1
0
mirror of https://github.com/samba-team/samba.git synced 2025-01-10 01:18:15 +03:00
samba-mirror/ctdb/server/ctdb_call.c
Martin Schwenke 61dfc8bc06 ctdb-server: Avoid logging a count of 0 resent calls
This fixes a little thinko in commit
80de84d36e, where this was overlooked.

Signed-off-by: Martin Schwenke <mschwenke@ddn.com>
Reviewed-by: Amitay Isaacs <amitay@gmail.com>

Autobuild-User(master): Amitay Isaacs <amitay@samba.org>
Autobuild-Date(master): Mon Jul 10 15:15:06 UTC 2023 on atb-devel-224
2023-07-10 15:15:06 +00:00

2087 lines
56 KiB
C

/*
ctdb_call protocol code
Copyright (C) Andrew Tridgell 2006
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, see <http://www.gnu.org/licenses/>.
*/
/*
see http://wiki.samba.org/index.php/Samba_%26_Clustering for
protocol design and packet details
*/
#include "replace.h"
#include "system/network.h"
#include "system/filesys.h"
#include <talloc.h>
#include <tevent.h>
#include "lib/util/dlinklist.h"
#include "lib/util/debug.h"
#include "lib/util/samba_util.h"
#include "lib/util/sys_rw.h"
#include "lib/util/util_process.h"
#include "ctdb_private.h"
#include "ctdb_client.h"
#include "common/rb_tree.h"
#include "common/reqid.h"
#include "common/system.h"
#include "common/common.h"
#include "common/logging.h"
#include "common/hash_count.h"
struct ctdb_sticky_record {
struct ctdb_context *ctdb;
struct ctdb_db_context *ctdb_db;
TDB_CONTEXT *pindown;
};
/*
find the ctdb_db from a db index
*/
struct ctdb_db_context *find_ctdb_db(struct ctdb_context *ctdb, uint32_t id)
{
struct ctdb_db_context *ctdb_db;
for (ctdb_db=ctdb->db_list; ctdb_db; ctdb_db=ctdb_db->next) {
if (ctdb_db->db_id == id) {
break;
}
}
return ctdb_db;
}
/*
a variant of input packet that can be used in lock requeue
*/
static void ctdb_call_input_pkt(void *p, struct ctdb_req_header *hdr)
{
struct ctdb_context *ctdb = talloc_get_type(p, struct ctdb_context);
ctdb_input_pkt(ctdb, hdr);
}
/*
send an error reply
*/
static void ctdb_send_error(struct ctdb_context *ctdb,
struct ctdb_req_header *hdr, uint32_t status,
const char *fmt, ...) PRINTF_ATTRIBUTE(4,5);
static void ctdb_send_error(struct ctdb_context *ctdb,
struct ctdb_req_header *hdr, uint32_t status,
const char *fmt, ...)
{
va_list ap;
struct ctdb_reply_error_old *r;
char *msg;
int msglen, len;
if (ctdb->methods == NULL) {
DEBUG(DEBUG_INFO,(__location__ " Failed to send error. Transport is DOWN\n"));
return;
}
va_start(ap, fmt);
msg = talloc_vasprintf(ctdb, fmt, ap);
if (msg == NULL) {
ctdb_fatal(ctdb, "Unable to allocate error in ctdb_send_error\n");
}
va_end(ap);
msglen = strlen(msg)+1;
len = offsetof(struct ctdb_reply_error_old, msg);
r = ctdb_transport_allocate(ctdb, msg, CTDB_REPLY_ERROR, len + msglen,
struct ctdb_reply_error_old);
CTDB_NO_MEMORY_FATAL(ctdb, r);
r->hdr.destnode = hdr->srcnode;
r->hdr.reqid = hdr->reqid;
r->status = status;
r->msglen = msglen;
memcpy(&r->msg[0], msg, msglen);
ctdb_queue_packet(ctdb, &r->hdr);
talloc_free(msg);
}
/**
* send a redirect reply
*
* The logic behind this function is this:
*
* A client wants to grab a record and sends a CTDB_REQ_CALL packet
* to its local ctdb (ctdb_request_call). If the node is not itself
* the record's DMASTER, it first redirects the packet to the
* record's LMASTER. The LMASTER then redirects the call packet to
* the current DMASTER. Note that this works because of this: When
* a record is migrated off a node, then the new DMASTER is stored
* in the record's copy on the former DMASTER.
*/
static void ctdb_call_send_redirect(struct ctdb_context *ctdb,
struct ctdb_db_context *ctdb_db,
TDB_DATA key,
struct ctdb_req_call_old *c,
struct ctdb_ltdb_header *header)
{
uint32_t lmaster = ctdb_lmaster(ctdb, &key);
c->hdr.destnode = lmaster;
if (ctdb->pnn == lmaster) {
c->hdr.destnode = header->dmaster;
}
c->hopcount++;
if (c->hopcount%100 > 95) {
DEBUG(DEBUG_WARNING,("High hopcount %d dbid:%s "
"key:0x%08x reqid=%08x pnn:%d src:%d lmaster:%d "
"header->dmaster:%d dst:%d\n",
c->hopcount, ctdb_db->db_name, ctdb_hash(&key),
c->hdr.reqid, ctdb->pnn, c->hdr.srcnode, lmaster,
header->dmaster, c->hdr.destnode));
}
ctdb_queue_packet(ctdb, &c->hdr);
}
/*
send a dmaster reply
caller must have the chainlock before calling this routine. Caller must be
the lmaster
*/
static void ctdb_send_dmaster_reply(struct ctdb_db_context *ctdb_db,
struct ctdb_ltdb_header *header,
TDB_DATA key, TDB_DATA data,
uint32_t new_dmaster,
uint32_t reqid)
{
struct ctdb_context *ctdb = ctdb_db->ctdb;
struct ctdb_reply_dmaster_old *r;
int ret, len;
TALLOC_CTX *tmp_ctx;
if (ctdb->pnn != ctdb_lmaster(ctdb, &key)) {
DEBUG(DEBUG_ALERT,(__location__ " Caller is not lmaster!\n"));
return;
}
header->dmaster = new_dmaster;
ret = ctdb_ltdb_store(ctdb_db, key, header, data);
if (ret != 0) {
ctdb_fatal(ctdb, "ctdb_send_dmaster_reply unable to update dmaster");
return;
}
if (ctdb->methods == NULL) {
ctdb_fatal(ctdb, "ctdb_send_dmaster_reply can't update dmaster since transport is down");
return;
}
/* put the packet on a temporary context, allowing us to safely free
it below even if ctdb_reply_dmaster() has freed it already */
tmp_ctx = talloc_new(ctdb);
/* send the CTDB_REPLY_DMASTER */
len = offsetof(struct ctdb_reply_dmaster_old, data) + key.dsize + data.dsize + sizeof(uint32_t);
r = ctdb_transport_allocate(ctdb, tmp_ctx, CTDB_REPLY_DMASTER, len,
struct ctdb_reply_dmaster_old);
CTDB_NO_MEMORY_FATAL(ctdb, r);
r->hdr.destnode = new_dmaster;
r->hdr.reqid = reqid;
r->hdr.generation = ctdb_db->generation;
r->rsn = header->rsn;
r->keylen = key.dsize;
r->datalen = data.dsize;
r->db_id = ctdb_db->db_id;
memcpy(&r->data[0], key.dptr, key.dsize);
memcpy(&r->data[key.dsize], data.dptr, data.dsize);
memcpy(&r->data[key.dsize+data.dsize], &header->flags, sizeof(uint32_t));
ctdb_queue_packet(ctdb, &r->hdr);
talloc_free(tmp_ctx);
}
/*
send a dmaster request (give another node the dmaster for a record)
This is always sent to the lmaster, which ensures that the lmaster
always knows who the dmaster is. The lmaster will then send a
CTDB_REPLY_DMASTER to the new dmaster
*/
static void ctdb_call_send_dmaster(struct ctdb_db_context *ctdb_db,
struct ctdb_req_call_old *c,
struct ctdb_ltdb_header *header,
TDB_DATA *key, TDB_DATA *data)
{
struct ctdb_req_dmaster_old *r;
struct ctdb_context *ctdb = ctdb_db->ctdb;
int len;
uint32_t lmaster = ctdb_lmaster(ctdb, key);
if (ctdb->methods == NULL) {
ctdb_fatal(ctdb, "Failed ctdb_call_send_dmaster since transport is down");
return;
}
if (data->dsize != 0) {
header->flags |= CTDB_REC_FLAG_MIGRATED_WITH_DATA;
}
if (lmaster == ctdb->pnn) {
ctdb_send_dmaster_reply(ctdb_db, header, *key, *data,
c->hdr.srcnode, c->hdr.reqid);
return;
}
len = offsetof(struct ctdb_req_dmaster_old, data) + key->dsize + data->dsize
+ sizeof(uint32_t);
r = ctdb_transport_allocate(ctdb, ctdb, CTDB_REQ_DMASTER, len,
struct ctdb_req_dmaster_old);
CTDB_NO_MEMORY_FATAL(ctdb, r);
r->hdr.destnode = lmaster;
r->hdr.reqid = c->hdr.reqid;
r->hdr.generation = ctdb_db->generation;
r->db_id = c->db_id;
r->rsn = header->rsn;
r->dmaster = c->hdr.srcnode;
r->keylen = key->dsize;
r->datalen = data->dsize;
memcpy(&r->data[0], key->dptr, key->dsize);
memcpy(&r->data[key->dsize], data->dptr, data->dsize);
memcpy(&r->data[key->dsize + data->dsize], &header->flags, sizeof(uint32_t));
header->dmaster = c->hdr.srcnode;
if (ctdb_ltdb_store(ctdb_db, *key, header, *data) != 0) {
ctdb_fatal(ctdb, "Failed to store record in ctdb_call_send_dmaster");
}
ctdb_queue_packet(ctdb, &r->hdr);
talloc_free(r);
}
static void ctdb_sticky_pindown_timeout(struct tevent_context *ev,
struct tevent_timer *te,
struct timeval t, void *private_data)
{
struct ctdb_sticky_record *sr = talloc_get_type(private_data,
struct ctdb_sticky_record);
DEBUG(DEBUG_ERR,("Pindown timeout db:%s unstick record\n", sr->ctdb_db->db_name));
if (sr->pindown != NULL) {
talloc_free(sr->pindown);
sr->pindown = NULL;
}
}
static int
ctdb_set_sticky_pindown(struct ctdb_context *ctdb, struct ctdb_db_context *ctdb_db, TDB_DATA key)
{
TALLOC_CTX *tmp_ctx = talloc_new(NULL);
uint32_t *k;
struct ctdb_sticky_record *sr;
k = ctdb_key_to_idkey(tmp_ctx, key);
if (k == NULL) {
DEBUG(DEBUG_ERR,("Failed to allocate key for sticky record\n"));
talloc_free(tmp_ctx);
return -1;
}
sr = trbt_lookuparray32(ctdb_db->sticky_records, k[0], &k[0]);
if (sr == NULL) {
talloc_free(tmp_ctx);
return 0;
}
talloc_free(tmp_ctx);
if (sr->pindown == NULL) {
DEBUG(DEBUG_ERR,("Pinning down record in %s for %d ms\n", ctdb_db->db_name, ctdb->tunable.sticky_pindown));
sr->pindown = talloc_new(sr);
if (sr->pindown == NULL) {
DEBUG(DEBUG_ERR,("Failed to allocate pindown context for sticky record\n"));
return -1;
}
tevent_add_timer(ctdb->ev, sr->pindown,
timeval_current_ofs(ctdb->tunable.sticky_pindown / 1000,
(ctdb->tunable.sticky_pindown * 1000) % 1000000),
ctdb_sticky_pindown_timeout, sr);
}
return 0;
}
/*
called when a CTDB_REPLY_DMASTER packet comes in, or when the lmaster
gets a CTDB_REQUEST_DMASTER for itself. We become the dmaster.
must be called with the chainlock held. This function releases the chainlock
*/
static void ctdb_become_dmaster(struct ctdb_db_context *ctdb_db,
struct ctdb_req_header *hdr,
TDB_DATA key, TDB_DATA data,
uint64_t rsn, uint32_t record_flags)
{
struct ctdb_call_state *state;
struct ctdb_context *ctdb = ctdb_db->ctdb;
struct ctdb_ltdb_header header;
int ret;
DEBUG(DEBUG_DEBUG,("pnn %u dmaster response %08x\n", ctdb->pnn, ctdb_hash(&key)));
ZERO_STRUCT(header);
header.rsn = rsn;
header.dmaster = ctdb->pnn;
header.flags = record_flags;
state = reqid_find(ctdb->idr, hdr->reqid, struct ctdb_call_state);
if (state) {
if (state->call->flags & CTDB_CALL_FLAG_VACUUM_MIGRATION) {
/*
* We temporarily add the VACUUM_MIGRATED flag to
* the record flags, so that ctdb_ltdb_store can
* decide whether the record should be stored or
* deleted.
*/
header.flags |= CTDB_REC_FLAG_VACUUM_MIGRATED;
}
}
if (ctdb_ltdb_store(ctdb_db, key, &header, data) != 0) {
ctdb_fatal(ctdb, "ctdb_reply_dmaster store failed\n");
ret = ctdb_ltdb_unlock(ctdb_db, key);
if (ret != 0) {
DEBUG(DEBUG_ERR,(__location__ " ctdb_ltdb_unlock() failed with error %d\n", ret));
}
return;
}
/* we just became DMASTER and this database is "sticky",
see if the record is flagged as "hot" and set up a pin-down
context to stop migrations for a little while if so
*/
if (ctdb_db_sticky(ctdb_db)) {
ctdb_set_sticky_pindown(ctdb, ctdb_db, key);
}
if (state == NULL) {
DEBUG(DEBUG_ERR,("pnn %u Invalid reqid %u in ctdb_become_dmaster from node %u\n",
ctdb->pnn, hdr->reqid, hdr->srcnode));
ret = ctdb_ltdb_unlock(ctdb_db, key);
if (ret != 0) {
DEBUG(DEBUG_ERR,(__location__ " ctdb_ltdb_unlock() failed with error %d\n", ret));
}
return;
}
if (key.dsize != state->call->key.dsize || memcmp(key.dptr, state->call->key.dptr, key.dsize)) {
DEBUG(DEBUG_ERR, ("Got bogus DMASTER packet reqid:%u from node %u. Key does not match key held in matching idr.\n", hdr->reqid, hdr->srcnode));
ret = ctdb_ltdb_unlock(ctdb_db, key);
if (ret != 0) {
DEBUG(DEBUG_ERR,(__location__ " ctdb_ltdb_unlock() failed with error %d\n", ret));
}
return;
}
if (hdr->reqid != state->reqid) {
/* we found a record but it was the wrong one */
DEBUG(DEBUG_ERR, ("Dropped orphan in ctdb_become_dmaster with reqid:%u\n from node %u", hdr->reqid, hdr->srcnode));
ret = ctdb_ltdb_unlock(ctdb_db, key);
if (ret != 0) {
DEBUG(DEBUG_ERR,(__location__ " ctdb_ltdb_unlock() failed with error %d\n", ret));
}
return;
}
(void) hash_count_increment(ctdb_db->migratedb, key);
ctdb_call_local(ctdb_db, state->call, &header, state, &data, true);
ret = ctdb_ltdb_unlock(ctdb_db, state->call->key);
if (ret != 0) {
DEBUG(DEBUG_ERR,(__location__ " ctdb_ltdb_unlock() failed with error %d\n", ret));
}
state->state = CTDB_CALL_DONE;
if (state->async.fn) {
state->async.fn(state);
}
}
struct dmaster_defer_call {
struct dmaster_defer_call *next, *prev;
struct ctdb_context *ctdb;
struct ctdb_req_header *hdr;
};
struct dmaster_defer_queue {
struct ctdb_db_context *ctdb_db;
uint32_t generation;
struct dmaster_defer_call *deferred_calls;
};
static void dmaster_defer_reprocess(struct tevent_context *ev,
struct tevent_timer *te,
struct timeval t,
void *private_data)
{
struct dmaster_defer_call *call = talloc_get_type(
private_data, struct dmaster_defer_call);
ctdb_input_pkt(call->ctdb, call->hdr);
talloc_free(call);
}
static int dmaster_defer_queue_destructor(struct dmaster_defer_queue *ddq)
{
/* Ignore requests, if database recovery happens in-between. */
if (ddq->generation != ddq->ctdb_db->generation) {
return 0;
}
while (ddq->deferred_calls != NULL) {
struct dmaster_defer_call *call = ddq->deferred_calls;
DLIST_REMOVE(ddq->deferred_calls, call);
talloc_steal(call->ctdb, call);
tevent_add_timer(call->ctdb->ev, call, timeval_zero(),
dmaster_defer_reprocess, call);
}
return 0;
}
static void *insert_ddq_callback(void *parm, void *data)
{
if (data) {
talloc_free(data);
}
return parm;
}
/**
* This function is used to register a key in database that needs to be updated.
* Any requests for that key should get deferred till this is completed.
*/
static int dmaster_defer_setup(struct ctdb_db_context *ctdb_db,
struct ctdb_req_header *hdr,
TDB_DATA key)
{
uint32_t *k;
struct dmaster_defer_queue *ddq;
k = ctdb_key_to_idkey(hdr, key);
if (k == NULL) {
DEBUG(DEBUG_ERR, ("Failed to allocate key for dmaster defer setup\n"));
return -1;
}
/* Already exists */
ddq = trbt_lookuparray32(ctdb_db->defer_dmaster, k[0], k);
if (ddq != NULL) {
if (ddq->generation == ctdb_db->generation) {
talloc_free(k);
return 0;
}
/* Recovery occurred - get rid of old queue. All the deferred
* requests will be resent anyway from ctdb_call_resend_db.
*/
talloc_free(ddq);
}
ddq = talloc(hdr, struct dmaster_defer_queue);
if (ddq == NULL) {
DEBUG(DEBUG_ERR, ("Failed to allocate dmaster defer queue\n"));
talloc_free(k);
return -1;
}
ddq->ctdb_db = ctdb_db;
ddq->generation = hdr->generation;
ddq->deferred_calls = NULL;
trbt_insertarray32_callback(ctdb_db->defer_dmaster, k[0], k,
insert_ddq_callback, ddq);
talloc_set_destructor(ddq, dmaster_defer_queue_destructor);
talloc_free(k);
return 0;
}
static int dmaster_defer_add(struct ctdb_db_context *ctdb_db,
struct ctdb_req_header *hdr,
TDB_DATA key)
{
struct dmaster_defer_queue *ddq;
struct dmaster_defer_call *call;
uint32_t *k;
k = ctdb_key_to_idkey(hdr, key);
if (k == NULL) {
DEBUG(DEBUG_ERR, ("Failed to allocate key for dmaster defer add\n"));
return -1;
}
ddq = trbt_lookuparray32(ctdb_db->defer_dmaster, k[0], k);
if (ddq == NULL) {
talloc_free(k);
return -1;
}
talloc_free(k);
if (ddq->generation != hdr->generation) {
talloc_set_destructor(ddq, NULL);
talloc_free(ddq);
return -1;
}
call = talloc(ddq, struct dmaster_defer_call);
if (call == NULL) {
DEBUG(DEBUG_ERR, ("Failed to allocate dmaster defer call\n"));
return -1;
}
call->ctdb = ctdb_db->ctdb;
call->hdr = talloc_steal(call, hdr);
DLIST_ADD_END(ddq->deferred_calls, call);
return 0;
}
/*
called when a CTDB_REQ_DMASTER packet comes in
this comes into the lmaster for a record when the current dmaster
wants to give up the dmaster role and give it to someone else
*/
void ctdb_request_dmaster(struct ctdb_context *ctdb, struct ctdb_req_header *hdr)
{
struct ctdb_req_dmaster_old *c = (struct ctdb_req_dmaster_old *)hdr;
TDB_DATA key, data, data2;
struct ctdb_ltdb_header header;
struct ctdb_db_context *ctdb_db;
uint32_t record_flags = 0;
size_t len;
int ret;
key.dptr = c->data;
key.dsize = c->keylen;
data.dptr = c->data + c->keylen;
data.dsize = c->datalen;
len = offsetof(struct ctdb_req_dmaster_old, data) + key.dsize + data.dsize
+ sizeof(uint32_t);
if (len <= c->hdr.length) {
memcpy(&record_flags, &c->data[c->keylen + c->datalen],
sizeof(record_flags));
}
ctdb_db = find_ctdb_db(ctdb, c->db_id);
if (!ctdb_db) {
ctdb_send_error(ctdb, hdr, -1,
"Unknown database in request. db_id==0x%08x",
c->db_id);
return;
}
dmaster_defer_setup(ctdb_db, hdr, key);
/* fetch the current record */
ret = ctdb_ltdb_lock_fetch_requeue(ctdb_db, key, &header, hdr, &data2,
ctdb_call_input_pkt, ctdb, false);
if (ret == -1) {
ctdb_fatal(ctdb, "ctdb_req_dmaster failed to fetch record");
return;
}
if (ret == -2) {
DEBUG(DEBUG_INFO,(__location__ " deferring ctdb_request_dmaster\n"));
return;
}
if (ctdb_lmaster(ctdb, &key) != ctdb->pnn) {
DEBUG(DEBUG_ERR, ("dmaster request to non-lmaster "
"db=%s lmaster=%u gen=%u curgen=%u\n",
ctdb_db->db_name, ctdb_lmaster(ctdb, &key),
hdr->generation, ctdb_db->generation));
ctdb_fatal(ctdb, "ctdb_req_dmaster to non-lmaster");
}
DEBUG(DEBUG_DEBUG,("pnn %u dmaster request on %08x for %u from %u\n",
ctdb->pnn, ctdb_hash(&key), c->dmaster, c->hdr.srcnode));
/* its a protocol error if the sending node is not the current dmaster */
if (header.dmaster != hdr->srcnode) {
DEBUG(DEBUG_ALERT,("pnn %u dmaster request for new-dmaster %u from non-master %u real-dmaster=%u key %08x dbid 0x%08x gen=%u curgen=%u c->rsn=%llu header.rsn=%llu reqid=%u keyval=0x%08x\n",
ctdb->pnn, c->dmaster, hdr->srcnode, header.dmaster, ctdb_hash(&key),
ctdb_db->db_id, hdr->generation, ctdb->vnn_map->generation,
(unsigned long long)c->rsn, (unsigned long long)header.rsn, c->hdr.reqid,
(key.dsize >= 4)?(*(uint32_t *)key.dptr):0));
if (header.rsn != 0 || header.dmaster != ctdb->pnn) {
DEBUG(DEBUG_ERR,("ctdb_req_dmaster from non-master. Force a recovery.\n"));
ctdb->recovery_mode = CTDB_RECOVERY_ACTIVE;
ctdb_ltdb_unlock(ctdb_db, key);
return;
}
}
if (header.rsn > c->rsn) {
DEBUG(DEBUG_ALERT,("pnn %u dmaster request with older RSN new-dmaster %u from %u real-dmaster=%u key %08x dbid 0x%08x gen=%u curgen=%u c->rsn=%llu header.rsn=%llu reqid=%u\n",
ctdb->pnn, c->dmaster, hdr->srcnode, header.dmaster, ctdb_hash(&key),
ctdb_db->db_id, hdr->generation, ctdb->vnn_map->generation,
(unsigned long long)c->rsn, (unsigned long long)header.rsn, c->hdr.reqid));
}
/* use the rsn from the sending node */
header.rsn = c->rsn;
/* store the record flags from the sending node */
header.flags = record_flags;
/* check if the new dmaster is the lmaster, in which case we
skip the dmaster reply */
if (c->dmaster == ctdb->pnn) {
ctdb_become_dmaster(ctdb_db, hdr, key, data, c->rsn, record_flags);
} else {
ctdb_send_dmaster_reply(ctdb_db, &header, key, data, c->dmaster, hdr->reqid);
ret = ctdb_ltdb_unlock(ctdb_db, key);
if (ret != 0) {
DEBUG(DEBUG_ERR,(__location__ " ctdb_ltdb_unlock() failed with error %d\n", ret));
}
}
}
static void ctdb_sticky_record_timeout(struct tevent_context *ev,
struct tevent_timer *te,
struct timeval t, void *private_data)
{
struct ctdb_sticky_record *sr = talloc_get_type(private_data,
struct ctdb_sticky_record);
talloc_free(sr);
}
static void *ctdb_make_sticky_record_callback(void *parm, void *data)
{
if (data) {
DEBUG(DEBUG_ERR,("Already have sticky record registered. Free old %p and create new %p\n", data, parm));
talloc_free(data);
}
return parm;
}
static int
ctdb_make_record_sticky(struct ctdb_context *ctdb, struct ctdb_db_context *ctdb_db, TDB_DATA key)
{
TALLOC_CTX *tmp_ctx = talloc_new(NULL);
uint32_t *k;
struct ctdb_sticky_record *sr;
k = ctdb_key_to_idkey(tmp_ctx, key);
if (k == NULL) {
DEBUG(DEBUG_ERR,("Failed to allocate key for sticky record\n"));
talloc_free(tmp_ctx);
return -1;
}
sr = trbt_lookuparray32(ctdb_db->sticky_records, k[0], &k[0]);
if (sr != NULL) {
talloc_free(tmp_ctx);
return 0;
}
sr = talloc(ctdb_db->sticky_records, struct ctdb_sticky_record);
if (sr == NULL) {
talloc_free(tmp_ctx);
DEBUG(DEBUG_ERR,("Failed to allocate sticky record structure\n"));
return -1;
}
sr->ctdb = ctdb;
sr->ctdb_db = ctdb_db;
sr->pindown = NULL;
DEBUG(DEBUG_ERR,("Make record sticky for %d seconds in db %s key:0x%08x.\n",
ctdb->tunable.sticky_duration,
ctdb_db->db_name, ctdb_hash(&key)));
trbt_insertarray32_callback(ctdb_db->sticky_records, k[0], &k[0], ctdb_make_sticky_record_callback, sr);
tevent_add_timer(ctdb->ev, sr,
timeval_current_ofs(ctdb->tunable.sticky_duration, 0),
ctdb_sticky_record_timeout, sr);
talloc_free(tmp_ctx);
return 0;
}
struct pinned_down_requeue_handle {
struct ctdb_context *ctdb;
struct ctdb_req_header *hdr;
};
struct pinned_down_deferred_call {
struct ctdb_context *ctdb;
struct ctdb_req_header *hdr;
};
static void pinned_down_requeue(struct tevent_context *ev,
struct tevent_timer *te,
struct timeval t, void *private_data)
{
struct pinned_down_requeue_handle *handle = talloc_get_type(private_data, struct pinned_down_requeue_handle);
struct ctdb_context *ctdb = handle->ctdb;
talloc_steal(ctdb, handle->hdr);
ctdb_call_input_pkt(ctdb, handle->hdr);
talloc_free(handle);
}
static int pinned_down_destructor(struct pinned_down_deferred_call *pinned_down)
{
struct ctdb_context *ctdb = pinned_down->ctdb;
struct pinned_down_requeue_handle *handle = talloc(ctdb, struct pinned_down_requeue_handle);
handle->ctdb = pinned_down->ctdb;
handle->hdr = pinned_down->hdr;
talloc_steal(handle, handle->hdr);
tevent_add_timer(ctdb->ev, handle, timeval_zero(),
pinned_down_requeue, handle);
return 0;
}
static int
ctdb_defer_pinned_down_request(struct ctdb_context *ctdb, struct ctdb_db_context *ctdb_db, TDB_DATA key, struct ctdb_req_header *hdr)
{
TALLOC_CTX *tmp_ctx = talloc_new(NULL);
uint32_t *k;
struct ctdb_sticky_record *sr;
struct pinned_down_deferred_call *pinned_down;
k = ctdb_key_to_idkey(tmp_ctx, key);
if (k == NULL) {
DEBUG(DEBUG_ERR,("Failed to allocate key for sticky record\n"));
talloc_free(tmp_ctx);
return -1;
}
sr = trbt_lookuparray32(ctdb_db->sticky_records, k[0], &k[0]);
if (sr == NULL) {
talloc_free(tmp_ctx);
return -1;
}
talloc_free(tmp_ctx);
if (sr->pindown == NULL) {
return -1;
}
pinned_down = talloc(sr->pindown, struct pinned_down_deferred_call);
if (pinned_down == NULL) {
DEBUG(DEBUG_ERR,("Failed to allocate structure for deferred pinned down request\n"));
return -1;
}
pinned_down->ctdb = ctdb;
pinned_down->hdr = hdr;
talloc_set_destructor(pinned_down, pinned_down_destructor);
talloc_steal(pinned_down, hdr);
return 0;
}
static int hot_key_cmp(const void *a, const void *b)
{
const struct ctdb_db_hot_key *ka = (const struct ctdb_db_hot_key *)a;
const struct ctdb_db_hot_key *kb = (const struct ctdb_db_hot_key *)b;
if (ka->count < kb->count) {
return -1;
}
if (ka->count > kb->count) {
return 1;
}
return 0;
}
static void
ctdb_update_db_stat_hot_keys(struct ctdb_db_context *ctdb_db, TDB_DATA key,
unsigned int count)
{
unsigned int i, id;
char *keystr;
/*
* If all slots are being used then only need to compare
* against the count in the 0th slot, since it contains the
* smallest count.
*/
if (ctdb_db->statistics.num_hot_keys == MAX_HOT_KEYS &&
count <= ctdb_db->hot_keys[0].count) {
return;
}
/* see if we already know this key */
for (i = 0; i < MAX_HOT_KEYS; i++) {
if (key.dsize != ctdb_db->hot_keys[i].key.dsize) {
continue;
}
if (memcmp(key.dptr, ctdb_db->hot_keys[i].key.dptr, key.dsize)) {
continue;
}
/* found an entry for this key */
if (count <= ctdb_db->hot_keys[i].count) {
return;
}
if (count >= (2 * ctdb_db->hot_keys[i].last_logged_count)) {
keystr = hex_encode_talloc(ctdb_db,
(unsigned char *)key.dptr,
key.dsize);
D_NOTICE("Updated hot key database=%s key=%s count=%d\n",
ctdb_db->db_name,
keystr ? keystr : "" ,
count);
TALLOC_FREE(keystr);
ctdb_db->hot_keys[i].last_logged_count = count;
}
ctdb_db->hot_keys[i].count = count;
goto sort_keys;
}
if (ctdb_db->statistics.num_hot_keys < MAX_HOT_KEYS) {
id = ctdb_db->statistics.num_hot_keys;
ctdb_db->statistics.num_hot_keys++;
} else {
id = 0;
}
if (ctdb_db->hot_keys[id].key.dptr != NULL) {
talloc_free(ctdb_db->hot_keys[id].key.dptr);
}
ctdb_db->hot_keys[id].key.dsize = key.dsize;
ctdb_db->hot_keys[id].key.dptr = talloc_memdup(ctdb_db,
key.dptr,
key.dsize);
ctdb_db->hot_keys[id].count = count;
keystr = hex_encode_talloc(ctdb_db,
(unsigned char *)key.dptr, key.dsize);
D_NOTICE("Added hot key database=%s key=%s count=%d\n",
ctdb_db->db_name,
keystr ? keystr : "" ,
count);
talloc_free(keystr);
ctdb_db->hot_keys[id].last_logged_count = count;
sort_keys:
qsort(&ctdb_db->hot_keys[0],
ctdb_db->statistics.num_hot_keys,
sizeof(struct ctdb_db_hot_key),
hot_key_cmp);
}
/*
called when a CTDB_REQ_CALL packet comes in
*/
void ctdb_request_call(struct ctdb_context *ctdb, struct ctdb_req_header *hdr)
{
struct ctdb_req_call_old *c = (struct ctdb_req_call_old *)hdr;
TDB_DATA data;
struct ctdb_reply_call_old *r;
int ret, len;
struct ctdb_ltdb_header header;
struct ctdb_call *call;
struct ctdb_db_context *ctdb_db;
int tmp_count, bucket;
if (ctdb->methods == NULL) {
DEBUG(DEBUG_INFO,(__location__ " Failed ctdb_request_call. Transport is DOWN\n"));
return;
}
ctdb_db = find_ctdb_db(ctdb, c->db_id);
if (!ctdb_db) {
ctdb_send_error(ctdb, hdr, -1,
"Unknown database in request. db_id==0x%08x",
c->db_id);
return;
}
call = talloc(hdr, struct ctdb_call);
CTDB_NO_MEMORY_FATAL(ctdb, call);
call->call_id = c->callid;
call->key.dptr = c->data;
call->key.dsize = c->keylen;
call->call_data.dptr = c->data + c->keylen;
call->call_data.dsize = c->calldatalen;
call->reply_data.dptr = NULL;
call->reply_data.dsize = 0;
/* If this record is pinned down we should defer the
request until the pindown times out
*/
if (ctdb_db_sticky(ctdb_db)) {
if (ctdb_defer_pinned_down_request(ctdb, ctdb_db, call->key, hdr) == 0) {
DEBUG(DEBUG_WARNING,
("Defer request for pinned down record in %s\n", ctdb_db->db_name));
talloc_free(call);
return;
}
}
if (dmaster_defer_add(ctdb_db, hdr, call->key) == 0) {
talloc_free(call);
return;
}
/* determine if we are the dmaster for this key. This also
fetches the record data (if any), thus avoiding a 2nd fetch of the data
if the call will be answered locally */
ret = ctdb_ltdb_lock_fetch_requeue(ctdb_db, call->key, &header, hdr, &data,
ctdb_call_input_pkt, ctdb, false);
if (ret == -1) {
ctdb_send_error(ctdb, hdr, ret, "ltdb fetch failed in ctdb_request_call");
talloc_free(call);
return;
}
if (ret == -2) {
DEBUG(DEBUG_INFO,(__location__ " deferred ctdb_request_call\n"));
talloc_free(call);
return;
}
/* Dont do READONLY if we don't have a tracking database */
if ((c->flags & CTDB_WANT_READONLY) && !ctdb_db_readonly(ctdb_db)) {
c->flags &= ~CTDB_WANT_READONLY;
}
if (header.flags & CTDB_REC_RO_REVOKE_COMPLETE) {
header.flags &= ~CTDB_REC_RO_FLAGS;
CTDB_INCREMENT_STAT(ctdb, total_ro_revokes);
CTDB_INCREMENT_DB_STAT(ctdb_db, db_ro_revokes);
if (ctdb_ltdb_store(ctdb_db, call->key, &header, data) != 0) {
ctdb_fatal(ctdb, "Failed to write header with cleared REVOKE flag");
}
/* and clear out the tracking data */
if (tdb_delete(ctdb_db->rottdb, call->key) != 0) {
DEBUG(DEBUG_ERR,(__location__ " Failed to clear out trackingdb record\n"));
}
}
/* if we are revoking, we must defer all other calls until the revoke
* had completed.
*/
if (header.flags & CTDB_REC_RO_REVOKING_READONLY) {
talloc_free(data.dptr);
ret = ctdb_ltdb_unlock(ctdb_db, call->key);
if (ctdb_add_revoke_deferred_call(ctdb, ctdb_db, call->key, hdr, ctdb_call_input_pkt, ctdb) != 0) {
ctdb_fatal(ctdb, "Failed to add deferred call for revoke child");
}
talloc_free(call);
return;
}
/*
* If we are not the dmaster and are not hosting any delegations,
* then we redirect the request to the node than can answer it
* (the lmaster or the dmaster).
*/
if ((header.dmaster != ctdb->pnn)
&& (!(header.flags & CTDB_REC_RO_HAVE_DELEGATIONS)) ) {
talloc_free(data.dptr);
ctdb_call_send_redirect(ctdb, ctdb_db, call->key, c, &header);
ret = ctdb_ltdb_unlock(ctdb_db, call->key);
if (ret != 0) {
DEBUG(DEBUG_ERR,(__location__ " ctdb_ltdb_unlock() failed with error %d\n", ret));
}
talloc_free(call);
return;
}
if ( (!(c->flags & CTDB_WANT_READONLY))
&& (header.flags & (CTDB_REC_RO_HAVE_DELEGATIONS|CTDB_REC_RO_HAVE_READONLY)) ) {
header.flags |= CTDB_REC_RO_REVOKING_READONLY;
if (ctdb_ltdb_store(ctdb_db, call->key, &header, data) != 0) {
ctdb_fatal(ctdb, "Failed to store record with HAVE_DELEGATIONS set");
}
ret = ctdb_ltdb_unlock(ctdb_db, call->key);
if (ctdb_start_revoke_ro_record(ctdb, ctdb_db, call->key, &header, data) != 0) {
ctdb_fatal(ctdb, "Failed to start record revoke");
}
talloc_free(data.dptr);
if (ctdb_add_revoke_deferred_call(ctdb, ctdb_db, call->key, hdr, ctdb_call_input_pkt, ctdb) != 0) {
ctdb_fatal(ctdb, "Failed to add deferred call for revoke child");
}
talloc_free(call);
return;
}
/* If this is the first request for delegation. bump rsn and set
* the delegations flag
*/
if ((c->flags & CTDB_WANT_READONLY)
&& (c->callid == CTDB_FETCH_WITH_HEADER_FUNC)
&& (!(header.flags & CTDB_REC_RO_HAVE_DELEGATIONS))) {
header.rsn += 3;
header.flags |= CTDB_REC_RO_HAVE_DELEGATIONS;
if (ctdb_ltdb_store(ctdb_db, call->key, &header, data) != 0) {
ctdb_fatal(ctdb, "Failed to store record with HAVE_DELEGATIONS set");
}
}
if ((c->flags & CTDB_WANT_READONLY)
&& ((unsigned int)call->call_id == CTDB_FETCH_WITH_HEADER_FUNC)) {
TDB_DATA tdata;
tdata = tdb_fetch(ctdb_db->rottdb, call->key);
if (ctdb_trackingdb_add_pnn(ctdb, &tdata, c->hdr.srcnode) != 0) {
ctdb_fatal(ctdb, "Failed to add node to trackingdb");
}
if (tdb_store(ctdb_db->rottdb, call->key, tdata, TDB_REPLACE) != 0) {
ctdb_fatal(ctdb, "Failed to store trackingdb data");
}
free(tdata.dptr);
ret = ctdb_ltdb_unlock(ctdb_db, call->key);
if (ret != 0) {
DEBUG(DEBUG_ERR,(__location__ " ctdb_ltdb_unlock() failed with error %d\n", ret));
}
len = offsetof(struct ctdb_reply_call_old, data) + data.dsize + sizeof(struct ctdb_ltdb_header);
r = ctdb_transport_allocate(ctdb, ctdb, CTDB_REPLY_CALL, len,
struct ctdb_reply_call_old);
CTDB_NO_MEMORY_FATAL(ctdb, r);
r->hdr.destnode = c->hdr.srcnode;
r->hdr.reqid = c->hdr.reqid;
r->hdr.generation = ctdb_db->generation;
r->status = 0;
r->datalen = data.dsize + sizeof(struct ctdb_ltdb_header);
header.rsn -= 2;
header.flags |= CTDB_REC_RO_HAVE_READONLY;
header.flags &= ~CTDB_REC_RO_HAVE_DELEGATIONS;
memcpy(&r->data[0], &header, sizeof(struct ctdb_ltdb_header));
if (data.dsize) {
memcpy(&r->data[sizeof(struct ctdb_ltdb_header)], data.dptr, data.dsize);
}
ctdb_queue_packet(ctdb, &r->hdr);
CTDB_INCREMENT_STAT(ctdb, total_ro_delegations);
CTDB_INCREMENT_DB_STAT(ctdb_db, db_ro_delegations);
talloc_free(r);
talloc_free(call);
return;
}
CTDB_UPDATE_STAT(ctdb, max_hop_count, c->hopcount);
tmp_count = c->hopcount;
bucket = 0;
while (tmp_count) {
tmp_count >>= 1;
bucket++;
}
if (bucket >= MAX_COUNT_BUCKETS) {
bucket = MAX_COUNT_BUCKETS - 1;
}
CTDB_INCREMENT_STAT(ctdb, hop_count_bucket[bucket]);
CTDB_INCREMENT_DB_STAT(ctdb_db, hop_count_bucket[bucket]);
/* If this database supports sticky records, then check if the
hopcount is big. If it is it means the record is hot and we
should make it sticky.
*/
if (ctdb_db_sticky(ctdb_db) &&
c->hopcount >= ctdb->tunable.hopcount_make_sticky) {
ctdb_make_record_sticky(ctdb, ctdb_db, call->key);
}
/* Try if possible to migrate the record off to the caller node.
* From the clients perspective a fetch of the data is just as
* expensive as a migration.
*/
if (c->hdr.srcnode != ctdb->pnn) {
if (ctdb_db->persistent_state) {
DEBUG(DEBUG_INFO, (__location__ " refusing migration"
" of key %s while transaction is active\n",
(char *)call->key.dptr));
} else {
DEBUG(DEBUG_DEBUG,("pnn %u starting migration of %08x to %u\n",
ctdb->pnn, ctdb_hash(&(call->key)), c->hdr.srcnode));
ctdb_call_send_dmaster(ctdb_db, c, &header, &(call->key), &data);
talloc_free(data.dptr);
ret = ctdb_ltdb_unlock(ctdb_db, call->key);
if (ret != 0) {
DEBUG(DEBUG_ERR,(__location__ " ctdb_ltdb_unlock() failed with error %d\n", ret));
}
}
talloc_free(call);
return;
}
ret = ctdb_call_local(ctdb_db, call, &header, hdr, &data, true);
if (ret != 0) {
DEBUG(DEBUG_ERR,(__location__ " ctdb_call_local failed\n"));
call->status = -1;
}
ret = ctdb_ltdb_unlock(ctdb_db, call->key);
if (ret != 0) {
DEBUG(DEBUG_ERR,(__location__ " ctdb_ltdb_unlock() failed with error %d\n", ret));
}
len = offsetof(struct ctdb_reply_call_old, data) + call->reply_data.dsize;
r = ctdb_transport_allocate(ctdb, ctdb, CTDB_REPLY_CALL, len,
struct ctdb_reply_call_old);
CTDB_NO_MEMORY_FATAL(ctdb, r);
r->hdr.destnode = hdr->srcnode;
r->hdr.reqid = hdr->reqid;
r->hdr.generation = ctdb_db->generation;
r->status = call->status;
r->datalen = call->reply_data.dsize;
if (call->reply_data.dsize) {
memcpy(&r->data[0], call->reply_data.dptr, call->reply_data.dsize);
}
ctdb_queue_packet(ctdb, &r->hdr);
talloc_free(r);
talloc_free(call);
}
/**
* called when a CTDB_REPLY_CALL packet comes in
*
* This packet comes in response to a CTDB_REQ_CALL request packet. It
* contains any reply data from the call
*/
void ctdb_reply_call(struct ctdb_context *ctdb, struct ctdb_req_header *hdr)
{
struct ctdb_reply_call_old *c = (struct ctdb_reply_call_old *)hdr;
struct ctdb_call_state *state;
state = reqid_find(ctdb->idr, hdr->reqid, struct ctdb_call_state);
if (state == NULL) {
DEBUG(DEBUG_ERR, (__location__ " reqid %u not found\n", hdr->reqid));
return;
}
if (hdr->reqid != state->reqid) {
/* we found a record but it was the wrong one */
DEBUG(DEBUG_ERR, ("Dropped orphaned call reply with reqid:%u\n",hdr->reqid));
return;
}
/* read only delegation processing */
/* If we got a FETCH_WITH_HEADER we should check if this is a ro
* delegation since we may need to update the record header
*/
if (state->c->callid == CTDB_FETCH_WITH_HEADER_FUNC) {
struct ctdb_db_context *ctdb_db = state->ctdb_db;
struct ctdb_ltdb_header *header = (struct ctdb_ltdb_header *)&c->data[0];
struct ctdb_ltdb_header oldheader;
TDB_DATA key, data, olddata;
int ret;
if (!(header->flags & CTDB_REC_RO_HAVE_READONLY)) {
goto finished_ro;
return;
}
key.dsize = state->c->keylen;
key.dptr = state->c->data;
ret = ctdb_ltdb_lock_requeue(ctdb_db, key, hdr,
ctdb_call_input_pkt, ctdb, false);
if (ret == -2) {
return;
}
if (ret != 0) {
DEBUG(DEBUG_ERR,(__location__ " Failed to get lock in ctdb_reply_call\n"));
return;
}
ret = ctdb_ltdb_fetch(ctdb_db, key, &oldheader, state, &olddata);
if (ret != 0) {
DEBUG(DEBUG_ERR, ("Failed to fetch old record in ctdb_reply_call\n"));
ctdb_ltdb_unlock(ctdb_db, key);
goto finished_ro;
}
if (header->rsn <= oldheader.rsn) {
ctdb_ltdb_unlock(ctdb_db, key);
goto finished_ro;
}
if (c->datalen < sizeof(struct ctdb_ltdb_header)) {
DEBUG(DEBUG_ERR,(__location__ " Got FETCH_WITH_HEADER reply with too little data: %d bytes\n", c->datalen));
ctdb_ltdb_unlock(ctdb_db, key);
goto finished_ro;
}
data.dsize = c->datalen - sizeof(struct ctdb_ltdb_header);
data.dptr = &c->data[sizeof(struct ctdb_ltdb_header)];
ret = ctdb_ltdb_store(ctdb_db, key, header, data);
if (ret != 0) {
DEBUG(DEBUG_ERR, ("Failed to store new record in ctdb_reply_call\n"));
ctdb_ltdb_unlock(ctdb_db, key);
goto finished_ro;
}
ctdb_ltdb_unlock(ctdb_db, key);
}
finished_ro:
state->call->reply_data.dptr = c->data;
state->call->reply_data.dsize = c->datalen;
state->call->status = c->status;
talloc_steal(state, c);
state->state = CTDB_CALL_DONE;
if (state->async.fn) {
state->async.fn(state);
}
}
/**
* called when a CTDB_REPLY_DMASTER packet comes in
*
* This packet comes in from the lmaster in response to a CTDB_REQ_CALL
* request packet. It means that the current dmaster wants to give us
* the dmaster role.
*/
void ctdb_reply_dmaster(struct ctdb_context *ctdb, struct ctdb_req_header *hdr)
{
struct ctdb_reply_dmaster_old *c = (struct ctdb_reply_dmaster_old *)hdr;
struct ctdb_db_context *ctdb_db;
TDB_DATA key, data;
uint32_t record_flags = 0;
size_t len;
int ret;
ctdb_db = find_ctdb_db(ctdb, c->db_id);
if (ctdb_db == NULL) {
DEBUG(DEBUG_ERR,("Unknown db_id 0x%x in ctdb_reply_dmaster\n", c->db_id));
return;
}
key.dptr = c->data;
key.dsize = c->keylen;
data.dptr = &c->data[key.dsize];
data.dsize = c->datalen;
len = offsetof(struct ctdb_reply_dmaster_old, data) + key.dsize + data.dsize
+ sizeof(uint32_t);
if (len <= c->hdr.length) {
memcpy(&record_flags, &c->data[c->keylen + c->datalen],
sizeof(record_flags));
}
dmaster_defer_setup(ctdb_db, hdr, key);
ret = ctdb_ltdb_lock_requeue(ctdb_db, key, hdr,
ctdb_call_input_pkt, ctdb, false);
if (ret == -2) {
return;
}
if (ret != 0) {
DEBUG(DEBUG_ERR,(__location__ " Failed to get lock in ctdb_reply_dmaster\n"));
return;
}
ctdb_become_dmaster(ctdb_db, hdr, key, data, c->rsn, record_flags);
}
/*
called when a CTDB_REPLY_ERROR packet comes in
*/
void ctdb_reply_error(struct ctdb_context *ctdb, struct ctdb_req_header *hdr)
{
struct ctdb_reply_error_old *c = (struct ctdb_reply_error_old *)hdr;
struct ctdb_call_state *state;
state = reqid_find(ctdb->idr, hdr->reqid, struct ctdb_call_state);
if (state == NULL) {
DEBUG(DEBUG_ERR,("pnn %u Invalid reqid %u in ctdb_reply_error\n",
ctdb->pnn, hdr->reqid));
return;
}
if (hdr->reqid != state->reqid) {
/* we found a record but it was the wrong one */
DEBUG(DEBUG_ERR, ("Dropped orphaned error reply with reqid:%u\n",hdr->reqid));
return;
}
talloc_steal(state, c);
state->state = CTDB_CALL_ERROR;
state->errmsg = (char *)c->msg;
if (state->async.fn) {
state->async.fn(state);
}
}
/*
destroy a ctdb_call
*/
static int ctdb_call_destructor(struct ctdb_call_state *state)
{
DLIST_REMOVE(state->ctdb_db->pending_calls, state);
reqid_remove(state->ctdb_db->ctdb->idr, state->reqid);
return 0;
}
/*
called when a ctdb_call needs to be resent after a reconfigure event
*/
static void ctdb_call_resend(struct ctdb_call_state *state)
{
struct ctdb_context *ctdb = state->ctdb_db->ctdb;
state->generation = state->ctdb_db->generation;
/* use a new reqid, in case the old reply does eventually come in */
reqid_remove(ctdb->idr, state->reqid);
state->reqid = reqid_new(ctdb->idr, state);
state->c->hdr.reqid = state->reqid;
/* update the generation count for this request, so its valid with the new vnn_map */
state->c->hdr.generation = state->generation;
/* send the packet to ourselves, it will be redirected appropriately */
state->c->hdr.destnode = ctdb->pnn;
ctdb_queue_packet(ctdb, &state->c->hdr);
D_INFO("resent ctdb_call for db %s reqid %u generation %u\n",
state->ctdb_db->db_name,
state->reqid,
state->generation);
}
/*
resend all pending calls on recovery
*/
void ctdb_call_resend_db(struct ctdb_db_context *ctdb_db)
{
struct ctdb_call_state *state, *next;
unsigned int count = 0;
for (state = ctdb_db->pending_calls; state; state = next) {
next = state->next;
ctdb_call_resend(state);
count++;
}
/* Avoid logging a 0 count below */
if (count == 0) {
return;
}
D_NOTICE("Resent calls for database=%s, generation=%u, count=%u\n",
ctdb_db->db_name,
ctdb_db->generation,
count);
}
void ctdb_call_resend_all(struct ctdb_context *ctdb)
{
struct ctdb_db_context *ctdb_db;
for (ctdb_db = ctdb->db_list; ctdb_db; ctdb_db = ctdb_db->next) {
ctdb_call_resend_db(ctdb_db);
}
}
/*
this allows the caller to setup a async.fn
*/
static void call_local_trigger(struct tevent_context *ev,
struct tevent_timer *te,
struct timeval t, void *private_data)
{
struct ctdb_call_state *state = talloc_get_type(private_data, struct ctdb_call_state);
if (state->async.fn) {
state->async.fn(state);
}
}
/*
construct an event driven local ctdb_call
this is used so that locally processed ctdb_call requests are processed
in an event driven manner
*/
struct ctdb_call_state *ctdb_call_local_send(struct ctdb_db_context *ctdb_db,
struct ctdb_call *call,
struct ctdb_ltdb_header *header,
TDB_DATA *data)
{
struct ctdb_call_state *state;
struct ctdb_context *ctdb = ctdb_db->ctdb;
int ret;
state = talloc_zero(ctdb_db, struct ctdb_call_state);
CTDB_NO_MEMORY_NULL(ctdb, state);
talloc_steal(state, data->dptr);
state->state = CTDB_CALL_DONE;
state->call = talloc(state, struct ctdb_call);
CTDB_NO_MEMORY_NULL(ctdb, state->call);
*(state->call) = *call;
state->ctdb_db = ctdb_db;
ret = ctdb_call_local(ctdb_db, state->call, header, state, data, true);
if (ret != 0) {
DEBUG(DEBUG_DEBUG,("ctdb_call_local() failed, ignoring return code %d\n", ret));
}
tevent_add_timer(ctdb->ev, state, timeval_zero(),
call_local_trigger, state);
return state;
}
/*
make a remote ctdb call - async send. Called in daemon context.
This constructs a ctdb_call request and queues it for processing.
This call never blocks.
*/
struct ctdb_call_state *ctdb_daemon_call_send_remote(struct ctdb_db_context *ctdb_db,
struct ctdb_call *call,
struct ctdb_ltdb_header *header)
{
uint32_t len;
struct ctdb_call_state *state;
struct ctdb_context *ctdb = ctdb_db->ctdb;
struct ctdb_req_call_old *c;
if (ctdb->methods == NULL) {
DEBUG(DEBUG_INFO,(__location__ " Failed send packet. Transport is down\n"));
return NULL;
}
state = talloc_zero(ctdb_db, struct ctdb_call_state);
CTDB_NO_MEMORY_NULL(ctdb, state);
state->call = talloc(state, struct ctdb_call);
CTDB_NO_MEMORY_NULL(ctdb, state->call);
state->reqid = reqid_new(ctdb->idr, state);
state->ctdb_db = ctdb_db;
state->state = CTDB_CALL_WAIT;
state->generation = ctdb_db->generation;
len = offsetof(struct ctdb_req_call_old, data) + call->key.dsize +
call->call_data.dsize;
c = ctdb_transport_allocate(ctdb,
state,
CTDB_REQ_CALL,
len,
struct ctdb_req_call_old);
CTDB_NO_MEMORY_NULL(ctdb, c);
state->c = c;
c->hdr.destnode = header->dmaster;
c->hdr.reqid = state->reqid;
c->hdr.generation = ctdb_db->generation;
c->flags = call->flags;
c->db_id = ctdb_db->db_id;
c->callid = call->call_id;
c->hopcount = 0;
c->keylen = call->key.dsize;
c->calldatalen = call->call_data.dsize;
memcpy(&c->data[0], call->key.dptr, call->key.dsize);
memcpy(&c->data[call->key.dsize],
call->call_data.dptr,
call->call_data.dsize);
*(state->call) = *call;
state->call->call_data.dptr = &c->data[call->key.dsize];
state->call->key.dptr = &c->data[0];
DLIST_ADD(ctdb_db->pending_calls, state);
talloc_set_destructor(state, ctdb_call_destructor);
ctdb_queue_packet(ctdb, &state->c->hdr);
return state;
}
/*
make a remote ctdb call - async recv - called in daemon context
This is called when the program wants to wait for a ctdb_call to complete and get the
results. This call will block unless the call has already completed.
*/
int ctdb_daemon_call_recv(struct ctdb_call_state *state, struct ctdb_call *call)
{
while (state->state < CTDB_CALL_DONE) {
tevent_loop_once(state->ctdb_db->ctdb->ev);
}
if (state->state != CTDB_CALL_DONE) {
ctdb_set_error(state->ctdb_db->ctdb, "%s", state->errmsg);
talloc_free(state);
return -1;
}
if (state->call->reply_data.dsize) {
call->reply_data.dptr = talloc_memdup(call,
state->call->reply_data.dptr,
state->call->reply_data.dsize);
call->reply_data.dsize = state->call->reply_data.dsize;
} else {
call->reply_data.dptr = NULL;
call->reply_data.dsize = 0;
}
call->status = state->call->status;
talloc_free(state);
return 0;
}
struct revokechild_deferred_call {
struct revokechild_deferred_call *prev, *next;
struct ctdb_context *ctdb;
struct ctdb_req_header *hdr;
deferred_requeue_fn fn;
void *ctx;
struct revokechild_handle *rev_hdl;
};
struct revokechild_handle {
struct revokechild_handle *next, *prev;
struct ctdb_context *ctdb;
struct ctdb_db_context *ctdb_db;
struct tevent_fd *fde;
int status;
int fd[2];
pid_t child;
TDB_DATA key;
struct revokechild_deferred_call *deferred_call_list;
};
static void deferred_call_requeue(struct tevent_context *ev,
struct tevent_timer *te,
struct timeval t, void *private_data)
{
struct revokechild_deferred_call *dlist = talloc_get_type_abort(
private_data, struct revokechild_deferred_call);
while (dlist != NULL) {
struct revokechild_deferred_call *dcall = dlist;
talloc_set_destructor(dcall, NULL);
DLIST_REMOVE(dlist, dcall);
dcall->fn(dcall->ctx, dcall->hdr);
talloc_free(dcall);
}
}
static int deferred_call_destructor(struct revokechild_deferred_call *dcall)
{
struct revokechild_handle *rev_hdl = dcall->rev_hdl;
DLIST_REMOVE(rev_hdl->deferred_call_list, dcall);
return 0;
}
static int revokechild_destructor(struct revokechild_handle *rev_hdl)
{
struct revokechild_deferred_call *now_list = NULL;
struct revokechild_deferred_call *delay_list = NULL;
if (rev_hdl->fde != NULL) {
talloc_free(rev_hdl->fde);
}
if (rev_hdl->fd[0] != -1) {
close(rev_hdl->fd[0]);
}
if (rev_hdl->fd[1] != -1) {
close(rev_hdl->fd[1]);
}
ctdb_kill(rev_hdl->ctdb, rev_hdl->child, SIGKILL);
DLIST_REMOVE(rev_hdl->ctdb_db->revokechild_active, rev_hdl);
while (rev_hdl->deferred_call_list != NULL) {
struct revokechild_deferred_call *dcall;
dcall = rev_hdl->deferred_call_list;
DLIST_REMOVE(rev_hdl->deferred_call_list, dcall);
/* If revoke is successful, then first process all the calls
* that need write access, and delay readonly requests by 1
* second grace.
*
* If revoke is unsuccessful, most likely because of node
* failure, delay all the pending requests, so database can
* be recovered.
*/
if (rev_hdl->status == 0) {
struct ctdb_req_call_old *c;
c = (struct ctdb_req_call_old *)dcall->hdr;
if (c->flags & CTDB_WANT_READONLY) {
DLIST_ADD(delay_list, dcall);
} else {
DLIST_ADD(now_list, dcall);
}
} else {
DLIST_ADD(delay_list, dcall);
}
}
if (now_list != NULL) {
tevent_add_timer(rev_hdl->ctdb->ev,
rev_hdl->ctdb_db,
tevent_timeval_current_ofs(0, 0),
deferred_call_requeue,
now_list);
}
if (delay_list != NULL) {
tevent_add_timer(rev_hdl->ctdb->ev,
rev_hdl->ctdb_db,
tevent_timeval_current_ofs(1, 0),
deferred_call_requeue,
delay_list);
}
return 0;
}
static void revokechild_handler(struct tevent_context *ev,
struct tevent_fd *fde,
uint16_t flags, void *private_data)
{
struct revokechild_handle *rev_hdl =
talloc_get_type(private_data, struct revokechild_handle);
int ret;
char c;
ret = sys_read(rev_hdl->fd[0], &c, 1);
if (ret != 1) {
DEBUG(DEBUG_ERR,("Failed to read status from revokechild. errno:%d\n", errno));
rev_hdl->status = -1;
talloc_free(rev_hdl);
return;
}
if (c != 0) {
DEBUG(DEBUG_ERR,("revokechild returned failure. status:%d\n", c));
rev_hdl->status = -1;
talloc_free(rev_hdl);
return;
}
talloc_free(rev_hdl);
}
struct ctdb_revoke_state {
struct ctdb_db_context *ctdb_db;
TDB_DATA key;
struct ctdb_ltdb_header *header;
TDB_DATA data;
int count;
int status;
int finished;
};
static void update_record_cb(struct ctdb_client_control_state *state)
{
struct ctdb_revoke_state *revoke_state;
int ret;
int32_t res;
if (state == NULL) {
return;
}
revoke_state = state->async.private_data;
state->async.fn = NULL;
ret = ctdb_control_recv(state->ctdb, state, state, NULL, &res, NULL);
if ((ret != 0) || (res != 0)) {
DEBUG(DEBUG_ERR,("Recv for revoke update record failed ret:%d res:%d\n", ret, res));
revoke_state->status = -1;
}
revoke_state->count--;
if (revoke_state->count <= 0) {
revoke_state->finished = 1;
}
}
static void revoke_send_cb(struct ctdb_context *ctdb, uint32_t pnn, void *private_data)
{
struct ctdb_revoke_state *revoke_state = private_data;
struct ctdb_client_control_state *state;
state = ctdb_ctrl_updaterecord_send(ctdb, revoke_state, timeval_current_ofs(ctdb->tunable.control_timeout,0), pnn, revoke_state->ctdb_db, revoke_state->key, revoke_state->header, revoke_state->data);
if (state == NULL) {
DEBUG(DEBUG_ERR,("Failure to send update record to revoke readonly delegation\n"));
revoke_state->status = -1;
return;
}
state->async.fn = update_record_cb;
state->async.private_data = revoke_state;
revoke_state->count++;
}
static void ctdb_revoke_timeout_handler(struct tevent_context *ev,
struct tevent_timer *te,
struct timeval yt, void *private_data)
{
struct ctdb_revoke_state *state = private_data;
DEBUG(DEBUG_ERR,("Timed out waiting for revoke to finish\n"));
state->finished = 1;
state->status = -1;
}
static int ctdb_revoke_all_delegations(struct ctdb_context *ctdb, struct ctdb_db_context *ctdb_db, TDB_DATA tdata, TDB_DATA key, struct ctdb_ltdb_header *header, TDB_DATA data)
{
struct ctdb_revoke_state *state = talloc_zero(ctdb, struct ctdb_revoke_state);
struct ctdb_ltdb_header new_header;
TDB_DATA new_data;
state->ctdb_db = ctdb_db;
state->key = key;
state->header = header;
state->data = data;
ctdb_trackingdb_traverse(ctdb, tdata, revoke_send_cb, state);
tevent_add_timer(ctdb->ev, state,
timeval_current_ofs(ctdb->tunable.control_timeout, 0),
ctdb_revoke_timeout_handler, state);
while (state->finished == 0) {
tevent_loop_once(ctdb->ev);
}
if (ctdb_ltdb_lock(ctdb_db, key) != 0) {
DEBUG(DEBUG_ERR,("Failed to chainlock the database in revokechild\n"));
talloc_free(state);
return -1;
}
if (ctdb_ltdb_fetch(ctdb_db, key, &new_header, state, &new_data) != 0) {
ctdb_ltdb_unlock(ctdb_db, key);
DEBUG(DEBUG_ERR,("Failed for fetch tdb record in revokechild\n"));
talloc_free(state);
return -1;
}
header->rsn++;
if (new_header.rsn > header->rsn) {
ctdb_ltdb_unlock(ctdb_db, key);
DEBUG(DEBUG_ERR,("RSN too high in tdb record in revokechild\n"));
talloc_free(state);
return -1;
}
if ( (new_header.flags & (CTDB_REC_RO_REVOKING_READONLY|CTDB_REC_RO_HAVE_DELEGATIONS)) != (CTDB_REC_RO_REVOKING_READONLY|CTDB_REC_RO_HAVE_DELEGATIONS) ) {
ctdb_ltdb_unlock(ctdb_db, key);
DEBUG(DEBUG_ERR,("Flags are wrong in tdb record in revokechild\n"));
talloc_free(state);
return -1;
}
/*
* If revoke on all nodes succeed, revoke is complete. Otherwise,
* remove CTDB_REC_RO_REVOKING_READONLY flag and retry.
*/
if (state->status == 0) {
new_header.rsn++;
new_header.flags |= CTDB_REC_RO_REVOKE_COMPLETE;
} else {
DEBUG(DEBUG_NOTICE, ("Revoke all delegations failed, retrying.\n"));
new_header.flags &= ~CTDB_REC_RO_REVOKING_READONLY;
}
if (ctdb_ltdb_store(ctdb_db, key, &new_header, new_data) != 0) {
ctdb_ltdb_unlock(ctdb_db, key);
DEBUG(DEBUG_ERR,("Failed to write new record in revokechild\n"));
talloc_free(state);
return -1;
}
ctdb_ltdb_unlock(ctdb_db, key);
talloc_free(state);
return 0;
}
int ctdb_start_revoke_ro_record(struct ctdb_context *ctdb,
struct ctdb_db_context *ctdb_db,
TDB_DATA key,
struct ctdb_ltdb_header *header,
TDB_DATA data)
{
TDB_DATA tdata;
struct revokechild_handle *rev_hdl;
pid_t parent = getpid();
int ret;
header->flags &= ~(CTDB_REC_RO_REVOKING_READONLY |
CTDB_REC_RO_HAVE_DELEGATIONS |
CTDB_REC_RO_HAVE_READONLY);
header->flags |= CTDB_REC_FLAG_MIGRATED_WITH_DATA;
header->rsn -= 1;
rev_hdl = talloc_zero(ctdb_db, struct revokechild_handle);
if (rev_hdl == NULL) {
D_ERR("Failed to allocate revokechild_handle\n");
return -1;
}
tdata = tdb_fetch(ctdb_db->rottdb, key);
if (tdata.dsize > 0) {
uint8_t *tmp;
tmp = tdata.dptr;
tdata.dptr = talloc_memdup(rev_hdl, tdata.dptr, tdata.dsize);
free(tmp);
}
rev_hdl->status = 0;
rev_hdl->ctdb = ctdb;
rev_hdl->ctdb_db = ctdb_db;
rev_hdl->fd[0] = -1;
rev_hdl->fd[1] = -1;
rev_hdl->key.dsize = key.dsize;
rev_hdl->key.dptr = talloc_memdup(rev_hdl, key.dptr, key.dsize);
if (rev_hdl->key.dptr == NULL) {
D_ERR("Failed to allocate key for revokechild_handle\n");
goto err_out;
}
ret = pipe(rev_hdl->fd);
if (ret != 0) {
D_ERR("Failed to allocate key for revokechild_handle\n");
goto err_out;
}
rev_hdl->child = ctdb_fork(ctdb);
if (rev_hdl->child == (pid_t)-1) {
D_ERR("Failed to fork child for revokechild\n");
goto err_out;
}
if (rev_hdl->child == 0) {
char c = 0;
close(rev_hdl->fd[0]);
prctl_set_comment("ctdb_revokechild");
if (switch_from_server_to_client(ctdb) != 0) {
D_ERR("Failed to switch from server to client "
"for revokechild process\n");
c = 1;
goto child_finished;
}
c = ctdb_revoke_all_delegations(ctdb,
ctdb_db,
tdata,
key,
header,
data);
child_finished:
sys_write(rev_hdl->fd[1], &c, 1);
ctdb_wait_for_process_to_exit(parent);
_exit(0);
}
close(rev_hdl->fd[1]);
rev_hdl->fd[1] = -1;
set_close_on_exec(rev_hdl->fd[0]);
rev_hdl->fde = tevent_add_fd(ctdb->ev,
rev_hdl,
rev_hdl->fd[0],
TEVENT_FD_READ,
revokechild_handler,
(void *)rev_hdl);
if (rev_hdl->fde == NULL) {
D_ERR("Failed to set up fd event for revokechild process\n");
talloc_free(rev_hdl);
}
tevent_fd_set_auto_close(rev_hdl->fde);
/* This is an active revokechild child process */
DLIST_ADD_END(ctdb_db->revokechild_active, rev_hdl);
talloc_set_destructor(rev_hdl, revokechild_destructor);
return 0;
err_out:
talloc_free(rev_hdl);
return -1;
}
int ctdb_add_revoke_deferred_call(struct ctdb_context *ctdb, struct ctdb_db_context *ctdb_db, TDB_DATA key, struct ctdb_req_header *hdr, deferred_requeue_fn fn, void *call_context)
{
struct revokechild_handle *rev_hdl;
struct revokechild_deferred_call *deferred_call;
for (rev_hdl = ctdb_db->revokechild_active;
rev_hdl;
rev_hdl = rev_hdl->next) {
if (rev_hdl->key.dsize == 0) {
continue;
}
if (rev_hdl->key.dsize != key.dsize) {
continue;
}
if (!memcmp(rev_hdl->key.dptr, key.dptr, key.dsize)) {
break;
}
}
if (rev_hdl == NULL) {
DEBUG(DEBUG_ERR,("Failed to add deferred call to revoke list. revoke structure not found\n"));
return -1;
}
deferred_call = talloc(call_context, struct revokechild_deferred_call);
if (deferred_call == NULL) {
DEBUG(DEBUG_ERR,("Failed to allocate deferred call structure for revoking record\n"));
return -1;
}
deferred_call->ctdb = ctdb;
deferred_call->hdr = talloc_steal(deferred_call, hdr);
deferred_call->fn = fn;
deferred_call->ctx = call_context;
deferred_call->rev_hdl = rev_hdl;
talloc_set_destructor(deferred_call, deferred_call_destructor);
DLIST_ADD(rev_hdl->deferred_call_list, deferred_call);
return 0;
}
static void ctdb_migration_count_handler(TDB_DATA key, uint64_t counter,
void *private_data)
{
struct ctdb_db_context *ctdb_db = talloc_get_type_abort(
private_data, struct ctdb_db_context);
unsigned int value;
value = (counter < INT_MAX ? counter : INT_MAX);
ctdb_update_db_stat_hot_keys(ctdb_db, key, value);
}
static void ctdb_migration_cleandb_event(struct tevent_context *ev,
struct tevent_timer *te,
struct timeval current_time,
void *private_data)
{
struct ctdb_db_context *ctdb_db = talloc_get_type_abort(
private_data, struct ctdb_db_context);
if (ctdb_db->migratedb == NULL) {
return;
}
hash_count_expire(ctdb_db->migratedb, NULL);
te = tevent_add_timer(ctdb_db->ctdb->ev, ctdb_db->migratedb,
tevent_timeval_current_ofs(10, 0),
ctdb_migration_cleandb_event, ctdb_db);
if (te == NULL) {
DEBUG(DEBUG_ERR,
("Memory error in migration cleandb event for %s\n",
ctdb_db->db_name));
TALLOC_FREE(ctdb_db->migratedb);
}
}
int ctdb_migration_init(struct ctdb_db_context *ctdb_db)
{
struct timeval one_second = { 1, 0 };
struct tevent_timer *te;
int ret;
if (! ctdb_db_volatile(ctdb_db)) {
return 0;
}
ret = hash_count_init(ctdb_db, one_second,
ctdb_migration_count_handler, ctdb_db,
&ctdb_db->migratedb);
if (ret != 0) {
DEBUG(DEBUG_ERR,
("Memory error in migration init for %s\n",
ctdb_db->db_name));
return -1;
}
te = tevent_add_timer(ctdb_db->ctdb->ev, ctdb_db->migratedb,
tevent_timeval_current_ofs(10, 0),
ctdb_migration_cleandb_event, ctdb_db);
if (te == NULL) {
DEBUG(DEBUG_ERR,
("Memory error in migration init for %s\n",
ctdb_db->db_name));
TALLOC_FREE(ctdb_db->migratedb);
return -1;
}
return 0;
}