mirror of
https://github.com/samba-team/samba.git
synced 2024-12-27 03:21:53 +03:00
243321b4bb
This is based on f56a3b1846c7d462542f2e9527f4d0ed8a34748d in my heimdal-wip repo.
metze
(This used to be commit 467a1f2163
)
613 lines
13 KiB
C
613 lines
13 KiB
C
/*
|
|
* fortuna.c
|
|
* Fortuna-like PRNG.
|
|
*
|
|
* Copyright (c) 2005 Marko Kreen
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*
|
|
* $PostgreSQL: pgsql/contrib/pgcrypto/fortuna.c,v 1.8 2006/10/04 00:29:46 momjian Exp $
|
|
*/
|
|
|
|
#ifdef HAVE_CONFIG_H
|
|
#include <config.h>
|
|
#endif
|
|
|
|
RCSID("$Id$");
|
|
|
|
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
#include <rand.h>
|
|
|
|
#include <roken.h>
|
|
|
|
#include "randi.h"
|
|
#include "aes.h"
|
|
#include "sha.h"
|
|
|
|
/*
|
|
* Why Fortuna-like: There does not seem to be any definitive reference
|
|
* on Fortuna in the net. Instead this implementation is based on
|
|
* following references:
|
|
*
|
|
* http://en.wikipedia.org/wiki/Fortuna_(PRNG)
|
|
* - Wikipedia article
|
|
* http://jlcooke.ca/random/
|
|
* - Jean-Luc Cooke Fortuna-based /dev/random driver for Linux.
|
|
*/
|
|
|
|
/*
|
|
* There is some confusion about whether and how to carry forward
|
|
* the state of the pools. Seems like original Fortuna does not
|
|
* do it, resetting hash after each request. I guess expecting
|
|
* feeding to happen more often that requesting. This is absolutely
|
|
* unsuitable for pgcrypto, as nothing asynchronous happens here.
|
|
*
|
|
* J.L. Cooke fixed this by feeding previous hash to new re-initialized
|
|
* hash context.
|
|
*
|
|
* Fortuna predecessor Yarrow requires ability to query intermediate
|
|
* 'final result' from hash, without affecting it.
|
|
*
|
|
* This implementation uses the Yarrow method - asking intermediate
|
|
* results, but continuing with old state.
|
|
*/
|
|
|
|
|
|
/*
|
|
* Algorithm parameters
|
|
*/
|
|
|
|
#define NUM_POOLS 32
|
|
|
|
/* in microseconds */
|
|
#define RESEED_INTERVAL 100000 /* 0.1 sec */
|
|
|
|
/* for one big request, reseed after this many bytes */
|
|
#define RESEED_BYTES (1024*1024)
|
|
|
|
/*
|
|
* Skip reseed if pool 0 has less than this many
|
|
* bytes added since last reseed.
|
|
*/
|
|
#define POOL0_FILL (256/8)
|
|
|
|
/*
|
|
* Algorithm constants
|
|
*/
|
|
|
|
/* Both cipher key size and hash result size */
|
|
#define BLOCK 32
|
|
|
|
/* cipher block size */
|
|
#define CIPH_BLOCK 16
|
|
|
|
/* for internal wrappers */
|
|
#define MD_CTX SHA256_CTX
|
|
#define CIPH_CTX AES_KEY
|
|
|
|
struct fortuna_state
|
|
{
|
|
unsigned char counter[CIPH_BLOCK];
|
|
unsigned char result[CIPH_BLOCK];
|
|
unsigned char key[BLOCK];
|
|
MD_CTX pool[NUM_POOLS];
|
|
CIPH_CTX ciph;
|
|
unsigned reseed_count;
|
|
struct timeval last_reseed_time;
|
|
unsigned pool0_bytes;
|
|
unsigned rnd_pos;
|
|
int tricks_done;
|
|
pid_t pid;
|
|
};
|
|
typedef struct fortuna_state FState;
|
|
|
|
|
|
/*
|
|
* Use our own wrappers here.
|
|
* - Need to get intermediate result from digest, without affecting it.
|
|
* - Need re-set key on a cipher context.
|
|
* - Algorithms are guaranteed to exist.
|
|
* - No memory allocations.
|
|
*/
|
|
|
|
static void
|
|
ciph_init(CIPH_CTX * ctx, const unsigned char *key, int klen)
|
|
{
|
|
AES_set_encrypt_key(key, klen * 8, ctx);
|
|
}
|
|
|
|
static void
|
|
ciph_encrypt(CIPH_CTX * ctx, const unsigned char *in, unsigned char *out)
|
|
{
|
|
AES_encrypt(in, out, ctx);
|
|
}
|
|
|
|
static void
|
|
md_init(MD_CTX * ctx)
|
|
{
|
|
SHA256_Init(ctx);
|
|
}
|
|
|
|
static void
|
|
md_update(MD_CTX * ctx, const unsigned char *data, int len)
|
|
{
|
|
SHA256_Update(ctx, data, len);
|
|
}
|
|
|
|
static void
|
|
md_result(MD_CTX * ctx, unsigned char *dst)
|
|
{
|
|
SHA256_CTX tmp;
|
|
|
|
memcpy(&tmp, ctx, sizeof(*ctx));
|
|
SHA256_Final(dst, &tmp);
|
|
memset(&tmp, 0, sizeof(tmp));
|
|
}
|
|
|
|
/*
|
|
* initialize state
|
|
*/
|
|
static void
|
|
init_state(FState * st)
|
|
{
|
|
int i;
|
|
|
|
memset(st, 0, sizeof(*st));
|
|
for (i = 0; i < NUM_POOLS; i++)
|
|
md_init(&st->pool[i]);
|
|
st->pid = getpid();
|
|
}
|
|
|
|
/*
|
|
* Endianess does not matter.
|
|
* It just needs to change without repeating.
|
|
*/
|
|
static void
|
|
inc_counter(FState * st)
|
|
{
|
|
uint32_t *val = (uint32_t *) st->counter;
|
|
|
|
if (++val[0])
|
|
return;
|
|
if (++val[1])
|
|
return;
|
|
if (++val[2])
|
|
return;
|
|
++val[3];
|
|
}
|
|
|
|
/*
|
|
* This is called 'cipher in counter mode'.
|
|
*/
|
|
static void
|
|
encrypt_counter(FState * st, unsigned char *dst)
|
|
{
|
|
ciph_encrypt(&st->ciph, st->counter, dst);
|
|
inc_counter(st);
|
|
}
|
|
|
|
|
|
/*
|
|
* The time between reseed must be at least RESEED_INTERVAL
|
|
* microseconds.
|
|
*/
|
|
static int
|
|
enough_time_passed(FState * st)
|
|
{
|
|
int ok;
|
|
struct timeval tv;
|
|
struct timeval *last = &st->last_reseed_time;
|
|
|
|
gettimeofday(&tv, NULL);
|
|
|
|
/* check how much time has passed */
|
|
ok = 0;
|
|
if (tv.tv_sec > last->tv_sec + 1)
|
|
ok = 1;
|
|
else if (tv.tv_sec == last->tv_sec + 1)
|
|
{
|
|
if (1000000 + tv.tv_usec - last->tv_usec >= RESEED_INTERVAL)
|
|
ok = 1;
|
|
}
|
|
else if (tv.tv_usec - last->tv_usec >= RESEED_INTERVAL)
|
|
ok = 1;
|
|
|
|
/* reseed will happen, update last_reseed_time */
|
|
if (ok)
|
|
memcpy(last, &tv, sizeof(tv));
|
|
|
|
memset(&tv, 0, sizeof(tv));
|
|
|
|
return ok;
|
|
}
|
|
|
|
/*
|
|
* generate new key from all the pools
|
|
*/
|
|
static void
|
|
reseed(FState * st)
|
|
{
|
|
unsigned k;
|
|
unsigned n;
|
|
MD_CTX key_md;
|
|
unsigned char buf[BLOCK];
|
|
|
|
/* set pool as empty */
|
|
st->pool0_bytes = 0;
|
|
|
|
/*
|
|
* Both #0 and #1 reseed would use only pool 0. Just skip #0 then.
|
|
*/
|
|
n = ++st->reseed_count;
|
|
|
|
/*
|
|
* The goal: use k-th pool only 1/(2^k) of the time.
|
|
*/
|
|
md_init(&key_md);
|
|
for (k = 0; k < NUM_POOLS; k++)
|
|
{
|
|
md_result(&st->pool[k], buf);
|
|
md_update(&key_md, buf, BLOCK);
|
|
|
|
if (n & 1 || !n)
|
|
break;
|
|
n >>= 1;
|
|
}
|
|
|
|
/* add old key into mix too */
|
|
md_update(&key_md, st->key, BLOCK);
|
|
|
|
/* add pid to make output diverse after fork() */
|
|
md_update(&key_md, (const unsigned char *)&st->pid, sizeof(st->pid));
|
|
|
|
/* now we have new key */
|
|
md_result(&key_md, st->key);
|
|
|
|
/* use new key */
|
|
ciph_init(&st->ciph, st->key, BLOCK);
|
|
|
|
memset(&key_md, 0, sizeof(key_md));
|
|
memset(buf, 0, BLOCK);
|
|
}
|
|
|
|
/*
|
|
* Pick a random pool. This uses key bytes as random source.
|
|
*/
|
|
static unsigned
|
|
get_rand_pool(FState * st)
|
|
{
|
|
unsigned rnd;
|
|
|
|
/*
|
|
* This slightly prefers lower pools - thats OK.
|
|
*/
|
|
rnd = st->key[st->rnd_pos] % NUM_POOLS;
|
|
|
|
st->rnd_pos++;
|
|
if (st->rnd_pos >= BLOCK)
|
|
st->rnd_pos = 0;
|
|
|
|
return rnd;
|
|
}
|
|
|
|
/*
|
|
* update pools
|
|
*/
|
|
static void
|
|
add_entropy(FState * st, const unsigned char *data, unsigned len)
|
|
{
|
|
unsigned pos;
|
|
unsigned char hash[BLOCK];
|
|
MD_CTX md;
|
|
|
|
/* hash given data */
|
|
md_init(&md);
|
|
md_update(&md, data, len);
|
|
md_result(&md, hash);
|
|
|
|
/*
|
|
* Make sure the pool 0 is initialized, then update randomly.
|
|
*/
|
|
if (st->reseed_count == 0)
|
|
pos = 0;
|
|
else
|
|
pos = get_rand_pool(st);
|
|
md_update(&st->pool[pos], hash, BLOCK);
|
|
|
|
if (pos == 0)
|
|
st->pool0_bytes += len;
|
|
|
|
memset(hash, 0, BLOCK);
|
|
memset(&md, 0, sizeof(md));
|
|
}
|
|
|
|
/*
|
|
* Just take 2 next blocks as new key
|
|
*/
|
|
static void
|
|
rekey(FState * st)
|
|
{
|
|
encrypt_counter(st, st->key);
|
|
encrypt_counter(st, st->key + CIPH_BLOCK);
|
|
ciph_init(&st->ciph, st->key, BLOCK);
|
|
}
|
|
|
|
/*
|
|
* Hide public constants. (counter, pools > 0)
|
|
*
|
|
* This can also be viewed as spreading the startup
|
|
* entropy over all of the components.
|
|
*/
|
|
static void
|
|
startup_tricks(FState * st)
|
|
{
|
|
int i;
|
|
unsigned char buf[BLOCK];
|
|
|
|
/* Use next block as counter. */
|
|
encrypt_counter(st, st->counter);
|
|
|
|
/* Now shuffle pools, excluding #0 */
|
|
for (i = 1; i < NUM_POOLS; i++)
|
|
{
|
|
encrypt_counter(st, buf);
|
|
encrypt_counter(st, buf + CIPH_BLOCK);
|
|
md_update(&st->pool[i], buf, BLOCK);
|
|
}
|
|
memset(buf, 0, BLOCK);
|
|
|
|
/* Hide the key. */
|
|
rekey(st);
|
|
|
|
/* This can be done only once. */
|
|
st->tricks_done = 1;
|
|
}
|
|
|
|
static void
|
|
extract_data(FState * st, unsigned count, unsigned char *dst)
|
|
{
|
|
unsigned n;
|
|
unsigned block_nr = 0;
|
|
pid_t pid = getpid();
|
|
|
|
/* Should we reseed? */
|
|
if (st->pool0_bytes >= POOL0_FILL || st->reseed_count == 0)
|
|
if (enough_time_passed(st))
|
|
reseed(st);
|
|
|
|
/* Do some randomization on first call */
|
|
if (!st->tricks_done)
|
|
startup_tricks(st);
|
|
|
|
/* If we forked, force a reseed again */
|
|
if (pid != st->pid) {
|
|
st->pid = pid;
|
|
reseed(st);
|
|
}
|
|
|
|
while (count > 0)
|
|
{
|
|
/* produce bytes */
|
|
encrypt_counter(st, st->result);
|
|
|
|
/* copy result */
|
|
if (count > CIPH_BLOCK)
|
|
n = CIPH_BLOCK;
|
|
else
|
|
n = count;
|
|
memcpy(dst, st->result, n);
|
|
dst += n;
|
|
count -= n;
|
|
|
|
/* must not give out too many bytes with one key */
|
|
block_nr++;
|
|
if (block_nr > (RESEED_BYTES / CIPH_BLOCK))
|
|
{
|
|
rekey(st);
|
|
block_nr = 0;
|
|
}
|
|
}
|
|
/* Set new key for next request. */
|
|
rekey(st);
|
|
}
|
|
|
|
/*
|
|
* public interface
|
|
*/
|
|
|
|
static FState main_state;
|
|
static int init_done;
|
|
static int have_entropy;
|
|
#define FORTUNA_RESEED_BYTE 10000
|
|
static unsigned resend_bytes;
|
|
|
|
/*
|
|
* Try our best to do an inital seed
|
|
*/
|
|
#define INIT_BYTES 128
|
|
|
|
static int
|
|
fortuna_reseed(void)
|
|
{
|
|
int entropy_p = 0;
|
|
|
|
if (!init_done)
|
|
abort();
|
|
|
|
{
|
|
unsigned char buf[INIT_BYTES];
|
|
if ((*hc_rand_unix_method.bytes)(buf, sizeof(buf)) == 1) {
|
|
add_entropy(&main_state, buf, sizeof(buf));
|
|
entropy_p = 1;
|
|
memset(buf, 0, sizeof(buf));
|
|
}
|
|
}
|
|
#ifdef HAVE_ARC4RANDOM
|
|
{
|
|
uint32_t buf[INIT_BYTES / sizeof(uint32_t)];
|
|
int i;
|
|
|
|
for (i = 0; i < sizeof(buf)/sizeof(buf[0]); i++)
|
|
buf[i] = arc4random();
|
|
add_entropy(&main_state, (void *)buf, sizeof(buf));
|
|
entropy_p = 1;
|
|
}
|
|
#endif
|
|
/*
|
|
* Only to get egd entropy if /dev/random or arc4rand failed since
|
|
* it can be horribly slow to generate new bits.
|
|
*/
|
|
if (!entropy_p) {
|
|
unsigned char buf[INIT_BYTES];
|
|
if ((*hc_rand_egd_method.bytes)(buf, sizeof(buf)) == 1) {
|
|
add_entropy(&main_state, buf, sizeof(buf));
|
|
entropy_p = 1;
|
|
memset(buf, 0, sizeof(buf));
|
|
}
|
|
}
|
|
/*
|
|
* Fall back to gattering data from timer and secret files, this
|
|
* is really the last resort.
|
|
*/
|
|
if (!entropy_p) {
|
|
/* to save stackspace */
|
|
union {
|
|
unsigned char buf[INIT_BYTES];
|
|
unsigned char shad[1001];
|
|
} u;
|
|
int fd;
|
|
|
|
/* add timer info */
|
|
if ((*hc_rand_timer_method.bytes)(u.buf, sizeof(u.buf)) == 1)
|
|
add_entropy(&main_state, u.buf, sizeof(u.buf));
|
|
/* add /etc/shadow */
|
|
fd = open("/etc/shadow", O_RDONLY, 0);
|
|
if (fd >= 0) {
|
|
ssize_t n;
|
|
rk_cloexec(fd);
|
|
/* add_entropy will hash the buf */
|
|
while ((n = read(fd, (char *)u.shad, sizeof(u.shad))) > 0)
|
|
add_entropy(&main_state, u.shad, sizeof(u.shad));
|
|
close(fd);
|
|
}
|
|
|
|
memset(&u, 0, sizeof(u));
|
|
|
|
entropy_p = 1; /* sure about this ? */
|
|
}
|
|
{
|
|
pid_t pid = getpid();
|
|
add_entropy(&main_state, (void *)&pid, sizeof(pid));
|
|
}
|
|
{
|
|
struct timeval tv;
|
|
gettimeofday(&tv, NULL);
|
|
add_entropy(&main_state, (void *)&tv, sizeof(tv));
|
|
}
|
|
{
|
|
uid_t u = getuid();
|
|
add_entropy(&main_state, (void *)&u, sizeof(u));
|
|
}
|
|
return entropy_p;
|
|
}
|
|
|
|
static int
|
|
fortuna_init(void)
|
|
{
|
|
if (!init_done)
|
|
{
|
|
init_state(&main_state);
|
|
init_done = 1;
|
|
}
|
|
if (!have_entropy)
|
|
have_entropy = fortuna_reseed();
|
|
return (init_done && have_entropy);
|
|
}
|
|
|
|
|
|
|
|
static void
|
|
fortuna_seed(const void *indata, int size)
|
|
{
|
|
fortuna_init();
|
|
add_entropy(&main_state, indata, size);
|
|
if (size >= INIT_BYTES)
|
|
have_entropy = 1;
|
|
}
|
|
|
|
static int
|
|
fortuna_bytes(unsigned char *outdata, int size)
|
|
{
|
|
if (!fortuna_init())
|
|
return 0;
|
|
resend_bytes += size;
|
|
if (resend_bytes > FORTUNA_RESEED_BYTE || resend_bytes < size) {
|
|
resend_bytes = 0;
|
|
fortuna_reseed();
|
|
}
|
|
extract_data(&main_state, size, outdata);
|
|
return 1;
|
|
}
|
|
|
|
static void
|
|
fortuna_cleanup(void)
|
|
{
|
|
init_done = 0;
|
|
have_entropy = 0;
|
|
memset(&main_state, 0, sizeof(main_state));
|
|
}
|
|
|
|
static void
|
|
fortuna_add(const void *indata, int size, double entropi)
|
|
{
|
|
fortuna_seed(indata, size);
|
|
}
|
|
|
|
static int
|
|
fortuna_pseudorand(unsigned char *outdata, int size)
|
|
{
|
|
return fortuna_bytes(outdata, size);
|
|
}
|
|
|
|
static int
|
|
fortuna_status(void)
|
|
{
|
|
return fortuna_init() ? 1 : 0;
|
|
}
|
|
|
|
const RAND_METHOD hc_rand_fortuna_method = {
|
|
fortuna_seed,
|
|
fortuna_bytes,
|
|
fortuna_cleanup,
|
|
fortuna_add,
|
|
fortuna_pseudorand,
|
|
fortuna_status
|
|
};
|
|
|
|
const RAND_METHOD *
|
|
RAND_fortuna_method(void)
|
|
{
|
|
return &hc_rand_fortuna_method;
|
|
}
|