mirror of
https://github.com/samba-team/samba.git
synced 2025-01-19 10:03:58 +03:00
ef2e26c91b
(This used to be commit b0510b5428b3461aeb9bbe3cc95f62fc73e2b97f)
2070 lines
49 KiB
C
2070 lines
49 KiB
C
/*
|
|
Samba Unix/Linux SMB client utility editreg.c
|
|
Copyright (C) 2002 Richard Sharpe, rsharpe@richardsharpe.com
|
|
|
|
This program is free software; you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation; either version 2 of the License, or
|
|
(at your option) any later version.
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with this program; if not, write to the Free Software
|
|
Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
|
|
|
|
/*************************************************************************
|
|
|
|
A utility to edit a Windows NT/2K etc registry file.
|
|
|
|
Many of the ideas in here come from other people and software.
|
|
I first looked in Wine in misc/registry.c and was also influenced by
|
|
http://www.wednesday.demon.co.uk/dosreg.html
|
|
|
|
Which seems to contain comments from someone else. I reproduce them here
|
|
incase the site above disappears. It actually comes from
|
|
http://home.eunet.no/~pnordahl/ntpasswd/WinReg.txt.
|
|
|
|
The goal here is to read the registry into memory, manipulate it, and then
|
|
write it out if it was changed by any actions of the user.
|
|
|
|
The windows NT registry has 2 different blocks, where one can occur many
|
|
times...
|
|
|
|
the "regf"-Block
|
|
================
|
|
|
|
"regf" is obviosly the abbreviation for "Registry file". "regf" is the
|
|
signature of the header-block which is always 4kb in size, although only
|
|
the first 64 bytes seem to be used and a checksum is calculated over
|
|
the first 0x200 bytes only!
|
|
|
|
Offset Size Contents
|
|
0x00000000 D-Word ID: ASCII-"regf" = 0x66676572
|
|
0x00000004 D-Word ???? //see struct REGF
|
|
0x00000008 D-Word ???? Always the same value as at 0x00000004
|
|
0x0000000C Q-Word last modify date in WinNT date-format
|
|
0x00000014 D-Word 1
|
|
0x00000018 D-Word 3
|
|
0x0000001C D-Word 0
|
|
0x00000020 D-Word 1
|
|
0x00000024 D-Word Offset of 1st key record
|
|
0x00000028 D-Word Size of the data-blocks (Filesize-4kb)
|
|
0x0000002C D-Word 1
|
|
0x000001FC D-Word Sum of all D-Words from 0x00000000 to
|
|
0x000001FB //XOR of all words. Nigel
|
|
|
|
I have analyzed more registry files (from multiple machines running
|
|
NT 4.0 german version) and could not find an explanation for the values
|
|
marked with ???? the rest of the first 4kb page is not important...
|
|
|
|
the "hbin"-Block
|
|
================
|
|
I don't know what "hbin" stands for, but this block is always a multiple
|
|
of 4kb in size.
|
|
|
|
Inside these hbin-blocks the different records are placed. The memory-
|
|
management looks like a C-compiler heap management to me...
|
|
|
|
hbin-Header
|
|
===========
|
|
Offset Size Contents
|
|
0x0000 D-Word ID: ASCII-"hbin" = 0x6E696268
|
|
0x0004 D-Word Offset from the 1st hbin-Block
|
|
0x0008 D-Word Offset to the next hbin-Block
|
|
0x001C D-Word Block-size
|
|
|
|
The values in 0x0008 and 0x001C should be the same, so I don't know
|
|
if they are correct or swapped...
|
|
|
|
From offset 0x0020 inside a hbin-block data is stored with the following
|
|
format:
|
|
|
|
Offset Size Contents
|
|
0x0000 D-Word Data-block size //this size must be a
|
|
multiple of 8. Nigel
|
|
0x0004 ???? Data
|
|
|
|
If the size field is negative (bit 31 set), the corresponding block
|
|
is free and has a size of -blocksize!
|
|
|
|
That does not seem to be true. All block lengths seem to be negative! (Richard Sharpe)
|
|
|
|
The data is stored as one record per block. Block size is a multiple
|
|
of 4 and the last block reaches the next hbin-block, leaving no room.
|
|
|
|
Records in the hbin-blocks
|
|
==========================
|
|
|
|
nk-Record
|
|
|
|
The nk-record can be treated as a kombination of tree-record and
|
|
key-record of the win 95 registry.
|
|
|
|
lf-Record
|
|
|
|
The lf-record is the counterpart to the RGKN-record (the
|
|
hash-function)
|
|
|
|
vk-Record
|
|
|
|
The vk-record consists information to a single value.
|
|
|
|
sk-Record
|
|
|
|
sk (? Security Key ?) is the ACL of the registry.
|
|
|
|
Value-Lists
|
|
|
|
The value-lists contain information about which values are inside a
|
|
sub-key and don't have a header.
|
|
|
|
Datas
|
|
|
|
The datas of the registry are (like the value-list) stored without a
|
|
header.
|
|
|
|
All offset-values are relative to the first hbin-block and point to the
|
|
block-size field of the record-entry. to get the file offset, you have to add
|
|
the header size (4kb) and the size field (4 bytes)...
|
|
|
|
the nk-Record
|
|
=============
|
|
Offset Size Contents
|
|
0x0000 Word ID: ASCII-"nk" = 0x6B6E
|
|
0x0002 Word for the root-key: 0x2C, otherwise 0x20 //key symbolic links 0x10. Nigel
|
|
0x0004 Q-Word write-date/time in windows nt notation
|
|
0x0010 D-Word Offset of Owner/Parent key
|
|
0x0014 D-Word number of sub-Keys
|
|
0x001C D-Word Offset of the sub-key lf-Records
|
|
0x0024 D-Word number of values
|
|
0x0028 D-Word Offset of the Value-List
|
|
0x002C D-Word Offset of the sk-Record
|
|
|
|
0x0030 D-Word Offset of the Class-Name //see NK structure for the use of these fields. Nigel
|
|
0x0044 D-Word Unused (data-trash) //some kind of run time index. Does not appear to be important. Nigel
|
|
0x0048 Word name-length
|
|
0x004A Word class-name length
|
|
0x004C ???? key-name
|
|
|
|
the Value-List
|
|
==============
|
|
Offset Size Contents
|
|
0x0000 D-Word Offset 1st Value
|
|
0x0004 D-Word Offset 2nd Value
|
|
0x???? D-Word Offset nth Value
|
|
|
|
To determine the number of values, you have to look at the owner-nk-record!
|
|
|
|
Der vk-Record
|
|
=============
|
|
Offset Size Contents
|
|
0x0000 Word ID: ASCII-"vk" = 0x6B76
|
|
0x0002 Word name length
|
|
0x0004 D-Word length of the data //if top bit is set when offset contains data. Nigel
|
|
0x0008 D-Word Offset of Data
|
|
0x000C D-Word Type of value
|
|
0x0010 Word Flag
|
|
0x0012 Word Unused (data-trash)
|
|
0x0014 ???? Name
|
|
|
|
If bit 0 of the flag-word is set, a name is present, otherwise the value has no name (=default)
|
|
|
|
If the data-size is lower 5, the data-offset value is used to store the data itself!
|
|
|
|
The data-types
|
|
==============
|
|
Wert Beteutung
|
|
0x0001 RegSZ: character string (in UNICODE!)
|
|
0x0002 ExpandSZ: string with "%var%" expanding (UNICODE!)
|
|
0x0003 RegBin: raw-binary value
|
|
0x0004 RegDWord: Dword
|
|
0x0007 RegMultiSZ: multiple strings, seperated with 0
|
|
(UNICODE!)
|
|
|
|
The "lf"-record
|
|
===============
|
|
Offset Size Contents
|
|
0x0000 Word ID: ASCII-"lf" = 0x666C
|
|
0x0002 Word number of keys
|
|
0x0004 ???? Hash-Records
|
|
|
|
Hash-Record
|
|
===========
|
|
Offset Size Contents
|
|
0x0000 D-Word Offset of corresponding "nk"-Record
|
|
0x0004 D-Word ASCII: the first 4 characters of the key-name, padded with 0's. Case sensitiv!
|
|
|
|
Keep in mind, that the value at 0x0004 is used for checking the data-consistency! If you change the
|
|
key-name you have to change the hash-value too!
|
|
|
|
//These hashrecords must be sorted low to high within the lf record. Nigel.
|
|
|
|
The "sk"-block
|
|
==============
|
|
(due to the complexity of the SAM-info, not clear jet)
|
|
(This is just a security descriptor in the data. R Sharpe.)
|
|
|
|
|
|
Offset Size Contents
|
|
0x0000 Word ID: ASCII-"sk" = 0x6B73
|
|
0x0002 Word Unused
|
|
0x0004 D-Word Offset of previous "sk"-Record
|
|
0x0008 D-Word Offset of next "sk"-Record
|
|
0x000C D-Word usage-counter
|
|
0x0010 D-Word Size of "sk"-record in bytes
|
|
???? //standard self
|
|
relative security desciptor. Nigel
|
|
???? ???? Security and auditing settings...
|
|
????
|
|
|
|
The usage counter counts the number of references to this
|
|
"sk"-record. You can use one "sk"-record for the entire registry!
|
|
|
|
Windows nt date/time format
|
|
===========================
|
|
The time-format is a 64-bit integer which is incremented every
|
|
0,0000001 seconds by 1 (I don't know how accurate it realy is!)
|
|
It starts with 0 at the 1st of january 1601 0:00! All values are
|
|
stored in GMT time! The time-zone is important to get the real
|
|
time!
|
|
|
|
Common values for win95 and win-nt
|
|
==================================
|
|
Offset values marking an "end of list", are either 0 or -1 (0xFFFFFFFF).
|
|
If a value has no name (length=0, flag(bit 0)=0), it is treated as the
|
|
"Default" entry...
|
|
If a value has no data (length=0), it is displayed as empty.
|
|
|
|
simplyfied win-3.?? registry:
|
|
=============================
|
|
|
|
+-----------+
|
|
| next rec. |---+ +----->+------------+
|
|
| first sub | | | | Usage cnt. |
|
|
| name | | +-->+------------+ | | length |
|
|
| value | | | | next rec. | | | text |------->+-------+
|
|
+-----------+ | | | name rec. |--+ +------------+ | xxxxx |
|
|
+------------+ | | value rec. |-------->+------------+ +-------+
|
|
v | +------------+ | Usage cnt. |
|
|
+-----------+ | | length |
|
|
| next rec. | | | text |------->+-------+
|
|
| first sub |------+ +------------+ | xxxxx |
|
|
| name | +-------+
|
|
| value |
|
|
+-----------+
|
|
|
|
Greatly simplyfied structure of the nt-registry:
|
|
================================================
|
|
|
|
+---------------------------------------------------------------+
|
|
| |
|
|
v |
|
|
+---------+ +---------->+-----------+ +----->+---------+ |
|
|
| "nk" | | | lf-rec. | | | nk-rec. | |
|
|
| ID | | | # of keys | | | parent |---+
|
|
| Date | | | 1st key |--+ | .... |
|
|
| parent | | +-----------+ +---------+
|
|
| suk-keys|-----+
|
|
| values |--------------------->+----------+
|
|
| SK-rec. |---------------+ | 1. value |--> +----------+
|
|
| class |--+ | +----------+ | vk-rec. |
|
|
+---------+ | | | .... |
|
|
v | | data |--> +-------+
|
|
+------------+ | +----------+ | xxxxx |
|
|
| Class name | | +-------+
|
|
+------------+ |
|
|
v
|
|
+---------+ +---------+
|
|
+----->| next sk |--->| Next sk |--+
|
|
| +---| prev sk |<---| prev sk | |
|
|
| | | .... | | ... | |
|
|
| | +---------+ +---------+ |
|
|
| | ^ |
|
|
| | | |
|
|
| +--------------------+ |
|
|
+----------------------------------+
|
|
|
|
---------------------------------------------------------------------------
|
|
|
|
Hope this helps.... (Although it was "fun" for me to uncover this things,
|
|
it took me several sleepless nights ;)
|
|
|
|
B.D.
|
|
|
|
*************************************************************************/
|
|
|
|
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
#include <errno.h>
|
|
#include <assert.h>
|
|
#include <sys/types.h>
|
|
#include <sys/stat.h>
|
|
#include <unistd.h>
|
|
#include <sys/mman.h>
|
|
#include <string.h>
|
|
#include <fcntl.h>
|
|
|
|
static int verbose = 0;
|
|
|
|
/*
|
|
* These definitions are for the in-memory registry structure.
|
|
* It is a tree structure that mimics what you see with tools like regedit
|
|
*/
|
|
|
|
/*
|
|
* DateTime struct for Windows
|
|
*/
|
|
|
|
typedef struct date_time_s {
|
|
unsigned int low, high;
|
|
} NTTIME;
|
|
|
|
/*
|
|
* Definition of a Key. It has a name, classname, date/time last modified,
|
|
* sub-keys, values, and a security descriptor
|
|
*/
|
|
|
|
#define REG_ROOT_KEY 1
|
|
#define REG_SUB_KEY 2
|
|
#define REG_SYM_LINK 3
|
|
|
|
typedef struct reg_key_s {
|
|
char *name; /* Name of the key */
|
|
char *class_name;
|
|
int type; /* One of REG_ROOT_KEY or REG_SUB_KEY */
|
|
NTTIME last_mod; /* Time last modified */
|
|
struct reg_key_s *owner;
|
|
struct key_list_s *sub_keys;
|
|
struct val_list_s *values;
|
|
struct key_sec_desc_s *security;
|
|
} REG_KEY;
|
|
|
|
/*
|
|
* The KEY_LIST struct lists sub-keys.
|
|
*/
|
|
|
|
typedef struct key_list_s {
|
|
int key_count;
|
|
REG_KEY *keys[1];
|
|
} KEY_LIST;
|
|
|
|
typedef struct val_key_s {
|
|
char *name;
|
|
int has_name;
|
|
int data_type;
|
|
int data_len;
|
|
void *data_blk; /* Might want a separate block */
|
|
} VAL_KEY;
|
|
|
|
typedef struct val_list_s {
|
|
int val_count;
|
|
VAL_KEY *vals[1];
|
|
} VAL_LIST;
|
|
|
|
#ifndef MAXSUBAUTHS
|
|
#define MAXSUBAUTHS 15
|
|
#endif
|
|
|
|
typedef struct dom_sid_s {
|
|
unsigned char ver, auths;
|
|
unsigned char auth[6];
|
|
unsigned int sub_auths[MAXSUBAUTHS];
|
|
} DOM_SID;
|
|
|
|
typedef struct ace_struct_s {
|
|
unsigned char type, flags;
|
|
unsigned int perms; /* Perhaps a better def is in order */
|
|
DOM_SID *trustee;
|
|
} ACE;
|
|
|
|
typedef struct acl_struct_s {
|
|
unsigned short rev, refcnt;
|
|
unsigned short num_aces;
|
|
ACE *aces[1];
|
|
} ACL;
|
|
|
|
typedef struct sec_desc_s {
|
|
unsigned int rev, type;
|
|
DOM_SID *owner, *group;
|
|
ACL *sacl, *dacl;
|
|
} SEC_DESC;
|
|
|
|
#define SEC_DESC_NON 0
|
|
#define SEC_DESC_RES 1
|
|
#define SEC_DESC_OCU 2
|
|
|
|
typedef struct key_sec_desc_s {
|
|
struct key_sec_desc_s *prev, *next;
|
|
int ref_cnt;
|
|
int state;
|
|
SEC_DESC *sec_desc;
|
|
} KEY_SEC_DESC;
|
|
|
|
|
|
/*
|
|
* An API for accessing/creating/destroying items above
|
|
*/
|
|
|
|
/*
|
|
* Iterate over the keys, depth first, calling a function for each key
|
|
* and indicating if it is terminal or non-terminal and if it has values.
|
|
*
|
|
* In addition, for each value in the list, call a value list function
|
|
*/
|
|
|
|
/*
|
|
* There should eventually be one to deal with security keys as well
|
|
*/
|
|
|
|
typedef int (*key_print_f)(const char *path, char *key_name, char *class_name,
|
|
int root, int terminal, int values);
|
|
|
|
typedef int (*val_print_f)(const char *path, char *val_name, int val_type,
|
|
int data_len, void *data_blk, int terminal,
|
|
int first, int last);
|
|
|
|
typedef int (*sec_print_f)(SEC_DESC *sec_desc);
|
|
|
|
typedef struct regf_struct_s REGF;
|
|
|
|
int nt_key_iterator(REGF *regf, REG_KEY *key_tree, int bf, const char *path,
|
|
key_print_f key_print, sec_print_f sec_print,
|
|
val_print_f val_print);
|
|
|
|
int nt_val_list_iterator(REGF *regf, VAL_LIST *val_list, int bf, char *path,
|
|
int terminal, val_print_f val_print)
|
|
{
|
|
int i;
|
|
|
|
if (!val_list) return 1;
|
|
|
|
if (!val_print) return 1;
|
|
|
|
for (i=0; i<val_list->val_count; i++) {
|
|
if (!val_print(path, val_list->vals[i]->name, val_list->vals[i]->data_type,
|
|
val_list->vals[i]->data_len, val_list->vals[i]->data_blk,
|
|
terminal,
|
|
(i == 0),
|
|
(i == val_list->val_count))) {
|
|
|
|
return 0;
|
|
|
|
}
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
|
|
int nt_key_list_iterator(REGF *regf, KEY_LIST *key_list, int bf,
|
|
const char *path,
|
|
key_print_f key_print, sec_print_f sec_print,
|
|
val_print_f val_print)
|
|
{
|
|
int i;
|
|
|
|
if (!key_list) return 1;
|
|
|
|
for (i=0; i< key_list->key_count; i++) {
|
|
if (!nt_key_iterator(regf, key_list->keys[i], bf, path, key_print,
|
|
sec_print, val_print)) {
|
|
return 0;
|
|
}
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
int nt_key_iterator(REGF *regf, REG_KEY *key_tree, int bf, const char *path,
|
|
key_print_f key_print, sec_print_f sec_print,
|
|
val_print_f val_print)
|
|
{
|
|
int path_len = strlen(path);
|
|
char *new_path;
|
|
|
|
if (!regf || !key_tree)
|
|
return -1;
|
|
|
|
/* List the key first, then the values, then the sub-keys */
|
|
|
|
if (key_print) {
|
|
|
|
if (!(*key_print)(path, key_tree->name,
|
|
key_tree->class_name,
|
|
(key_tree->type == REG_ROOT_KEY),
|
|
(key_tree->sub_keys == NULL),
|
|
(key_tree->values?(key_tree->values->val_count):0)))
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* If we have a security print routine, call it
|
|
* If the security print routine returns false, stop.
|
|
*/
|
|
if (sec_print) {
|
|
if (key_tree->security && !(*sec_print)(key_tree->security->sec_desc))
|
|
return 0;
|
|
}
|
|
|
|
new_path = (char *)malloc(path_len + 1 + strlen(key_tree->name) + 1);
|
|
if (!new_path) return 0; /* Errors? */
|
|
new_path[0] = '\0';
|
|
strcat(new_path, path);
|
|
strcat(new_path, "\\");
|
|
strcat(new_path, key_tree->name);
|
|
|
|
/*
|
|
* Now, iterate through the values in the val_list
|
|
*/
|
|
|
|
if (key_tree->values &&
|
|
!nt_val_list_iterator(regf, key_tree->values, bf, new_path,
|
|
(key_tree->values!=NULL),
|
|
val_print)) {
|
|
|
|
free(new_path);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Now, iterate through the keys in the key list
|
|
*/
|
|
|
|
if (key_tree->sub_keys &&
|
|
!nt_key_list_iterator(regf, key_tree->sub_keys, bf, new_path, key_print,
|
|
sec_print, val_print)) {
|
|
free(new_path);
|
|
return 0;
|
|
}
|
|
|
|
free(new_path);
|
|
return 1;
|
|
}
|
|
|
|
/* Make, delete keys */
|
|
|
|
int nt_delete_val_key(VAL_KEY *val_key)
|
|
{
|
|
|
|
if (val_key) {
|
|
if (val_key->data_blk) free(val_key->data_blk);
|
|
free(val_key);
|
|
};
|
|
return 1;
|
|
}
|
|
|
|
int nt_delete_val_list(VAL_LIST *vl)
|
|
{
|
|
int i;
|
|
|
|
if (vl) {
|
|
for (i=0; i<vl->val_count; i++)
|
|
nt_delete_val_key(vl->vals[i]);
|
|
free(vl);
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
int nt_delete_reg_key(REG_KEY *key);
|
|
int nt_delete_key_list(KEY_LIST *key_list)
|
|
{
|
|
int i;
|
|
|
|
if (key_list) {
|
|
for (i=0; i<key_list->key_count; i++)
|
|
nt_delete_reg_key(key_list->keys[i]);
|
|
free(key_list);
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
int nt_delete_sid(DOM_SID *sid)
|
|
{
|
|
|
|
if (sid) free(sid);
|
|
return 1;
|
|
|
|
}
|
|
|
|
int nt_delete_ace(ACE *ace)
|
|
{
|
|
|
|
if (ace) {
|
|
nt_delete_sid(ace->trustee);
|
|
free(ace);
|
|
}
|
|
return 1;
|
|
|
|
}
|
|
|
|
int nt_delete_acl(ACL *acl)
|
|
{
|
|
|
|
if (acl) {
|
|
int i;
|
|
|
|
for (i=0; i<acl->num_aces; i++)
|
|
nt_delete_ace(acl->aces[i]);
|
|
|
|
free(acl);
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
int nt_delete_sec_desc(SEC_DESC *sec_desc)
|
|
{
|
|
|
|
if (sec_desc) {
|
|
|
|
nt_delete_sid(sec_desc->owner);
|
|
nt_delete_sid(sec_desc->group);
|
|
nt_delete_acl(sec_desc->sacl);
|
|
nt_delete_acl(sec_desc->dacl);
|
|
free(sec_desc);
|
|
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
int nt_delete_key_sec_desc(KEY_SEC_DESC *key_sec_desc)
|
|
{
|
|
|
|
if (key_sec_desc) {
|
|
key_sec_desc->ref_cnt--;
|
|
if (key_sec_desc->ref_cnt<=0) {
|
|
/*
|
|
* There should always be a next and prev, even if they point to us
|
|
*/
|
|
key_sec_desc->next->prev = key_sec_desc->prev;
|
|
key_sec_desc->prev->next = key_sec_desc->next;
|
|
nt_delete_sec_desc(key_sec_desc->sec_desc);
|
|
}
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
int nt_delete_reg_key(REG_KEY *key)
|
|
{
|
|
|
|
if (key) {
|
|
if (key->name) free(key->name);
|
|
if (key->class_name) free(key->class_name);
|
|
|
|
/*
|
|
* Do not delete the owner ...
|
|
*/
|
|
|
|
if (key->sub_keys) nt_delete_key_list(key->sub_keys);
|
|
if (key->values) nt_delete_val_list(key->values);
|
|
if (key->security) nt_delete_key_sec_desc(key->security);
|
|
free(key);
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* Create/delete key lists and add delete keys to/from a list, count the keys
|
|
*/
|
|
|
|
|
|
/*
|
|
* Create/delete value lists, add/delete values, count them
|
|
*/
|
|
|
|
|
|
/*
|
|
* Create/delete security descriptors, add/delete SIDS, count SIDS, etc.
|
|
* We reference count the security descriptors. Any new reference increments
|
|
* the ref count. If we modify an SD, we copy the old one, dec the ref count
|
|
* and make the change. We also want to be able to check for equality so
|
|
* we can reduce the number of SDs in use.
|
|
*/
|
|
|
|
/*
|
|
* Code to parse registry specification from command line or files
|
|
*
|
|
* Format:
|
|
* [cmd:]key:type:value
|
|
*
|
|
* cmd = a|d|c|add|delete|change|as|ds|cs
|
|
*
|
|
*/
|
|
|
|
|
|
/*
|
|
* Load and unload a registry file.
|
|
*
|
|
* Load, loads it into memory as a tree, while unload sealizes/flattens it
|
|
*/
|
|
|
|
/*
|
|
* Get the starting record for NT Registry file
|
|
*/
|
|
|
|
/* A map of sk offsets in the regf to KEY_SEC_DESCs for quick lookup etc */
|
|
typedef struct sk_map_s {
|
|
int sk_off;
|
|
KEY_SEC_DESC *key_sec_desc;
|
|
} SK_MAP;
|
|
|
|
/*
|
|
* Where we keep all the regf stuff for one registry.
|
|
* This is the structure that we use to tie the in memory tree etc
|
|
* together. By keeping separate structs, we can operate on different
|
|
* registries at the same time.
|
|
* Currently, the SK_MAP is an array of mapping structure.
|
|
* Since we only need this on input and output, we fill in the structure
|
|
* as we go on input. On output, we know how many SK items we have, so
|
|
* we can allocate the structure as we need to.
|
|
* If you add stuff here that is dynamically allocated, add the
|
|
* appropriate free statements below.
|
|
*/
|
|
|
|
#define REGF_REGTYPE_NONE 0
|
|
#define REGF_REGTYPE_NT 1
|
|
#define REGF_REGTYPE_W9X 2
|
|
|
|
#define TTTONTTIME(r, t1, t2) (r)->last_mod_time.low = (t1); \
|
|
(r)->last_mod_time.high = (t2);
|
|
|
|
#define REGF_HDR_BLKSIZ 0x1000
|
|
|
|
struct regf_struct_s {
|
|
int reg_type;
|
|
char *regfile_name, *outfile_name;
|
|
int fd;
|
|
struct stat sbuf;
|
|
char *base;
|
|
int modified;
|
|
NTTIME last_mod_time;
|
|
REG_KEY *root; /* Root of the tree for this file */
|
|
int sk_count, sk_map_size;
|
|
SK_MAP *sk_map;
|
|
};
|
|
|
|
/*
|
|
* Structures for dealing with the on-disk format of the registry
|
|
*/
|
|
|
|
#define IVAL(buf) ((unsigned int) \
|
|
(unsigned int)*((unsigned char *)(buf)+3)<<24| \
|
|
(unsigned int)*((unsigned char *)(buf)+2)<<16| \
|
|
(unsigned int)*((unsigned char *)(buf)+1)<<8| \
|
|
(unsigned int)*((unsigned char *)(buf)+0))
|
|
|
|
#define SVAL(buf) ((unsigned short) \
|
|
(unsigned short)*((unsigned char *)(buf)+1)<<8| \
|
|
(unsigned short)*((unsigned char *)(buf)+0))
|
|
|
|
#define CVAL(buf) ((unsigned char)*((unsigned char *)(buf)))
|
|
|
|
#define OFF(f) ((f) + REGF_HDR_BLKSIZ + 4)
|
|
#define LOCN(base, f) ((base) + OFF(f))
|
|
|
|
/*
|
|
* All of the structures below actually have a four-byte lenght before them
|
|
* which always seems to be negative. The following macro retrieves that
|
|
* size as an integer
|
|
*/
|
|
|
|
#define BLK_SIZE(b) ((int)*(int *)(((int *)b)-1))
|
|
|
|
typedef unsigned int DWORD;
|
|
typedef unsigned short WORD;
|
|
|
|
#define REG_REGF_ID 0x66676572
|
|
|
|
typedef struct regf_block {
|
|
DWORD REGF_ID; /* regf */
|
|
DWORD uk1;
|
|
DWORD uk2;
|
|
DWORD tim1, tim2;
|
|
DWORD uk3; /* 1 */
|
|
DWORD uk4; /* 3 */
|
|
DWORD uk5; /* 0 */
|
|
DWORD uk6; /* 1 */
|
|
DWORD first_key; /* offset */
|
|
unsigned int dblk_size;
|
|
DWORD uk7[116]; /* 1 */
|
|
DWORD chksum;
|
|
} REGF_HDR;
|
|
|
|
typedef struct hbin_sub_struct {
|
|
DWORD dblocksize;
|
|
char data[1];
|
|
} HBIN_SUB_HDR;
|
|
|
|
#define REG_HBIN_ID 0x6E696268
|
|
|
|
typedef struct hbin_struct {
|
|
DWORD HBIN_ID; /* hbin */
|
|
DWORD next_off;
|
|
DWORD prev_off;
|
|
DWORD uk1;
|
|
DWORD uk2;
|
|
DWORD uk3;
|
|
DWORD uk4;
|
|
DWORD blk_size;
|
|
HBIN_SUB_HDR hbin_sub_hdr;
|
|
} HBIN_HDR;
|
|
|
|
#define REG_NK_ID 0x6B6E
|
|
|
|
typedef struct nk_struct {
|
|
WORD NK_ID;
|
|
WORD type;
|
|
DWORD t1, t2;
|
|
DWORD uk1;
|
|
DWORD own_off;
|
|
DWORD subk_num;
|
|
DWORD uk2;
|
|
DWORD lf_off;
|
|
DWORD uk3;
|
|
DWORD val_cnt;
|
|
DWORD val_off;
|
|
DWORD sk_off;
|
|
DWORD clsnam_off;
|
|
DWORD unk4[4];
|
|
DWORD unk5;
|
|
WORD nam_len;
|
|
WORD clsnam_len;
|
|
char key_nam[1]; /* Actual length determined by nam_len */
|
|
} NK_HDR;
|
|
|
|
#define REG_SK_ID 0x6B73
|
|
|
|
typedef struct sk_struct {
|
|
WORD SK_ID;
|
|
WORD uk1;
|
|
DWORD prev_off;
|
|
DWORD next_off;
|
|
DWORD ref_cnt;
|
|
DWORD rec_size;
|
|
char sec_desc[1];
|
|
} SK_HDR;
|
|
|
|
typedef struct ace_struct {
|
|
unsigned char type;
|
|
unsigned char flags;
|
|
unsigned short length;
|
|
unsigned int perms;
|
|
DOM_SID trustee;
|
|
} REG_ACE;
|
|
|
|
typedef struct acl_struct {
|
|
WORD rev;
|
|
WORD size;
|
|
DWORD num_aces;
|
|
REG_ACE *aces; /* One or more ACEs */
|
|
} REG_ACL;
|
|
|
|
typedef struct sec_desc_rec {
|
|
WORD rev;
|
|
WORD type;
|
|
DWORD owner_off;
|
|
DWORD group_off;
|
|
DWORD sacl_off;
|
|
DWORD dacl_off;
|
|
} REG_SEC_DESC;
|
|
|
|
typedef struct hash_struct {
|
|
DWORD nk_off;
|
|
char hash[4];
|
|
} HASH_REC;
|
|
|
|
#define REG_LF_ID 0x666C
|
|
|
|
typedef struct lf_struct {
|
|
WORD LF_ID;
|
|
WORD key_count;
|
|
struct hash_struct hr[1]; /* Array of hash records, depending on key_count */
|
|
} LF_HDR;
|
|
|
|
typedef DWORD VL_TYPE[1]; /* Value list is an array of vk rec offsets */
|
|
|
|
#define REG_VK_ID 0x6B76
|
|
|
|
typedef struct vk_struct {
|
|
WORD VK_ID;
|
|
WORD nam_len;
|
|
DWORD dat_len; /* If top-bit set, offset contains the data */
|
|
DWORD dat_off;
|
|
DWORD dat_type;
|
|
WORD flag; /* =1, has name, else no name (=Default). */
|
|
WORD unk1;
|
|
char dat_name[1]; /* Name starts here ... */
|
|
} VK_HDR;
|
|
|
|
#define REG_TYPE_REGSZ 1
|
|
#define REG_TYPE_EXPANDSZ 2
|
|
#define REG_TYPE_BIN 3
|
|
#define REG_TYPE_DWORD 4
|
|
#define REG_TYPE_MULTISZ 7
|
|
|
|
typedef struct _val_str {
|
|
unsigned int val;
|
|
const char * str;
|
|
} VAL_STR;
|
|
|
|
const VAL_STR reg_type_names[] = {
|
|
{ 1, "REG_SZ" },
|
|
{ 2, "REG_EXPAND_SZ" },
|
|
{ 3, "REG_BIN" },
|
|
{ 4, "REG_DWORD" },
|
|
{ 7, "REG_MULTI_SZ" },
|
|
{ 0, NULL },
|
|
};
|
|
|
|
const char *val_to_str(unsigned int val, const VAL_STR *val_array)
|
|
{
|
|
int i = 0;
|
|
|
|
if (!val_array) return NULL;
|
|
|
|
while (val_array[i].val && val_array[i].str) {
|
|
|
|
if (val_array[i].val == val) return val_array[i].str;
|
|
i++;
|
|
|
|
}
|
|
|
|
return NULL;
|
|
|
|
}
|
|
|
|
/*
|
|
* Convert from UniCode to Ascii ... Does not take into account other lang
|
|
* Restrict by ascii_max if > 0
|
|
*/
|
|
int uni_to_ascii(unsigned char *uni, unsigned char *ascii, int ascii_max,
|
|
int uni_max)
|
|
{
|
|
int i = 0;
|
|
|
|
while (i < ascii_max && !(!uni[i*2] && !uni[i*2+1])) {
|
|
if (uni_max > 0 && (i*2) >= uni_max) break;
|
|
ascii[i] = uni[i*2];
|
|
i++;
|
|
|
|
}
|
|
|
|
ascii[i] = '\0';
|
|
|
|
return i;
|
|
}
|
|
|
|
/*
|
|
* Convert a data value to a string for display
|
|
*/
|
|
int data_to_ascii(unsigned char *datap, int len, int type, char *ascii, int ascii_max)
|
|
{
|
|
unsigned char *asciip;
|
|
int i;
|
|
|
|
switch (type) {
|
|
case REG_TYPE_REGSZ:
|
|
fprintf(stderr, "Len: %d\n", len);
|
|
return uni_to_ascii(datap, ascii, len, ascii_max);
|
|
break;
|
|
|
|
case REG_TYPE_EXPANDSZ:
|
|
return uni_to_ascii(datap, ascii, len, ascii_max);
|
|
break;
|
|
|
|
case REG_TYPE_BIN:
|
|
asciip = ascii;
|
|
for (i=0; (i<len)&&(i+1)*3<ascii_max; i++) {
|
|
int str_rem = ascii_max - ((int)asciip - (int)ascii);
|
|
asciip += snprintf(asciip, str_rem, "%02x", *(unsigned char *)(datap+i));
|
|
if (i < len && str_rem > 0)
|
|
*asciip = ' '; asciip++;
|
|
}
|
|
*asciip = '\0';
|
|
return ((int)asciip - (int)ascii);
|
|
break;
|
|
|
|
case REG_TYPE_DWORD:
|
|
if (*(int *)datap == 0)
|
|
return snprintf(ascii, ascii_max, "0");
|
|
else
|
|
return snprintf(ascii, ascii_max, "0x%x", *(int *)datap);
|
|
break;
|
|
|
|
case REG_TYPE_MULTISZ:
|
|
|
|
break;
|
|
|
|
default:
|
|
return 0;
|
|
break;
|
|
}
|
|
|
|
return len;
|
|
|
|
}
|
|
|
|
REG_KEY *nt_get_key_tree(REGF *regf, NK_HDR *nk_hdr, int size);
|
|
|
|
int nt_set_regf_input_file(REGF *regf, char *filename)
|
|
{
|
|
return ((regf->regfile_name = strdup(filename)) != NULL);
|
|
}
|
|
|
|
int nt_set_regf_output_file(REGF *regf, char *filename)
|
|
{
|
|
return ((regf->outfile_name = strdup(filename)) != NULL);
|
|
}
|
|
|
|
/* Create a regf structure and init it */
|
|
|
|
REGF *nt_create_regf(void)
|
|
{
|
|
REGF *tmp = (REGF *)malloc(sizeof(REGF));
|
|
if (!tmp) return tmp;
|
|
bzero(tmp, sizeof(REGF));
|
|
return tmp;
|
|
}
|
|
|
|
/* Free all the bits and pieces ... Assumes regf was malloc'd */
|
|
/* If you add stuff to REGF, add the relevant free bits here */
|
|
int nt_free_regf(REGF *regf)
|
|
{
|
|
if (!regf) return 0;
|
|
|
|
if (regf->regfile_name) free(regf->regfile_name);
|
|
if (regf->outfile_name) free(regf->outfile_name);
|
|
|
|
/* Free the mmap'd area */
|
|
|
|
if (regf->base) munmap(regf->base, regf->sbuf.st_size);
|
|
regf->base = NULL;
|
|
close(regf->fd); /* Ignore the error :-) */
|
|
|
|
nt_delete_reg_key(regf->root); /* Free the tree */
|
|
free(regf->sk_map);
|
|
regf->sk_count = regf->sk_map_size = 0;
|
|
|
|
free(regf);
|
|
|
|
return 1;
|
|
}
|
|
|
|
/* Get the header of the registry. Return a pointer to the structure
|
|
* If the mmap'd area has not been allocated, then mmap the input file
|
|
*/
|
|
REGF_HDR *nt_get_regf_hdr(REGF *regf)
|
|
{
|
|
if (!regf)
|
|
return NULL; /* What about errors */
|
|
|
|
if (!regf->regfile_name)
|
|
return NULL; /* What about errors */
|
|
|
|
if (!regf->base) { /* Try to mmap etc the file */
|
|
|
|
if ((regf->fd = open(regf->regfile_name, O_RDONLY, 0000)) <0) {
|
|
return NULL; /* What about errors? */
|
|
}
|
|
|
|
if (fstat(regf->fd, ®f->sbuf) < 0) {
|
|
return NULL;
|
|
}
|
|
|
|
regf->base = mmap(0, regf->sbuf.st_size, PROT_READ, MAP_SHARED, regf->fd, 0);
|
|
|
|
if ((int)regf->base == 1) {
|
|
fprintf(stderr, "Could not mmap file: %s, %s\n", regf->regfile_name,
|
|
strerror(errno));
|
|
return NULL;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* At this point, regf->base != NULL, and we should be able to read the
|
|
* header
|
|
*/
|
|
|
|
assert(regf->base != NULL);
|
|
|
|
return (REGF_HDR *)regf->base;
|
|
}
|
|
|
|
/*
|
|
* Validate a regf header
|
|
* For now, do nothing, but we should check the checksum
|
|
*/
|
|
int valid_regf_hdr(REGF_HDR *regf_hdr)
|
|
{
|
|
if (!regf_hdr) return 0;
|
|
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* Process an SK header ...
|
|
* Every time we see a new one, add it to the map. Otherwise, just look it up.
|
|
* We will do a simple linear search for the moment, since many KEYs have the
|
|
* same security descriptor.
|
|
* We allocate the map in increments of 10 entries.
|
|
*/
|
|
|
|
/*
|
|
* Create a new entry in the map, and increase the size of the map if needed
|
|
*/
|
|
|
|
SK_MAP *alloc_sk_map_entry(REGF *regf, KEY_SEC_DESC *tmp, int sk_off)
|
|
{
|
|
if (!regf->sk_map) { /* Allocate a block of 10 */
|
|
regf->sk_map = (SK_MAP *)malloc(sizeof(SK_MAP) * 10);
|
|
if (!regf->sk_map) {
|
|
free(tmp);
|
|
return NULL;
|
|
}
|
|
regf->sk_map_size = 10;
|
|
regf->sk_count = 1;
|
|
(regf->sk_map)[0].sk_off = sk_off;
|
|
(regf->sk_map)[0].key_sec_desc = tmp;
|
|
}
|
|
else { /* Simply allocate a new slot, unless we have to expand the list */
|
|
int ndx = regf->sk_count;
|
|
if (regf->sk_count >= regf->sk_map_size) {
|
|
regf->sk_map = (SK_MAP *)realloc(regf->sk_map,
|
|
(regf->sk_map_size + 10)*sizeof(SK_MAP));
|
|
if (!regf->sk_map) {
|
|
free(tmp);
|
|
return NULL;
|
|
}
|
|
/*
|
|
* ndx already points at the first entry of the new block
|
|
*/
|
|
regf->sk_map_size += 10;
|
|
}
|
|
(regf->sk_map)[ndx].sk_off = sk_off;
|
|
(regf->sk_map)[ndx].key_sec_desc = tmp;
|
|
regf->sk_count++;
|
|
}
|
|
return regf->sk_map;
|
|
}
|
|
|
|
/*
|
|
* Search for a KEY_SEC_DESC in the sk_map, but dont create one if not
|
|
* found
|
|
*/
|
|
|
|
KEY_SEC_DESC *lookup_sec_key(SK_MAP *sk_map, int count, int sk_off)
|
|
{
|
|
int i;
|
|
|
|
if (!sk_map) return NULL;
|
|
|
|
for (i = 0; i < count; i++) {
|
|
|
|
if (sk_map[i].sk_off == sk_off)
|
|
return sk_map[i].key_sec_desc;
|
|
|
|
}
|
|
|
|
return NULL;
|
|
|
|
}
|
|
|
|
/*
|
|
* Allocate a KEY_SEC_DESC if we can't find one in the map
|
|
*/
|
|
|
|
KEY_SEC_DESC *lookup_create_sec_key(REGF *regf, SK_MAP *sk_map, int sk_off)
|
|
{
|
|
KEY_SEC_DESC *tmp = lookup_sec_key(regf->sk_map, regf->sk_count, sk_off);
|
|
|
|
if (tmp) {
|
|
return tmp;
|
|
}
|
|
else { /* Allocate a new one */
|
|
tmp = (KEY_SEC_DESC *)malloc(sizeof(KEY_SEC_DESC));
|
|
if (!tmp) {
|
|
return NULL;
|
|
}
|
|
tmp->state = SEC_DESC_RES;
|
|
if (!alloc_sk_map_entry(regf, tmp, sk_off)) {
|
|
return NULL;
|
|
}
|
|
return tmp;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Allocate storage and duplicate a SID
|
|
* We could allocate the SID to be only the size needed, but I am too lazy.
|
|
*/
|
|
DOM_SID *dup_sid(DOM_SID *sid)
|
|
{
|
|
DOM_SID *tmp = (DOM_SID *)malloc(sizeof(DOM_SID));
|
|
int i;
|
|
|
|
if (!tmp) return NULL;
|
|
tmp->ver = sid->ver;
|
|
tmp->auths = sid->auths;
|
|
for (i=0; i<6; i++) {
|
|
tmp->auth[i] = sid->auth[i];
|
|
}
|
|
for (i=0; i<tmp->auths&&i<MAXSUBAUTHS; i++) {
|
|
tmp->sub_auths[i] = sid->sub_auths[i];
|
|
}
|
|
return tmp;
|
|
}
|
|
|
|
/*
|
|
* Allocate space for an ACE and duplicate the registry encoded one passed in
|
|
*/
|
|
ACE *dup_ace(REG_ACE *ace)
|
|
{
|
|
ACE *tmp = NULL;
|
|
|
|
tmp = (ACE *)malloc(sizeof(ACE));
|
|
|
|
if (!tmp) return NULL;
|
|
|
|
tmp->type = CVAL(&ace->type);
|
|
tmp->flags = CVAL(&ace->flags);
|
|
tmp->perms = IVAL(&ace->perms);
|
|
tmp->trustee = dup_sid(&ace->trustee);
|
|
return tmp;
|
|
}
|
|
|
|
/*
|
|
* Allocate space for an ACL and duplicate the registry encoded one passed in
|
|
*/
|
|
ACL *dup_acl(REG_ACL *acl)
|
|
{
|
|
ACL *tmp = NULL;
|
|
REG_ACE* ace;
|
|
int i, num_aces;
|
|
|
|
num_aces = IVAL(&acl->num_aces);
|
|
|
|
tmp = (ACL *)malloc(sizeof(ACL) + (num_aces - 1)*sizeof(ACE *));
|
|
if (!tmp) return NULL;
|
|
|
|
tmp->num_aces = num_aces;
|
|
tmp->refcnt = 1;
|
|
tmp->rev = SVAL(&acl->rev);
|
|
ace = (REG_ACE *)&acl->aces;
|
|
for (i=0; i<num_aces; i++) {
|
|
tmp->aces[i] = dup_ace(ace);
|
|
ace = (REG_ACE *)((char *)ace + SVAL(&ace->length));
|
|
/* XXX: FIXME, should handle malloc errors */
|
|
}
|
|
|
|
return tmp;
|
|
}
|
|
|
|
SEC_DESC *process_sec_desc(REGF *regf, REG_SEC_DESC *sec_desc)
|
|
{
|
|
SEC_DESC *tmp = NULL;
|
|
|
|
tmp = (SEC_DESC *)malloc(sizeof(SEC_DESC));
|
|
|
|
if (!tmp) {
|
|
return NULL;
|
|
}
|
|
|
|
tmp->rev = SVAL(&sec_desc->rev);
|
|
tmp->type = SVAL(&sec_desc->type);
|
|
tmp->owner = dup_sid((DOM_SID *)((char *)sec_desc + IVAL(&sec_desc->owner_off)));
|
|
if (!tmp->owner) {
|
|
free(tmp);
|
|
return NULL;
|
|
}
|
|
tmp->group = dup_sid((DOM_SID *)((char *)sec_desc + IVAL(&sec_desc->group_off)));
|
|
if (!tmp->group) {
|
|
free(tmp);
|
|
return NULL;
|
|
}
|
|
|
|
/* Now pick up the SACL and DACL */
|
|
|
|
if (sec_desc->sacl_off)
|
|
tmp->sacl = dup_acl((REG_ACL *)((char *)sec_desc + IVAL(&sec_desc->sacl_off)));
|
|
else
|
|
tmp->sacl = NULL;
|
|
|
|
if (sec_desc->dacl_off)
|
|
tmp->dacl = dup_acl((REG_ACL *)((char *)sec_desc + IVAL(&sec_desc->dacl_off)));
|
|
else
|
|
tmp->dacl = NULL;
|
|
|
|
return tmp;
|
|
}
|
|
|
|
KEY_SEC_DESC *process_sk(REGF *regf, SK_HDR *sk_hdr, int sk_off, int size)
|
|
{
|
|
KEY_SEC_DESC *tmp = NULL;
|
|
int sk_next_off, sk_prev_off, sk_size;
|
|
REG_SEC_DESC *sec_desc;
|
|
|
|
if (!sk_hdr) return NULL;
|
|
|
|
if (SVAL(&sk_hdr->SK_ID) != REG_SK_ID) {
|
|
fprintf(stderr, "Unrecognized SK Header ID: %08X, %s\n", (int)sk_hdr,
|
|
regf->regfile_name);
|
|
return NULL;
|
|
}
|
|
|
|
if (-size < (sk_size = IVAL(&sk_hdr->rec_size))) {
|
|
fprintf(stderr, "Incorrect SK record size: %d vs %d. %s\n",
|
|
-size, sk_size, regf->regfile_name);
|
|
return NULL;
|
|
}
|
|
|
|
/*
|
|
* Now, we need to look up the SK Record in the map, and return it
|
|
* Since the map contains the SK_OFF mapped to KEY_SEC_DESC, we can
|
|
* use that
|
|
*/
|
|
|
|
if (regf->sk_map &&
|
|
((tmp = lookup_sec_key(regf->sk_map, regf->sk_count, sk_off)) != NULL)
|
|
&& (tmp->state == SEC_DESC_OCU)) {
|
|
tmp->ref_cnt++;
|
|
return tmp;
|
|
}
|
|
|
|
/* Here, we have an item in the map that has been reserved, or tmp==NULL. */
|
|
|
|
assert(tmp == NULL || (tmp && tmp->state != SEC_DESC_NON));
|
|
|
|
/*
|
|
* Now, allocate a KEY_SEC_DESC, and parse the structure here, and add the
|
|
* new KEY_SEC_DESC to the mapping structure, since the offset supplied is
|
|
* the actual offset of structure. The same offset will be used by all
|
|
* all future references to this structure
|
|
* We chould put all this unpleasantness in a function.
|
|
*/
|
|
|
|
if (!tmp) {
|
|
tmp = (KEY_SEC_DESC *)malloc(sizeof(KEY_SEC_DESC));
|
|
if (!tmp) return NULL;
|
|
bzero(tmp, sizeof(KEY_SEC_DESC));
|
|
|
|
/*
|
|
* Allocate an entry in the SK_MAP ...
|
|
* We don't need to free tmp, because that is done for us if the
|
|
* sm_map entry can't be expanded when we need more space in the map.
|
|
*/
|
|
|
|
if (!alloc_sk_map_entry(regf, tmp, sk_off)) {
|
|
return NULL;
|
|
}
|
|
}
|
|
|
|
tmp->ref_cnt++;
|
|
tmp->state = SEC_DESC_OCU;
|
|
|
|
/*
|
|
* Now, process the actual sec desc and plug the values in
|
|
*/
|
|
|
|
sec_desc = (REG_SEC_DESC *)&sk_hdr->sec_desc[0];
|
|
tmp->sec_desc = process_sec_desc(regf, sec_desc);
|
|
|
|
/*
|
|
* Now forward and back links. Here we allocate an entry in the sk_map
|
|
* if it does not exist, and mark it reserved
|
|
*/
|
|
|
|
sk_prev_off = IVAL(&sk_hdr->prev_off);
|
|
tmp->prev = lookup_create_sec_key(regf, regf->sk_map, sk_prev_off);
|
|
assert(tmp->prev != NULL);
|
|
sk_next_off = IVAL(&sk_hdr->next_off);
|
|
tmp->next = lookup_create_sec_key(regf, regf->sk_map, sk_next_off);
|
|
assert(tmp->next != NULL);
|
|
|
|
return tmp;
|
|
}
|
|
|
|
/*
|
|
* Process a VK header and return a value
|
|
*/
|
|
VAL_KEY *process_vk(REGF *regf, VK_HDR *vk_hdr, int size)
|
|
{
|
|
char val_name[1024];
|
|
int nam_len, dat_len, flag, dat_type, dat_off, vk_id;
|
|
const char *val_type;
|
|
VAL_KEY *tmp = NULL;
|
|
|
|
if (!vk_hdr) return NULL;
|
|
|
|
if ((vk_id = SVAL(&vk_hdr->VK_ID)) != REG_VK_ID) {
|
|
fprintf(stderr, "Unrecognized VK header ID: %0X, block: %0X, %s\n",
|
|
vk_id, (int)vk_hdr, regf->regfile_name);
|
|
return NULL;
|
|
}
|
|
|
|
nam_len = SVAL(&vk_hdr->nam_len);
|
|
val_name[nam_len] = '\0';
|
|
flag = SVAL(&vk_hdr->flag);
|
|
dat_type = IVAL(&vk_hdr->dat_type);
|
|
dat_len = IVAL(&vk_hdr->dat_len); /* If top bit, offset contains data */
|
|
dat_off = IVAL(&vk_hdr->dat_off);
|
|
|
|
tmp = (VAL_KEY *)malloc(sizeof(VAL_KEY));
|
|
if (!tmp) {
|
|
goto error;
|
|
}
|
|
bzero(tmp, sizeof(VAL_KEY));
|
|
tmp->has_name = flag;
|
|
tmp->data_type = dat_type;
|
|
|
|
if (flag & 0x01) {
|
|
strncpy(val_name, vk_hdr->dat_name, nam_len);
|
|
tmp->name = strdup(val_name);
|
|
if (!tmp->name) {
|
|
goto error;
|
|
}
|
|
}
|
|
else
|
|
strncpy(val_name, "<No Name>", 10);
|
|
|
|
/*
|
|
* Allocate space and copy the data as a BLOB
|
|
*/
|
|
|
|
if (dat_len) {
|
|
|
|
char *dtmp = (char *)malloc(dat_len&0x7FFFFFFF);
|
|
|
|
if (!dtmp) {
|
|
goto error;
|
|
}
|
|
|
|
tmp->data_blk = dtmp;
|
|
|
|
if ((dat_len&0x80000000) == 0) { /* The data is pointed to by the offset */
|
|
char *dat_ptr = LOCN(regf->base, dat_off);
|
|
bcopy(dat_ptr, dtmp, dat_len);
|
|
}
|
|
else { /* The data is in the offset */
|
|
dat_len = dat_len & 0x7FFFFFFF;
|
|
bcopy(&dat_off, dtmp, dat_len);
|
|
}
|
|
|
|
tmp->data_len = dat_len;
|
|
}
|
|
|
|
val_type = val_to_str(dat_type, reg_type_names);
|
|
|
|
/*
|
|
* We need to save the data area as well
|
|
*/
|
|
|
|
if (verbose) fprintf(stdout, " %s : %s : \n", val_name, val_type);
|
|
|
|
return tmp;
|
|
|
|
error:
|
|
/* XXX: FIXME, free the partially allocated struct */
|
|
return NULL;
|
|
|
|
}
|
|
|
|
/*
|
|
* Process a VL Header and return a list of values
|
|
*/
|
|
VAL_LIST *process_vl(REGF *regf, VL_TYPE vl, int count, int size)
|
|
{
|
|
int i, vk_off;
|
|
VK_HDR *vk_hdr;
|
|
VAL_LIST *tmp = NULL;
|
|
|
|
if (!vl) return NULL;
|
|
|
|
if (-size < (count+1)*sizeof(int)){
|
|
fprintf(stderr, "Error in VL header format. Size less than space required. %d\n", -size);
|
|
return NULL;
|
|
}
|
|
|
|
tmp = (VAL_LIST *)malloc(sizeof(VAL_LIST) + (count - 1) * sizeof(VAL_KEY *));
|
|
if (!tmp) {
|
|
goto error;
|
|
}
|
|
|
|
for (i=0; i<count; i++) {
|
|
vk_off = IVAL(&vl[i]);
|
|
vk_hdr = (VK_HDR *)LOCN(regf->base, vk_off);
|
|
tmp->vals[i] = process_vk(regf, vk_hdr, BLK_SIZE(vk_hdr));
|
|
if (!tmp->vals[i]){
|
|
goto error;
|
|
}
|
|
}
|
|
|
|
tmp->val_count = count;
|
|
|
|
return tmp;
|
|
|
|
error:
|
|
/* XXX: FIXME, free the partially allocated structure */
|
|
return NULL;
|
|
}
|
|
|
|
/*
|
|
* Process an LF Header and return a list of sub-keys
|
|
*/
|
|
KEY_LIST *process_lf(REGF *regf, LF_HDR *lf_hdr, int size)
|
|
{
|
|
int count, i, nk_off;
|
|
unsigned int lf_id;
|
|
KEY_LIST *tmp;
|
|
|
|
if (!lf_hdr) return NULL;
|
|
|
|
if ((lf_id = SVAL(&lf_hdr->LF_ID)) != REG_LF_ID) {
|
|
fprintf(stderr, "Unrecognized LF Header format: %0X, Block: %0X, %s.\n",
|
|
lf_id, (int)lf_hdr, regf->regfile_name);
|
|
return NULL;
|
|
}
|
|
|
|
assert(size < 0);
|
|
|
|
count = SVAL(&lf_hdr->key_count);
|
|
|
|
if (count <= 0) return NULL;
|
|
|
|
/* Now, we should allocate a KEY_LIST struct and fill it in ... */
|
|
|
|
tmp = (KEY_LIST *)malloc(sizeof(KEY_LIST) + (count - 1) * sizeof(REG_KEY *));
|
|
if (!tmp) {
|
|
goto error;
|
|
}
|
|
|
|
tmp->key_count = count;
|
|
|
|
for (i=0; i<count; i++) {
|
|
NK_HDR *nk_hdr;
|
|
|
|
nk_off = IVAL(&lf_hdr->hr[i].nk_off);
|
|
nk_hdr = (NK_HDR *)LOCN(regf->base, nk_off);
|
|
tmp->keys[i] = nt_get_key_tree(regf, nk_hdr, BLK_SIZE(nk_hdr));
|
|
if (!tmp->keys[i]) {
|
|
goto error;
|
|
}
|
|
}
|
|
|
|
return tmp;
|
|
|
|
error:
|
|
/* XXX: FIXME, free the partially allocated structure */
|
|
return NULL;
|
|
}
|
|
|
|
/*
|
|
* This routine is passed a NK_HDR pointer and retrieves the entire tree
|
|
* from there down. It return a REG_KEY *.
|
|
*/
|
|
REG_KEY *nt_get_key_tree(REGF *regf, NK_HDR *nk_hdr, int size)
|
|
{
|
|
REG_KEY *tmp = NULL;
|
|
int name_len, clsname_len, lf_off, val_off, val_count, sk_off;
|
|
unsigned int nk_id;
|
|
LF_HDR *lf_hdr;
|
|
VL_TYPE *vl;
|
|
SK_HDR *sk_hdr;
|
|
char key_name[1024], cls_name[1024];
|
|
|
|
if (!nk_hdr) return NULL;
|
|
|
|
if ((nk_id = SVAL(&nk_hdr->NK_ID)) != REG_NK_ID) {
|
|
fprintf(stderr, "Unrecognized NK Header format: %08X, Block: %0X. %s\n",
|
|
nk_id, (int)nk_hdr, regf->regfile_name);
|
|
return NULL;
|
|
}
|
|
|
|
assert(size < 0);
|
|
|
|
name_len = SVAL(&nk_hdr->nam_len);
|
|
clsname_len = SVAL(&nk_hdr->clsnam_len);
|
|
|
|
/*
|
|
* The value of -size should be ge
|
|
* (sizeof(NK_HDR) - 1 + name_len)
|
|
* The -1 accounts for the fact that we included the first byte of
|
|
* the name in the structure. clsname_len is the length of the thing
|
|
* pointed to by clsnam_off
|
|
*/
|
|
|
|
if (-size < (sizeof(NK_HDR) - 1 + name_len)) {
|
|
fprintf(stderr, "Incorrect NK_HDR size: %d, %0X\n", -size, (int)nk_hdr);
|
|
fprintf(stderr, "Sizeof NK_HDR: %d, name_len %d, clsname_len %d\n",
|
|
sizeof(NK_HDR), name_len, clsname_len);
|
|
/*return NULL;*/
|
|
}
|
|
|
|
if (verbose) fprintf(stdout, "NK HDR: Name len: %d, class name len: %d\n",
|
|
name_len, clsname_len);
|
|
|
|
/* Fish out the key name and process the LF list */
|
|
|
|
assert(name_len < sizeof(key_name));
|
|
|
|
/* Allocate the key struct now */
|
|
tmp = (REG_KEY *)malloc(sizeof(REG_KEY));
|
|
if (!tmp) return tmp;
|
|
bzero(tmp, sizeof(REG_KEY));
|
|
|
|
tmp->type = (SVAL(&nk_hdr->type)==0x2C?REG_ROOT_KEY:REG_SUB_KEY);
|
|
|
|
strncpy(key_name, nk_hdr->key_nam, name_len);
|
|
key_name[name_len] = '\0';
|
|
|
|
if (verbose) fprintf(stdout, "Key name: %s\n", key_name);
|
|
|
|
tmp->name = strdup(key_name);
|
|
if (!tmp->name) {
|
|
goto error;
|
|
}
|
|
|
|
/*
|
|
* Fish out the class name, it is in UNICODE, while the key name is
|
|
* ASCII :-)
|
|
*/
|
|
|
|
if (clsname_len) { /* Just print in Ascii for now */
|
|
char *clsnamep;
|
|
int clsnam_off;
|
|
|
|
clsnam_off = IVAL(&nk_hdr->clsnam_off);
|
|
clsnamep = LOCN(regf->base, clsnam_off);
|
|
|
|
bzero(cls_name, clsname_len);
|
|
uni_to_ascii(clsnamep, cls_name, sizeof(cls_name), clsname_len);
|
|
|
|
/*
|
|
* I am keeping class name as an ascii string for the moment.
|
|
* That means it needs to be converted on output.
|
|
* XXX: FIXME
|
|
*/
|
|
|
|
tmp->class_name = strdup(cls_name);
|
|
if (!tmp->class_name) {
|
|
goto error;
|
|
}
|
|
|
|
if (verbose) fprintf(stdout, " Class Name: %s\n", cls_name);
|
|
|
|
}
|
|
|
|
/*
|
|
* If there are any values, process them here
|
|
*/
|
|
|
|
val_count = IVAL(&nk_hdr->val_cnt);
|
|
|
|
if (val_count) {
|
|
|
|
val_off = IVAL(&nk_hdr->val_off);
|
|
vl = (VL_TYPE *)LOCN(regf->base, val_off);
|
|
|
|
tmp->values = process_vl(regf, *vl, val_count, BLK_SIZE(vl));
|
|
if (!tmp->values) {
|
|
goto error;
|
|
}
|
|
|
|
}
|
|
|
|
/*
|
|
* Also handle the SK header ...
|
|
*/
|
|
|
|
sk_off = IVAL(&nk_hdr->sk_off);
|
|
sk_hdr = (SK_HDR *)LOCN(regf->base, sk_off);
|
|
|
|
if (sk_off != -1) {
|
|
|
|
tmp->security = process_sk(regf, sk_hdr, sk_off, BLK_SIZE(sk_hdr));
|
|
|
|
}
|
|
|
|
lf_off = IVAL(&nk_hdr->lf_off);
|
|
|
|
/*
|
|
* No more subkeys if lf_off == -1
|
|
*/
|
|
|
|
if (lf_off != -1) {
|
|
|
|
lf_hdr = (LF_HDR *)LOCN(regf->base, lf_off);
|
|
|
|
tmp->sub_keys = process_lf(regf, lf_hdr, BLK_SIZE(lf_hdr));
|
|
if (!tmp->sub_keys){
|
|
goto error;
|
|
}
|
|
|
|
}
|
|
|
|
return tmp;
|
|
|
|
error:
|
|
if (tmp) nt_delete_reg_key(tmp);
|
|
return NULL;
|
|
}
|
|
|
|
int nt_load_registry(REGF *regf)
|
|
{
|
|
REGF_HDR *regf_hdr;
|
|
unsigned int regf_id, hbin_id;
|
|
HBIN_HDR *hbin_hdr;
|
|
NK_HDR *first_key;
|
|
|
|
/* Get the header */
|
|
|
|
if ((regf_hdr = nt_get_regf_hdr(regf)) == NULL) {
|
|
return -1;
|
|
}
|
|
|
|
/* Now process that header and start to read the rest in */
|
|
|
|
if ((regf_id = IVAL(®f_hdr->REGF_ID)) != REG_REGF_ID) {
|
|
fprintf(stderr, "Unrecognized NT registry header id: %0X, %s\n",
|
|
regf_id, regf->regfile_name);
|
|
return -1;
|
|
}
|
|
|
|
/*
|
|
* Validate the header ...
|
|
*/
|
|
if (!valid_regf_hdr(regf_hdr)) {
|
|
fprintf(stderr, "Registry file header does not validate: %s\n",
|
|
regf->regfile_name);
|
|
return -1;
|
|
}
|
|
|
|
/* Update the last mod date, and then go get the first NK record and on */
|
|
|
|
TTTONTTIME(regf, IVAL(®f_hdr->tim1), IVAL(®f_hdr->tim2));
|
|
|
|
/*
|
|
* The hbin hdr seems to be just uninteresting garbage. Check that
|
|
* it is there, but that is all.
|
|
*/
|
|
|
|
hbin_hdr = (HBIN_HDR *)(regf->base + REGF_HDR_BLKSIZ);
|
|
|
|
if ((hbin_id = IVAL(&hbin_hdr->HBIN_ID)) != REG_HBIN_ID) {
|
|
fprintf(stderr, "Unrecognized registry hbin hdr ID: %0X, %s\n",
|
|
hbin_id, regf->regfile_name);
|
|
return -1;
|
|
}
|
|
|
|
/*
|
|
* Get a pointer to the first key from the hreg_hdr
|
|
*/
|
|
|
|
first_key = (NK_HDR *)LOCN(regf->base, IVAL(®f_hdr->first_key));
|
|
|
|
/*
|
|
* Now, get the registry tree by processing that NK recursively
|
|
*/
|
|
|
|
regf->root = nt_get_key_tree(regf, first_key, BLK_SIZE(first_key));
|
|
|
|
assert(regf->root != NULL);
|
|
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* Routines to parse a REGEDIT4 file
|
|
*
|
|
* The file consists of:
|
|
*
|
|
* REGEDIT4
|
|
* \[[-]key-path\]\n
|
|
* <value-spec>*
|
|
*
|
|
* There can be more than one key-path and value-spec.
|
|
*
|
|
* Since we want to support more than one type of file format, we
|
|
* construct a command-file structure that keeps info about the command file
|
|
*/
|
|
|
|
#define FMT_UNREC -1
|
|
#define FMT_REGEDIT4 0
|
|
#define FMT_EDITREG1_1 1
|
|
|
|
typedef struct command_s {
|
|
int cmd;
|
|
char *key;
|
|
void *val_spec_list;
|
|
} CMD;
|
|
|
|
/*
|
|
* We seek to offset 0, read in the required number of bytes,
|
|
* and compare to the correct value.
|
|
* We then seek back to the original location
|
|
*/
|
|
int regedit4_file_type(int fd)
|
|
{
|
|
int cur_ofs = 0;
|
|
|
|
cur_ofs = lseek(fd, 0, SEEK_CUR); /* Get current offset */
|
|
if (cur_ofs < 0) {
|
|
fprintf(stderr, "Unable to get current offset: %s\n", strerror(errno));
|
|
exit(1);
|
|
}
|
|
|
|
if (cur_ofs) {
|
|
lseek(fd, 0, SEEK_SET);
|
|
}
|
|
|
|
return FMT_UNREC;
|
|
}
|
|
|
|
CMD *regedit4_get_cmd(int fd)
|
|
{
|
|
return NULL;
|
|
}
|
|
|
|
int regedit4_exec_cmd(CMD *cmd)
|
|
{
|
|
|
|
return 0;
|
|
}
|
|
|
|
int editreg_1_1_file_type(int fd)
|
|
{
|
|
|
|
return FMT_UNREC;
|
|
}
|
|
|
|
CMD *editreg_1_1_get_cmd(int fd)
|
|
{
|
|
return NULL;
|
|
}
|
|
|
|
int editreg_1_1_exec_cmd(CMD *cmd)
|
|
{
|
|
|
|
return -1;
|
|
}
|
|
|
|
typedef struct command_ops_s {
|
|
int type;
|
|
int (*file_type)(int fd);
|
|
CMD *(*get_cmd)(int fd);
|
|
int (*exec_cmd)(CMD *cmd);
|
|
} CMD_OPS;
|
|
|
|
CMD_OPS default_cmd_ops[] = {
|
|
{0, regedit4_file_type, regedit4_get_cmd, regedit4_exec_cmd},
|
|
{1, editreg_1_1_file_type, editreg_1_1_get_cmd, editreg_1_1_exec_cmd},
|
|
{-1, NULL, NULL, NULL}
|
|
};
|
|
|
|
typedef struct command_file_s {
|
|
char *name;
|
|
int type, fd;
|
|
CMD_OPS cmd_ops;
|
|
} CMD_FILE;
|
|
|
|
/*
|
|
* Create a new command file structure
|
|
*/
|
|
|
|
CMD_FILE *cmd_file_create(char *file)
|
|
{
|
|
CMD_FILE *tmp;
|
|
struct stat sbuf;
|
|
int i = 0;
|
|
|
|
/*
|
|
* Let's check if the file exists ...
|
|
* No use creating the cmd_file structure if the file does not exist
|
|
*/
|
|
|
|
if (stat(file, &sbuf) < 0) { /* Not able to access file */
|
|
|
|
return NULL;
|
|
}
|
|
|
|
tmp = (CMD_FILE *)malloc(sizeof(CMD_FILE));
|
|
if (!tmp) {
|
|
return NULL;
|
|
}
|
|
|
|
/*
|
|
* Let's fill in some of the fields;
|
|
*/
|
|
|
|
tmp->name = strdup(file);
|
|
|
|
if ((tmp->fd = open(file, O_RDONLY, 666)) < 0) {
|
|
free(tmp);
|
|
return NULL;
|
|
}
|
|
|
|
/*
|
|
* Now, try to find the format by indexing through the table
|
|
*/
|
|
while (default_cmd_ops[i].type != -1) {
|
|
if ((tmp->type = default_cmd_ops[i].file_type(tmp->fd)) >= 0) {
|
|
tmp->cmd_ops = default_cmd_ops[i];
|
|
return tmp;
|
|
}
|
|
i++;
|
|
}
|
|
|
|
/*
|
|
* If we got here, return NULL, as we could not figure out the type
|
|
* of command file.
|
|
*
|
|
* What about errors?
|
|
*/
|
|
|
|
free(tmp);
|
|
return NULL;
|
|
}
|
|
|
|
/*
|
|
* Extract commands from the command file, and execute them.
|
|
* We pass a table of command callbacks for that
|
|
*/
|
|
|
|
/*
|
|
* Main code from here on ...
|
|
*/
|
|
|
|
/*
|
|
* key print function here ...
|
|
*/
|
|
|
|
int print_key(const char *path, char *name, char *class_name, int root,
|
|
int terminal, int vals)
|
|
{
|
|
|
|
if (terminal) fprintf(stdout, "%s\\%s\n", path, name);
|
|
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* Sec Desc print functions
|
|
*/
|
|
|
|
void print_sid(DOM_SID *sid)
|
|
{
|
|
int i, comps = sid->auths;
|
|
fprintf(stdout, "S-%u-%u", sid->ver, sid->auth[5]);
|
|
|
|
for (i = 0; i < comps; i++) {
|
|
|
|
fprintf(stdout, "-%u", sid->sub_auths[i]);
|
|
|
|
}
|
|
fprintf(stdout, "\n");
|
|
}
|
|
|
|
int print_sec(SEC_DESC *sec_desc)
|
|
{
|
|
|
|
fprintf(stdout, " SECURITY\n");
|
|
fprintf(stdout, " Owner: ");
|
|
print_sid(sec_desc->owner);
|
|
fprintf(stdout, " Group: ");
|
|
print_sid(sec_desc->group);
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* Value print function here ...
|
|
*/
|
|
int print_val(const char *path, char *val_name, int val_type, int data_len,
|
|
void *data_blk, int terminal, int first, int last)
|
|
{
|
|
char data_asc[1024];
|
|
|
|
bzero(data_asc, sizeof(data_asc));
|
|
if (!terminal && first)
|
|
fprintf(stdout, "%s\n", path);
|
|
data_to_ascii((unsigned char *)data_blk, data_len, val_type, data_asc,
|
|
sizeof(data_asc) - 1);
|
|
fprintf(stdout, " %s : %s : %s\n", (val_name?val_name:"<No Name>"),
|
|
val_to_str(val_type, reg_type_names), data_asc);
|
|
return 1;
|
|
}
|
|
|
|
void usage(void)
|
|
{
|
|
fprintf(stderr, "Usage: editreg [-v] [-k] [-c <command-file>] <registryfile>\n");
|
|
fprintf(stderr, "Version: 0.1\n\n");
|
|
fprintf(stderr, "\n\t-v\t sets verbose mode");
|
|
fprintf(stderr, "\n\t-c <command-file>\t specifies a command file");
|
|
fprintf(stderr, "\n");
|
|
}
|
|
|
|
int main(int argc, char *argv[])
|
|
{
|
|
REGF *regf;
|
|
extern char *optarg;
|
|
extern int optind;
|
|
int opt;
|
|
int commands = 0;
|
|
char *cmd_file = NULL;
|
|
|
|
if (argc < 2) {
|
|
usage();
|
|
exit(1);
|
|
}
|
|
|
|
/*
|
|
* Now, process the arguments
|
|
*/
|
|
|
|
while ((opt = getopt(argc, argv, "vkc:")) != EOF) {
|
|
switch (opt) {
|
|
case 'c':
|
|
commands = 1;
|
|
cmd_file = optarg;
|
|
break;
|
|
|
|
case 'v':
|
|
verbose++;
|
|
break;
|
|
|
|
case 'k':
|
|
break;
|
|
|
|
default:
|
|
usage();
|
|
exit(1);
|
|
break;
|
|
}
|
|
}
|
|
|
|
if ((regf = nt_create_regf()) == NULL) {
|
|
fprintf(stderr, "Could not create registry object: %s\n", strerror(errno));
|
|
exit(2);
|
|
}
|
|
|
|
if (!nt_set_regf_input_file(regf, argv[optind])) {
|
|
fprintf(stderr, "Could not set name of registry file: %s, %s\n",
|
|
argv[1], strerror(errno));
|
|
exit(3);
|
|
}
|
|
|
|
/* Now, open it, and bring it into memory :-) */
|
|
|
|
if (nt_load_registry(regf) < 0) {
|
|
fprintf(stderr, "Could not load registry: %s\n", argv[1]);
|
|
exit(4);
|
|
}
|
|
|
|
/*
|
|
* At this point, we should have a registry in memory and should be able
|
|
* to iterate over it.
|
|
*/
|
|
|
|
nt_key_iterator(regf, regf->root, 0, "", print_key, print_sec, print_val);
|
|
return 0;
|
|
}
|