1
0
mirror of https://github.com/samba-team/samba.git synced 2024-12-25 23:21:54 +03:00
samba-mirror/python/samba/tests/krb5/kcrypto.py
Stefan Metzmacher 4b684c325b python:tests: Add support to print krb5 keys as string
Signed-off-by: Stefan Metzmacher <metze@samba.org>
Reviewed-by: Andreas Schneider <asn@samba.org>
2022-04-13 12:59:30 +00:00

970 lines
34 KiB
Python
Executable File

#!/usr/bin/env python3
#
# Copyright (C) 2013 by the Massachusetts Institute of Technology.
# All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions
# are met:
#
# * Redistributions of source code must retain the above copyright
# notice, this list of conditions and the following disclaimer.
#
# * Redistributions in binary form must reproduce the above copyright
# notice, this list of conditions and the following disclaimer in
# the documentation and/or other materials provided with the
# distribution.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
# "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
# LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
# FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
# COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
# INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
# (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
# SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
# HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
# STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
# ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
# OF THE POSSIBILITY OF SUCH DAMAGE.
# XXX current status:
# * Done and tested
# - AES encryption, checksum, string2key, prf
# - cf2 (needed for FAST)
# * Still to do:
# - DES enctypes and cksumtypes
# - RC4 exported enctype (if we need it for anything)
# - Unkeyed checksums
# - Special RC4, raw DES/DES3 operations for GSSAPI
# * Difficult or low priority:
# - Camellia not supported by PyCrypto
# - Cipher state only needed for kcmd suite
# - Nonstandard enctypes and cksumtypes like des-hmac-sha1
import sys
import os
sys.path.insert(0, "bin/python")
os.environ["PYTHONUNBUFFERED"] = "1"
from math import gcd
from functools import reduce
from struct import pack, unpack
from binascii import crc32, b2a_hex
from cryptography.hazmat.primitives import hashes
from cryptography.hazmat.primitives import hmac
from cryptography.hazmat.primitives.ciphers import algorithms as ciphers
from cryptography.hazmat.primitives.ciphers import modes
from cryptography.hazmat.primitives.ciphers.base import Cipher
from cryptography.hazmat.backends import default_backend
from cryptography.hazmat.primitives.kdf.pbkdf2 import PBKDF2HMAC
from samba.tests import TestCase
from samba.credentials import Credentials
from samba import generate_random_bytes as get_random_bytes
from samba.common import get_string, get_bytes
class Enctype(object):
DES_CRC = 1
DES_MD4 = 2
DES_MD5 = 3
DES3 = 16
AES128 = 17
AES256 = 18
RC4 = 23
class Cksumtype(object):
CRC32 = 1
MD4 = 2
MD4_DES = 3
MD5 = 7
MD5_DES = 8
SHA1_DES3 = 12
SHA1 = 14
SHA1_AES128 = 15
SHA1_AES256 = 16
HMAC_MD5 = -138
class InvalidChecksum(ValueError):
pass
def _zeropad(s, padsize):
# Return s padded with 0 bytes to a multiple of padsize.
padlen = (padsize - (len(s) % padsize)) % padsize
return s + bytes(padlen)
def _xorbytes(b1, b2):
# xor two strings together and return the resulting string.
assert len(b1) == len(b2)
return bytes([x ^ y for x, y in zip(b1, b2)])
def _mac_equal(mac1, mac2):
# Constant-time comparison function. (We can't use HMAC.verify
# since we use truncated macs.)
assert len(mac1) == len(mac2)
res = 0
for x, y in zip(mac1, mac2):
res |= x ^ y
return res == 0
def SIMPLE_HASH(string, algo_cls):
hash_ctx = hashes.Hash(algo_cls(), default_backend())
hash_ctx.update(string)
return hash_ctx.finalize()
def HMAC_HASH(key, string, algo_cls):
hmac_ctx = hmac.HMAC(key, algo_cls(), default_backend())
hmac_ctx.update(string)
return hmac_ctx.finalize()
def _nfold(str, nbytes):
# Convert str to a string of length nbytes using the RFC 3961 nfold
# operation.
# Rotate the bytes in str to the right by nbits bits.
def rotate_right(str, nbits):
nbytes, remain = (nbits // 8) % len(str), nbits % 8
return bytes([
(str[i - nbytes] >> remain)
| (str[i - nbytes - 1] << (8 - remain) & 0xff)
for i in range(len(str))])
# Add equal-length strings together with end-around carry.
def add_ones_complement(str1, str2):
n = len(str1)
v = [a + b for a, b in zip(str1, str2)]
# Propagate carry bits to the left until there aren't any left.
while any(x & ~0xff for x in v):
v = [(v[i - n + 1] >> 8) + (v[i] & 0xff) for i in range(n)]
return bytes([x for x in v])
# Concatenate copies of str to produce the least common multiple
# of len(str) and nbytes, rotating each copy of str to the right
# by 13 bits times its list position. Decompose the concatenation
# into slices of length nbytes, and add them together as
# big-endian ones' complement integers.
slen = len(str)
lcm = nbytes * slen // gcd(nbytes, slen)
bigstr = b''.join((rotate_right(str, 13 * i) for i in range(lcm // slen)))
slices = (bigstr[p:p + nbytes] for p in range(0, lcm, nbytes))
return reduce(add_ones_complement, slices)
def _is_weak_des_key(keybytes):
return keybytes in (b'\x01\x01\x01\x01\x01\x01\x01\x01',
b'\xFE\xFE\xFE\xFE\xFE\xFE\xFE\xFE',
b'\x1F\x1F\x1F\x1F\x0E\x0E\x0E\x0E',
b'\xE0\xE0\xE0\xE0\xF1\xF1\xF1\xF1',
b'\x01\xFE\x01\xFE\x01\xFE\x01\xFE',
b'\xFE\x01\xFE\x01\xFE\x01\xFE\x01',
b'\x1F\xE0\x1F\xE0\x0E\xF1\x0E\xF1',
b'\xE0\x1F\xE0\x1F\xF1\x0E\xF1\x0E',
b'\x01\xE0\x01\xE0\x01\xF1\x01\xF1',
b'\xE0\x01\xE0\x01\xF1\x01\xF1\x01',
b'\x1F\xFE\x1F\xFE\x0E\xFE\x0E\xFE',
b'\xFE\x1F\xFE\x1F\xFE\x0E\xFE\x0E',
b'\x01\x1F\x01\x1F\x01\x0E\x01\x0E',
b'\x1F\x01\x1F\x01\x0E\x01\x0E\x01',
b'\xE0\xFE\xE0\xFE\xF1\xFE\xF1\xFE',
b'\xFE\xE0\xFE\xE0\xFE\xF1\xFE\xF1')
class _EnctypeProfile(object):
# Base class for enctype profiles. Usable enctype classes must define:
# * enctype: enctype number
# * keysize: protocol size of key in bytes
# * seedsize: random_to_key input size in bytes
# * random_to_key (if the keyspace is not dense)
# * string_to_key
# * encrypt
# * decrypt
# * prf
@classmethod
def random_to_key(cls, seed):
if len(seed) != cls.seedsize:
raise ValueError('Wrong seed length')
return Key(cls.enctype, seed)
class _SimplifiedEnctype(_EnctypeProfile):
# Base class for enctypes using the RFC 3961 simplified profile.
# Defines the encrypt, decrypt, and prf methods. Subclasses must
# define:
# * blocksize: Underlying cipher block size in bytes
# * padsize: Underlying cipher padding multiple (1 or blocksize)
# * macsize: Size of integrity MAC in bytes
# * hashmod: PyCrypto hash module for underlying hash function
# * basic_encrypt, basic_decrypt: Underlying CBC/CTS cipher
@classmethod
def derive(cls, key, constant):
# RFC 3961 only says to n-fold the constant only if it is
# shorter than the cipher block size. But all Unix
# implementations n-fold constants if their length is larger
# than the block size as well, and n-folding when the length
# is equal to the block size is a no-op.
plaintext = _nfold(constant, cls.blocksize)
rndseed = b''
while len(rndseed) < cls.seedsize:
ciphertext = cls.basic_encrypt(key, plaintext)
rndseed += ciphertext
plaintext = ciphertext
return cls.random_to_key(rndseed[0:cls.seedsize])
@classmethod
def encrypt(cls, key, keyusage, plaintext, confounder):
ki = cls.derive(key, pack('>iB', keyusage, 0x55))
ke = cls.derive(key, pack('>iB', keyusage, 0xAA))
if confounder is None:
confounder = get_random_bytes(cls.blocksize)
basic_plaintext = confounder + _zeropad(plaintext, cls.padsize)
hmac = HMAC_HASH(ki.contents, basic_plaintext, cls.hashalgo)
return cls.basic_encrypt(ke, basic_plaintext) + hmac[:cls.macsize]
@classmethod
def decrypt(cls, key, keyusage, ciphertext):
ki = cls.derive(key, pack('>iB', keyusage, 0x55))
ke = cls.derive(key, pack('>iB', keyusage, 0xAA))
if len(ciphertext) < cls.blocksize + cls.macsize:
raise ValueError('ciphertext too short')
basic_ctext, mac = ciphertext[:-cls.macsize], ciphertext[-cls.macsize:]
if len(basic_ctext) % cls.padsize != 0:
raise ValueError('ciphertext does not meet padding requirement')
basic_plaintext = cls.basic_decrypt(ke, basic_ctext)
hmac = HMAC_HASH(ki.contents, basic_plaintext, cls.hashalgo)
expmac = hmac[:cls.macsize]
if not _mac_equal(mac, expmac):
raise InvalidChecksum('ciphertext integrity failure')
# Discard the confounder.
return basic_plaintext[cls.blocksize:]
@classmethod
def prf(cls, key, string):
# Hash the input. RFC 3961 says to truncate to the padding
# size, but implementations truncate to the block size.
hashval = SIMPLE_HASH(string, cls.hashalgo)
truncated = hashval[:-(len(hashval) % cls.blocksize)]
# Encrypt the hash with a derived key.
kp = cls.derive(key, b'prf')
return cls.basic_encrypt(kp, truncated)
class _DES3CBC(_SimplifiedEnctype):
enctype = Enctype.DES3
keysize = 24
seedsize = 21
blocksize = 8
padsize = 8
macsize = 20
hashalgo = hashes.SHA1
@classmethod
def random_to_key(cls, seed):
# XXX Maybe reframe as _DESEnctype.random_to_key and use that
# way from DES3 random-to-key when DES is implemented, since
# MIT does this instead of the RFC 3961 random-to-key.
def expand(seed):
def parity(b):
# Return b with the low-order bit set to yield odd parity.
b &= ~1
return b if bin(b & ~1).count('1') % 2 else b | 1
assert len(seed) == 7
firstbytes = [parity(b & ~1) for b in seed]
lastbyte = parity(sum((seed[i] & 1) << i + 1 for i in range(7)))
keybytes = bytes([b for b in firstbytes + [lastbyte]])
if _is_weak_des_key(keybytes):
keybytes[7] = bytes([keybytes[7] ^ 0xF0])
return keybytes
if len(seed) != 21:
raise ValueError('Wrong seed length')
k1, k2, k3 = expand(seed[:7]), expand(seed[7:14]), expand(seed[14:])
return Key(cls.enctype, k1 + k2 + k3)
@classmethod
def string_to_key(cls, string, salt, params):
if params is not None and params != b'':
raise ValueError('Invalid DES3 string-to-key parameters')
k = cls.random_to_key(_nfold(string + salt, 21))
return cls.derive(k, b'kerberos')
@classmethod
def basic_encrypt(cls, key, plaintext):
assert len(plaintext) % 8 == 0
algo = ciphers.TripleDES(key.contents)
cbc = modes.CBC(bytes(8))
encryptor = Cipher(algo, cbc, default_backend()).encryptor()
ciphertext = encryptor.update(plaintext)
return ciphertext
@classmethod
def basic_decrypt(cls, key, ciphertext):
assert len(ciphertext) % 8 == 0
algo = ciphers.TripleDES(key.contents)
cbc = modes.CBC(bytes(8))
decryptor = Cipher(algo, cbc, default_backend()).decryptor()
plaintext = decryptor.update(ciphertext)
return plaintext
class _AESEnctype(_SimplifiedEnctype):
# Base class for aes128-cts and aes256-cts.
blocksize = 16
padsize = 1
macsize = 12
hashalgo = hashes.SHA1
@classmethod
def string_to_key(cls, string, salt, params):
(iterations,) = unpack('>L', params or b'\x00\x00\x10\x00')
pwbytes = get_bytes(string)
kdf = PBKDF2HMAC(algorithm=hashes.SHA1(),
length=cls.seedsize,
salt=salt,
iterations=iterations,
backend=default_backend())
seed = kdf.derive(pwbytes)
tkey = cls.random_to_key(seed)
return cls.derive(tkey, b'kerberos')
@classmethod
def basic_encrypt(cls, key, plaintext):
assert len(plaintext) >= 16
algo = ciphers.AES(key.contents)
cbc = modes.CBC(bytes(16))
aes_ctx = Cipher(algo, cbc, default_backend())
def aes_encrypt(plaintext):
encryptor = aes_ctx.encryptor()
ciphertext = encryptor.update(plaintext)
return ciphertext
ctext = aes_encrypt(_zeropad(plaintext, 16))
if len(plaintext) > 16:
# Swap the last two ciphertext blocks and truncate the
# final block to match the plaintext length.
lastlen = len(plaintext) % 16 or 16
ctext = ctext[:-32] + ctext[-16:] + ctext[-32:-16][:lastlen]
return ctext
@classmethod
def basic_decrypt(cls, key, ciphertext):
assert len(ciphertext) >= 16
algo = ciphers.AES(key.contents)
cbc = modes.CBC(bytes(16))
aes_ctx = Cipher(algo, cbc, default_backend())
def aes_decrypt(ciphertext):
decryptor = aes_ctx.decryptor()
plaintext = decryptor.update(ciphertext)
return plaintext
if len(ciphertext) == 16:
return aes_decrypt(ciphertext)
# Split the ciphertext into blocks. The last block may be partial.
cblocks = [ciphertext[p:p + 16] for p in range(0, len(ciphertext), 16)]
lastlen = len(cblocks[-1])
# CBC-decrypt all but the last two blocks.
prev_cblock = bytes(16)
plaintext = b''
for b in cblocks[:-2]:
plaintext += _xorbytes(aes_decrypt(b), prev_cblock)
prev_cblock = b
# Decrypt the second-to-last cipher block. The left side of
# the decrypted block will be the final block of plaintext
# xor'd with the final partial cipher block; the right side
# will be the omitted bytes of ciphertext from the final
# block.
b = aes_decrypt(cblocks[-2])
lastplaintext = _xorbytes(b[:lastlen], cblocks[-1])
omitted = b[lastlen:]
# Decrypt the final cipher block plus the omitted bytes to get
# the second-to-last plaintext block.
plaintext += _xorbytes(aes_decrypt(cblocks[-1] + omitted), prev_cblock)
return plaintext + lastplaintext
class _AES128CTS(_AESEnctype):
enctype = Enctype.AES128
keysize = 16
seedsize = 16
class _AES256CTS(_AESEnctype):
enctype = Enctype.AES256
keysize = 32
seedsize = 32
class _RC4(_EnctypeProfile):
enctype = Enctype.RC4
keysize = 16
seedsize = 16
@staticmethod
def usage_str(keyusage):
# Return a four-byte string for an RFC 3961 keyusage, using
# the RFC 4757 rules. Per the errata, do not map 9 to 8.
table = {3: 8, 23: 13}
msusage = table[keyusage] if keyusage in table else keyusage
return pack('<i', msusage)
@classmethod
def string_to_key(cls, string, salt, params):
utf8string = get_string(string)
tmp = Credentials()
tmp.set_anonymous()
tmp.set_password(utf8string)
nthash = tmp.get_nt_hash()
return Key(cls.enctype, nthash)
@classmethod
def encrypt(cls, key, keyusage, plaintext, confounder):
if confounder is None:
confounder = get_random_bytes(8)
ki = HMAC_HASH(key.contents, cls.usage_str(keyusage), hashes.MD5)
cksum = HMAC_HASH(ki, confounder + plaintext, hashes.MD5)
ke = HMAC_HASH(ki, cksum, hashes.MD5)
encryptor = Cipher(
ciphers.ARC4(ke), None, default_backend()).encryptor()
ctext = encryptor.update(confounder + plaintext)
return cksum + ctext
@classmethod
def decrypt(cls, key, keyusage, ciphertext):
if len(ciphertext) < 24:
raise ValueError('ciphertext too short')
cksum, basic_ctext = ciphertext[:16], ciphertext[16:]
ki = HMAC_HASH(key.contents, cls.usage_str(keyusage), hashes.MD5)
ke = HMAC_HASH(ki, cksum, hashes.MD5)
decryptor = Cipher(
ciphers.ARC4(ke), None, default_backend()).decryptor()
basic_plaintext = decryptor.update(basic_ctext)
exp_cksum = HMAC_HASH(ki, basic_plaintext, hashes.MD5)
ok = _mac_equal(cksum, exp_cksum)
if not ok and keyusage == 9:
# Try again with usage 8, due to RFC 4757 errata.
ki = HMAC_HASH(key.contents, pack('<i', 8), hashes.MD5)
exp_cksum = HMAC_HASH(ki, basic_plaintext, hashes.MD5)
ok = _mac_equal(cksum, exp_cksum)
if not ok:
raise InvalidChecksum('ciphertext integrity failure')
# Discard the confounder.
return basic_plaintext[8:]
@classmethod
def prf(cls, key, string):
return HMAC_HASH(key.contents, string, hashes.SHA1)
class _ChecksumProfile(object):
# Base class for checksum profiles. Usable checksum classes must
# define:
# * checksum
# * verify (if verification is not just checksum-and-compare)
# * checksum_len
@classmethod
def verify(cls, key, keyusage, text, cksum):
expected = cls.checksum(key, keyusage, text)
if not _mac_equal(cksum, expected):
raise InvalidChecksum('checksum verification failure')
class _SimplifiedChecksum(_ChecksumProfile):
# Base class for checksums using the RFC 3961 simplified profile.
# Defines the checksum and verify methods. Subclasses must
# define:
# * macsize: Size of checksum in bytes
# * enc: Profile of associated enctype
@classmethod
def checksum(cls, key, keyusage, text):
kc = cls.enc.derive(key, pack('>iB', keyusage, 0x99))
hmac = HMAC_HASH(kc.contents, text, cls.enc.hashalgo)
return hmac[:cls.macsize]
@classmethod
def verify(cls, key, keyusage, text, cksum):
if key.enctype != cls.enc.enctype:
raise ValueError('Wrong key type for checksum')
super(_SimplifiedChecksum, cls).verify(key, keyusage, text, cksum)
@classmethod
def checksum_len(cls):
return cls.macsize
class _SHA1AES128(_SimplifiedChecksum):
macsize = 12
enc = _AES128CTS
class _SHA1AES256(_SimplifiedChecksum):
macsize = 12
enc = _AES256CTS
class _SHA1DES3(_SimplifiedChecksum):
macsize = 20
enc = _DES3CBC
class _HMACMD5(_ChecksumProfile):
@classmethod
def checksum(cls, key, keyusage, text):
ksign = HMAC_HASH(key.contents, b'signaturekey\0', hashes.MD5)
md5hash = SIMPLE_HASH(_RC4.usage_str(keyusage) + text, hashes.MD5)
return HMAC_HASH(ksign, md5hash, hashes.MD5)
@classmethod
def verify(cls, key, keyusage, text, cksum):
if key.enctype != Enctype.RC4:
raise ValueError('Wrong key type for checksum')
super(_HMACMD5, cls).verify(key, keyusage, text, cksum)
@classmethod
def checksum_len(cls):
return hashes.MD5.digest_size
class _MD5(_ChecksumProfile):
@classmethod
def checksum(cls, key, keyusage, text):
# This is unkeyed!
return SIMPLE_HASH(text, hashes.MD5)
@classmethod
def checksum_len(cls):
return hashes.MD5.digest_size
class _SHA1(_ChecksumProfile):
@classmethod
def checksum(cls, key, keyusage, text):
# This is unkeyed!
return SIMPLE_HASH(text, hashes.SHA1)
@classmethod
def checksum_len(cls):
return hashes.SHA1.digest_size
class _CRC32(_ChecksumProfile):
@classmethod
def checksum(cls, key, keyusage, text):
# This is unkeyed!
cksum = (~crc32(text, 0xffffffff)) & 0xffffffff
return pack('<I', cksum)
@classmethod
def checksum_len(cls):
return 4
_enctype_table = {
Enctype.DES3: _DES3CBC,
Enctype.AES128: _AES128CTS,
Enctype.AES256: _AES256CTS,
Enctype.RC4: _RC4
}
_checksum_table = {
Cksumtype.SHA1_DES3: _SHA1DES3,
Cksumtype.SHA1_AES128: _SHA1AES128,
Cksumtype.SHA1_AES256: _SHA1AES256,
Cksumtype.HMAC_MD5: _HMACMD5,
Cksumtype.MD5: _MD5,
Cksumtype.SHA1: _SHA1,
Cksumtype.CRC32: _CRC32,
}
def _get_enctype_profile(enctype):
if enctype not in _enctype_table:
raise ValueError('Invalid enctype %d' % enctype)
return _enctype_table[enctype]
def _get_checksum_profile(cksumtype):
if cksumtype not in _checksum_table:
raise ValueError('Invalid cksumtype %d' % cksumtype)
return _checksum_table[cksumtype]
class Key(object):
def __init__(self, enctype, contents):
e = _get_enctype_profile(enctype)
if len(contents) != e.keysize:
raise ValueError('Wrong key length')
self.enctype = enctype
self.contents = contents
def __str__(self):
return "enctype=%d contents=%s" % (self.enctype,
b2a_hex(self.contents).decode('ascii'))
def seedsize(enctype):
e = _get_enctype_profile(enctype)
return e.seedsize
def random_to_key(enctype, seed):
e = _get_enctype_profile(enctype)
if len(seed) != e.seedsize:
raise ValueError('Wrong crypto seed length')
return e.random_to_key(seed)
def string_to_key(enctype, string, salt, params=None):
e = _get_enctype_profile(enctype)
return e.string_to_key(string, salt, params)
def encrypt(key, keyusage, plaintext, confounder=None):
e = _get_enctype_profile(key.enctype)
return e.encrypt(key, keyusage, plaintext, confounder)
def decrypt(key, keyusage, ciphertext):
# Throw InvalidChecksum on checksum failure. Throw ValueError on
# invalid key enctype or malformed ciphertext.
e = _get_enctype_profile(key.enctype)
return e.decrypt(key, keyusage, ciphertext)
def prf(key, string):
e = _get_enctype_profile(key.enctype)
return e.prf(key, string)
def make_checksum(cksumtype, key, keyusage, text):
c = _get_checksum_profile(cksumtype)
return c.checksum(key, keyusage, text)
def verify_checksum(cksumtype, key, keyusage, text, cksum):
# Throw InvalidChecksum exception on checksum failure. Throw
# ValueError on invalid cksumtype, invalid key enctype, or
# malformed checksum.
c = _get_checksum_profile(cksumtype)
c.verify(key, keyusage, text, cksum)
def checksum_len(cksumtype):
c = _get_checksum_profile(cksumtype)
return c.checksum_len()
def prfplus(key, pepper, ln):
# Produce ln bytes of output using the RFC 6113 PRF+ function.
out = b''
count = 1
while len(out) < ln:
out += prf(key, bytes([count]) + pepper)
count += 1
return out[:ln]
def cf2(key1, key2, pepper1, pepper2, enctype=None):
# Combine two keys and two pepper strings to produce a result key
# of type enctype, using the RFC 6113 KRB-FX-CF2 function.
if enctype is None:
enctype = key1.enctype
e = _get_enctype_profile(enctype)
return e.random_to_key(_xorbytes(prfplus(key1, pepper1, e.seedsize),
prfplus(key2, pepper2, e.seedsize)))
def h(hexstr):
return bytes.fromhex(hexstr)
class KcrytoTest(TestCase):
"""kcrypto Test case."""
def test_aes128_crypr(self):
# AES128 encrypt and decrypt
kb = h('9062430C8CDA3388922E6D6A509F5B7A')
conf = h('94B491F481485B9A0678CD3C4EA386AD')
keyusage = 2
plain = b'9 bytesss'
ctxt = h('68FB9679601F45C78857B2BF820FD6E53ECA8D42FD4B1D7024A09205ABB7'
'CD2EC26C355D2F')
k = Key(Enctype.AES128, kb)
self.assertEqual(encrypt(k, keyusage, plain, conf), ctxt)
self.assertEqual(decrypt(k, keyusage, ctxt), plain)
def test_aes256_crypt(self):
# AES256 encrypt and decrypt
kb = h('F1C795E9248A09338D82C3F8D5B567040B0110736845041347235B14042313'
'98')
conf = h('E45CA518B42E266AD98E165E706FFB60')
keyusage = 4
plain = b'30 bytes bytes bytes bytes byt'
ctxt = h('D1137A4D634CFECE924DBC3BF6790648BD5CFF7DE0E7B99460211D0DAEF3'
'D79A295C688858F3B34B9CBD6EEBAE81DAF6B734D4D498B6714F1C1D')
k = Key(Enctype.AES256, kb)
self.assertEqual(encrypt(k, keyusage, plain, conf), ctxt)
self.assertEqual(decrypt(k, keyusage, ctxt), plain)
def test_aes128_checksum(self):
# AES128 checksum
kb = h('9062430C8CDA3388922E6D6A509F5B7A')
keyusage = 3
plain = b'eight nine ten eleven twelve thirteen'
cksum = h('01A4B088D45628F6946614E3')
k = Key(Enctype.AES128, kb)
verify_checksum(Cksumtype.SHA1_AES128, k, keyusage, plain, cksum)
def test_aes256_checksum(self):
# AES256 checksum
kb = h('B1AE4CD8462AFF1677053CC9279AAC30B796FB81CE21474DD3DDBC'
'FEA4EC76D7')
keyusage = 4
plain = b'fourteen'
cksum = h('E08739E3279E2903EC8E3836')
k = Key(Enctype.AES256, kb)
verify_checksum(Cksumtype.SHA1_AES256, k, keyusage, plain, cksum)
def test_aes128_string_to_key(self):
# AES128 string-to-key
string = b'password'
salt = b'ATHENA.MIT.EDUraeburn'
params = h('00000002')
kb = h('C651BF29E2300AC27FA469D693BDDA13')
k = string_to_key(Enctype.AES128, string, salt, params)
self.assertEqual(k.contents, kb)
def test_aes256_string_to_key(self):
# AES256 string-to-key
string = b'X' * 64
salt = b'pass phrase equals block size'
params = h('000004B0')
kb = h('89ADEE3608DB8BC71F1BFBFE459486B05618B70CBAE22092534E56'
'C553BA4B34')
k = string_to_key(Enctype.AES256, string, salt, params)
self.assertEqual(k.contents, kb)
def test_aes128_prf(self):
# AES128 prf
kb = h('77B39A37A868920F2A51F9DD150C5717')
k = string_to_key(Enctype.AES128, b'key1', b'key1')
self.assertEqual(prf(k, b'\x01\x61'), kb)
def test_aes256_prf(self):
# AES256 prf
kb = h('0D674DD0F9A6806525A4D92E828BD15A')
k = string_to_key(Enctype.AES256, b'key2', b'key2')
self.assertEqual(prf(k, b'\x02\x62'), kb)
def test_aes128_cf2(self):
# AES128 cf2
kb = h('97DF97E4B798B29EB31ED7280287A92A')
k1 = string_to_key(Enctype.AES128, b'key1', b'key1')
k2 = string_to_key(Enctype.AES128, b'key2', b'key2')
k = cf2(k1, k2, b'a', b'b')
self.assertEqual(k.contents, kb)
def test_aes256_cf2(self):
# AES256 cf2
kb = h('4D6CA4E629785C1F01BAF55E2E548566B9617AE3A96868C337CB93B5'
'E72B1C7B')
k1 = string_to_key(Enctype.AES256, b'key1', b'key1')
k2 = string_to_key(Enctype.AES256, b'key2', b'key2')
k = cf2(k1, k2, b'a', b'b')
self.assertEqual(k.contents, kb)
def test_des3_crypt(self):
# DES3 encrypt and decrypt
kb = h('0DD52094E0F41CECCB5BE510A764B35176E3981332F1E598')
conf = h('94690A17B2DA3C9B')
keyusage = 3
plain = b'13 bytes byte'
ctxt = h('839A17081ECBAFBCDC91B88C6955DD3C4514023CF177B77BF0D0177A16F7'
'05E849CB7781D76A316B193F8D30')
k = Key(Enctype.DES3, kb)
self.assertEqual(encrypt(k, keyusage, plain, conf), ctxt)
self.assertEqual(decrypt(k, keyusage, ctxt), _zeropad(plain, 8))
def test_des3_string_to_key(self):
# DES3 string-to-key
string = b'password'
salt = b'ATHENA.MIT.EDUraeburn'
kb = h('850BB51358548CD05E86768C313E3BFEF7511937DCF72C3E')
k = string_to_key(Enctype.DES3, string, salt)
self.assertEqual(k.contents, kb)
def test_des3_checksum(self):
# DES3 checksum
kb = h('7A25DF8992296DCEDA0E135BC4046E2375B3C14C98FBC162')
keyusage = 2
plain = b'six seven'
cksum = h('0EEFC9C3E049AABC1BA5C401677D9AB699082BB4')
k = Key(Enctype.DES3, kb)
verify_checksum(Cksumtype.SHA1_DES3, k, keyusage, plain, cksum)
def test_des3_cf2(self):
# DES3 cf2
kb = h('E58F9EB643862C13AD38E529313462A7F73E62834FE54A01')
k1 = string_to_key(Enctype.DES3, b'key1', b'key1')
k2 = string_to_key(Enctype.DES3, b'key2', b'key2')
k = cf2(k1, k2, b'a', b'b')
self.assertEqual(k.contents, kb)
def test_rc4_crypt(self):
# RC4 encrypt and decrypt
kb = h('68F263DB3FCE15D031C9EAB02D67107A')
conf = h('37245E73A45FBF72')
keyusage = 4
plain = b'30 bytes bytes bytes bytes byt'
ctxt = h('95F9047C3AD75891C2E9B04B16566DC8B6EB9CE4231AFB2542EF87A7B5A0'
'F260A99F0460508DE0CECC632D07C354124E46C5D2234EB8')
k = Key(Enctype.RC4, kb)
self.assertEqual(encrypt(k, keyusage, plain, conf), ctxt)
self.assertEqual(decrypt(k, keyusage, ctxt), plain)
def test_rc4_string_to_key(self):
# RC4 string-to-key
string = b'foo'
kb = h('AC8E657F83DF82BEEA5D43BDAF7800CC')
k = string_to_key(Enctype.RC4, string, None)
self.assertEqual(k.contents, kb)
def test_rc4_checksum(self):
# RC4 checksum
kb = h('F7D3A155AF5E238A0B7A871A96BA2AB2')
keyusage = 6
plain = b'seventeen eighteen nineteen twenty'
cksum = h('EB38CC97E2230F59DA4117DC5859D7EC')
k = Key(Enctype.RC4, kb)
verify_checksum(Cksumtype.HMAC_MD5, k, keyusage, plain, cksum)
def test_rc4_cf2(self):
# RC4 cf2
kb = h('24D7F6B6BAE4E5C00D2082C5EBAB3672')
k1 = string_to_key(Enctype.RC4, b'key1', b'key1')
k2 = string_to_key(Enctype.RC4, b'key2', b'key2')
k = cf2(k1, k2, b'a', b'b')
self.assertEqual(k.contents, kb)
def _test_md5_unkeyed_checksum(self, etype, usage):
# MD5 unkeyed checksum
pw = b'pwd'
salt = b'bytes'
key = string_to_key(etype, pw, salt)
plain = b'seventeen eighteen nineteen twenty'
cksum = h('9d9588cdef3a8cefc9d2c208d978f60c')
verify_checksum(Cksumtype.MD5, key, usage, plain, cksum)
def test_md5_unkeyed_checksum_des3_usage_40(self):
return self._test_md5_unkeyed_checksum(Enctype.DES3, 40)
def test_md5_unkeyed_checksum_des3_usage_50(self):
return self._test_md5_unkeyed_checksum(Enctype.DES3, 50)
def test_md5_unkeyed_checksum_rc4_usage_40(self):
return self._test_md5_unkeyed_checksum(Enctype.RC4, 40)
def test_md5_unkeyed_checksum_rc4_usage_50(self):
return self._test_md5_unkeyed_checksum(Enctype.RC4, 50)
def test_md5_unkeyed_checksum_aes128_usage_40(self):
return self._test_md5_unkeyed_checksum(Enctype.AES128, 40)
def test_md5_unkeyed_checksum_aes128_usage_50(self):
return self._test_md5_unkeyed_checksum(Enctype.AES128, 50)
def test_md5_unkeyed_checksum_aes256_usage_40(self):
return self._test_md5_unkeyed_checksum(Enctype.AES256, 40)
def test_md5_unkeyed_checksum_aes256_usage_50(self):
return self._test_md5_unkeyed_checksum(Enctype.AES256, 50)
def _test_sha1_unkeyed_checksum(self, etype, usage):
# SHA1 unkeyed checksum
pw = b'password'
salt = b'salt'
key = string_to_key(etype, pw, salt)
plain = b'twenty nineteen eighteen seventeen'
cksum = h('381c870d8875d1913555de19af5c885fd27b7da9')
verify_checksum(Cksumtype.SHA1, key, usage, plain, cksum)
def test_sha1_unkeyed_checksum_des3_usage_40(self):
return self._test_sha1_unkeyed_checksum(Enctype.DES3, 40)
def test_sha1_unkeyed_checksum_des3_usage_50(self):
return self._test_sha1_unkeyed_checksum(Enctype.DES3, 50)
def test_sha1_unkeyed_checksum_rc4_usage_40(self):
return self._test_sha1_unkeyed_checksum(Enctype.RC4, 40)
def test_sha1_unkeyed_checksum_rc4_usage_50(self):
return self._test_sha1_unkeyed_checksum(Enctype.RC4, 50)
def test_sha1_unkeyed_checksum_aes128_usage_40(self):
return self._test_sha1_unkeyed_checksum(Enctype.AES128, 40)
def test_sha1_unkeyed_checksum_aes128_usage_50(self):
return self._test_sha1_unkeyed_checksum(Enctype.AES128, 50)
def test_sha1_unkeyed_checksum_aes256_usage_40(self):
return self._test_sha1_unkeyed_checksum(Enctype.AES256, 40)
def test_sha1_unkeyed_checksum_aes256_usage_50(self):
return self._test_sha1_unkeyed_checksum(Enctype.AES256, 50)
def _test_crc32_unkeyed_checksum(self, etype, usage):
# CRC32 unkeyed checksum
pw = b'password'
salt = b'salt'
key = string_to_key(etype, pw, salt)
plain = b'africa america asia australia europe'
cksum = h('ce595a53')
verify_checksum(Cksumtype.CRC32, key, usage, plain, cksum)
def test_crc32_unkeyed_checksum_des3_usage_40(self):
return self._test_crc32_unkeyed_checksum(Enctype.DES3, 40)
def test_crc32_unkeyed_checksum_des3_usage_50(self):
return self._test_crc32_unkeyed_checksum(Enctype.DES3, 50)
def test_crc32_unkeyed_checksum_rc4_usage_40(self):
return self._test_crc32_unkeyed_checksum(Enctype.RC4, 40)
def test_crc32_unkeyed_checksum_rc4_usage_50(self):
return self._test_crc32_unkeyed_checksum(Enctype.RC4, 50)
def test_crc32_unkeyed_checksum_aes128_usage_40(self):
return self._test_crc32_unkeyed_checksum(Enctype.AES128, 40)
def test_crc32_unkeyed_checksum_aes128_usage_50(self):
return self._test_crc32_unkeyed_checksum(Enctype.AES128, 50)
def test_crc32_unkeyed_checksum_aes256_usage_40(self):
return self._test_crc32_unkeyed_checksum(Enctype.AES256, 40)
def test_crc32_unkeyed_checksum_aes256_usage_50(self):
return self._test_crc32_unkeyed_checksum(Enctype.AES256, 50)
if __name__ == "__main__":
import unittest
unittest.main()