mirror of
https://github.com/samba-team/samba.git
synced 2025-01-21 18:04:06 +03:00
aecb2b779b
This made Python 2's print behave like Python 3's print(). In some cases, where we had: from __future__ import print_function """Intended module documentation...""" this will have the side effect of making the intended module documentation work as the actual module documentation (i.e. becoming __doc__), because it is once again the first statement in the module. Signed-off-by: Douglas Bagnall <douglas.bagnall@catalyst.net.nz> Reviewed-by: Andrew Bartlett <abartlet@samba.org>
533 lines
26 KiB
Python
533 lines
26 KiB
Python
# -*- coding: utf-8 -*-
|
||
# Test graph dot file generation
|
||
#
|
||
# Copyright (C) Andrew Bartlett 2018.
|
||
#
|
||
# Written by Douglas Bagnall <douglas.bagnall@catalyst.net.nz>
|
||
#
|
||
# This program is free software; you can redistribute it and/or modify
|
||
# it under the terms of the GNU General Public License as published by
|
||
# the Free Software Foundation; either version 3 of the License, or
|
||
# (at your option) any later version.
|
||
#
|
||
# This program is distributed in the hope that it will be useful,
|
||
# but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
# GNU General Public License for more details.
|
||
#
|
||
# You should have received a copy of the GNU General Public License
|
||
# along with this program. If not, see <http://www.gnu.org/licenses/>.
|
||
|
||
"""Tests for samba.graph"""
|
||
|
||
import samba
|
||
import samba.tests
|
||
from samba import graph
|
||
|
||
import re
|
||
import itertools
|
||
|
||
|
||
class DotFileTests(samba.tests.TestCaseInTempDir):
|
||
|
||
def assertMatch(self, exp, s):
|
||
m = re.match(exp, s)
|
||
if m is None:
|
||
self.fail("%r did not match /%s/" % (s, exp))
|
||
return m
|
||
|
||
def assertHeader(self, lines, title, directed):
|
||
self.assertEqual(lines[0], '/* generated by samba */')
|
||
if directed:
|
||
exp = r'^digraph \w+ {$'
|
||
else:
|
||
exp = r'^graph \w+ {$'
|
||
self.assertMatch(exp, lines[1])
|
||
m = self.assertMatch(r'^label="([\w ]+)";$', lines[2])
|
||
self.assertEqual(m.group(1), title)
|
||
self.assertMatch(r'^fontsize=10;$', lines[3])
|
||
self.assertMatch(r'$', lines[4])
|
||
self.assertEqual(lines[5], 'node[fontname=Helvetica; fontsize=10];')
|
||
self.assertEqual(lines[6], '')
|
||
|
||
def assertVertices(self, lines, names):
|
||
for n, line in zip(names, lines):
|
||
m = self.assertMatch(r'^"(\w+)";$', line)
|
||
self.assertEqual(n, m.group(1))
|
||
|
||
def assertEdges(self, lines, edges, directed):
|
||
connector = '->' if directed else '--'
|
||
|
||
for edge, line in zip(edges, lines):
|
||
a, b = edge
|
||
m = self.assertMatch((r'^"(\w+)" ([>-]{2}) '
|
||
r'"(\w+)" ?(?:\[([^\]])\])?;$'),
|
||
line)
|
||
self.assertEqual(m.group(1), a)
|
||
self.assertEqual(m.group(2), connector)
|
||
self.assertEqual(m.group(3), b)
|
||
if m.group(4):
|
||
self.assertMatch(r'^[\w ]*$', m.group(4))
|
||
|
||
def test_basic_dot_files(self):
|
||
vertices = tuple('abcdefgh')
|
||
all_edges = tuple(itertools.combinations(vertices, 2))
|
||
line_edges = list(zip(vertices[1:], vertices[:-1]))
|
||
ring_edges = line_edges + [(vertices[0], vertices[-1])]
|
||
no_edges = []
|
||
# even join to even numbers, odd to odd
|
||
disjoint_edges = [(a, b) for a, b in all_edges if
|
||
ord(a) ^ ord(b) == 0]
|
||
|
||
for name, edges in (('all', all_edges),
|
||
('line', line_edges),
|
||
('ring', ring_edges),
|
||
('no', no_edges),
|
||
('disjoint', disjoint_edges)):
|
||
|
||
for directed, tag in ((True, "directed"),
|
||
(False, "undirected")):
|
||
title = "%s %s" % (name, tag)
|
||
|
||
g = graph.dot_graph(vertices, edges,
|
||
directed=directed,
|
||
title=title)
|
||
lines = g.split('\n')
|
||
self.assertHeader(lines, title, directed)
|
||
self.assertVertices(lines[7:], vertices)
|
||
self.assertEdges(lines[len(vertices) + 7:], edges, directed)
|
||
|
||
|
||
class DistanceTests(samba.tests.TestCase):
|
||
|
||
def setUp(self):
|
||
super(DistanceTests, self).setUp()
|
||
# a sorted list of colour set names.
|
||
self.sorted_colour_sets = sorted(
|
||
graph.COLOUR_SETS,
|
||
# return '' for None, so it's sortable.
|
||
key=lambda name: name or '')
|
||
|
||
def test_simple_distance(self):
|
||
edges = [('ant', 'bat'),
|
||
('cat', 'dog'),
|
||
('ant', 'elephant'),
|
||
('elephant', 'dog'),
|
||
('bat', 'dog'),
|
||
('frog', 'elephant'),
|
||
('frog', 'cat'),
|
||
('bat', 'elephant'),
|
||
('elephant', 'cat'),
|
||
('cat', 'ant'),
|
||
('cat', 'dog')]
|
||
|
||
expected = {
|
||
"utf8 True, colour None": '''
|
||
destination
|
||
╭────── ant
|
||
│╭───── bat
|
||
││╭──── cat
|
||
│││╭─── dog
|
||
││││╭── elephant
|
||
source │││││╭─ frog
|
||
ant ·1221-
|
||
bat 3·211-
|
||
cat 12·12-
|
||
dog ---·--
|
||
elephant 2311·-
|
||
frog 23121·''',
|
||
'utf8 True, colour ansi': '''
|
||
[4mdestination[0m
|
||
[0m[37m╭────── ant[0m
|
||
[37m│[0m[1;30m╭───── bat[0m
|
||
[37m│[1;30m│[0m[37m╭──── cat[0m
|
||
[37m│[1;30m│[37m│[0m[1;30m╭─── dog[0m
|
||
[37m│[1;30m│[37m│[1;30m│[0m[37m╭── elephant[0m
|
||
[4msource[0m [37m│[1;30m│[37m│[1;30m│[37m│[0m[1;30m╭─ frog[0m
|
||
[37m ant[0m [0m[37m·[0m[1;32m1[0m[33m2[0m[33m2[0m[1;32m1[0m[1;31m-[0m
|
||
[1;30m bat[0m [33m3[0m[0m[1;30m·[0m[33m2[0m[1;32m1[0m[1;32m1[0m[1;31m-[0m
|
||
[37m cat[0m [1;32m1[0m[33m2[0m[0m[37m·[0m[1;32m1[0m[33m2[0m[1;31m-[0m
|
||
[1;30m dog[0m [1;31m-[1;31m-[1;31m-[0m[1;30m·[0m[1;31m-[1;31m-[0m
|
||
[37melephant[0m [33m2[0m[33m3[0m[1;32m1[0m[1;32m1[0m[0m[37m·[0m[1;31m-[0m
|
||
[1;30m frog[0m [33m2[0m[33m3[0m[1;32m1[0m[33m2[0m[1;32m1[0m[0m[1;30m·[0m[0m
|
||
''',
|
||
'utf8 True, colour ansi-heatmap': '''
|
||
[4mdestination[0m
|
||
[0m[37m╭────── ant[0m
|
||
[37m│[0m[1;30m╭───── bat[0m
|
||
[37m│[1;30m│[0m[37m╭──── cat[0m
|
||
[37m│[1;30m│[37m│[0m[1;30m╭─── dog[0m
|
||
[37m│[1;30m│[37m│[1;30m│[0m[37m╭── elephant[0m
|
||
[4msource[0m [37m│[1;30m│[37m│[1;30m│[37m│[0m[1;30m╭─ frog[0m
|
||
[37m ant[0m [0m[37m·[0m[1;42m1[0m[43m2[0m[43m2[0m[1;42m1[0m[1;41m-[0m
|
||
[1;30m bat[0m [43m3[0m[0m[1;30m·[0m[43m2[0m[1;42m1[0m[1;42m1[0m[1;41m-[0m
|
||
[37m cat[0m [1;42m1[0m[43m2[0m[0m[37m·[0m[1;42m1[0m[43m2[0m[1;41m-[0m
|
||
[1;30m dog[0m [1;41m-[1;41m-[1;41m-[0m[1;30m·[0m[1;41m-[1;41m-[0m
|
||
[37melephant[0m [43m2[0m[43m3[0m[1;42m1[0m[1;42m1[0m[0m[37m·[0m[1;41m-[0m
|
||
[1;30m frog[0m [43m2[0m[43m3[0m[1;42m1[0m[43m2[0m[1;42m1[0m[0m[1;30m·[0m[0m
|
||
''',
|
||
'utf8 True, colour xterm-256color': '''
|
||
[4mdestination[0m
|
||
[0m[38;5;39m╭────── ant[0m
|
||
[38;5;39m│[0m[38;5;45m╭───── bat[0m
|
||
[38;5;39m│[38;5;45m│[0m[38;5;39m╭──── cat[0m
|
||
[38;5;39m│[38;5;45m│[38;5;39m│[0m[38;5;45m╭─── dog[0m
|
||
[38;5;39m│[38;5;45m│[38;5;39m│[38;5;45m│[0m[38;5;39m╭── elephant[0m
|
||
[4msource[0m [38;5;39m│[38;5;45m│[38;5;39m│[38;5;45m│[38;5;39m│[0m[38;5;45m╭─ frog[0m
|
||
[38;5;39m ant[0m [0m[38;5;39m·[0m[38;5;112m1[0m[38;5;214m2[0m[38;5;214m2[0m[38;5;112m1[0m[48;5;124m-[0m
|
||
[38;5;45m bat[0m [38;5;208m3[0m[0m[38;5;45m·[0m[38;5;214m2[0m[38;5;112m1[0m[38;5;112m1[0m[48;5;124m-[0m
|
||
[38;5;39m cat[0m [38;5;112m1[0m[38;5;214m2[0m[0m[38;5;39m·[0m[38;5;112m1[0m[38;5;214m2[0m[48;5;124m-[0m
|
||
[38;5;45m dog[0m [48;5;124m-[48;5;124m-[48;5;124m-[0m[38;5;45m·[0m[48;5;124m-[48;5;124m-[0m
|
||
[38;5;39melephant[0m [38;5;214m2[0m[38;5;208m3[0m[38;5;112m1[0m[38;5;112m1[0m[0m[38;5;39m·[0m[48;5;124m-[0m
|
||
[38;5;45m frog[0m [38;5;214m2[0m[38;5;208m3[0m[38;5;112m1[0m[38;5;214m2[0m[38;5;112m1[0m[0m[38;5;45m·[0m[0m
|
||
''',
|
||
'utf8 True, colour xterm-256color-heatmap': '''
|
||
[4mdestination[0m
|
||
[0m[38;5;171m╭────── ant[0m
|
||
[38;5;171m│[0m[38;5;207m╭───── bat[0m
|
||
[38;5;171m│[38;5;207m│[0m[38;5;171m╭──── cat[0m
|
||
[38;5;171m│[38;5;207m│[38;5;171m│[0m[38;5;207m╭─── dog[0m
|
||
[38;5;171m│[38;5;207m│[38;5;171m│[38;5;207m│[0m[38;5;171m╭── elephant[0m
|
||
[4msource[0m [38;5;171m│[38;5;207m│[38;5;171m│[38;5;207m│[38;5;171m│[0m[38;5;207m╭─ frog[0m
|
||
[38;5;171m ant[0m [0m[38;5;171m·[0m[48;5;112m1[0m[48;5;214m2[0m[48;5;214m2[0m[48;5;112m1[0m[48;5;124m-[0m
|
||
[38;5;207m bat[0m [48;5;208m3[0m[0m[38;5;207m·[0m[48;5;214m2[0m[48;5;112m1[0m[48;5;112m1[0m[48;5;124m-[0m
|
||
[38;5;171m cat[0m [48;5;112m1[0m[48;5;214m2[0m[0m[38;5;171m·[0m[48;5;112m1[0m[48;5;214m2[0m[48;5;124m-[0m
|
||
[38;5;207m dog[0m [48;5;124m-[48;5;124m-[48;5;124m-[0m[38;5;207m·[0m[48;5;124m-[48;5;124m-[0m
|
||
[38;5;171melephant[0m [48;5;214m2[0m[48;5;208m3[0m[48;5;112m1[0m[48;5;112m1[0m[0m[38;5;171m·[0m[48;5;124m-[0m
|
||
[38;5;207m frog[0m [48;5;214m2[0m[48;5;208m3[0m[48;5;112m1[0m[48;5;214m2[0m[48;5;112m1[0m[0m[38;5;207m·[0m[0m
|
||
''',
|
||
'utf8 False, colour None': '''
|
||
destination
|
||
,------ ant
|
||
|,----- bat
|
||
||,---- cat
|
||
|||,--- dog
|
||
||||,-- elephant
|
||
source |||||,- frog
|
||
ant 01221-
|
||
bat 30211-
|
||
cat 12012-
|
||
dog ---0--
|
||
elephant 23110-
|
||
frog 231210
|
||
''',
|
||
'utf8 False, colour ansi': '''
|
||
[4mdestination[0m
|
||
[0m[37m,------ ant[0m
|
||
[37m|[0m[1;30m,----- bat[0m
|
||
[37m|[1;30m|[0m[37m,---- cat[0m
|
||
[37m|[1;30m|[37m|[0m[1;30m,--- dog[0m
|
||
[37m|[1;30m|[37m|[1;30m|[0m[37m,-- elephant[0m
|
||
[4msource[0m [37m|[1;30m|[37m|[1;30m|[37m|[0m[1;30m,- frog[0m
|
||
[37m ant[0m [0m[37m0[0m[1;32m1[0m[33m2[0m[33m2[0m[1;32m1[0m[1;31m-[0m
|
||
[1;30m bat[0m [33m3[0m[0m[1;30m0[0m[33m2[0m[1;32m1[0m[1;32m1[0m[1;31m-[0m
|
||
[37m cat[0m [1;32m1[0m[33m2[0m[0m[37m0[0m[1;32m1[0m[33m2[0m[1;31m-[0m
|
||
[1;30m dog[0m [1;31m-[1;31m-[1;31m-[0m[1;30m0[0m[1;31m-[1;31m-[0m
|
||
[37melephant[0m [33m2[0m[33m3[0m[1;32m1[0m[1;32m1[0m[0m[37m0[0m[1;31m-[0m
|
||
[1;30m frog[0m [33m2[0m[33m3[0m[1;32m1[0m[33m2[0m[1;32m1[0m[0m[1;30m0[0m[0m
|
||
''',
|
||
'utf8 False, colour ansi-heatmap': '''
|
||
[4mdestination[0m
|
||
[0m[37m,------ ant[0m
|
||
[37m|[0m[1;30m,----- bat[0m
|
||
[37m|[1;30m|[0m[37m,---- cat[0m
|
||
[37m|[1;30m|[37m|[0m[1;30m,--- dog[0m
|
||
[37m|[1;30m|[37m|[1;30m|[0m[37m,-- elephant[0m
|
||
[4msource[0m [37m|[1;30m|[37m|[1;30m|[37m|[0m[1;30m,- frog[0m
|
||
[37m ant[0m [0m[37m0[0m[1;42m1[0m[43m2[0m[43m2[0m[1;42m1[0m[1;41m-[0m
|
||
[1;30m bat[0m [43m3[0m[0m[1;30m0[0m[43m2[0m[1;42m1[0m[1;42m1[0m[1;41m-[0m
|
||
[37m cat[0m [1;42m1[0m[43m2[0m[0m[37m0[0m[1;42m1[0m[43m2[0m[1;41m-[0m
|
||
[1;30m dog[0m [1;41m-[1;41m-[1;41m-[0m[1;30m0[0m[1;41m-[1;41m-[0m
|
||
[37melephant[0m [43m2[0m[43m3[0m[1;42m1[0m[1;42m1[0m[0m[37m0[0m[1;41m-[0m
|
||
[1;30m frog[0m [43m2[0m[43m3[0m[1;42m1[0m[43m2[0m[1;42m1[0m[0m[1;30m0[0m[0m
|
||
''',
|
||
'utf8 False, colour xterm-256color': '''
|
||
[4mdestination[0m
|
||
[0m[38;5;39m,------ ant[0m
|
||
[38;5;39m|[0m[38;5;45m,----- bat[0m
|
||
[38;5;39m|[38;5;45m|[0m[38;5;39m,---- cat[0m
|
||
[38;5;39m|[38;5;45m|[38;5;39m|[0m[38;5;45m,--- dog[0m
|
||
[38;5;39m|[38;5;45m|[38;5;39m|[38;5;45m|[0m[38;5;39m,-- elephant[0m
|
||
[4msource[0m [38;5;39m|[38;5;45m|[38;5;39m|[38;5;45m|[38;5;39m|[0m[38;5;45m,- frog[0m
|
||
[38;5;39m ant[0m [0m[38;5;39m0[0m[38;5;112m1[0m[38;5;214m2[0m[38;5;214m2[0m[38;5;112m1[0m[48;5;124m-[0m
|
||
[38;5;45m bat[0m [38;5;208m3[0m[0m[38;5;45m0[0m[38;5;214m2[0m[38;5;112m1[0m[38;5;112m1[0m[48;5;124m-[0m
|
||
[38;5;39m cat[0m [38;5;112m1[0m[38;5;214m2[0m[0m[38;5;39m0[0m[38;5;112m1[0m[38;5;214m2[0m[48;5;124m-[0m
|
||
[38;5;45m dog[0m [48;5;124m-[48;5;124m-[48;5;124m-[0m[38;5;45m0[0m[48;5;124m-[48;5;124m-[0m
|
||
[38;5;39melephant[0m [38;5;214m2[0m[38;5;208m3[0m[38;5;112m1[0m[38;5;112m1[0m[0m[38;5;39m0[0m[48;5;124m-[0m
|
||
[38;5;45m frog[0m [38;5;214m2[0m[38;5;208m3[0m[38;5;112m1[0m[38;5;214m2[0m[38;5;112m1[0m[0m[38;5;45m0[0m[0m
|
||
''',
|
||
'utf8 False, colour xterm-256color-heatmap': '''
|
||
[4mdestination[0m
|
||
[0m[38;5;171m,------ ant[0m
|
||
[38;5;171m|[0m[38;5;207m,----- bat[0m
|
||
[38;5;171m|[38;5;207m|[0m[38;5;171m,---- cat[0m
|
||
[38;5;171m|[38;5;207m|[38;5;171m|[0m[38;5;207m,--- dog[0m
|
||
[38;5;171m|[38;5;207m|[38;5;171m|[38;5;207m|[0m[38;5;171m,-- elephant[0m
|
||
[4msource[0m [38;5;171m|[38;5;207m|[38;5;171m|[38;5;207m|[38;5;171m|[0m[38;5;207m,- frog[0m
|
||
[38;5;171m ant[0m [0m[38;5;171m0[0m[48;5;112m1[0m[48;5;214m2[0m[48;5;214m2[0m[48;5;112m1[0m[48;5;124m-[0m
|
||
[38;5;207m bat[0m [48;5;208m3[0m[0m[38;5;207m0[0m[48;5;214m2[0m[48;5;112m1[0m[48;5;112m1[0m[48;5;124m-[0m
|
||
[38;5;171m cat[0m [48;5;112m1[0m[48;5;214m2[0m[0m[38;5;171m0[0m[48;5;112m1[0m[48;5;214m2[0m[48;5;124m-[0m
|
||
[38;5;207m dog[0m [48;5;124m-[48;5;124m-[48;5;124m-[0m[38;5;207m0[0m[48;5;124m-[48;5;124m-[0m
|
||
[38;5;171melephant[0m [48;5;214m2[0m[48;5;208m3[0m[48;5;112m1[0m[48;5;112m1[0m[0m[38;5;171m0[0m[48;5;124m-[0m
|
||
[38;5;207m frog[0m [48;5;214m2[0m[48;5;208m3[0m[48;5;112m1[0m[48;5;214m2[0m[48;5;112m1[0m[0m[38;5;207m0[0m[0m
|
||
'''
|
||
}
|
||
for utf8 in (True, False):
|
||
for colour in self.sorted_colour_sets:
|
||
k = 'utf8 %s, colour %s' % (utf8, colour)
|
||
s = graph.distance_matrix(None, edges, utf8=utf8,
|
||
colour=colour)
|
||
self.assertStringsEqual(s, expected[k], strip=True,
|
||
msg='Wrong output: %s\n\n%s' % (k, s))
|
||
|
||
def test_simple_distance2(self):
|
||
edges = [('ant', 'bat'),
|
||
('cat', 'bat'),
|
||
('bat', 'ant'),
|
||
('ant', 'cat')]
|
||
expected = {
|
||
'utf8 True, colour None': '''
|
||
destination
|
||
╭─── ant
|
||
│╭── bat
|
||
source ││╭─ cat
|
||
ant ·11
|
||
bat 1·2
|
||
cat 21·
|
||
''',
|
||
'utf8 True, colour ansi': '''
|
||
[4mdestination[0m
|
||
[0m[37m╭─── ant[0m
|
||
[37m│[0m[1;30m╭── bat[0m
|
||
[4msource[0m [37m│[1;30m│[0m[37m╭─ cat[0m
|
||
[37m ant[0m [0m[37m·[0m[1;32m1[0m[1;32m1[0m[0m
|
||
[1;30m bat[0m [1;32m1[0m[0m[1;30m·[0m[33m2[0m[0m
|
||
[37m cat[0m [33m2[0m[1;32m1[0m[0m[37m·[0m[0m
|
||
''',
|
||
'utf8 True, colour ansi-heatmap': '''
|
||
[4mdestination[0m
|
||
[0m[37m╭─── ant[0m
|
||
[37m│[0m[1;30m╭── bat[0m
|
||
[4msource[0m [37m│[1;30m│[0m[37m╭─ cat[0m
|
||
[37m ant[0m [0m[37m·[0m[1;42m1[0m[1;42m1[0m[0m
|
||
[1;30m bat[0m [1;42m1[0m[0m[1;30m·[0m[43m2[0m[0m
|
||
[37m cat[0m [43m2[0m[1;42m1[0m[0m[37m·[0m[0m
|
||
''',
|
||
'utf8 True, colour xterm-256color': '''
|
||
[4mdestination[0m
|
||
[0m[38;5;39m╭─── ant[0m
|
||
[38;5;39m│[0m[38;5;45m╭── bat[0m
|
||
[4msource[0m [38;5;39m│[38;5;45m│[0m[38;5;39m╭─ cat[0m
|
||
[38;5;39m ant[0m [0m[38;5;39m·[0m[38;5;112m1[0m[38;5;112m1[0m[0m
|
||
[38;5;45m bat[0m [38;5;112m1[0m[0m[38;5;45m·[0m[38;5;208m2[0m[0m
|
||
[38;5;39m cat[0m [38;5;208m2[0m[38;5;112m1[0m[0m[38;5;39m·[0m[0m
|
||
''',
|
||
'utf8 True, colour xterm-256color-heatmap': '''
|
||
[4mdestination[0m
|
||
[0m[38;5;171m╭─── ant[0m
|
||
[38;5;171m│[0m[38;5;207m╭── bat[0m
|
||
[4msource[0m [38;5;171m│[38;5;207m│[0m[38;5;171m╭─ cat[0m
|
||
[38;5;171m ant[0m [0m[38;5;171m·[0m[48;5;112m1[0m[48;5;112m1[0m[0m
|
||
[38;5;207m bat[0m [48;5;112m1[0m[0m[38;5;207m·[0m[48;5;208m2[0m[0m
|
||
[38;5;171m cat[0m [48;5;208m2[0m[48;5;112m1[0m[0m[38;5;171m·[0m[0m
|
||
''',
|
||
'utf8 False, colour None': '''
|
||
destination
|
||
,--- ant
|
||
|,-- bat
|
||
source ||,- cat
|
||
ant 011
|
||
bat 102
|
||
cat 210
|
||
''',
|
||
'utf8 False, colour ansi': '''
|
||
[4mdestination[0m
|
||
[0m[37m,--- ant[0m
|
||
[37m|[0m[1;30m,-- bat[0m
|
||
[4msource[0m [37m|[1;30m|[0m[37m,- cat[0m
|
||
[37m ant[0m [0m[37m0[0m[1;32m1[0m[1;32m1[0m[0m
|
||
[1;30m bat[0m [1;32m1[0m[0m[1;30m0[0m[33m2[0m[0m
|
||
[37m cat[0m [33m2[0m[1;32m1[0m[0m[37m0[0m[0m
|
||
''',
|
||
'utf8 False, colour ansi-heatmap': '''
|
||
[4mdestination[0m
|
||
[0m[37m,--- ant[0m
|
||
[37m|[0m[1;30m,-- bat[0m
|
||
[4msource[0m [37m|[1;30m|[0m[37m,- cat[0m
|
||
[37m ant[0m [0m[37m0[0m[1;42m1[0m[1;42m1[0m[0m
|
||
[1;30m bat[0m [1;42m1[0m[0m[1;30m0[0m[43m2[0m[0m
|
||
[37m cat[0m [43m2[0m[1;42m1[0m[0m[37m0[0m[0m
|
||
''',
|
||
'utf8 False, colour xterm-256color': '''
|
||
[4mdestination[0m
|
||
[0m[38;5;39m,--- ant[0m
|
||
[38;5;39m|[0m[38;5;45m,-- bat[0m
|
||
[4msource[0m [38;5;39m|[38;5;45m|[0m[38;5;39m,- cat[0m
|
||
[38;5;39m ant[0m [0m[38;5;39m0[0m[38;5;112m1[0m[38;5;112m1[0m[0m
|
||
[38;5;45m bat[0m [38;5;112m1[0m[0m[38;5;45m0[0m[38;5;208m2[0m[0m
|
||
[38;5;39m cat[0m [38;5;208m2[0m[38;5;112m1[0m[0m[38;5;39m0[0m[0m
|
||
''',
|
||
'utf8 False, colour xterm-256color-heatmap': '''
|
||
[4mdestination[0m
|
||
[0m[38;5;171m,--- ant[0m
|
||
[38;5;171m|[0m[38;5;207m,-- bat[0m
|
||
[4msource[0m [38;5;171m|[38;5;207m|[0m[38;5;171m,- cat[0m
|
||
[38;5;171m ant[0m [0m[38;5;171m0[0m[48;5;112m1[0m[48;5;112m1[0m[0m
|
||
[38;5;207m bat[0m [48;5;112m1[0m[0m[38;5;207m0[0m[48;5;208m2[0m[0m
|
||
[38;5;171m cat[0m [48;5;208m2[0m[48;5;112m1[0m[0m[38;5;171m0[0m[0m
|
||
'''
|
||
}
|
||
for utf8 in (True, False):
|
||
for colour in self.sorted_colour_sets:
|
||
k = 'utf8 %s, colour %s' % (utf8, colour)
|
||
s = graph.distance_matrix(None, edges, utf8=utf8,
|
||
colour=colour)
|
||
self.assertStringsEqual(s, expected[k], strip=True,
|
||
msg='Wrong output: %s\n\n%s' % (k, s))
|
||
|
||
def test_simple_distance3(self):
|
||
edges = [('ant', 'bat'),
|
||
('bat', 'cat'),
|
||
('cat', 'dog'),
|
||
('dog', 'ant'),
|
||
('dog', 'eel')]
|
||
expected = {
|
||
'utf8 True, colour None': '''
|
||
destination
|
||
╭───── ant
|
||
│╭──── bat
|
||
││╭─── cat
|
||
│││╭── dog
|
||
source ││││╭─ eel
|
||
ant ·1234
|
||
bat 3·123
|
||
cat 23·12
|
||
dog 123·1
|
||
eel ----·
|
||
''',
|
||
'utf8 True, colour ansi': '''
|
||
[4mdestination[0m
|
||
[0m[37m╭───── ant[0m
|
||
[37m│[0m[1;30m╭──── bat[0m
|
||
[37m│[1;30m│[0m[37m╭─── cat[0m
|
||
[37m│[1;30m│[37m│[0m[1;30m╭── dog[0m
|
||
[4msource[0m [37m│[1;30m│[37m│[1;30m│[0m[37m╭─ eel[0m
|
||
[37m ant[0m [0m[37m·[0m[1;32m1[0m[33m2[0m[33m3[0m[33m4[0m[0m
|
||
[1;30m bat[0m [33m3[0m[0m[1;30m·[0m[1;32m1[0m[33m2[0m[33m3[0m[0m
|
||
[37m cat[0m [33m2[0m[33m3[0m[0m[37m·[0m[1;32m1[0m[33m2[0m[0m
|
||
[1;30m dog[0m [1;32m1[0m[33m2[0m[33m3[0m[0m[1;30m·[0m[1;32m1[0m[0m
|
||
[37m eel[0m [1;31m-[1;31m-[1;31m-[1;31m-[0m[37m·[0m[0m
|
||
''',
|
||
'utf8 True, colour ansi-heatmap': '''
|
||
[4mdestination[0m
|
||
[0m[37m╭───── ant[0m
|
||
[37m│[0m[1;30m╭──── bat[0m
|
||
[37m│[1;30m│[0m[37m╭─── cat[0m
|
||
[37m│[1;30m│[37m│[0m[1;30m╭── dog[0m
|
||
[4msource[0m [37m│[1;30m│[37m│[1;30m│[0m[37m╭─ eel[0m
|
||
[37m ant[0m [0m[37m·[0m[1;42m1[0m[43m2[0m[43m3[0m[43m4[0m[0m
|
||
[1;30m bat[0m [43m3[0m[0m[1;30m·[0m[1;42m1[0m[43m2[0m[43m3[0m[0m
|
||
[37m cat[0m [43m2[0m[43m3[0m[0m[37m·[0m[1;42m1[0m[43m2[0m[0m
|
||
[1;30m dog[0m [1;42m1[0m[43m2[0m[43m3[0m[0m[1;30m·[0m[1;42m1[0m[0m
|
||
[37m eel[0m [1;41m-[1;41m-[1;41m-[1;41m-[0m[37m·[0m[0m
|
||
''',
|
||
'utf8 True, colour xterm-256color': '''
|
||
[4mdestination[0m
|
||
[0m[38;5;39m╭───── ant[0m
|
||
[38;5;39m│[0m[38;5;45m╭──── bat[0m
|
||
[38;5;39m│[38;5;45m│[0m[38;5;39m╭─── cat[0m
|
||
[38;5;39m│[38;5;45m│[38;5;39m│[0m[38;5;45m╭── dog[0m
|
||
[4msource[0m [38;5;39m│[38;5;45m│[38;5;39m│[38;5;45m│[0m[38;5;39m╭─ eel[0m
|
||
[38;5;39m ant[0m [0m[38;5;39m·[0m[38;5;112m1[0m[38;5;214m2[0m[38;5;208m3[0m[38;5;208m4[0m[0m
|
||
[38;5;45m bat[0m [38;5;208m3[0m[0m[38;5;45m·[0m[38;5;112m1[0m[38;5;214m2[0m[38;5;208m3[0m[0m
|
||
[38;5;39m cat[0m [38;5;214m2[0m[38;5;208m3[0m[0m[38;5;39m·[0m[38;5;112m1[0m[38;5;214m2[0m[0m
|
||
[38;5;45m dog[0m [38;5;112m1[0m[38;5;214m2[0m[38;5;208m3[0m[0m[38;5;45m·[0m[38;5;112m1[0m[0m
|
||
[38;5;39m eel[0m [48;5;124m-[48;5;124m-[48;5;124m-[48;5;124m-[0m[38;5;39m·[0m[0m
|
||
''',
|
||
'utf8 True, colour xterm-256color-heatmap': '''
|
||
[4mdestination[0m
|
||
[0m[38;5;171m╭───── ant[0m
|
||
[38;5;171m│[0m[38;5;207m╭──── bat[0m
|
||
[38;5;171m│[38;5;207m│[0m[38;5;171m╭─── cat[0m
|
||
[38;5;171m│[38;5;207m│[38;5;171m│[0m[38;5;207m╭── dog[0m
|
||
[4msource[0m [38;5;171m│[38;5;207m│[38;5;171m│[38;5;207m│[0m[38;5;171m╭─ eel[0m
|
||
[38;5;171m ant[0m [0m[38;5;171m·[0m[48;5;112m1[0m[48;5;214m2[0m[48;5;208m3[0m[48;5;208m4[0m[0m
|
||
[38;5;207m bat[0m [48;5;208m3[0m[0m[38;5;207m·[0m[48;5;112m1[0m[48;5;214m2[0m[48;5;208m3[0m[0m
|
||
[38;5;171m cat[0m [48;5;214m2[0m[48;5;208m3[0m[0m[38;5;171m·[0m[48;5;112m1[0m[48;5;214m2[0m[0m
|
||
[38;5;207m dog[0m [48;5;112m1[0m[48;5;214m2[0m[48;5;208m3[0m[0m[38;5;207m·[0m[48;5;112m1[0m[0m
|
||
[38;5;171m eel[0m [48;5;124m-[48;5;124m-[48;5;124m-[48;5;124m-[0m[38;5;171m·[0m[0m
|
||
''',
|
||
'utf8 False, colour None': '''
|
||
destination
|
||
,----- ant
|
||
|,---- bat
|
||
||,--- cat
|
||
|||,-- dog
|
||
source ||||,- eel
|
||
ant 01234
|
||
bat 30123
|
||
cat 23012
|
||
dog 12301
|
||
eel ----0
|
||
''',
|
||
'utf8 False, colour ansi': '''
|
||
[4mdestination[0m
|
||
[0m[37m,----- ant[0m
|
||
[37m|[0m[1;30m,---- bat[0m
|
||
[37m|[1;30m|[0m[37m,--- cat[0m
|
||
[37m|[1;30m|[37m|[0m[1;30m,-- dog[0m
|
||
[4msource[0m [37m|[1;30m|[37m|[1;30m|[0m[37m,- eel[0m
|
||
[37m ant[0m [0m[37m0[0m[1;32m1[0m[33m2[0m[33m3[0m[33m4[0m[0m
|
||
[1;30m bat[0m [33m3[0m[0m[1;30m0[0m[1;32m1[0m[33m2[0m[33m3[0m[0m
|
||
[37m cat[0m [33m2[0m[33m3[0m[0m[37m0[0m[1;32m1[0m[33m2[0m[0m
|
||
[1;30m dog[0m [1;32m1[0m[33m2[0m[33m3[0m[0m[1;30m0[0m[1;32m1[0m[0m
|
||
[37m eel[0m [1;31m-[1;31m-[1;31m-[1;31m-[0m[37m0[0m[0m
|
||
''',
|
||
'utf8 False, colour ansi-heatmap': '''
|
||
[4mdestination[0m
|
||
[0m[37m,----- ant[0m
|
||
[37m|[0m[1;30m,---- bat[0m
|
||
[37m|[1;30m|[0m[37m,--- cat[0m
|
||
[37m|[1;30m|[37m|[0m[1;30m,-- dog[0m
|
||
[4msource[0m [37m|[1;30m|[37m|[1;30m|[0m[37m,- eel[0m
|
||
[37m ant[0m [0m[37m0[0m[1;42m1[0m[43m2[0m[43m3[0m[43m4[0m[0m
|
||
[1;30m bat[0m [43m3[0m[0m[1;30m0[0m[1;42m1[0m[43m2[0m[43m3[0m[0m
|
||
[37m cat[0m [43m2[0m[43m3[0m[0m[37m0[0m[1;42m1[0m[43m2[0m[0m
|
||
[1;30m dog[0m [1;42m1[0m[43m2[0m[43m3[0m[0m[1;30m0[0m[1;42m1[0m[0m
|
||
[37m eel[0m [1;41m-[1;41m-[1;41m-[1;41m-[0m[37m0[0m[0m
|
||
''',
|
||
'utf8 False, colour xterm-256color':
|
||
''' [4mdestination[0m
|
||
[0m[38;5;39m,----- ant[0m
|
||
[38;5;39m|[0m[38;5;45m,---- bat[0m
|
||
[38;5;39m|[38;5;45m|[0m[38;5;39m,--- cat[0m
|
||
[38;5;39m|[38;5;45m|[38;5;39m|[0m[38;5;45m,-- dog[0m
|
||
[4msource[0m [38;5;39m|[38;5;45m|[38;5;39m|[38;5;45m|[0m[38;5;39m,- eel[0m
|
||
[38;5;39m ant[0m [0m[38;5;39m0[0m[38;5;112m1[0m[38;5;214m2[0m[38;5;208m3[0m[38;5;208m4[0m[0m
|
||
[38;5;45m bat[0m [38;5;208m3[0m[0m[38;5;45m0[0m[38;5;112m1[0m[38;5;214m2[0m[38;5;208m3[0m[0m
|
||
[38;5;39m cat[0m [38;5;214m2[0m[38;5;208m3[0m[0m[38;5;39m0[0m[38;5;112m1[0m[38;5;214m2[0m[0m
|
||
[38;5;45m dog[0m [38;5;112m1[0m[38;5;214m2[0m[38;5;208m3[0m[0m[38;5;45m0[0m[38;5;112m1[0m[0m
|
||
[38;5;39m eel[0m [48;5;124m-[48;5;124m-[48;5;124m-[48;5;124m-[0m[38;5;39m0[0m[0m
|
||
''',
|
||
'utf8 False, colour xterm-256color-heatmap': '''
|
||
[4mdestination[0m
|
||
[0m[38;5;171m,----- ant[0m
|
||
[38;5;171m|[0m[38;5;207m,---- bat[0m
|
||
[38;5;171m|[38;5;207m|[0m[38;5;171m,--- cat[0m
|
||
[38;5;171m|[38;5;207m|[38;5;171m|[0m[38;5;207m,-- dog[0m
|
||
[4msource[0m [38;5;171m|[38;5;207m|[38;5;171m|[38;5;207m|[0m[38;5;171m,- eel[0m
|
||
[38;5;171m ant[0m [0m[38;5;171m0[0m[48;5;112m1[0m[48;5;214m2[0m[48;5;208m3[0m[48;5;208m4[0m[0m
|
||
[38;5;207m bat[0m [48;5;208m3[0m[0m[38;5;207m0[0m[48;5;112m1[0m[48;5;214m2[0m[48;5;208m3[0m[0m
|
||
[38;5;171m cat[0m [48;5;214m2[0m[48;5;208m3[0m[0m[38;5;171m0[0m[48;5;112m1[0m[48;5;214m2[0m[0m
|
||
[38;5;207m dog[0m [48;5;112m1[0m[48;5;214m2[0m[48;5;208m3[0m[0m[38;5;207m0[0m[48;5;112m1[0m[0m
|
||
[38;5;171m eel[0m [48;5;124m-[48;5;124m-[48;5;124m-[48;5;124m-[0m[38;5;171m0[0m[0m
|
||
'''
|
||
}
|
||
for utf8 in (True, False):
|
||
for colour in self.sorted_colour_sets:
|
||
k = 'utf8 %s, colour %s' % (utf8, colour)
|
||
s = graph.distance_matrix(None, edges, utf8=utf8,
|
||
colour=colour)
|
||
self.assertStringsEqual(s, expected[k], strip=True,
|
||
msg='Wrong output: %s\n\n%s' % (k, s))
|