1
0
mirror of https://github.com/samba-team/samba.git synced 2025-01-25 06:04:04 +03:00
samba-mirror/lib/util/memcache.c
Andreas Schneider 0bdbe50fac lib:util: Avoid free'ing our own pointer
BUG: https://bugzilla.samba.org/show_bug.cgi?id=14625

Signed-off-by: Andreas Schneider <asn@samba.org>
Reviewed-by: Ralph Boehme <slow@samba.org>

Autobuild-User(master): Ralph Böhme <slow@samba.org>
Autobuild-Date(master): Wed Feb  3 10:57:01 UTC 2021 on sn-devel-184
2021-02-03 10:57:01 +00:00

460 lines
9.4 KiB
C

/*
Unix SMB/CIFS implementation.
In-memory cache
Copyright (C) Volker Lendecke 2007
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include "replace.h"
#include <talloc.h>
#include "../lib/util/debug.h"
#include "../lib/util/samba_util.h"
#include "../lib/util/dlinklist.h"
#include "../lib/util/rbtree.h"
#include "memcache.h"
static struct memcache *global_cache;
struct memcache_talloc_value {
void *ptr;
size_t len;
};
struct memcache_element {
struct rb_node rb_node;
struct memcache_element *prev, *next;
size_t keylength, valuelength;
uint8_t n; /* This is really an enum, but save memory */
char data[1]; /* placeholder for offsetof */
};
struct memcache {
struct memcache_element *mru;
struct rb_root tree;
size_t size;
size_t max_size;
};
static void memcache_element_parse(struct memcache_element *e,
DATA_BLOB *key, DATA_BLOB *value);
static bool memcache_is_talloc(enum memcache_number n)
{
bool result;
switch (n) {
case GETPWNAM_CACHE:
case PDB_GETPWSID_CACHE:
case SINGLETON_CACHE_TALLOC:
case SHARE_MODE_LOCK_CACHE:
case GETWD_CACHE:
case VIRUSFILTER_SCAN_RESULTS_CACHE_TALLOC:
result = true;
break;
default:
result = false;
break;
}
return result;
}
static int memcache_destructor(struct memcache *cache) {
struct memcache_element *e, *next;
for (e = cache->mru; e != NULL; e = next) {
next = e->next;
TALLOC_FREE(e);
}
return 0;
}
struct memcache *memcache_init(TALLOC_CTX *mem_ctx, size_t max_size)
{
struct memcache *result;
result = talloc_zero(mem_ctx, struct memcache);
if (result == NULL) {
return NULL;
}
result->max_size = max_size;
talloc_set_destructor(result, memcache_destructor);
return result;
}
void memcache_set_global(struct memcache *cache)
{
TALLOC_FREE(global_cache);
global_cache = cache;
}
static struct memcache_element *memcache_node2elem(struct rb_node *node)
{
return (struct memcache_element *)
((char *)node - offsetof(struct memcache_element, rb_node));
}
static void memcache_element_parse(struct memcache_element *e,
DATA_BLOB *key, DATA_BLOB *value)
{
key->data = ((uint8_t *)e) + offsetof(struct memcache_element, data);
key->length = e->keylength;
value->data = key->data + e->keylength;
value->length = e->valuelength;
}
static size_t memcache_element_size(size_t key_length, size_t value_length)
{
return sizeof(struct memcache_element) - 1 + key_length + value_length;
}
static int memcache_compare(struct memcache_element *e, enum memcache_number n,
DATA_BLOB key)
{
DATA_BLOB this_key, this_value;
if ((int)e->n < (int)n) return 1;
if ((int)e->n > (int)n) return -1;
if (e->keylength < key.length) return 1;
if (e->keylength > key.length) return -1;
memcache_element_parse(e, &this_key, &this_value);
return memcmp(this_key.data, key.data, key.length);
}
static struct memcache_element *memcache_find(
struct memcache *cache, enum memcache_number n, DATA_BLOB key)
{
struct rb_node *node;
node = cache->tree.rb_node;
while (node != NULL) {
struct memcache_element *elem = memcache_node2elem(node);
int cmp;
cmp = memcache_compare(elem, n, key);
if (cmp == 0) {
return elem;
}
node = (cmp < 0) ? node->rb_left : node->rb_right;
}
return NULL;
}
bool memcache_lookup(struct memcache *cache, enum memcache_number n,
DATA_BLOB key, DATA_BLOB *value)
{
struct memcache_element *e;
if (cache == NULL) {
cache = global_cache;
}
if (cache == NULL) {
return false;
}
e = memcache_find(cache, n, key);
if (e == NULL) {
return false;
}
if (cache->size != 0) {
DLIST_PROMOTE(cache->mru, e);
}
memcache_element_parse(e, &key, value);
return true;
}
void *memcache_lookup_talloc(struct memcache *cache, enum memcache_number n,
DATA_BLOB key)
{
DATA_BLOB value;
struct memcache_talloc_value mtv;
if (!memcache_lookup(cache, n, key, &value)) {
return NULL;
}
if (value.length != sizeof(mtv)) {
return NULL;
}
memcpy(&mtv, value.data, sizeof(mtv));
return mtv.ptr;
}
static void memcache_delete_element(struct memcache *cache,
struct memcache_element *e)
{
rb_erase(&e->rb_node, &cache->tree);
DLIST_REMOVE(cache->mru, e);
if (memcache_is_talloc(e->n)) {
DATA_BLOB cache_key, cache_value;
struct memcache_talloc_value mtv;
memcache_element_parse(e, &cache_key, &cache_value);
SMB_ASSERT(cache_value.length == sizeof(mtv));
memcpy(&mtv, cache_value.data, sizeof(mtv));
cache->size -= mtv.len;
TALLOC_FREE(mtv.ptr);
}
cache->size -= memcache_element_size(e->keylength, e->valuelength);
TALLOC_FREE(e);
}
static void memcache_trim(struct memcache *cache, struct memcache_element *e)
{
struct memcache_element *tail = NULL;
if (cache->max_size == 0) {
return;
}
for (tail = DLIST_TAIL(cache->mru);
(cache->size > cache->max_size) && (tail != NULL);
tail = DLIST_TAIL(cache->mru))
{
if (tail == e) {
tail = DLIST_PREV(tail);
if (tail == NULL) {
break;
}
}
memcache_delete_element(cache, tail);
}
}
void memcache_delete(struct memcache *cache, enum memcache_number n,
DATA_BLOB key)
{
struct memcache_element *e;
if (cache == NULL) {
cache = global_cache;
}
if (cache == NULL) {
return;
}
e = memcache_find(cache, n, key);
if (e == NULL) {
return;
}
memcache_delete_element(cache, e);
}
void memcache_add(struct memcache *cache, enum memcache_number n,
DATA_BLOB key, DATA_BLOB value)
{
struct memcache_element *e;
struct rb_node **p;
struct rb_node *parent;
DATA_BLOB cache_key, cache_value;
size_t element_size;
if (cache == NULL) {
cache = global_cache;
}
if (cache == NULL) {
return;
}
if (key.length == 0) {
return;
}
e = memcache_find(cache, n, key);
if (e != NULL) {
memcache_element_parse(e, &cache_key, &cache_value);
if (value.length <= cache_value.length) {
if (memcache_is_talloc(e->n)) {
struct memcache_talloc_value mtv;
SMB_ASSERT(cache_value.length == sizeof(mtv));
memcpy(&mtv, cache_value.data, sizeof(mtv));
cache->size -= mtv.len;
TALLOC_FREE(mtv.ptr);
}
/*
* We can reuse the existing record
*/
memcpy(cache_value.data, value.data, value.length);
e->valuelength = value.length;
if (memcache_is_talloc(e->n)) {
struct memcache_talloc_value mtv;
SMB_ASSERT(cache_value.length == sizeof(mtv));
memcpy(&mtv, cache_value.data, sizeof(mtv));
cache->size += mtv.len;
}
return;
}
memcache_delete_element(cache, e);
}
element_size = memcache_element_size(key.length, value.length);
e = talloc_size(cache, element_size);
if (e == NULL) {
DEBUG(0, ("talloc failed\n"));
return;
}
talloc_set_type(e, struct memcache_element);
e->n = n;
e->keylength = key.length;
e->valuelength = value.length;
memcache_element_parse(e, &cache_key, &cache_value);
memcpy(cache_key.data, key.data, key.length);
memcpy(cache_value.data, value.data, value.length);
parent = NULL;
p = &cache->tree.rb_node;
while (*p) {
struct memcache_element *elem = memcache_node2elem(*p);
int cmp;
parent = (*p);
cmp = memcache_compare(elem, n, key);
p = (cmp < 0) ? &(*p)->rb_left : &(*p)->rb_right;
}
rb_link_node(&e->rb_node, parent, p);
rb_insert_color(&e->rb_node, &cache->tree);
DLIST_ADD(cache->mru, e);
cache->size += element_size;
if (memcache_is_talloc(e->n)) {
struct memcache_talloc_value mtv;
SMB_ASSERT(cache_value.length == sizeof(mtv));
memcpy(&mtv, cache_value.data, sizeof(mtv));
cache->size += mtv.len;
}
memcache_trim(cache, e);
}
void memcache_add_talloc(struct memcache *cache, enum memcache_number n,
DATA_BLOB key, void *pptr)
{
struct memcache_talloc_value mtv;
void **ptr = (void **)pptr;
if (cache == NULL) {
cache = global_cache;
}
if (cache == NULL) {
return;
}
mtv.len = talloc_total_size(*ptr);
mtv.ptr = talloc_move(cache, ptr);
memcache_add(cache, n, key, data_blob_const(&mtv, sizeof(mtv)));
}
void memcache_flush(struct memcache *cache, enum memcache_number n)
{
struct rb_node *node;
if (cache == NULL) {
cache = global_cache;
}
if (cache == NULL) {
return;
}
/*
* Find the smallest element of number n
*/
node = cache->tree.rb_node;
if (node == NULL) {
return;
}
/*
* First, find *any* element of number n
*/
while (true) {
struct memcache_element *elem = memcache_node2elem(node);
struct rb_node *next;
if ((int)elem->n == (int)n) {
break;
}
if ((int)elem->n < (int)n) {
next = node->rb_right;
}
else {
next = node->rb_left;
}
if (next == NULL) {
break;
}
node = next;
}
/*
* Then, find the leftmost element with number n
*/
while (true) {
struct rb_node *prev = rb_prev(node);
struct memcache_element *elem;
if (prev == NULL) {
break;
}
elem = memcache_node2elem(prev);
if ((int)elem->n != (int)n) {
break;
}
node = prev;
}
while (node != NULL) {
struct memcache_element *e = memcache_node2elem(node);
struct rb_node *next = rb_next(node);
if (e->n != n) {
break;
}
memcache_delete_element(cache, e);
node = next;
}
}