1
0
mirror of https://github.com/samba-team/samba.git synced 2025-01-11 05:18:09 +03:00
samba-mirror/third_party/heimdal/doc/standardisation/draft-ietf-krb-wg-otp-preauth-05.txt
Stefan Metzmacher 7055827b8f HEIMDAL: move code from source4/heimdal* to third_party/heimdal*
This makes it clearer that we always want to do heimdal changes
via the lorikeet-heimdal repository.

Signed-off-by: Stefan Metzmacher <metze@samba.org>
Reviewed-by: Joseph Sutton <josephsutton@catalyst.net.nz>

Autobuild-User(master): Joseph Sutton <jsutton@samba.org>
Autobuild-Date(master): Wed Jan 19 21:41:59 UTC 2022 on sn-devel-184
2022-01-19 21:41:59 +00:00

1849 lines
70 KiB
Plaintext
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

Network Working Group G. Richards
Internet-Draft RSA, The Security Division of EMC
Intended status: Standards Track July 14, 2008
Expires: January 15, 2009
OTP Pre-authentication
draft-ietf-krb-wg-otp-preauth-05
Status of this Memo
By submitting this Internet-Draft, each author represents that any
applicable patent or other IPR claims of which he or she is aware
have been or will be disclosed, and any of which he or she becomes
aware will be disclosed, in accordance with Section 6 of BCP 79.
Internet-Drafts are working documents of the Internet Engineering
Task Force (IETF), its areas, and its working groups. Note that
other groups may also distribute working documents as Internet-
Drafts.
Internet-Drafts are draft documents valid for a maximum of six months
and may be updated, replaced, or obsoleted by other documents at any
time. It is inappropriate to use Internet-Drafts as reference
material or to cite them other than as "work in progress."
The list of current Internet-Drafts can be accessed at
http://www.ietf.org/ietf/1id-abstracts.txt.
The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html.
This Internet-Draft will expire on January 15, 2009.
Abstract
The Kerberos protocol provides a framework authenticating a client
using the exchange of pre-authentication data. This document
describes the use of this framework to carry out One Time Password
(OTP) authentication.
Richards Expires January 15, 2009 [Page 1]
Internet-Draft OTP Pre-authentication July 2008
Table of Contents
1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.1. Scope . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2. Overall Design . . . . . . . . . . . . . . . . . . . . . . 3
1.3. Conventions Used in this Document . . . . . . . . . . . . 4
2. Usage Overview . . . . . . . . . . . . . . . . . . . . . . . . 4
2.1. OTP Mechanism Support . . . . . . . . . . . . . . . . . . 4
2.2. Pre-Authentication . . . . . . . . . . . . . . . . . . . . 4
2.3. PIN Change . . . . . . . . . . . . . . . . . . . . . . . . 5
2.4. Re-Synchronization . . . . . . . . . . . . . . . . . . . . 6
3. Pre-Authentication Protocol Details . . . . . . . . . . . . . 6
3.1. Initial Client Request . . . . . . . . . . . . . . . . . . 6
3.2. KDC Challenge . . . . . . . . . . . . . . . . . . . . . . 6
3.3. Client Response . . . . . . . . . . . . . . . . . . . . . 7
3.4. Verifying the pre-auth Data . . . . . . . . . . . . . . . 9
3.5. Confirming the Reply Key Change . . . . . . . . . . . . . 10
3.6. Reply Key Generation . . . . . . . . . . . . . . . . . . . 11
4. OTP Kerberos Message Types . . . . . . . . . . . . . . . . . . 13
4.1. PA-OTP-CHALLENGE . . . . . . . . . . . . . . . . . . . . . 13
4.2. PA-OTP-REQUEST . . . . . . . . . . . . . . . . . . . . . . 15
4.3. PA-OTP-CONFIRM . . . . . . . . . . . . . . . . . . . . . . 18
4.4. PA-OTP-PIN-CHANGE . . . . . . . . . . . . . . . . . . . . 19
5. IANA Considerations . . . . . . . . . . . . . . . . . . . . . 19
6. Security Considerations . . . . . . . . . . . . . . . . . . . 19
6.1. Man-in-the-Middle . . . . . . . . . . . . . . . . . . . . 19
6.2. Reflection . . . . . . . . . . . . . . . . . . . . . . . . 20
6.3. Replay . . . . . . . . . . . . . . . . . . . . . . . . . . 20
6.4. Brute Force Attack . . . . . . . . . . . . . . . . . . . . 20
6.5. FAST Facilities . . . . . . . . . . . . . . . . . . . . . 20
7. Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . 21
8. References . . . . . . . . . . . . . . . . . . . . . . . . . . 21
8.1. Normative References . . . . . . . . . . . . . . . . . . . 21
8.2. Informative References . . . . . . . . . . . . . . . . . . 21
Appendix A. ASN.1 Module . . . . . . . . . . . . . . . . . . . . 22
Appendix B. Examples of OTP Pre-Authentication Exchanges . . . . 24
B.1. Four Pass Authentication . . . . . . . . . . . . . . . . . 24
B.2. Two Pass Authentication . . . . . . . . . . . . . . . . . 27
B.3. Pin Change . . . . . . . . . . . . . . . . . . . . . . . . 29
B.4. Resynchronization . . . . . . . . . . . . . . . . . . . . 30
Author's Address . . . . . . . . . . . . . . . . . . . . . . . . . 32
Intellectual Property and Copyright Statements . . . . . . . . . . 33
Richards Expires January 15, 2009 [Page 2]
Internet-Draft OTP Pre-authentication July 2008
1. Introduction
1.1. Scope
This document describes a FAST [ZhHa07] factor that allows One-Time
Password (OTP) values to be used in the Kerberos V5 [RFC4120] pre-
authentication in a manner that does not require use of the user's
Kerberos password. The system is designed to work with different
types of OTP algorithms such as time-based OTPs [RFC2808], counter-
based tokens [RFC4226], challenge-response and [RFC2289] type
systems. It is also designed to work with tokens that are
electronically connected to the user's computer via means such as a
USB interface.
This FAST factor provides the following facilities (as defined in
[ZhHa07]): client-authentication, replacing-reply-key and KDC-
authentication. It does not provide the strengthening-reply-key
facility.
This proposal is partially based upon previous work on integrating
single-use authentication mechanisms into Kerberos [HoReNeZo04] and
allows for the use of the existing password-change extensions to
handle PIN change as described in [RFC3244].
1.2. Overall Design
This proposal supports 4-pass and 2-pass variants. In the 4-pass
system, the client sends the KDC an initial AS-REQ and the KDC
responds with a KRB-ERROR containing padata that includes a random
nonce. The client then encrypts the nonce and returns it along with
its own random value to the KDC in a second AS-REQ. Finally, the KDC
returns the client's random value encrypted within the padata of the
AS-REP. In the 2-pass variant, the client encrypts a timestamp
rather than a nonce from the KDC and the encrypted data is sent to
the KDC in the initial AS-REQ. This variant can be used in cases
where the client can determine in advance that OTP pre-authentication
is supported by the KDC and which OTP key should be used.
In both systems, in order to create the message sent to the KDC, the
client must generate the OTP value and three keys: the standard Reply
Key, a key to encrypt the data sent to the KDC and a final key to
decrypt the KDC's reply. In most cases, the OTP value will be used
in the key generation but in order to support algorithms where the
KDC cannot obtain the value (e.g. [RFC2289]), the system also
supports the option of including the OTP value in the request along
with the encrypted nonce. In addition, in order to support
situations where the KDC is unable to obtain the plaintext OTP value,
the system also supports the use of hashed OTP values in the key
Richards Expires January 15, 2009 [Page 3]
Internet-Draft OTP Pre-authentication July 2008
derivation.
The message from the client to the KDC is sent within the encrypted
data provided by the FAST padata type of the AS-REQ. The KDC then
obtains the OTP value, generates the same keys and verifies the pre-
authentication data by decrypting the nonce. If the verification
succeeds then it confirms knowledge of the Reply Key by returning the
client's nonce encrypted under one of the generated keys within the
encrypted part of the FAST padata of the AS-REP.
1.3. Conventions Used in this Document
The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
document are to be interpreted as described in [RFC2119].
This document assumes familiarity with the Kerberos preauthentication
framework [ZhHa07] and so freely uses terminology and notation from
this document.
The word padata is used as shorthand for pre-authentication data.
2. Usage Overview
2.1. OTP Mechanism Support
As described above, this document describes a generic system for
supporting different OTP mechanisms in Kerberos pre-authentication.
However, to ensure interoperability, all implementations of this
specification SHOULD provide a mechanism for OTP mechanism support to
be added or removed.
2.2. Pre-Authentication
The approach uses pre-authentication data in AS-REQ, AS-REP and KRB-
ERROR messages.
In the 4-pass system, the client begins by sending an initial AS-REQ
to the KDC that may contain pre-authentication data such as the
standard Kerberos password data. The KDC will then determine, in an
implementation dependent fashion, whether OTP authentication is
required and if it is, it will respond with a KRB-ERROR message
containing a PA-OTP-CHALLENGE in the PA-DATA.
The PA-OTP-CHALLENGE will contain a KDC generated nonce, an
encryption type, an optional list of hash algorithm identifiers, an
optional iteration count and optional information on how the OTP
Richards Expires January 15, 2009 [Page 4]
Internet-Draft OTP Pre-authentication July 2008
should be generated by the client. The client will then generate the
OTP value, its own nonce and two keys: a Client Key to encrypt the
KDC's nonce and a Reply Key used to decrypt the KDC's reply.
As described in Section 3.6, these keys will be generated from the
Armor Key (defined in [ZhHa07]) and the OTP value unless the OTP
algorithm does not allow the KDC to obtain the OTP value. If hash
algorithm identifiers were included in the PA-OTP-CHALLENGE then the
client will use the hash of the OTP value rather than the plaintext
value in the key generation.
The generated Client Key will be used to encrypt the nonce received
from the KDC using the specified encryption type. The encrypted
value, a random nonce generated by the client along with optional
information on how the OTP was generated are then sent to the KDC in
a PA-OTP-REQUEST element encrypted within the armored-data of a PA-
FX-FAST-REQUEST PA-DATA element of a second AS-REQ.
In the 2-pass system, the client sends the PA-OTP-REQUEST in the
initial AS-REQ instead of sending it in response to a PA-OTP-
CHALLENGE returned by the KDC. Since no challenge is received from
the KDC, the client includes an encrypted timestamp in the request
rather than the encrypted KDC nonce.
In both cases, on receipt of a PA-OTP-REQUEST, the KDC generate the
same keys as the client, and use the generated Client Key to verify
the pre-authentication by decrypting the encrypted data sent by the
client (either nonce or timestamp). If the validation succeeds then
the KDC will authenticate itself to the client and confirm that the
Reply Key has been updated by encrypting the client's nonce under the
Reply Key and returning the encrypted value in the encData of a PA-
OTP-CONFIRM. The PA-OTP-CONFIRM is encrypted within the armored-data
of a PA-FX-FAST-REPLY PA-DATA element of the AS-REP as described in
[ZhHa07].
2.3. PIN Change
If, following successful validation of a PA-OTP-REQUEST in a AS-REQ,
the KDC requires that the user changes their PIN then it will include
a PA-OTP-PIN-CHANGE element in the armored data of the PA-FX-FAST-
REPLY PA-DATA element of the AS-REP. This data can be used to return
a new PIN to the user if the KDC has updated the PIN or to indicate
to the user that they must change their PIN.
In the latter case, it is recommended that user PIN change be handled
by a PIN change service supporting the ChangePasswdData in a AP-REQ
as described in [RFC3244]. If a user PIN for OTP is required to
change and such a service is used then the KDC MUST NOT return a TGT
Richards Expires January 15, 2009 [Page 5]
Internet-Draft OTP Pre-authentication July 2008
when the user is authenticated using this PIN. The KDC SHOULD return
a service ticket to the PIN change service when the existing PIN is
required to change, in order for the client to compute an AP-REQ
according to [RFC3244]. In order to complicate stealing service
tickets intended for the PIN change service (and the corresponding
session keys), the lifetime of the PIN-change service tickets should
be just long enough to complete the PIN change, regardless whether
the exiting PIN needs to be changed or not. A 1-minute lifetime is
RECOMMENED. This way the PIN change service can effectively force
the user to present the existing PIN in order to change to use a new
PIN.
2.4. Re-Synchronization
It is possible with time and event-based tokens that the OTP server
will lose synchronization with the current token state. If, when
processing a PA-OTP-REQUEST, the pre-authentication validation fails
for this reason then the KDC SHALL return a KRB-ERROR message
containing a PA-OTP-CHALLENGE in the PA-DATA with the "nextOTP" flag
set. If this flag is set then the client MUST re-try the
authentication using the OTP for the token "state" after that used in
the failed authentication attempt.
3. Pre-Authentication Protocol Details
3.1. Initial Client Request
In the 4-pass mode, the client begins by sending an initial AS-REQ
possibly containing other pre-authentication data. If the KDC
determines that OTP-based pre-authentication is required and the
request does not contain a PA-OTP-REQUEST then it will respond as
described in Section 3.2.
If the client has all the necessary information, it MAY use the
2-pass system by constructing a PA-OTP-REQUEST as described in
Section 3.3 and including it in the initial request.
3.2. KDC Challenge
If the user is required to authenticate using an OTP then the KDC
SHALL respond to the initial AS-REQ with a KRB-ERROR containing:
o An error code of KDC_ERR_PREAUTH_REQUIRED
o An e-data field containing PA-DATA with a PA-OTP-CHALLENGE.
The PA-OTP-CHALLENGE SHALL contain a random nonce value to be
Richards Expires January 15, 2009 [Page 6]
Internet-Draft OTP Pre-authentication July 2008
returned encrypted in the client response and the encryption type to
be used by the client.
If the OTP is to be generated using an server generated challenge
then the value of the challenge SHALL be included in the otp-
challenge field. If the OTP is to be generated by combining the
challenge with the token's current state (e.g. time) then the
"combine" flag SHALL be set.
The KDC MAY use the otp-service to identify the service provided by
the KDC in order to assist the client in locating the OTP token to be
used. For example, this field could be used when a client has
multiple OTP tokens from different servers to identify the KDC.
Similarly, if the KDC can determine which OTP token key is the be
used, then the otp-keyID field MAY be used to pass that value to the
client.
The otp-algID field MAY be used to identify the algorithm that should
be used in the OTP calculation. For example, it could be used when a
user has been issued with multiple tokens of different types.
In order to support connected tokens that can generate OTP values of
varying length, the KDC MAY include the desired length of the OTP in
the otp-length field.
In order to support cases where the KDC cannot obtain plaintext
values for the OTPs, the challenge MAY also contain a sequence of one
way hash function algorithm identifiers and a minimum value of the
iteration count to be used by the client when hashing the OTP value.
3.3. Client Response
The client response SHALL be sent to the KDC as a PA-OTP-REQUEST
included within the enc-fast-req of a PA-FX-FAST-REQUEST encrypted
under the current Armor Key as described in [ZhHa07].
In order to generate its response, the client must generate an OTP
value. The OTP value MUST be based on the parameters in the KDC
challenge if present and the response SHOULD include any information
on the generated OTP value reported by the OTP token
If the "nextOTP" flag is set in the PA-OTP-CHALLENGE, then the client
MUST generate the OTP value in the next token state that that used in
the previous PA-OTP-REQUEST. The "nextOTP" flag must also be set in
the PA-OTP-REQUEST.
The otp-time and otp-counter fields MAY be used to return the time
and counter values used by the token. The otp-format field MAY be
Richards Expires January 15, 2009 [Page 7]
Internet-Draft OTP Pre-authentication July 2008
used to report the format of the generated OTP. This field SHOULD be
used if a token can generate OTP values in multiple formats. The
otp-algID field MAY be used by the client to report the algorithm
used in the OTP calculation and the otp-keyID MAY be used to report
the identifier of the OTP token key used.
If an otp-challenge is present in the PA-OTP-CHALLENGE then the OTP
value MUST be generated based on a challenge if the token is capable
of accepting a challenge. The client MAY ignore the provided
challenge if and only if the token is not capable of including a
challenge in the OTP calculation. If the "combine" flag is not set
in the PA-OTP-CHALLENGE then the OTP SHALL be calculated based only
the challenge and not the internal state (e.g. time or counter) of
the token. If the "combine" flag is set then the OTP SHALL be
calculated using both the internal state and the provided challenge.
If the flag is set but otp-challenge is not present then the client
SHALL regard the request as invalid.
If the OTP value was generated by a challenge not sent by the KDC
then the challenge SHALL be included in the otp-challenge of the PA-
OTP-RESPONSE. If the OTP was generated by combining a challenge
(either received from the KDC or generated by the client) with the
token state then the "combine" flag SHALL be set in the PA-OTP-
RESPONSE.
The client MUST derive the Client Key and Reply Key as described in
Section 3.6. In order to support OTP algorithms where the KDC cannot
obtain the OTP value, the client MAY include the generated value in
the otp-value field of the response. However, the client MUST NOT
include the OTP value in the response unless it is allowed by the
algorithm profile. If it is included then the OTP value MUST NOT be
used in the key derivation.
If the client used hashed OTP values in the key derivation process
then it MUST include the hash algorithm and iteration count used in
the hashAlg and iterationCount fields of the PA-OTP-REQUEST. These
fields MUST NOT be included if hashed OTP values were not used. It
is RECOMMENDED that the iteration count used by the client be chosen
in such a way that it is computationally infeasible/unattractive for
an attacker to brute-force search for the given OTP within the
lifetime of that OTP.
If the PA-OTP-REQUEST is being sent in response to a PA-OTP-CHALLENGE
that contained hash algorithm identifiers and the OTP value is to be
used in the key derivation then the client MUST use hashed OTP values
and MUST select the first algorithm from the list that it supports.
However, if the algorithm identifiers do not conform to local policy
restrictions then the authentication attempt MUST NOT proceed. If
Richards Expires January 15, 2009 [Page 8]
Internet-Draft OTP Pre-authentication July 2008
the iteration count specified in the PA-OTP-CHALLENGE does not
conform to local policy then the client MAY use a higher value but
MUST NOT use a lower value. That is, the value in the KDC challenge
is a minimum value.
The generated Client Key is used by the client to encrypt data to be
included in the encData of the response to allow the KDC to
authenticate the user. The key usage for this encryption is
KEY_USAGE_OTP_REQUEST.
o If the response is being generated in response to a KDC challenge
then client encrypts a PA-OTP-ENC-REQUEST containing the value of
nonce from the corresponding challenge using the encryption type
specified in the challenge.
o If the response is not in response to a KDC challenge then the
client encrypts a PA-ENC-TS-ENC containing the current time as in
the encrypted timestamp pre-authentication mechanism [RFC4120].
If the client is working in 2-pass mode and so is not responding to
an initial KDC challenge then the values of the iteration count, hash
algorithms and encryption type cannot be obtained from that
challenge. The client SHOULD use any values obtained from a previous
PA-OTP-CHALLENGE or, if no values are available, it MAY use initial
configured values.
Finally, the client generates a random value to include in the nonce
of the response. This value will then be returned encrypted by the
KDC.
3.4. Verifying the pre-auth Data
The KDC validates the pre-authentication data by generating the same
keys as the client and using the generated Client Key to decrypt the
value of encData from the PA-OTP-REQUEST.
If the otp-value field is included in the PA-OTP-REQUEST then the KDC
MUST use that value in the key generation. Otherwise, the KDC will
need to generate or obtain the value.
If the otp-challenge field is present, then the OTP was calculated
using that challenge. If the "combine" flag is also set, then the
OTP was calculated using the challenge and the token's current state.
It is RECOMMENDED that the KDC acts upon the values of otp-time, otp-
counter, otp-format, otp-algID and otp-keyID if they are present in
the PA-OTP-REQUEST. If the KDC receives a request containing these
values but cannot act upon theme then they MAY be ignored.
Richards Expires January 15, 2009 [Page 9]
Internet-Draft OTP Pre-authentication July 2008
The KDC generates the Client Key and Reply Key as described in
Section 3.6 from the OTP value using the hash algorithm and iteration
count if present in the PA-OTP-REQUEST. However, the client
authentication MUST fail if the KDC requires hashed OTP values and
the hashAlg field was not present in the PA-OTP-REQUEST, if the hash
algorithm identifier or the value of iterationCount included in the
PA-OTP-REQUEST do not conform to local KDC policy or if the value of
the iterationCount is less than that specified in the PA-OTP-
CHALLENGE.
The generated Client Key is then used to decrypt the encData from the
PA-OTP-REQUEST. If the client response was sent as a result of a PA-
OTP-CHALLENGE then decrypted data will be a PA-OTP-ENC-REQUEST and
the client authentication MUST fail if the nonce value from the PA-
OTP-ENC-REQUEST is not the same as the nonce value sent in the PA-
OTP-CHALLENGE. If the response was not sent as a result of a PA-OTP-
CHALLENGE then the decrypted value will be a PA-ENC-TS-ENC and the
authentication process will be the same as with standard encrypted
timestamp pre-authentication [RFC4120]
The authentication MUST fail if the encryption type used by the
client in the encData does not conform to policy.
If authentication fails due to the hash algorithm, iteration count or
encryption type used by the client then the KDC SHOULD return a PA-
OTP-CHALLENGE with the required values in the error response. If the
authentication fails due to the token state on the server no longer
being synchronized with the token used then the KDC SHALL return a
PA-OTP-CHALLENGE with the "nextOTP" flag set as described in
Section 2.4.
If during the authentication process, the KDC determines that the
user's PIN has expired then it MAY include a PA-OTP-PIN-CHANGE in the
response as described in Section 2.3
3.5. Confirming the Reply Key Change
If the pre-authentication data was successfully verified, then, in
order to support mutual authentication, the KDC SHALL respond to the
client's PA-OTP-REQUEST by including in the AS-REP, a PA-OTP-CONFIRM
containing the client's nonce from PA-OTP-REQUEST encrypted under the
generated Reply Key.
The nonce SHALL be returned within a PA-OTP-ENC-CONFIRM encrypted
within the encData of the PA-OTP-CONFIRM. The key usage SHALL be
KEY_USAGE_OTP_CONFIRM and the encryption type SHOULD be the same as
used by the client in the encData of the PA-OTP-REQUEST.
Richards Expires January 15, 2009 [Page 10]
Internet-Draft OTP Pre-authentication July 2008
The PA-OTP-CONFIRM SHALL be sent to the client within the enc-fast-
rep of a PA-FX-FAST-REPLY encrypted under the current Armor Key.
The client then uses its generated Reply Key to decrypt the PA-OTP-
ENC-CONFIRM from the encData of the PA-OTP-CONFIRM. The client MUST
fail the authentication process if the nonce value in the PA-OTP-ENC-
CONFIRM is not the same as the nonce value sent in the PA-OTP-
REQUEST.
3.6. Reply Key Generation
In order to authenticate the user, the client and KDC need to
generate two encryption keys:
o The Client Key to be used by the client to encrypt and by the KDC
to decrypt the encData in the PA-OTP-REQUEST.
o The Reply Key to be used in the standard manner by the KDC to
encrypt data in the AS-REP but also to be used by the KDC to
encrypt and by the client to decrypt the encData value in the PA-
OTP-CONFIRM.
The method used to generate the three keys will depend on the OTP
algorithm.
o If the OTP value is included in the otp-value of the PA-OTP-
REQUEST then all three keys SHALL be the same as the Armor Key
(defined in [ZhHa07]).
o If the OTP value is not included in the otp-value of the PA-OTP-
REQUEST then the three keys SHALL be derived from the Armor Key
and the OTP value as described below.
If the OTP value is not included in the PA-OTP-REQUEST, then the
Reply Key SHALL be generated using the KRB_FX_CF2 algorithm from
[ZhHa07]
Client Key = KRB_FX_CF2(K1, K2, O1, O2)
Reply Key = KRB_FX_CF2(K1, K2, O3, O4)
The first input keys, K1, shall be the Armor Key. The second input
key, K2, shall be derived from the OTP value using string-to-key
(defined in [RFC3961]).
The octet string parameters, O1, O2, O3 and O4, shall be the ASCII
string "Combine1", "Combine2", "Combine3" and "Combine4" as shown
below:
Richards Expires January 15, 2009 [Page 11]
Internet-Draft OTP Pre-authentication July 2008
{0x43, 0x6f, 0x6d, 0x62, 0x69, 0x6e, 0x65, 0x31}
{0x43, 0x6f, 0x6d, 0x62, 0x69, 0x6e, 0x65, 0x32}
{0x43, 0x6f, 0x6d, 0x62, 0x69, 0x6e, 0x65, 0x33}
{0x43, 0x6f, 0x6d, 0x62, 0x69, 0x6e, 0x65, 0x34}
If the hash of the OTP value is to be used then K2 SHALL be derived
as follows:
o An initial hash value, H, is generated:
H = hash(sname|nonce|OTP)
Where:
* "|" denotes concatenation
* hash is the hash algorithm selected by the client.
* sname is the UTF-8 encoding of the KDC's fully qualified domain
name. If the domain name is an Internationalized Domain Name
then the value shall be the output of nameprep [RFC3491] as
described in [RFC3490]
* nonce is the random nonce value generated by the client to be
included in the PA-OTP-REQUEST.
* OTP is the OTP value.
o The initial hash value is then hashed iterationCount-1 times to
produce a final hash value, H'. (Where iterationCount is the
value from the PA-OTP-REQUEST.)
H' = hash(hash(...(iterationCount-1 times)...(H)))
o The value of K2 is then derived from the base64 [RFC2045] encoding
of this final hash value.
K2 = string-to-key(Base64(H')||"Krb-preAuth")
If the OTP value is binary and the hash value is not used, then K2
SHALL be derived from the base64 encoding of the OTP value.
K2 = string-to-key(Base64(OTP)||"Krb-preAuth")
If the OTP value is not binary and the hash value is not used, then
K2 SHALL be derived by running the OTP value once through string-to-
key.
K2 = string-to-key(OTP||"Krb-preAuth")
The salt and any additional parameters for string-to-key will be
derived as described in section 3.1.3 of [RFC4120] using preauth data
or default values defined for the particular enctype. The symbol
Richards Expires January 15, 2009 [Page 12]
Internet-Draft OTP Pre-authentication July 2008
"||" denotes string concatenation.
4. OTP Kerberos Message Types
4.1. PA-OTP-CHALLENGE
The PA_OTP_CHALLENGE padata type is sent by the KDC to the client in
the PA-DATA of a KRB-ERROR when pre-authentication using an OTP value
is required. The corresponding padata-value field contains the DER
encoding of a PA-OTP-CHALLENGE containing a server generated nonce
and information for the client on how to generate the OTP.
PA_OTP_CHALLENGE << TBA >>
PA-OTP-CHALLENGE ::= SEQUENCE {
flags OTPFlags,
nonce UInt32,
etype Int32,
supportedHashAlg SEQUENCE OF AlgorithmIdentifier
OPTIONAL,
iterationCount INTEGER OPTIONAL,
otp-challenge OCTET STRING (SIZE(8..MAX)) OPTIONAL,
otp-length [0] Int32 OPTIONAL,
otp-service UTF8String OPTIONAL,
otp-keyID [1] OCTET STRING OPTIONAL,
otp-algID AnyURI OPTIONAL,
...
}
OTPFlags ::= KerberosFlags
-- nextOTP (0)
-- combine (1)
flags
If the "nextOTP" flag is set then the OTP SHALL be based on the
next token "state" rather than the current one. As an example,
for a time-based token, this means the next time slot and for an
event-based token, this could mean the next counter value.
The "combine flag controls how the challenge included in otp-
challenge shall be used. If the flag is set then OTP SHALL be
calculated using the challenge from otp-challenge and the internal
token state (e.g. time or counter). If the "combine" flag is not
set then the OTP SHALL be calculated based only on the challenge.
If the flag is set and otp-challenge is not present then the
request SHALL be regarded as invalid.
Richards Expires January 15, 2009 [Page 13]
Internet-Draft OTP Pre-authentication July 2008
nonce
A KDC-supplied nonce value to be encrypted by the client in the
PA-OTP-REQUEST.
etype
The encryption type to be used by the client to encrypt the nonce
in the PA-OTP-REQUEST.
supportedHashAlg
If present then a hash of the OTP value MUST be used in the key
derivation rather than the plain text value. Each
AlgorithmIdentifier identifies a hash algorithm that is supported
by the KDC in decreasing order of preference. The client MUST
select the first algorithm from the list that it supports.
Support for SHA1 by both the client and KDC is REQUIRED. The
AlgorithmIdentifer selected by the client MUST be placed in the
hashAlg element of the PA-OTP-REQUEST.
iterationCount
The minimum value of the iteration count to be used by the client
when hashing the OTP value. This value MUST be present if and
only if supportedHashAlg is present. If the value of this element
does not conform to local policy on the client then the client MAY
use a larger value but MUST NOT use a lower value. The value of
the iteration count used by the client MUST be returned in the PA-
OTP-REQUEST sent to the KDC.
otp-challenge
The otp-challenge is used by the KDC to send a challenge value for
use in the OTP calculation. The challenge is an optional octet
string that SHOULD be uniquely generated for each request it is
present in, and SHOULD be eight octets or longer when present.
When the challenge is not present, the OTP will be calculated on
the current token state only. The client MAY ignore a provided
challenge if and only if the OTP token the client is interacting
with is not capable of including a challenge in the OTP
calculation. In this case, KDC policies will determine whether to
accept a provided OTP value or not.
otp-length
Use of this field is OPTIONAL, but MAY be used by the KDC to
specify the desired length of the generated OTP in octets. For
example, this field could be used when a token is capable of
producing OTP values of different lengths.
Richards Expires January 15, 2009 [Page 14]
Internet-Draft OTP Pre-authentication July 2008
otp-service
Use of this field is OPTIONAL, but MAY be used by the KDC to
identify the appropriate OTP tokens to be used. For example, this
field could be used when a client has multiple OTP tokens from
different servers.
otp-keyID
Use of this field is OPTIONAL, but MAY be used by the KDC to
identify which token key should be used for the authentication.
For example, this field could be used when a user has been issued
multiple token keys by the same server.
otp-algID
use of this field is OPTIONAL, but MAY be used by the KDC to
identify the algorithm to use when generating the OTP.
4.2. PA-OTP-REQUEST
The padata-type PA_OTP_REQUEST is sent by the client to the KDC in
the KrbFastReq padata of a PA-FX-FAST-REQUEST that is included in the
PA-DATA of an AS-REQ. The corresponding padata-value field contains
the DER encoding of a PA-OTP-REQUEST.
The message contains pre-authentication data encrypted by the client
using the generated Client Key and optional information on how the
OTP was generated. It may also, optionally, contain the generated
OTP value.
PA_OTP_REQUEST << TBA >>
PA-OTP-REQUEST ::= SEQUENCE {
flags OTPFlags,
nonce UInt32,
encData EncryptedData,
-- PA-OTP-ENC-REQUEST or PA-ENC-TS-ENC
-- Key usage of KEY_USAGE_OTP_REQUEST
hashAlg AlgorithmIdentifier OPTIONAL,
iterationCount INTEGER OPTIONAL,
otp-value OCTET STRING OPTIONAL,
otp-challenge [0] OCTET STRING OPTIONAL,
otp-time KerberosTime OPTIONAL,
otp-counter [1] OCTET STRING OPTIONAL,
otp-format [2] OTPFormat OPTIONAL,
otp-keyID [3] OCTET STRING OPTIONAL,
otp-algID AnyURI OPTIONAL,
...
}
Richards Expires January 15, 2009 [Page 15]
Internet-Draft OTP Pre-authentication July 2008
KEY_USAGE_OTP_REQUEST << TBA >>
PA-OTP-ENC-REQUEST ::= SEQUENCE {
nonce UInt32,
...
}
OTPFormat ::= INTEGER {
decimal(0),
hexadecimal(1),
alphanumeric(2),
binary(3)
}
flags
If the "nextOTP" flag is set then the OTP was calculated based on
the next token "state" rather than the current one. This flag
MUST be set if and only if it was set in a corresponding PA-OTP-
CHALLENGE.
If the "combine" flag is set then the OTP was calculated based on
a challenge and the token state.
nonce
A random nonce value generated by the client to be returned
encrypted by the KDC in the PA-OTP-CONFIRM.
encData
This field contains the pre-authentication data encrypted under
the Client Key with a key usage of KEY_USAGE_OTP_REQUEST. If the
PA-OTP-REQUEST is sent as a result of a PA-OTP_CHALLENGE then this
MUST contain a PA-OTP-ENC-REQUEST with the nonce from the PA-OTP-
CHALLENGE. If no challenge was received then this MUST contain a
PA-ENC-TS-ENC.
hashAlg
This field MUST be present if and only if a hash of the OTP value
was used as input to string-to-key (see Section 3.6) and MUST
contain the AlgorithmIdentifier of the hash algorithm used. If
the PA-OTP-REQUEST is sent as a result of a PA-OTP-CHALLENGE then
the AlgorithmIdentifer MUST be the first one supported by the
client from the supportedHashAlg of the PA-OTP-CHALLENGE.
Richards Expires January 15, 2009 [Page 16]
Internet-Draft OTP Pre-authentication July 2008
iterationCount
This field MUST be present if and only if a hash of the OTP value
was used as input to string-to-key (see Section 3.6) and MUST
contain the iteration count used when hashing the OTP value. If
the PA-OTP-REQUEST is sent as a result of a PA-OTP-CHALLENGE then
the value MUST NOT be less that that specified in the PA-OTP-
CHALLENGE.
otp-value
The generated OTP value. This value MUST NOT be present unless
allowed by the OTP algorithm profile.
otp-challenge
Value used by the client in the OTP calculation. It MUST be sent
to the KDC if and only if the value would otherwise be unknown to
the KDC. For example, the token or client modified or generated
challenge.
otp-time
This field MAY be included by the client to carry the time value
as reported by the OTP token. Use of this element is OPTIONAL but
it MAY be used by a client to simplify the OTP calculations of the
KDC. It is RECOMMENDED that the KDC act upon this value if it is
present in the request and it is capable of using it in the
generation of the OTP value.
otp-counter
This field MAY be included by the client to carry the token
counter value, as reported by the OTP token. Use of this element
is OPTIONAL but it MAY be used by a client to simplify the OTP
calculations of the KDC. It is RECOMMENDED that the KDC act upon
this value if it is present in the request and it is capable of
using it in the generation of the OTP value.
otp-format
This field MAY be used by the client to send the format of the
generated OTP as reported by the OTP token. Use of this element
is OPTIONAL but it MAY be used by the client to simplify the OTP
calculation. It is RECOMMENDED that the KDC act upon this value
if it is present in the request and it is capable of using it in
the generation of the OTP value.
otp-keyID
This field MAY be used by the client to send the identifier of the
token key used, as reported by the OTP token. Use of this field
is OPTIONAL but MAY be used by the client to simplify the
authentication process by identifying a particular token key
associated with the user. It is RECOMMENDED that the KDC act upon
Richards Expires January 15, 2009 [Page 17]
Internet-Draft OTP Pre-authentication July 2008
this value if it is present in the request and it is capable of
using it in the generation of the OTP value.
otp-algID
This field MAY be used by the client to send the identifier of the
OTP algorithm used, as reported by the OTP token. Use of this
element is OPTIONAL but it MAY be used by the client to simplify
the OTP calculation. It is RECOMMENDED that the KDC act upon this
value if it is present in the request and it is capable of using
it in the generation of the OTP value.
4.3. PA-OTP-CONFIRM
The padata-type PA_OTP_CONFIRM is returned by the KDC in the enc-
fast-rep of a PA-FX-FAST-REPLY in the AS-REP of the KDC. It is used
to return the client's nonce encrypted under the new Reply Key in
order to authenticate the KDC and confirm the Reply Key change.
The corresponding padata-value field contains the DER encoding of a
PA-OTP-CONFIRM.
PA_OTP_CONFIRM << TBA >>
PA-OTP-CONFIRM ::= SEQUENCE {
encData EncryptedData,
-- PA-OTP-ENC-CONFIRM
-- Key usage of KEY_USAGE_OTP_CONFIRM
...
}
KEY_USAGE_OTP_CONFIRM << TBA >>
PA-OTP-ENC-CONFIRM ::= SEQUENCE {
nonce UInt32,
...
}
encData
An EncryptedData containing a PA-OTP-ENC-CONFIRM containing the
value of the nonce from the corresponding PA-OTP-REQUEST encrypted
under the current Reply Key. The key usage SHALL be
KEY_USAGE_OTP_CONFIRM and the encryption type SHOULD be the same
as that used by the client in the PA-OTP-REQUEST.
Richards Expires January 15, 2009 [Page 18]
Internet-Draft OTP Pre-authentication July 2008
4.4. PA-OTP-PIN-CHANGE
The padata-type PA_OTP_PIN_CHANGE is returned by the KDC in the enc-
fast-rep of a PA-FX-FAST-REPLY in the AS-REP if the user must change
their PIN or if the user's PIN has been changed.
The corresponding padata-value field contains the DER encoding of a
PA-OTP-PIN-CHANGE.
PA_OTP_PIN_CHANGE << TBA >>
PA-OTP-PIN-CHANGE ::= SEQUENCE {
flags PinFlags,
pin UTF8String OPTIONAL,
minLength INTEGER OPTIONAL,
maxLength [1] INTEGER OPTIONAL,
...
}
PinFlags ::= KerberosFlags
-- systemSetPin (0)
If the "systemSetPin" flag is set then the user's PIN has been
changed and the new PIN value is contained in the pin field. The pin
field MUST therefore be present.
If the "systemSetPin" flag is not set then the user's PIN has not
been changed by the server but it MUST instead be changed by the
user. Restrictions on the size of the PIN MAY be given by the
minLength and maxLength fields. If the pin field is present then it
contains a PIN value that MAY be used by the user when changing the
PIN.
5. IANA Considerations
A registry may be required for the otp-algID values as introduced in
Section 4.1. No other IANA actions are anticipated.
6. Security Considerations
6.1. Man-in-the-Middle
In the system described in this document, the OTP pre-authentication
protocol is tunnelled within the FAST Armor channel provided by the
pre-authentication framework. As described in [AsNiNy02], tunneled
protocols are potentially vulnerable to man-in-the-middle attacks if
Richards Expires January 15, 2009 [Page 19]
Internet-Draft OTP Pre-authentication July 2008
the outer tunnel is compromised and it is generally considered good
practice in such cases to bind the inner encryption to the outer
tunnel.
Even though no such attacks are known at this point, the proposed
system uses the outer Armor Key in the derivation of the inner Client
and Reply keys and so achieve crypto-binding to the outer channel.
6.2. Reflection
The 4-pass system described above is a challenge-response protocol
and such protocols are potentially vulnerable to reflection attacks.
No such attacks are known at this point but to help mitigate against
such attacks, the system uses different keys to encrypt the client
and server nonces.
6.3. Replay
The 2-pass version of the protocol does not involve a server nonce
and so the client instead encrypts a timestamp. To reduce the chance
of replay attacks, the KDC must check that the client time used in
such a request is later than that used in previous requests.
6.4. Brute Force Attack
A compromised or hostile KDC may be able to obtain the OTP value used
by the client via a brute force attack. If the OTP value is short
then the KDC could iterate over the possible OTP values until a
Client Key is generated that can decrypt the encData sent in the PA-
OTP-REQUEST.
As described in Section 3.6, an iteration count can be used in the
generation of the Client Key and the value of the iteration count can
be controlled by local client policy. Use of this iteration count
can make it computationally infeasible/unattractive for an attacker
to brute-force search for the given OTP within the lifetime of that
OTP.
6.5. FAST Facilities
The secret used to generate the OTP is known only to the client and
the KDC and so successful decryption of the encrypted nonce by the
KDC authenticates the user. Similarly, successful decryption of the
encrypted nonce by the client proves that the expected KDC replied.
The Reply Key is replaced by a key generated from the OTP and Armor
Key. This FAST factor therefore provides the following facilities:
client-authentication, replacing-reply-key and KDC-authentication.
Richards Expires January 15, 2009 [Page 20]
Internet-Draft OTP Pre-authentication July 2008
7. Acknowledgments
Many significant contributions were made to this document by RSA
employees but special thanks go to Magnus Nystrom, John Linn, Robert
Polansky and Boris Khoutorski.
Many valuable suggestions were also made by members of the Kerberos
Working group but special thanks go to Larry Zhu, Jeffrey Hutzelman,
Tim Alsop, Henry Hotz and Nicolas Williams.
8. References
8.1. Normative References
[RFC2045] Freed, N. and N. Borenstein, "Multipurpose Internet Mail
Extensions (MIME) Part One: Format of Internet Message
Bodies", RFC 2045, November 1996.
[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
Requirement Levels", BCP 14, RFC 2119, March 1997.
[RFC3490] Faltstrom, P., Hoffman, P., and A. Costello,
"Internationalizing Domain Names in Applications (IDNA)",
RFC 3490, March 2003.
[RFC3491] Hoffman, P. and M. Blanchet, "Nameprep: A Stringprep
Profile for Internationalized Domain Names (IDN)",
RFC 3491, March 2003.
[RFC3961] Raeburn, K., "Encryption and Checksum Specifications for
Kerberos 5", RFC 3961, February 2005.
[RFC4120] Neuman, C., Yu, T., Hartman, S., and K. Raeburn, "The
Kerberos Network Authentication Service (V5)", RFC 4120,
July 2005.
[ZhHa07] Znu, L. and S. Hartman, "A generalized Framework for
Kerberos Pre-Authentication",
draft-ietf-krb-wg-preauth-framework-08 (work in progress),
July 2008.
8.2. Informative References
[AsNiNy02]
Asokan, N., Niemi, V., and K. Nyberg, "Man-in-the-Middle
in Tunneled Authentication Protocols", Cryptology ePrint
Archive Report 2002/163, November 2002.
Richards Expires January 15, 2009 [Page 21]
Internet-Draft OTP Pre-authentication July 2008
[HoReNeZo04]
Horstein, K., Renard, K., Neuman, C., and G. Zorn,
"Integrating Single-use Authentication Mechanisms with
Kerberos", draft-ietf-krb-wg-kerberos-sam-03 (work in
progress), July 2004.
[RFC2289] Haller, N., Metz, C., Nesser, P., and M. Straw, "A One-
Time Password System", RFC 2289, February 1998.
[RFC2808] Nystrom, M., "The SecurID(r) SASL Mechanism", RFC 2808,
April 2000.
[RFC3244] Swift, M., Trostle, J., and J. Brezak, "Microsoft Windows
2000 Kerberos Change Password and Set Password Protocols",
RFC 3244, February 2002.
[RFC4226] M'Raihi, D., Bellare, M., Hoornaert, F., Naccache, D., and
O. Ranen, "HOTP: An HMAC-Based One-Time Password
Algorithm", RFC 4226, December 2005.
Appendix A. ASN.1 Module
OTPKerberos
DEFINITIONS IMPLICIT TAGS ::=
BEGIN
IMPORTS
AnyURI
FROM XSD {joint-iso-itu-t asn1(1) specification(0)
modules(0) xsd-module(1)};
KerberosTime, KerberosFlags, EncryptionKey, UInt32,
Int32, EncryptedData
FROM KerberosV5Spec2 {iso(1) identified-organization(3)
dod(6) internet(1) security(5)
kerberosV5(2) modules(4) krb5spec2(2)}
-- as defined in RFC 4120.
AlgorithmIdentifier
FROM PKIX1Explicit88 { iso (1) identified-organization (3)
dod (6) internet (1)
security (5) mechanisms (5) pkix (7)
id-mod (0) id-pkix1-explicit (18) };
-- As defined in RFC 3280.
PA-OTP-CHALLENGE ::= SEQUENCE {
flags OTPFlags,
nonce UInt32,
Richards Expires January 15, 2009 [Page 22]
Internet-Draft OTP Pre-authentication July 2008
etype Int32,
supportedHashAlg SEQUENCE OF AlgorithmIdentifier
OPTIONAL,
iterationCount INTEGER OPTIONAL,
otp-challenge OCTET STRING (SIZE(8..MAX)) OPTIONAL,
otp-length [0] Int32 OPTIONAL,
otp-service UTF8String OPTIONAL,
otp-keyID [1] OCTET STRING OPTIONAL,
otp-algID AnyURI OPTIONAL,
...
}
OTPFlags ::= KerberosFlags
-- nextOTP (0)
-- combine (1)
PA-OTP-REQUEST ::= SEQUENCE {
flags OTPFlags,
nonce UInt32,
encData EncryptedData,
-- PA-OTP-ENC-REQUEST or PA-ENC-TS-ENC
-- Key usage of KEY_USAGE_OTP_REQUEST
hashAlg AlgorithmIdentifier OPTIONAL,
iterationCount INTEGER OPTIONAL,
otp-value OCTET STRING OPTIONAL,
otp-challenge [0] OCTET STRING (SIZE(8..MAX)) OPTIONAL,
otp-time KerberosTime OPTIONAL,
otp-counter [1] OCTET STRING OPTIONAL,
otp-format [2] OTPFormat OPTIONAL,
otp-keyID [3] OCTET STRING OPTIONAL,
otp-algID AnyURI OPTIONAL,
...
}
PA-OTP-ENC-REQUEST ::= SEQUENCE {
nonce UInt32,
...
}
OTPFormat ::= INTEGER {
decimal(0),
hexadecimal(1),
alphanumeric(2),
binary(3)
}
PA-OTP-CONFIRM ::= SEQUENCE {
encData EncryptedData,
Richards Expires January 15, 2009 [Page 23]
Internet-Draft OTP Pre-authentication July 2008
-- PA-OTP-ENC-CONFIRM
-- Key usage of KEY_USAGE_OTP_CONFIRM
...
}
PA-OTP-ENC-CONFIRM ::= SEQUENCE {
nonce UInt32,
...
}
PA-OTP-PIN-CHANGE ::= SEQUENCE {
flags PinFlags,
pin UTF8String OPTIONAL,
minLength INTEGER OPTIONAL,
maxLength [0] INTEGER OPTIONAL,
...
}
PinFlags ::= KerberosFlags
-- systemSetPin (0)
END
Appendix B. Examples of OTP Pre-Authentication Exchanges
This section is non-normative.
B.1. Four Pass Authentication
In this mode, the client sends an initial AS-REQ to the KDC that does
not contain a PA-OTP-REQUEST and the KDC responds with a KRB-ERROR
containing a PA-OTP-CHALLENGE.
In this example, the user has been issued with a connected, time-
based token and the KDC requires hashed OTP values in the key
generation with SHA-384 as the preferred hash algorithm and a minimum
of 1024 iterations. It also requires that 256-bit AES be used to
encrypt the nonce. The local policy on the client supports SHA-256
and requires 100,000 iterations of the OTP value.
The basic sequence of steps involved is as follows:
1. The client obtains the user name of the user.
2. The client sends an initial AS-REQ to the KDC that does not
contain a PA-OTP-REQUEST.
Richards Expires January 15, 2009 [Page 24]
Internet-Draft OTP Pre-authentication July 2008
3. The KDC determines that the user identified by the AS-REQ
requires OTP authentication.
4. The KDC constructs a PA-OTP-CHALLENGE as follows:
flags
0
nonce
A randomly generated value.
etype
aes256-cts-hmac-sha1-96
supportedHashAlg
AlgorithmIdentifiers for SHA-384, SHA-256 and SHA-1
iterationCount
1024
otp-service
A string that can be used by the client to assist the user in
locating the correct token.
5. The KDC returns a KRB-ERROR with an error code of
KDC_ERR_PREAUTH_REQUIRED and the PA-OTP-CHALLENGE in the e-data.
6. The client displays the value of otp-service and prompts the
user to connect the token.
7. The client obtains the current OTP value from the token and
records the time as reported by the token.
8. The client generates Client Key and Reply Key as described in
Section 3.6 using SHA-256 from the list of algorithms sent by
the KDC and the iteration count of 100,000 as required by local
policy.
9. The client constructs a PA-OTP-REQUEST as follows:
flags
0
nonce
A randomly generated value.
Richards Expires January 15, 2009 [Page 25]
Internet-Draft OTP Pre-authentication July 2008
encData
An EncryptedData containing a PA-OTP-ENC-REQUEST encrypted
under the Client Key with a key usage of
KEY_USAGE_OTP_REQUEST and an encryption type of aes256-cts-
hmac-sha1-96. The PA-OTP-ENC-REQUEST contains the nonce from
the PA-OTP-CHALLENGE.
hashAlg
SHA-256
iterationCount
100,000
otp-time
The time used in the OTP calculation as reported by the OTP
token.
10. The client encrypts the PA-OTP-REQUEST within the enc-fast-req
of a PA-FX-FAST-REQUEST.
11. The client sends an AS-REQ to the KDC containing the PA-FX-FAST-
REQUEST within the padata.
12. The KDC validates the pre-authentication data in the PA-OTP-
REQUEST:
* Generates the Client Key and Reply Key from the OTP value for
the user identified in the AS-REQ, using an iteration count
of 100,000 and hash algorithm of SHA-256 as specified in the
PA-OTP-REQUEST.
* Uses the generated Client Key to decrypt the PA-OTP-ENC-
REQUEST in the encData of the PA-OTP-REQUEST.
* Authenticates the user by comparing the nonce value from the
decrypted PA-OTP-ENC-REQUEST to that sent in the
corresponding PA-OTP-CHALLENGE.
13. The KDC constructs a TGT for the user.
14. The KDC constructs a PA-OTP-CONFIRM as follows:
encData
An EncryptedData containing a PA-OTP-ENC-CONFIRM encrypted
under the Reply Key with a key usage of KEY_USAGE_OTP_CONFIRM
and an encryption type of aes256-cts-hmac-sha1-96 (the
encryption type used by the client in the PA-OTP-REQUEST).
The PA-OTP-ENC-CONFIRM contains the nonce from the PA-OTP-
Richards Expires January 15, 2009 [Page 26]
Internet-Draft OTP Pre-authentication July 2008
REQUEST.
15. The KDC encrypts the PA-OTP-CONFIRM within the enc-fast-rep of a
PA-FX-FAST-REPLY.
16. The KDC returns an AS-REP to the client, encrypted using the
Reply Key, containing the TGT and padata with the PA-FX-FAST-
REPLY.
17. The client authenticates the KDC and verifies the Reply Key
change.
* Uses the generated Reply Key to decrypt the PA-OTP-ENC-
CONFIRM in the encData of the PA-OTP-CONFIRM.
* Authenticates the KDC by comparing the nonce value from the
decrypted PA-OTP-ENC-CONFIRM to that sent in the
corresponding PA-OTP-REQUEST.
B.2. Two Pass Authentication
In this mode, the client includes a PA-OTP-REQUEST within a PA-FX-
FAST-REQUEST pre-auth of the initial AS-REQ sent to the KDC.
In this example, the user has been issued with a hand-held token and
so none of the OTP generation parameters (otp-length etc) are
included in the PA-OTP-RESPONSE. The KDC does not require hashed OTP
values in the key generation.
It is assumed that the client has been configured with the following
information or has obtained it from a previous PA-OTP-CHALLENGE.
o The encryption type of aes128-cts-hmac-sha1-96 to use to encrypt
the encData.
o The fact that hashed OTP values are not required.
The basic sequence of steps involved is as follows:
1. The client obtains the user name and OTP value from the user.
2. The client generates Client Key and Reply Key using unhashed OTP
values as described in Section 3.6.
3. The client constructs a PA-OTP-REQUEST as follows:
Richards Expires January 15, 2009 [Page 27]
Internet-Draft OTP Pre-authentication July 2008
flags
0
nonce
A randomly generated value.
encData
An EncryptedData containing a PA-ENC-TS-ENC encrypted under
the Client Key with a key usage of KEY_USAGE_OTP_REQUEST and
an encryption type of aes128-cts-hmac-sha1-96. The PA-ENC-
TS-ENC contains the current client time.
4. The client encrypts the PA-OTP-REQUEST within the enc-fast-req
of a PA-FX-FAST-REQUEST.
5. The client sends an AS-REQ to the KDC containing the PA-FX-FAST-
REQUEST within the padata.
6. The KDC validates the pre-authentication data:
* Generates the Client Key and Reply Key from the unhashed OTP
value for the user identified in the AS-REQ.
* Uses the generated Client Key to decrypt the PA-ENC-TS-ENC in
the encData of the PA-OTP-REQUEST.
* Authenticates the user using the timestamp in the standard
manner.
7. The KDC constructs a TGT for the user.
8. The KDC constructs a PA-OTP-CONFIRM as follows:
encData
An EncryptedData containing a PA-OTP-ENC-CONFIRM encrypted
under the Reply Key with a key usage of KEY_USAGE_OTP_CONFIRM
and an encryption type of aes128-cts-hmac-sha1-96 (the
encryption type used by the client in the PA-OTP-REQUEST).
The PA-OTP-ENC-CONFIRM contains the nonce from the PA-OTP-
REQUEST.
9. The KDC encrypts the PA-OTP-CONFIRM within the enc-fast-rep of a
PA-FX-FAST-REPLY.
10. The KDC returns an AS-REP to the client, encrypted using the
Reply Key, containing the TGT and padata with the PA-FX-FAST-
REPLY.
Richards Expires January 15, 2009 [Page 28]
Internet-Draft OTP Pre-authentication July 2008
11. The client authenticates the KDC and verifies the key change.
* Uses the generated Reply Key to decrypt the PA-OTP-ENC-
CONFIRM in the encData of the PA-OTP-CONFIRM.
* Authenticates the KDC by comparing the nonce value from the
decrypted PA-OTP-ENC-CONFIRM to that sent in the
corresponding PA-OTP-REQUEST.
B.3. Pin Change
This exchange follows from the point where the KDC receives the PA-
OTP-REQUEST from the client in the examples in Appendix B.1 and
Appendix B.2. During the validation of the pre-authentication data
(whether encrypted nonce or encrypted timestamp), the KDC determines
that the user's PIN has expired and so must be changed. The KDC
therefore includes a PA-OTP-PIN-CHANGE along with the PA-OTP-CONFIRM
in the AS-REP.
In this example, the KDC does not generate PIN values for the user
but requires that the user generate a new PIN that is between 4 and 8
characters in length. The actual PIN change is handled by a PIN
change service that requires the "initial" bit to be set in the
service ticket.
The basic sequence of steps involved is as follows:
1. The client constructs and sends a PA-OTP-REQUEST to the KDC as
described in the previous examples.
2. The KDC validates the pre-authentication data and authenticates
the user as in the previous examples but determines that the
user's PIN has expired.
3. KDC constructs a ticket for a PIN change service with the
"initial" flag set.
4. KDC constructs a PA-OTP-CONFIRM as in the previous examples.
5. KDC constructs a PA-OTP-PIN-CHANGE as follows:
flags
0
Richards Expires January 15, 2009 [Page 29]
Internet-Draft OTP Pre-authentication July 2008
minLength
4
maxLength
8
6. KDC encrypts the PA-OTP-PIN-CHANGE and PA-OTP-CONFIRM within the
enc-fast-rep of a PA-FX-FAST-REPLY.
7. KDC returns an AS-REP to the client containing the ticket to the
PIN change service and padata containing the PA-FX-FAST-REPLY.
8. The client authenticates the KDC as in the previous examples.
9. The client uses the ticket in the AS-REP to call the PIN change
service and change the user's PIN.
10. The client sends a second AS-REQ to the KDC containing a PA-OTP-
REQUEST constructed using the new PIN.
11. The KDC responds with an AS-REP containing a TGT and a PA-OTP-
CONFRIM.
B.4. Resynchronization
This exchange follows from the point where the KDC receives the PA-
OTP-REQUEST from the client. During the validation of the pre-
authentication data (whether encrypted nonce or encrypted timestamp),
the KDC determines that the local record of the token's state needs
to be re-synchronized with the token. The KDC therefore includes a
KRB-ERROR containing a PA-OTP-CHALLENGE with the "nextOTP" flag set.
The sequence of steps below follows is a variation of the four pass
examples shown in Appendix B.1 but the same process would also work
in the two-pass case.
1. The client constructs and sends a PA-OTP-REQUEST to the KDC as
described in the previous examples.
2. The KDC validates the pre-authentication data and authenticates
the user as in the previous examples but determines that user's
token requires re-synchronizing.
3. KDC constructs a PA-OTP-CHALLENGE as follows:
Richards Expires January 15, 2009 [Page 30]
Internet-Draft OTP Pre-authentication July 2008
flags
nextOTP bit set
nonce
A randomly generated value.
etype
aes256-cts-hmac-sha1-96
supportedHashAlg
AlgorithmIdentifiers for SHA-256 and SHA-1
iterationCount
1024
otp-service
Set to a string that can be used by the client to assist the
user in locating the correct token.
4. KDC returns a KRB-ERROR with an error code of
KDC_ERR_PREAUTH_REQUIRED and the PA-OTP-CHALLENGE in the e-data.
5. The client obtains the next OTP value from the token and records
the time as reported by the token.
6. The client generates Client Key Reply Key as described in
Section 3.6 using SHA-256 from the list of algorithms sent by
the KDC and the iteration count of 100,000 as required by local
policy.
7. The client constructs a PA-OTP-REQUEST as follows:
flags
nextOTP bit set
nonce
A randomly generated value.
encData
An EncryptedData containing a PA-OTP-ENC-REQUEST encrypted
under the Client Key with a key usage of
KEY_USAGE_OTP_REQUEST and an encryption type of aes256-cts-
hmac-sha1-96. The PA-OTP-ENC-REQUEST contains the nonce from
the PA-OTP-CHALLENGE.
Richards Expires January 15, 2009 [Page 31]
Internet-Draft OTP Pre-authentication July 2008
hashAlg
SHA-256
iterationCount
100,000
otp-time
The time used in the OTP calculation as reported by the OTP
token.
8. The client encrypts the PA-OTP-REQUEST within the enc-fast-req
of a PA-FX-FAST-REQUEST.
9. The client sends an AS-REQ to the KDC containing the PA-FX-FAST-
REQUEST within the padata.
10. Authentication process now proceeds as with the standard
sequence.
Author's Address
Gareth Richards
RSA, The Security Division of EMC
RSA House
Western Road
Bracknell, Berkshire RG12 1RT
UK
Email: gareth.richards@rsa.com
Richards Expires January 15, 2009 [Page 32]
Internet-Draft OTP Pre-authentication July 2008
Full Copyright Statement
Copyright (C) The IETF Trust (2008).
This document is subject to the rights, licenses and restrictions
contained in BCP 78, and except as set forth therein, the authors
retain all their rights.
This document and the information contained herein are provided on an
"AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS
OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY, THE IETF TRUST AND
THE INTERNET ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS
OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF
THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.
Intellectual Property
The IETF takes no position regarding the validity or scope of any
Intellectual Property Rights or other rights that might be claimed to
pertain to the implementation or use of the technology described in
this document or the extent to which any license under such rights
might or might not be available; nor does it represent that it has
made any independent effort to identify any such rights. Information
on the procedures with respect to rights in RFC documents can be
found in BCP 78 and BCP 79.
Copies of IPR disclosures made to the IETF Secretariat and any
assurances of licenses to be made available, or the result of an
attempt made to obtain a general license or permission for the use of
such proprietary rights by implementers or users of this
specification can be obtained from the IETF on-line IPR repository at
http://www.ietf.org/ipr.
The IETF invites any interested party to bring to its attention any
copyrights, patents or patent applications, or other proprietary
rights that may cover technology that may be required to implement
this standard. Please address the information to the IETF at
ietf-ipr@ietf.org.
Richards Expires January 15, 2009 [Page 33]