1
0
mirror of https://github.com/samba-team/samba.git synced 2024-12-23 17:34:34 +03:00
samba-mirror/source4/rpc_server/backupkey/dcesrv_backupkey.c
Joseph Sutton 240b082dc4 s4:rpc_server: Check return values of gnutls functions (CID 1452111)
Signed-off-by: Joseph Sutton <josephsutton@catalyst.net.nz>
Reviewed-by: Andrew Bartlett <abartlet@samba.org>
2023-10-13 02:18:31 +00:00

1868 lines
52 KiB
C

/*
Unix SMB/CIFS implementation.
endpoint server for the backupkey interface
Copyright (C) Matthieu Patou <mat@samba.org> 2010
Copyright (C) Andreas Schneider <asn@samba.org> 2015
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include "includes.h"
#include "rpc_server/dcerpc_server.h"
#include "rpc_server/common/common.h"
#include "librpc/gen_ndr/ndr_backupkey.h"
#include "dsdb/common/util.h"
#include "dsdb/samdb/samdb.h"
#include "lib/ldb/include/ldb_errors.h"
#include "../lib/util/util_ldb.h"
#include "param/param.h"
#include "auth/session.h"
#include "system/network.h"
#include "../lib/tsocket/tsocket.h"
#include "../libcli/security/security.h"
#include "librpc/gen_ndr/ndr_security.h"
#include "libds/common/roles.h"
#include <gnutls/gnutls.h>
#include <gnutls/x509.h>
#include <gnutls/crypto.h>
#include <gnutls/abstract.h>
#include "lib/crypto/gnutls_helpers.h"
#undef strncasecmp
#define DCESRV_INTERFACE_BACKUPKEY_BIND(context, iface) \
dcesrv_interface_backupkey_bind(context, iface)
static NTSTATUS dcesrv_interface_backupkey_bind(struct dcesrv_connection_context *context,
const struct dcesrv_interface *iface)
{
return dcesrv_interface_bind_require_privacy(context, iface);
}
static NTSTATUS set_lsa_secret(TALLOC_CTX *mem_ctx,
struct ldb_context *ldb,
const char *name,
const DATA_BLOB *lsa_secret)
{
TALLOC_CTX *frame = talloc_stackframe();
struct ldb_message *msg;
struct ldb_result *res;
struct ldb_dn *system_dn = NULL;
struct ldb_val val;
int ret;
char *name2;
struct timeval now = timeval_current();
NTTIME nt_now = timeval_to_nttime(&now);
const char *attrs[] = {
NULL
};
msg = ldb_msg_new(frame);
if (msg == NULL) {
talloc_free(frame);
return NT_STATUS_NO_MEMORY;
}
/*
* This function is a lot like dcesrv_lsa_CreateSecret
* in the rpc_server/lsa directory
* The reason why we duplicate the effort here is that:
* * we want to keep the former function static
* * we want to avoid the burden of doing LSA calls
* when we can just manipulate the secrets directly
* * taillor the function to the particular needs of backup protocol
*/
system_dn = samdb_system_container_dn(ldb, frame);
if (system_dn == NULL) {
talloc_free(frame);
return NT_STATUS_NO_MEMORY;
}
name2 = talloc_asprintf(msg, "%s Secret", name);
if (name2 == NULL) {
talloc_free(frame);
return NT_STATUS_NO_MEMORY;
}
ret = ldb_search(ldb, frame, &res, system_dn, LDB_SCOPE_SUBTREE, attrs,
"(&(cn=%s)(objectclass=secret))",
ldb_binary_encode_string(frame, name2));
if (ret != LDB_SUCCESS || res->count != 0 ) {
DEBUG(2, ("Secret %s already exists !\n", name2));
talloc_free(frame);
return NT_STATUS_OBJECT_NAME_COLLISION;
}
/*
* We don't care about previous value as we are
* here only if the key didn't exists before
*/
msg->dn = ldb_dn_copy(frame, system_dn);
if (msg->dn == NULL) {
talloc_free(frame);
return NT_STATUS_NO_MEMORY;
}
if (!ldb_dn_add_child_fmt(msg->dn, "cn=%s", name2)) {
talloc_free(frame);
return NT_STATUS_NO_MEMORY;
}
ret = ldb_msg_add_string(msg, "cn", name2);
if (ret != LDB_SUCCESS) {
talloc_free(frame);
return NT_STATUS_NO_MEMORY;
}
ret = ldb_msg_add_string(msg, "objectClass", "secret");
if (ret != LDB_SUCCESS) {
talloc_free(frame);
return NT_STATUS_NO_MEMORY;
}
ret = samdb_msg_add_uint64(ldb, frame, msg, "priorSetTime", nt_now);
if (ret != LDB_SUCCESS) {
talloc_free(frame);
return NT_STATUS_NO_MEMORY;
}
val.data = lsa_secret->data;
val.length = lsa_secret->length;
ret = ldb_msg_add_value(msg, "currentValue", &val, NULL);
if (ret != LDB_SUCCESS) {
talloc_free(frame);
return NT_STATUS_NO_MEMORY;
}
ret = samdb_msg_add_uint64(ldb, frame, msg, "lastSetTime", nt_now);
if (ret != LDB_SUCCESS) {
talloc_free(frame);
return NT_STATUS_NO_MEMORY;
}
/*
* create the secret with DSDB_MODIFY_RELAX
* otherwise dsdb/samdb/ldb_modules/objectclass.c forbid
* the create of LSA secret object
*/
ret = dsdb_add(ldb, msg, DSDB_MODIFY_RELAX);
if (ret != LDB_SUCCESS) {
DEBUG(2,("Failed to create secret record %s: %s\n",
ldb_dn_get_linearized(msg->dn),
ldb_errstring(ldb)));
talloc_free(frame);
return NT_STATUS_ACCESS_DENIED;
}
talloc_free(frame);
return NT_STATUS_OK;
}
/* This function is pretty much like dcesrv_lsa_QuerySecret */
static NTSTATUS get_lsa_secret(TALLOC_CTX *mem_ctx,
struct ldb_context *ldb,
const char *name,
DATA_BLOB *lsa_secret)
{
TALLOC_CTX *tmp_mem;
struct ldb_result *res;
struct ldb_dn *system_dn = NULL;
const struct ldb_val *val;
uint8_t *data;
const char *attrs[] = {
"currentValue",
NULL
};
int ret;
lsa_secret->data = NULL;
lsa_secret->length = 0;
tmp_mem = talloc_new(mem_ctx);
if (tmp_mem == NULL) {
return NT_STATUS_NO_MEMORY;
}
system_dn = samdb_system_container_dn(ldb, tmp_mem);
if (system_dn == NULL) {
talloc_free(tmp_mem);
return NT_STATUS_NO_MEMORY;
}
ret = ldb_search(ldb, tmp_mem, &res, system_dn, LDB_SCOPE_SUBTREE, attrs,
"(&(cn=%s Secret)(objectclass=secret))",
ldb_binary_encode_string(tmp_mem, name));
if (ret != LDB_SUCCESS) {
talloc_free(tmp_mem);
return NT_STATUS_INTERNAL_DB_CORRUPTION;
}
if (res->count == 0) {
talloc_free(tmp_mem);
return NT_STATUS_RESOURCE_NAME_NOT_FOUND;
}
if (res->count > 1) {
DEBUG(2, ("Secret %s collision\n", name));
talloc_free(tmp_mem);
return NT_STATUS_INTERNAL_DB_CORRUPTION;
}
val = ldb_msg_find_ldb_val(res->msgs[0], "currentValue");
if (val == NULL) {
/*
* The secret object is here but we don't have the secret value
* The most common case is a RODC
*/
*lsa_secret = data_blob_null;
talloc_free(tmp_mem);
return NT_STATUS_OK;
}
data = val->data;
lsa_secret->data = talloc_move(mem_ctx, &data);
lsa_secret->length = val->length;
talloc_free(tmp_mem);
return NT_STATUS_OK;
}
static int reverse_and_get_bignum(TALLOC_CTX *mem_ctx,
DATA_BLOB blob,
gnutls_datum_t *datum)
{
uint32_t i;
datum->data = talloc_array(mem_ctx, uint8_t, blob.length);
if (datum->data == NULL) {
return -1;
}
for(i = 0; i < blob.length; i++) {
datum->data[i] = blob.data[blob.length - i - 1];
}
datum->size = blob.length;
return 0;
}
static NTSTATUS get_pk_from_raw_keypair_params(TALLOC_CTX *ctx,
struct bkrp_exported_RSA_key_pair *keypair,
gnutls_privkey_t *pk)
{
gnutls_x509_privkey_t x509_privkey = NULL;
gnutls_privkey_t privkey = NULL;
gnutls_datum_t m, e, d, p, q, u, e1, e2;
int rc;
rc = reverse_and_get_bignum(ctx, keypair->modulus, &m);
if (rc != 0) {
return NT_STATUS_INVALID_PARAMETER;
}
rc = reverse_and_get_bignum(ctx, keypair->public_exponent, &e);
if (rc != 0) {
return NT_STATUS_INVALID_PARAMETER;
}
rc = reverse_and_get_bignum(ctx, keypair->private_exponent, &d);
if (rc != 0) {
return NT_STATUS_INVALID_PARAMETER;
}
rc = reverse_and_get_bignum(ctx, keypair->prime1, &p);
if (rc != 0) {
return NT_STATUS_INVALID_PARAMETER;
}
rc = reverse_and_get_bignum(ctx, keypair->prime2, &q);
if (rc != 0) {
return NT_STATUS_INVALID_PARAMETER;
}
rc = reverse_and_get_bignum(ctx, keypair->coefficient, &u);
if (rc != 0) {
return NT_STATUS_INVALID_PARAMETER;
}
rc = reverse_and_get_bignum(ctx, keypair->exponent1, &e1);
if (rc != 0) {
return NT_STATUS_INVALID_PARAMETER;
}
rc = reverse_and_get_bignum(ctx, keypair->exponent2, &e2);
if (rc != 0) {
return NT_STATUS_INVALID_PARAMETER;
}
rc = gnutls_x509_privkey_init(&x509_privkey);
if (rc != GNUTLS_E_SUCCESS) {
DBG_ERR("gnutls_x509_privkey_init failed - %s\n",
gnutls_strerror(rc));
return NT_STATUS_INTERNAL_ERROR;
}
rc = gnutls_x509_privkey_import_rsa_raw2(x509_privkey,
&m,
&e,
&d,
&p,
&q,
&u,
&e1,
&e2);
if (rc != GNUTLS_E_SUCCESS) {
DBG_ERR("gnutls_x509_privkey_import_rsa_raw2 failed - %s\n",
gnutls_strerror(rc));
return NT_STATUS_INTERNAL_ERROR;
}
rc = gnutls_privkey_init(&privkey);
if (rc != GNUTLS_E_SUCCESS) {
DBG_ERR("gnutls_privkey_init failed - %s\n",
gnutls_strerror(rc));
gnutls_x509_privkey_deinit(x509_privkey);
return NT_STATUS_INTERNAL_ERROR;
}
rc = gnutls_privkey_import_x509(privkey,
x509_privkey,
GNUTLS_PRIVKEY_IMPORT_AUTO_RELEASE);
if (rc != GNUTLS_E_SUCCESS) {
DBG_ERR("gnutls_privkey_import_x509 failed - %s\n",
gnutls_strerror(rc));
gnutls_x509_privkey_deinit(x509_privkey);
return NT_STATUS_INTERNAL_ERROR;
}
*pk = privkey;
return NT_STATUS_OK;
}
static WERROR get_and_verify_access_check(TALLOC_CTX *sub_ctx,
uint32_t version,
uint8_t *key_and_iv,
uint8_t *access_check,
uint32_t access_check_len,
struct auth_session_info *session_info)
{
struct bkrp_access_check_v2 uncrypted_accesscheckv2;
struct bkrp_access_check_v3 uncrypted_accesscheckv3;
gnutls_cipher_hd_t cipher_handle = { 0 };
gnutls_cipher_algorithm_t cipher_algo;
DATA_BLOB blob_us;
enum ndr_err_code ndr_err;
gnutls_datum_t key;
gnutls_datum_t iv;
struct dom_sid *access_sid = NULL;
struct dom_sid *caller_sid = NULL;
int rc;
switch (version) {
case 2:
cipher_algo = GNUTLS_CIPHER_3DES_CBC;
break;
case 3:
cipher_algo = GNUTLS_CIPHER_AES_256_CBC;
break;
default:
return WERR_INVALID_DATA;
}
key.data = key_and_iv;
key.size = gnutls_cipher_get_key_size(cipher_algo);
iv.data = key_and_iv + key.size;
iv.size = gnutls_cipher_get_iv_size(cipher_algo);
/* Allocate data structure for the plaintext */
blob_us = data_blob_talloc_zero(sub_ctx, access_check_len);
if (blob_us.data == NULL) {
return WERR_INVALID_DATA;
}
rc = gnutls_cipher_init(&cipher_handle,
cipher_algo,
&key,
&iv);
if (rc < 0) {
DBG_ERR("gnutls_cipher_init failed: %s\n",
gnutls_strerror(rc));
return WERR_INVALID_DATA;
}
rc = gnutls_cipher_decrypt2(cipher_handle,
access_check,
access_check_len,
blob_us.data,
blob_us.length);
gnutls_cipher_deinit(cipher_handle);
if (rc < 0) {
DBG_ERR("gnutls_cipher_decrypt2 failed: %s\n",
gnutls_strerror(rc));
return WERR_INVALID_DATA;
}
switch (version) {
case 2:
{
uint32_t hash_size = 20;
uint8_t hash[hash_size];
gnutls_hash_hd_t dig_ctx;
ndr_err = ndr_pull_struct_blob(&blob_us, sub_ctx, &uncrypted_accesscheckv2,
(ndr_pull_flags_fn_t)ndr_pull_bkrp_access_check_v2);
if (!NDR_ERR_CODE_IS_SUCCESS(ndr_err)) {
/* Unable to unmarshall */
return WERR_INVALID_DATA;
}
if (uncrypted_accesscheckv2.magic != 0x1) {
/* wrong magic */
return WERR_INVALID_DATA;
}
rc = gnutls_hash_init(&dig_ctx, GNUTLS_DIG_SHA1);
if (rc != GNUTLS_E_SUCCESS) {
return gnutls_error_to_werror(rc, WERR_INTERNAL_ERROR);
}
rc = gnutls_hash(dig_ctx,
blob_us.data,
blob_us.length - hash_size);
gnutls_hash_deinit(dig_ctx, hash);
if (rc != GNUTLS_E_SUCCESS) {
return gnutls_error_to_werror(rc, WERR_INTERNAL_ERROR);
}
/*
* We free it after the sha1 calculation because blob.data
* point to the same area
*/
if (!mem_equal_const_time(hash, uncrypted_accesscheckv2.hash, hash_size)) {
DEBUG(2, ("Wrong hash value in the access check in backup key remote protocol\n"));
return WERR_INVALID_DATA;
}
access_sid = &(uncrypted_accesscheckv2.sid);
break;
}
case 3:
{
uint32_t hash_size = 64;
uint8_t hash[hash_size];
gnutls_hash_hd_t dig_ctx;
ndr_err = ndr_pull_struct_blob(&blob_us, sub_ctx, &uncrypted_accesscheckv3,
(ndr_pull_flags_fn_t)ndr_pull_bkrp_access_check_v3);
if (!NDR_ERR_CODE_IS_SUCCESS(ndr_err)) {
/* Unable to unmarshall */
return WERR_INVALID_DATA;
}
if (uncrypted_accesscheckv3.magic != 0x1) {
/* wrong magic */
return WERR_INVALID_DATA;
}
rc = gnutls_hash_init(&dig_ctx, GNUTLS_DIG_SHA512);
if (rc != GNUTLS_E_SUCCESS) {
return gnutls_error_to_werror(rc, WERR_INTERNAL_ERROR);
}
rc = gnutls_hash(dig_ctx,
blob_us.data,
blob_us.length - hash_size);
gnutls_hash_deinit(dig_ctx, hash);
if (rc != GNUTLS_E_SUCCESS) {
return gnutls_error_to_werror(rc, WERR_INTERNAL_ERROR);
}
/*
* We free it after the sha1 calculation because blob.data
* point to the same area
*/
if (!mem_equal_const_time(hash, uncrypted_accesscheckv3.hash, hash_size)) {
DEBUG(2, ("Wrong hash value in the access check in backup key remote protocol\n"));
return WERR_INVALID_DATA;
}
access_sid = &(uncrypted_accesscheckv3.sid);
break;
}
default:
/* Never reached normally as we filtered at the switch / case level */
return WERR_INVALID_DATA;
}
caller_sid = &session_info->security_token->sids[PRIMARY_USER_SID_INDEX];
if (!dom_sid_equal(caller_sid, access_sid)) {
return WERR_INVALID_ACCESS;
}
return WERR_OK;
}
/*
* We have some data, such as saved website or IMAP passwords that the
* client has in profile on-disk. This needs to be decrypted. This
* version gives the server the data over the network (protected by
* the X.509 certificate and public key encryption, and asks that it
* be decrypted returned for short-term use, protected only by the
* negotiated transport encryption.
*
* The data is NOT stored in the LSA, but a X.509 certificate, public
* and private keys used to encrypt the data will be stored. There is
* only one active encryption key pair and certificate per domain, it
* is pointed at with G$BCKUPKEY_PREFERRED in the LSA secrets store.
*
* The potentially multiple valid decrypting key pairs are in turn
* stored in the LSA secrets store as G$BCKUPKEY_keyGuidString.
*
*/
static WERROR bkrp_client_wrap_decrypt_data(struct dcesrv_call_state *dce_call,
TALLOC_CTX *mem_ctx,
struct bkrp_BackupKey *r,
struct ldb_context *ldb_ctx)
{
struct auth_session_info *session_info =
dcesrv_call_session_info(dce_call);
struct bkrp_client_side_wrapped uncrypt_request;
DATA_BLOB blob;
enum ndr_err_code ndr_err;
char *guid_string;
char *cert_secret_name;
DATA_BLOB lsa_secret;
DATA_BLOB *uncrypted_data = NULL;
NTSTATUS status;
uint32_t requested_version;
blob.data = r->in.data_in;
blob.length = r->in.data_in_len;
if (r->in.data_in_len < 4 || r->in.data_in == NULL) {
return WERR_INVALID_PARAMETER;
}
/*
* We check for the version here, so we can actually print the
* message as we are unlikely to parse it with NDR.
*/
requested_version = IVAL(r->in.data_in, 0);
if ((requested_version != BACKUPKEY_CLIENT_WRAP_VERSION2)
&& (requested_version != BACKUPKEY_CLIENT_WRAP_VERSION3)) {
DEBUG(1, ("Request for unknown BackupKey sub-protocol %d\n", requested_version));
return WERR_INVALID_PARAMETER;
}
ndr_err = ndr_pull_struct_blob(&blob, mem_ctx, &uncrypt_request,
(ndr_pull_flags_fn_t)ndr_pull_bkrp_client_side_wrapped);
if (!NDR_ERR_CODE_IS_SUCCESS(ndr_err)) {
return WERR_INVALID_PARAMETER;
}
if ((uncrypt_request.version != BACKUPKEY_CLIENT_WRAP_VERSION2)
&& (uncrypt_request.version != BACKUPKEY_CLIENT_WRAP_VERSION3)) {
DEBUG(1, ("Request for unknown BackupKey sub-protocol %d\n", uncrypt_request.version));
return WERR_INVALID_PARAMETER;
}
guid_string = GUID_string(mem_ctx, &uncrypt_request.guid);
if (guid_string == NULL) {
return WERR_NOT_ENOUGH_MEMORY;
}
cert_secret_name = talloc_asprintf(mem_ctx,
"BCKUPKEY_%s",
guid_string);
if (cert_secret_name == NULL) {
return WERR_NOT_ENOUGH_MEMORY;
}
status = get_lsa_secret(mem_ctx,
ldb_ctx,
cert_secret_name,
&lsa_secret);
if (!NT_STATUS_IS_OK(status)) {
DEBUG(10, ("Error while fetching secret %s\n", cert_secret_name));
return WERR_INVALID_DATA;
} else if (lsa_secret.length == 0) {
/* we do not have the real secret attribute, like if we are an RODC */
return WERR_INVALID_PARAMETER;
} else {
struct bkrp_exported_RSA_key_pair keypair;
gnutls_privkey_t privkey = NULL;
gnutls_datum_t reversed_secret;
gnutls_datum_t uncrypted_secret;
uint32_t i;
DATA_BLOB blob_us;
WERROR werr;
int rc;
ndr_err = ndr_pull_struct_blob(&lsa_secret, mem_ctx, &keypair, (ndr_pull_flags_fn_t)ndr_pull_bkrp_exported_RSA_key_pair);
if (!NDR_ERR_CODE_IS_SUCCESS(ndr_err)) {
DEBUG(2, ("Unable to parse the ndr encoded cert in key %s\n", cert_secret_name));
return WERR_FILE_NOT_FOUND;
}
status = get_pk_from_raw_keypair_params(mem_ctx,
&keypair,
&privkey);
if (!NT_STATUS_IS_OK(status)) {
return WERR_INTERNAL_ERROR;
}
reversed_secret.data = talloc_array(mem_ctx, uint8_t,
uncrypt_request.encrypted_secret_len);
if (reversed_secret.data == NULL) {
gnutls_privkey_deinit(privkey);
return WERR_NOT_ENOUGH_MEMORY;
}
/* The secret has to be reversed ... */
for(i=0; i< uncrypt_request.encrypted_secret_len; i++) {
uint8_t *reversed = (uint8_t *)reversed_secret.data;
uint8_t *uncrypt = uncrypt_request.encrypted_secret;
reversed[i] = uncrypt[uncrypt_request.encrypted_secret_len - 1 - i];
}
reversed_secret.size = uncrypt_request.encrypted_secret_len;
/*
* Let's try to decrypt the secret now that
* we have the private key ...
*/
rc = gnutls_privkey_decrypt_data(privkey,
0,
&reversed_secret,
&uncrypted_secret);
gnutls_privkey_deinit(privkey);
if (rc != GNUTLS_E_SUCCESS) {
/* We are not able to decrypt the secret, looks like something is wrong */
return WERR_INVALID_PARAMETER;
}
blob_us.data = uncrypted_secret.data;
blob_us.length = uncrypted_secret.size;
if (uncrypt_request.version == 2) {
struct bkrp_encrypted_secret_v2 uncrypted_secretv2;
ndr_err = ndr_pull_struct_blob(&blob_us, mem_ctx, &uncrypted_secretv2,
(ndr_pull_flags_fn_t)ndr_pull_bkrp_encrypted_secret_v2);
gnutls_free(uncrypted_secret.data);
if (!NDR_ERR_CODE_IS_SUCCESS(ndr_err)) {
/* Unable to unmarshall */
return WERR_INVALID_DATA;
}
if (uncrypted_secretv2.magic != 0x20) {
/* wrong magic */
return WERR_INVALID_DATA;
}
werr = get_and_verify_access_check(mem_ctx, 2,
uncrypted_secretv2.payload_key,
uncrypt_request.access_check,
uncrypt_request.access_check_len,
session_info);
if (!W_ERROR_IS_OK(werr)) {
return werr;
}
uncrypted_data = talloc(mem_ctx, DATA_BLOB);
if (uncrypted_data == NULL) {
return WERR_INVALID_DATA;
}
uncrypted_data->data = uncrypted_secretv2.secret;
uncrypted_data->length = uncrypted_secretv2.secret_len;
}
if (uncrypt_request.version == 3) {
struct bkrp_encrypted_secret_v3 uncrypted_secretv3;
ndr_err = ndr_pull_struct_blob(&blob_us, mem_ctx, &uncrypted_secretv3,
(ndr_pull_flags_fn_t)ndr_pull_bkrp_encrypted_secret_v3);
gnutls_free(uncrypted_secret.data);
if (!NDR_ERR_CODE_IS_SUCCESS(ndr_err)) {
/* Unable to unmarshall */
return WERR_INVALID_DATA;
}
if (uncrypted_secretv3.magic1 != 0x30 ||
uncrypted_secretv3.magic2 != 0x6610 ||
uncrypted_secretv3.magic3 != 0x800e) {
/* wrong magic */
return WERR_INVALID_DATA;
}
/*
* Confirm that the caller is permitted to
* read this particular data. Because one key
* pair is used per domain, the caller could
* have stolen the profile data on-disk and
* would otherwise be able to read the
* passwords.
*/
werr = get_and_verify_access_check(mem_ctx, 3,
uncrypted_secretv3.payload_key,
uncrypt_request.access_check,
uncrypt_request.access_check_len,
session_info);
if (!W_ERROR_IS_OK(werr)) {
return werr;
}
uncrypted_data = talloc(mem_ctx, DATA_BLOB);
if (uncrypted_data == NULL) {
return WERR_INVALID_DATA;
}
uncrypted_data->data = uncrypted_secretv3.secret;
uncrypted_data->length = uncrypted_secretv3.secret_len;
}
/*
* Yeah if we are here all looks pretty good:
* - hash is ok
* - user sid is the same as the one in access check
* - we were able to decrypt the whole stuff
*/
}
if (uncrypted_data->data == NULL) {
return WERR_INVALID_DATA;
}
/* There is a magic value at the beginning of the data
* we can use an ad hoc structure but as the
* parent structure is just an array of bytes it is a lot of
* work just prepending 4 bytes
*/
*(r->out.data_out) = talloc_zero_array(mem_ctx, uint8_t, uncrypted_data->length + 4);
W_ERROR_HAVE_NO_MEMORY(*(r->out.data_out));
memcpy(4+*(r->out.data_out), uncrypted_data->data, uncrypted_data->length);
*(r->out.data_out_len) = uncrypted_data->length + 4;
return WERR_OK;
}
static DATA_BLOB *reverse_and_get_blob(TALLOC_CTX *mem_ctx,
gnutls_datum_t *datum)
{
DATA_BLOB *blob;
size_t i;
blob = talloc(mem_ctx, DATA_BLOB);
if (blob == NULL) {
return NULL;
}
blob->length = datum->size;
if (datum->data[0] == '\0') {
/* The datum has a leading byte zero, skip it */
blob->length = datum->size - 1;
}
blob->data = talloc_zero_array(mem_ctx, uint8_t, blob->length);
if (blob->data == NULL) {
talloc_free(blob);
return NULL;
}
for (i = 0; i < blob->length; i++) {
blob->data[i] = datum->data[datum->size - i - 1];
}
return blob;
}
static WERROR create_privkey_rsa(gnutls_privkey_t *pk)
{
int bits = 2048;
gnutls_x509_privkey_t x509_privkey = NULL;
gnutls_privkey_t privkey = NULL;
int rc;
rc = gnutls_x509_privkey_init(&x509_privkey);
if (rc != GNUTLS_E_SUCCESS) {
DBG_ERR("gnutls_x509_privkey_init failed - %s\n",
gnutls_strerror(rc));
return WERR_INTERNAL_ERROR;
}
rc = gnutls_x509_privkey_generate(x509_privkey,
GNUTLS_PK_RSA,
bits,
0);
if (rc != GNUTLS_E_SUCCESS) {
DBG_ERR("gnutls_x509_privkey_generate failed - %s\n",
gnutls_strerror(rc));
gnutls_x509_privkey_deinit(x509_privkey);
return WERR_INTERNAL_ERROR;
}
rc = gnutls_privkey_init(&privkey);
if (rc != GNUTLS_E_SUCCESS) {
DBG_ERR("gnutls_privkey_init failed - %s\n",
gnutls_strerror(rc));
gnutls_x509_privkey_deinit(x509_privkey);
return WERR_INTERNAL_ERROR;
}
rc = gnutls_privkey_import_x509(privkey,
x509_privkey,
GNUTLS_PRIVKEY_IMPORT_AUTO_RELEASE);
if (rc != GNUTLS_E_SUCCESS) {
DBG_ERR("gnutls_privkey_import_x509 failed - %s\n",
gnutls_strerror(rc));
gnutls_x509_privkey_deinit(x509_privkey);
return WERR_INTERNAL_ERROR;
}
*pk = privkey;
return WERR_OK;
}
static WERROR self_sign_cert(TALLOC_CTX *mem_ctx,
time_t lifetime,
const char *dn,
gnutls_privkey_t issuer_privkey,
gnutls_x509_crt_t *certificate,
DATA_BLOB *guidblob)
{
gnutls_datum_t unique_id;
gnutls_datum_t serial_number;
gnutls_x509_crt_t issuer_cert;
gnutls_x509_privkey_t x509_issuer_privkey;
time_t activation = time(NULL);
time_t expiry = activation + lifetime;
const char *error_string;
uint8_t *reversed;
size_t i;
int rc;
unique_id.size = guidblob->length;
unique_id.data = talloc_memdup(mem_ctx,
guidblob->data,
guidblob->length);
if (unique_id.data == NULL) {
return WERR_NOT_ENOUGH_MEMORY;
}
reversed = talloc_array(mem_ctx, uint8_t, guidblob->length);
if (reversed == NULL) {
talloc_free(unique_id.data);
return WERR_NOT_ENOUGH_MEMORY;
}
/* Native AD generates certificates with serialnumber in reversed notation */
for (i = 0; i < guidblob->length; i++) {
uint8_t *uncrypt = guidblob->data;
reversed[i] = uncrypt[guidblob->length - i - 1];
}
serial_number.size = guidblob->length;
serial_number.data = reversed;
/* Create certificate to sign */
rc = gnutls_x509_crt_init(&issuer_cert);
if (rc != GNUTLS_E_SUCCESS) {
DBG_ERR("gnutls_x509_crt_init failed - %s\n",
gnutls_strerror(rc));
return WERR_NOT_ENOUGH_MEMORY;
}
rc = gnutls_x509_crt_set_dn(issuer_cert, dn, &error_string);
if (rc != GNUTLS_E_SUCCESS) {
DBG_ERR("gnutls_x509_crt_set_dn failed - %s (%s)\n",
gnutls_strerror(rc),
error_string);
gnutls_x509_crt_deinit(issuer_cert);
return WERR_INVALID_PARAMETER;
}
rc = gnutls_x509_crt_set_issuer_dn(issuer_cert, dn, &error_string);
if (rc != GNUTLS_E_SUCCESS) {
DBG_ERR("gnutls_x509_crt_set_issuer_dn failed - %s (%s)\n",
gnutls_strerror(rc),
error_string);
gnutls_x509_crt_deinit(issuer_cert);
return WERR_INVALID_PARAMETER;
}
/* Get x509 privkey for subjectPublicKeyInfo */
rc = gnutls_x509_privkey_init(&x509_issuer_privkey);
if (rc != GNUTLS_E_SUCCESS) {
DBG_ERR("gnutls_x509_privkey_init failed - %s\n",
gnutls_strerror(rc));
gnutls_x509_crt_deinit(issuer_cert);
return WERR_INVALID_PARAMETER;
}
rc = gnutls_privkey_export_x509(issuer_privkey,
&x509_issuer_privkey);
if (rc != GNUTLS_E_SUCCESS) {
DBG_ERR("gnutls_x509_privkey_init failed - %s\n",
gnutls_strerror(rc));
gnutls_x509_privkey_deinit(x509_issuer_privkey);
gnutls_x509_crt_deinit(issuer_cert);
return WERR_INVALID_PARAMETER;
}
/* Set subjectPublicKeyInfo */
rc = gnutls_x509_crt_set_key(issuer_cert, x509_issuer_privkey);
gnutls_x509_privkey_deinit(x509_issuer_privkey);
if (rc != GNUTLS_E_SUCCESS) {
DBG_ERR("gnutls_x509_crt_set_pubkey failed - %s\n",
gnutls_strerror(rc));
gnutls_x509_crt_deinit(issuer_cert);
return WERR_INVALID_PARAMETER;
}
rc = gnutls_x509_crt_set_activation_time(issuer_cert, activation);
if (rc != GNUTLS_E_SUCCESS) {
DBG_ERR("gnutls_x509_crt_set_activation_time failed - %s\n",
gnutls_strerror(rc));
gnutls_x509_crt_deinit(issuer_cert);
return WERR_INVALID_PARAMETER;
}
rc = gnutls_x509_crt_set_expiration_time(issuer_cert, expiry);
if (rc != GNUTLS_E_SUCCESS) {
DBG_ERR("gnutls_x509_crt_set_expiration_time failed - %s\n",
gnutls_strerror(rc));
gnutls_x509_crt_deinit(issuer_cert);
return WERR_INVALID_PARAMETER;
}
rc = gnutls_x509_crt_set_version(issuer_cert, 3);
if (rc != GNUTLS_E_SUCCESS) {
DBG_ERR("gnutls_x509_crt_set_version failed - %s\n",
gnutls_strerror(rc));
gnutls_x509_crt_deinit(issuer_cert);
return WERR_INVALID_PARAMETER;
}
rc = gnutls_x509_crt_set_subject_unique_id(issuer_cert,
unique_id.data,
unique_id.size);
if (rc != GNUTLS_E_SUCCESS) {
DBG_ERR("gnutls_x509_crt_set_subject_key_id failed - %s\n",
gnutls_strerror(rc));
gnutls_x509_crt_deinit(issuer_cert);
return WERR_INVALID_PARAMETER;
}
rc = gnutls_x509_crt_set_issuer_unique_id(issuer_cert,
unique_id.data,
unique_id.size);
if (rc != GNUTLS_E_SUCCESS) {
DBG_ERR("gnutls_x509_crt_set_issuer_unique_id failed - %s\n",
gnutls_strerror(rc));
gnutls_x509_crt_deinit(issuer_cert);
return WERR_INVALID_PARAMETER;
}
rc = gnutls_x509_crt_set_serial(issuer_cert,
serial_number.data,
serial_number.size);
if (rc != GNUTLS_E_SUCCESS) {
DBG_ERR("gnutls_x509_crt_set_serial failed - %s\n",
gnutls_strerror(rc));
gnutls_x509_crt_deinit(issuer_cert);
return WERR_INVALID_PARAMETER;
}
rc = gnutls_x509_crt_privkey_sign(issuer_cert,
issuer_cert,
issuer_privkey,
GNUTLS_DIG_SHA1,
0);
if (rc != GNUTLS_E_SUCCESS) {
DBG_ERR("gnutls_x509_crt_privkey_sign failed - %s\n",
gnutls_strerror(rc));
return WERR_INVALID_PARAMETER;
}
*certificate = issuer_cert;
return WERR_OK;
}
/* Return an error when we fail to generate a certificate */
static WERROR generate_bkrp_cert(TALLOC_CTX *mem_ctx,
struct dcesrv_call_state *dce_call,
struct ldb_context *ldb_ctx,
const char *dn)
{
WERROR werr;
gnutls_privkey_t issuer_privkey = NULL;
gnutls_x509_crt_t cert = NULL;
gnutls_datum_t cert_blob;
gnutls_datum_t m, e, d, p, q, u, e1, e2;
DATA_BLOB blob;
DATA_BLOB blobkeypair;
DATA_BLOB *tmp;
bool ok = true;
struct GUID guid = GUID_random();
NTSTATUS status;
char *secret_name;
struct bkrp_exported_RSA_key_pair keypair;
enum ndr_err_code ndr_err;
time_t nb_seconds_validity = 3600 * 24 * 365;
int rc;
DEBUG(6, ("Trying to generate a certificate\n"));
werr = create_privkey_rsa(&issuer_privkey);
if (!W_ERROR_IS_OK(werr)) {
return werr;
}
status = GUID_to_ndr_blob(&guid, mem_ctx, &blob);
if (!NT_STATUS_IS_OK(status)) {
gnutls_privkey_deinit(issuer_privkey);
return WERR_INVALID_DATA;
}
werr = self_sign_cert(mem_ctx,
nb_seconds_validity,
dn,
issuer_privkey,
&cert,
&blob);
if (!W_ERROR_IS_OK(werr)) {
gnutls_privkey_deinit(issuer_privkey);
return WERR_INVALID_DATA;
}
rc = gnutls_x509_crt_export2(cert, GNUTLS_X509_FMT_DER, &cert_blob);
if (rc != GNUTLS_E_SUCCESS) {
DBG_ERR("gnutls_x509_crt_export2 failed - %s\n",
gnutls_strerror(rc));
gnutls_privkey_deinit(issuer_privkey);
gnutls_x509_crt_deinit(cert);
return WERR_INVALID_DATA;
}
keypair.cert.length = cert_blob.size;
keypair.cert.data = talloc_memdup(mem_ctx, cert_blob.data, cert_blob.size);
gnutls_x509_crt_deinit(cert);
gnutls_free(cert_blob.data);
if (keypair.cert.data == NULL) {
gnutls_privkey_deinit(issuer_privkey);
return WERR_NOT_ENOUGH_MEMORY;
}
rc = gnutls_privkey_export_rsa_raw(issuer_privkey,
&m,
&e,
&d,
&p,
&q,
&u,
&e1,
&e2);
if (rc != GNUTLS_E_SUCCESS) {
gnutls_privkey_deinit(issuer_privkey);
return WERR_INVALID_DATA;
}
/*
* Heimdal's bignum are big endian and the
* structure expect it to be in little endian
* so we reverse the buffer to make it work
*/
tmp = reverse_and_get_blob(mem_ctx, &e);
if (tmp == NULL) {
ok = false;
} else {
SMB_ASSERT(tmp->length <= 4);
keypair.public_exponent = *tmp;
}
tmp = reverse_and_get_blob(mem_ctx, &d);
if (tmp == NULL) {
ok = false;
} else {
keypair.private_exponent = *tmp;
}
tmp = reverse_and_get_blob(mem_ctx, &m);
if (tmp == NULL) {
ok = false;
} else {
keypair.modulus = *tmp;
}
tmp = reverse_and_get_blob(mem_ctx, &p);
if (tmp == NULL) {
ok = false;
} else {
keypair.prime1 = *tmp;
}
tmp = reverse_and_get_blob(mem_ctx, &q);
if (tmp == NULL) {
ok = false;
} else {
keypair.prime2 = *tmp;
}
tmp = reverse_and_get_blob(mem_ctx, &e1);
if (tmp == NULL) {
ok = false;
} else {
keypair.exponent1 = *tmp;
}
tmp = reverse_and_get_blob(mem_ctx, &e2);
if (tmp == NULL) {
ok = false;
} else {
keypair.exponent2 = *tmp;
}
tmp = reverse_and_get_blob(mem_ctx, &u);
if (tmp == NULL) {
ok = false;
} else {
keypair.coefficient = *tmp;
}
/* One of the keypair allocation was wrong */
if (ok == false) {
gnutls_privkey_deinit(issuer_privkey);
return WERR_INVALID_DATA;
}
keypair.certificate_len = keypair.cert.length;
ndr_err = ndr_push_struct_blob(&blobkeypair,
mem_ctx,
&keypair,
(ndr_push_flags_fn_t)ndr_push_bkrp_exported_RSA_key_pair);
gnutls_privkey_deinit(issuer_privkey);
if (!NDR_ERR_CODE_IS_SUCCESS(ndr_err)) {
return WERR_INVALID_DATA;
}
secret_name = talloc_asprintf(mem_ctx, "BCKUPKEY_%s", GUID_string(mem_ctx, &guid));
if (secret_name == NULL) {
return WERR_OUTOFMEMORY;
}
status = set_lsa_secret(mem_ctx, ldb_ctx, secret_name, &blobkeypair);
if (!NT_STATUS_IS_OK(status)) {
DEBUG(2, ("Failed to save the secret %s\n", secret_name));
}
talloc_free(secret_name);
GUID_to_ndr_blob(&guid, mem_ctx, &blob);
status = set_lsa_secret(mem_ctx, ldb_ctx, "BCKUPKEY_PREFERRED", &blob);
if (!NT_STATUS_IS_OK(status)) {
DEBUG(2, ("Failed to save the secret BCKUPKEY_PREFERRED\n"));
}
return WERR_OK;
}
static WERROR bkrp_retrieve_client_wrap_key(struct dcesrv_call_state *dce_call, TALLOC_CTX *mem_ctx,
struct bkrp_BackupKey *r, struct ldb_context *ldb_ctx)
{
struct GUID guid;
char *guid_string;
DATA_BLOB lsa_secret;
enum ndr_err_code ndr_err;
NTSTATUS status;
/*
* here we basically need to return our certificate
* search for lsa secret BCKUPKEY_PREFERRED first
*/
status = get_lsa_secret(mem_ctx,
ldb_ctx,
"BCKUPKEY_PREFERRED",
&lsa_secret);
if (NT_STATUS_EQUAL(status, NT_STATUS_RESOURCE_NAME_NOT_FOUND)) {
/* Ok we can be in this case if there was no certs */
struct loadparm_context *lp_ctx = dce_call->conn->dce_ctx->lp_ctx;
char *dn = talloc_asprintf(mem_ctx, "CN=%s",
lpcfg_realm(lp_ctx));
WERROR werr = generate_bkrp_cert(mem_ctx, dce_call, ldb_ctx, dn);
if (!W_ERROR_IS_OK(werr)) {
return WERR_INVALID_PARAMETER;
}
status = get_lsa_secret(mem_ctx,
ldb_ctx,
"BCKUPKEY_PREFERRED",
&lsa_secret);
if (!NT_STATUS_IS_OK(status)) {
/* Ok we really don't manage to get this certs ...*/
DEBUG(2, ("Unable to locate BCKUPKEY_PREFERRED after cert generation\n"));
return WERR_FILE_NOT_FOUND;
}
} else if (!NT_STATUS_IS_OK(status)) {
return WERR_INTERNAL_ERROR;
}
if (lsa_secret.length == 0) {
DEBUG(1, ("No secret in BCKUPKEY_PREFERRED, are we an undetected RODC?\n"));
return WERR_INTERNAL_ERROR;
} else {
char *cert_secret_name;
status = GUID_from_ndr_blob(&lsa_secret, &guid);
if (!NT_STATUS_IS_OK(status)) {
return WERR_FILE_NOT_FOUND;
}
guid_string = GUID_string(mem_ctx, &guid);
if (guid_string == NULL) {
/* We return file not found because the client
* expect this error
*/
return WERR_FILE_NOT_FOUND;
}
cert_secret_name = talloc_asprintf(mem_ctx,
"BCKUPKEY_%s",
guid_string);
status = get_lsa_secret(mem_ctx,
ldb_ctx,
cert_secret_name,
&lsa_secret);
if (!NT_STATUS_IS_OK(status)) {
return WERR_FILE_NOT_FOUND;
}
if (lsa_secret.length != 0) {
struct bkrp_exported_RSA_key_pair keypair;
ndr_err = ndr_pull_struct_blob(&lsa_secret, mem_ctx, &keypair,
(ndr_pull_flags_fn_t)ndr_pull_bkrp_exported_RSA_key_pair);
if (!NDR_ERR_CODE_IS_SUCCESS(ndr_err)) {
return WERR_FILE_NOT_FOUND;
}
*(r->out.data_out_len) = keypair.cert.length;
*(r->out.data_out) = talloc_memdup(mem_ctx, keypair.cert.data, keypair.cert.length);
W_ERROR_HAVE_NO_MEMORY(*(r->out.data_out));
return WERR_OK;
} else {
DEBUG(1, ("No or broken secret called %s\n", cert_secret_name));
return WERR_INTERNAL_ERROR;
}
}
return WERR_NOT_SUPPORTED;
}
static WERROR generate_bkrp_server_wrap_key(TALLOC_CTX *ctx, struct ldb_context *ldb_ctx)
{
struct GUID guid = GUID_random();
enum ndr_err_code ndr_err;
DATA_BLOB blob_wrap_key, guid_blob;
struct bkrp_dc_serverwrap_key wrap_key;
NTSTATUS status;
char *secret_name;
TALLOC_CTX *frame = talloc_stackframe();
generate_random_buffer(wrap_key.key, sizeof(wrap_key.key));
ndr_err = ndr_push_struct_blob(&blob_wrap_key, ctx, &wrap_key, (ndr_push_flags_fn_t)ndr_push_bkrp_dc_serverwrap_key);
if (!NDR_ERR_CODE_IS_SUCCESS(ndr_err)) {
TALLOC_FREE(frame);
return WERR_INVALID_DATA;
}
secret_name = talloc_asprintf(frame, "BCKUPKEY_%s", GUID_string(ctx, &guid));
if (secret_name == NULL) {
TALLOC_FREE(frame);
return WERR_NOT_ENOUGH_MEMORY;
}
status = set_lsa_secret(frame, ldb_ctx, secret_name, &blob_wrap_key);
if (!NT_STATUS_IS_OK(status)) {
DEBUG(2, ("Failed to save the secret %s\n", secret_name));
TALLOC_FREE(frame);
return WERR_INTERNAL_ERROR;
}
status = GUID_to_ndr_blob(&guid, frame, &guid_blob);
if (!NT_STATUS_IS_OK(status)) {
DEBUG(2, ("Failed to save the secret %s\n", secret_name));
TALLOC_FREE(frame);
}
status = set_lsa_secret(frame, ldb_ctx, "BCKUPKEY_P", &guid_blob);
if (!NT_STATUS_IS_OK(status)) {
DEBUG(2, ("Failed to save the secret %s\n", secret_name));
TALLOC_FREE(frame);
return WERR_INTERNAL_ERROR;
}
TALLOC_FREE(frame);
return WERR_OK;
}
/*
* Find the specified decryption keys from the LSA secrets store as
* G$BCKUPKEY_keyGuidString.
*/
static WERROR bkrp_do_retrieve_server_wrap_key(TALLOC_CTX *mem_ctx, struct ldb_context *ldb_ctx,
struct bkrp_dc_serverwrap_key *server_key,
struct GUID *guid)
{
NTSTATUS status;
DATA_BLOB lsa_secret;
char *secret_name;
char *guid_string;
enum ndr_err_code ndr_err;
guid_string = GUID_string(mem_ctx, guid);
if (guid_string == NULL) {
/* We return file not found because the client
* expect this error
*/
return WERR_FILE_NOT_FOUND;
}
secret_name = talloc_asprintf(mem_ctx, "BCKUPKEY_%s", guid_string);
if (secret_name == NULL) {
return WERR_NOT_ENOUGH_MEMORY;
}
status = get_lsa_secret(mem_ctx, ldb_ctx, secret_name, &lsa_secret);
if (!NT_STATUS_IS_OK(status)) {
DEBUG(10, ("Error while fetching secret %s\n", secret_name));
return WERR_INVALID_DATA;
}
if (lsa_secret.length == 0) {
/* RODC case, we do not have secrets locally */
DEBUG(1, ("Unable to fetch value for secret %s, are we an undetected RODC?\n",
secret_name));
return WERR_INTERNAL_ERROR;
}
ndr_err = ndr_pull_struct_blob(&lsa_secret, mem_ctx, server_key,
(ndr_pull_flags_fn_t)ndr_pull_bkrp_dc_serverwrap_key);
if (!NDR_ERR_CODE_IS_SUCCESS(ndr_err)) {
DEBUG(2, ("Unable to parse the ndr encoded server wrap key %s\n", secret_name));
return WERR_INVALID_DATA;
}
return WERR_OK;
}
/*
* Find the current, preferred ServerWrap Key by looking at
* G$BCKUPKEY_P in the LSA secrets store.
*
* Then find the current decryption keys from the LSA secrets store as
* G$BCKUPKEY_keyGuidString.
*/
static WERROR bkrp_do_retrieve_default_server_wrap_key(TALLOC_CTX *mem_ctx,
struct ldb_context *ldb_ctx,
struct bkrp_dc_serverwrap_key *server_key,
struct GUID *returned_guid)
{
NTSTATUS status;
DATA_BLOB guid_binary;
status = get_lsa_secret(mem_ctx, ldb_ctx, "BCKUPKEY_P", &guid_binary);
if (!NT_STATUS_IS_OK(status)) {
DEBUG(10, ("Error while fetching secret BCKUPKEY_P to find current GUID\n"));
return WERR_FILE_NOT_FOUND;
} else if (guid_binary.length == 0) {
/* RODC case, we do not have secrets locally */
DEBUG(1, ("Unable to fetch value for secret BCKUPKEY_P, are we an undetected RODC?\n"));
return WERR_INTERNAL_ERROR;
}
status = GUID_from_ndr_blob(&guid_binary, returned_guid);
if (!NT_STATUS_IS_OK(status)) {
return WERR_FILE_NOT_FOUND;
}
return bkrp_do_retrieve_server_wrap_key(mem_ctx, ldb_ctx,
server_key, returned_guid);
}
static WERROR bkrp_server_wrap_decrypt_data(struct dcesrv_call_state *dce_call, TALLOC_CTX *mem_ctx,
struct bkrp_BackupKey *r ,struct ldb_context *ldb_ctx)
{
struct auth_session_info *session_info =
dcesrv_call_session_info(dce_call);
WERROR werr;
struct bkrp_server_side_wrapped decrypt_request;
DATA_BLOB sid_blob, encrypted_blob;
DATA_BLOB blob;
enum ndr_err_code ndr_err;
struct bkrp_dc_serverwrap_key server_key;
struct bkrp_rc4encryptedpayload rc4payload;
struct dom_sid *caller_sid;
uint8_t symkey[20]; /* SHA-1 hash len */
uint8_t mackey[20]; /* SHA-1 hash len */
uint8_t mac[20]; /* SHA-1 hash len */
gnutls_hmac_hd_t hmac_hnd;
gnutls_cipher_hd_t cipher_hnd;
gnutls_datum_t cipher_key;
int rc;
blob.data = r->in.data_in;
blob.length = r->in.data_in_len;
if (r->in.data_in_len == 0 || r->in.data_in == NULL) {
return WERR_INVALID_PARAMETER;
}
ndr_err = ndr_pull_struct_blob_all(&blob, mem_ctx, &decrypt_request,
(ndr_pull_flags_fn_t)ndr_pull_bkrp_server_side_wrapped);
if (!NDR_ERR_CODE_IS_SUCCESS(ndr_err)) {
return WERR_INVALID_PARAMETER;
}
if (decrypt_request.magic != BACKUPKEY_SERVER_WRAP_VERSION) {
return WERR_INVALID_PARAMETER;
}
werr = bkrp_do_retrieve_server_wrap_key(mem_ctx, ldb_ctx, &server_key,
&decrypt_request.guid);
if (!W_ERROR_IS_OK(werr)) {
return werr;
}
dump_data_pw("server_key: \n", server_key.key, sizeof(server_key.key));
dump_data_pw("r2: \n", decrypt_request.r2, sizeof(decrypt_request.r2));
/*
* This is *not* the leading 64 bytes, as indicated in MS-BKRP 3.1.4.1.1
* BACKUPKEY_BACKUP_GUID, it really is the whole key
*/
rc = gnutls_hmac_init(&hmac_hnd,
GNUTLS_MAC_SHA1,
server_key.key,
sizeof(server_key.key));
if (rc != GNUTLS_E_SUCCESS) {
return gnutls_error_to_werror(rc, WERR_INTERNAL_ERROR);
}
rc = gnutls_hmac(hmac_hnd,
decrypt_request.r2,
sizeof(decrypt_request.r2));
if (rc != GNUTLS_E_SUCCESS) {
return gnutls_error_to_werror(rc, WERR_INTERNAL_ERROR);
}
gnutls_hmac_output(hmac_hnd, symkey);
dump_data_pw("symkey: \n", symkey, sizeof(symkey));
/* rc4 decrypt sid and secret using sym key */
cipher_key.data = symkey;
cipher_key.size = sizeof(symkey);
encrypted_blob = data_blob_const(decrypt_request.rc4encryptedpayload,
decrypt_request.ciphertext_length);
rc = gnutls_cipher_init(&cipher_hnd,
GNUTLS_CIPHER_ARCFOUR_128,
&cipher_key,
NULL);
if (rc != GNUTLS_E_SUCCESS) {
return gnutls_error_to_werror(rc, WERR_INTERNAL_ERROR);
}
rc = gnutls_cipher_encrypt2(cipher_hnd,
encrypted_blob.data,
encrypted_blob.length,
encrypted_blob.data,
encrypted_blob.length);
gnutls_cipher_deinit(cipher_hnd);
if (rc != GNUTLS_E_SUCCESS) {
return gnutls_error_to_werror(rc, WERR_INTERNAL_ERROR);
}
ndr_err = ndr_pull_struct_blob_all(&encrypted_blob, mem_ctx, &rc4payload,
(ndr_pull_flags_fn_t)ndr_pull_bkrp_rc4encryptedpayload);
if (!NDR_ERR_CODE_IS_SUCCESS(ndr_err)) {
return WERR_INVALID_PARAMETER;
}
if (decrypt_request.payload_length != rc4payload.secret_data.length) {
return WERR_INVALID_PARAMETER;
}
dump_data_pw("r3: \n", rc4payload.r3, sizeof(rc4payload.r3));
/*
* This is *not* the leading 64 bytes, as indicated in MS-BKRP 3.1.4.1.1
* BACKUPKEY_BACKUP_GUID, it really is the whole key
*/
rc = gnutls_hmac(hmac_hnd,
rc4payload.r3,
sizeof(rc4payload.r3));
if (rc != GNUTLS_E_SUCCESS) {
return gnutls_error_to_werror(rc, WERR_INTERNAL_ERROR);
}
gnutls_hmac_deinit(hmac_hnd, mackey);
dump_data_pw("mackey: \n", mackey, sizeof(mackey));
ndr_err = ndr_push_struct_blob(&sid_blob, mem_ctx, &rc4payload.sid,
(ndr_push_flags_fn_t)ndr_push_dom_sid);
if (!NDR_ERR_CODE_IS_SUCCESS(ndr_err)) {
return WERR_INTERNAL_ERROR;
}
rc = gnutls_hmac_init(&hmac_hnd,
GNUTLS_MAC_SHA1,
mackey,
sizeof(mackey));
if (rc != GNUTLS_E_SUCCESS) {
return gnutls_error_to_werror(rc, WERR_INTERNAL_ERROR);
}
/* SID field */
rc = gnutls_hmac(hmac_hnd,
sid_blob.data,
sid_blob.length);
if (rc != GNUTLS_E_SUCCESS) {
return gnutls_error_to_werror(rc, WERR_INTERNAL_ERROR);
}
/* Secret field */
rc = gnutls_hmac(hmac_hnd,
rc4payload.secret_data.data,
rc4payload.secret_data.length);
if (rc != GNUTLS_E_SUCCESS) {
return gnutls_error_to_werror(rc, WERR_INTERNAL_ERROR);
}
gnutls_hmac_deinit(hmac_hnd, mac);
dump_data_pw("mac: \n", mac, sizeof(mac));
dump_data_pw("rc4payload.mac: \n", rc4payload.mac, sizeof(rc4payload.mac));
if (!mem_equal_const_time(mac, rc4payload.mac, sizeof(mac))) {
return WERR_INVALID_ACCESS;
}
caller_sid = &session_info->security_token->sids[PRIMARY_USER_SID_INDEX];
if (!dom_sid_equal(&rc4payload.sid, caller_sid)) {
return WERR_INVALID_ACCESS;
}
*(r->out.data_out) = rc4payload.secret_data.data;
*(r->out.data_out_len) = rc4payload.secret_data.length;
return WERR_OK;
}
/*
* For BACKUPKEY_RESTORE_GUID we need to check the first 4 bytes to
* determine what type of restore is wanted.
*
* See MS-BKRP 3.1.4.1.4 BACKUPKEY_RESTORE_GUID point 1.
*/
static WERROR bkrp_generic_decrypt_data(struct dcesrv_call_state *dce_call, TALLOC_CTX *mem_ctx,
struct bkrp_BackupKey *r, struct ldb_context *ldb_ctx)
{
if (r->in.data_in_len < 4 || r->in.data_in == NULL) {
return WERR_INVALID_PARAMETER;
}
if (IVAL(r->in.data_in, 0) == BACKUPKEY_SERVER_WRAP_VERSION) {
return bkrp_server_wrap_decrypt_data(dce_call, mem_ctx, r, ldb_ctx);
}
return bkrp_client_wrap_decrypt_data(dce_call, mem_ctx, r, ldb_ctx);
}
/*
* We have some data, such as saved website or IMAP passwords that the
* client would like to put into the profile on-disk. This needs to
* be encrypted. This version gives the server the data over the
* network (protected only by the negotiated transport encryption),
* and asks that it be encrypted and returned for long-term storage.
*
* The data is NOT stored in the LSA, but a key to encrypt the data
* will be stored. There is only one active encryption key per domain,
* it is pointed at with G$BCKUPKEY_P in the LSA secrets store.
*
* The potentially multiple valid decryptiong keys (and the encryption
* key) are in turn stored in the LSA secrets store as
* G$BCKUPKEY_keyGuidString.
*
*/
static WERROR bkrp_server_wrap_encrypt_data(struct dcesrv_call_state *dce_call, TALLOC_CTX *mem_ctx,
struct bkrp_BackupKey *r ,struct ldb_context *ldb_ctx)
{
struct auth_session_info *session_info =
dcesrv_call_session_info(dce_call);
DATA_BLOB sid_blob, encrypted_blob, server_wrapped_blob;
WERROR werr;
struct dom_sid *caller_sid;
uint8_t symkey[20]; /* SHA-1 hash len */
uint8_t mackey[20]; /* SHA-1 hash len */
struct bkrp_rc4encryptedpayload rc4payload;
gnutls_hmac_hd_t hmac_hnd;
struct bkrp_dc_serverwrap_key server_key;
enum ndr_err_code ndr_err;
struct bkrp_server_side_wrapped server_side_wrapped;
struct GUID guid;
gnutls_cipher_hd_t cipher_hnd;
gnutls_datum_t cipher_key;
int rc;
if (r->in.data_in_len == 0 || r->in.data_in == NULL) {
return WERR_INVALID_PARAMETER;
}
werr = bkrp_do_retrieve_default_server_wrap_key(mem_ctx,
ldb_ctx, &server_key,
&guid);
if (!W_ERROR_IS_OK(werr)) {
if (W_ERROR_EQUAL(werr, WERR_FILE_NOT_FOUND)) {
/* Generate the server wrap key since one wasn't found */
werr = generate_bkrp_server_wrap_key(mem_ctx,
ldb_ctx);
if (!W_ERROR_IS_OK(werr)) {
return WERR_INVALID_PARAMETER;
}
werr = bkrp_do_retrieve_default_server_wrap_key(mem_ctx,
ldb_ctx,
&server_key,
&guid);
if (W_ERROR_EQUAL(werr, WERR_FILE_NOT_FOUND)) {
/* Ok we really don't manage to get this secret ...*/
return WERR_FILE_NOT_FOUND;
}
} else {
/* In theory we should NEVER reach this point as it
should only appear in a rodc server */
/* we do not have the real secret attribute */
return WERR_INVALID_PARAMETER;
}
}
caller_sid = &session_info->security_token->sids[PRIMARY_USER_SID_INDEX];
dump_data_pw("server_key: \n", server_key.key, sizeof(server_key.key));
/*
* This is the key derivation step, so that the HMAC and RC4
* operations over the user-supplied data are not able to
* disclose the master key. By using random data, the symkey
* and mackey values are unique for this operation, and
* discovering these (by reversing the RC4 over the
* attacker-controlled data) does not return something able to
* be used to decrypt the encrypted data of other users
*/
generate_random_buffer(server_side_wrapped.r2, sizeof(server_side_wrapped.r2));
dump_data_pw("r2: \n", server_side_wrapped.r2, sizeof(server_side_wrapped.r2));
generate_random_buffer(rc4payload.r3, sizeof(rc4payload.r3));
dump_data_pw("r3: \n", rc4payload.r3, sizeof(rc4payload.r3));
/*
* This is *not* the leading 64 bytes, as indicated in MS-BKRP 3.1.4.1.1
* BACKUPKEY_BACKUP_GUID, it really is the whole key
*/
rc = gnutls_hmac_init(&hmac_hnd,
GNUTLS_MAC_SHA1,
server_key.key,
sizeof(server_key.key));
if (rc != GNUTLS_E_SUCCESS) {
return gnutls_error_to_werror(rc, WERR_INTERNAL_ERROR);
}
rc = gnutls_hmac(hmac_hnd,
server_side_wrapped.r2,
sizeof(server_side_wrapped.r2));
if (rc != GNUTLS_E_SUCCESS) {
return gnutls_error_to_werror(rc, WERR_INTERNAL_ERROR);
}
gnutls_hmac_output(hmac_hnd, symkey);
dump_data_pw("symkey: \n", symkey, sizeof(symkey));
/*
* This is *not* the leading 64 bytes, as indicated in MS-BKRP 3.1.4.1.1
* BACKUPKEY_BACKUP_GUID, it really is the whole key
*/
rc = gnutls_hmac(hmac_hnd,
rc4payload.r3,
sizeof(rc4payload.r3));
if (rc != GNUTLS_E_SUCCESS) {
return gnutls_error_to_werror(rc, WERR_INTERNAL_ERROR);
}
gnutls_hmac_deinit(hmac_hnd, mackey);
dump_data_pw("mackey: \n", mackey, sizeof(mackey));
ndr_err = ndr_push_struct_blob(&sid_blob, mem_ctx, caller_sid,
(ndr_push_flags_fn_t)ndr_push_dom_sid);
if (!NDR_ERR_CODE_IS_SUCCESS(ndr_err)) {
return WERR_INTERNAL_ERROR;
}
rc4payload.secret_data.data = r->in.data_in;
rc4payload.secret_data.length = r->in.data_in_len;
rc = gnutls_hmac_init(&hmac_hnd,
GNUTLS_MAC_SHA1,
mackey,
sizeof(mackey));
if (rc != GNUTLS_E_SUCCESS) {
return gnutls_error_to_werror(rc, WERR_INTERNAL_ERROR);
}
/* SID field */
rc = gnutls_hmac(hmac_hnd,
sid_blob.data,
sid_blob.length);
if (rc != GNUTLS_E_SUCCESS) {
return gnutls_error_to_werror(rc, WERR_INTERNAL_ERROR);
}
/* Secret field */
rc = gnutls_hmac(hmac_hnd,
rc4payload.secret_data.data,
rc4payload.secret_data.length);
if (rc != GNUTLS_E_SUCCESS) {
return gnutls_error_to_werror(rc, WERR_INTERNAL_ERROR);
}
gnutls_hmac_deinit(hmac_hnd, rc4payload.mac);
dump_data_pw("rc4payload.mac: \n", rc4payload.mac, sizeof(rc4payload.mac));
rc4payload.sid = *caller_sid;
ndr_err = ndr_push_struct_blob(&encrypted_blob, mem_ctx, &rc4payload,
(ndr_push_flags_fn_t)ndr_push_bkrp_rc4encryptedpayload);
if (!NDR_ERR_CODE_IS_SUCCESS(ndr_err)) {
return WERR_INTERNAL_ERROR;
}
/* rc4 encrypt sid and secret using sym key */
cipher_key.data = symkey;
cipher_key.size = sizeof(symkey);
rc = gnutls_cipher_init(&cipher_hnd,
GNUTLS_CIPHER_ARCFOUR_128,
&cipher_key,
NULL);
if (rc != GNUTLS_E_SUCCESS) {
return gnutls_error_to_werror(rc, WERR_INTERNAL_ERROR);
}
rc = gnutls_cipher_encrypt2(cipher_hnd,
encrypted_blob.data,
encrypted_blob.length,
encrypted_blob.data,
encrypted_blob.length);
gnutls_cipher_deinit(cipher_hnd);
if (rc != GNUTLS_E_SUCCESS) {
return gnutls_error_to_werror(rc, WERR_INTERNAL_ERROR);
}
/* create server wrap structure */
server_side_wrapped.payload_length = rc4payload.secret_data.length;
server_side_wrapped.ciphertext_length = encrypted_blob.length;
server_side_wrapped.guid = guid;
server_side_wrapped.rc4encryptedpayload = encrypted_blob.data;
ndr_err = ndr_push_struct_blob(&server_wrapped_blob, mem_ctx, &server_side_wrapped,
(ndr_push_flags_fn_t)ndr_push_bkrp_server_side_wrapped);
if (!NDR_ERR_CODE_IS_SUCCESS(ndr_err)) {
return WERR_INTERNAL_ERROR;
}
*(r->out.data_out) = server_wrapped_blob.data;
*(r->out.data_out_len) = server_wrapped_blob.length;
return WERR_OK;
}
static WERROR dcesrv_bkrp_BackupKey(struct dcesrv_call_state *dce_call,
TALLOC_CTX *mem_ctx, struct bkrp_BackupKey *r)
{
WERROR error = WERR_INVALID_PARAMETER;
struct ldb_context *ldb_ctx;
bool is_rodc;
const char *addr = "unknown";
/* At which level we start to add more debug of what is done in the protocol */
const int debuglevel = 4;
if (DEBUGLVL(debuglevel)) {
const struct tsocket_address *remote_address;
remote_address = dcesrv_connection_get_remote_address(dce_call->conn);
if (tsocket_address_is_inet(remote_address, "ip")) {
addr = tsocket_address_inet_addr_string(remote_address, mem_ctx);
W_ERROR_HAVE_NO_MEMORY(addr);
}
}
if (lpcfg_server_role(dce_call->conn->dce_ctx->lp_ctx) != ROLE_ACTIVE_DIRECTORY_DC) {
return WERR_NOT_SUPPORTED;
}
/*
* Save the current remote session details so they can used by the
* audit logging module. This allows the audit logging to report the
* remote users details, rather than the system users details.
*/
ldb_ctx = dcesrv_samdb_connect_as_system(mem_ctx, dce_call);
if (samdb_rodc(ldb_ctx, &is_rodc) != LDB_SUCCESS) {
talloc_unlink(mem_ctx, ldb_ctx);
return WERR_INVALID_PARAMETER;
}
if (!is_rodc) {
if(strncasecmp(GUID_string(mem_ctx, r->in.guidActionAgent),
BACKUPKEY_RESTORE_GUID, strlen(BACKUPKEY_RESTORE_GUID)) == 0) {
DEBUG(debuglevel, ("Client %s requested to decrypt a wrapped secret\n", addr));
error = bkrp_generic_decrypt_data(dce_call, mem_ctx, r, ldb_ctx);
}
if (strncasecmp(GUID_string(mem_ctx, r->in.guidActionAgent),
BACKUPKEY_RETRIEVE_BACKUP_KEY_GUID, strlen(BACKUPKEY_RETRIEVE_BACKUP_KEY_GUID)) == 0) {
DEBUG(debuglevel, ("Client %s requested certificate for client wrapped secret\n", addr));
error = bkrp_retrieve_client_wrap_key(dce_call, mem_ctx, r, ldb_ctx);
}
if (strncasecmp(GUID_string(mem_ctx, r->in.guidActionAgent),
BACKUPKEY_RESTORE_GUID_WIN2K, strlen(BACKUPKEY_RESTORE_GUID_WIN2K)) == 0) {
DEBUG(debuglevel, ("Client %s requested to decrypt a server side wrapped secret\n", addr));
error = bkrp_server_wrap_decrypt_data(dce_call, mem_ctx, r, ldb_ctx);
}
if (strncasecmp(GUID_string(mem_ctx, r->in.guidActionAgent),
BACKUPKEY_BACKUP_GUID, strlen(BACKUPKEY_BACKUP_GUID)) == 0) {
DEBUG(debuglevel, ("Client %s requested a server wrapped secret\n", addr));
error = bkrp_server_wrap_encrypt_data(dce_call, mem_ctx, r, ldb_ctx);
}
}
/*else: I am a RODC so I don't handle backup key protocol */
talloc_unlink(mem_ctx, ldb_ctx);
return error;
}
/* include the generated boilerplate */
#include "librpc/gen_ndr/ndr_backupkey_s.c"