1
0
mirror of https://github.com/samba-team/samba.git synced 2025-01-11 05:18:09 +03:00
samba-mirror/libcli/security/sddl_conditional_ace.c
Douglas Bagnall 4b8e9e3f0c libcli:security: add functions to decode and decode RA ACEs
Resource Attribute ACEs have similar syntactical components to
conditional ACEs -- enough so that it is worth reusing the same
functions, but not quite enough so that it is exactly simple.

Signed-off-by: Douglas Bagnall <douglas.bagnall@catalyst.net.nz>
Reviewed-by: Andrew Bartlett <abartlet@samba.org>
2023-09-26 23:45:35 +00:00

3325 lines
81 KiB
C

/*
* Unix SMB implementation.
* Functions for understanding conditional ACEs
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, see <http://www.gnu.org/licenses/>.
*/
#include "includes.h"
#include "librpc/gen_ndr/ndr_security.h"
#include "librpc/gen_ndr/conditional_ace.h"
#include "libcli/security/security.h"
#include "libcli/security/conditional_ace.h"
#include "libcli/security/claims-conversions.h"
#include "lib/util/tsort.h"
#include "lib/util/bytearray.h"
/* We're only dealing with utf-8 here. Honestly. */
#undef strncasecmp
#define SDDL_FLAG_EXPECTING_UNARY_OP 1
#define SDDL_FLAG_EXPECTING_BINARY_OP 2
#define SDDL_FLAG_EXPECTING_BINARY_LOGIC_OP 4
#define SDDL_FLAG_EXPECTING_LOCAL_ATTR 8
#define SDDL_FLAG_EXPECTING_NON_LOCAL_ATTR 16
#define SDDL_FLAG_EXPECTING_LITERAL 32
#define SDDL_FLAG_EXPECTING_PAREN 64
#define SDDL_FLAG_EXPECTING_END 128
#define SDDL_FLAG_EXPECTING_PAREN_LITERAL 256
#define SDDL_FLAG_IS_UNARY_OP (1 << 20)
#define SDDL_FLAG_IS_BINARY_OP (1 << 21)
#define SDDL_FLAG_IS_FAKE_OP (1 << 22)
#define SDDL_FLAG_IS_LITERAL (1 << 23)
#define SDDL_FLAG_IS_ATTR (1 << 24)
/*
* A resource attribute ACE has a slightly different syntax for SIDs.
*/
#define SDDL_FLAG_IS_RESOURCE_ATTR_ACE (1 << 30)
#define SDDL_FLAGS_EXPR_START (SDDL_FLAG_EXPECTING_UNARY_OP | \
SDDL_FLAG_EXPECTING_LOCAL_ATTR | \
SDDL_FLAG_EXPECTING_NON_LOCAL_ATTR | \
SDDL_FLAG_EXPECTING_PAREN)
#define SDDL_FLAGS_MEMBER_OP (SDDL_FLAG_EXPECTING_LITERAL | \
SDDL_FLAG_EXPECTING_PAREN_LITERAL | \
SDDL_FLAG_IS_UNARY_OP)
#define SDDL_FLAGS_RELATIONAL_OP (SDDL_FLAG_EXPECTING_LITERAL | \
SDDL_FLAG_EXPECTING_PAREN | \
SDDL_FLAG_EXPECTING_NON_LOCAL_ATTR | \
SDDL_FLAG_IS_BINARY_OP)
#define SDDL_FLAGS_CONTAINS_OP (SDDL_FLAG_EXPECTING_LITERAL | \
SDDL_FLAG_EXPECTING_NON_LOCAL_ATTR | \
SDDL_FLAG_IS_BINARY_OP)
#define SDDL_FLAGS_EXISTS_OP (SDDL_FLAG_EXPECTING_LOCAL_ATTR | \
SDDL_FLAG_EXPECTING_NON_LOCAL_ATTR | \
SDDL_FLAG_IS_UNARY_OP)
#define SDDL_FLAGS_LOGIC_OP (SDDL_FLAG_EXPECTING_LOCAL_ATTR | \
SDDL_FLAG_EXPECTING_NON_LOCAL_ATTR | \
SDDL_FLAG_EXPECTING_PAREN | \
SDDL_FLAG_EXPECTING_UNARY_OP | \
SDDL_FLAG_IS_BINARY_OP)
#define SDDL_FLAGS_ATTRIBUTE (SDDL_FLAG_EXPECTING_BINARY_OP | \
SDDL_FLAG_EXPECTING_BINARY_LOGIC_OP | \
SDDL_FLAG_EXPECTING_END | \
SDDL_FLAG_IS_ATTR)
#define SDDL_FLAGS_LITERAL (SDDL_FLAG_EXPECTING_BINARY_LOGIC_OP | \
SDDL_FLAG_EXPECTING_END |\
SDDL_FLAG_IS_LITERAL)
#define SDDL_FLAGS_PAREN_END (SDDL_FLAG_EXPECTING_BINARY_LOGIC_OP | \
SDDL_FLAG_EXPECTING_BINARY_OP | \
SDDL_FLAG_EXPECTING_END |\
SDDL_FLAG_IS_FAKE_OP)
enum {
SDDL_NOT_AN_OP = 0,
SDDL_PRECEDENCE_EXISTS,
SDDL_PRECEDENCE_COMMON,
SDDL_PRECEDENCE_NOT,
SDDL_PRECEDENCE_AND,
SDDL_PRECEDENCE_OR,
SDDL_PRECEDENCE_PAREN_END,
SDDL_PRECEDENCE_PAREN_START,
};
struct ace_condition_sddl_compiler_context {
TALLOC_CTX *mem_ctx;
const uint8_t *sddl;
uint32_t length;
uint32_t offset;
uint32_t stack_depth;
uint32_t max_program_length;
uint32_t approx_size;
struct ace_condition_script *program;
struct ace_condition_token *stack;
struct ace_condition_token *target;
uint32_t *target_len;
const char *message;
uint32_t message_offset;
struct dom_sid *domain_sid;
uint32_t state;
uint8_t last_token_type;
};
struct sddl_data {
const char *name;
uint32_t flags;
uint8_t op_precedence;
uint8_t nargs;
};
static struct sddl_data sddl_strings[256] = {
/* operators */
[CONDITIONAL_ACE_TOKEN_MEMBER_OF] = {
"Member_of",
SDDL_FLAGS_MEMBER_OP,
SDDL_PRECEDENCE_COMMON,
1
},
[CONDITIONAL_ACE_TOKEN_DEVICE_MEMBER_OF] = {
"Device_Member_of",
SDDL_FLAGS_MEMBER_OP,
SDDL_PRECEDENCE_COMMON,
1
},
[CONDITIONAL_ACE_TOKEN_MEMBER_OF_ANY] = {
/* [MS-DTYP] says "_Any", but windows prefers '_any' */
"Member_of_any",
SDDL_FLAGS_MEMBER_OP,
SDDL_PRECEDENCE_COMMON,
1
},
[CONDITIONAL_ACE_TOKEN_DEVICE_MEMBER_OF_ANY] = {
"Device_Member_of_Any",
SDDL_FLAGS_MEMBER_OP,
SDDL_PRECEDENCE_COMMON,
1
},
[CONDITIONAL_ACE_TOKEN_NOT_MEMBER_OF] = {
"Not_Member_of",
SDDL_FLAGS_MEMBER_OP,
SDDL_PRECEDENCE_COMMON,
1
},
[CONDITIONAL_ACE_TOKEN_NOT_DEVICE_MEMBER_OF] = {
"Not_Device_Member_of",
SDDL_FLAGS_MEMBER_OP,
SDDL_PRECEDENCE_COMMON,
1
},
[CONDITIONAL_ACE_TOKEN_NOT_MEMBER_OF_ANY] = {
"Not_Member_of_Any",
SDDL_FLAGS_MEMBER_OP,
SDDL_PRECEDENCE_COMMON,
1
},
[CONDITIONAL_ACE_TOKEN_NOT_DEVICE_MEMBER_OF_ANY] = {
"Not_Device_Member_of_Any",
SDDL_FLAGS_MEMBER_OP,
SDDL_PRECEDENCE_COMMON,
1
},
[CONDITIONAL_ACE_TOKEN_EQUAL] = {
"==",
SDDL_FLAGS_RELATIONAL_OP,
SDDL_PRECEDENCE_COMMON,
2
},
[CONDITIONAL_ACE_TOKEN_NOT_EQUAL] = {
"!=",
SDDL_FLAGS_RELATIONAL_OP,
SDDL_PRECEDENCE_COMMON,
2
},
[CONDITIONAL_ACE_TOKEN_LESS_THAN] = {
"<",
SDDL_FLAGS_RELATIONAL_OP,
SDDL_PRECEDENCE_COMMON,
2
},
[CONDITIONAL_ACE_TOKEN_LESS_OR_EQUAL] = {
"<=",
SDDL_FLAGS_RELATIONAL_OP,
SDDL_PRECEDENCE_COMMON,
2
},
[CONDITIONAL_ACE_TOKEN_GREATER_THAN] = {
">",
SDDL_FLAGS_RELATIONAL_OP,
SDDL_PRECEDENCE_COMMON,
2
},
[CONDITIONAL_ACE_TOKEN_GREATER_OR_EQUAL] = {
">=",
SDDL_FLAGS_RELATIONAL_OP,
SDDL_PRECEDENCE_COMMON,
2
},
[CONDITIONAL_ACE_TOKEN_CONTAINS] = {
"Contains",
SDDL_FLAGS_CONTAINS_OP,
SDDL_PRECEDENCE_COMMON,
2
},
[CONDITIONAL_ACE_TOKEN_ANY_OF] = {
"Any_of",
SDDL_FLAGS_CONTAINS_OP,
SDDL_PRECEDENCE_COMMON,
2
},
[CONDITIONAL_ACE_TOKEN_NOT_CONTAINS] = {
"Not_Contains",
SDDL_FLAGS_CONTAINS_OP,
SDDL_PRECEDENCE_COMMON,
2
},
[CONDITIONAL_ACE_TOKEN_NOT_ANY_OF] = {
"Not_Any_of",
SDDL_FLAGS_CONTAINS_OP,
SDDL_PRECEDENCE_COMMON,
2
},
[CONDITIONAL_ACE_TOKEN_AND] = {
"&&",
SDDL_FLAGS_LOGIC_OP,
SDDL_PRECEDENCE_AND,
2
},
[CONDITIONAL_ACE_TOKEN_OR] = {
"||",
SDDL_FLAGS_LOGIC_OP,
SDDL_PRECEDENCE_OR,
2
},
[CONDITIONAL_ACE_TOKEN_NOT] = {
"!",
(SDDL_FLAG_EXPECTING_PAREN |
SDDL_FLAG_EXPECTING_NON_LOCAL_ATTR |
SDDL_FLAG_IS_UNARY_OP),
SDDL_PRECEDENCE_NOT,
1
},
[CONDITIONAL_ACE_TOKEN_EXISTS] = {
"Exists",
SDDL_FLAGS_EXISTS_OP,
SDDL_PRECEDENCE_EXISTS,
1
},
[CONDITIONAL_ACE_TOKEN_NOT_EXISTS] = {
"Not_Exists",
SDDL_FLAGS_EXISTS_OP,
SDDL_PRECEDENCE_EXISTS,
1
},
/* pseudo-operator pseudo-tokens */
[CONDITIONAL_ACE_SAMBA_SDDL_PAREN] = {
"(",
SDDL_FLAG_IS_FAKE_OP,
SDDL_PRECEDENCE_PAREN_START,
0
},
[CONDITIONAL_ACE_SAMBA_SDDL_PAREN_END] = {
")",
SDDL_FLAGS_PAREN_END,
SDDL_PRECEDENCE_PAREN_END,
0
},
/*
* non-operators.
* The names here are only used for error messages.
*
* some of them will never actually be encountered (e.g. 8-bit
* integers).
*/
[CONDITIONAL_ACE_TOKEN_INT8] = {
.name = "8-bit integer",
.flags = SDDL_FLAGS_LITERAL,
SDDL_NOT_AN_OP,
0
},
[CONDITIONAL_ACE_TOKEN_INT16] = {
"16-bit integer",
SDDL_FLAGS_LITERAL,
SDDL_NOT_AN_OP,
0
},
[CONDITIONAL_ACE_TOKEN_INT32] = {
"32-bit integer",
SDDL_FLAGS_LITERAL,
SDDL_NOT_AN_OP,
0
},
[CONDITIONAL_ACE_TOKEN_INT64] = {
"64-bit integer",
SDDL_FLAGS_LITERAL,
SDDL_NOT_AN_OP,
0
},
[CONDITIONAL_ACE_TOKEN_UNICODE] = {
"unicode",
SDDL_FLAGS_LITERAL,
SDDL_NOT_AN_OP,
0
},
[CONDITIONAL_ACE_TOKEN_OCTET_STRING] = {
"byte string",
SDDL_FLAGS_LITERAL,
SDDL_NOT_AN_OP,
0
},
[CONDITIONAL_ACE_TOKEN_COMPOSITE] = {
"composite list",
SDDL_FLAGS_LITERAL,
SDDL_NOT_AN_OP,
0
},
[CONDITIONAL_ACE_TOKEN_SID] = {
"SID",
SDDL_FLAGS_LITERAL,
SDDL_NOT_AN_OP,
0
},
[CONDITIONAL_ACE_LOCAL_ATTRIBUTE] = {
"local attribute",
SDDL_FLAGS_ATTRIBUTE,
SDDL_NOT_AN_OP,
0
},
[CONDITIONAL_ACE_USER_ATTRIBUTE] = {
"user attribute",
SDDL_FLAGS_ATTRIBUTE,
SDDL_NOT_AN_OP,
0
},
[CONDITIONAL_ACE_RESOURCE_ATTRIBUTE] = {
"resource attribute",
SDDL_FLAGS_ATTRIBUTE,
SDDL_NOT_AN_OP,
0
},
[CONDITIONAL_ACE_DEVICE_ATTRIBUTE] = {
"device attribute",
SDDL_FLAGS_ATTRIBUTE,
SDDL_NOT_AN_OP,
0
},
[CONDITIONAL_ACE_SAMBA_RESULT_BOOL] = {
"boolean result",
0,
SDDL_NOT_AN_OP,
0
},
[CONDITIONAL_ACE_SAMBA_RESULT_NULL] = {
"null result",
0,
SDDL_NOT_AN_OP,
0
},
[CONDITIONAL_ACE_SAMBA_RESULT_ERROR] = {
"error result",
0,
SDDL_NOT_AN_OP,
0
},
};
struct sddl_attr_type{
const char *name;
uint8_t code;
};
/*
* These are the prefixes for non-local attribute types. [MS-DTYP]
* styles them in title case ("@User."), but Windows itself seems to
* prefer all-caps, so that is how we render them.
*/
static struct sddl_attr_type sddl_attr_types[] = {
{"USER.", CONDITIONAL_ACE_USER_ATTRIBUTE},
{"RESOURCE.", CONDITIONAL_ACE_RESOURCE_ATTRIBUTE},
{"DEVICE.", CONDITIONAL_ACE_DEVICE_ATTRIBUTE},
};
struct sddl_write_context {
TALLOC_CTX *mem_ctx;
char *sddl;
size_t len;
size_t alloc_len;
};
static bool sddl_write(struct sddl_write_context *ctx,
const char *s)
{
size_t len = strlen(s);
if (ctx->alloc_len - ctx->len <= len ||
ctx->sddl == NULL) {
size_t old = ctx->alloc_len;
ctx->alloc_len = old + MAX(old / 2, len + 50);
if (ctx->alloc_len <= old ||
ctx->alloc_len - ctx->len <= len) {
return false;
}
ctx->sddl = talloc_realloc(ctx->mem_ctx, ctx->sddl,
char, ctx->alloc_len);
if (ctx->sddl == NULL) {
return false;
}
}
memcpy(ctx->sddl + ctx->len, s, len);
ctx->len += len;
ctx->sddl[ctx->len] = 0;
return true;
}
/*
* This is a helper function to create a representation of a
* conditional ACE. This is not SDDL, more like a disassembly,
* but it uses some of the same tables.
*/
char *debug_conditional_ace(TALLOC_CTX *mem_ctx,
struct ace_condition_script *program)
{
size_t i;
size_t depth = 0;
char stack[] = " ";
char line[120];
struct sddl_write_context ctx = {
.mem_ctx = mem_ctx
};
for (i = 0; i < program->length; i++) {
struct ace_condition_token *tok = &program->tokens[i];
struct sddl_data s = sddl_strings[tok->type];
char hex[21];
char *utf8 = NULL;
int utf8_len;
char type;
char nom[40];
snprintf(nom, sizeof(nom), "\033[1;33m%20s\033[0m", s.name);
switch (tok->type) {
case CONDITIONAL_ACE_TOKEN_INT8:
case CONDITIONAL_ACE_TOKEN_INT16:
case CONDITIONAL_ACE_TOKEN_INT32:
case CONDITIONAL_ACE_TOKEN_INT64:
if (tok->data.int64.sign > 3 ||
tok->data.int64.base > 3) {
goto error;
}
snprintf(line, sizeof(line),
"%s %"PRIi64" %c%c\n",
nom,
tok->data.int64.value,
"?+-_"[tok->data.int64.sign],
"?odh"[tok->data.int64.base]
);
type = 'i';
break;
case CONDITIONAL_ACE_TOKEN_MEMBER_OF:
case CONDITIONAL_ACE_TOKEN_DEVICE_MEMBER_OF:
case CONDITIONAL_ACE_TOKEN_MEMBER_OF_ANY:
case CONDITIONAL_ACE_TOKEN_DEVICE_MEMBER_OF_ANY:
case CONDITIONAL_ACE_TOKEN_NOT_MEMBER_OF:
case CONDITIONAL_ACE_TOKEN_NOT_DEVICE_MEMBER_OF:
case CONDITIONAL_ACE_TOKEN_NOT_MEMBER_OF_ANY:
case CONDITIONAL_ACE_TOKEN_NOT_DEVICE_MEMBER_OF_ANY:
snprintf(line, sizeof(line),
"%s bool\n",
nom
);
type = 'b';
break;
case CONDITIONAL_ACE_TOKEN_EQUAL:
case CONDITIONAL_ACE_TOKEN_NOT_EQUAL:
case CONDITIONAL_ACE_TOKEN_LESS_THAN:
case CONDITIONAL_ACE_TOKEN_LESS_OR_EQUAL:
case CONDITIONAL_ACE_TOKEN_GREATER_THAN:
case CONDITIONAL_ACE_TOKEN_GREATER_OR_EQUAL:
case CONDITIONAL_ACE_TOKEN_CONTAINS:
case CONDITIONAL_ACE_TOKEN_ANY_OF:
case CONDITIONAL_ACE_TOKEN_NOT_CONTAINS:
case CONDITIONAL_ACE_TOKEN_NOT_ANY_OF:
case CONDITIONAL_ACE_TOKEN_AND:
case CONDITIONAL_ACE_TOKEN_OR:
snprintf(line, sizeof(line),
"%s bool\n",
nom
);
type = 'b';
break;
case CONDITIONAL_ACE_TOKEN_EXISTS:
case CONDITIONAL_ACE_TOKEN_NOT_EXISTS:
case CONDITIONAL_ACE_TOKEN_NOT:
snprintf(line, sizeof(line),
"%s bool\n",
nom
);
type = 'b';
break;
case CONDITIONAL_ACE_LOCAL_ATTRIBUTE:
case CONDITIONAL_ACE_USER_ATTRIBUTE:
case CONDITIONAL_ACE_RESOURCE_ATTRIBUTE:
case CONDITIONAL_ACE_DEVICE_ATTRIBUTE:
utf8_len = MIN(tok->data.unicode.length, 40);
snprintf(line, sizeof(line),
"%s.%.*s (any type)\n",
nom, utf8_len,
tok->data.unicode.value
);
type = '?';
break;
case CONDITIONAL_ACE_TOKEN_UNICODE:
utf8_len = MIN(tok->data.unicode.length, 20);
snprintf(line, sizeof(line),
"%s.%.*s (any type)\n",
nom, utf8_len,
tok->data.unicode.value
);
type = 'u';
break;
case CONDITIONAL_ACE_TOKEN_OCTET_STRING:
utf8_len = MIN(tok->data.bytes.length, 9);
hex_encode_buf(hex, tok->data.bytes.bytes, utf8_len);
snprintf(line, sizeof(line),
"%s %.*s (%d)\n",
nom, utf8_len * 2, hex, utf8_len);
type = 'o';
break;
case CONDITIONAL_ACE_TOKEN_SID:
utf8 = sddl_encode_sid(mem_ctx,
tok->data.sid.sid,
NULL);
snprintf(line, sizeof(line),
"%s (%s)\n",
nom, utf8);
type = 'S';
break;
case CONDITIONAL_ACE_TOKEN_COMPOSITE:
snprintf(line, sizeof(line),
"%s %"PRIu32" direct members\n",
nom, tok->data.composite.n_members);
type = 'C';
break;
case CONDITIONAL_ACE_TOKEN_INVALID_OR_PADDING:
snprintf(line, sizeof(line),
"%s\n", nom);
type = '0';
break;
default:
snprintf(line, sizeof(line),
"unknown opcode %#02x\n", tok->type);
type = '!';
break;
}
if (s.nargs > depth) {
snprintf(nom, sizeof(nom),
"UNDER: -%zu", s.nargs - depth);
depth = 0;
sddl_write(&ctx, nom);
} else if (depth >= strlen(stack)) {
snprintf(nom, sizeof(nom),
"depth %zu", s.nargs - depth);
depth -= (s.nargs - 1);
sddl_write(&ctx, nom);
} else {
depth -= s.nargs;
stack[depth] = type;
depth++;
if (depth < strlen(stack)) {
stack[depth] = ' ';
}
sddl_write(&ctx, stack);
}
sddl_write(&ctx, line);
}
if (depth == 1 && stack[0] == 'b') {
snprintf(line, sizeof(line),
"\033[1;32mGOOD: finishes on a single bool\033[0m\n");
} else {
snprintf(line, sizeof(line),
"\033[1;31mBAD: should finish with a bool\033[0m\n");
}
sddl_write(&ctx, line);
return ctx.sddl;
error:
TALLOC_FREE(ctx.sddl);
return NULL;
}
struct sddl_node {
struct ace_condition_token *tok;
struct sddl_node *lhs;
struct sddl_node *rhs;
bool wants_parens;
};
static bool sddl_write_int(struct sddl_write_context *ctx,
struct ace_condition_token *tok)
{
int64_t v = tok->data.int64.value;
uint8_t sign = tok->data.int64.sign;
uint8_t base = tok->data.int64.base;
char buf[26]; /* oct(1<<63) + sign + \0 */
if (sign > CONDITIONAL_ACE_INT_SIGN_NONE ||
base > CONDITIONAL_ACE_INT_BASE_16) {
return false;
}
/*
* we have 9 combinations of base/sign (+ some invalid combinations of
* actual sign vs claimed sign).
*/
if (sign == CONDITIONAL_ACE_INT_SIGN_NONE) {
/* octal and hex will end up unsigned! */
if (base == CONDITIONAL_ACE_INT_BASE_8) {
snprintf(buf, sizeof(buf), "%#"PRIo64, v);
} else if (base == CONDITIONAL_ACE_INT_BASE_10) {
snprintf(buf, sizeof(buf), "%"PRId64, v);
} else {
snprintf(buf, sizeof(buf), "%#"PRIx64, v);
}
return sddl_write(ctx, buf);
}
if (sign == CONDITIONAL_ACE_INT_SIGN_POSITIVE && v < 0) {
return false;
}
if (sign == CONDITIONAL_ACE_INT_SIGN_NEGATIVE && v > 0) {
/* note we allow "-0", because we will parse it. */
return false;
}
/*
* We can use "%+ld" for the decimal sign, but "%+lx" and "%+lo" are
* invalid because %o and %x are unsigned.
*/
if (base == CONDITIONAL_ACE_INT_BASE_10) {
snprintf(buf, sizeof(buf), "%+"PRId64, v);
return sddl_write(ctx, buf);
}
if (v == INT64_MIN) {
/*
* llabs(INT64_MIN) will be undefined.
* The lengths we must go to to round trip!
*/
if (base == CONDITIONAL_ACE_INT_BASE_8) {
return sddl_write(ctx, "-01000000000000000000000");
}
return sddl_write(ctx, "-0x8000000000000000");
}
buf[0] = (v < 0) ? '-' : '+';
if (base == CONDITIONAL_ACE_INT_BASE_8) {
snprintf(buf + 1, sizeof(buf) - 1, "%#llo", llabs(v));
} else {
snprintf(buf + 1, sizeof(buf) - 1, "%#llx", llabs(v));
}
return sddl_write(ctx, buf);
}
static bool sddl_should_escape_utf16(uint16_t c)
{
if (c <= ' ' || c > 126) {
return true;
}
switch (c) {
case '!':
case '"':
case '&':
case '(':
case ')':
case '<':
case '=':
case '>':
case '|':
case '%':
return true;
}
return false;
}
static bool sddl_encode_attr_name(TALLOC_CTX *mem_ctx,
const char *src,
size_t src_len,
char **dest,
size_t *dest_len)
{
size_t i, j;
bool ok;
uint16_t *utf16 = NULL;
char *escaped = NULL;
size_t utf16_byte_len;
size_t utf16_len;
size_t escapees;
size_t required;
*dest = NULL;
/*
* Writing the string escapes can only really happen in
* utf-16.
*/
ok = convert_string_talloc(mem_ctx,
CH_UTF8, CH_UTF16LE,
src, src_len,
&utf16, &utf16_byte_len);
if (!ok) {
return false;
}
utf16_len = utf16_byte_len / 2;
escapees = 0;
for (i = 0; i < utf16_len; i++) {
uint16_t c = utf16[i];
if (sddl_should_escape_utf16(c)) {
escapees++;
}
if (c == 0) {
/* we can't have '\0' (or "%0000") in a name. */
TALLOC_FREE(utf16);
return false;
}
}
required = src_len + escapees * 5;
escaped = talloc_size(mem_ctx, required + 1);
if (escaped == NULL) {
TALLOC_FREE(utf16);
return false;
}
if (escapees == 0) {
/* there is nothing to escape: the original string is fine */
memcpy(escaped, src, src_len);
escaped[src_len] = '\0';
*dest = escaped;
*dest_len = src_len;
TALLOC_FREE(utf16);
return true;
}
for (i = 0, j = 0; i < utf16_len && j < required; i++) {
uint16_t c = utf16[i];
if (sddl_should_escape_utf16(c)) {
if (j + 5 >= required) {
TALLOC_FREE(escaped);
TALLOC_FREE(utf16);
return false;
}
snprintf(escaped + j, 6, "%%%04x", c);
j += 5;
} else {
escaped[j] = c;
j++;
}
}
escaped[j] = '\0';
*dest = escaped;
*dest_len = j;
TALLOC_FREE(utf16);
return true;
}
static bool sddl_write_attr(struct sddl_write_context *ctx,
struct ace_condition_token *tok)
{
char *name = NULL;
size_t name_len;
size_t i;
bool ok = sddl_encode_attr_name(ctx->mem_ctx,
tok->data.local_attr.value,
tok->data.local_attr.length,
&name, &name_len);
if (!ok) {
return false;
}
for (i = 0; i < ARRAY_SIZE(sddl_attr_types); i++) {
struct sddl_attr_type x = sddl_attr_types[i];
if (x.code == tok->type) {
ok = sddl_write(ctx, "@");
if (! ok) {
return false;
}
ok = sddl_write(ctx, x.name);
if (! ok) {
return false;
}
break;
}
}
ok = sddl_write(ctx, name);
talloc_free(name);
return ok;
}
static bool sddl_write_unicode(struct sddl_write_context *ctx,
struct ace_condition_token *tok)
{
char *quoted = NULL;
bool ok;
/*
* Apparently unicode strings have no mechanism for escapes, which is
* nice at this point.
*
* Probably we could rely on tok->data.unicode.value being
* nul-terminated and a talloc_asprintf().
*/
quoted = talloc_size(ctx->mem_ctx, tok->data.unicode.length + 3);
if (quoted == NULL) {
return false;
}
quoted[0] = '"';
memcpy(quoted + 1, tok->data.unicode.value, tok->data.unicode.length);
quoted[tok->data.unicode.length + 1] = '"';
quoted[tok->data.unicode.length + 2] = '\0';
ok = sddl_write(ctx, quoted);
TALLOC_FREE(quoted);
return ok;
}
static bool sddl_write_octet_string(struct sddl_write_context *ctx,
struct ace_condition_token *tok)
{
bool ok;
char *hex = hex_encode_talloc(ctx->mem_ctx,
tok->data.bytes.bytes,
tok->data.bytes.length);
ok = sddl_write(ctx, "#");
if (!ok) {
return false;
}
ok = sddl_write(ctx, hex);
talloc_free(hex);
return ok;
}
static bool sddl_write_sid(struct sddl_write_context *ctx,
struct ace_condition_token *tok)
{
bool ok;
char *sddl = NULL;
char *sid = sddl_encode_sid(ctx->mem_ctx,
tok->data.sid.sid,
NULL);
if (sid == NULL) {
return false;
}
sddl = talloc_asprintf(ctx->mem_ctx, "SID(%s)", sid);
if (sddl == NULL) {
talloc_free(sid);
return false;
}
ok = sddl_write(ctx, sddl);
talloc_free(sid);
talloc_free(sddl);
return ok;
}
static bool sddl_write_composite(struct sddl_write_context *ctx,
struct ace_condition_token *tok)
{
/*
* Looks like {1, 2, 3, "four", {"woah, nesting", {6}}, SID(BA)}.
*/
struct ace_condition_composite *c = &tok->data.composite;
uint32_t i;
bool ok;
ok = sddl_write(ctx, "{");
if (!ok) {
return false;
}
for (i = 0; i < c->n_members; i++) {
struct ace_condition_token *t = &c->tokens[i];
if (i > 0) {
ok = sddl_write(ctx, ", ");
if (!ok) {
return false;
}
}
switch (t->type) {
case CONDITIONAL_ACE_TOKEN_INT8:
case CONDITIONAL_ACE_TOKEN_INT16:
case CONDITIONAL_ACE_TOKEN_INT32:
case CONDITIONAL_ACE_TOKEN_INT64:
ok = sddl_write_int(ctx, t);
break;
case CONDITIONAL_ACE_TOKEN_UNICODE:
ok = sddl_write_unicode(ctx, t);
break;
case CONDITIONAL_ACE_TOKEN_OCTET_STRING:
ok = sddl_write_octet_string(ctx, t);
break;
case CONDITIONAL_ACE_TOKEN_SID:
ok = sddl_write_sid(ctx, t);
break;
case CONDITIONAL_ACE_TOKEN_COMPOSITE:
ok = sddl_write_composite(ctx, t);
break;
default:
return false;
}
if (!ok) {
return false;
}
}
ok = sddl_write(ctx, "}");
return ok;
}
static bool sddl_write_node(struct sddl_write_context *ctx,
struct sddl_node *node)
{
struct ace_condition_token *tok = node->tok;
switch (tok->type) {
case CONDITIONAL_ACE_TOKEN_INT8:
case CONDITIONAL_ACE_TOKEN_INT16:
case CONDITIONAL_ACE_TOKEN_INT32:
case CONDITIONAL_ACE_TOKEN_INT64:
return sddl_write_int(ctx, tok);
case CONDITIONAL_ACE_TOKEN_MEMBER_OF:
case CONDITIONAL_ACE_TOKEN_DEVICE_MEMBER_OF:
case CONDITIONAL_ACE_TOKEN_MEMBER_OF_ANY:
case CONDITIONAL_ACE_TOKEN_DEVICE_MEMBER_OF_ANY:
case CONDITIONAL_ACE_TOKEN_NOT_MEMBER_OF:
case CONDITIONAL_ACE_TOKEN_NOT_DEVICE_MEMBER_OF:
case CONDITIONAL_ACE_TOKEN_NOT_MEMBER_OF_ANY:
case CONDITIONAL_ACE_TOKEN_NOT_DEVICE_MEMBER_OF_ANY:
case CONDITIONAL_ACE_TOKEN_EQUAL:
case CONDITIONAL_ACE_TOKEN_NOT_EQUAL:
case CONDITIONAL_ACE_TOKEN_LESS_THAN:
case CONDITIONAL_ACE_TOKEN_LESS_OR_EQUAL:
case CONDITIONAL_ACE_TOKEN_GREATER_THAN:
case CONDITIONAL_ACE_TOKEN_GREATER_OR_EQUAL:
case CONDITIONAL_ACE_TOKEN_CONTAINS:
case CONDITIONAL_ACE_TOKEN_ANY_OF:
case CONDITIONAL_ACE_TOKEN_NOT_CONTAINS:
case CONDITIONAL_ACE_TOKEN_NOT_ANY_OF:
case CONDITIONAL_ACE_TOKEN_AND:
case CONDITIONAL_ACE_TOKEN_OR:
case CONDITIONAL_ACE_TOKEN_EXISTS:
case CONDITIONAL_ACE_TOKEN_NOT_EXISTS:
case CONDITIONAL_ACE_TOKEN_NOT:
return sddl_write(ctx, sddl_strings[tok->type].name);
case CONDITIONAL_ACE_LOCAL_ATTRIBUTE:
case CONDITIONAL_ACE_USER_ATTRIBUTE:
case CONDITIONAL_ACE_RESOURCE_ATTRIBUTE:
case CONDITIONAL_ACE_DEVICE_ATTRIBUTE:
return sddl_write_attr(ctx, tok);
case CONDITIONAL_ACE_TOKEN_UNICODE:
return sddl_write_unicode(ctx, tok);
case CONDITIONAL_ACE_TOKEN_OCTET_STRING:
return sddl_write_octet_string(ctx, tok);
case CONDITIONAL_ACE_TOKEN_SID:
return sddl_write_sid(ctx, tok);
case CONDITIONAL_ACE_TOKEN_COMPOSITE:
return sddl_write_composite(ctx, tok);
case CONDITIONAL_ACE_TOKEN_INVALID_OR_PADDING:
/*
* This is only expected at the very end, which we
* can't (and don't need to) check here, but we can at
* least ensure it's the end of a sub-expression.
*/
return (node->rhs == NULL);
default:
return false;
}
/* not expecting to get here */
return false;
}
static inline bool sddl_wants_outer_parens(struct sddl_node *node)
{
/*
* Binary ops (having a LHS) are always parenthesised "(a == 2)"
*
* Member-of ops are too, for some reason.
*/
return (node->lhs != NULL ||
node->tok->type == CONDITIONAL_ACE_TOKEN_MEMBER_OF ||
node->tok->type == CONDITIONAL_ACE_TOKEN_NOT_MEMBER_OF ||
node->tok->type == CONDITIONAL_ACE_TOKEN_MEMBER_OF_ANY ||
node->tok->type == CONDITIONAL_ACE_TOKEN_NOT_MEMBER_OF_ANY ||
node->tok->type == CONDITIONAL_ACE_TOKEN_DEVICE_MEMBER_OF ||
node->tok->type == CONDITIONAL_ACE_TOKEN_NOT_DEVICE_MEMBER_OF ||
node->tok->type == CONDITIONAL_ACE_TOKEN_DEVICE_MEMBER_OF_ANY ||
node->tok->type == CONDITIONAL_ACE_TOKEN_NOT_DEVICE_MEMBER_OF_ANY);
}
static inline bool sddl_wants_inner_parens(struct sddl_node *node,
struct sddl_node *child)
{
/*
* logical operators are serialised with parentheses around their
* arguments (for NOT it is obligatory).
*/
if (node->tok->type != CONDITIONAL_ACE_TOKEN_NOT &&
node->tok->type != CONDITIONAL_ACE_TOKEN_AND &&
node->tok->type != CONDITIONAL_ACE_TOKEN_OR) {
return false;
}
if (sddl_wants_outer_parens(child)) {
return false;
}
return true;
}
static void sddl_tree_resolve_parens(struct sddl_node *node)
{
if (sddl_wants_outer_parens(node)) {
node->wants_parens = true;
}
if (node->lhs != NULL) {
bool p = sddl_wants_inner_parens(node, node->lhs);
node->lhs->wants_parens = p;
sddl_tree_resolve_parens(node->lhs);
}
if (node->rhs != NULL) {
bool p = sddl_wants_inner_parens(node, node->rhs);
node->rhs->wants_parens = p;
sddl_tree_resolve_parens(node->rhs);
}
}
static bool sddl_tree_to_sddl(struct sddl_write_context *ctx,
struct sddl_node *node)
{
bool ok;
if (node->wants_parens) {
ok = sddl_write(ctx, "(");
if (! ok) {
return false;
}
}
if (node->lhs != NULL) {
ok = sddl_tree_to_sddl(ctx, node->lhs);
if (! ok) {
return false;
}
ok = sddl_write(ctx, " ");
if (!ok) {
return false;
}
}
ok = sddl_write_node(ctx, node);
if (!ok) {
return false;
}
if (node->rhs != NULL) {
/* NOT is a special case: "!(x)", not "! (x)" */
if (node->tok->type != CONDITIONAL_ACE_TOKEN_NOT) {
ok = sddl_write(ctx, " ");
if (!ok) {
return false;
}
}
ok = sddl_tree_to_sddl(ctx, node->rhs);
if (! ok) {
return false;
}
}
if (node->wants_parens) {
ok = sddl_write(ctx, ")");
if (!ok) {
return false;
}
}
return true;
}
/*
* Convert conditional ACE conditions into SDDL conditions.
*
* @param mem_ctx
* @param program
* @return a string or NULL on error.
*/
char *sddl_from_conditional_ace(TALLOC_CTX *mem_ctx,
struct ace_condition_script *program)
{
size_t i;
char *sddl = NULL;
struct sddl_node *nodes = NULL;
struct sddl_node **trees = NULL;
size_t n_trees = 0;
struct ace_condition_token *tok = NULL;
struct sddl_data s;
bool ok;
struct sddl_write_context ctx = {
.mem_ctx = mem_ctx
};
if (program->length == 0) {
/*
* The empty program is a special case.
*/
return talloc_strdup(mem_ctx, "()");
}
nodes = talloc_zero_array(mem_ctx,
struct sddl_node,
program->length);
if (nodes == NULL) {
talloc_free(sddl);
return NULL;
}
trees = talloc_array(mem_ctx,
struct sddl_node*,
program->length);
if (trees == NULL) {
talloc_free(sddl);
talloc_free(nodes);
return NULL;
}
/*
* This loop constructs a tree, which we then traverse to get the
* SDDL. Consider this transformation:
*
* {A, B, ==, C, D, ==, &&} => "((A == B) && (C == D))"
*
* We keep an array of sub-trees, and add to it in sequence. When the
* thing we're adding takes arguments, we pop those off the tree list.
* So it would go through this sequence:
*
* len items
* 1: A
* 2: A, B
* 1: ==(A, B)
* 2: ==(A, B), C
* 3: ==(A, B), C, D
* 2: ==(A, B), ==(C, D)
* 1 &&(==(A, B), ==(C, D))
*
* Without building a tree it would be difficult to know how many
* parentheses to put before A.
*
* (A == B == C) should become
* {A B == C ==} which should be the same as
* ((A == B) == C)
*/
for (i = 0; i < program->length; i++) {
tok = &program->tokens[i];
s = sddl_strings[tok->type];
nodes[i].tok = tok;
if (s.nargs > n_trees) {
goto error;
}
if (s.nargs >= 1) {
/*
* Read this note if you're trying to follow
* [MS-DTYP]. MS-DTYP uses 'LHS' to describe the
* operand of unary operators even though they are
* always displayed on the right of the operator. It
* which makes everything much simpler to use rhs
* instead.
*/
n_trees--;
nodes[i].rhs = trees[n_trees];
if (s.nargs == 2) {
n_trees--;
nodes[i].lhs = trees[n_trees];
}
}
trees[n_trees] = &nodes[i];
n_trees++;
}
if (n_trees != 1) {
goto error;
}
/*
* First we walk the tree to work out where to put parentheses (to
* match the canonical Windows representation).
*
* Doing it in the same traverse as the writing would be possible but
* trickier to get right.
*/
sddl_tree_resolve_parens(trees[0]);
trees[0]->wants_parens = true;
/*
* Clamber over the tree, writing the string.
*/
ok = sddl_tree_to_sddl(&ctx, trees[0]);
if (! ok) {
goto error;
}
talloc_free(trees);
talloc_free(nodes);
return ctx.sddl;
error:
talloc_free(sddl);
talloc_free(trees);
talloc_free(nodes);
return NULL;
}
static void comp_error(struct ace_condition_sddl_compiler_context *comp,
const char *fmt, ...) PRINTF_ATTRIBUTE(2,3);
static void comp_error(struct ace_condition_sddl_compiler_context *comp,
const char *fmt, ...)
{
char *msg = NULL;
va_list ap;
va_start(ap, fmt);
msg = talloc_vasprintf(comp->mem_ctx, fmt, ap);
va_end(ap);
if (msg == NULL) {
goto fail;
}
comp->message_offset = comp->offset;
if (comp->message == NULL) {
/*
* Previously unset message; prepend the position.
*
* This is the common case.
*/
comp->message = talloc_asprintf(comp->mem_ctx,
"%"PRIu32": %s",
comp->offset, msg);
TALLOC_FREE(msg);
if (comp->message == NULL) {
goto fail;
}
return;
}
/*
* There's a message already so we'll try to append.
* This is unlikely to happen.
*/
comp->message = talloc_asprintf(comp->mem_ctx,
"%s AND THEN %"PRIu32": %s",
comp->message, comp->offset,
msg);
TALLOC_FREE(msg);
if (comp->message == NULL) {
goto fail;
}
return;
fail:
comp->message = "failed to set error message";
}
/*
conditional-ace = "(" conditional-ace-type ";" [ace-flag-string] ";" ace-rights
";" [object- guid] ";" [inherit-object-guid] ";" sid-string ";" "(" cond-expr
")" ")"
wspace = 1*(%x09-0D / %x20)
literal-SID = "SID(" sid-string ")"
term = [wspace] (memberof-op / exists-op / rel-op / contains-op / anyof-op /
attr-name / rel- op2) [wspace]
cond-expr = term / term [wspace] ("||" / "&&" ) [wspace] cond-expr / (["!"]
[wspace] "(" cond-expr ")")
memberof-op = ( "Member_of" / "Not_Member_of" / "Member_of_Any" /
"Not_Member_of_Any" / "Device_Member_of" / "Device_Member_of_Any" /
"Not_Device_Member_of" / "Not_Device_Member_of_Any" ) wspace sid-array
exists-op = ( "Exists" / "Not_Exists") wspace attr-name
rel-op = attr-name [wspace] ("<" / "<=" / ">" / ">=") [wspace] (attr-name2 /
value) ; only scalars
rel-op2 = attr-name [wspace] ("==" / "!=") [wspace] ( attr-name2 / value-array )
; scalar or list
contains-op = attr-name wspace ("Contains" / "Not_Contains") wspace (attr-name2
/ value- array)
anyof-op = attr-name wspace ("Any_of" / "Not_Any_of") wspace (attr-name2 /
value-array)
attr-name1 = attr-char1 *(attr-char1 / "@")
attr-char1 = 1*(ALPHA / DIGIT / ":" / "." / "/" / "_")
attr-name2 = ("@user." / "@device." / "@resource.") 1*attr-char2
; new prefixed name form
attr-char2 = attr-char1 / lit-char
attr-name = attr-name1 / attr-name2
*/
static inline bool is_wspace(uint8_t c)
{
/* wspace := %x09-0D | %x20 */
return (c == ' ' || c == '\x09' || c == '\x0A' ||
c == '\x0B' || c == '\x0C' || c == '\x0D');
}
static inline bool is_attr_char1(uint8_t c)
{
/*
* attr-char1 = 1*(ALPHA / DIGIT / ":" / "." / "/" / "_")
* (ALPHA and DIGIT being ASCII only).
*
* These are used for local attributes, which we don't really
* expect to see in Samba AD.
*
* One example is "WIN://SYSAPPID", which is used in conditional ACEs
* that seem to relate to software installers; another is
* "APPID://PATH", used by Windows Applocker.
*/
return (((c >= 'a') && (c <= 'z')) ||
((c >= 'A') && (c <= 'Z')) ||
((c >= '0') && (c <= '9')) ||
c == ':' || c == '.' || c == '/' || c == '_');
}
static ssize_t read_attr2_string(
struct ace_condition_sddl_compiler_context *comp,
struct ace_condition_unicode *dest)
{
/*
* our SDDL is utf-8, but we need to convert to utf-16 and
* parse the escapes, then back to utf-8, because that's how
* the claims will appear.
*
* attr_char2 is used for attribute names that follow "@Class."
* specifiers. They can consume 5 characters to specify a single code
* unit, using "%1234" style escapes. Certain characters must be
* encoded this way, while others must be literal values. Because the
* %1234 refers to a utf-16 code unit, we really need to do the work
* in that codespace.
*/
bool ok;
uint16_t *utf16 = NULL;
size_t utf16_byte_len;
size_t utf16_chars;
size_t utf8_len;
size_t src_len;
ssize_t i, j;
ssize_t max_len = comp->length - comp->offset;
const uint8_t *src = comp->sddl + comp->offset;
for (i = 0; i < max_len; i++) {
uint8_t c = src[i];
/*
* A codepoint that must be escaped but isn't tells us that
* the attribute name has ended.
*
* The exception is '%', which must also be escaped
* (as "%0025"), but is obviously still expected in
* the escaped string.
*/
if (strchr("!&()><=| \"", c) != NULL || is_wspace(c)) {
break;
}
}
if (i == max_len) {
/* too long, because we need at least one ')' */
comp_error(comp, "interminable attribute name");
return -1;
}
if (i == 0) {
/* too short! like "User.>= 4" */
comp_error(comp, "empty attribute name");
return -1;
}
if (unlikely(i > CONDITIONAL_ACE_MAX_LENGTH)) {
/*
* This is imprecise; the limit for the whole ACL is 64k.
* However there could be many escapes in the SDDL name which
* would reduce down to single utf16 codepoints in the
* compiled string.
*/
comp_error(comp, "attribute is way too long (%zu)", i);
return -1;
}
src_len = i;
ok = convert_string_talloc(comp->mem_ctx,
CH_UTF8, CH_UTF16LE,
src, src_len,
&utf16, &utf16_byte_len);
if (!ok) {
comp_error(comp, "could not convert to utf-16");
return -1;
}
/*
* utf16_byte_len is in bytes, we want to count uint16s.
*/
utf16_chars = utf16_byte_len / 2;
/* now the escapes. */
for (i = 0, j = 0;
j < utf16_chars && i < utf16_chars;
j++) {
uint16_t c = utf16[i];
if (c == '%') {
uint16_t v = 0;
size_t end = i + 5;
/*
* we need to read 4 hex characters.
* hex_byte() won't help because that is 8-bit.
*/
if (end > utf16_chars) {
comp_error(comp,
"insufficient room for %% escape");
talloc_free(utf16);
return -1;
}
for (i++; i < end; i++) {
v <<= 4;
c = utf16[i];
if (c >= '0' && c <= '9') {
v += c - '0';
} else if (c >= 'A' && c <= 'F') {
v += c - 'A' + 10;
} else if (c >= 'a' && c <= 'f') {
v += c - 'a' + 10;
} else {
comp_error(comp, "invalid %% escape");
talloc_free(utf16);
return -1;
}
}
/*
* from MS-DTYP 2.5.1.1 Syntax (text, not ABNF), some
* characters must be literals, not escaped.
*/
if ((v >= '0' && v <= '9') ||
(v >= 'A' && v <= 'Z') ||
(v >= 'a' && v <= 'z') ||
(v < 127 &&
strchr("#$'*+-;?@[\\]^_`{}~:/.", v) != NULL)) {
comp_error(comp, "invalid %% escape: "
"'%%%04x' should be literal '%c'",
v, v);
talloc_free(utf16);
return -1;
}
utf16[j] = v;
continue;
}
/*
* Note the characters "!&()><=|% \"" must be escaped per
* [MS-DTYP], but as we found the bounds of this string using
* those in utf-8 at the top of this function, we are not
* going to find them in the utf-16 now.
*
* Also, per [MS-DTYP], un-escaped whitespace is allowed, but
* effectively disallowed by Samba.
*/
utf16[j] = utf16[i];
i++;
}
ok = convert_string_talloc(comp->mem_ctx,
CH_UTF16LE, CH_UTF8,
utf16, j * 2,
&dest->value, &utf8_len);
TALLOC_FREE(utf16);
if (!ok) {
comp_error(comp, "could not convert to utf-16");
return -1;
}
dest->length = utf8_len;
/* returning bytes consumed, not necessarily the length of token */
return src_len;
}
static bool eat_whitespace(struct ace_condition_sddl_compiler_context *comp,
bool trailing)
{
/*
* Advance the offset to the first non-whitespace character.
*
* If trailing is false, there has to be something before the end of
* the string.
*/
while (comp->offset < comp->length) {
if (! is_wspace(comp->sddl[comp->offset])) {
break;
}
comp->offset++;
}
if ((!trailing) && comp->offset == comp->length) {
comp_error(comp, "input ends unexpectedly");
return false;
}
return true;
}
static bool pop_sddl_token(struct ace_condition_sddl_compiler_context *comp,
struct ace_condition_token *token);
static bool write_sddl_token(struct ace_condition_sddl_compiler_context *comp,
struct ace_condition_token token);
static bool pop_write_sddl_token(
struct ace_condition_sddl_compiler_context *comp);
static bool flush_stack_tokens(struct ace_condition_sddl_compiler_context *comp,
uint8_t type)
{
bool ok;
uint8_t precedence = sddl_strings[type].op_precedence;
if (precedence == SDDL_PRECEDENCE_PAREN_START) {
/* paren has a special role */
return true;
}
/*
* Any operators on the top of the stack that have a "higher"
* precedence (tighter binding) to this one get popped off and written
* to the output. "higher" is in quotes because it means lower enum
* value.
*
* This works for binary operators, for example, with "(a == b == c)"
* (which is equivalent to "((a == b) == c)" via the left-to-right
* rule), we have:
* TOKEN dest PROGRAM STACK
* (
* a p
* == s a
* b p a ==
* == s a b ==
* flush stack
* s->p a b == ==
* c p a b ==
* ) a b == c ==
* flush stack
* a b == c ==
*
* but it is not right for unary operators, as in "(!(!(Exists
* a)))". As it turns out though, >= works for the unary
* operators and syntactic rules we have.
*/
while (comp->stack_depth > 0) {
struct ace_condition_token *op =
&comp->stack[comp->stack_depth - 1];
if(sddl_strings[op->type].op_precedence > precedence) {
break;
}
if(sddl_strings[op->type].op_precedence == precedence &&
sddl_strings[op->type].flags & SDDL_FLAG_IS_UNARY_OP) {
break;
}
ok = pop_write_sddl_token(comp);
if (! ok) {
comp_error(comp,
"could not flush '%s' to program",
sddl_strings[op->type].name);
return false;
}
}
return true;
}
static bool push_sddl_token(struct ace_condition_sddl_compiler_context *comp,
struct ace_condition_token token)
{
if (comp->stack_depth >= CONDITIONAL_ACE_MAX_TOKENS - 1) {
comp_error(comp, "excessive recursion");
return false;
}
if (sddl_strings[token.type].op_precedence == SDDL_NOT_AN_OP) {
comp_error(comp,
"wrong kind of token for the SDDL stack: %s",
sddl_strings[token.type].name);
return false;
}
/*
* Any operators on the top of the stack that have a "greater" or
* equal precedence to this one get popped off and written to the
* output.
*/
flush_stack_tokens(comp, token.type);
token.data.op.sddl_position = comp->offset;
comp->stack[comp->stack_depth] = token;
comp->stack_depth++;
if (token.type != CONDITIONAL_ACE_SAMBA_SDDL_PAREN) {
comp->last_token_type = token.type;
}
return true;
}
static bool pop_sddl_token(struct ace_condition_sddl_compiler_context *comp,
struct ace_condition_token *token)
{
if (comp->stack_depth == 0) {
comp_error(comp, "misbalanced expression");
return false;
}
comp->stack_depth--;
*token = comp->stack[comp->stack_depth];
return true;
}
static bool write_sddl_token(struct ace_condition_sddl_compiler_context *comp,
struct ace_condition_token token)
{
/*
* This is adding a token to the program. Normally it will be to the
* main program list, but if we are constructing a composite list, then
* will be redirected there (via comp->target).
*
* We also conservatively track the overall size, so we don't waste
* time compiling something that is way too big.
*/
DBG_INFO("writing %"PRIu32" %x %s\n",
*comp->target_len,
token.type,
sddl_strings[token.type].name);
comp->approx_size++;
if (comp->approx_size > CONDITIONAL_ACE_MAX_TOKENS) {
comp_error(comp, "program is too long "
"(over %d tokens)",
CONDITIONAL_ACE_MAX_TOKENS);
return false;
}
if (token.type != CONDITIONAL_ACE_SAMBA_SDDL_PAREN) {
comp->last_token_type = token.type;
}
comp->target[*comp->target_len] = token;
(*comp->target_len)++;
return true;
}
static bool pop_write_sddl_token(
struct ace_condition_sddl_compiler_context *comp)
{
bool ok;
struct ace_condition_token token = {};
ok = pop_sddl_token(comp, &token);
if (!ok) {
comp_error(comp, "could not pop from op stack");
return false;
}
if (comp->target != comp->program->tokens) {
comp_error(comp, "compiler is seriously confused");
return false;
}
ok = write_sddl_token(comp, token);
if (!ok) {
comp_error(comp,
"could not write '%s' to program",
sddl_strings[token.type].name);
return false;
}
DBG_INFO(" written '%s'\n", sddl_strings[token.type].name);
return true;
}
static bool parse_expression(struct ace_condition_sddl_compiler_context *comp);
static bool parse_composite(struct ace_condition_sddl_compiler_context *comp);
static bool parse_oppy_op(struct ace_condition_sddl_compiler_context *comp)
{
/*
* These ones look like operators and are operators.
*/
bool ok;
struct ace_condition_token token = {};
uint8_t c, d;
uint32_t flag = SDDL_FLAG_EXPECTING_BINARY_OP;
if (comp->offset + 1 >= comp->length) {
comp_error(comp, "syntax error");
return false;
}
token.data.sddl_op.start = comp->offset;
/*
* These are all one or two characters long, and we always have room
* to peek ahead.
*/
c = comp->sddl[comp->offset];
d = comp->sddl[comp->offset + 1];
if (c == '!') {
if (d == '=') {
comp->offset++;
token.type = CONDITIONAL_ACE_TOKEN_NOT_EQUAL;
} else {
token.type = CONDITIONAL_ACE_TOKEN_NOT;
flag = SDDL_FLAG_EXPECTING_UNARY_OP;
}
} else if (c == '=' && d == '=') {
comp->offset++;
token.type = CONDITIONAL_ACE_TOKEN_EQUAL;
} else if (c == '>') {
if (d == '=') {
comp->offset++;
token.type = CONDITIONAL_ACE_TOKEN_GREATER_OR_EQUAL;
} else {
token.type = CONDITIONAL_ACE_TOKEN_GREATER_THAN;
}
} else if (c == '<') {
if (d == '=') {
comp->offset++;
token.type = CONDITIONAL_ACE_TOKEN_LESS_OR_EQUAL;
} else {
token.type = CONDITIONAL_ACE_TOKEN_LESS_THAN;
}
} else if (c == '&' && d == '&') {
comp->offset++;
token.type = CONDITIONAL_ACE_TOKEN_AND;
flag = SDDL_FLAG_EXPECTING_BINARY_LOGIC_OP;
} else if (c == '|' && d == '|') {
comp->offset++;
token.type = CONDITIONAL_ACE_TOKEN_OR;
flag = SDDL_FLAG_EXPECTING_BINARY_LOGIC_OP;
} else {
comp_error(comp, "unknown operator");
return false;
}
if ((comp->state & flag) == 0) {
comp_error(comp, "unexpected operator");
return false;
}
comp->offset++;
ok = push_sddl_token(comp, token);
if (!ok) {
return false;
}
ok = eat_whitespace(comp, true);
return ok;
}
static bool parse_unicode(struct ace_condition_sddl_compiler_context *comp)
{
/*
* This looks like "hello" (including the double quotes).
*
* Fortunately (for now), there is no mechanism for escaping
* double quotes in conditional ace strings, so we can simply
* look for the second quote without worrying about things
* like «\\\"».
*/
struct ace_condition_token token = {};
char *s = NULL;
const uint8_t *src = NULL;
char *utf16 = NULL;
size_t len, max_len;
bool ok;
if (comp->sddl[comp->offset] != '"') {
comp_error(comp, "was expecting '\"' for Unicode string");
return false;
}
comp->offset++;
src = comp->sddl + comp->offset;
max_len = comp->length - comp->offset;
/* strnchr */
for (len = 0; len < max_len; len++) {
if (src[len] == '"') {
break;
}
}
if (len == max_len) {
comp_error(comp, "unterminated unicode string");
return false;
}
/*
* Look, this is wasteful, but it probably doesn't matter. We want to
* check that the string we're putting into the descriptor is valid,
* or we'll see errors down the track.
*/
ok = convert_string_talloc(comp->mem_ctx,
CH_UTF8, CH_UTF16LE,
src, len,
&utf16, NULL);
if (!ok) {
comp_error(comp, "not valid unicode");
return false;
}
TALLOC_FREE(utf16);
s = talloc_array_size(comp->mem_ctx, 1, len + 1);
if (s == NULL) {
comp_error(comp, "allocation error");
return false;
}
memcpy(s, src, len);
s[len] = 0;
comp->offset += len + 1; /* +1 for the final quote */
token.type = CONDITIONAL_ACE_TOKEN_UNICODE;
token.data.unicode.value = s;
token.data.unicode.length = len;
return write_sddl_token(comp, token);
}
static bool parse_octet_string(struct ace_condition_sddl_compiler_context *comp)
{
/*
* This looks like '#hhhh...', where each 'hh' is hex for a byte, with
* the weird and annoying complication that '#' can be used to mean
* '0'.
*/
struct ace_condition_token token = {};
size_t length, i;
if (comp->sddl[comp->offset] != '#') {
comp_error(comp, "was expecting '#' for octet string");
return false;
}
comp->offset++;
length = strspn((const char*)(comp->sddl + comp->offset),
"#0123456789abcdefABCDEF");
if (length & 1) {
comp_error(comp, "octet string has odd number of hex digits");
return false;
}
length /= 2;
token.data.bytes.bytes = talloc_array(comp->mem_ctx, uint8_t, length);
token.data.bytes.length = length;
token.type = CONDITIONAL_ACE_TOKEN_OCTET_STRING;
for (i = 0; i < length; i++) {
/*
* Why not just strhex_to_str()?
*
* Because we need to treat '#' as '0' in octet string values,
* so all of the following are the same
* (equaling {0x10, 0x20, 0x30, 0x0}).
*
* #10203000
* #10203###
* #1#2#3###
* #10203#00
*/
bool ok;
char pair[2];
size_t j = comp->offset + i * 2;
pair[0] = (comp->sddl[j] == '#') ? '0' : comp->sddl[j];
pair[1] = (comp->sddl[j + 1] == '#') ? '0' : comp->sddl[j + 1];
ok = hex_byte(pair, &token.data.bytes.bytes[i]);
if (!ok) {
talloc_free(token.data.bytes.bytes);
comp_error(comp, "inexplicable error in octet string");
return false;
}
}
comp->offset += length * 2;
return write_sddl_token(comp, token);
}
static bool parse_sid(struct ace_condition_sddl_compiler_context *comp)
{
struct dom_sid *sid = NULL;
const uint8_t *sidstr = NULL;
struct ace_condition_token token = {};
size_t end;
bool expecting_bare_sids =
comp->state & SDDL_FLAG_IS_RESOURCE_ATTR_ACE ? true : false;
if ((comp->state & SDDL_FLAG_EXPECTING_LITERAL) == 0) {
comp_error(comp, "did not expect a SID here");
return false;
}
if (expecting_bare_sids) {
/*
* This flag is set for a resource ACE which doesn't have the
* SID() wrapper around the the SID string, and not for a
* conditional ACE, which must have the "SID(...)".
*
* The resource ACE doesn't need this because there is no
* ambiguity with local attribute names, besides which the
* type has already been specified earlier in the ACE.
*/
if (comp->length - comp->offset < 2){
comp_error(comp, "no room for a complete SID");
return false;
}
} else {
if (comp->length - comp->offset < 7){
/* minimum: "SID(AA)" */
comp_error(comp, "no room for a complete SID");
return false;
}
/* conditional ACE SID string */
if (comp->sddl[comp->offset ] != 'S' ||
comp->sddl[comp->offset + 1] != 'I' ||
comp->sddl[comp->offset + 2] != 'D' ||
comp->sddl[comp->offset + 3] != '(') {
comp_error(comp, "malformed SID() constructor");
return false;
} else {
comp->offset += 4;
}
}
sidstr = comp->sddl + comp->offset;
sid = sddl_decode_sid(comp->mem_ctx,
(const char **)&sidstr,
comp->domain_sid);
if (sid == NULL) {
comp_error(comp, "could not parse SID");
return false;
}
end = sidstr - comp->sddl;
if (end >= comp->length || end < comp->offset) {
comp_error(comp, "apparent overflow in SID parsing");
return false;
}
comp->offset = end;
if (expecting_bare_sids) {
/* no trailing ')' in a resource attribute ACE */
} else {
/*
* offset is now at the end of the SID, but we need to account
* for the ')'.
*/
if (comp->sddl[comp->offset] != ')') {
comp_error(comp, "expected ')' to follow SID");
return false;
}
comp->offset++;
}
token.type = CONDITIONAL_ACE_TOKEN_SID;
token.data.sid.sid = sid;
return write_sddl_token(comp, token);
}
static bool parse_int(struct ace_condition_sddl_compiler_context *comp)
{
/*
* This one is relatively simple. strtoll() does the work.
*/
long long v;
struct ace_condition_token token = {};
const char *start = (const char *)comp->sddl + comp->offset;
char *end = NULL;
const char *first_digit = start;
size_t len;
errno = 0;
v = strtoll(start, &end, 0);
if (errno != 0) {
comp_error(comp, "bad integer: %s", strerror(errno));
return false;
}
len = end - start;
if (len == 0) {
comp_error(comp, "unexpected non-integer");
return false;
}
if (comp->offset + len > comp->length) {
comp_error(comp, "impossible integer length: %zu!", len);
return false;
}
comp->offset += len;
/*
* Record the base and sign, which are used for recreating the SDDL.
*
* 'Sign' indicates whether there is a '+' or '-' sign. Base indicates
* whether the number was in hex, octal, or decimal. These make no
* difference to the evaluation of the ACE, just the display.
*
* This would not work reliably if eat_whitespace() is not called
* before parse_int(), but a) we know it is, and b) we don't *really*
* care if we lose these display hints.
*/
if (*start == '-') {
token.data.int64.sign = CONDITIONAL_ACE_INT_SIGN_NEGATIVE;
first_digit++;
} else if (*start == '+') {
token.data.int64.sign = CONDITIONAL_ACE_INT_SIGN_POSITIVE;
first_digit++;
} else {
token.data.int64.sign = CONDITIONAL_ACE_INT_SIGN_NONE;
}
if (*first_digit == '0' && (end - first_digit) > 1) {
if ((end - first_digit > 2) &&
(first_digit[1] == 'x' ||
first_digit[1] == 'X')) {
token.data.int64.base = CONDITIONAL_ACE_INT_BASE_16;
} else {
token.data.int64.base = CONDITIONAL_ACE_INT_BASE_8;
}
} else {
token.data.int64.base = CONDITIONAL_ACE_INT_BASE_10;
}
token.data.int64.value = v;
token.type = CONDITIONAL_ACE_TOKEN_INT64;
return write_sddl_token(comp, token);
}
static bool could_be_an_int(struct ace_condition_sddl_compiler_context *comp)
{
const char *start = (const char*)(comp->sddl + comp->offset);
char* end = NULL;
if ((comp->state & SDDL_FLAG_EXPECTING_LITERAL) == 0) {
return false;
}
errno = 0;
/*
* See, we don't care about the strtoll return value, only
* whether it succeeds or not and what it finds at the end. If
* it succeeds, parse_int() will do it again for the value.
*
* Note that an out of range int will raise ERANGE (probably
* 34), so it will be read as a local attribute.
*/
strtoll(start, &end, 0);
if (errno != 0 ||
end == start ||
end >= (const char*)comp->sddl + comp->length) {
return false;
}
/*
* We know *some* characters form an int, but if we run right
* into other attr1 characters (basically, letters), we won't
* count it as an int.
*
* For example, the "17" in "17p" is not an int. The "17" in
* "17||" is.
*/
if (is_attr_char1(*end)) {
return false;
}
return true;
}
static bool parse_word(struct ace_condition_sddl_compiler_context *comp)
{
/*
* Sometimes a bare word must be a local attribute, while in other
* cases it could also be a member-of or exists operator. Sometimes it
* could actually be a SID, which we discover when we've read as far
* as "SID(". Sometimes it might be a literal integer (attribute
* names can also consist entirely of digits).
*
* When it is an operator name, we have the complication that a match
* does not necessarily end the token. Consider "Member_of_Any" which
* contains the operator "Member_of". According to [MS-DTYP], a space
* is not necessary between the operator and the next token, but it
* does seem to be required for Windows 2022.
*
* Also, "Member_of" et. al. *could* be valid local attributes, which
* would make "(Member_of == 123)" a valid expression that we will
* fail to parse. This is not much of an issue for Samba AD where
* local attributes are not used.
*
* Operators are matched case-insensitively.
*
* There's another kind of attribute that starts with a '@', which we
* deal with in parse_attr2(). Those ones have full unicode glory;
* these ones are ASCII only.
*/
size_t i, j, k;
bool ok;
uint8_t candidates[8];
size_t n_candidates = 0;
struct ace_condition_token token = {};
bool expecting_unary = comp->state & SDDL_FLAG_EXPECTING_UNARY_OP;
bool expecting_binary = comp->state & SDDL_FLAG_EXPECTING_BINARY_OP;
bool expecting_attr = comp->state & SDDL_FLAG_EXPECTING_LOCAL_ATTR;
bool expecting_literal = comp->state & SDDL_FLAG_EXPECTING_LITERAL;
const uint8_t *start = comp->sddl + comp->offset;
uint8_t c = start[0];
char *s = NULL;
if (! is_attr_char1(*start)) {
/* we shouldn't get here, because we peeked first */
return false;
}
/*
* We'll look for a SID first, because it simplifies the rest.
*/
if (expecting_literal &&
comp->offset + 4 < comp->length &&
start[0] == 'S' &&
start[1] == 'I' &&
start[2] == 'D' &&
start[3] == '(') {
/* actually, we are parsing a SID. */
return parse_sid(comp);
}
if (expecting_binary || expecting_unary) {
/*
* Collect up the operators that can possibly be used
* here, including only those that start with the
* current letter and have the right arity/syntax.
*
* We don't expect more than 5 (for 'N', beginning the
* "Not_..." unary ops), and we'll winnow them down as
* we progress through the word.
*/
int uc = toupper(c);
for (i = 0; i < 256; i++) {
struct sddl_data *d = &sddl_strings[i];
if (sddl_strings[i].op_precedence != SDDL_NOT_AN_OP &&
uc == toupper((unsigned char)d->name[0])) {
if (d->flags & SDDL_FLAG_IS_UNARY_OP) {
if (!expecting_unary) {
continue;
}
} else if (!expecting_binary) {
continue;
}
candidates[n_candidates] = i;
n_candidates++;
if (n_candidates == ARRAY_SIZE(candidates)) {
/* impossible, really. */
return false;
}
}
}
} else if (could_be_an_int(comp)) {
/*
* if looks like an integer, and we expect an integer, it is
* an integer. If we don't expect an integer, it is a local
* attribute with a STUPID NAME. Or an error.
*/
return parse_int(comp);
} else if (! expecting_attr) {
comp_error(comp, "did not expect this word here");
return false;
}
i = 1;
while (comp->offset + i < comp->length) {
c = start[i];
if (! is_attr_char1(c)) {
break;
}
if (n_candidates != 0) {
/*
* Filter out candidate operators that no longer
* match.
*/
int uc = toupper(c);
k = 0;
for (j = 0; j < n_candidates; j++) {
size_t o = candidates[j];
uint8_t c2 = sddl_strings[o].name[i];
if (uc == toupper(c2)) {
candidates[k] = candidates[j];
k++;
}
}
n_candidates = k;
}
i++;
}
/*
* We have finished and there is a complete word. If it could be an
* operator we'll assume it is one.
*
* A complication is we could have matched more than one operator, for
* example "Member_of" and "Member_of_Any", so we have to look through
* the list of candidates for the one that ends.
*/
if (n_candidates != 0) {
for (j = 0; j < n_candidates; j++) {
size_t o = candidates[j];
if (sddl_strings[o].name[i] == '\0') {
/* it is this one */
token.type = o;
token.data.sddl_op.start = comp->offset;
comp->offset += i;
ok = push_sddl_token(comp, token);
return ok;
}
}
}
/*
* if looks like an integer, and we expect an integer, it is
* an integer. If we don't expect an integer, it is a local
* attribute with a STUPID NAME.
*/
if (could_be_an_int(comp)) {
return parse_int(comp);
}
if (! expecting_attr) {
comp_error(comp, "word makes no sense here");
return false;
}
/* it's definitely an attribute name */
token.type = CONDITIONAL_ACE_LOCAL_ATTRIBUTE;
if (comp->offset + i >= comp->length) {
comp_error(comp, "missing trailing ')'?");
return false;
}
s = talloc_memdup(comp->mem_ctx, start, i + 1);
if (s == NULL) {
comp_error(comp, "allocation error");
return false;
}
s[i] = 0;
token.data.local_attr.value = s;
token.data.local_attr.length = i;
comp->offset += i;
return write_sddl_token(comp, token);
}
static bool parse_attr2(struct ace_condition_sddl_compiler_context *comp)
{
/*
* Attributes in the form @class.attr
*
* class can be "User", "Device", or "Resource", case insensitive.
*/
size_t i;
bool ok;
size_t len;
struct ace_condition_token token = {};
if ((comp->state & SDDL_FLAG_EXPECTING_NON_LOCAL_ATTR) == 0) {
comp_error(comp, "did not expect @attr here");
return false;
}
if (comp->sddl[comp->offset] != '@') {
comp_error(comp, "Expected '@'");
return false;
}
comp->offset++;
for (i = 0; i < ARRAY_SIZE(sddl_attr_types); i++) {
int ret;
size_t attr_len = strlen(sddl_attr_types[i].name);
if (attr_len >= comp->length - comp->offset) {
continue;
}
ret = strncasecmp(sddl_attr_types[i].name,
(const char *) (comp->sddl + comp->offset),
attr_len);
if (ret == 0) {
token.type = sddl_attr_types[i].code;
comp->offset += attr_len;
break;
}
}
if (i == ARRAY_SIZE(sddl_attr_types)) {
comp_error(comp, "unknown attribute class");
return false;
}
/*
* Now we are past the class and the '.', and into the
* attribute name. The attribute name can be almost
* anything, but some characters need to be escaped.
*/
len = read_attr2_string(comp, &token.data.unicode);
if (len == -1) {
/* read_attr2_string has set a message */
return false;
}
ok = write_sddl_token(comp, token);
if (! ok) {
return false;
}
comp->offset += len;
ok = eat_whitespace(comp, false);
return ok;
}
static bool parse_literal(struct ace_condition_sddl_compiler_context *comp)
{
uint8_t c = comp->sddl[comp->offset];
if (!(comp->state & SDDL_FLAG_EXPECTING_LITERAL)) {
comp_error(comp, "did not expect to be parsing a literal now");
return false;
}
switch(c) {
case '#':
return parse_octet_string(comp);
case '"':
return parse_unicode(comp);
case 'S':
return parse_sid(comp);
case '{':
return parse_composite(comp);
default:
if (strchr("1234567890-+", c) != NULL) {
return parse_int(comp);
}
if ((comp->state & SDDL_FLAG_IS_RESOURCE_ATTR_ACE) &&
isupper(c)) {
return parse_sid(comp);
}
}
if (c > 31 && c < 127) {
comp_error(comp,
"unexpected byte 0x%02x '%c' parsing literal", c, c);
} else {
comp_error(comp, "unexpected byte 0x%02x parsing literal", c);
}
return false;
}
static bool parse_composite(struct ace_condition_sddl_compiler_context *comp)
{
/*
* This jumps into a different parser, expecting a comma separated
* list of literal values, which might include nested literal
* composites.
*
* To handle the nesting, we redirect the pointers that determine
* where write_sddl_token() writes.
*/
bool ok;
struct ace_condition_token token = {
.type = CONDITIONAL_ACE_TOKEN_COMPOSITE
};
uint32_t start = comp->offset;
size_t alloc_size;
struct ace_condition_token *old_target = comp->target;
uint32_t *old_target_len = comp->target_len;
if (comp->sddl[start] != '{') {
comp_error(comp, "expected '{' for composite list");
return false;
}
if (!(comp->state & SDDL_FLAG_EXPECTING_LITERAL)) {
comp_error(comp, "did not expect '{' for composite list");
return false;
}
comp->offset++; /* past '{' */
/*
* the worst case is one token for every two bytes: {1,1,1}, and we
* allocate for that (counting commas and finding '}' gets hard because
* string literals).
*/
alloc_size = MIN((comp->length - start) / 2 + 1,
CONDITIONAL_ACE_MAX_LENGTH);
token.data.composite.tokens = talloc_array(
comp->mem_ctx,
struct ace_condition_token,
alloc_size);
if (token.data.composite.tokens == NULL) {
comp_error(comp, "allocation failure");
return false;
}
comp->target = token.data.composite.tokens;
comp->target_len = &token.data.composite.n_members;
/*
* in this loop we are looking for:
*
* a) possible whitespace.
* b) a literal, which may recurse into another composite
* c) more possible whitespace
* d) a comma (or terminating '}')
*
* Failures use a goto to reset comp->target, just in case we ever try
* continuing after error.
*/
while (comp->offset < comp->length) {
uint8_t c;
ok = eat_whitespace(comp, false);
if (! ok) {
goto fail;
}
if (*comp->target_len >= alloc_size) {
comp_error(comp,
"Too many tokens in composite "
"(>= %"PRIu32" tokens)",
*comp->target_len);
goto fail;
}
ok = parse_literal(comp);
if (!ok) {
goto fail;
}
ok = eat_whitespace(comp, false);
if (! ok) {
goto fail;
}
c = comp->sddl[comp->offset];
if (c == '}') {
comp->offset++;
break;
}
if (c != ',') {
comp_error(comp,
"malformed composite (expected comma)");
goto fail;
}
comp->offset++;
}
comp->target = old_target;
comp->target_len = old_target_len;
write_sddl_token(comp, token);
return true;
fail:
talloc_free(token.data.composite.tokens);
comp->target = old_target;
comp->target_len = old_target_len;
return false;
}
static bool parse_paren_literal(struct ace_condition_sddl_compiler_context *comp)
{
bool ok;
if (comp->sddl[comp->offset] != '(') {
comp_error(comp, "expected '('");
return false;
}
comp->offset++;
ok = parse_literal(comp);
if (!ok) {
return false;
}
if (comp->sddl[comp->offset] != ')') {
comp_error(comp, "expected ')'");
return false;
}
comp->offset++;
return true;
}
static bool parse_expression(struct ace_condition_sddl_compiler_context *comp)
{
/*
* This expects a parenthesised expression.
*/
bool ok;
struct ace_condition_token token = {};
uint32_t start = comp->offset;
if (comp->state & SDDL_FLAG_EXPECTING_PAREN_LITERAL) {
/*
* Syntctically we allow parentheses to wrap a literal
* value after a Member_of op, but we want to remember
* that it just wants a single literal, not a general
* expression.
*/
return parse_paren_literal(comp);
}
if (comp->sddl[start] != '(') {
comp_error(comp, "expected '('");
return false;
}
if (!(comp->state & SDDL_FLAG_EXPECTING_PAREN)) {
comp_error(comp, "did not expect '('");
return false;
}
token.type = CONDITIONAL_ACE_SAMBA_SDDL_PAREN;
token.data.sddl_op.start = start;
ok = push_sddl_token(comp, token);
if (!ok) {
return false;
}
comp->offset++; /* over the '(' */
comp->state = SDDL_FLAGS_EXPR_START;
DBG_INFO("%3"PRIu32": (\n", comp->offset);
while (comp->offset < comp->length) {
uint8_t c;
ok = eat_whitespace(comp, false);
if (! ok) {
return false;
}
c = comp->sddl[comp->offset];
if (c == '(') {
ok = parse_expression(comp);
} else if (c == ')') {
if (comp->state & (SDDL_FLAG_IS_BINARY_OP |
SDDL_FLAG_IS_UNARY_OP)) {
/*
* You can't have "(a ==)" or "(!)"
*/
comp_error(comp,
"operator lacks right hand argument");
return false;
}
break;
} else if (c == '@') {
ok = parse_attr2(comp);
} else if (strchr("!<>=&|", c)) {
ok = parse_oppy_op(comp);
} else if (is_attr_char1(c)) {
ok = parse_word(comp);
} else if (comp->state & SDDL_FLAG_EXPECTING_LITERAL) {
ok = parse_literal(comp);
} else {
if (c > 31 && c < 127) {
comp_error(comp,
"unexpected byte 0x%02x '%c'", c, c);
} else {
comp_error(comp, "unexpected byte 0x%02x", c);
}
ok = false;
}
if (! ok) {
return false;
}
/*
* what did we just find? Set what we expect accordingly.
*/
comp->state = sddl_strings[comp->last_token_type].flags;
DBG_INFO("%3"PRIu32": %s\n",
comp->offset,
sddl_strings[comp->last_token_type].name);
}
ok = eat_whitespace(comp, false);
if (!ok) {
return false;
}
if (comp->sddl[comp->offset] != ')') {
comp_error(comp, "expected ')' to match '(' at %"PRIu32, start);
return false;
}
/*
* we won't comp->offset++ until after these other error checks, so
* that their messages have consistent locations.
*/
ok = flush_stack_tokens(comp, CONDITIONAL_ACE_SAMBA_SDDL_PAREN_END);
if (!ok) {
return false;
}
if (comp->stack_depth == 0) {
comp_error(comp, "mysterious nesting error between %"
PRIu32" and here",
start);
return false;
}
token = comp->stack[comp->stack_depth - 1];
if (token.type != CONDITIONAL_ACE_SAMBA_SDDL_PAREN) {
comp_error(comp, "nesting error between %"PRIu32" and here",
start);
return false;
}
if (token.data.sddl_op.start != start) {
comp_error(comp, "')' should match '(' at %"PRIu32
", not %"PRIu32,
token.data.sddl_op.start, start);
return false;
}
comp->stack_depth--;
DBG_INFO("%3"PRIu32": )\n", comp->offset);
comp->offset++; /* for the ')' */
comp->last_token_type = CONDITIONAL_ACE_SAMBA_SDDL_PAREN_END;
comp->state = sddl_strings[comp->last_token_type].flags;
ok = eat_whitespace(comp, true);
return ok;
}
static bool init_compiler_context(
TALLOC_CTX *mem_ctx,
struct ace_condition_sddl_compiler_context *comp,
const char *sddl,
size_t max_length,
size_t max_stack)
{
struct ace_condition_script *program = NULL;
comp->sddl = (const uint8_t*)sddl;
comp->mem_ctx = mem_ctx;
program = talloc_zero(mem_ctx, struct ace_condition_script);
if (program == NULL) {
return false;
}
/*
* For the moment, we allocate for the worst case up front.
*/
program->tokens = talloc_array(program,
struct ace_condition_token,
max_length);
if (program->tokens == NULL) {
TALLOC_FREE(program);
return false;
}
program->stack = talloc_array(program,
struct ace_condition_token,
max_stack + 1);
if (program->stack == NULL) {
TALLOC_FREE(program);
return false;
}
comp->program = program;
/* we can borrow the program stack for the operator stack */
comp->stack = program->stack;
comp->target = program->tokens;
comp->target_len = &program->length;
comp->length = strlen(sddl);
comp->state = SDDL_FLAG_EXPECTING_PAREN;
return true;
}
/*
* Compile SDDL conditional ACE conditions.
*
* @param mem_ctx
* @param sddl - the string to be parsed
* @param message - on error, a pointer to a compiler message
* @param message_offset - where the error occurred
* @param consumed_length - how much of the SDDL was used
* @return a struct ace_condition_script (or NULL).
*/
struct ace_condition_script * ace_conditions_compile_sddl(
TALLOC_CTX *mem_ctx,
const char *sddl,
const char **message,
size_t *message_offset,
size_t *consumed_length)
{
bool ok;
struct ace_condition_sddl_compiler_context comp = {};
/* just in case, a message for the next few tallocs */
*message = "allocation error";
*message_offset = 0;
ok = init_compiler_context(mem_ctx,
&comp,
sddl,
CONDITIONAL_ACE_MAX_LENGTH,
CONDITIONAL_ACE_MAX_TOKENS);
if (!ok) {
return NULL;
}
ok = parse_expression(&comp);
if (!ok) {
goto error;
}
if (comp.stack_depth != 0) {
comp_error(&comp, "incomplete expression");
goto error;
}
if (consumed_length != NULL) {
*consumed_length = comp.offset;
}
*message = comp.message;
*message_offset = comp.message_offset;
return comp.program;
error:
*message = comp.message;
*message_offset = comp.message_offset;
TALLOC_FREE(comp.program);
return NULL;
}
static bool check_resource_attr_type(struct ace_condition_token *tok, char c)
{
/*
* Check that a token matches the expected resource ace type (TU, TS,
* etc).
*
* We're sticking to the [IUSDXB] codes rather than using converting
* earlier to tok->type (whereby this who thing becomes "if (tok->type
* == type)") to enable bounds checks on the various integer types.
*/
switch(c) {
case 'I':
/* signed int */
if (tok->type != CONDITIONAL_ACE_TOKEN_INT64) {
goto wrong_type;
}
return true;
case 'U':
/* unsigned int, let's check the range */
if (tok->type != CONDITIONAL_ACE_TOKEN_INT64) {
goto wrong_type;
}
if (tok->data.int64.value < 0) {
DBG_WARNING(
"invalid resource ACE value for unsigned TU\n");
goto error;
}
return true;
case 'S':
/* unicode string */
if (tok->type != CONDITIONAL_ACE_TOKEN_UNICODE) {
goto wrong_type;
}
return true;
case 'D':
/* SID */
if (tok->type != CONDITIONAL_ACE_TOKEN_SID) {
goto wrong_type;
}
return true;
case 'X':
/* Octet string */
if (tok->type != CONDITIONAL_ACE_TOKEN_OCTET_STRING) {
if (tok->type == CONDITIONAL_ACE_TOKEN_INT64) {
/*
* Windows 2022 will also accept even
* numbers of digits, like "1234"
* instead of "#1234". Samba does not.
*
* Fixing this is complicated by the
* fact that a leading '0' will have
* cast the integer to octal, while an
* A-F character will have caused it
* to not parse as a literal at all.
*
* This behaviour is not mentioned in
* MS-DTYP or elsewhere.
*/
DBG_WARNING("Octet sequence uses bare digits, "
"please prefix a '#'\n");
}
goto wrong_type;
}
return true;
case 'B':
/* Boolean, meaning an int that is 0 or 1 */
if (tok->type != CONDITIONAL_ACE_TOKEN_INT64) {
goto wrong_type;
}
if (tok->data.int64.value != 0 &&
tok->data.int64.value != 1) {
DBG_WARNING("invalid resource ACE value for boolean TB "
"(should be 0 or 1).\n");
goto error;
}
return true;
default:
DBG_WARNING("Unknown resource ACE type T%c\n", c);
goto error;
};
wrong_type:
DBG_WARNING("resource ace type T%c doesn't match value\n", c);
error:
return false;
}
static bool parse_resource_attr_list(
struct ace_condition_sddl_compiler_context *comp,
char attr_type_char)
{
/*
* This is a bit like parse_composite() above, but with the following
* differences:
*
* - it doesn't want '{...}' around the list.
* - if there is just one value, it is not a composite
* - all the values must be the expected type.
* - there is no nesting.
* - SIDs are not written with SID(...) around them.
*/
bool ok;
struct ace_condition_token composite = {
.type = CONDITIONAL_ACE_TOKEN_COMPOSITE
};
uint32_t start = comp->offset;
size_t alloc_size;
struct ace_condition_token *old_target = comp->target;
uint32_t *old_target_len = comp->target_len;
comp->state = (SDDL_FLAG_EXPECTING_LITERAL |
SDDL_FLAG_IS_RESOURCE_ATTR_ACE);
/*
* the worst case is one token for every two bytes: {1,1,1}, and we
* allocate for that (counting commas and finding '}' gets hard because
* string literals).
*/
alloc_size = MIN((comp->length - start) / 2 + 1,
CONDITIONAL_ACE_MAX_LENGTH);
composite.data.composite.tokens = talloc_array(
comp->mem_ctx,
struct ace_condition_token,
alloc_size);
if (composite.data.composite.tokens == NULL) {
comp_error(comp, "allocation failure");
return false;
}
comp->target = composite.data.composite.tokens;
comp->target_len = &composite.data.composite.n_members;
/*
* in this loop we are looking for:
*
* a) possible whitespace.
* b) a literal, of the right type (checked after)
* c) more possible whitespace
* d) a comma
*
* Failures use a goto to reset comp->target, just in case we ever try
* continuing after error.
*/
while (comp->offset < comp->length) {
uint8_t c;
ok = eat_whitespace(comp, false);
if (! ok) {
goto fail;
}
if (*comp->target_len >= alloc_size) {
comp_error(comp,
"Too many tokens in composite "
"(>= %"PRIu32" tokens)",
*comp->target_len);
goto fail;
}
ok = parse_literal(comp);
if (!ok) {
goto fail;
}
if (*comp->target_len == 0) {
goto fail;
}
ok = check_resource_attr_type(
&comp->target[*comp->target_len - 1],
attr_type_char);
if (! ok) {
goto fail;
}
ok = eat_whitespace(comp, false);
if (! ok) {
goto fail;
}
c = comp->sddl[comp->offset];
if (c == ')') {
break;
}
if (c != ',') {
comp_error(comp,
"malformed composite (expected comma)");
goto fail;
}
comp->offset++;
}
comp->target = old_target;
comp->target_len = old_target_len;
/*
* If we only ended up collecting one token into the composite, we
* write that instead.
*/
if (composite.data.composite.n_members == 1) {
ok = write_sddl_token(comp, composite.data.composite.tokens[0]);
talloc_free(composite.data.composite.tokens);
} else {
ok = write_sddl_token(comp, composite);
}
if (! ok) {
goto fail;
}
return true;
fail:
comp->target = old_target;
comp->target_len = old_target_len;
TALLOC_FREE(composite.data.composite.tokens);
return false;
}
struct CLAIM_SECURITY_ATTRIBUTE_RELATIVE_V1 *sddl_decode_resource_attr (
TALLOC_CTX *mem_ctx,
const char *str,
size_t *length)
{
/*
* Resource attribute ACEs define claims in object SACLs. They look like
*
* "(RA; «flags» ;;;;WD;( «attribute-data» ))"
*
* attribute-data = DQUOTE 1*attr-char2 DQUOTE "," \
* ( TI-attr / TU-attr / TS-attr / TD-attr / TX-attr / TB-attr )
* TI-attr = "TI" "," attr-flags *("," int-64)
* TU-attr = "TU" "," attr-flags *("," uint-64)
* TS-attr = "TS" "," attr-flags *("," char-string)
* TD-attr = "TD" "," attr-flags *("," sid-string)
* TX-attr = "TX" "," attr-flags *("," octet-string)
* TB-attr = "TB" "," attr-flags *("," ( "0" / "1" ) )
*
* and the data types are all parsed in the SDDL way.
* At this point we only have the "(«attribute-data»)".
*
* What we do is set up a conditional ACE compiler to be expecting a
* literal, and ask it to parse the strings between the commas. It's a
* hack.
*/
bool ok;
struct CLAIM_SECURITY_ATTRIBUTE_RELATIVE_V1 *claim = NULL;
struct ace_condition_sddl_compiler_context comp = {};
char attr_type;
struct ace_condition_token *tok;
uint32_t flags;
size_t len;
struct ace_condition_unicode attr_name = {};
ok = init_compiler_context(mem_ctx, &comp, str, 3, 3);
if (!ok) {
return NULL;
}
if (comp.length < 6 || comp.length > CONDITIONAL_ACE_MAX_LENGTH) {
DBG_WARNING("invalid resource attribute: '%s'\n", str);
goto error;
}
/*
* Resource attribute ACEs list SIDs in a bare form "S-1-2-3", while
* conditional ACEs use a wrapper syntax "SID(S-1-2-3)". As almost
* everything is the same, we are reusing the conditional ACE parser,
* with a flag set to tell the SID parser which form to expect.
*/
/* Most examples on the web have leading whitespace */
ok = eat_whitespace(&comp, false);
if (!ok) {
return NULL;
}
if (comp.sddl[comp.offset] != '(' ||
comp.sddl[comp.offset + 1] != '"') {
DBG_WARNING("invalid resource attribute -- expected '(\"'\n");
goto error;
}
comp.offset += 2;
/*
* Read the name. Here we are not reading a token into comp->program,
* just into a unicode blob.
*/
len = read_attr2_string(&comp, &attr_name);
if (len == -1) {
DBG_WARNING("invalid resource attr name: %s\n", str);
goto error;
}
comp.offset += len;
ok = eat_whitespace(&comp, false);
if (comp.offset + 6 > comp.length) {
DBG_WARNING("invalid resource attribute (too short): '%s'\n",
str);
goto error;
}
/*
* now we have the name. Next comes '",«T[IUSDXB]»,' followed
* by the flags, which are a 32 bit number.
*/
if (comp.sddl[comp.offset] != '"' ||
comp.sddl[comp.offset + 1] != ','||
comp.sddl[comp.offset + 2] != 'T') {
DBG_WARNING("expected '\",T[IUSDXB]' after attr name\n");
goto error;
}
attr_type = comp.sddl[comp.offset + 3];
if (comp.sddl[comp.offset + 4] != ',') {
DBG_WARNING("expected ',' after attr type\n");
goto error;
}
comp.offset += 5;
comp.state = SDDL_FLAG_EXPECTING_LITERAL;
ok = parse_literal(&comp);
if (!ok ||
comp.program->length != 1) {
DBG_WARNING("invalid attr flags: %s\n", str);
goto error;
}
tok = &comp.program->tokens[0];
if (tok->type != CONDITIONAL_ACE_TOKEN_INT64 ||
tok->data.int64.value < 0 ||
tok->data.int64.value > UINT32_MAX) {
DBG_WARNING("invalid attr flags (want 32 bit int): %s\n", str);
goto error;
}
flags = tok->data.int64.value;
if (flags & 0xff00) {
DBG_WARNING("invalid attr flags, "
"stepping on reserved 0xff00 range: %s\n",
str);
goto error;
}
if (comp.offset + 3 > comp.length) {
DBG_WARNING("invalid resource attribute (too short): '%s'\n",
str);
goto error;
}
if (comp.sddl[comp.offset] != ',') {
DBG_WARNING("invalid resource attribute ace\n");
goto error;
}
comp.offset++;
ok = parse_resource_attr_list(&comp, attr_type);
if (!ok || comp.program->length != 2) {
DBG_WARNING("invalid attribute type or value: T%c, %s\n",
attr_type, str);
goto error;
}
if (comp.sddl[comp.offset] != ')') {
DBG_WARNING("expected trailing ')'\n");
goto error;
}
comp.offset++;
*length = comp.offset;
ok = ace_token_to_claim_v1(mem_ctx,
attr_name.value,
&comp.program->tokens[1],
&claim,
flags);
if (!ok) {
goto error;
}
TALLOC_FREE(comp.program);
return claim;
error:
TALLOC_FREE(comp.program);
return NULL;
}
static bool write_resource_attr_from_token(struct sddl_write_context *ctx,
struct ace_condition_token *tok)
{
/*
* this is a helper for sddl_resource_attr_from_claim(),
* recursing into composites if necessary.
*/
bool ok;
char *sid = NULL;
size_t i;
struct ace_condition_composite *c = NULL;
switch (tok->type) {
case CONDITIONAL_ACE_TOKEN_INT64:
/*
* Note that this includes uint and bool claim types,
* but we don't check the validity of the ranges (0|1
* and >=0, respectively), rather we trust the claim
* to be self-consistent in this regard. Going the
* other way, string-to-claim, we do check.
*/
return sddl_write_int(ctx, tok);
case CONDITIONAL_ACE_TOKEN_UNICODE:
return sddl_write_unicode(ctx, tok);
case CONDITIONAL_ACE_TOKEN_SID:
/* unlike conditional ACE, SID does not had "SID()" wrapper. */
sid = sddl_encode_sid(ctx->mem_ctx, tok->data.sid.sid, NULL);
if (sid == NULL) {
return false;
}
return sddl_write(ctx, sid);
case CONDITIONAL_ACE_TOKEN_OCTET_STRING:
return sddl_write_octet_string(ctx, tok);
case CONDITIONAL_ACE_TOKEN_COMPOSITE:
/*
* write each token, separated by commas. If there
* were nested composites, this would flatten them,
* but that isn't really possible because the token we
* are dealing with came from a claim, which has no
* facility for nesting.
*/
c = &tok->data.composite;
for(i = 0; i < c->n_members; i++) {
ok = write_resource_attr_from_token(ctx, &c->tokens[i]);
if (!ok) {
return false;
}
if (i != c->n_members - 1) {
ok = sddl_write(ctx, ",");
if (!ok) {
return false;
}
}
}
return true;
default:
/* We really really don't expect to get here */
return false;
}
}
char *sddl_resource_attr_from_claim(
TALLOC_CTX *mem_ctx,
const struct CLAIM_SECURITY_ATTRIBUTE_RELATIVE_V1 *claim)
{
char *s = NULL;
char attr_type;
bool ok;
struct ace_condition_token tok = {};
struct sddl_write_context ctx = {};
TALLOC_CTX *tmp_ctx = NULL;
char *name = NULL;
size_t name_len;
switch(claim->value_type) {
case CLAIM_SECURITY_ATTRIBUTE_TYPE_INT64:
attr_type = 'I';
break;
case CLAIM_SECURITY_ATTRIBUTE_TYPE_UINT64:
attr_type = 'U';
break;
case CLAIM_SECURITY_ATTRIBUTE_TYPE_STRING:
attr_type = 'S';
break;
case CLAIM_SECURITY_ATTRIBUTE_TYPE_SID:
attr_type = 'D';
break;
case CLAIM_SECURITY_ATTRIBUTE_TYPE_BOOLEAN:
attr_type = 'B';
break;
case CLAIM_SECURITY_ATTRIBUTE_TYPE_OCTET_STRING:
attr_type = 'X';
break;
default:
return NULL;
}
tmp_ctx = talloc_new(mem_ctx);
ctx.mem_ctx = tmp_ctx;
ok = claim_v1_to_ace_token(tmp_ctx, claim, &tok);
if (!ok) {
TALLOC_FREE(tmp_ctx);
return NULL;
}
/* this will construct the proper string in ctx.sddl */
ok = write_resource_attr_from_token(&ctx, &tok);
if (!ok) {
TALLOC_FREE(tmp_ctx);
return NULL;
}
/* escape the claim name */
ok = sddl_encode_attr_name(tmp_ctx,
claim->name,
strlen(claim->name),
&name, &name_len);
if (!ok) {
TALLOC_FREE(tmp_ctx);
return NULL;
}
s = talloc_asprintf(mem_ctx,
"(\"%s\",T%c,0x%x,%s)",
name,
attr_type,
claim->flags,
ctx.sddl);
TALLOC_FREE(tmp_ctx);
return s;
}
struct CLAIM_SECURITY_ATTRIBUTE_RELATIVE_V1 *parse_sddl_literal_as_claim(
TALLOC_CTX *mem_ctx,
const char *name,
const char *str)
{
/*
* For testing purposes (and possibly for client tools), we
* want to be able to create claim literals, and we might as
* well use the SDDL syntax. So we pretend to be parsing SDDL
* for one literal.
*/
bool ok;
struct CLAIM_SECURITY_ATTRIBUTE_RELATIVE_V1 *claim = NULL;
struct ace_condition_sddl_compiler_context comp = {};
ok = init_compiler_context(mem_ctx, &comp, str, 2, 2);
if (!ok) {
return NULL;
}
comp.state = SDDL_FLAG_EXPECTING_LITERAL;
ok = parse_literal(&comp);
if (!ok) {
goto error;
}
if (comp.program->length != 1) {
goto error;
}
ok = ace_token_to_claim_v1(mem_ctx,
name,
&comp.program->tokens[0],
&claim,
0);
if (!ok) {
goto error;
}
TALLOC_FREE(comp.program);
return claim;
error:
TALLOC_FREE(comp.program);
return NULL;
}