_CIPHER_CTX *ctx,
unsigned char *out,
const unsigned char *in,
unsigned int size)
{
DES_key_schedule *k = ctx->cipher_data;
DES_cbc_encrypt(in, out, size,
k, (DES_cblock *)ctx->iv, ctx->encrypt);
return 1;
}
static int
des_cbc_cleanup(EVP_CIPHER_CTX *ctx)
{
memset(ctx->cipher_data, 0, sizeof(struct DES_key_schedule));
return 1;
}
/**
* The DES cipher type
*
* @return the DES-CBC EVP_CIPHER pointer.
*
* @ingroup hcrypto_evp
*/
const EVP_CIPHER *
EVP_des_cbc(void)
{
static const EVP_CIPHER des_ede3_cbc = {
0,
8,
8,
8,
EVP_CIPH_CBC_MODE,
des_cbc_init,
des_cbc_do_cipher,
des_cbc_cleanup,
sizeof(DES_key_schedule),
NULL,
NULL,
NULL,
NULL
};
return &des_ede3_cbc;
}
/*
*
*/
struct des_ede3_cbc {
DES_key_schedule ks[3];
};
static int
des_ede3_cbc_init(EVP_CIPHER_CTX *ctx,
const unsigned char * key,
const unsigned char * iv,
int encp)
{
struct des_ede3_cbc *k = ctx->cipher_data;
DES_cblock deskey;
memcpy(&deskey, key, sizeof(deskey));
DES_set_odd_parity(&deskey);
DES_set_key_unchecked(&deskey, &k->ks[0]);
memcpy(&deskey, key + 8, sizeof(deskey));
DES_set_odd_parity(&deskey);
DES_set_key_unchecked(&deskey, &k->ks[1]);
memcpy(&deskey, key + 16, sizeof(deskey));
DES_set_odd_parity(&deskey);
DES_set_key_unchecked(&deskey, &k->ks[2]);
return 1;
}
static int
des_ede3_cbc_do_cipher(EVP_CIPHER_CTX *ctx,
unsigned char *out,
const unsigned char *in,
unsigned int size)
{
struct des_ede3_cbc *k = ctx->cipher_data;
DES_ede3_cbc_encrypt(in, out, size,
&k->ks[0], &k->ks[1], &k->ks[2],
(DES_cblock *)ctx->iv, ctx->encrypt);
return 1;
}
static int
des_ede3_cbc_cleanup(EVP_CIPHER_CTX *ctx)
{
memset(ctx->cipher_data, 0, sizeof(struct des_ede3_cbc));
return 1;
}
/**
* The tripple DES cipher type
*
* @return the DES-EDE3-CBC EVP_CIPHER pointer.
*
* @ingroup hcrypto_evp
*/
const EVP_CIPHER *
EVP_des_ede3_cbc(void)
{
static const EVP_CIPHER des_ede3_cbc = {
0,
8,
24,
8,
EVP_CIPH_CBC_MODE,
des_ede3_cbc_init,
des_ede3_cbc_do_cipher,
des_ede3_cbc_cleanup,
sizeof(struct des_ede3_cbc),
NULL,
NULL,
NULL,
NULL
};
return &des_ede3_cbc;
}
/**
* The AES-128 cipher type
*
* @return the AES-128 EVP_CIPHER pointer.
*
* @ingroup hcrypto_evp
*/
const EVP_CIPHER *
EVP_aes_128_cbc(void)
{
return EVP_hcrypto_aes_128_cbc();
}
/**
* The AES-192 cipher type
*
* @return the AES-192 EVP_CIPHER pointer.
*
* @ingroup hcrypto_evp
*/
const EVP_CIPHER *
EVP_aes_192_cbc(void)
{
return EVP_hcrypto_aes_192_cbc();
}
/**
* The AES-256 cipher type
*
* @return the AES-256 EVP_CIPHER pointer.
*
* @ingroup hcrypto_evp
*/
const EVP_CIPHER *
EVP_aes_256_cbc(void)
{
return EVP_hcrypto_aes_256_cbc();
}
static int
camellia_init(EVP_CIPHER_CTX *ctx,
const unsigned char * key,
const unsigned char * iv,
int encp)
{
CAMELLIA_KEY *k = ctx->cipher_data;
k->bits = ctx->cipher->key_len * 8;
CAMELLIA_set_key(key, ctx->cipher->key_len * 8, k);
return 1;
}
static int
camellia_do_cipher(EVP_CIPHER_CTX *ctx,
unsigned char *out,
const unsigned char *in,
unsigned int size)
{
CAMELLIA_KEY *k = ctx->cipher_data;
CAMELLIA_cbc_encrypt(in, out, size, k, ctx->iv, ctx->encrypt);
return 1;
}
static int
camellia_cleanup(EVP_CIPHER_CTX *ctx)
{
memset(ctx->cipher_data, 0, sizeof(CAMELLIA_KEY));
return 1;
}
/**
* The Camellia-128 cipher type
*
* @return the Camellia-128 EVP_CIPHER pointer.
*
* @ingroup hcrypto_evp
*/
const EVP_CIPHER *
EVP_camellia_128_cbc(void)
{
static const EVP_CIPHER cipher = {
0,
16,
16,
16,
EVP_CIPH_CBC_MODE,
camellia_init,
camellia_do_cipher,
camellia_cleanup,
sizeof(CAMELLIA_KEY),
NULL,
NULL,
NULL,
NULL
};
return &cipher;
}
/**
* The Camellia-198 cipher type
*
* @return the Camellia-198 EVP_CIPHER pointer.
*
* @ingroup hcrypto_evp
*/
const EVP_CIPHER *
EVP_camellia_192_cbc(void)
{
static const EVP_CIPHER cipher = {
0,
16,
24,
16,
EVP_CIPH_CBC_MODE,
camellia_init,
camellia_do_cipher,
camellia_cleanup,
sizeof(CAMELLIA_KEY),
NULL,
NULL,
NULL,
NULL
};
return &cipher;
}
/**
* The Camellia-256 cipher type
*
* @return the Camellia-256 EVP_CIPHER pointer.
*
* @ingroup hcrypto_evp
*/
const EVP_CIPHER *
EVP_camellia_256_cbc(void)
{
static const EVP_CIPHER cipher = {
0,
16,
32,
16,
EVP_CIPH_CBC_MODE,
camellia_init,
camellia_do_cipher,
camellia_cleanup,
sizeof(CAMELLIA_KEY),
NULL,
NULL,
NULL,
NULL
};
return &cipher;
}
/*
*
*/
static const struct cipher_name {
const char *name;
const EVP_CIPHER *(*func)(void);
} cipher_name[] = {
{ "des-ede3-cbc", EVP_des_ede3_cbc },
{ "aes-128-cbc", EVP_aes_128_cbc },
{ "aes-192-cbc", EVP_aes_192_cbc },
{ "aes-256-cbc", EVP_aes_256_cbc },
{ "camellia-128-cbc", EVP_camellia_128_cbc },
{ "camellia-192-cbc", EVP_camellia_192_cbc },
{ "camellia-256-cbc", EVP_camellia_256_cbc }
};
/**
* Get the cipher type using their name.
*
* @param name the name of the cipher.
*
* @return the selected EVP_CIPHER pointer or NULL if not found.
*
* @ingroup hcrypto_evp
*/
const EVP_CIPHER *
EVP_get_cipherbyname(const char *name)
{
int i;
for (i = 0; i < sizeof(cipher_name)/sizeof(cipher_name[0]); i++) {
if (strcasecmp(cipher_name[i].name, name) == 0)
return (*cipher_name[i].func)();
}
return NULL;
}
/*
*
*/
#ifndef min
#define min(a,b) (((a)>(b))?(b):(a))
#endif
/**
* Provides a legancy string to key function, used in PEM files.
*
* New protocols should use new string to key functions like NIST
* SP56-800A or PKCS#5 v2.0 (see PKCS5_PBKDF2_HMAC_SHA1()).
*
* @param type type of cipher to use
* @param md message digest to use
* @param salt salt salt string, should be an binary 8 byte buffer.
* @param data the password/input key string.
* @param datalen length of data parameter.
* @param count iteration counter.
* @param keydata output keydata, needs to of the size EVP_CIPHER_key_length().
* @param ivdata output ivdata, needs to of the size EVP_CIPHER_block_size().
*
* @return the size of derived key.
*
* @ingroup hcrypto_evp
*/
int
EVP_BytesToKey(const EVP_CIPHER *type,
const EVP_MD *md,
const void *salt,
const void *data, size_t datalen,
unsigned int count,
void *keydata,
void *ivdata)
{
int ivlen, keylen, first = 0;
unsigned int mds = 0, i;
unsigned char *key = keydata;
unsigned char *iv = ivdata;
unsigned char *buf;
EVP_MD_CTX c;
keylen = EVP_CIPHER_key_length(type);
ivlen = EVP_CIPHER_iv_length(type);
if (data == NULL)
return keylen;
buf = malloc(EVP_MD_size(md));
if (buf == NULL)
return -1;
EVP_MD_CTX_init(&c);
first = 1;
while (1) {
EVP_DigestInit_ex(&c, md, NULL);
if (!first)
EVP_DigestUpdate(&c, buf, mds);
first = 0;
EVP_DigestUpdate(&c,data,datalen);
#define PKCS5_SALT_LEN 8
if (salt)
EVP_DigestUpdate(&c, salt, PKCS5_SALT_LEN);
EVP_DigestFinal_ex(&c, buf, &mds);
assert(mds == EVP_MD_size(md));
for (i = 1; i < count; i++) {
EVP_DigestInit_ex(&c, md, NULL);
EVP_DigestUpdate(&c, buf, mds);
EVP_DigestFinal_ex(&c, buf, &mds);
assert(mds == EVP_MD_size(md));
}
i = 0;
if (keylen) {
size_t sz = min(keylen, mds);
if (key) {
memcpy(key, buf, sz);
key += sz;
}
keylen -= sz;
i += sz;
}
if (ivlen && mds > i) {
size_t sz = min(ivlen, (mds - i));
if (iv) {
memcpy(iv, &buf[i], sz);
iv += sz;
}
ivlen -= sz;
}
if (keylen == 0 && ivlen == 0)
break;
}
EVP_MD_CTX_cleanup(&c);
free(buf);
return EVP_CIPHER_key_length(type);
}
/**
* Generate a random key for the specificed EVP_CIPHER.
*
* @param ctx EVP_CIPHER_CTX type to build the key for.
* @param key return key, must be at least EVP_CIPHER_key_length() byte long.
*
* @return 1 for success, 0 for failure.
*
* @ingroup hcrypto_core
*/
int
EVP_CIPHER_CTX_rand_key(EVP_CIPHER_CTX *ctx, void *key)
{
if (ctx->cipher->flags & EVP_CIPH_RAND_KEY)
return EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_RAND_KEY, 0, key);
if (RAND_bytes(key, ctx->key_len) != 1)
return 0;
return 1;
}
/**
* Perform a operation on a ctx
*
* @return 1 for success, 0 for failure.
*
* @ingroup hcrypto_core
*/
int
EVP_CIPHER_CTX_ctrl(EVP_CIPHER_CTX *ctx, int type, int arg, void *data)
{
if (ctx->cipher == NULL || ctx->cipher->ctrl == NULL)
return 0;
return (*ctx->cipher->ctrl)(ctx, type, arg, data);
}
/**
* Add all algorithms to the crypto core.
*
* @ingroup hcrypto_core
*/
void
OpenSSL_add_all_algorithms(void)
{
return;
}
/**
* Add all algorithms to the crypto core using configuration file.
*
* @ingroup hcrypto_core
*/
void
OpenSSL_add_all_algorithms_conf(void)
{
return;
}
/**
* Add all algorithms to the crypto core, but don't use the
* configuration file.
*
* @ingroup hcrypto_core
*/
void
OpenSSL_add_all_algorithms_noconf(void)
{
return;
}