1
0
mirror of https://github.com/samba-team/samba.git synced 2024-12-23 17:34:34 +03:00
samba-mirror/source4/dns_server/dnsserver_common.c
Douglas Bagnall b707720325 dns: merge dns_records_match and dns_record_match
Signed-off-by: Douglas Bagnall <douglas.bagnall@catalyst.net.nz>
Reviewed-by: Andrew Bartlett <abartlet@samba.org>
2021-06-11 08:38:34 +00:00

1557 lines
39 KiB
C

/*
Unix SMB/CIFS implementation.
DNS server utils
Copyright (C) 2010 Kai Blin
Copyright (C) 2014 Stefan Metzmacher
Copyright (C) 2015 Andrew Bartlett
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include "includes.h"
#include "libcli/util/ntstatus.h"
#include "libcli/util/werror.h"
#include "librpc/ndr/libndr.h"
#include "librpc/gen_ndr/ndr_dns.h"
#include "librpc/gen_ndr/ndr_dnsp.h"
#include <ldb.h>
#include "dsdb/samdb/samdb.h"
#include "dsdb/common/util.h"
#include "dns_server/dnsserver_common.h"
#include "rpc_server/dnsserver/dnsserver.h"
#include "lib/util/dlinklist.h"
#include "system/network.h"
#undef DBGC_CLASS
#define DBGC_CLASS DBGC_DNS
#undef strncasecmp
uint8_t werr_to_dns_err(WERROR werr)
{
if (W_ERROR_EQUAL(WERR_OK, werr)) {
return DNS_RCODE_OK;
} else if (W_ERROR_EQUAL(DNS_ERR(FORMAT_ERROR), werr)) {
return DNS_RCODE_FORMERR;
} else if (W_ERROR_EQUAL(DNS_ERR(SERVER_FAILURE), werr)) {
return DNS_RCODE_SERVFAIL;
} else if (W_ERROR_EQUAL(DNS_ERR(NAME_ERROR), werr)) {
return DNS_RCODE_NXDOMAIN;
} else if (W_ERROR_EQUAL(WERR_DNS_ERROR_NAME_DOES_NOT_EXIST, werr)) {
return DNS_RCODE_NXDOMAIN;
} else if (W_ERROR_EQUAL(DNS_ERR(NOT_IMPLEMENTED), werr)) {
return DNS_RCODE_NOTIMP;
} else if (W_ERROR_EQUAL(DNS_ERR(REFUSED), werr)) {
return DNS_RCODE_REFUSED;
} else if (W_ERROR_EQUAL(DNS_ERR(YXDOMAIN), werr)) {
return DNS_RCODE_YXDOMAIN;
} else if (W_ERROR_EQUAL(DNS_ERR(YXRRSET), werr)) {
return DNS_RCODE_YXRRSET;
} else if (W_ERROR_EQUAL(DNS_ERR(NXRRSET), werr)) {
return DNS_RCODE_NXRRSET;
} else if (W_ERROR_EQUAL(DNS_ERR(NOTAUTH), werr)) {
return DNS_RCODE_NOTAUTH;
} else if (W_ERROR_EQUAL(DNS_ERR(NOTZONE), werr)) {
return DNS_RCODE_NOTZONE;
} else if (W_ERROR_EQUAL(DNS_ERR(BADKEY), werr)) {
return DNS_RCODE_BADKEY;
}
DEBUG(5, ("No mapping exists for %s\n", win_errstr(werr)));
return DNS_RCODE_SERVFAIL;
}
WERROR dns_common_extract(struct ldb_context *samdb,
const struct ldb_message_element *el,
TALLOC_CTX *mem_ctx,
struct dnsp_DnssrvRpcRecord **records,
uint16_t *num_records)
{
uint16_t ri;
struct dnsp_DnssrvRpcRecord *recs;
*records = NULL;
*num_records = 0;
recs = talloc_zero_array(mem_ctx, struct dnsp_DnssrvRpcRecord,
el->num_values);
if (recs == NULL) {
return WERR_NOT_ENOUGH_MEMORY;
}
for (ri = 0; ri < el->num_values; ri++) {
bool am_rodc;
int ret;
const char *dnsHostName = NULL;
struct ldb_val *v = &el->values[ri];
enum ndr_err_code ndr_err;
ndr_err = ndr_pull_struct_blob(v, recs, &recs[ri],
(ndr_pull_flags_fn_t)ndr_pull_dnsp_DnssrvRpcRecord);
if (!NDR_ERR_CODE_IS_SUCCESS(ndr_err)) {
TALLOC_FREE(recs);
DEBUG(0, ("Failed to grab dnsp_DnssrvRpcRecord\n"));
return DNS_ERR(SERVER_FAILURE);
}
/*
* In AD, except on an RODC (where we should list a random RWDC,
* we should over-stamp the MNAME with our own hostname
*/
if (recs[ri].wType != DNS_TYPE_SOA) {
continue;
}
ret = samdb_rodc(samdb, &am_rodc);
if (ret != LDB_SUCCESS) {
DEBUG(0, ("Failed to confirm we are not an RODC: %s\n",
ldb_errstring(samdb)));
return DNS_ERR(SERVER_FAILURE);
}
if (am_rodc) {
continue;
}
ret = samdb_dns_host_name(samdb, &dnsHostName);
if (ret != LDB_SUCCESS || dnsHostName == NULL) {
DEBUG(0, ("Failed to get dnsHostName from rootDSE"));
return DNS_ERR(SERVER_FAILURE);
}
recs[ri].data.soa.mname = talloc_strdup(recs, dnsHostName);
}
*records = recs;
*num_records = el->num_values;
return WERR_OK;
}
/*
* Lookup a DNS record, performing an exact match.
* i.e. DNS wild card records are not considered.
*/
WERROR dns_common_lookup(struct ldb_context *samdb,
TALLOC_CTX *mem_ctx,
struct ldb_dn *dn,
struct dnsp_DnssrvRpcRecord **records,
uint16_t *num_records,
bool *tombstoned)
{
const struct timeval start = timeval_current();
static const char * const attrs[] = {
"dnsRecord",
"dNSTombstoned",
NULL
};
int ret;
WERROR werr = WERR_OK;
struct ldb_message *msg = NULL;
struct ldb_message_element *el;
*records = NULL;
*num_records = 0;
if (tombstoned != NULL) {
*tombstoned = false;
ret = dsdb_search_one(samdb, mem_ctx, &msg, dn,
LDB_SCOPE_BASE, attrs, 0,
"(objectClass=dnsNode)");
} else {
ret = dsdb_search_one(samdb, mem_ctx, &msg, dn,
LDB_SCOPE_BASE, attrs, 0,
"(&(objectClass=dnsNode)(!(dNSTombstoned=TRUE)))");
}
if (ret == LDB_ERR_NO_SUCH_OBJECT) {
werr = WERR_DNS_ERROR_NAME_DOES_NOT_EXIST;
goto exit;
}
if (ret != LDB_SUCCESS) {
/* TODO: we need to check if there's a glue record we need to
* create a referral to */
werr = DNS_ERR(NAME_ERROR);
goto exit;
}
if (tombstoned != NULL) {
*tombstoned = ldb_msg_find_attr_as_bool(msg,
"dNSTombstoned", false);
}
el = ldb_msg_find_element(msg, "dnsRecord");
if (el == NULL) {
TALLOC_FREE(msg);
/*
* records produced by older Samba releases
* keep dnsNode objects without dnsRecord and
* without setting dNSTombstoned=TRUE.
*
* We just pretend they're tombstones.
*/
if (tombstoned != NULL) {
struct dnsp_DnssrvRpcRecord *recs;
recs = talloc_array(mem_ctx,
struct dnsp_DnssrvRpcRecord,
1);
if (recs == NULL) {
werr = WERR_NOT_ENOUGH_MEMORY;
goto exit;
}
recs[0] = (struct dnsp_DnssrvRpcRecord) {
.wType = DNS_TYPE_TOMBSTONE,
/*
* A value of timestamp != 0
* indicated that the object was already
* a tombstone, this will be used
* in dns_common_replace()
*/
.data.EntombedTime = 1,
};
*tombstoned = true;
*records = recs;
*num_records = 1;
werr = WERR_OK;
goto exit;
} else {
/*
* Because we are not looking for a tombstone
* in this codepath, we just pretend it does
* not exist at all.
*/
werr = WERR_DNS_ERROR_NAME_DOES_NOT_EXIST;
goto exit;
}
}
werr = dns_common_extract(samdb, el, mem_ctx, records, num_records);
TALLOC_FREE(msg);
if (!W_ERROR_IS_OK(werr)) {
goto exit;
}
werr = WERR_OK;
exit:
DNS_COMMON_LOG_OPERATION(
win_errstr(werr),
&start,
NULL,
dn == NULL ? NULL : ldb_dn_get_linearized(dn),
NULL);
return werr;
}
/*
* Build an ldb_parse_tree node for an equality check
*
* Note: name is assumed to have been validated by dns_name_check
* so will be zero terminated and of a reasonable size.
*/
static struct ldb_parse_tree *build_equality_operation(
TALLOC_CTX *mem_ctx,
bool add_asterix, /* prepend an '*' to the name */
const uint8_t *name, /* the value being matched */
const char *attr, /* the attribute to check name against */
size_t size) /* length of name */
{
struct ldb_parse_tree *el = NULL; /* Equality node being built */
struct ldb_val *value = NULL; /* Value the attr will be compared
with */
size_t length = 0; /* calculated length of the value
including option '*' prefix and
'\0' string terminator */
el = talloc(mem_ctx, struct ldb_parse_tree);
if (el == NULL) {
DBG_ERR("Unable to allocate ldb_parse_tree\n");
return NULL;
}
el->operation = LDB_OP_EQUALITY;
el->u.equality.attr = talloc_strdup(mem_ctx, attr);
value = &el->u.equality.value;
length = (add_asterix) ? size + 2 : size + 1;
value->data = talloc_zero_array(el, uint8_t, length);
if (el == NULL) {
DBG_ERR("Unable to allocate value->data\n");
TALLOC_FREE(el);
return NULL;
}
value->length = length;
if (add_asterix) {
value->data[0] = '*';
memcpy(&value->data[1], name, size);
} else {
memcpy(value->data, name, size);
}
return el;
}
/*
* Determine the number of levels in name
* essentially the number of '.'s in the name + 1
*
* name is assumed to have been validated by dns_name_check
*/
static unsigned int number_of_labels(const struct ldb_val *name) {
int x = 0;
unsigned int labels = 1;
for (x = 0; x < name->length; x++) {
if (name->data[x] == '.') {
labels++;
}
}
return labels;
}
/*
* Build a query that matches the target name, and any possible
* DNS wild card entries
*
* Builds a parse tree equivalent to the example query.
*
* x.y.z -> (|(name=x.y.z)(name=\2a.y.z)(name=\2a.z)(name=\2a))
*
* The attribute 'name' is used as this is what the LDB index is on
* (the RDN, being 'dc' in this use case, does not have an index in
* the AD schema).
*
* Returns NULL if unable to build the query.
*
* The first component of the DN is assumed to be the name being looked up
* and also that it has been validated by dns_name_check
*
*/
#define BASE "(&(objectClass=dnsNode)(!(dNSTombstoned=TRUE))(|(a=b)(c=d)))"
static struct ldb_parse_tree *build_wildcard_query(
TALLOC_CTX *mem_ctx,
struct ldb_dn *dn)
{
const struct ldb_val *name = NULL; /* The DNS name being
queried */
const char *attr = "name"; /* The attribute name */
struct ldb_parse_tree *query = NULL; /* The constructed query
parse tree*/
struct ldb_parse_tree *wildcard_query = NULL; /* The parse tree for the
name and wild card
entries */
int labels = 0; /* The number of labels in the name */
name = ldb_dn_get_rdn_val(dn);
if (name == NULL) {
DBG_ERR("Unable to get domain name value\n");
return NULL;
}
labels = number_of_labels(name);
query = ldb_parse_tree(mem_ctx, BASE);
if (query == NULL) {
DBG_ERR("Unable to parse query %s\n", BASE);
return NULL;
}
/*
* The 3rd element of BASE is a place holder which is replaced with
* the actual wild card query
*/
wildcard_query = query->u.list.elements[2];
TALLOC_FREE(wildcard_query->u.list.elements);
wildcard_query->u.list.num_elements = labels + 1;
wildcard_query->u.list.elements = talloc_array(
wildcard_query,
struct ldb_parse_tree *,
labels + 1);
/*
* Build the wild card query
*/
{
int x = 0; /* current character in the name */
int l = 0; /* current equality operator index in elements */
struct ldb_parse_tree *el = NULL; /* Equality operator being
built */
bool add_asterix = true; /* prepend an '*' to the value */
for (l = 0, x = 0; l < labels && x < name->length; l++) {
unsigned int size = name->length - x;
add_asterix = (name->data[x] == '.');
el = build_equality_operation(
mem_ctx,
add_asterix,
&name->data[x],
attr,
size);
if (el == NULL) {
return NULL; /* Reason will have been logged */
}
wildcard_query->u.list.elements[l] = el;
/* skip to the start of the next label */
x++;
for (;x < name->length && name->data[x] != '.'; x++);
}
/* Add the base level "*" only query */
el = build_equality_operation(mem_ctx, true, NULL, attr, 0);
if (el == NULL) {
TALLOC_FREE(query);
return NULL; /* Reason will have been logged */
}
wildcard_query->u.list.elements[l] = el;
}
return query;
}
/*
* Scan the list of records matching a dns wildcard query and return the
* best match.
*
* The best match is either an exact name match, or the longest wild card
* entry returned
*
* i.e. name = a.b.c candidates *.b.c, *.c, - *.b.c would be selected
* name = a.b.c candidates a.b.c, *.b.c, *.c - a.b.c would be selected
*/
static struct ldb_message *get_best_match(struct ldb_dn *dn,
struct ldb_result *result)
{
int matched = 0; /* Index of the current best match in result */
size_t length = 0; /* The length of the current candidate */
const struct ldb_val *target = NULL; /* value we're looking for */
const struct ldb_val *candidate = NULL; /* current candidate value */
int x = 0;
target = ldb_dn_get_rdn_val(dn);
for(x = 0; x < result->count; x++) {
candidate = ldb_dn_get_rdn_val(result->msgs[x]->dn);
if (strncasecmp((char *) target->data,
(char *) candidate->data,
target->length) == 0) {
/* Exact match stop searching and return */
return result->msgs[x];
}
if (candidate->length > length) {
matched = x;
length = candidate->length;
}
}
return result->msgs[matched];
}
/*
* Look up a DNS entry, if an exact match does not exist, return the
* closest matching DNS wildcard entry if available
*
* Returns: LDB_ERR_NO_SUCH_OBJECT If no matching record exists
* LDB_ERR_OPERATIONS_ERROR If the query fails
* LDB_SUCCESS If a matching record was retrieved
*
*/
static int dns_wildcard_lookup(struct ldb_context *samdb,
TALLOC_CTX *mem_ctx,
struct ldb_dn *dn,
struct ldb_message **msg)
{
static const char * const attrs[] = {
"dnsRecord",
"dNSTombstoned",
NULL
};
struct ldb_dn *parent = NULL; /* The parent dn */
struct ldb_result *result = NULL; /* Results of the search */
int ret; /* Return code */
struct ldb_parse_tree *query = NULL; /* The query to run */
struct ldb_request *request = NULL; /* LDB request for the query op */
struct ldb_message *match = NULL; /* the best matching DNS record */
TALLOC_CTX *frame = talloc_stackframe();
parent = ldb_dn_get_parent(frame, dn);
if (parent == NULL) {
DBG_ERR("Unable to extract parent from dn\n");
TALLOC_FREE(frame);
return LDB_ERR_OPERATIONS_ERROR;
}
query = build_wildcard_query(frame, dn);
if (query == NULL) {
TALLOC_FREE(frame);
return LDB_ERR_OPERATIONS_ERROR;
}
result = talloc_zero(mem_ctx, struct ldb_result);
if (result == NULL) {
TALLOC_FREE(frame);
DBG_ERR("Unable to allocate ldb_result\n");
return LDB_ERR_OPERATIONS_ERROR;
}
ret = ldb_build_search_req_ex(&request,
samdb,
frame,
parent,
LDB_SCOPE_SUBTREE,
query,
attrs,
NULL,
result,
ldb_search_default_callback,
NULL);
if (ret != LDB_SUCCESS) {
TALLOC_FREE(frame);
DBG_ERR("ldb_build_search_req_ex returned %d\n", ret);
return ret;
}
ret = ldb_request(samdb, request);
if (ret != LDB_SUCCESS) {
TALLOC_FREE(frame);
return ret;
}
ret = ldb_wait(request->handle, LDB_WAIT_ALL);
if (ret != LDB_SUCCESS) {
TALLOC_FREE(frame);
return ret;
}
if (result->count == 0) {
TALLOC_FREE(frame);
return LDB_ERR_NO_SUCH_OBJECT;
}
match = get_best_match(dn, result);
if (match == NULL) {
TALLOC_FREE(frame);
return LDB_ERR_OPERATIONS_ERROR;
}
*msg = talloc_move(mem_ctx, &match);
TALLOC_FREE(frame);
return LDB_SUCCESS;
}
/*
* Lookup a DNS record, will match DNS wild card records if an exact match
* is not found.
*/
WERROR dns_common_wildcard_lookup(struct ldb_context *samdb,
TALLOC_CTX *mem_ctx,
struct ldb_dn *dn,
struct dnsp_DnssrvRpcRecord **records,
uint16_t *num_records)
{
const struct timeval start = timeval_current();
int ret;
WERROR werr = WERR_OK;
struct ldb_message *msg = NULL;
struct ldb_message_element *el = NULL;
const struct ldb_val *name = NULL;
*records = NULL;
*num_records = 0;
name = ldb_dn_get_rdn_val(dn);
if (name == NULL) {
werr = DNS_ERR(NAME_ERROR);
goto exit;
}
/* Don't look for a wildcard for @ */
if (name->length == 1 && name->data[0] == '@') {
werr = dns_common_lookup(samdb,
mem_ctx,
dn,
records,
num_records,
NULL);
goto exit;
}
werr = dns_name_check(
mem_ctx,
strlen((const char*)name->data),
(const char*) name->data);
if (!W_ERROR_IS_OK(werr)) {
goto exit;
}
/*
* Do a point search first, then fall back to a wildcard
* lookup if it does not exist
*/
werr = dns_common_lookup(samdb,
mem_ctx,
dn,
records,
num_records,
NULL);
if (!W_ERROR_EQUAL(werr, WERR_DNS_ERROR_NAME_DOES_NOT_EXIST)) {
goto exit;
}
ret = dns_wildcard_lookup(samdb, mem_ctx, dn, &msg);
if (ret == LDB_ERR_OPERATIONS_ERROR) {
werr = DNS_ERR(SERVER_FAILURE);
goto exit;
}
if (ret != LDB_SUCCESS) {
werr = DNS_ERR(NAME_ERROR);
goto exit;
}
el = ldb_msg_find_element(msg, "dnsRecord");
if (el == NULL) {
werr = WERR_DNS_ERROR_NAME_DOES_NOT_EXIST;
goto exit;
}
werr = dns_common_extract(samdb, el, mem_ctx, records, num_records);
TALLOC_FREE(msg);
if (!W_ERROR_IS_OK(werr)) {
goto exit;
}
werr = WERR_OK;
exit:
DNS_COMMON_LOG_OPERATION(
win_errstr(werr),
&start,
NULL,
dn == NULL ? NULL : ldb_dn_get_linearized(dn),
NULL);
return werr;
}
static int rec_cmp(const struct dnsp_DnssrvRpcRecord *r1,
const struct dnsp_DnssrvRpcRecord *r2)
{
if (r1->wType != r2->wType) {
/*
* The records are sorted with higher types first
*/
return r2->wType - r1->wType;
}
/*
* Then we need to sort from the oldest to newest timestamp
*/
return r1->dwTimeStamp - r2->dwTimeStamp;
}
/*
* Check for valid DNS names. These are names which:
* - are non-empty
* - do not start with a dot
* - do not have any empty labels
* - have no more than 127 labels
* - are no longer than 253 characters
* - none of the labels exceed 63 characters
*/
WERROR dns_name_check(TALLOC_CTX *mem_ctx, size_t len, const char *name)
{
size_t i;
unsigned int labels = 0;
unsigned int label_len = 0;
if (len == 0) {
return WERR_DS_INVALID_DN_SYNTAX;
}
if (len > 1 && name[0] == '.') {
return WERR_DS_INVALID_DN_SYNTAX;
}
if ((len - 1) > DNS_MAX_DOMAIN_LENGTH) {
return WERR_DS_INVALID_DN_SYNTAX;
}
for (i = 0; i < len - 1; i++) {
if (name[i] == '.' && name[i+1] == '.') {
return WERR_DS_INVALID_DN_SYNTAX;
}
if (name[i] == '.') {
labels++;
if (labels > DNS_MAX_LABELS) {
return WERR_DS_INVALID_DN_SYNTAX;
}
label_len = 0;
} else {
label_len++;
if (label_len > DNS_MAX_LABEL_LENGTH) {
return WERR_DS_INVALID_DN_SYNTAX;
}
}
}
return WERR_OK;
}
static WERROR check_name_list(TALLOC_CTX *mem_ctx, uint16_t rec_count,
struct dnsp_DnssrvRpcRecord *records)
{
WERROR werr;
uint16_t i;
size_t len;
struct dnsp_DnssrvRpcRecord record;
werr = WERR_OK;
for (i = 0; i < rec_count; i++) {
record = records[i];
switch (record.wType) {
case DNS_TYPE_NS:
len = strlen(record.data.ns);
werr = dns_name_check(mem_ctx, len, record.data.ns);
break;
case DNS_TYPE_CNAME:
len = strlen(record.data.cname);
werr = dns_name_check(mem_ctx, len, record.data.cname);
break;
case DNS_TYPE_SOA:
len = strlen(record.data.soa.mname);
werr = dns_name_check(mem_ctx, len, record.data.soa.mname);
if (!W_ERROR_IS_OK(werr)) {
break;
}
len = strlen(record.data.soa.rname);
werr = dns_name_check(mem_ctx, len, record.data.soa.rname);
break;
case DNS_TYPE_PTR:
len = strlen(record.data.ptr);
werr = dns_name_check(mem_ctx, len, record.data.ptr);
break;
case DNS_TYPE_MX:
len = strlen(record.data.mx.nameTarget);
werr = dns_name_check(mem_ctx, len, record.data.mx.nameTarget);
break;
case DNS_TYPE_SRV:
len = strlen(record.data.srv.nameTarget);
werr = dns_name_check(mem_ctx, len,
record.data.srv.nameTarget);
break;
/*
* In the default case, the record doesn't have a DN, so it
* must be ok.
*/
default:
break;
}
if (!W_ERROR_IS_OK(werr)) {
return werr;
}
}
return WERR_OK;
}
bool dns_name_is_static(struct dnsp_DnssrvRpcRecord *records,
uint16_t rec_count)
{
int i = 0;
for (i = 0; i < rec_count; i++) {
if (records[i].wType == DNS_TYPE_TOMBSTONE) {
continue;
}
if (records[i].wType == DNS_TYPE_SOA ||
records[i].dwTimeStamp == 0) {
return true;
}
}
return false;
}
/*
* Helper function to copy a dnsp_ip4_array struct to an IP4_ARRAY struct.
* The new structure and it's data are allocated on the supplied talloc context
*/
static struct IP4_ARRAY *copy_ip4_array(TALLOC_CTX *ctx,
const char *name,
struct dnsp_ip4_array array)
{
struct IP4_ARRAY *ip4_array = NULL;
unsigned int i;
ip4_array = talloc_zero(ctx, struct IP4_ARRAY);
if (ip4_array == NULL) {
DBG_ERR("Out of memory copying property [%s]\n", name);
return NULL;
}
ip4_array->AddrCount = array.addrCount;
if (ip4_array->AddrCount == 0) {
return ip4_array;
}
ip4_array->AddrArray =
talloc_array(ip4_array, uint32_t, ip4_array->AddrCount);
if (ip4_array->AddrArray == NULL) {
TALLOC_FREE(ip4_array);
DBG_ERR("Out of memory copying property [%s] values\n", name);
return NULL;
}
for (i = 0; i < ip4_array->AddrCount; i++) {
ip4_array->AddrArray[i] = array.addrArray[i];
}
return ip4_array;
}
bool dns_zoneinfo_load_zone_property(struct dnsserver_zoneinfo *zoneinfo,
struct dnsp_DnsProperty *prop)
{
switch (prop->id) {
case DSPROPERTY_ZONE_TYPE:
zoneinfo->dwZoneType = prop->data.zone_type;
break;
case DSPROPERTY_ZONE_ALLOW_UPDATE:
zoneinfo->fAllowUpdate = prop->data.allow_update_flag;
break;
case DSPROPERTY_ZONE_NOREFRESH_INTERVAL:
zoneinfo->dwNoRefreshInterval = prop->data.norefresh_hours;
break;
case DSPROPERTY_ZONE_REFRESH_INTERVAL:
zoneinfo->dwRefreshInterval = prop->data.refresh_hours;
break;
case DSPROPERTY_ZONE_AGING_STATE:
zoneinfo->fAging = prop->data.aging_enabled;
break;
case DSPROPERTY_ZONE_SCAVENGING_SERVERS:
zoneinfo->aipScavengeServers = copy_ip4_array(
zoneinfo, "ZONE_SCAVENGING_SERVERS", prop->data.servers);
if (zoneinfo->aipScavengeServers == NULL) {
return false;
}
break;
case DSPROPERTY_ZONE_AGING_ENABLED_TIME:
zoneinfo->dwAvailForScavengeTime =
prop->data.next_scavenging_cycle_hours;
break;
case DSPROPERTY_ZONE_MASTER_SERVERS:
zoneinfo->aipLocalMasters = copy_ip4_array(
zoneinfo, "ZONE_MASTER_SERVERS", prop->data.master_servers);
if (zoneinfo->aipLocalMasters == NULL) {
return false;
}
break;
case DSPROPERTY_ZONE_EMPTY:
case DSPROPERTY_ZONE_SECURE_TIME:
case DSPROPERTY_ZONE_DELETED_FROM_HOSTNAME:
case DSPROPERTY_ZONE_AUTO_NS_SERVERS:
case DSPROPERTY_ZONE_DCPROMO_CONVERT:
case DSPROPERTY_ZONE_SCAVENGING_SERVERS_DA:
case DSPROPERTY_ZONE_MASTER_SERVERS_DA:
case DSPROPERTY_ZONE_NS_SERVERS_DA:
case DSPROPERTY_ZONE_NODE_DBFLAGS:
break;
}
return true;
}
WERROR dns_get_zone_properties(struct ldb_context *samdb,
TALLOC_CTX *mem_ctx,
struct ldb_dn *zone_dn,
struct dnsserver_zoneinfo *zoneinfo)
{
int ret, i;
struct dnsp_DnsProperty *prop = NULL;
struct ldb_message_element *element = NULL;
const char *const attrs[] = {"dNSProperty", NULL};
struct ldb_result *res = NULL;
enum ndr_err_code err;
ret = ldb_search(samdb,
mem_ctx,
&res,
zone_dn,
LDB_SCOPE_BASE,
attrs,
"(objectClass=dnsZone)");
if (ret != LDB_SUCCESS) {
DBG_ERR("dnsserver: Failed to find DNS zone: %s\n",
ldb_dn_get_linearized(zone_dn));
return DNS_ERR(SERVER_FAILURE);
}
element = ldb_msg_find_element(res->msgs[0], "dNSProperty");
if (element == NULL) {
return DNS_ERR(NOTZONE);
}
for (i = 0; i < element->num_values; i++) {
bool valid_property;
prop = talloc_zero(mem_ctx, struct dnsp_DnsProperty);
if (prop == NULL) {
return WERR_NOT_ENOUGH_MEMORY;
}
err = ndr_pull_struct_blob(
&(element->values[i]),
mem_ctx,
prop,
(ndr_pull_flags_fn_t)ndr_pull_dnsp_DnsProperty);
if (!NDR_ERR_CODE_IS_SUCCESS(err)) {
/*
* If we can't pull it, then there is no valid
* data to load into the zone, so ignore this
* as Micosoft does. Windows can load an
* invalid property with a zero length into
* the dnsProperty attribute.
*/
continue;
}
valid_property =
dns_zoneinfo_load_zone_property(zoneinfo, prop);
if (!valid_property) {
return DNS_ERR(SERVER_FAILURE);
}
}
return WERR_OK;
}
WERROR dns_common_replace(struct ldb_context *samdb,
TALLOC_CTX *mem_ctx,
struct ldb_dn *dn,
bool needs_add,
uint32_t serial,
struct dnsp_DnssrvRpcRecord *records,
uint16_t rec_count)
{
const struct timeval start = timeval_current();
struct ldb_message_element *el;
uint16_t i;
int ret;
WERROR werr;
struct ldb_message *msg = NULL;
bool was_tombstoned = false;
bool become_tombstoned = false;
struct ldb_dn *zone_dn = NULL;
struct dnsserver_zoneinfo *zoneinfo = NULL;
uint32_t t;
msg = ldb_msg_new(mem_ctx);
W_ERROR_HAVE_NO_MEMORY(msg);
msg->dn = dn;
zone_dn = ldb_dn_copy(mem_ctx, dn);
if (zone_dn == NULL) {
werr = WERR_NOT_ENOUGH_MEMORY;
goto exit;
}
if (!ldb_dn_remove_child_components(zone_dn, 1)) {
werr = DNS_ERR(SERVER_FAILURE);
goto exit;
}
zoneinfo = talloc(mem_ctx, struct dnsserver_zoneinfo);
if (zoneinfo == NULL) {
werr = WERR_NOT_ENOUGH_MEMORY;
goto exit;
}
werr = dns_get_zone_properties(samdb, mem_ctx, zone_dn, zoneinfo);
if (W_ERROR_EQUAL(DNS_ERR(NOTZONE), werr)) {
/*
* We only got zoneinfo for aging so if we didn't find any
* properties then just disable aging and keep going.
*/
zoneinfo->fAging = 0;
} else if (!W_ERROR_IS_OK(werr)) {
goto exit;
}
werr = check_name_list(mem_ctx, rec_count, records);
if (!W_ERROR_IS_OK(werr)) {
goto exit;
}
ret = ldb_msg_add_empty(msg, "dnsRecord", LDB_FLAG_MOD_REPLACE, &el);
if (ret != LDB_SUCCESS) {
werr = DNS_ERR(SERVER_FAILURE);
goto exit;
}
/*
* we have at least one value,
* which might be used for the tombstone marker
*/
el->values = talloc_zero_array(el, struct ldb_val, MAX(1, rec_count));
if (el->values == NULL) {
werr = WERR_NOT_ENOUGH_MEMORY;
goto exit;
}
if (rec_count > 1) {
/*
* We store a sorted list with the high wType values first
* that's what windows does. It also simplifies the
* filtering of DNS_TYPE_TOMBSTONE records
*/
TYPESAFE_QSORT(records, rec_count, rec_cmp);
}
for (i = 0; i < rec_count; i++) {
struct ldb_val *v = &el->values[el->num_values];
enum ndr_err_code ndr_err;
if (records[i].wType == DNS_TYPE_TOMBSTONE) {
if (records[i].data.EntombedTime != 0) {
was_tombstoned = true;
}
continue;
}
if (zoneinfo->fAging == 1 && records[i].dwTimeStamp != 0) {
t = unix_to_dns_timestamp(time(NULL));
if (t - records[i].dwTimeStamp >
zoneinfo->dwNoRefreshInterval) {
records[i].dwTimeStamp = t;
}
}
records[i].dwSerial = serial;
ndr_err = ndr_push_struct_blob(v, el->values, &records[i],
(ndr_push_flags_fn_t)ndr_push_dnsp_DnssrvRpcRecord);
if (!NDR_ERR_CODE_IS_SUCCESS(ndr_err)) {
DEBUG(0, ("Failed to push dnsp_DnssrvRpcRecord\n"));
werr = DNS_ERR(SERVER_FAILURE);
goto exit;
}
el->num_values++;
}
if (needs_add) {
if (el->num_values == 0) {
werr = WERR_OK;
goto exit;
}
ret = ldb_msg_add_string(msg, "objectClass", "dnsNode");
if (ret != LDB_SUCCESS) {
werr = DNS_ERR(SERVER_FAILURE);
goto exit;
}
ret = ldb_add(samdb, msg);
if (ret != LDB_SUCCESS) {
werr = DNS_ERR(SERVER_FAILURE);
goto exit;
}
return WERR_OK;
goto exit;
}
if (el->num_values == 0) {
struct dnsp_DnssrvRpcRecord tbs;
struct ldb_val *v = &el->values[el->num_values];
enum ndr_err_code ndr_err;
struct timeval tv;
if (was_tombstoned) {
/*
* This is already a tombstoned object.
* Just leave it instead of updating the time stamp.
*/
werr = WERR_OK;
goto exit;
}
tv = timeval_current();
tbs = (struct dnsp_DnssrvRpcRecord) {
.wType = DNS_TYPE_TOMBSTONE,
.dwSerial = serial,
.data.EntombedTime = timeval_to_nttime(&tv),
};
ndr_err = ndr_push_struct_blob(v, el->values, &tbs,
(ndr_push_flags_fn_t)ndr_push_dnsp_DnssrvRpcRecord);
if (!NDR_ERR_CODE_IS_SUCCESS(ndr_err)) {
DEBUG(0, ("Failed to push dnsp_DnssrvRpcRecord\n"));
werr = DNS_ERR(SERVER_FAILURE);
goto exit;
}
el->num_values++;
become_tombstoned = true;
}
if (was_tombstoned || become_tombstoned) {
ret = ldb_msg_add_empty(msg, "dNSTombstoned",
LDB_FLAG_MOD_REPLACE, NULL);
if (ret != LDB_SUCCESS) {
werr = DNS_ERR(SERVER_FAILURE);
goto exit;
}
ret = ldb_msg_add_fmt(msg, "dNSTombstoned", "%s",
become_tombstoned ? "TRUE" : "FALSE");
if (ret != LDB_SUCCESS) {
werr = DNS_ERR(SERVER_FAILURE);
goto exit;
}
}
ret = ldb_modify(samdb, msg);
if (ret != LDB_SUCCESS) {
NTSTATUS nt = dsdb_ldb_err_to_ntstatus(ret);
werr = ntstatus_to_werror(nt);
goto exit;
}
werr = WERR_OK;
exit:
DNS_COMMON_LOG_OPERATION(
win_errstr(werr),
&start,
NULL,
dn == NULL ? NULL : ldb_dn_get_linearized(dn),
NULL);
return werr;
}
bool dns_name_match(const char *zone, const char *name, size_t *host_part_len)
{
size_t zl = strlen(zone);
size_t nl = strlen(name);
ssize_t zi, ni;
static const size_t fixup = 'a' - 'A';
if (zl > nl) {
return false;
}
for (zi = zl, ni = nl; zi >= 0; zi--, ni--) {
char zc = zone[zi];
char nc = name[ni];
/* convert to lower case */
if (zc >= 'A' && zc <= 'Z') {
zc += fixup;
}
if (nc >= 'A' && nc <= 'Z') {
nc += fixup;
}
if (zc != nc) {
return false;
}
}
if (ni >= 0) {
if (name[ni] != '.') {
return false;
}
ni--;
}
*host_part_len = ni+1;
return true;
}
WERROR dns_common_name2dn(struct ldb_context *samdb,
struct dns_server_zone *zones,
TALLOC_CTX *mem_ctx,
const char *name,
struct ldb_dn **_dn)
{
struct ldb_dn *base;
struct ldb_dn *dn;
const struct dns_server_zone *z;
size_t host_part_len = 0;
struct ldb_val host_part;
WERROR werr;
bool ok;
const char *casefold = NULL;
if (name == NULL) {
return DNS_ERR(FORMAT_ERROR);
}
if (strcmp(name, "") == 0) {
base = ldb_get_default_basedn(samdb);
dn = ldb_dn_copy(mem_ctx, base);
ok = ldb_dn_add_child_fmt(dn,
"DC=@,DC=RootDNSServers,CN=MicrosoftDNS,CN=System");
if (ok == false) {
TALLOC_FREE(dn);
return WERR_NOT_ENOUGH_MEMORY;
}
*_dn = dn;
return WERR_OK;
}
/* Check non-empty names */
werr = dns_name_check(mem_ctx, strlen(name), name);
if (!W_ERROR_IS_OK(werr)) {
return werr;
}
for (z = zones; z != NULL; z = z->next) {
bool match;
match = dns_name_match(z->name, name, &host_part_len);
if (match) {
break;
}
}
if (z == NULL) {
return DNS_ERR(NAME_ERROR);
}
if (host_part_len == 0) {
dn = ldb_dn_copy(mem_ctx, z->dn);
ok = ldb_dn_add_child_fmt(dn, "DC=@");
if (! ok) {
TALLOC_FREE(dn);
return WERR_NOT_ENOUGH_MEMORY;
}
*_dn = dn;
return WERR_OK;
}
dn = ldb_dn_copy(mem_ctx, z->dn);
if (dn == NULL) {
TALLOC_FREE(dn);
return WERR_NOT_ENOUGH_MEMORY;
}
host_part = data_blob_const(name, host_part_len);
ok = ldb_dn_add_child_val(dn, "DC", host_part);
if (ok == false) {
TALLOC_FREE(dn);
return WERR_NOT_ENOUGH_MEMORY;
}
/*
* Check the new DN here for validity, so as to catch errors
* early
*/
ok = ldb_dn_validate(dn);
if (ok == false) {
TALLOC_FREE(dn);
return DNS_ERR(NAME_ERROR);
}
/*
* The value from this check is saved in the DN, and doing
* this here allows an easy return here.
*/
casefold = ldb_dn_get_casefold(dn);
if (casefold == NULL) {
TALLOC_FREE(dn);
return DNS_ERR(NAME_ERROR);
}
*_dn = dn;
return WERR_OK;
}
/*
see if two dns records match
*/
bool dns_record_match(struct dnsp_DnssrvRpcRecord *rec1,
struct dnsp_DnssrvRpcRecord *rec2)
{
int i;
struct in6_addr rec1_in_addr6;
struct in6_addr rec2_in_addr6;
if (rec1->wType != rec2->wType) {
return false;
}
/* see if the data matches */
switch (rec1->wType) {
case DNS_TYPE_A:
return strcmp(rec1->data.ipv4, rec2->data.ipv4) == 0;
case DNS_TYPE_AAAA: {
int ret;
ret = inet_pton(AF_INET6, rec1->data.ipv6, &rec1_in_addr6);
if (ret != 1) {
return false;
}
ret = inet_pton(AF_INET6, rec2->data.ipv6, &rec2_in_addr6);
if (ret != 1) {
return false;
}
return memcmp(&rec1_in_addr6, &rec2_in_addr6, sizeof(rec1_in_addr6)) == 0;
}
case DNS_TYPE_CNAME:
return dns_name_equal(rec1->data.cname, rec2->data.cname);
case DNS_TYPE_TXT:
if (rec1->data.txt.count != rec2->data.txt.count) {
return false;
}
for (i = 0; i < rec1->data.txt.count; i++) {
if (strcmp(rec1->data.txt.str[i], rec2->data.txt.str[i]) != 0) {
return false;
}
}
return true;
case DNS_TYPE_PTR:
return dns_name_equal(rec1->data.ptr, rec2->data.ptr);
case DNS_TYPE_NS:
return dns_name_equal(rec1->data.ns, rec2->data.ns);
case DNS_TYPE_SRV:
return rec1->data.srv.wPriority == rec2->data.srv.wPriority &&
rec1->data.srv.wWeight == rec2->data.srv.wWeight &&
rec1->data.srv.wPort == rec2->data.srv.wPort &&
dns_name_equal(rec1->data.srv.nameTarget, rec2->data.srv.nameTarget);
case DNS_TYPE_MX:
return rec1->data.mx.wPriority == rec2->data.mx.wPriority &&
dns_name_equal(rec1->data.mx.nameTarget, rec2->data.mx.nameTarget);
case DNS_TYPE_SOA:
return dns_name_equal(rec1->data.soa.mname, rec2->data.soa.mname) &&
dns_name_equal(rec1->data.soa.rname, rec2->data.soa.rname) &&
rec1->data.soa.serial == rec2->data.soa.serial &&
rec1->data.soa.refresh == rec2->data.soa.refresh &&
rec1->data.soa.retry == rec2->data.soa.retry &&
rec1->data.soa.expire == rec2->data.soa.expire &&
rec1->data.soa.minimum == rec2->data.soa.minimum;
case DNS_TYPE_TOMBSTONE:
return true;
default:
break;
}
return false;
}
static int dns_common_sort_zones(struct ldb_message **m1, struct ldb_message **m2)
{
const char *n1, *n2;
size_t l1, l2;
n1 = ldb_msg_find_attr_as_string(*m1, "name", NULL);
n2 = ldb_msg_find_attr_as_string(*m2, "name", NULL);
if (n1 == NULL || n2 == NULL) {
if (n1 != NULL) {
return -1;
} else if (n2 != NULL) {
return 1;
} else {
return 0;
}
}
l1 = strlen(n1);
l2 = strlen(n2);
/* If the string lengths are not equal just sort by length */
if (l1 != l2) {
/* If m1 is the larger zone name, return it first */
return l2 - l1;
}
/*TODO: We need to compare DNs here, we want the DomainDNSZones first */
return 0;
}
NTSTATUS dns_common_zones(struct ldb_context *samdb,
TALLOC_CTX *mem_ctx,
struct ldb_dn *base_dn,
struct dns_server_zone **zones_ret)
{
const struct timeval start = timeval_current();
int ret;
static const char * const attrs[] = { "name", NULL};
struct ldb_result *res;
int i;
struct dns_server_zone *new_list = NULL;
TALLOC_CTX *frame = talloc_stackframe();
NTSTATUS result = NT_STATUS_OK;
if (base_dn) {
/* This search will work against windows */
ret = dsdb_search(samdb, frame, &res,
base_dn, LDB_SCOPE_SUBTREE,
attrs, 0, "(objectClass=dnsZone)");
} else {
/* TODO: this search does not work against windows */
ret = dsdb_search(samdb, frame, &res, NULL,
LDB_SCOPE_SUBTREE,
attrs,
DSDB_SEARCH_SEARCH_ALL_PARTITIONS,
"(objectClass=dnsZone)");
}
if (ret != LDB_SUCCESS) {
TALLOC_FREE(frame);
result = NT_STATUS_INTERNAL_DB_CORRUPTION;
goto exit;
}
TYPESAFE_QSORT(res->msgs, res->count, dns_common_sort_zones);
for (i=0; i < res->count; i++) {
struct dns_server_zone *z;
z = talloc_zero(mem_ctx, struct dns_server_zone);
if (z == NULL) {
TALLOC_FREE(frame);
result = NT_STATUS_NO_MEMORY;
goto exit;
}
z->name = ldb_msg_find_attr_as_string(res->msgs[i], "name", NULL);
talloc_steal(z, z->name);
z->dn = talloc_move(z, &res->msgs[i]->dn);
/*
* Ignore the RootDNSServers zone and zones that we don't support yet
* RootDNSServers should never be returned (Windows DNS server don't)
* ..TrustAnchors should never be returned as is, (Windows returns
* TrustAnchors) and for the moment we don't support DNSSEC so we'd better
* not return this zone.
*/
if ((strcmp(z->name, "RootDNSServers") == 0) ||
(strcmp(z->name, "..TrustAnchors") == 0))
{
DEBUG(10, ("Ignoring zone %s\n", z->name));
talloc_free(z);
continue;
}
DLIST_ADD_END(new_list, z);
}
*zones_ret = new_list;
TALLOC_FREE(frame);
result = NT_STATUS_OK;
exit:
DNS_COMMON_LOG_OPERATION(
nt_errstr(result),
&start,
NULL,
base_dn == NULL ? NULL : ldb_dn_get_linearized(base_dn),
NULL);
return result;
}
/*
see if two DNS names are the same
*/
bool dns_name_equal(const char *name1, const char *name2)
{
size_t len1 = strlen(name1);
size_t len2 = strlen(name2);
if (len1 > 0 && name1[len1 - 1] == '.') {
len1--;
}
if (len2 > 0 && name2[len2 - 1] == '.') {
len2--;
}
if (len1 != len2) {
return false;
}
return strncasecmp(name1, name2, len1) == 0;
}
/*
* Convert unix time to a DNS timestamp
* uint32 hours in the NTTIME epoch
*
* This uses unix_to_nt_time() which can return special flag NTTIMEs like
* UINT64_MAX (0xFFF...) or NTTIME_MAX (0x7FF...), which will convert to
* distant future timestamps; or 0 as a flag value, meaning a 1601 timestamp,
* which is used to indicate a record does not expire.
*
* As we don't generally check for these special values in NTTIME conversions,
* we also don't check here, but for the benefit of people encountering these
* timestamps and searching for their origin, here is a list:
*
** TIME_T_MAX
*
* Even if time_t is 32 bit, this will become NTTIME_MAX (a.k.a INT64_MAX,
* 0x7fffffffffffffff) in 100ns units. That translates to 256204778 hours
* since 1601, which converts back to 9223372008000000000 or
* 0x7ffffff9481f1000. It will present as 30828-09-14 02:00:00, around 48
* minutes earlier than NTTIME_MAX.
*
** 0, the start of the unix epoch, 1970-01-01 00:00:00
*
* This is converted into 0 in the Windows epoch, 1601-01-01 00:00:00 which is
* clearly the same whether you count in 100ns units or hours. In DNS record
* timestamps this is a flag meaning the record will never expire.
*
** (time_t)-1, such as what *might* mean 1969-12-31 23:59:59
*
* This becomes (NTTIME)-1ULL a.k.a. UINT64_MAX, 0xffffffffffffffff thence
* 512409557 in hours since 1601. That in turn is 0xfffffffaf2028800 or
* 18446744052000000000 in NTTIME (rounded to the hour), which might be
* presented as -21709551616 or -0x50dfd7800, because NTITME is not completely
* dedicated to being unsigned. If it gets shown as a year, it will be around
* 60055.
*
** Other negative time_t values (e.g. 1969-05-29).
*
* The meaning of these is somewhat undefined, but in any case they will
* translate perfectly well into the same dates in NTTIME.
*
** Notes
*
* There are dns timestamps that exceed the range of NTTIME (up to 488356 AD),
* but it is not possible for this function to produce them.
*
* It is plausible that it was at midnight on 1601-01-01, in London, that
* Shakespeare wrote:
*
* The time is out of joint. O cursed spite
* That ever I was born to set it right!
*
* and this is why we have this epoch and time zone.
*/
uint32_t unix_to_dns_timestamp(time_t t)
{
NTTIME nt;
unix_to_nt_time(&nt, t);
nt /= NTTIME_TO_HOURS;
return (uint32_t) nt;
}
/*
* Convert a DNS timestamp into NTTIME.
*
* Because DNS timestamps cover a longer time period than NTTIME, and these
* would wrap to an arbitrary NTTIME, we saturate at NTTIME_MAX and return an
* error in this case.
*/
NTSTATUS dns_timestamp_to_nt_time(NTTIME *_nt, uint32_t t)
{
NTTIME nt = t;
if (nt > NTTIME_MAX / NTTIME_TO_HOURS) {
*_nt = NTTIME_MAX;
return NT_STATUS_INTEGER_OVERFLOW;
}
*_nt = nt * NTTIME_TO_HOURS;
return NT_STATUS_OK;
}