1
0
mirror of https://github.com/samba-team/samba.git synced 2025-01-21 18:04:06 +03:00
samba-mirror/libcli/security/security_descriptor.c
Joseph Sutton 1a625702e8 libcli/security: Correctly handle ACL deletion
If there were two consecutive occurrences of an ACL to be deleted, we
would miss the second one.

Signed-off-by: Joseph Sutton <josephsutton@catalyst.net.nz>
Reviewed-by: Andrew Bartlett <abartlet@samba.org>
2023-03-22 18:40:31 +00:00

829 lines
19 KiB
C

/*
Unix SMB/CIFS implementation.
security descriptor utility functions
Copyright (C) Andrew Tridgell 2004
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include "replace.h"
#include "libcli/security/security.h"
#include "librpc/ndr/libndr.h"
/*
return a blank security descriptor (no owners, dacl or sacl)
*/
struct security_descriptor *security_descriptor_initialise(TALLOC_CTX *mem_ctx)
{
struct security_descriptor *sd;
sd = talloc(mem_ctx, struct security_descriptor);
if (!sd) {
return NULL;
}
sd->revision = SD_REVISION;
/* we mark as self relative, even though it isn't while it remains
a pointer in memory because this simplifies the ndr code later.
All SDs that we store/emit are in fact SELF_RELATIVE
*/
sd->type = SEC_DESC_SELF_RELATIVE;
sd->owner_sid = NULL;
sd->group_sid = NULL;
sd->sacl = NULL;
sd->dacl = NULL;
return sd;
}
struct security_acl *security_acl_dup(TALLOC_CTX *mem_ctx,
const struct security_acl *oacl)
{
struct security_acl *nacl;
if (oacl == NULL) {
return NULL;
}
if (oacl->aces == NULL && oacl->num_aces > 0) {
return NULL;
}
nacl = talloc (mem_ctx, struct security_acl);
if (nacl == NULL) {
return NULL;
}
*nacl = (struct security_acl) {
.revision = oacl->revision,
.size = oacl->size,
.num_aces = oacl->num_aces,
};
if (nacl->num_aces == 0) {
return nacl;
}
nacl->aces = (struct security_ace *)talloc_memdup (nacl, oacl->aces, sizeof(struct security_ace) * oacl->num_aces);
if (nacl->aces == NULL) {
goto failed;
}
return nacl;
failed:
talloc_free (nacl);
return NULL;
}
struct security_acl *security_acl_concatenate(TALLOC_CTX *mem_ctx,
const struct security_acl *acl1,
const struct security_acl *acl2)
{
struct security_acl *nacl;
uint32_t i;
if (!acl1 && !acl2)
return NULL;
if (!acl1){
nacl = security_acl_dup(mem_ctx, acl2);
return nacl;
}
if (!acl2){
nacl = security_acl_dup(mem_ctx, acl1);
return nacl;
}
nacl = talloc (mem_ctx, struct security_acl);
if (nacl == NULL) {
return NULL;
}
nacl->revision = acl1->revision;
nacl->size = acl1->size + acl2->size;
nacl->num_aces = acl1->num_aces + acl2->num_aces;
if (nacl->num_aces == 0)
return nacl;
nacl->aces = (struct security_ace *)talloc_array (mem_ctx, struct security_ace, acl1->num_aces+acl2->num_aces);
if ((nacl->aces == NULL) && (nacl->num_aces > 0)) {
goto failed;
}
for (i = 0; i < acl1->num_aces; i++)
nacl->aces[i] = acl1->aces[i];
for (i = 0; i < acl2->num_aces; i++)
nacl->aces[i + acl1->num_aces] = acl2->aces[i];
return nacl;
failed:
talloc_free (nacl);
return NULL;
}
/*
talloc and copy a security descriptor
*/
struct security_descriptor *security_descriptor_copy(TALLOC_CTX *mem_ctx,
const struct security_descriptor *osd)
{
struct security_descriptor *nsd;
nsd = talloc_zero(mem_ctx, struct security_descriptor);
if (!nsd) {
return NULL;
}
if (osd->owner_sid) {
nsd->owner_sid = dom_sid_dup(nsd, osd->owner_sid);
if (nsd->owner_sid == NULL) {
goto failed;
}
}
if (osd->group_sid) {
nsd->group_sid = dom_sid_dup(nsd, osd->group_sid);
if (nsd->group_sid == NULL) {
goto failed;
}
}
if (osd->sacl) {
nsd->sacl = security_acl_dup(nsd, osd->sacl);
if (nsd->sacl == NULL) {
goto failed;
}
}
if (osd->dacl) {
nsd->dacl = security_acl_dup(nsd, osd->dacl);
if (nsd->dacl == NULL) {
goto failed;
}
}
nsd->revision = osd->revision;
nsd->type = osd->type;
return nsd;
failed:
talloc_free(nsd);
return NULL;
}
NTSTATUS security_descriptor_for_client(TALLOC_CTX *mem_ctx,
const struct security_descriptor *ssd,
uint32_t sec_info,
uint32_t access_granted,
struct security_descriptor **_csd)
{
struct security_descriptor *csd = NULL;
uint32_t access_required = 0;
*_csd = NULL;
if (sec_info & (SECINFO_OWNER|SECINFO_GROUP)) {
access_required |= SEC_STD_READ_CONTROL;
}
if (sec_info & SECINFO_DACL) {
access_required |= SEC_STD_READ_CONTROL;
}
if (sec_info & SECINFO_SACL) {
access_required |= SEC_FLAG_SYSTEM_SECURITY;
}
if (access_required & (~access_granted)) {
return NT_STATUS_ACCESS_DENIED;
}
/*
* make a copy...
*/
csd = security_descriptor_copy(mem_ctx, ssd);
if (csd == NULL) {
return NT_STATUS_NO_MEMORY;
}
/*
* ... and remove everthing not wanted
*/
if (!(sec_info & SECINFO_OWNER)) {
TALLOC_FREE(csd->owner_sid);
csd->type &= ~SEC_DESC_OWNER_DEFAULTED;
}
if (!(sec_info & SECINFO_GROUP)) {
TALLOC_FREE(csd->group_sid);
csd->type &= ~SEC_DESC_GROUP_DEFAULTED;
}
if (!(sec_info & SECINFO_DACL)) {
TALLOC_FREE(csd->dacl);
csd->type &= ~(
SEC_DESC_DACL_PRESENT |
SEC_DESC_DACL_DEFAULTED|
SEC_DESC_DACL_AUTO_INHERIT_REQ |
SEC_DESC_DACL_AUTO_INHERITED |
SEC_DESC_DACL_PROTECTED |
SEC_DESC_DACL_TRUSTED);
}
if (!(sec_info & SECINFO_SACL)) {
TALLOC_FREE(csd->sacl);
csd->type &= ~(
SEC_DESC_SACL_PRESENT |
SEC_DESC_SACL_DEFAULTED |
SEC_DESC_SACL_AUTO_INHERIT_REQ |
SEC_DESC_SACL_AUTO_INHERITED |
SEC_DESC_SACL_PROTECTED |
SEC_DESC_SERVER_SECURITY);
}
*_csd = csd;
return NT_STATUS_OK;
}
/*
add an ACE to an ACL of a security_descriptor
*/
static NTSTATUS security_descriptor_acl_add(struct security_descriptor *sd,
bool add_to_sacl,
const struct security_ace *ace,
ssize_t _idx)
{
struct security_acl *acl = NULL;
ssize_t idx;
if (add_to_sacl) {
acl = sd->sacl;
} else {
acl = sd->dacl;
}
if (acl == NULL) {
acl = talloc(sd, struct security_acl);
if (acl == NULL) {
return NT_STATUS_NO_MEMORY;
}
acl->revision = SECURITY_ACL_REVISION_NT4;
acl->size = 0;
acl->num_aces = 0;
acl->aces = NULL;
}
if (_idx < 0) {
idx = (acl->num_aces + 1) + _idx;
} else {
idx = _idx;
}
if (idx < 0) {
return NT_STATUS_ARRAY_BOUNDS_EXCEEDED;
} else if (idx > acl->num_aces) {
return NT_STATUS_ARRAY_BOUNDS_EXCEEDED;
}
acl->aces = talloc_realloc(acl, acl->aces,
struct security_ace, acl->num_aces+1);
if (acl->aces == NULL) {
return NT_STATUS_NO_MEMORY;
}
ARRAY_INSERT_ELEMENT(acl->aces, acl->num_aces, *ace, idx);
acl->num_aces++;
switch (acl->aces[idx].type) {
case SEC_ACE_TYPE_ACCESS_ALLOWED_OBJECT:
case SEC_ACE_TYPE_ACCESS_DENIED_OBJECT:
case SEC_ACE_TYPE_SYSTEM_AUDIT_OBJECT:
case SEC_ACE_TYPE_SYSTEM_ALARM_OBJECT:
acl->revision = SECURITY_ACL_REVISION_ADS;
break;
default:
break;
}
if (add_to_sacl) {
sd->sacl = acl;
sd->type |= SEC_DESC_SACL_PRESENT;
} else {
sd->dacl = acl;
sd->type |= SEC_DESC_DACL_PRESENT;
}
return NT_STATUS_OK;
}
/*
add an ACE to the SACL of a security_descriptor
*/
NTSTATUS security_descriptor_sacl_add(struct security_descriptor *sd,
const struct security_ace *ace)
{
return security_descriptor_acl_add(sd, true, ace, -1);
}
/*
insert an ACE at a given index to the SACL of a security_descriptor
idx can be negative, which means it's related to the new size from the
end, so -1 means the ace is appended at the end.
*/
NTSTATUS security_descriptor_sacl_insert(struct security_descriptor *sd,
const struct security_ace *ace,
ssize_t idx)
{
return security_descriptor_acl_add(sd, true, ace, idx);
}
/*
add an ACE to the DACL of a security_descriptor
*/
NTSTATUS security_descriptor_dacl_add(struct security_descriptor *sd,
const struct security_ace *ace)
{
return security_descriptor_acl_add(sd, false, ace, -1);
}
/*
insert an ACE at a given index to the DACL of a security_descriptor
idx can be negative, which means it's related to the new size from the
end, so -1 means the ace is appended at the end.
*/
NTSTATUS security_descriptor_dacl_insert(struct security_descriptor *sd,
const struct security_ace *ace,
ssize_t idx)
{
return security_descriptor_acl_add(sd, false, ace, idx);
}
/*
delete the ACE corresponding to the given trustee in an ACL of a
security_descriptor
*/
static NTSTATUS security_descriptor_acl_del(struct security_descriptor *sd,
bool sacl_del,
const struct dom_sid *trustee)
{
uint32_t i;
bool found = false;
struct security_acl *acl = NULL;
if (sacl_del) {
acl = sd->sacl;
} else {
acl = sd->dacl;
}
if (acl == NULL) {
return NT_STATUS_OBJECT_NAME_NOT_FOUND;
}
/* there can be multiple ace's for one trustee */
for (i=0;i<acl->num_aces;i++) {
if (dom_sid_equal(trustee, &acl->aces[i].trustee)) {
ARRAY_DEL_ELEMENT(acl->aces, i, acl->num_aces);
acl->num_aces--;
if (acl->num_aces == 0) {
acl->aces = NULL;
}
found = true;
--i;
}
}
if (!found) {
return NT_STATUS_OBJECT_NAME_NOT_FOUND;
}
acl->revision = SECURITY_ACL_REVISION_NT4;
for (i=0;i<acl->num_aces;i++) {
switch (acl->aces[i].type) {
case SEC_ACE_TYPE_ACCESS_ALLOWED_OBJECT:
case SEC_ACE_TYPE_ACCESS_DENIED_OBJECT:
case SEC_ACE_TYPE_SYSTEM_AUDIT_OBJECT:
case SEC_ACE_TYPE_SYSTEM_ALARM_OBJECT:
acl->revision = SECURITY_ACL_REVISION_ADS;
return NT_STATUS_OK;
default:
break; /* only for the switch statement */
}
}
return NT_STATUS_OK;
}
/*
delete the ACE corresponding to the given trustee in the DACL of a
security_descriptor
*/
NTSTATUS security_descriptor_dacl_del(struct security_descriptor *sd,
const struct dom_sid *trustee)
{
return security_descriptor_acl_del(sd, false, trustee);
}
/*
delete the ACE corresponding to the given trustee in the SACL of a
security_descriptor
*/
NTSTATUS security_descriptor_sacl_del(struct security_descriptor *sd,
const struct dom_sid *trustee)
{
return security_descriptor_acl_del(sd, true, trustee);
}
/*
delete the given ACE in the SACL or DACL of a security_descriptor
*/
static NTSTATUS security_descriptor_acl_del_ace(struct security_descriptor *sd,
bool sacl_del,
const struct security_ace *ace)
{
uint32_t i;
bool found = false;
struct security_acl *acl = NULL;
if (sacl_del) {
acl = sd->sacl;
} else {
acl = sd->dacl;
}
if (acl == NULL) {
return NT_STATUS_OBJECT_NAME_NOT_FOUND;
}
for (i=0;i<acl->num_aces;i++) {
if (security_ace_equal(ace, &acl->aces[i])) {
ARRAY_DEL_ELEMENT(acl->aces, i, acl->num_aces);
acl->num_aces--;
if (acl->num_aces == 0) {
acl->aces = NULL;
}
found = true;
i--;
}
}
if (!found) {
return NT_STATUS_OBJECT_NAME_NOT_FOUND;
}
acl->revision = SECURITY_ACL_REVISION_NT4;
for (i=0;i<acl->num_aces;i++) {
switch (acl->aces[i].type) {
case SEC_ACE_TYPE_ACCESS_ALLOWED_OBJECT:
case SEC_ACE_TYPE_ACCESS_DENIED_OBJECT:
case SEC_ACE_TYPE_SYSTEM_AUDIT_OBJECT:
case SEC_ACE_TYPE_SYSTEM_ALARM_OBJECT:
acl->revision = SECURITY_ACL_REVISION_ADS;
return NT_STATUS_OK;
default:
break; /* only for the switch statement */
}
}
return NT_STATUS_OK;
}
NTSTATUS security_descriptor_dacl_del_ace(struct security_descriptor *sd,
const struct security_ace *ace)
{
return security_descriptor_acl_del_ace(sd, false, ace);
}
NTSTATUS security_descriptor_sacl_del_ace(struct security_descriptor *sd,
const struct security_ace *ace)
{
return security_descriptor_acl_del_ace(sd, true, ace);
}
static bool security_ace_object_equal(const struct security_ace_object *object1,
const struct security_ace_object *object2)
{
if (object1 == object2) {
return true;
}
if ((object1 == NULL) || (object2 == NULL)) {
return false;
}
if (object1->flags != object2->flags) {
return false;
}
if (object1->flags & SEC_ACE_OBJECT_TYPE_PRESENT
&& !GUID_equal(&object1->type.type, &object2->type.type)) {
return false;
}
if (object1->flags & SEC_ACE_INHERITED_OBJECT_TYPE_PRESENT
&& !GUID_equal(&object1->inherited_type.inherited_type,
&object2->inherited_type.inherited_type)) {
return false;
}
return true;
}
/*
compare two security ace structures
*/
bool security_ace_equal(const struct security_ace *ace1,
const struct security_ace *ace2)
{
if (ace1 == ace2) {
return true;
}
if ((ace1 == NULL) || (ace2 == NULL)) {
return false;
}
if (ace1->type != ace2->type) {
return false;
}
if (ace1->flags != ace2->flags) {
return false;
}
if (ace1->access_mask != ace2->access_mask) {
return false;
}
if ((ace1->type == SEC_ACE_TYPE_ACCESS_ALLOWED_OBJECT
|| ace1->type == SEC_ACE_TYPE_ACCESS_DENIED_OBJECT
|| ace1->type == SEC_ACE_TYPE_SYSTEM_AUDIT_OBJECT
|| ace1->type == SEC_ACE_TYPE_SYSTEM_ALARM_OBJECT)
&& !security_ace_object_equal(&ace1->object.object,
&ace2->object.object)) {
return false;
}
if (!dom_sid_equal(&ace1->trustee, &ace2->trustee)) {
return false;
}
return true;
}
/*
compare two security acl structures
*/
bool security_acl_equal(const struct security_acl *acl1,
const struct security_acl *acl2)
{
uint32_t i;
if (acl1 == acl2) return true;
if (!acl1 || !acl2) return false;
if (acl1->revision != acl2->revision) return false;
if (acl1->num_aces != acl2->num_aces) return false;
for (i=0;i<acl1->num_aces;i++) {
if (!security_ace_equal(&acl1->aces[i], &acl2->aces[i])) return false;
}
return true;
}
/*
compare two security descriptors.
*/
bool security_descriptor_equal(const struct security_descriptor *sd1,
const struct security_descriptor *sd2)
{
if (sd1 == sd2) return true;
if (!sd1 || !sd2) return false;
if (sd1->revision != sd2->revision) return false;
if (sd1->type != sd2->type) return false;
if (!dom_sid_equal(sd1->owner_sid, sd2->owner_sid)) return false;
if (!dom_sid_equal(sd1->group_sid, sd2->group_sid)) return false;
if (!security_acl_equal(sd1->sacl, sd2->sacl)) return false;
if (!security_acl_equal(sd1->dacl, sd2->dacl)) return false;
return true;
}
/*
compare two security descriptors, but allow certain (missing) parts
to be masked out of the comparison
*/
bool security_descriptor_mask_equal(const struct security_descriptor *sd1,
const struct security_descriptor *sd2,
uint32_t mask)
{
if (sd1 == sd2) return true;
if (!sd1 || !sd2) return false;
if (sd1->revision != sd2->revision) return false;
if ((sd1->type & mask) != (sd2->type & mask)) return false;
if (!dom_sid_equal(sd1->owner_sid, sd2->owner_sid)) return false;
if (!dom_sid_equal(sd1->group_sid, sd2->group_sid)) return false;
if ((mask & SEC_DESC_DACL_PRESENT) && !security_acl_equal(sd1->dacl, sd2->dacl)) return false;
if ((mask & SEC_DESC_SACL_PRESENT) && !security_acl_equal(sd1->sacl, sd2->sacl)) return false;
return true;
}
static struct security_descriptor *security_descriptor_appendv(struct security_descriptor *sd,
bool add_ace_to_sacl,
va_list ap)
{
const char *sidstr;
while ((sidstr = va_arg(ap, const char *))) {
struct dom_sid *sid;
struct security_ace *ace = talloc_zero(sd, struct security_ace);
NTSTATUS status;
if (ace == NULL) {
talloc_free(sd);
return NULL;
}
ace->type = va_arg(ap, unsigned int);
ace->access_mask = va_arg(ap, unsigned int);
ace->flags = va_arg(ap, unsigned int);
sid = dom_sid_parse_talloc(ace, sidstr);
if (sid == NULL) {
talloc_free(sd);
return NULL;
}
ace->trustee = *sid;
if (add_ace_to_sacl) {
status = security_descriptor_sacl_add(sd, ace);
} else {
status = security_descriptor_dacl_add(sd, ace);
}
/* TODO: check: would talloc_free(ace) here be correct? */
if (!NT_STATUS_IS_OK(status)) {
talloc_free(sd);
return NULL;
}
}
return sd;
}
static struct security_descriptor *security_descriptor_createv(TALLOC_CTX *mem_ctx,
uint16_t sd_type,
const char *owner_sid,
const char *group_sid,
bool add_ace_to_sacl,
va_list ap)
{
struct security_descriptor *sd;
sd = security_descriptor_initialise(mem_ctx);
if (sd == NULL) {
return NULL;
}
sd->type |= sd_type;
if (owner_sid) {
sd->owner_sid = dom_sid_parse_talloc(sd, owner_sid);
if (sd->owner_sid == NULL) {
talloc_free(sd);
return NULL;
}
}
if (group_sid) {
sd->group_sid = dom_sid_parse_talloc(sd, group_sid);
if (sd->group_sid == NULL) {
talloc_free(sd);
return NULL;
}
}
return security_descriptor_appendv(sd, add_ace_to_sacl, ap);
}
/*
create a security descriptor using string SIDs. This is used by the
torture code to allow the easy creation of complex ACLs
This is a varargs function. The list of DACL ACEs ends with a NULL sid.
Each ACE contains a set of 4 parameters:
SID, ACCESS_TYPE, MASK, FLAGS
a typical call would be:
sd = security_descriptor_dacl_create(mem_ctx,
sd_type_flags,
mysid,
mygroup,
SID_NT_AUTHENTICATED_USERS,
SEC_ACE_TYPE_ACCESS_ALLOWED,
SEC_FILE_ALL,
SEC_ACE_FLAG_OBJECT_INHERIT,
NULL);
that would create a sd with one DACL ACE
*/
struct security_descriptor *security_descriptor_dacl_create(TALLOC_CTX *mem_ctx,
uint16_t sd_type,
const char *owner_sid,
const char *group_sid,
...)
{
struct security_descriptor *sd = NULL;
va_list ap;
va_start(ap, group_sid);
sd = security_descriptor_createv(mem_ctx, sd_type, owner_sid,
group_sid, false, ap);
va_end(ap);
return sd;
}
struct security_descriptor *security_descriptor_sacl_create(TALLOC_CTX *mem_ctx,
uint16_t sd_type,
const char *owner_sid,
const char *group_sid,
...)
{
struct security_descriptor *sd = NULL;
va_list ap;
va_start(ap, group_sid);
sd = security_descriptor_createv(mem_ctx, sd_type, owner_sid,
group_sid, true, ap);
va_end(ap);
return sd;
}
struct security_ace *security_ace_create(TALLOC_CTX *mem_ctx,
const char *sid_str,
enum security_ace_type type,
uint32_t access_mask,
uint8_t flags)
{
struct security_ace *ace;
bool ok;
ace = talloc_zero(mem_ctx, struct security_ace);
if (ace == NULL) {
return NULL;
}
ok = dom_sid_parse(sid_str, &ace->trustee);
if (!ok) {
talloc_free(ace);
return NULL;
}
ace->type = type;
ace->access_mask = access_mask;
ace->flags = flags;
return ace;
}
/*******************************************************************
Check for MS NFS ACEs in a sd
*******************************************************************/
bool security_descriptor_with_ms_nfs(const struct security_descriptor *psd)
{
uint32_t i;
if (psd->dacl == NULL) {
return false;
}
for (i = 0; i < psd->dacl->num_aces; i++) {
if (dom_sid_compare_domain(
&global_sid_Unix_NFS,
&psd->dacl->aces[i].trustee) == 0) {
return true;
}
}
return false;
}