1
0
mirror of https://github.com/samba-team/samba.git synced 2025-01-11 05:18:09 +03:00
samba-mirror/third_party/socket_wrapper/socket_wrapper.c
Andreas Schneider d720eb2c08 third_party: Update socket_wrapper to version 1.4.2
Signed-off-by: Andreas Schneider <asn@samba.org>
Reviewed-by: Stefan Metzmacher <metze@samba.org>

Autobuild-User(master): Stefan Metzmacher <metze@samba.org>
Autobuild-Date(master): Thu Jun 29 16:06:11 UTC 2023 on atb-devel-224
2023-06-29 16:06:11 +00:00

8953 lines
195 KiB
C

/*
* BSD 3-Clause License
*
* Copyright (c) 2005-2008, Jelmer Vernooij <jelmer@samba.org>
* Copyright (c) 2006-2021, Stefan Metzmacher <metze@samba.org>
* Copyright (c) 2013-2021, Andreas Schneider <asn@samba.org>
* Copyright (c) 2014-2017, Michael Adam <obnox@samba.org>
* Copyright (c) 2016-2018, Anoop C S <anoopcs@redhat.com>
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* 3. Neither the name of the author nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
/*
Socket wrapper library. Passes all socket communication over
unix domain sockets if the environment variable SOCKET_WRAPPER_DIR
is set.
*/
#include "config.h"
/*
* Make sure we do not redirect (f)open(at)() or fcntl() to their 64bit
* variants
*/
#undef _FILE_OFFSET_BITS
#include <sys/types.h>
#include <sys/time.h>
#include <sys/stat.h>
#ifdef HAVE_SYS_SYSCALL_H
#include <sys/syscall.h>
#endif
#ifdef HAVE_SYSCALL_H
#include <syscall.h>
#endif
#include <sys/socket.h>
#include <sys/ioctl.h>
#ifdef HAVE_SYS_FILIO_H
#include <sys/filio.h>
#endif
#ifdef HAVE_SYS_SIGNALFD_H
#include <sys/signalfd.h>
#endif
#ifdef HAVE_SYS_EVENTFD_H
#include <sys/eventfd.h>
#endif
#ifdef HAVE_SYS_TIMERFD_H
#include <sys/timerfd.h>
#endif
#include <sys/uio.h>
#include <errno.h>
#include <sys/un.h>
#include <netinet/in.h>
#include <netinet/tcp.h>
#ifdef HAVE_NETINET_TCP_FSM_H
#include <netinet/tcp_fsm.h>
#endif
#include <arpa/inet.h>
#include <fcntl.h>
#include <stdlib.h>
#include <string.h>
#include <stdio.h>
#include <stdint.h>
#include <stdarg.h>
#include <stdbool.h>
#include <unistd.h>
#ifdef HAVE_GNU_LIB_NAMES_H
#include <gnu/lib-names.h>
#endif
#ifdef HAVE_RPC_RPC_H
#include <rpc/rpc.h>
#endif
#include <pthread.h>
#include "socket_wrapper.h"
#ifdef __USE_FILE_OFFSET64
#error -D_FILE_OFFSET_BITS=64 should not be set for socket_wrapper!
#endif
enum swrap_dbglvl_e {
SWRAP_LOG_ERROR = 0,
SWRAP_LOG_WARN,
SWRAP_LOG_DEBUG,
SWRAP_LOG_TRACE
};
/* GCC have printf type attribute check. */
#ifdef HAVE_FUNCTION_ATTRIBUTE_FORMAT
#define PRINTF_ATTRIBUTE(a,b) __attribute__ ((__format__ (__printf__, a, b)))
#else
#define PRINTF_ATTRIBUTE(a,b)
#endif /* HAVE_FUNCTION_ATTRIBUTE_FORMAT */
#ifdef HAVE_CONSTRUCTOR_ATTRIBUTE
#define CONSTRUCTOR_ATTRIBUTE __attribute__ ((constructor))
#else
#define CONSTRUCTOR_ATTRIBUTE
#endif /* HAVE_CONSTRUCTOR_ATTRIBUTE */
#ifdef HAVE_DESTRUCTOR_ATTRIBUTE
#define DESTRUCTOR_ATTRIBUTE __attribute__ ((destructor))
#else
#define DESTRUCTOR_ATTRIBUTE
#endif
#ifndef FALL_THROUGH
# ifdef HAVE_FALLTHROUGH_ATTRIBUTE
# define FALL_THROUGH __attribute__ ((fallthrough))
# else /* HAVE_FALLTHROUGH_ATTRIBUTE */
# define FALL_THROUGH ((void)0)
# endif /* HAVE_FALLTHROUGH_ATTRIBUTE */
#endif /* FALL_THROUGH */
#ifdef HAVE_ADDRESS_SANITIZER_ATTRIBUTE
#define DO_NOT_SANITIZE_ADDRESS_ATTRIBUTE __attribute__((no_sanitize_address))
#else
#define DO_NOT_SANITIZE_ADDRESS_ATTRIBUTE
#endif
#ifdef HAVE_GCC_THREAD_LOCAL_STORAGE
# define SWRAP_THREAD __thread
#else
# define SWRAP_THREAD
#endif
#ifndef MIN
#define MIN(a,b) ((a)<(b)?(a):(b))
#endif
#ifndef ZERO_STRUCT
#define ZERO_STRUCT(x) memset((char *)&(x), 0, sizeof(x))
#endif
#ifndef ZERO_STRUCTP
#define ZERO_STRUCTP(x) do { \
if ((x) != NULL) \
memset((char *)(x), 0, sizeof(*(x))); \
} while(0)
#endif
#ifndef SAFE_FREE
#define SAFE_FREE(x) do { if ((x) != NULL) {free(x); (x)=NULL;} } while(0)
#endif
#ifndef discard_const
#define discard_const(ptr) ((void *)((uintptr_t)(ptr)))
#endif
#ifndef discard_const_p
#define discard_const_p(type, ptr) ((type *)discard_const(ptr))
#endif
#define UNUSED(x) (void)(x)
#ifdef IPV6_PKTINFO
# ifndef IPV6_RECVPKTINFO
# define IPV6_RECVPKTINFO IPV6_PKTINFO
# endif /* IPV6_RECVPKTINFO */
#endif /* IPV6_PKTINFO */
/*
* On BSD IP_PKTINFO has a different name because during
* the time when they implemented it, there was no RFC.
* The name for IPv6 is the same as on Linux.
*/
#ifndef IP_PKTINFO
# ifdef IP_RECVDSTADDR
# define IP_PKTINFO IP_RECVDSTADDR
# endif
#endif
#define socket_wrapper_init_mutex(m) \
_socket_wrapper_init_mutex(m, #m)
/* Add new global locks here please */
# define SWRAP_REINIT_ALL do { \
int ret; \
ret = socket_wrapper_init_mutex(&sockets_mutex); \
if (ret != 0) exit(-1); \
ret = socket_wrapper_init_mutex(&socket_reset_mutex); \
if (ret != 0) exit(-1); \
ret = socket_wrapper_init_mutex(&first_free_mutex); \
if (ret != 0) exit(-1); \
ret = socket_wrapper_init_mutex(&sockets_si_global); \
if (ret != 0) exit(-1); \
ret = socket_wrapper_init_mutex(&autobind_start_mutex); \
if (ret != 0) exit(-1); \
ret = socket_wrapper_init_mutex(&pcap_dump_mutex); \
if (ret != 0) exit(-1); \
ret = socket_wrapper_init_mutex(&mtu_update_mutex); \
if (ret != 0) exit(-1); \
} while(0)
# define SWRAP_LOCK_ALL do { \
swrap_mutex_lock(&sockets_mutex); \
swrap_mutex_lock(&socket_reset_mutex); \
swrap_mutex_lock(&first_free_mutex); \
swrap_mutex_lock(&sockets_si_global); \
swrap_mutex_lock(&autobind_start_mutex); \
swrap_mutex_lock(&pcap_dump_mutex); \
swrap_mutex_lock(&mtu_update_mutex); \
} while(0)
# define SWRAP_UNLOCK_ALL do { \
swrap_mutex_unlock(&mtu_update_mutex); \
swrap_mutex_unlock(&pcap_dump_mutex); \
swrap_mutex_unlock(&autobind_start_mutex); \
swrap_mutex_unlock(&sockets_si_global); \
swrap_mutex_unlock(&first_free_mutex); \
swrap_mutex_unlock(&socket_reset_mutex); \
swrap_mutex_unlock(&sockets_mutex); \
} while(0)
#define SOCKET_INFO_CONTAINER(si) \
(struct socket_info_container *)(si)
#define SWRAP_LOCK_SI(si) do { \
struct socket_info_container *sic = SOCKET_INFO_CONTAINER(si); \
if (sic != NULL) { \
swrap_mutex_lock(&sockets_si_global); \
} else { \
abort(); \
} \
} while(0)
#define SWRAP_UNLOCK_SI(si) do { \
struct socket_info_container *sic = SOCKET_INFO_CONTAINER(si); \
if (sic != NULL) { \
swrap_mutex_unlock(&sockets_si_global); \
} else { \
abort(); \
} \
} while(0)
#if defined(HAVE_GETTIMEOFDAY_TZ) || defined(HAVE_GETTIMEOFDAY_TZ_VOID)
#define swrapGetTimeOfDay(tval) gettimeofday(tval,NULL)
#else
#define swrapGetTimeOfDay(tval) gettimeofday(tval)
#endif
/* we need to use a very terse format here as IRIX 6.4 silently
truncates names to 16 chars, so if we use a longer name then we
can't tell which port a packet came from with recvfrom()
with this format we have 8 chars left for the directory name
*/
#define SOCKET_FORMAT "%c%02X%04X"
#define SOCKET_TYPE_CHAR_TCP 'T'
#define SOCKET_TYPE_CHAR_UDP 'U'
#define SOCKET_TYPE_CHAR_TCP_V6 'X'
#define SOCKET_TYPE_CHAR_UDP_V6 'Y'
/*
* Set the packet MTU to 1500 bytes for stream sockets to make it it easier to
* format PCAP capture files (as the caller will simply continue from here).
*/
#define SOCKET_WRAPPER_MTU_DEFAULT 1500
#define SOCKET_WRAPPER_MTU_MIN 512
#define SOCKET_WRAPPER_MTU_MAX 32768
#define SOCKET_MAX_SOCKETS 1024
/*
* Maximum number of socket_info structures that can
* be used. Can be overriden by the environment variable
* SOCKET_WRAPPER_MAX_SOCKETS.
*/
#define SOCKET_WRAPPER_MAX_SOCKETS_DEFAULT 65535
#define SOCKET_WRAPPER_MAX_SOCKETS_LIMIT 262140
/* This limit is to avoid broadcast sendto() needing to stat too many
* files. It may be raised (with a performance cost) to up to 254
* without changing the format above */
#define MAX_WRAPPED_INTERFACES 64
struct swrap_address {
socklen_t sa_socklen;
union {
struct sockaddr s;
struct sockaddr_in in;
#ifdef HAVE_IPV6
struct sockaddr_in6 in6;
#endif
struct sockaddr_un un;
struct sockaddr_storage ss;
} sa;
};
static int first_free;
struct socket_info
{
/*
* Remember to update swrap_unix_scm_right_magic
* on any change.
*/
int family;
int type;
int protocol;
int bound;
int bcast;
int is_server;
int connected;
int defer_connect;
int pktinfo;
int tcp_nodelay;
int listening;
int fd_passed;
/* The unix path so we can unlink it on close() */
struct sockaddr_un un_addr;
struct swrap_address bindname;
struct swrap_address myname;
struct swrap_address peername;
struct {
unsigned long pck_snd;
unsigned long pck_rcv;
} io;
};
struct socket_info_meta
{
unsigned int refcount;
int next_free;
/*
* As long as we don't use shared memory
* for the sockets array, we use
* sockets_si_global as a single mutex.
*
* pthread_mutex_t mutex;
*/
};
struct socket_info_container
{
struct socket_info info;
struct socket_info_meta meta;
};
static struct socket_info_container *sockets;
static size_t socket_info_max = 0;
/*
* Allocate the socket array always on the limit value. We want it to be
* at least bigger than the default so if we reach the limit we can
* still deal with duplicate fds pointing to the same socket_info.
*/
static size_t socket_fds_max = SOCKET_WRAPPER_MAX_SOCKETS_LIMIT;
/* Hash table to map fds to corresponding socket_info index */
static int *socket_fds_idx;
/* Mutex for syncronizing port selection during swrap_auto_bind() */
static pthread_mutex_t autobind_start_mutex = PTHREAD_MUTEX_INITIALIZER;
/* Mutex to guard the initialization of array of socket_info structures */
static pthread_mutex_t sockets_mutex = PTHREAD_MUTEX_INITIALIZER;
/* Mutex to guard the socket reset in swrap_remove_wrapper() */
static pthread_mutex_t socket_reset_mutex = PTHREAD_MUTEX_INITIALIZER;
/* Mutex to synchronize access to first free index in socket_info array */
static pthread_mutex_t first_free_mutex = PTHREAD_MUTEX_INITIALIZER;
/*
* Mutex to synchronize access to to socket_info structures
* We use a single global mutex in order to avoid leaking
* ~ 38M copy on write memory per fork.
* max_sockets=65535 * sizeof(struct socket_info_container)=592 = 38796720
*/
static pthread_mutex_t sockets_si_global = PTHREAD_MUTEX_INITIALIZER;
/* Mutex to synchronize access to packet capture dump file */
static pthread_mutex_t pcap_dump_mutex = PTHREAD_MUTEX_INITIALIZER;
/* Mutex for synchronizing mtu value fetch*/
static pthread_mutex_t mtu_update_mutex = PTHREAD_MUTEX_INITIALIZER;
/* Function prototypes */
#if ! defined(HAVE_CONSTRUCTOR_ATTRIBUTE) && defined(HAVE_PRAGMA_INIT)
/* xlC and other oldschool compilers support (only) this */
#pragma init (swrap_constructor)
#endif
void swrap_constructor(void) CONSTRUCTOR_ATTRIBUTE;
#if ! defined(HAVE_DESTRUCTOR_ATTRIBUTE) && defined(HAVE_PRAGMA_FINI)
#pragma fini (swrap_destructor)
#endif
void swrap_destructor(void) DESTRUCTOR_ATTRIBUTE;
#ifndef HAVE_GETPROGNAME
static const char *getprogname(void)
{
#if defined(HAVE_PROGRAM_INVOCATION_SHORT_NAME)
return program_invocation_short_name;
#elif defined(HAVE_GETEXECNAME)
return getexecname();
#else
return NULL;
#endif /* HAVE_PROGRAM_INVOCATION_SHORT_NAME */
}
#endif /* HAVE_GETPROGNAME */
static void swrap_log(enum swrap_dbglvl_e dbglvl, const char *func, const char *format, ...) PRINTF_ATTRIBUTE(3, 4);
# define SWRAP_LOG(dbglvl, ...) swrap_log((dbglvl), __func__, __VA_ARGS__)
static void swrap_log(enum swrap_dbglvl_e dbglvl,
const char *func,
const char *format, ...)
{
char buffer[1024];
va_list va;
const char *d;
unsigned int lvl = 0;
const char *prefix = "SWRAP";
const char *progname = getprogname();
d = getenv("SOCKET_WRAPPER_DEBUGLEVEL");
if (d != NULL) {
lvl = atoi(d);
}
if (lvl < dbglvl) {
return;
}
va_start(va, format);
vsnprintf(buffer, sizeof(buffer), format, va);
va_end(va);
switch (dbglvl) {
case SWRAP_LOG_ERROR:
prefix = "SWRAP_ERROR";
break;
case SWRAP_LOG_WARN:
prefix = "SWRAP_WARN";
break;
case SWRAP_LOG_DEBUG:
prefix = "SWRAP_DEBUG";
break;
case SWRAP_LOG_TRACE:
prefix = "SWRAP_TRACE";
break;
}
if (progname == NULL) {
progname = "<unknown>";
}
fprintf(stderr,
"%s[%s (%u)] - %s: %s\n",
prefix,
progname,
(unsigned int)getpid(),
func,
buffer);
}
/*********************************************************
* SWRAP LOADING LIBC FUNCTIONS
*********************************************************/
#include <dlfcn.h>
#ifdef HAVE_ACCEPT4
typedef int (*__libc_accept4)(int sockfd,
struct sockaddr *addr,
socklen_t *addrlen,
int flags);
#else
typedef int (*__libc_accept)(int sockfd,
struct sockaddr *addr,
socklen_t *addrlen);
#endif
typedef int (*__libc_bind)(int sockfd,
const struct sockaddr *addr,
socklen_t addrlen);
typedef int (*__libc_close)(int fd);
#ifdef HAVE___CLOSE_NOCANCEL
typedef int (*__libc___close_nocancel)(int fd);
#endif
typedef int (*__libc_connect)(int sockfd,
const struct sockaddr *addr,
socklen_t addrlen);
typedef int (*__libc_dup)(int fd);
typedef int (*__libc_dup2)(int oldfd, int newfd);
typedef int (*__libc_fcntl)(int fd, int cmd, ...);
#ifdef HAVE_FCNTL64
typedef int (*__libc_fcntl64)(int fd, int cmd, ...);
#endif
typedef FILE *(*__libc_fopen)(const char *name, const char *mode);
#ifdef HAVE_FOPEN64
typedef FILE *(*__libc_fopen64)(const char *name, const char *mode);
#endif
#ifdef HAVE_EVENTFD
typedef int (*__libc_eventfd)(int count, int flags);
#endif
typedef int (*__libc_getpeername)(int sockfd,
struct sockaddr *addr,
socklen_t *addrlen);
typedef int (*__libc_getsockname)(int sockfd,
struct sockaddr *addr,
socklen_t *addrlen);
typedef int (*__libc_getsockopt)(int sockfd,
int level,
int optname,
void *optval,
socklen_t *optlen);
typedef int (*__libc_ioctl)(int d, unsigned long int request, ...);
typedef int (*__libc_listen)(int sockfd, int backlog);
typedef int (*__libc_open)(const char *pathname, int flags, ...);
#ifdef HAVE_OPEN64
typedef int (*__libc_open64)(const char *pathname, int flags, ...);
#endif /* HAVE_OPEN64 */
#ifdef HAVE_OPENAT64
typedef int (*__libc_openat64)(int dirfd, const char *pathname, int flags, ...);
#endif /* HAVE_OPENAT64 */
typedef int (*__libc_openat)(int dirfd, const char *path, int flags, ...);
typedef int (*__libc_pipe)(int pipefd[2]);
typedef int (*__libc_read)(int fd, void *buf, size_t count);
typedef ssize_t (*__libc_readv)(int fd, const struct iovec *iov, int iovcnt);
typedef int (*__libc_recv)(int sockfd, void *buf, size_t len, int flags);
typedef int (*__libc_recvfrom)(int sockfd,
void *buf,
size_t len,
int flags,
struct sockaddr *src_addr,
socklen_t *addrlen);
typedef int (*__libc_recvmsg)(int sockfd, const struct msghdr *msg, int flags);
#ifdef HAVE_RECVMMSG
#if defined(HAVE_RECVMMSG_SSIZE_T_CONST_TIMEOUT)
/* FreeBSD */
typedef ssize_t (*__libc_recvmmsg)(int sockfd, struct mmsghdr *msgvec, size_t vlen, int flags, const struct timespec *timeout);
#elif defined(HAVE_RECVMMSG_CONST_TIMEOUT)
/* Linux legacy glibc < 2.21 */
typedef int (*__libc_recvmmsg)(int sockfd, struct mmsghdr *msgvec, unsigned int vlen, int flags, const struct timespec *timeout);
#else
/* Linux glibc >= 2.21 */
typedef int (*__libc_recvmmsg)(int sockfd, struct mmsghdr *msgvec, unsigned int vlen, int flags, struct timespec *timeout);
#endif
#endif /* HAVE_RECVMMSG */
typedef int (*__libc_send)(int sockfd, const void *buf, size_t len, int flags);
typedef int (*__libc_sendmsg)(int sockfd, const struct msghdr *msg, int flags);
#ifdef HAVE_SENDMMSG
#if defined(HAVE_SENDMMSG_SSIZE_T)
/* FreeBSD */
typedef ssize_t (*__libc_sendmmsg)(int sockfd, struct mmsghdr *msgvec, size_t vlen, int flags);
#else
/* Linux */
typedef int (*__libc_sendmmsg)(int sockfd, struct mmsghdr *msgvec, unsigned int vlen, int flags);
#endif
#endif /* HAVE_SENDMMSG */
typedef int (*__libc_sendto)(int sockfd,
const void *buf,
size_t len,
int flags,
const struct sockaddr *dst_addr,
socklen_t addrlen);
typedef int (*__libc_setsockopt)(int sockfd,
int level,
int optname,
const void *optval,
socklen_t optlen);
#ifdef HAVE_SIGNALFD
typedef int (*__libc_signalfd)(int fd, const sigset_t *mask, int flags);
#endif
typedef int (*__libc_socket)(int domain, int type, int protocol);
typedef int (*__libc_socketpair)(int domain, int type, int protocol, int sv[2]);
#ifdef HAVE_TIMERFD_CREATE
typedef int (*__libc_timerfd_create)(int clockid, int flags);
#endif
typedef ssize_t (*__libc_write)(int fd, const void *buf, size_t count);
typedef ssize_t (*__libc_writev)(int fd, const struct iovec *iov, int iovcnt);
#ifdef HAVE_SYSCALL
typedef long int (*__libc_syscall)(long int sysno, ...);
#endif
#define SWRAP_SYMBOL_ENTRY(i) \
union { \
__libc_##i f; \
void *obj; \
} _libc_##i
struct swrap_libc_symbols {
#ifdef HAVE_ACCEPT4
SWRAP_SYMBOL_ENTRY(accept4);
#else
SWRAP_SYMBOL_ENTRY(accept);
#endif
SWRAP_SYMBOL_ENTRY(bind);
SWRAP_SYMBOL_ENTRY(close);
#ifdef HAVE___CLOSE_NOCANCEL
SWRAP_SYMBOL_ENTRY(__close_nocancel);
#endif
SWRAP_SYMBOL_ENTRY(connect);
SWRAP_SYMBOL_ENTRY(dup);
SWRAP_SYMBOL_ENTRY(dup2);
SWRAP_SYMBOL_ENTRY(fcntl);
#ifdef HAVE_FCNTL64
SWRAP_SYMBOL_ENTRY(fcntl64);
#endif
SWRAP_SYMBOL_ENTRY(fopen);
#ifdef HAVE_FOPEN64
SWRAP_SYMBOL_ENTRY(fopen64);
#endif
#ifdef HAVE_EVENTFD
SWRAP_SYMBOL_ENTRY(eventfd);
#endif
SWRAP_SYMBOL_ENTRY(getpeername);
SWRAP_SYMBOL_ENTRY(getsockname);
SWRAP_SYMBOL_ENTRY(getsockopt);
SWRAP_SYMBOL_ENTRY(ioctl);
SWRAP_SYMBOL_ENTRY(listen);
SWRAP_SYMBOL_ENTRY(open);
#ifdef HAVE_OPEN64
SWRAP_SYMBOL_ENTRY(open64);
#endif
#ifdef HAVE_OPENAT64
SWRAP_SYMBOL_ENTRY(openat64);
#endif
SWRAP_SYMBOL_ENTRY(openat);
SWRAP_SYMBOL_ENTRY(pipe);
SWRAP_SYMBOL_ENTRY(read);
SWRAP_SYMBOL_ENTRY(readv);
SWRAP_SYMBOL_ENTRY(recv);
SWRAP_SYMBOL_ENTRY(recvfrom);
SWRAP_SYMBOL_ENTRY(recvmsg);
#ifdef HAVE_RECVMMSG
SWRAP_SYMBOL_ENTRY(recvmmsg);
#endif
SWRAP_SYMBOL_ENTRY(send);
SWRAP_SYMBOL_ENTRY(sendmsg);
#ifdef HAVE_SENDMMSG
SWRAP_SYMBOL_ENTRY(sendmmsg);
#endif
SWRAP_SYMBOL_ENTRY(sendto);
SWRAP_SYMBOL_ENTRY(setsockopt);
#ifdef HAVE_SIGNALFD
SWRAP_SYMBOL_ENTRY(signalfd);
#endif
SWRAP_SYMBOL_ENTRY(socket);
SWRAP_SYMBOL_ENTRY(socketpair);
#ifdef HAVE_TIMERFD_CREATE
SWRAP_SYMBOL_ENTRY(timerfd_create);
#endif
SWRAP_SYMBOL_ENTRY(write);
SWRAP_SYMBOL_ENTRY(writev);
#ifdef HAVE_SYSCALL
SWRAP_SYMBOL_ENTRY(syscall);
#endif
};
#undef SWRAP_SYMBOL_ENTRY
#define SWRAP_SYMBOL_ENTRY(i) \
union { \
__rtld_default_##i f; \
void *obj; \
} _rtld_default_##i
#ifdef HAVE_SYSCALL
typedef bool (*__rtld_default_uid_wrapper_syscall_valid)(long int sysno);
typedef long int (*__rtld_default_uid_wrapper_syscall_va)(long int sysno, va_list va);
#endif
struct swrap_rtld_default_symbols {
#ifdef HAVE_SYSCALL
SWRAP_SYMBOL_ENTRY(uid_wrapper_syscall_valid);
SWRAP_SYMBOL_ENTRY(uid_wrapper_syscall_va);
#else
uint8_t dummy;
#endif
};
#undef SWRAP_SYMBOL_ENTRY
struct swrap {
struct {
void *handle;
void *socket_handle;
struct swrap_libc_symbols symbols;
} libc;
struct {
struct swrap_rtld_default_symbols symbols;
} rtld_default;
};
static struct swrap swrap;
/* prototypes */
static char *socket_wrapper_dir(void);
#define LIBC_NAME "libc.so"
enum swrap_lib {
SWRAP_LIBC,
SWRAP_LIBSOCKET,
};
static const char *swrap_str_lib(enum swrap_lib lib)
{
switch (lib) {
case SWRAP_LIBC:
return "libc";
case SWRAP_LIBSOCKET:
return "libsocket";
}
/* Compiler would warn us about unhandled enum value if we get here */
return "unknown";
}
static void *swrap_load_lib_handle(enum swrap_lib lib)
{
int flags = RTLD_LAZY;
void *handle = NULL;
int i;
#ifdef RTLD_DEEPBIND
const char *env_preload = getenv("LD_PRELOAD");
const char *env_deepbind = getenv("SOCKET_WRAPPER_DISABLE_DEEPBIND");
bool enable_deepbind = true;
/* Don't do a deepbind if we run with libasan */
if (env_preload != NULL && strlen(env_preload) < 1024) {
const char *p = strstr(env_preload, "libasan.so");
if (p != NULL) {
enable_deepbind = false;
}
}
if (env_deepbind != NULL && strlen(env_deepbind) >= 1) {
enable_deepbind = false;
}
if (enable_deepbind) {
flags |= RTLD_DEEPBIND;
}
#endif
switch (lib) {
case SWRAP_LIBSOCKET:
#ifdef HAVE_LIBSOCKET
handle = swrap.libc.socket_handle;
if (handle == NULL) {
for (i = 10; i >= 0; i--) {
char soname[256] = {0};
snprintf(soname, sizeof(soname), "libsocket.so.%d", i);
handle = dlopen(soname, flags);
if (handle != NULL) {
break;
}
}
swrap.libc.socket_handle = handle;
}
break;
#endif
case SWRAP_LIBC:
handle = swrap.libc.handle;
#ifdef LIBC_SO
if (handle == NULL) {
handle = dlopen(LIBC_SO, flags);
swrap.libc.handle = handle;
}
#endif
if (handle == NULL) {
for (i = 10; i >= 0; i--) {
char soname[256] = {0};
snprintf(soname, sizeof(soname), "libc.so.%d", i);
handle = dlopen(soname, flags);
if (handle != NULL) {
break;
}
}
swrap.libc.handle = handle;
}
break;
}
if (handle == NULL) {
#ifdef RTLD_NEXT
handle = swrap.libc.handle = swrap.libc.socket_handle = RTLD_NEXT;
#else
SWRAP_LOG(SWRAP_LOG_ERROR,
"Failed to dlopen library: %s",
dlerror());
exit(-1);
#endif
}
return handle;
}
static void *_swrap_bind_symbol(enum swrap_lib lib, const char *fn_name)
{
void *handle;
void *func;
handle = swrap_load_lib_handle(lib);
func = dlsym(handle, fn_name);
if (func == NULL) {
SWRAP_LOG(SWRAP_LOG_ERROR,
"Failed to find %s: %s",
fn_name,
dlerror());
exit(-1);
}
SWRAP_LOG(SWRAP_LOG_TRACE,
"Loaded %s from %s",
fn_name,
swrap_str_lib(lib));
return func;
}
#define swrap_mutex_lock(m) _swrap_mutex_lock(m, #m, __func__, __LINE__)
static void _swrap_mutex_lock(pthread_mutex_t *mutex, const char *name, const char *caller, unsigned line)
{
int ret;
ret = pthread_mutex_lock(mutex);
if (ret != 0) {
SWRAP_LOG(SWRAP_LOG_ERROR, "PID(%d):PPID(%d): %s(%u): Couldn't lock pthread mutex(%s) - %s",
getpid(), getppid(), caller, line, name, strerror(ret));
abort();
}
}
#define swrap_mutex_unlock(m) _swrap_mutex_unlock(m, #m, __func__, __LINE__)
static void _swrap_mutex_unlock(pthread_mutex_t *mutex, const char *name, const char *caller, unsigned line)
{
int ret;
ret = pthread_mutex_unlock(mutex);
if (ret != 0) {
SWRAP_LOG(SWRAP_LOG_ERROR, "PID(%d):PPID(%d): %s(%u): Couldn't unlock pthread mutex(%s) - %s",
getpid(), getppid(), caller, line, name, strerror(ret));
abort();
}
}
/*
* These macros have a thread race condition on purpose!
*
* This is an optimization to avoid locking each time we check if the symbol is
* bound.
*/
#define _swrap_bind_symbol_generic(lib, sym_name) do { \
swrap.libc.symbols._libc_##sym_name.obj = \
_swrap_bind_symbol(lib, #sym_name); \
} while(0);
#define swrap_bind_symbol_libc(sym_name) \
_swrap_bind_symbol_generic(SWRAP_LIBC, sym_name)
#define swrap_bind_symbol_libsocket(sym_name) \
_swrap_bind_symbol_generic(SWRAP_LIBSOCKET, sym_name)
#define swrap_bind_symbol_rtld_default_optional(sym_name) do { \
swrap.rtld_default.symbols._rtld_default_##sym_name.obj = \
dlsym(RTLD_DEFAULT, #sym_name); \
} while(0);
static void swrap_bind_symbol_all(void);
/****************************************************************************
* IMPORTANT
****************************************************************************
*
* Functions especially from libc need to be loaded individually, you can't
* load all at once or gdb will segfault at startup. The same applies to
* valgrind and has probably something todo with with the linker. So we need
* load each function at the point it is called the first time.
*
****************************************************************************/
#ifdef HAVE_ACCEPT4
static int libc_accept4(int sockfd,
struct sockaddr *addr,
socklen_t *addrlen,
int flags)
{
swrap_bind_symbol_all();
return swrap.libc.symbols._libc_accept4.f(sockfd, addr, addrlen, flags);
}
#else /* HAVE_ACCEPT4 */
static int libc_accept(int sockfd, struct sockaddr *addr, socklen_t *addrlen)
{
swrap_bind_symbol_all();
return swrap.libc.symbols._libc_accept.f(sockfd, addr, addrlen);
}
#endif /* HAVE_ACCEPT4 */
static int libc_bind(int sockfd,
const struct sockaddr *addr,
socklen_t addrlen)
{
swrap_bind_symbol_all();
return swrap.libc.symbols._libc_bind.f(sockfd, addr, addrlen);
}
static int libc_close(int fd)
{
swrap_bind_symbol_all();
return swrap.libc.symbols._libc_close.f(fd);
}
#ifdef HAVE___CLOSE_NOCANCEL
static int libc___close_nocancel(int fd)
{
swrap_bind_symbol_all();
return swrap.libc.symbols._libc___close_nocancel.f(fd);
}
#endif /* HAVE___CLOSE_NOCANCEL */
static int libc_connect(int sockfd,
const struct sockaddr *addr,
socklen_t addrlen)
{
swrap_bind_symbol_all();
return swrap.libc.symbols._libc_connect.f(sockfd, addr, addrlen);
}
static int libc_dup(int fd)
{
swrap_bind_symbol_all();
return swrap.libc.symbols._libc_dup.f(fd);
}
static int libc_dup2(int oldfd, int newfd)
{
swrap_bind_symbol_all();
return swrap.libc.symbols._libc_dup2.f(oldfd, newfd);
}
#ifdef HAVE_EVENTFD
static int libc_eventfd(int count, int flags)
{
swrap_bind_symbol_all();
return swrap.libc.symbols._libc_eventfd.f(count, flags);
}
#endif
DO_NOT_SANITIZE_ADDRESS_ATTRIBUTE
static int libc_vfcntl(int fd, int cmd, va_list ap)
{
void *arg;
int rc;
swrap_bind_symbol_all();
arg = va_arg(ap, void *);
rc = swrap.libc.symbols._libc_fcntl.f(fd, cmd, arg);
return rc;
}
#ifdef HAVE_FCNTL64
DO_NOT_SANITIZE_ADDRESS_ATTRIBUTE
static int libc_vfcntl64(int fd, int cmd, va_list ap)
{
void *arg;
int rc;
swrap_bind_symbol_all();
arg = va_arg(ap, void *);
rc = swrap.libc.symbols._libc_fcntl64.f(fd, cmd, arg);
return rc;
}
#endif
static int libc_getpeername(int sockfd,
struct sockaddr *addr,
socklen_t *addrlen)
{
swrap_bind_symbol_all();
return swrap.libc.symbols._libc_getpeername.f(sockfd, addr, addrlen);
}
static int libc_getsockname(int sockfd,
struct sockaddr *addr,
socklen_t *addrlen)
{
swrap_bind_symbol_all();
return swrap.libc.symbols._libc_getsockname.f(sockfd, addr, addrlen);
}
static int libc_getsockopt(int sockfd,
int level,
int optname,
void *optval,
socklen_t *optlen)
{
swrap_bind_symbol_all();
return swrap.libc.symbols._libc_getsockopt.f(sockfd,
level,
optname,
optval,
optlen);
}
DO_NOT_SANITIZE_ADDRESS_ATTRIBUTE
static int libc_vioctl(int d, unsigned long int request, va_list ap)
{
void *arg;
int rc;
swrap_bind_symbol_all();
arg = va_arg(ap, void *);
rc = swrap.libc.symbols._libc_ioctl.f(d, request, arg);
return rc;
}
static int libc_listen(int sockfd, int backlog)
{
swrap_bind_symbol_all();
return swrap.libc.symbols._libc_listen.f(sockfd, backlog);
}
static FILE *libc_fopen(const char *name, const char *mode)
{
swrap_bind_symbol_all();
return swrap.libc.symbols._libc_fopen.f(name, mode);
}
#ifdef HAVE_FOPEN64
static FILE *libc_fopen64(const char *name, const char *mode)
{
swrap_bind_symbol_all();
return swrap.libc.symbols._libc_fopen64.f(name, mode);
}
#endif /* HAVE_FOPEN64 */
static void swrap_inject_o_largefile(int *flags)
{
(void)*flags; /* maybe unused */
#if SIZE_MAX == 0xffffffffUL && defined(O_LARGEFILE)
#ifdef O_PATH
if (((*flags) & O_PATH) == 0)
#endif
{
*flags |= O_LARGEFILE;
}
#endif
}
static int libc_vopen(const char *pathname, int flags, va_list ap)
{
int mode = 0;
int fd;
swrap_bind_symbol_all();
swrap_inject_o_largefile(&flags);
if (flags & O_CREAT) {
mode = va_arg(ap, int);
}
fd = swrap.libc.symbols._libc_open.f(pathname, flags, (mode_t)mode);
return fd;
}
static int libc_open(const char *pathname, int flags, ...)
{
va_list ap;
int fd;
va_start(ap, flags);
fd = libc_vopen(pathname, flags, ap);
va_end(ap);
return fd;
}
#ifdef HAVE_OPEN64
static int libc_vopen64(const char *pathname, int flags, va_list ap)
{
int mode = 0;
int fd;
swrap_bind_symbol_all();
swrap_inject_o_largefile(&flags);
if (flags & O_CREAT) {
mode = va_arg(ap, int);
}
fd = swrap.libc.symbols._libc_open64.f(pathname, flags, (mode_t)mode);
return fd;
}
#endif /* HAVE_OPEN64 */
#ifdef HAVE_OPENAT64
static int
libc_vopenat64(int dirfd, const char *pathname, int flags, va_list ap)
{
int mode = 0;
int fd;
swrap_bind_symbol_all();
swrap_inject_o_largefile(&flags);
if (flags & O_CREAT) {
mode = va_arg(ap, int);
}
fd = swrap.libc.symbols._libc_openat64.f(dirfd,
pathname,
flags,
(mode_t)mode);
return fd;
}
#endif /* HAVE_OPENAT64 */
static int libc_vopenat(int dirfd, const char *path, int flags, va_list ap)
{
int mode = 0;
int fd;
swrap_bind_symbol_all();
swrap_inject_o_largefile(&flags);
if (flags & O_CREAT) {
mode = va_arg(ap, int);
}
fd = swrap.libc.symbols._libc_openat.f(dirfd,
path,
flags,
(mode_t)mode);
return fd;
}
#if 0
static int libc_openat(int dirfd, const char *path, int flags, ...)
{
va_list ap;
int fd;
va_start(ap, flags);
fd = libc_vopenat(dirfd, path, flags, ap);
va_end(ap);
return fd;
}
#endif
static int libc_pipe(int pipefd[2])
{
swrap_bind_symbol_all();
return swrap.libc.symbols._libc_pipe.f(pipefd);
}
static int libc_read(int fd, void *buf, size_t count)
{
swrap_bind_symbol_all();
return swrap.libc.symbols._libc_read.f(fd, buf, count);
}
static ssize_t libc_readv(int fd, const struct iovec *iov, int iovcnt)
{
swrap_bind_symbol_all();
return swrap.libc.symbols._libc_readv.f(fd, iov, iovcnt);
}
static int libc_recv(int sockfd, void *buf, size_t len, int flags)
{
swrap_bind_symbol_all();
return swrap.libc.symbols._libc_recv.f(sockfd, buf, len, flags);
}
static int libc_recvfrom(int sockfd,
void *buf,
size_t len,
int flags,
struct sockaddr *src_addr,
socklen_t *addrlen)
{
swrap_bind_symbol_all();
return swrap.libc.symbols._libc_recvfrom.f(sockfd,
buf,
len,
flags,
src_addr,
addrlen);
}
static int libc_recvmsg(int sockfd, struct msghdr *msg, int flags)
{
swrap_bind_symbol_all();
return swrap.libc.symbols._libc_recvmsg.f(sockfd, msg, flags);
}
#ifdef HAVE_RECVMMSG
#if defined(HAVE_RECVMMSG_SSIZE_T_CONST_TIMEOUT)
/* FreeBSD */
static ssize_t libc_recvmmsg(int sockfd, struct mmsghdr *msgvec, size_t vlen, int flags, const struct timespec *timeout)
#elif defined(HAVE_RECVMMSG_CONST_TIMEOUT)
/* Linux legacy glibc < 2.21 */
static int libc_recvmmsg(int sockfd, struct mmsghdr *msgvec, unsigned int vlen, int flags, const struct timespec *timeout)
#else
/* Linux glibc >= 2.21 */
static int libc_recvmmsg(int sockfd, struct mmsghdr *msgvec, unsigned int vlen, int flags, struct timespec *timeout)
#endif
{
swrap_bind_symbol_all();
return swrap.libc.symbols._libc_recvmmsg.f(sockfd, msgvec, vlen, flags, timeout);
}
#endif
static int libc_send(int sockfd, const void *buf, size_t len, int flags)
{
swrap_bind_symbol_all();
return swrap.libc.symbols._libc_send.f(sockfd, buf, len, flags);
}
static int libc_sendmsg(int sockfd, const struct msghdr *msg, int flags)
{
swrap_bind_symbol_all();
return swrap.libc.symbols._libc_sendmsg.f(sockfd, msg, flags);
}
#ifdef HAVE_SENDMMSG
#if defined(HAVE_SENDMMSG_SSIZE_T)
/* FreeBSD */
static ssize_t libc_sendmmsg(int sockfd, struct mmsghdr *msgvec, size_t vlen, int flags)
#else
/* Linux */
static int libc_sendmmsg(int sockfd, struct mmsghdr *msgvec, unsigned int vlen, int flags)
#endif
{
swrap_bind_symbol_all();
return swrap.libc.symbols._libc_sendmmsg.f(sockfd, msgvec, vlen, flags);
}
#endif
static int libc_sendto(int sockfd,
const void *buf,
size_t len,
int flags,
const struct sockaddr *dst_addr,
socklen_t addrlen)
{
swrap_bind_symbol_all();
return swrap.libc.symbols._libc_sendto.f(sockfd,
buf,
len,
flags,
dst_addr,
addrlen);
}
static int libc_setsockopt(int sockfd,
int level,
int optname,
const void *optval,
socklen_t optlen)
{
swrap_bind_symbol_all();
return swrap.libc.symbols._libc_setsockopt.f(sockfd,
level,
optname,
optval,
optlen);
}
#ifdef HAVE_SIGNALFD
static int libc_signalfd(int fd, const sigset_t *mask, int flags)
{
swrap_bind_symbol_all();
return swrap.libc.symbols._libc_signalfd.f(fd, mask, flags);
}
#endif
static int libc_socket(int domain, int type, int protocol)
{
swrap_bind_symbol_all();
return swrap.libc.symbols._libc_socket.f(domain, type, protocol);
}
static int libc_socketpair(int domain, int type, int protocol, int sv[2])
{
swrap_bind_symbol_all();
return swrap.libc.symbols._libc_socketpair.f(domain, type, protocol, sv);
}
#ifdef HAVE_TIMERFD_CREATE
static int libc_timerfd_create(int clockid, int flags)
{
swrap_bind_symbol_all();
return swrap.libc.symbols._libc_timerfd_create.f(clockid, flags);
}
#endif
static ssize_t libc_write(int fd, const void *buf, size_t count)
{
swrap_bind_symbol_all();
return swrap.libc.symbols._libc_write.f(fd, buf, count);
}
static ssize_t libc_writev(int fd, const struct iovec *iov, int iovcnt)
{
swrap_bind_symbol_all();
return swrap.libc.symbols._libc_writev.f(fd, iov, iovcnt);
}
#ifdef HAVE_SYSCALL
DO_NOT_SANITIZE_ADDRESS_ATTRIBUTE
static long int libc_vsyscall(long int sysno, va_list va)
{
long int args[8];
long int rc;
int i;
swrap_bind_symbol_all();
for (i = 0; i < 8; i++) {
args[i] = va_arg(va, long int);
}
rc = swrap.libc.symbols._libc_syscall.f(sysno,
args[0],
args[1],
args[2],
args[3],
args[4],
args[5],
args[6],
args[7]);
return rc;
}
static bool swrap_uwrap_syscall_valid(long int sysno)
{
swrap_bind_symbol_all();
if (swrap.rtld_default.symbols._rtld_default_uid_wrapper_syscall_valid.f == NULL) {
return false;
}
return swrap.rtld_default.symbols._rtld_default_uid_wrapper_syscall_valid.f(
sysno);
}
DO_NOT_SANITIZE_ADDRESS_ATTRIBUTE
static long int swrap_uwrap_syscall_va(long int sysno, va_list va)
{
swrap_bind_symbol_all();
if (swrap.rtld_default.symbols._rtld_default_uid_wrapper_syscall_va.f == NULL) {
/*
* Fallback to libc, if uid_wrapper_syscall_va is not
* available.
*/
return libc_vsyscall(sysno, va);
}
return swrap.rtld_default.symbols._rtld_default_uid_wrapper_syscall_va.f(
sysno,
va);
}
#endif /* HAVE_SYSCALL */
/* DO NOT call this function during library initialization! */
static void __swrap_bind_symbol_all_once(void)
{
#ifdef HAVE_ACCEPT4
swrap_bind_symbol_libsocket(accept4);
#else
swrap_bind_symbol_libsocket(accept);
#endif
swrap_bind_symbol_libsocket(bind);
swrap_bind_symbol_libc(close);
#ifdef HAVE___CLOSE_NOCANCEL
swrap_bind_symbol_libc(__close_nocancel);
#endif
swrap_bind_symbol_libsocket(connect);
swrap_bind_symbol_libc(dup);
swrap_bind_symbol_libc(dup2);
swrap_bind_symbol_libc(fcntl);
#ifdef HAVE_FCNTL64
swrap_bind_symbol_libc(fcntl64);
#endif
swrap_bind_symbol_libc(fopen);
#ifdef HAVE_FOPEN64
swrap_bind_symbol_libc(fopen64);
#endif
#ifdef HAVE_EVENTFD
swrap_bind_symbol_libc(eventfd);
#endif
swrap_bind_symbol_libsocket(getpeername);
swrap_bind_symbol_libsocket(getsockname);
swrap_bind_symbol_libsocket(getsockopt);
swrap_bind_symbol_libc(ioctl);
swrap_bind_symbol_libsocket(listen);
swrap_bind_symbol_libc(open);
#ifdef HAVE_OPEN64
swrap_bind_symbol_libc(open64);
#endif
#ifdef HAVE_OPENAT64
swrap_bind_symbol_libc(openat64);
#endif
swrap_bind_symbol_libc(openat);
swrap_bind_symbol_libsocket(pipe);
swrap_bind_symbol_libc(read);
swrap_bind_symbol_libsocket(readv);
swrap_bind_symbol_libsocket(recv);
swrap_bind_symbol_libsocket(recvfrom);
swrap_bind_symbol_libsocket(recvmsg);
#ifdef HAVE_RECVMMSG
swrap_bind_symbol_libsocket(recvmmsg);
#endif
swrap_bind_symbol_libsocket(send);
swrap_bind_symbol_libsocket(sendmsg);
#ifdef HAVE_SENDMMSG
swrap_bind_symbol_libsocket(sendmmsg);
#endif
swrap_bind_symbol_libsocket(sendto);
swrap_bind_symbol_libsocket(setsockopt);
#ifdef HAVE_SIGNALFD
swrap_bind_symbol_libsocket(signalfd);
#endif
swrap_bind_symbol_libsocket(socket);
swrap_bind_symbol_libsocket(socketpair);
#ifdef HAVE_TIMERFD_CREATE
swrap_bind_symbol_libc(timerfd_create);
#endif
swrap_bind_symbol_libc(write);
swrap_bind_symbol_libsocket(writev);
#ifdef HAVE_SYSCALL
swrap_bind_symbol_libc(syscall);
swrap_bind_symbol_rtld_default_optional(uid_wrapper_syscall_valid);
swrap_bind_symbol_rtld_default_optional(uid_wrapper_syscall_va);
#endif
}
static void swrap_bind_symbol_all(void)
{
static pthread_once_t all_symbol_binding_once = PTHREAD_ONCE_INIT;
pthread_once(&all_symbol_binding_once, __swrap_bind_symbol_all_once);
}
/*********************************************************
* SWRAP HELPER FUNCTIONS
*********************************************************/
/*
* We return 127.0.0.0 (default) or 10.53.57.0.
*
* This can be controlled by:
* SOCKET_WRAPPER_IPV4_NETWORK=127.0.0.0 (default)
* or
* SOCKET_WRAPPER_IPV4_NETWORK=10.53.57.0
*/
static in_addr_t swrap_ipv4_net(void)
{
static int initialized;
static in_addr_t hv;
const char *net_str = NULL;
struct in_addr nv;
int ret;
if (initialized) {
return hv;
}
initialized = 1;
net_str = getenv("SOCKET_WRAPPER_IPV4_NETWORK");
if (net_str == NULL) {
net_str = "127.0.0.0";
}
ret = inet_pton(AF_INET, net_str, &nv);
if (ret <= 0) {
SWRAP_LOG(SWRAP_LOG_ERROR,
"INVALID IPv4 Network [%s]",
net_str);
abort();
}
hv = ntohl(nv.s_addr);
switch (hv) {
case 0x7f000000:
/* 127.0.0.0 */
break;
case 0x0a353900:
/* 10.53.57.0 */
break;
default:
SWRAP_LOG(SWRAP_LOG_ERROR,
"INVALID IPv4 Network [%s][0x%x] should be "
"127.0.0.0 or 10.53.57.0",
net_str, (unsigned)hv);
abort();
}
return hv;
}
/*
* This returns 127.255.255.255 or 10.255.255.255
*/
static in_addr_t swrap_ipv4_bcast(void)
{
in_addr_t hv;
hv = swrap_ipv4_net();
hv |= IN_CLASSA_HOST;
return hv;
}
/*
* This returns 127.0.0.${iface} or 10.53.57.${iface}
*/
static in_addr_t swrap_ipv4_iface(unsigned int iface)
{
in_addr_t hv;
if (iface == 0 || iface > MAX_WRAPPED_INTERFACES) {
SWRAP_LOG(SWRAP_LOG_ERROR,
"swrap_ipv4_iface(%u) invalid!",
iface);
abort();
return -1;
}
hv = swrap_ipv4_net();
hv |= iface;
return hv;
}
#ifdef HAVE_IPV6
/*
* FD00::5357:5FXX
*/
static const struct in6_addr *swrap_ipv6(void)
{
static struct in6_addr v;
static int initialized;
int ret;
if (initialized) {
return &v;
}
initialized = 1;
ret = inet_pton(AF_INET6, "FD00::5357:5F00", &v);
if (ret <= 0) {
abort();
}
return &v;
}
#endif
static void set_port(int family, int prt, struct swrap_address *addr)
{
switch (family) {
case AF_INET:
addr->sa.in.sin_port = htons(prt);
break;
#ifdef HAVE_IPV6
case AF_INET6:
addr->sa.in6.sin6_port = htons(prt);
break;
#endif
}
}
static size_t socket_length(int family)
{
switch (family) {
case AF_INET:
return sizeof(struct sockaddr_in);
#ifdef HAVE_IPV6
case AF_INET6:
return sizeof(struct sockaddr_in6);
#endif
}
return 0;
}
struct swrap_sockaddr_buf {
char str[128];
};
static const char *swrap_sockaddr_string(struct swrap_sockaddr_buf *buf,
const struct sockaddr *saddr)
{
unsigned int port = 0;
char addr[64] = {0,};
switch (saddr->sa_family) {
case AF_INET: {
const struct sockaddr_in *in =
(const struct sockaddr_in *)(const void *)saddr;
port = ntohs(in->sin_port);
inet_ntop(saddr->sa_family,
&in->sin_addr,
addr, sizeof(addr));
break;
}
#ifdef HAVE_IPV6
case AF_INET6: {
const struct sockaddr_in6 *in6 =
(const struct sockaddr_in6 *)(const void *)saddr;
port = ntohs(in6->sin6_port);
inet_ntop(saddr->sa_family,
&in6->sin6_addr,
addr, sizeof(addr));
break;
}
#endif
default:
snprintf(addr, sizeof(addr),
"<Unknown address family %u>",
saddr->sa_family);
break;
}
snprintf(buf->str, sizeof(buf->str),
"addr[%s]/port[%u]",
addr, port);
return buf->str;
}
static struct socket_info *swrap_get_socket_info(int si_index)
{
return (struct socket_info *)(&(sockets[si_index].info));
}
static int swrap_get_refcount(struct socket_info *si)
{
struct socket_info_container *sic = SOCKET_INFO_CONTAINER(si);
return sic->meta.refcount;
}
static void swrap_inc_refcount(struct socket_info *si)
{
struct socket_info_container *sic = SOCKET_INFO_CONTAINER(si);
sic->meta.refcount += 1;
}
static void swrap_dec_refcount(struct socket_info *si)
{
struct socket_info_container *sic = SOCKET_INFO_CONTAINER(si);
sic->meta.refcount -= 1;
}
static int swrap_get_next_free(struct socket_info *si)
{
struct socket_info_container *sic = SOCKET_INFO_CONTAINER(si);
return sic->meta.next_free;
}
static void swrap_set_next_free(struct socket_info *si, int next_free)
{
struct socket_info_container *sic = SOCKET_INFO_CONTAINER(si);
sic->meta.next_free = next_free;
}
static int swrap_un_path(struct sockaddr_un *un,
const char *swrap_dir,
char type,
unsigned int iface,
unsigned int prt)
{
int ret;
ret = snprintf(un->sun_path,
sizeof(un->sun_path),
"%s/"SOCKET_FORMAT,
swrap_dir,
type,
iface,
prt);
if ((size_t)ret >= sizeof(un->sun_path)) {
return ENAMETOOLONG;
}
return 0;
}
static int swrap_un_path_EINVAL(struct sockaddr_un *un,
const char *swrap_dir)
{
int ret;
ret = snprintf(un->sun_path,
sizeof(un->sun_path),
"%s/EINVAL",
swrap_dir);
if ((size_t)ret >= sizeof(un->sun_path)) {
return ENAMETOOLONG;
}
return 0;
}
static bool swrap_dir_usable(const char *swrap_dir)
{
struct sockaddr_un un;
int ret;
ret = swrap_un_path(&un, swrap_dir, SOCKET_TYPE_CHAR_TCP, 0, 0);
if (ret == 0) {
return true;
}
ret = swrap_un_path_EINVAL(&un, swrap_dir);
if (ret == 0) {
return true;
}
return false;
}
static char *socket_wrapper_dir(void)
{
char *swrap_dir = NULL;
char *s = getenv("SOCKET_WRAPPER_DIR");
char *t;
bool ok;
if (s == NULL || s[0] == '\0') {
SWRAP_LOG(SWRAP_LOG_WARN, "SOCKET_WRAPPER_DIR not set");
return NULL;
}
swrap_dir = realpath(s, NULL);
if (swrap_dir == NULL) {
SWRAP_LOG(SWRAP_LOG_ERROR,
"Unable to resolve socket_wrapper dir path: %s - %s",
s,
strerror(errno));
abort();
}
ok = swrap_dir_usable(swrap_dir);
if (ok) {
goto done;
}
free(swrap_dir);
ok = swrap_dir_usable(s);
if (!ok) {
SWRAP_LOG(SWRAP_LOG_ERROR, "SOCKET_WRAPPER_DIR is too long");
abort();
}
t = getenv("SOCKET_WRAPPER_DIR_ALLOW_ORIG");
if (t == NULL) {
SWRAP_LOG(SWRAP_LOG_ERROR,
"realpath(SOCKET_WRAPPER_DIR) too long and "
"SOCKET_WRAPPER_DIR_ALLOW_ORIG not set");
abort();
}
swrap_dir = strdup(s);
if (swrap_dir == NULL) {
SWRAP_LOG(SWRAP_LOG_ERROR,
"Unable to duplicate socket_wrapper dir path");
abort();
}
SWRAP_LOG(SWRAP_LOG_WARN,
"realpath(SOCKET_WRAPPER_DIR) too long, "
"using original SOCKET_WRAPPER_DIR\n");
done:
SWRAP_LOG(SWRAP_LOG_TRACE, "socket_wrapper_dir: %s", swrap_dir);
return swrap_dir;
}
static unsigned int socket_wrapper_mtu(void)
{
static unsigned int max_mtu = 0;
unsigned int tmp;
const char *s;
char *endp;
swrap_mutex_lock(&mtu_update_mutex);
if (max_mtu != 0) {
goto done;
}
max_mtu = SOCKET_WRAPPER_MTU_DEFAULT;
s = getenv("SOCKET_WRAPPER_MTU");
if (s == NULL) {
goto done;
}
tmp = strtol(s, &endp, 10);
if (s == endp) {
goto done;
}
if (tmp < SOCKET_WRAPPER_MTU_MIN || tmp > SOCKET_WRAPPER_MTU_MAX) {
goto done;
}
max_mtu = tmp;
done:
swrap_mutex_unlock(&mtu_update_mutex);
return max_mtu;
}
static int _socket_wrapper_init_mutex(pthread_mutex_t *m, const char *name)
{
pthread_mutexattr_t ma;
bool need_destroy = false;
int ret = 0;
#define __CHECK(cmd) do { \
ret = cmd; \
if (ret != 0) { \
SWRAP_LOG(SWRAP_LOG_ERROR, \
"%s: %s - failed %d", \
name, #cmd, ret); \
goto done; \
} \
} while(0)
*m = (pthread_mutex_t)PTHREAD_MUTEX_INITIALIZER;
__CHECK(pthread_mutexattr_init(&ma));
need_destroy = true;
__CHECK(pthread_mutexattr_settype(&ma, PTHREAD_MUTEX_ERRORCHECK));
__CHECK(pthread_mutex_init(m, &ma));
done:
if (need_destroy) {
pthread_mutexattr_destroy(&ma);
}
return ret;
}
static size_t socket_wrapper_max_sockets(void)
{
const char *s;
size_t tmp;
char *endp;
if (socket_info_max != 0) {
return socket_info_max;
}
socket_info_max = SOCKET_WRAPPER_MAX_SOCKETS_DEFAULT;
s = getenv("SOCKET_WRAPPER_MAX_SOCKETS");
if (s == NULL || s[0] == '\0') {
goto done;
}
tmp = strtoul(s, &endp, 10);
if (s == endp) {
goto done;
}
if (tmp == 0) {
tmp = SOCKET_WRAPPER_MAX_SOCKETS_DEFAULT;
SWRAP_LOG(SWRAP_LOG_ERROR,
"Invalid number of sockets specified, "
"using default (%zu)",
tmp);
}
if (tmp > SOCKET_WRAPPER_MAX_SOCKETS_LIMIT) {
tmp = SOCKET_WRAPPER_MAX_SOCKETS_LIMIT;
SWRAP_LOG(SWRAP_LOG_ERROR,
"Invalid number of sockets specified, "
"using maximum (%zu).",
tmp);
}
socket_info_max = tmp;
done:
return socket_info_max;
}
static void socket_wrapper_init_fds_idx(void)
{
int *tmp = NULL;
size_t i;
if (socket_fds_idx != NULL) {
return;
}
tmp = (int *)calloc(socket_fds_max, sizeof(int));
if (tmp == NULL) {
SWRAP_LOG(SWRAP_LOG_ERROR,
"Failed to allocate socket fds index array: %s",
strerror(errno));
exit(-1);
}
for (i = 0; i < socket_fds_max; i++) {
tmp[i] = -1;
}
socket_fds_idx = tmp;
}
static void socket_wrapper_init_sockets(void)
{
size_t max_sockets;
size_t i;
int ret = 0;
swrap_bind_symbol_all();
swrap_mutex_lock(&sockets_mutex);
if (sockets != NULL) {
swrap_mutex_unlock(&sockets_mutex);
return;
}
SWRAP_LOG(SWRAP_LOG_DEBUG,
"SOCKET_WRAPPER_PACKAGE[%s] SOCKET_WRAPPER_VERSION[%s]",
SOCKET_WRAPPER_PACKAGE, SOCKET_WRAPPER_VERSION);
/*
* Intialize the static cache early before
* any thread is able to start.
*/
(void)swrap_ipv4_net();
socket_wrapper_init_fds_idx();
/* Needs to be called inside the sockets_mutex lock here. */
max_sockets = socket_wrapper_max_sockets();
sockets = (struct socket_info_container *)calloc(max_sockets,
sizeof(struct socket_info_container));
if (sockets == NULL) {
SWRAP_LOG(SWRAP_LOG_ERROR,
"Failed to allocate sockets array: %s",
strerror(errno));
swrap_mutex_unlock(&sockets_mutex);
exit(-1);
}
swrap_mutex_lock(&first_free_mutex);
swrap_mutex_lock(&sockets_si_global);
first_free = 0;
for (i = 0; i < max_sockets; i++) {
swrap_set_next_free(&sockets[i].info, i+1);
}
/* mark the end of the free list */
swrap_set_next_free(&sockets[max_sockets-1].info, -1);
swrap_mutex_unlock(&sockets_si_global);
swrap_mutex_unlock(&first_free_mutex);
swrap_mutex_unlock(&sockets_mutex);
if (ret != 0) {
exit(-1);
}
}
bool socket_wrapper_enabled(void)
{
char *s = socket_wrapper_dir();
if (s == NULL) {
return false;
}
SAFE_FREE(s);
socket_wrapper_init_sockets();
return true;
}
static unsigned int socket_wrapper_default_iface(void)
{
const char *s = getenv("SOCKET_WRAPPER_DEFAULT_IFACE");
if (s) {
unsigned int iface;
if (sscanf(s, "%u", &iface) == 1) {
if (iface >= 1 && iface <= MAX_WRAPPED_INTERFACES) {
return iface;
}
}
}
return 1;/* 127.0.0.1 */
}
static void set_socket_info_index(int fd, int idx)
{
SWRAP_LOG(SWRAP_LOG_TRACE,
"fd=%d idx=%d",
fd, idx);
socket_fds_idx[fd] = idx;
/* This builtin issues a full memory barrier. */
__sync_synchronize();
}
static void reset_socket_info_index(int fd)
{
SWRAP_LOG(SWRAP_LOG_TRACE,
"fd=%d idx=%d",
fd, -1);
set_socket_info_index(fd, -1);
}
static int find_socket_info_index(int fd)
{
if (fd < 0) {
return -1;
}
if (socket_fds_idx == NULL) {
return -1;
}
if ((size_t)fd >= socket_fds_max) {
/*
* Do not add a log here as some applications do stupid things
* like:
*
* for (fd = 0; fd <= getdtablesize(); fd++) {
* close(fd)
* };
*
* This would produce millions of lines of debug messages.
*/
#if 0
SWRAP_LOG(SWRAP_LOG_ERROR,
"Looking for a socket info for the fd %d is over the "
"max socket index limit of %zu.",
fd,
socket_fds_max);
#endif
return -1;
}
/* This builtin issues a full memory barrier. */
__sync_synchronize();
return socket_fds_idx[fd];
}
static int swrap_add_socket_info(const struct socket_info *si_input)
{
struct socket_info *si = NULL;
int si_index = -1;
if (si_input == NULL) {
errno = EINVAL;
return -1;
}
swrap_mutex_lock(&first_free_mutex);
if (first_free == -1) {
errno = ENFILE;
goto out;
}
si_index = first_free;
si = swrap_get_socket_info(si_index);
SWRAP_LOCK_SI(si);
first_free = swrap_get_next_free(si);
*si = *si_input;
swrap_inc_refcount(si);
SWRAP_UNLOCK_SI(si);
out:
swrap_mutex_unlock(&first_free_mutex);
return si_index;
}
static int swrap_create_socket(struct socket_info *si, int fd)
{
int idx;
if ((size_t)fd >= socket_fds_max) {
SWRAP_LOG(SWRAP_LOG_ERROR,
"The max socket index limit of %zu has been reached, "
"trying to add %d",
socket_fds_max,
fd);
errno = EMFILE;
return -1;
}
idx = swrap_add_socket_info(si);
if (idx == -1) {
return -1;
}
set_socket_info_index(fd, idx);
return idx;
}
static int convert_un_in(const struct sockaddr_un *un, struct sockaddr *in, socklen_t *len)
{
unsigned int iface;
unsigned int prt;
const char *p;
char type;
p = strrchr(un->sun_path, '/');
if (p) p++; else p = un->sun_path;
if (sscanf(p, SOCKET_FORMAT, &type, &iface, &prt) != 3) {
SWRAP_LOG(SWRAP_LOG_ERROR, "sun_path[%s] p[%s]",
un->sun_path, p);
errno = EINVAL;
return -1;
}
if (iface == 0 || iface > MAX_WRAPPED_INTERFACES) {
SWRAP_LOG(SWRAP_LOG_ERROR, "type %c iface %u port %u",
type, iface, prt);
errno = EINVAL;
return -1;
}
if (prt > 0xFFFF) {
SWRAP_LOG(SWRAP_LOG_ERROR, "type %c iface %u port %u",
type, iface, prt);
errno = EINVAL;
return -1;
}
SWRAP_LOG(SWRAP_LOG_TRACE, "type %c iface %u port %u",
type, iface, prt);
switch(type) {
case SOCKET_TYPE_CHAR_TCP:
case SOCKET_TYPE_CHAR_UDP: {
struct sockaddr_in *in2 = (struct sockaddr_in *)(void *)in;
if ((*len) < sizeof(*in2)) {
SWRAP_LOG(SWRAP_LOG_ERROR,
"V4: *len(%zu) < sizeof(*in2)=%zu",
(size_t)*len, sizeof(*in2));
errno = EINVAL;
return -1;
}
memset(in2, 0, sizeof(*in2));
in2->sin_family = AF_INET;
in2->sin_addr.s_addr = htonl(swrap_ipv4_iface(iface));
in2->sin_port = htons(prt);
*len = sizeof(*in2);
break;
}
#ifdef HAVE_IPV6
case SOCKET_TYPE_CHAR_TCP_V6:
case SOCKET_TYPE_CHAR_UDP_V6: {
struct sockaddr_in6 *in2 = (struct sockaddr_in6 *)(void *)in;
if ((*len) < sizeof(*in2)) {
SWRAP_LOG(SWRAP_LOG_ERROR,
"V6: *len(%zu) < sizeof(*in2)=%zu",
(size_t)*len, sizeof(*in2));
SWRAP_LOG(SWRAP_LOG_ERROR, "LINE:%d", __LINE__);
errno = EINVAL;
return -1;
}
memset(in2, 0, sizeof(*in2));
in2->sin6_family = AF_INET6;
in2->sin6_addr = *swrap_ipv6();
in2->sin6_addr.s6_addr[15] = iface;
in2->sin6_port = htons(prt);
*len = sizeof(*in2);
break;
}
#endif
default:
SWRAP_LOG(SWRAP_LOG_ERROR, "type %c iface %u port %u",
type, iface, prt);
errno = EINVAL;
return -1;
}
return 0;
}
static int convert_in_un_remote(struct socket_info *si, const struct sockaddr *inaddr, struct sockaddr_un *un,
int *bcast)
{
char type = '\0';
unsigned int prt;
unsigned int iface;
int is_bcast = 0;
char *swrap_dir = NULL;
if (bcast) *bcast = 0;
switch (inaddr->sa_family) {
case AF_INET: {
const struct sockaddr_in *in =
(const struct sockaddr_in *)(const void *)inaddr;
unsigned int addr = ntohl(in->sin_addr.s_addr);
char u_type = '\0';
char b_type = '\0';
char a_type = '\0';
const unsigned int sw_net_addr = swrap_ipv4_net();
const unsigned int sw_bcast_addr = swrap_ipv4_bcast();
switch (si->type) {
case SOCK_STREAM:
u_type = SOCKET_TYPE_CHAR_TCP;
break;
case SOCK_DGRAM:
u_type = SOCKET_TYPE_CHAR_UDP;
a_type = SOCKET_TYPE_CHAR_UDP;
b_type = SOCKET_TYPE_CHAR_UDP;
break;
default:
SWRAP_LOG(SWRAP_LOG_ERROR, "Unknown socket type!");
errno = ESOCKTNOSUPPORT;
return -1;
}
prt = ntohs(in->sin_port);
if (a_type && addr == 0xFFFFFFFF) {
/* 255.255.255.255 only udp */
is_bcast = 2;
type = a_type;
iface = socket_wrapper_default_iface();
} else if (b_type && addr == sw_bcast_addr) {
/*
* 127.255.255.255
* or
* 10.255.255.255
* only udp
*/
is_bcast = 1;
type = b_type;
iface = socket_wrapper_default_iface();
} else if ((addr & 0xFFFFFF00) == sw_net_addr) {
/* 127.0.0.X or 10.53.57.X */
is_bcast = 0;
type = u_type;
iface = (addr & 0x000000FF);
} else {
struct swrap_sockaddr_buf buf = {};
SWRAP_LOG(SWRAP_LOG_WARN,
"%s",
swrap_sockaddr_string(&buf, inaddr));
errno = ENETUNREACH;
return -1;
}
if (bcast) *bcast = is_bcast;
break;
}
#ifdef HAVE_IPV6
case AF_INET6: {
const struct sockaddr_in6 *in =
(const struct sockaddr_in6 *)(const void *)inaddr;
struct in6_addr cmp1, cmp2;
switch (si->type) {
case SOCK_STREAM:
type = SOCKET_TYPE_CHAR_TCP_V6;
break;
case SOCK_DGRAM:
type = SOCKET_TYPE_CHAR_UDP_V6;
break;
default:
SWRAP_LOG(SWRAP_LOG_ERROR, "Unknown socket type!");
errno = ESOCKTNOSUPPORT;
return -1;
}
/* XXX no multicast/broadcast */
prt = ntohs(in->sin6_port);
cmp1 = *swrap_ipv6();
cmp2 = in->sin6_addr;
cmp2.s6_addr[15] = 0;
if (IN6_ARE_ADDR_EQUAL(&cmp1, &cmp2)) {
iface = in->sin6_addr.s6_addr[15];
} else {
struct swrap_sockaddr_buf buf = {};
SWRAP_LOG(SWRAP_LOG_WARN,
"%s",
swrap_sockaddr_string(&buf, inaddr));
errno = ENETUNREACH;
return -1;
}
break;
}
#endif
default:
SWRAP_LOG(SWRAP_LOG_ERROR, "Unknown address family!");
errno = ENETUNREACH;
return -1;
}
if (prt == 0) {
SWRAP_LOG(SWRAP_LOG_WARN, "Port not set");
errno = EINVAL;
return -1;
}
swrap_dir = socket_wrapper_dir();
if (swrap_dir == NULL) {
errno = EINVAL;
return -1;
}
if (is_bcast) {
swrap_un_path_EINVAL(un, swrap_dir);
SWRAP_LOG(SWRAP_LOG_DEBUG, "un path [%s]", un->sun_path);
SAFE_FREE(swrap_dir);
/* the caller need to do more processing */
return 0;
}
swrap_un_path(un, swrap_dir, type, iface, prt);
SWRAP_LOG(SWRAP_LOG_DEBUG, "un path [%s]", un->sun_path);
SAFE_FREE(swrap_dir);
return 0;
}
static int convert_in_un_alloc(struct socket_info *si, const struct sockaddr *inaddr, struct sockaddr_un *un,
int *bcast)
{
char type = '\0';
unsigned int prt;
unsigned int iface;
struct stat st;
int is_bcast = 0;
char *swrap_dir = NULL;
if (bcast) *bcast = 0;
switch (si->family) {
case AF_INET: {
const struct sockaddr_in *in =
(const struct sockaddr_in *)(const void *)inaddr;
unsigned int addr = ntohl(in->sin_addr.s_addr);
char u_type = '\0';
char d_type = '\0';
char b_type = '\0';
char a_type = '\0';
const unsigned int sw_net_addr = swrap_ipv4_net();
const unsigned int sw_bcast_addr = swrap_ipv4_bcast();
prt = ntohs(in->sin_port);
switch (si->type) {
case SOCK_STREAM:
u_type = SOCKET_TYPE_CHAR_TCP;
d_type = SOCKET_TYPE_CHAR_TCP;
break;
case SOCK_DGRAM:
u_type = SOCKET_TYPE_CHAR_UDP;
d_type = SOCKET_TYPE_CHAR_UDP;
a_type = SOCKET_TYPE_CHAR_UDP;
b_type = SOCKET_TYPE_CHAR_UDP;
break;
default:
SWRAP_LOG(SWRAP_LOG_ERROR, "Unknown socket type!");
errno = ESOCKTNOSUPPORT;
return -1;
}
if (addr == 0) {
/* 0.0.0.0 */
is_bcast = 0;
type = d_type;
iface = socket_wrapper_default_iface();
} else if (a_type && addr == 0xFFFFFFFF) {
/* 255.255.255.255 only udp */
is_bcast = 2;
type = a_type;
iface = socket_wrapper_default_iface();
} else if (b_type && addr == sw_bcast_addr) {
/* 127.255.255.255 only udp */
is_bcast = 1;
type = b_type;
iface = socket_wrapper_default_iface();
} else if ((addr & 0xFFFFFF00) == sw_net_addr) {
/* 127.0.0.X */
is_bcast = 0;
type = u_type;
iface = (addr & 0x000000FF);
} else {
errno = EADDRNOTAVAIL;
return -1;
}
/* Store the bind address for connect() */
if (si->bindname.sa_socklen == 0) {
struct sockaddr_in bind_in;
socklen_t blen = sizeof(struct sockaddr_in);
ZERO_STRUCT(bind_in);
bind_in.sin_family = in->sin_family;
bind_in.sin_port = in->sin_port;
bind_in.sin_addr.s_addr = htonl(swrap_ipv4_iface(iface));
si->bindname.sa_socklen = blen;
memcpy(&si->bindname.sa.in, &bind_in, blen);
}
break;
}
#ifdef HAVE_IPV6
case AF_INET6: {
const struct sockaddr_in6 *in =
(const struct sockaddr_in6 *)(const void *)inaddr;
struct in6_addr cmp1, cmp2;
switch (si->type) {
case SOCK_STREAM:
type = SOCKET_TYPE_CHAR_TCP_V6;
break;
case SOCK_DGRAM:
type = SOCKET_TYPE_CHAR_UDP_V6;
break;
default:
SWRAP_LOG(SWRAP_LOG_ERROR, "Unknown socket type!");
errno = ESOCKTNOSUPPORT;
return -1;
}
/* XXX no multicast/broadcast */
prt = ntohs(in->sin6_port);
cmp1 = *swrap_ipv6();
cmp2 = in->sin6_addr;
cmp2.s6_addr[15] = 0;
if (IN6_IS_ADDR_UNSPECIFIED(&in->sin6_addr)) {
iface = socket_wrapper_default_iface();
} else if (IN6_ARE_ADDR_EQUAL(&cmp1, &cmp2)) {
iface = in->sin6_addr.s6_addr[15];
} else {
errno = EADDRNOTAVAIL;
return -1;
}
/* Store the bind address for connect() */
if (si->bindname.sa_socklen == 0) {
struct sockaddr_in6 bind_in;
socklen_t blen = sizeof(struct sockaddr_in6);
ZERO_STRUCT(bind_in);
bind_in.sin6_family = in->sin6_family;
bind_in.sin6_port = in->sin6_port;
bind_in.sin6_addr = *swrap_ipv6();
bind_in.sin6_addr.s6_addr[15] = iface;
memcpy(&si->bindname.sa.in6, &bind_in, blen);
si->bindname.sa_socklen = blen;
}
break;
}
#endif
default:
SWRAP_LOG(SWRAP_LOG_ERROR, "Unknown address family");
errno = EADDRNOTAVAIL;
return -1;
}
if (bcast) *bcast = is_bcast;
if (iface == 0 || iface > MAX_WRAPPED_INTERFACES) {
errno = EINVAL;
return -1;
}
swrap_dir = socket_wrapper_dir();
if (swrap_dir == NULL) {
errno = EINVAL;
return -1;
}
if (prt == 0) {
/* handle auto-allocation of ephemeral ports */
for (prt = 5001; prt < 10000; prt++) {
swrap_un_path(un, swrap_dir, type, iface, prt);
if (stat(un->sun_path, &st) == 0) continue;
set_port(si->family, prt, &si->myname);
set_port(si->family, prt, &si->bindname);
break;
}
if (prt == 10000) {
errno = ENFILE;
SAFE_FREE(swrap_dir);
return -1;
}
}
swrap_un_path(un, swrap_dir, type, iface, prt);
SWRAP_LOG(SWRAP_LOG_DEBUG, "un path [%s]", un->sun_path);
SAFE_FREE(swrap_dir);
return 0;
}
static struct socket_info *find_socket_info(int fd)
{
int idx = find_socket_info_index(fd);
if (idx == -1) {
return NULL;
}
return swrap_get_socket_info(idx);
}
#if 0 /* FIXME */
static bool check_addr_port_in_use(const struct sockaddr *sa, socklen_t len)
{
struct socket_info_fd *f;
const struct socket_info *last_s = NULL;
/* first catch invalid input */
switch (sa->sa_family) {
case AF_INET:
if (len < sizeof(struct sockaddr_in)) {
return false;
}
break;
#ifdef HAVE_IPV6
case AF_INET6:
if (len < sizeof(struct sockaddr_in6)) {
return false;
}
break;
#endif
default:
return false;
break;
}
for (f = socket_fds; f; f = f->next) {
struct socket_info *s = swrap_get_socket_info(f->si_index);
if (s == last_s) {
continue;
}
last_s = s;
if (s->myname == NULL) {
continue;
}
if (s->myname->sa_family != sa->sa_family) {
continue;
}
switch (s->myname->sa_family) {
case AF_INET: {
struct sockaddr_in *sin1, *sin2;
sin1 = (struct sockaddr_in *)s->myname;
sin2 = (struct sockaddr_in *)sa;
if (sin1->sin_addr.s_addr == htonl(INADDR_ANY)) {
continue;
}
if (sin1->sin_port != sin2->sin_port) {
continue;
}
if (sin1->sin_addr.s_addr != sin2->sin_addr.s_addr) {
continue;
}
/* found */
return true;
break;
}
#ifdef HAVE_IPV6
case AF_INET6: {
struct sockaddr_in6 *sin1, *sin2;
sin1 = (struct sockaddr_in6 *)s->myname;
sin2 = (struct sockaddr_in6 *)sa;
if (sin1->sin6_port != sin2->sin6_port) {
continue;
}
if (!IN6_ARE_ADDR_EQUAL(&sin1->sin6_addr,
&sin2->sin6_addr))
{
continue;
}
/* found */
return true;
break;
}
#endif
default:
continue;
break;
}
}
return false;
}
#endif
static void swrap_remove_stale(int fd);
static int sockaddr_convert_to_un(struct socket_info *si,
const struct sockaddr *in_addr,
socklen_t in_len,
struct sockaddr_un *out_addr,
int alloc_sock,
int *bcast)
{
struct sockaddr *out = (struct sockaddr *)(void *)out_addr;
(void) in_len; /* unused */
if (out_addr == NULL) {
return 0;
}
out->sa_family = AF_UNIX;
#ifdef HAVE_STRUCT_SOCKADDR_SA_LEN
out->sa_len = sizeof(*out_addr);
#endif
switch (in_addr->sa_family) {
case AF_UNSPEC: {
const struct sockaddr_in *sin;
if (si->family != AF_INET) {
break;
}
if (in_len < sizeof(struct sockaddr_in)) {
break;
}
sin = (const struct sockaddr_in *)(const void *)in_addr;
if(sin->sin_addr.s_addr != htonl(INADDR_ANY)) {
break;
}
/*
* Note: in the special case of AF_UNSPEC and INADDR_ANY,
* AF_UNSPEC is mapped to AF_INET and must be treated here.
*/
FALL_THROUGH;
}
case AF_INET:
#ifdef HAVE_IPV6
case AF_INET6:
#endif
switch (si->type) {
case SOCK_STREAM:
case SOCK_DGRAM:
break;
default:
SWRAP_LOG(SWRAP_LOG_ERROR, "Unknown socket type!");
errno = ESOCKTNOSUPPORT;
return -1;
}
if (alloc_sock) {
return convert_in_un_alloc(si, in_addr, out_addr, bcast);
} else {
return convert_in_un_remote(si, in_addr, out_addr, bcast);
}
default:
break;
}
errno = EAFNOSUPPORT;
SWRAP_LOG(SWRAP_LOG_ERROR, "Unknown address family");
return -1;
}
static int sockaddr_convert_from_un(const struct socket_info *si,
const struct sockaddr_un *in_addr,
socklen_t un_addrlen,
int family,
struct sockaddr *out_addr,
socklen_t *out_addrlen)
{
int ret;
if (out_addr == NULL || out_addrlen == NULL)
return 0;
if (un_addrlen == 0) {
*out_addrlen = 0;
return 0;
}
switch (family) {
case AF_INET:
#ifdef HAVE_IPV6
case AF_INET6:
#endif
switch (si->type) {
case SOCK_STREAM:
case SOCK_DGRAM:
break;
default:
SWRAP_LOG(SWRAP_LOG_ERROR, "Unknown socket type!");
errno = ESOCKTNOSUPPORT;
return -1;
}
ret = convert_un_in(in_addr, out_addr, out_addrlen);
#ifdef HAVE_STRUCT_SOCKADDR_SA_LEN
out_addr->sa_len = *out_addrlen;
#endif
return ret;
default:
break;
}
SWRAP_LOG(SWRAP_LOG_ERROR, "Unknown address family");
errno = EAFNOSUPPORT;
return -1;
}
enum swrap_packet_type {
SWRAP_CONNECT_SEND,
SWRAP_CONNECT_UNREACH,
SWRAP_CONNECT_RECV,
SWRAP_CONNECT_ACK,
SWRAP_ACCEPT_SEND,
SWRAP_ACCEPT_RECV,
SWRAP_ACCEPT_ACK,
SWRAP_RECVFROM,
SWRAP_SENDTO,
SWRAP_SENDTO_UNREACH,
SWRAP_PENDING_RST,
SWRAP_RECV,
SWRAP_RECV_RST,
SWRAP_SEND,
SWRAP_SEND_RST,
SWRAP_CLOSE_SEND,
SWRAP_CLOSE_RECV,
SWRAP_CLOSE_ACK,
};
struct swrap_file_hdr {
uint32_t magic;
uint16_t version_major;
uint16_t version_minor;
int32_t timezone;
uint32_t sigfigs;
uint32_t frame_max_len;
#define SWRAP_FRAME_LENGTH_MAX 0xFFFF
uint32_t link_type;
};
#define SWRAP_FILE_HDR_SIZE 24
struct swrap_packet_frame {
uint32_t seconds;
uint32_t micro_seconds;
uint32_t recorded_length;
uint32_t full_length;
};
#define SWRAP_PACKET_FRAME_SIZE 16
union swrap_packet_ip {
struct {
uint8_t ver_hdrlen;
uint8_t tos;
uint16_t packet_length;
uint16_t identification;
uint8_t flags;
uint8_t fragment;
uint8_t ttl;
uint8_t protocol;
uint16_t hdr_checksum;
uint32_t src_addr;
uint32_t dest_addr;
} v4;
#define SWRAP_PACKET_IP_V4_SIZE 20
struct {
uint8_t ver_prio;
uint8_t flow_label_high;
uint16_t flow_label_low;
uint16_t payload_length;
uint8_t next_header;
uint8_t hop_limit;
uint8_t src_addr[16];
uint8_t dest_addr[16];
} v6;
#define SWRAP_PACKET_IP_V6_SIZE 40
};
#define SWRAP_PACKET_IP_SIZE 40
union swrap_packet_payload {
struct {
uint16_t source_port;
uint16_t dest_port;
uint32_t seq_num;
uint32_t ack_num;
uint8_t hdr_length;
uint8_t control;
uint16_t window;
uint16_t checksum;
uint16_t urg;
} tcp;
#define SWRAP_PACKET_PAYLOAD_TCP_SIZE 20
struct {
uint16_t source_port;
uint16_t dest_port;
uint16_t length;
uint16_t checksum;
} udp;
#define SWRAP_PACKET_PAYLOAD_UDP_SIZE 8
struct {
uint8_t type;
uint8_t code;
uint16_t checksum;
uint32_t unused;
} icmp4;
#define SWRAP_PACKET_PAYLOAD_ICMP4_SIZE 8
struct {
uint8_t type;
uint8_t code;
uint16_t checksum;
uint32_t unused;
} icmp6;
#define SWRAP_PACKET_PAYLOAD_ICMP6_SIZE 8
};
#define SWRAP_PACKET_PAYLOAD_SIZE 20
#define SWRAP_PACKET_MIN_ALLOC \
(SWRAP_PACKET_FRAME_SIZE + \
SWRAP_PACKET_IP_SIZE + \
SWRAP_PACKET_PAYLOAD_SIZE)
static const char *swrap_pcap_init_file(void)
{
static int initialized = 0;
static const char *s = NULL;
static const struct swrap_file_hdr h;
static const struct swrap_packet_frame f;
static const union swrap_packet_ip i;
static const union swrap_packet_payload p;
if (initialized == 1) {
return s;
}
initialized = 1;
/*
* TODO: don't use the structs use plain buffer offsets
* and PUSH_U8(), PUSH_U16() and PUSH_U32()
*
* for now make sure we disable PCAP support
* if the struct has alignment!
*/
if (sizeof(h) != SWRAP_FILE_HDR_SIZE) {
return NULL;
}
if (sizeof(f) != SWRAP_PACKET_FRAME_SIZE) {
return NULL;
}
if (sizeof(i) != SWRAP_PACKET_IP_SIZE) {
return NULL;
}
if (sizeof(i.v4) != SWRAP_PACKET_IP_V4_SIZE) {
return NULL;
}
if (sizeof(i.v6) != SWRAP_PACKET_IP_V6_SIZE) {
return NULL;
}
if (sizeof(p) != SWRAP_PACKET_PAYLOAD_SIZE) {
return NULL;
}
if (sizeof(p.tcp) != SWRAP_PACKET_PAYLOAD_TCP_SIZE) {
return NULL;
}
if (sizeof(p.udp) != SWRAP_PACKET_PAYLOAD_UDP_SIZE) {
return NULL;
}
if (sizeof(p.icmp4) != SWRAP_PACKET_PAYLOAD_ICMP4_SIZE) {
return NULL;
}
if (sizeof(p.icmp6) != SWRAP_PACKET_PAYLOAD_ICMP6_SIZE) {
return NULL;
}
s = getenv("SOCKET_WRAPPER_PCAP_FILE");
if (s == NULL) {
return NULL;
}
if (strncmp(s, "./", 2) == 0) {
s += 2;
}
SWRAP_LOG(SWRAP_LOG_TRACE, "SOCKET_WRAPPER_PCAP_FILE: %s", s);
return s;
}
static uint8_t *swrap_pcap_packet_init(struct timeval *tval,
const struct sockaddr *src,
const struct sockaddr *dest,
int socket_type,
const uint8_t *payload,
size_t payload_len,
unsigned long tcp_seqno,
unsigned long tcp_ack,
unsigned char tcp_ctl,
int unreachable,
size_t *_packet_len)
{
uint8_t *base = NULL;
uint8_t *buf = NULL;
union {
uint8_t *ptr;
struct swrap_packet_frame *frame;
} f;
union {
uint8_t *ptr;
union swrap_packet_ip *ip;
} i;
union swrap_packet_payload *pay;
size_t packet_len;
size_t alloc_len;
size_t nonwire_len = sizeof(struct swrap_packet_frame);
size_t wire_hdr_len = 0;
size_t wire_len = 0;
size_t ip_hdr_len = 0;
size_t icmp_hdr_len = 0;
size_t icmp_truncate_len = 0;
uint8_t protocol = 0, icmp_protocol = 0;
const struct sockaddr_in *src_in = NULL;
const struct sockaddr_in *dest_in = NULL;
#ifdef HAVE_IPV6
const struct sockaddr_in6 *src_in6 = NULL;
const struct sockaddr_in6 *dest_in6 = NULL;
#endif
uint16_t src_port;
uint16_t dest_port;
switch (src->sa_family) {
case AF_INET:
src_in = (const struct sockaddr_in *)(const void *)src;
dest_in = (const struct sockaddr_in *)(const void *)dest;
src_port = src_in->sin_port;
dest_port = dest_in->sin_port;
ip_hdr_len = sizeof(i.ip->v4);
break;
#ifdef HAVE_IPV6
case AF_INET6:
src_in6 = (const struct sockaddr_in6 *)(const void *)src;
dest_in6 = (const struct sockaddr_in6 *)(const void *)dest;
src_port = src_in6->sin6_port;
dest_port = dest_in6->sin6_port;
ip_hdr_len = sizeof(i.ip->v6);
break;
#endif
default:
return NULL;
}
switch (socket_type) {
case SOCK_STREAM:
protocol = 0x06; /* TCP */
wire_hdr_len = ip_hdr_len + sizeof(pay->tcp);
wire_len = wire_hdr_len + payload_len;
break;
case SOCK_DGRAM:
protocol = 0x11; /* UDP */
wire_hdr_len = ip_hdr_len + sizeof(pay->udp);
wire_len = wire_hdr_len + payload_len;
break;
default:
return NULL;
}
if (unreachable) {
icmp_protocol = protocol;
switch (src->sa_family) {
case AF_INET:
protocol = 0x01; /* ICMPv4 */
icmp_hdr_len = ip_hdr_len + sizeof(pay->icmp4);
break;
#ifdef HAVE_IPV6
case AF_INET6:
protocol = 0x3A; /* ICMPv6 */
icmp_hdr_len = ip_hdr_len + sizeof(pay->icmp6);
break;
#endif
}
if (wire_len > 64 ) {
icmp_truncate_len = wire_len - 64;
}
wire_len += icmp_hdr_len;
}
packet_len = nonwire_len + wire_len;
alloc_len = packet_len;
if (alloc_len < SWRAP_PACKET_MIN_ALLOC) {
alloc_len = SWRAP_PACKET_MIN_ALLOC;
}
base = (uint8_t *)calloc(1, alloc_len);
if (base == NULL) {
return NULL;
}
buf = base;
f.ptr = buf;
f.frame->seconds = tval->tv_sec;
f.frame->micro_seconds = tval->tv_usec;
f.frame->recorded_length = wire_len - icmp_truncate_len;
f.frame->full_length = wire_len - icmp_truncate_len;
buf += SWRAP_PACKET_FRAME_SIZE;
i.ptr = buf;
switch (src->sa_family) {
case AF_INET:
if (src_in == NULL || dest_in == NULL) {
SAFE_FREE(base);
return NULL;
}
i.ip->v4.ver_hdrlen = 0x45; /* version 4 and 5 * 32 bit words */
i.ip->v4.tos = 0x00;
i.ip->v4.packet_length = htons(wire_len - icmp_truncate_len);
i.ip->v4.identification = htons(0xFFFF);
i.ip->v4.flags = 0x40; /* BIT 1 set - means don't fragment */
i.ip->v4.fragment = htons(0x0000);
i.ip->v4.ttl = 0xFF;
i.ip->v4.protocol = protocol;
i.ip->v4.hdr_checksum = htons(0x0000);
i.ip->v4.src_addr = src_in->sin_addr.s_addr;
i.ip->v4.dest_addr = dest_in->sin_addr.s_addr;
buf += SWRAP_PACKET_IP_V4_SIZE;
break;
#ifdef HAVE_IPV6
case AF_INET6:
if (src_in6 == NULL || dest_in6 == NULL) {
SAFE_FREE(base);
return NULL;
}
i.ip->v6.ver_prio = 0x60; /* version 4 and 5 * 32 bit words */
i.ip->v6.flow_label_high = 0x00;
i.ip->v6.flow_label_low = 0x0000;
i.ip->v6.payload_length = htons(wire_len - icmp_truncate_len); /* TODO */
i.ip->v6.next_header = protocol;
memcpy(i.ip->v6.src_addr, src_in6->sin6_addr.s6_addr, 16);
memcpy(i.ip->v6.dest_addr, dest_in6->sin6_addr.s6_addr, 16);
buf += SWRAP_PACKET_IP_V6_SIZE;
break;
#endif
}
if (unreachable) {
pay = (union swrap_packet_payload *)(void *)buf;
switch (src->sa_family) {
case AF_INET:
pay->icmp4.type = 0x03; /* destination unreachable */
pay->icmp4.code = 0x01; /* host unreachable */
pay->icmp4.checksum = htons(0x0000);
pay->icmp4.unused = htonl(0x00000000);
buf += SWRAP_PACKET_PAYLOAD_ICMP4_SIZE;
/* set the ip header in the ICMP payload */
i.ptr = buf;
i.ip->v4.ver_hdrlen = 0x45; /* version 4 and 5 * 32 bit words */
i.ip->v4.tos = 0x00;
i.ip->v4.packet_length = htons(wire_len - icmp_hdr_len);
i.ip->v4.identification = htons(0xFFFF);
i.ip->v4.flags = 0x40; /* BIT 1 set - means don't fragment */
i.ip->v4.fragment = htons(0x0000);
i.ip->v4.ttl = 0xFF;
i.ip->v4.protocol = icmp_protocol;
i.ip->v4.hdr_checksum = htons(0x0000);
i.ip->v4.src_addr = dest_in->sin_addr.s_addr;
i.ip->v4.dest_addr = src_in->sin_addr.s_addr;
buf += SWRAP_PACKET_IP_V4_SIZE;
src_port = dest_in->sin_port;
dest_port = src_in->sin_port;
break;
#ifdef HAVE_IPV6
case AF_INET6:
pay->icmp6.type = 0x01; /* destination unreachable */
pay->icmp6.code = 0x03; /* address unreachable */
pay->icmp6.checksum = htons(0x0000);
pay->icmp6.unused = htonl(0x00000000);
buf += SWRAP_PACKET_PAYLOAD_ICMP6_SIZE;
/* set the ip header in the ICMP payload */
i.ptr = buf;
i.ip->v6.ver_prio = 0x60; /* version 4 and 5 * 32 bit words */
i.ip->v6.flow_label_high = 0x00;
i.ip->v6.flow_label_low = 0x0000;
i.ip->v6.payload_length = htons(wire_len - icmp_truncate_len); /* TODO */
i.ip->v6.next_header = protocol;
memcpy(i.ip->v6.src_addr, dest_in6->sin6_addr.s6_addr, 16);
memcpy(i.ip->v6.dest_addr, src_in6->sin6_addr.s6_addr, 16);
buf += SWRAP_PACKET_IP_V6_SIZE;
src_port = dest_in6->sin6_port;
dest_port = src_in6->sin6_port;
break;
#endif
}
}
pay = (union swrap_packet_payload *)(void *)buf;
switch (socket_type) {
case SOCK_STREAM:
pay->tcp.source_port = src_port;
pay->tcp.dest_port = dest_port;
pay->tcp.seq_num = htonl(tcp_seqno);
pay->tcp.ack_num = htonl(tcp_ack);
pay->tcp.hdr_length = 0x50; /* 5 * 32 bit words */
pay->tcp.control = tcp_ctl;
pay->tcp.window = htons(0x7FFF);
pay->tcp.checksum = htons(0x0000);
pay->tcp.urg = htons(0x0000);
buf += SWRAP_PACKET_PAYLOAD_TCP_SIZE;
break;
case SOCK_DGRAM:
pay->udp.source_port = src_port;
pay->udp.dest_port = dest_port;
pay->udp.length = htons(8 + payload_len);
pay->udp.checksum = htons(0x0000);
buf += SWRAP_PACKET_PAYLOAD_UDP_SIZE;
break;
}
if (payload && payload_len > 0) {
memcpy(buf, payload, payload_len);
}
*_packet_len = packet_len - icmp_truncate_len;
return base;
}
static int swrap_pcap_get_fd(const char *fname)
{
static int fd = -1;
if (fd != -1) {
return fd;
}
fd = libc_open(fname, O_WRONLY|O_CREAT|O_EXCL|O_APPEND, 0644);
if (fd != -1) {
struct swrap_file_hdr file_hdr;
file_hdr.magic = 0xA1B2C3D4;
file_hdr.version_major = 0x0002;
file_hdr.version_minor = 0x0004;
file_hdr.timezone = 0x00000000;
file_hdr.sigfigs = 0x00000000;
file_hdr.frame_max_len = SWRAP_FRAME_LENGTH_MAX;
file_hdr.link_type = 0x0065; /* 101 RAW IP */
if (libc_write(fd, &file_hdr, sizeof(file_hdr)) != sizeof(file_hdr)) {
libc_close(fd);
fd = -1;
}
return fd;
}
fd = libc_open(fname, O_WRONLY|O_APPEND, 0644);
return fd;
}
static uint8_t *swrap_pcap_marshall_packet(struct socket_info *si,
const struct sockaddr *addr,
enum swrap_packet_type type,
const void *buf, size_t len,
size_t *packet_len)
{
const struct sockaddr *src_addr;
const struct sockaddr *dest_addr;
unsigned long tcp_seqno = 0;
unsigned long tcp_ack = 0;
unsigned char tcp_ctl = 0;
int unreachable = 0;
struct timeval tv;
switch (si->family) {
case AF_INET:
break;
#ifdef HAVE_IPV6
case AF_INET6:
break;
#endif
default:
return NULL;
}
switch (type) {
case SWRAP_CONNECT_SEND:
if (si->type != SOCK_STREAM) {
return NULL;
}
src_addr = &si->myname.sa.s;
dest_addr = addr;
tcp_seqno = si->io.pck_snd;
tcp_ack = si->io.pck_rcv;
tcp_ctl = 0x02; /* SYN */
si->io.pck_snd += 1;
break;
case SWRAP_CONNECT_RECV:
if (si->type != SOCK_STREAM) {
return NULL;
}
dest_addr = &si->myname.sa.s;
src_addr = addr;
tcp_seqno = si->io.pck_rcv;
tcp_ack = si->io.pck_snd;
tcp_ctl = 0x12; /** SYN,ACK */
si->io.pck_rcv += 1;
break;
case SWRAP_CONNECT_UNREACH:
if (si->type != SOCK_STREAM) {
return NULL;
}
dest_addr = &si->myname.sa.s;
src_addr = addr;
/* Unreachable: resend the data of SWRAP_CONNECT_SEND */
tcp_seqno = si->io.pck_snd - 1;
tcp_ack = si->io.pck_rcv;
tcp_ctl = 0x02; /* SYN */
unreachable = 1;
break;
case SWRAP_CONNECT_ACK:
if (si->type != SOCK_STREAM) {
return NULL;
}
src_addr = &si->myname.sa.s;
dest_addr = addr;
tcp_seqno = si->io.pck_snd;
tcp_ack = si->io.pck_rcv;
tcp_ctl = 0x10; /* ACK */
break;
case SWRAP_ACCEPT_SEND:
if (si->type != SOCK_STREAM) {
return NULL;
}
dest_addr = &si->myname.sa.s;
src_addr = addr;
tcp_seqno = si->io.pck_rcv;
tcp_ack = si->io.pck_snd;
tcp_ctl = 0x02; /* SYN */
si->io.pck_rcv += 1;
break;
case SWRAP_ACCEPT_RECV:
if (si->type != SOCK_STREAM) {
return NULL;
}
src_addr = &si->myname.sa.s;
dest_addr = addr;
tcp_seqno = si->io.pck_snd;
tcp_ack = si->io.pck_rcv;
tcp_ctl = 0x12; /* SYN,ACK */
si->io.pck_snd += 1;
break;
case SWRAP_ACCEPT_ACK:
if (si->type != SOCK_STREAM) {
return NULL;
}
dest_addr = &si->myname.sa.s;
src_addr = addr;
tcp_seqno = si->io.pck_rcv;
tcp_ack = si->io.pck_snd;
tcp_ctl = 0x10; /* ACK */
break;
case SWRAP_SEND:
src_addr = &si->myname.sa.s;
dest_addr = &si->peername.sa.s;
tcp_seqno = si->io.pck_snd;
tcp_ack = si->io.pck_rcv;
tcp_ctl = 0x18; /* PSH,ACK */
si->io.pck_snd += len;
break;
case SWRAP_SEND_RST:
dest_addr = &si->myname.sa.s;
src_addr = &si->peername.sa.s;
if (si->type == SOCK_DGRAM) {
return swrap_pcap_marshall_packet(si,
&si->peername.sa.s,
SWRAP_SENDTO_UNREACH,
buf,
len,
packet_len);
}
tcp_seqno = si->io.pck_rcv;
tcp_ack = si->io.pck_snd;
tcp_ctl = 0x14; /** RST,ACK */
break;
case SWRAP_PENDING_RST:
dest_addr = &si->myname.sa.s;
src_addr = &si->peername.sa.s;
if (si->type == SOCK_DGRAM) {
return NULL;
}
tcp_seqno = si->io.pck_rcv;
tcp_ack = si->io.pck_snd;
tcp_ctl = 0x14; /* RST,ACK */
break;
case SWRAP_RECV:
dest_addr = &si->myname.sa.s;
src_addr = &si->peername.sa.s;
tcp_seqno = si->io.pck_rcv;
tcp_ack = si->io.pck_snd;
tcp_ctl = 0x18; /* PSH,ACK */
si->io.pck_rcv += len;
break;
case SWRAP_RECV_RST:
dest_addr = &si->myname.sa.s;
src_addr = &si->peername.sa.s;
if (si->type == SOCK_DGRAM) {
return NULL;
}
tcp_seqno = si->io.pck_rcv;
tcp_ack = si->io.pck_snd;
tcp_ctl = 0x14; /* RST,ACK */
break;
case SWRAP_SENDTO:
src_addr = &si->myname.sa.s;
dest_addr = addr;
si->io.pck_snd += len;
break;
case SWRAP_SENDTO_UNREACH:
dest_addr = &si->myname.sa.s;
src_addr = addr;
unreachable = 1;
break;
case SWRAP_RECVFROM:
dest_addr = &si->myname.sa.s;
src_addr = addr;
si->io.pck_rcv += len;
break;
case SWRAP_CLOSE_SEND:
if (si->type != SOCK_STREAM) {
return NULL;
}
src_addr = &si->myname.sa.s;
dest_addr = &si->peername.sa.s;
tcp_seqno = si->io.pck_snd;
tcp_ack = si->io.pck_rcv;
tcp_ctl = 0x11; /* FIN, ACK */
si->io.pck_snd += 1;
break;
case SWRAP_CLOSE_RECV:
if (si->type != SOCK_STREAM) {
return NULL;
}
dest_addr = &si->myname.sa.s;
src_addr = &si->peername.sa.s;
tcp_seqno = si->io.pck_rcv;
tcp_ack = si->io.pck_snd;
tcp_ctl = 0x11; /* FIN,ACK */
si->io.pck_rcv += 1;
break;
case SWRAP_CLOSE_ACK:
if (si->type != SOCK_STREAM) {
return NULL;
}
src_addr = &si->myname.sa.s;
dest_addr = &si->peername.sa.s;
tcp_seqno = si->io.pck_snd;
tcp_ack = si->io.pck_rcv;
tcp_ctl = 0x10; /* ACK */
break;
default:
return NULL;
}
swrapGetTimeOfDay(&tv);
return swrap_pcap_packet_init(&tv,
src_addr,
dest_addr,
si->type,
(const uint8_t *)buf,
len,
tcp_seqno,
tcp_ack,
tcp_ctl,
unreachable,
packet_len);
}
static void swrap_pcap_dump_packet(struct socket_info *si,
const struct sockaddr *addr,
enum swrap_packet_type type,
const void *buf, size_t len)
{
const char *file_name;
uint8_t *packet;
size_t packet_len = 0;
int fd;
swrap_mutex_lock(&pcap_dump_mutex);
file_name = swrap_pcap_init_file();
if (!file_name) {
goto done;
}
packet = swrap_pcap_marshall_packet(si,
addr,
type,
buf,
len,
&packet_len);
if (packet == NULL) {
goto done;
}
fd = swrap_pcap_get_fd(file_name);
if (fd != -1) {
if (libc_write(fd, packet, packet_len) != (ssize_t)packet_len) {
free(packet);
goto done;
}
}
free(packet);
done:
swrap_mutex_unlock(&pcap_dump_mutex);
}
/****************************************************************************
* SIGNALFD
***************************************************************************/
#ifdef HAVE_SIGNALFD
static int swrap_signalfd(int fd, const sigset_t *mask, int flags)
{
int rc;
rc = libc_signalfd(fd, mask, flags);
if (rc != -1) {
swrap_remove_stale(fd);
}
return rc;
}
int signalfd(int fd, const sigset_t *mask, int flags)
{
return swrap_signalfd(fd, mask, flags);
}
#endif
/****************************************************************************
* SOCKET
***************************************************************************/
static int swrap_socket(int family, int type, int protocol)
{
struct socket_info *si = NULL;
struct socket_info _si = { 0 };
int fd;
int ret;
int real_type = type;
/*
* Remove possible addition flags passed to socket() so
* do not fail checking the type.
* See https://lwn.net/Articles/281965/
*/
#ifdef SOCK_CLOEXEC
real_type &= ~SOCK_CLOEXEC;
#endif
#ifdef SOCK_NONBLOCK
real_type &= ~SOCK_NONBLOCK;
#endif
if (!socket_wrapper_enabled()) {
return libc_socket(family, type, protocol);
}
switch (family) {
case AF_INET:
#ifdef HAVE_IPV6
case AF_INET6:
#endif
break;
#ifdef AF_NETLINK
case AF_NETLINK:
#endif /* AF_NETLINK */
#ifdef AF_PACKET
case AF_PACKET:
#endif /* AF_PACKET */
case AF_UNIX:
fd = libc_socket(family, type, protocol);
if (fd != -1) {
/* Check if we have a stale fd and remove it */
swrap_remove_stale(fd);
SWRAP_LOG(SWRAP_LOG_TRACE,
"Unix socket fd=%d",
fd);
}
return fd;
default:
errno = EAFNOSUPPORT;
return -1;
}
switch (real_type) {
case SOCK_STREAM:
break;
case SOCK_DGRAM:
break;
default:
errno = EPROTONOSUPPORT;
return -1;
}
switch (protocol) {
case 0:
break;
case 6:
if (real_type == SOCK_STREAM) {
break;
}
FALL_THROUGH;
case 17:
if (real_type == SOCK_DGRAM) {
break;
}
FALL_THROUGH;
default:
errno = EPROTONOSUPPORT;
return -1;
}
/*
* We must call libc_socket with type, from the caller, not the version
* we removed SOCK_CLOEXEC and SOCK_NONBLOCK from
*/
fd = libc_socket(AF_UNIX, type, 0);
if (fd == -1) {
return -1;
}
/* Check if we have a stale fd and remove it */
swrap_remove_stale(fd);
si = &_si;
si->family = family;
/* however, the rest of the socket_wrapper code expects just
* the type, not the flags */
si->type = real_type;
si->protocol = protocol;
/*
* Setup myname so getsockname() can succeed to find out the socket
* type.
*/
switch(si->family) {
case AF_INET: {
struct sockaddr_in sin = {
.sin_family = AF_INET,
};
si->myname.sa_socklen = sizeof(struct sockaddr_in);
memcpy(&si->myname.sa.in, &sin, si->myname.sa_socklen);
break;
}
#ifdef HAVE_IPV6
case AF_INET6: {
struct sockaddr_in6 sin6 = {
.sin6_family = AF_INET6,
};
si->myname.sa_socklen = sizeof(struct sockaddr_in6);
memcpy(&si->myname.sa.in6, &sin6, si->myname.sa_socklen);
break;
}
#endif
default:
errno = EINVAL;
return -1;
}
ret = swrap_create_socket(si, fd);
if (ret == -1) {
int saved_errno = errno;
libc_close(fd);
errno = saved_errno;
return -1;
}
SWRAP_LOG(SWRAP_LOG_TRACE,
"Created %s socket for protocol %s, fd=%d",
family == AF_INET ? "IPv4" : "IPv6",
real_type == SOCK_DGRAM ? "UDP" : "TCP",
fd);
return fd;
}
int socket(int family, int type, int protocol)
{
return swrap_socket(family, type, protocol);
}
/****************************************************************************
* SOCKETPAIR
***************************************************************************/
static int swrap_socketpair(int family, int type, int protocol, int sv[2])
{
int rc;
rc = libc_socketpair(family, type, protocol, sv);
if (rc != -1) {
swrap_remove_stale(sv[0]);
swrap_remove_stale(sv[1]);
}
return rc;
}
int socketpair(int family, int type, int protocol, int sv[2])
{
return swrap_socketpair(family, type, protocol, sv);
}
/****************************************************************************
* SOCKETPAIR
***************************************************************************/
#ifdef HAVE_TIMERFD_CREATE
static int swrap_timerfd_create(int clockid, int flags)
{
int fd;
fd = libc_timerfd_create(clockid, flags);
if (fd != -1) {
swrap_remove_stale(fd);
}
return fd;
}
int timerfd_create(int clockid, int flags)
{
return swrap_timerfd_create(clockid, flags);
}
#endif
/****************************************************************************
* PIPE
***************************************************************************/
static int swrap_pipe(int pipefd[2])
{
int rc;
rc = libc_pipe(pipefd);
if (rc != -1) {
swrap_remove_stale(pipefd[0]);
swrap_remove_stale(pipefd[1]);
}
return rc;
}
int pipe(int pipefd[2])
{
return swrap_pipe(pipefd);
}
/****************************************************************************
* ACCEPT
***************************************************************************/
static int swrap_accept(int s,
struct sockaddr *addr,
socklen_t *addrlen,
int flags)
{
struct socket_info *parent_si, *child_si;
struct socket_info new_si = { 0 };
int fd;
int idx;
struct swrap_address un_addr = {
.sa_socklen = sizeof(struct sockaddr_un),
};
struct swrap_address un_my_addr = {
.sa_socklen = sizeof(struct sockaddr_un),
};
struct swrap_address in_addr = {
.sa_socklen = sizeof(struct sockaddr_storage),
};
struct swrap_address in_my_addr = {
.sa_socklen = sizeof(struct sockaddr_storage),
};
int ret;
parent_si = find_socket_info(s);
if (!parent_si) {
#ifdef HAVE_ACCEPT4
return libc_accept4(s, addr, addrlen, flags);
#else
UNUSED(flags);
return libc_accept(s, addr, addrlen);
#endif
}
/*
* prevent parent_si from being altered / closed
* while we read it
*/
SWRAP_LOCK_SI(parent_si);
/*
* assume out sockaddr have the same size as the in parent
* socket family
*/
in_addr.sa_socklen = socket_length(parent_si->family);
if (in_addr.sa_socklen <= 0) {
SWRAP_UNLOCK_SI(parent_si);
errno = EINVAL;
return -1;
}
SWRAP_UNLOCK_SI(parent_si);
#ifdef HAVE_ACCEPT4
ret = libc_accept4(s, &un_addr.sa.s, &un_addr.sa_socklen, flags);
#else
UNUSED(flags);
ret = libc_accept(s, &un_addr.sa.s, &un_addr.sa_socklen);
#endif
if (ret == -1) {
int saved_errno = errno;
if (saved_errno == ENOTSOCK) {
/* Remove stale fds */
swrap_remove_stale(s);
}
errno = saved_errno;
return ret;
}
fd = ret;
/* Check if we have a stale fd and remove it */
swrap_remove_stale(fd);
if (un_addr.sa.un.sun_path[0] == '\0') {
/*
* FreeBSD seems to have a problem where
* accept4() on the unix socket doesn't
* ECONNABORTED for already disconnected connections.
*
* Let's try libc_getpeername() to get the peer address
* as a fallback, but it'll likely return ENOTCONN,
* which we have to map to ECONNABORTED.
*/
un_addr.sa_socklen = sizeof(struct sockaddr_un),
ret = libc_getpeername(fd, &un_addr.sa.s, &un_addr.sa_socklen);
if (ret == -1) {
int saved_errno = errno;
libc_close(fd);
if (saved_errno == ENOTCONN) {
/*
* If the connection is already disconnected
* we should return ECONNABORTED.
*/
saved_errno = ECONNABORTED;
}
errno = saved_errno;
return ret;
}
}
ret = libc_getsockname(fd,
&un_my_addr.sa.s,
&un_my_addr.sa_socklen);
if (ret == -1) {
int saved_errno = errno;
libc_close(fd);
if (saved_errno == ENOTCONN) {
/*
* If the connection is already disconnected
* we should return ECONNABORTED.
*/
saved_errno = ECONNABORTED;
}
errno = saved_errno;
return ret;
}
SWRAP_LOCK_SI(parent_si);
ret = sockaddr_convert_from_un(parent_si,
&un_addr.sa.un,
un_addr.sa_socklen,
parent_si->family,
&in_addr.sa.s,
&in_addr.sa_socklen);
if (ret == -1) {
int saved_errno = errno;
SWRAP_UNLOCK_SI(parent_si);
libc_close(fd);
errno = saved_errno;
return ret;
}
child_si = &new_si;
child_si->family = parent_si->family;
child_si->type = parent_si->type;
child_si->protocol = parent_si->protocol;
child_si->bound = 1;
child_si->is_server = 1;
child_si->connected = 1;
SWRAP_UNLOCK_SI(parent_si);
child_si->peername = (struct swrap_address) {
.sa_socklen = in_addr.sa_socklen,
};
memcpy(&child_si->peername.sa.ss, &in_addr.sa.ss, in_addr.sa_socklen);
if (addr != NULL && addrlen != NULL) {
size_t copy_len = MIN(*addrlen, in_addr.sa_socklen);
if (copy_len > 0) {
memcpy(addr, &in_addr.sa.ss, copy_len);
}
*addrlen = in_addr.sa_socklen;
}
ret = sockaddr_convert_from_un(child_si,
&un_my_addr.sa.un,
un_my_addr.sa_socklen,
child_si->family,
&in_my_addr.sa.s,
&in_my_addr.sa_socklen);
if (ret == -1) {
int saved_errno = errno;
libc_close(fd);
errno = saved_errno;
return ret;
}
SWRAP_LOG(SWRAP_LOG_TRACE,
"accept() path=%s, fd=%d",
un_my_addr.sa.un.sun_path, s);
child_si->myname = (struct swrap_address) {
.sa_socklen = in_my_addr.sa_socklen,
};
memcpy(&child_si->myname.sa.ss, &in_my_addr.sa.ss, in_my_addr.sa_socklen);
idx = swrap_create_socket(&new_si, fd);
if (idx == -1) {
int saved_errno = errno;
libc_close(fd);
errno = saved_errno;
return -1;
}
if (addr != NULL) {
struct socket_info *si = swrap_get_socket_info(idx);
SWRAP_LOCK_SI(si);
swrap_pcap_dump_packet(si, addr, SWRAP_ACCEPT_SEND, NULL, 0);
swrap_pcap_dump_packet(si, addr, SWRAP_ACCEPT_RECV, NULL, 0);
swrap_pcap_dump_packet(si, addr, SWRAP_ACCEPT_ACK, NULL, 0);
SWRAP_UNLOCK_SI(si);
}
return fd;
}
#ifdef HAVE_ACCEPT4
int accept4(int s, struct sockaddr *addr, socklen_t *addrlen, int flags)
{
return swrap_accept(s, addr, (socklen_t *)addrlen, flags);
}
#endif
#ifdef HAVE_ACCEPT_PSOCKLEN_T
int accept(int s, struct sockaddr *addr, Psocklen_t addrlen)
#else
int accept(int s, struct sockaddr *addr, socklen_t *addrlen)
#endif
{
return swrap_accept(s, addr, (socklen_t *)addrlen, 0);
}
static int autobind_start_init;
static int autobind_start;
/* using sendto() or connect() on an unbound socket would give the
recipient no way to reply, as unlike UDP and TCP, a unix domain
socket can't auto-assign ephemeral port numbers, so we need to
assign it here.
Note: this might change the family from ipv6 to ipv4
*/
static int swrap_auto_bind(int fd, struct socket_info *si, int family)
{
struct swrap_address un_addr = {
.sa_socklen = sizeof(struct sockaddr_un),
};
int i;
char type;
int ret;
int port;
char *swrap_dir = NULL;
swrap_mutex_lock(&autobind_start_mutex);
if (autobind_start_init != 1) {
autobind_start_init = 1;
autobind_start = getpid();
autobind_start %= 50000;
autobind_start += 10000;
}
un_addr.sa.un.sun_family = AF_UNIX;
switch (family) {
case AF_INET: {
struct sockaddr_in in;
switch (si->type) {
case SOCK_STREAM:
type = SOCKET_TYPE_CHAR_TCP;
break;
case SOCK_DGRAM:
type = SOCKET_TYPE_CHAR_UDP;
break;
default:
errno = ESOCKTNOSUPPORT;
ret = -1;
goto done;
}
memset(&in, 0, sizeof(in));
in.sin_family = AF_INET;
in.sin_addr.s_addr = htonl(swrap_ipv4_iface(
socket_wrapper_default_iface()));
si->myname = (struct swrap_address) {
.sa_socklen = sizeof(in),
};
memcpy(&si->myname.sa.in, &in, si->myname.sa_socklen);
break;
}
#ifdef HAVE_IPV6
case AF_INET6: {
struct sockaddr_in6 in6;
if (si->family != family) {
errno = ENETUNREACH;
ret = -1;
goto done;
}
switch (si->type) {
case SOCK_STREAM:
type = SOCKET_TYPE_CHAR_TCP_V6;
break;
case SOCK_DGRAM:
type = SOCKET_TYPE_CHAR_UDP_V6;
break;
default:
errno = ESOCKTNOSUPPORT;
ret = -1;
goto done;
}
memset(&in6, 0, sizeof(in6));
in6.sin6_family = AF_INET6;
in6.sin6_addr = *swrap_ipv6();
in6.sin6_addr.s6_addr[15] = socket_wrapper_default_iface();
si->myname = (struct swrap_address) {
.sa_socklen = sizeof(in6),
};
memcpy(&si->myname.sa.in6, &in6, si->myname.sa_socklen);
break;
}
#endif
default:
errno = ESOCKTNOSUPPORT;
ret = -1;
goto done;
}
if (autobind_start > 60000) {
autobind_start = 10000;
}
swrap_dir = socket_wrapper_dir();
if (swrap_dir == NULL) {
errno = EINVAL;
ret = -1;
goto done;
}
for (i = 0; i < SOCKET_MAX_SOCKETS; i++) {
port = autobind_start + i;
swrap_un_path(&un_addr.sa.un,
swrap_dir,
type,
socket_wrapper_default_iface(),
port);
ret = libc_bind(fd, &un_addr.sa.s, un_addr.sa_socklen);
if (ret == -1) {
if (errno == EALREADY || errno == EADDRINUSE) {
continue;
}
goto done;
}
si->un_addr = un_addr.sa.un;
si->bound = 1;
autobind_start = port + 1;
break;
}
if (i == SOCKET_MAX_SOCKETS) {
SWRAP_LOG(SWRAP_LOG_ERROR, "Too many open unix sockets (%u) for "
"interface "SOCKET_FORMAT,
SOCKET_MAX_SOCKETS,
type,
socket_wrapper_default_iface(),
0);
errno = ENFILE;
ret = -1;
goto done;
}
si->family = family;
set_port(si->family, port, &si->myname);
ret = 0;
done:
SAFE_FREE(swrap_dir);
swrap_mutex_unlock(&autobind_start_mutex);
return ret;
}
/****************************************************************************
* CONNECT
***************************************************************************/
static int swrap_connect(int s, const struct sockaddr *serv_addr,
socklen_t addrlen)
{
int ret;
struct swrap_address un_addr = {
.sa_socklen = sizeof(struct sockaddr_un),
};
struct socket_info *si = find_socket_info(s);
struct swrap_sockaddr_buf buf = {};
int bcast = 0;
if (!si) {
return libc_connect(s, serv_addr, addrlen);
}
SWRAP_LOCK_SI(si);
if (si->bound == 0) {
ret = swrap_auto_bind(s, si, serv_addr->sa_family);
if (ret == -1) {
goto done;
}
}
if (si->family != serv_addr->sa_family) {
SWRAP_LOG(SWRAP_LOG_ERROR,
"called for fd=%d (family=%d) called with invalid family=%d",
s, si->family, serv_addr->sa_family);
errno = EINVAL;
ret = -1;
goto done;
}
ret = sockaddr_convert_to_un(si, serv_addr,
addrlen, &un_addr.sa.un, 0, &bcast);
if (ret == -1) {
goto done;
}
if (bcast) {
errno = ENETUNREACH;
ret = -1;
goto done;
}
if (si->type == SOCK_DGRAM) {
si->defer_connect = 1;
ret = 0;
} else {
swrap_pcap_dump_packet(si, serv_addr, SWRAP_CONNECT_SEND, NULL, 0);
ret = libc_connect(s,
&un_addr.sa.s,
un_addr.sa_socklen);
}
SWRAP_LOG(SWRAP_LOG_TRACE,
"connect(%s) path=%s, fd=%d",
swrap_sockaddr_string(&buf, serv_addr),
un_addr.sa.un.sun_path, s);
/* to give better errors */
if (ret == -1 && errno == ENOENT) {
errno = EHOSTUNREACH;
}
if (ret == 0) {
si->peername = (struct swrap_address) {
.sa_socklen = addrlen,
};
memcpy(&si->peername.sa.ss, serv_addr, addrlen);
si->connected = 1;
/*
* When we connect() on a socket than we have to bind the
* outgoing connection on the interface we use for the
* transport. We already bound it on the right interface
* but here we have to update the name so getsockname()
* returns correct information.
*/
if (si->bindname.sa_socklen > 0) {
si->myname = (struct swrap_address) {
.sa_socklen = si->bindname.sa_socklen,
};
memcpy(&si->myname.sa.ss,
&si->bindname.sa.ss,
si->bindname.sa_socklen);
/* Cleanup bindname */
si->bindname = (struct swrap_address) {
.sa_socklen = 0,
};
}
swrap_pcap_dump_packet(si, serv_addr, SWRAP_CONNECT_RECV, NULL, 0);
swrap_pcap_dump_packet(si, serv_addr, SWRAP_CONNECT_ACK, NULL, 0);
} else {
swrap_pcap_dump_packet(si, serv_addr, SWRAP_CONNECT_UNREACH, NULL, 0);
}
done:
SWRAP_UNLOCK_SI(si);
return ret;
}
int connect(int s, const struct sockaddr *serv_addr, socklen_t addrlen)
{
return swrap_connect(s, serv_addr, addrlen);
}
/****************************************************************************
* BIND
***************************************************************************/
static int swrap_bind(int s, const struct sockaddr *myaddr, socklen_t addrlen)
{
int ret;
struct swrap_address un_addr = {
.sa_socklen = sizeof(struct sockaddr_un),
};
struct socket_info *si = find_socket_info(s);
struct swrap_sockaddr_buf buf = {};
int ret_errno = errno;
int bind_error = 0;
#if 0 /* FIXME */
bool in_use;
#endif
if (!si) {
return libc_bind(s, myaddr, addrlen);
}
SWRAP_LOCK_SI(si);
switch (si->family) {
case AF_INET: {
const struct sockaddr_in *sin;
if (addrlen < sizeof(struct sockaddr_in)) {
bind_error = EINVAL;
break;
}
sin = (const struct sockaddr_in *)(const void *)myaddr;
if (sin->sin_family != AF_INET) {
bind_error = EAFNOSUPPORT;
}
/* special case for AF_UNSPEC */
if (sin->sin_family == AF_UNSPEC &&
(sin->sin_addr.s_addr == htonl(INADDR_ANY)))
{
bind_error = 0;
}
break;
}
#ifdef HAVE_IPV6
case AF_INET6: {
const struct sockaddr_in6 *sin6;
if (addrlen < sizeof(struct sockaddr_in6)) {
bind_error = EINVAL;
break;
}
sin6 = (const struct sockaddr_in6 *)(const void *)myaddr;
if (sin6->sin6_family != AF_INET6) {
bind_error = EAFNOSUPPORT;
}
break;
}
#endif
default:
bind_error = EINVAL;
break;
}
if (bind_error != 0) {
ret_errno = bind_error;
ret = -1;
goto out;
}
#if 0 /* FIXME */
in_use = check_addr_port_in_use(myaddr, addrlen);
if (in_use) {
errno = EADDRINUSE;
ret = -1;
goto out;
}
#endif
si->myname.sa_socklen = addrlen;
memcpy(&si->myname.sa.ss, myaddr, addrlen);
ret = sockaddr_convert_to_un(si,
myaddr,
addrlen,
&un_addr.sa.un,
1,
&si->bcast);
if (ret == -1) {
ret_errno = errno;
goto out;
}
unlink(un_addr.sa.un.sun_path);
ret = libc_bind(s, &un_addr.sa.s, un_addr.sa_socklen);
if (ret == -1) {
ret_errno = errno;
}
SWRAP_LOG(SWRAP_LOG_TRACE,
"bind(%s) path=%s, fd=%d ret=%d ret_errno=%d",
swrap_sockaddr_string(&buf, myaddr),
un_addr.sa.un.sun_path, s, ret, ret_errno);
if (ret == 0) {
si->bound = 1;
}
out:
SWRAP_UNLOCK_SI(si);
errno = ret_errno;
return ret;
}
int bind(int s, const struct sockaddr *myaddr, socklen_t addrlen)
{
return swrap_bind(s, myaddr, addrlen);
}
/****************************************************************************
* BINDRESVPORT
***************************************************************************/
#ifdef HAVE_BINDRESVPORT
static int swrap_getsockname(int s, struct sockaddr *name, socklen_t *addrlen);
static int swrap_bindresvport_sa(int sd, struct sockaddr *sa)
{
struct swrap_address myaddr = {
.sa_socklen = sizeof(struct sockaddr_storage),
};
socklen_t salen;
static uint16_t port;
uint16_t i;
int rc = -1;
int af;
#define SWRAP_STARTPORT 600
#define SWRAP_ENDPORT (IPPORT_RESERVED - 1)
#define SWRAP_NPORTS (SWRAP_ENDPORT - SWRAP_STARTPORT + 1)
if (port == 0) {
port = (getpid() % SWRAP_NPORTS) + SWRAP_STARTPORT;
}
if (sa == NULL) {
salen = myaddr.sa_socklen;
sa = &myaddr.sa.s;
rc = swrap_getsockname(sd, &myaddr.sa.s, &salen);
if (rc < 0) {
return -1;
}
af = sa->sa_family;
memset(&myaddr.sa.ss, 0, salen);
} else {
af = sa->sa_family;
}
for (i = 0; i < SWRAP_NPORTS; i++, port++) {
switch(af) {
case AF_INET: {
struct sockaddr_in *sinp = (struct sockaddr_in *)(void *)sa;
salen = sizeof(struct sockaddr_in);
sinp->sin_port = htons(port);
break;
}
case AF_INET6: {
struct sockaddr_in6 *sin6p = (struct sockaddr_in6 *)(void *)sa;
salen = sizeof(struct sockaddr_in6);
sin6p->sin6_port = htons(port);
break;
}
default:
errno = EAFNOSUPPORT;
return -1;
}
sa->sa_family = af;
if (port > SWRAP_ENDPORT) {
port = SWRAP_STARTPORT;
}
rc = swrap_bind(sd, (struct sockaddr *)sa, salen);
if (rc == 0 || errno != EADDRINUSE) {
break;
}
}
return rc;
}
int bindresvport(int sockfd, struct sockaddr_in *sinp)
{
return swrap_bindresvport_sa(sockfd, (struct sockaddr *)sinp);
}
#endif
/****************************************************************************
* LISTEN
***************************************************************************/
static int swrap_listen(int s, int backlog)
{
int ret;
struct socket_info *si = find_socket_info(s);
if (!si) {
return libc_listen(s, backlog);
}
SWRAP_LOCK_SI(si);
if (si->bound == 0) {
ret = swrap_auto_bind(s, si, si->family);
if (ret == -1) {
errno = EADDRINUSE;
goto out;
}
}
ret = libc_listen(s, backlog);
if (ret == 0) {
si->listening = 1;
}
out:
SWRAP_UNLOCK_SI(si);
return ret;
}
int listen(int s, int backlog)
{
return swrap_listen(s, backlog);
}
/****************************************************************************
* FOPEN
***************************************************************************/
static FILE *swrap_fopen(const char *name, const char *mode)
{
FILE *fp;
fp = libc_fopen(name, mode);
if (fp != NULL) {
int fd = fileno(fp);
swrap_remove_stale(fd);
}
return fp;
}
#undef fopen /* Needed for LFS handling */
FILE *fopen(const char *name, const char *mode)
{
return swrap_fopen(name, mode);
}
/****************************************************************************
* FOPEN64
***************************************************************************/
#ifdef HAVE_FOPEN64
static FILE *swrap_fopen64(const char *name, const char *mode)
{
FILE *fp;
fp = libc_fopen64(name, mode);
if (fp != NULL) {
int fd = fileno(fp);
swrap_remove_stale(fd);
}
return fp;
}
FILE *fopen64(const char *name, const char *mode)
{
return swrap_fopen64(name, mode);
}
#endif /* HAVE_FOPEN64 */
/****************************************************************************
* OPEN
***************************************************************************/
static int swrap_vopen(const char *pathname, int flags, va_list ap)
{
int ret;
ret = libc_vopen(pathname, flags, ap);
if (ret != -1) {
/*
* There are methods for closing descriptors (libc-internal code
* paths, direct syscalls) which close descriptors in ways that
* we can't intercept, so try to recover when we notice that
* that's happened
*/
swrap_remove_stale(ret);
}
return ret;
}
#undef open /* Needed for LFS handling */
int open(const char *pathname, int flags, ...)
{
va_list ap;
int fd;
va_start(ap, flags);
fd = swrap_vopen(pathname, flags, ap);
va_end(ap);
return fd;
}
/****************************************************************************
* OPEN64
***************************************************************************/
#ifdef HAVE_OPEN64
static int swrap_vopen64(const char *pathname, int flags, va_list ap)
{
int ret;
ret = libc_vopen64(pathname, flags, ap);
if (ret != -1) {
/*
* There are methods for closing descriptors (libc-internal code
* paths, direct syscalls) which close descriptors in ways that
* we can't intercept, so try to recover when we notice that
* that's happened
*/
swrap_remove_stale(ret);
}
return ret;
}
int open64(const char *pathname, int flags, ...)
{
va_list ap;
int fd;
va_start(ap, flags);
fd = swrap_vopen64(pathname, flags, ap);
va_end(ap);
return fd;
}
#endif /* HAVE_OPEN64 */
/****************************************************************************
* OPENAT64
***************************************************************************/
#ifdef HAVE_OPENAT64
static int
swrap_vopenat64(int dirfd, const char *pathname, int flags, va_list ap)
{
int ret;
ret = libc_vopenat64(dirfd, pathname, flags, ap);
if (ret != -1) {
/*
* There are methods for closing descriptors (libc-internal code
* paths, direct syscalls) which close descriptors in ways that
* we can't intercept, so try to recover when we notice that
* that's happened
*/
swrap_remove_stale(ret);
}
return ret;
}
int openat64(int dirfd, const char *pathname, int flags, ...)
{
va_list ap;
int fd;
va_start(ap, flags);
fd = swrap_vopenat64(dirfd, pathname, flags, ap);
va_end(ap);
return fd;
}
#endif /* HAVE_OPENAT64 */
/****************************************************************************
* OPENAT
***************************************************************************/
static int swrap_vopenat(int dirfd, const char *path, int flags, va_list ap)
{
int ret;
ret = libc_vopenat(dirfd, path, flags, ap);
if (ret != -1) {
/*
* There are methods for closing descriptors (libc-internal code
* paths, direct syscalls) which close descriptors in ways that
* we can't intercept, so try to recover when we notice that
* that's happened
*/
swrap_remove_stale(ret);
}
return ret;
}
#undef openat /* Needed for LFS handling */
int openat(int dirfd, const char *path, int flags, ...)
{
va_list ap;
int fd;
va_start(ap, flags);
fd = swrap_vopenat(dirfd, path, flags, ap);
va_end(ap);
return fd;
}
/****************************************************************************
* GETPEERNAME
***************************************************************************/
static int swrap_getpeername(int s, struct sockaddr *name, socklen_t *addrlen)
{
struct socket_info *si = find_socket_info(s);
socklen_t len;
int ret = -1;
if (!si) {
return libc_getpeername(s, name, addrlen);
}
SWRAP_LOCK_SI(si);
if (si->peername.sa_socklen == 0)
{
errno = ENOTCONN;
goto out;
}
len = MIN(*addrlen, si->peername.sa_socklen);
if (len == 0) {
ret = 0;
goto out;
}
memcpy(name, &si->peername.sa.ss, len);
*addrlen = si->peername.sa_socklen;
ret = 0;
out:
SWRAP_UNLOCK_SI(si);
return ret;
}
#ifdef HAVE_ACCEPT_PSOCKLEN_T
int getpeername(int s, struct sockaddr *name, Psocklen_t addrlen)
#else
int getpeername(int s, struct sockaddr *name, socklen_t *addrlen)
#endif
{
return swrap_getpeername(s, name, (socklen_t *)addrlen);
}
/****************************************************************************
* GETSOCKNAME
***************************************************************************/
static int swrap_getsockname(int s, struct sockaddr *name, socklen_t *addrlen)
{
struct socket_info *si = find_socket_info(s);
socklen_t len;
int ret = -1;
if (!si) {
return libc_getsockname(s, name, addrlen);
}
SWRAP_LOCK_SI(si);
len = MIN(*addrlen, si->myname.sa_socklen);
if (len == 0) {
ret = 0;
goto out;
}
memcpy(name, &si->myname.sa.ss, len);
*addrlen = si->myname.sa_socklen;
ret = 0;
out:
SWRAP_UNLOCK_SI(si);
return ret;
}
#ifdef HAVE_ACCEPT_PSOCKLEN_T
int getsockname(int s, struct sockaddr *name, Psocklen_t addrlen)
#else
int getsockname(int s, struct sockaddr *name, socklen_t *addrlen)
#endif
{
return swrap_getsockname(s, name, (socklen_t *)addrlen);
}
/****************************************************************************
* GETSOCKOPT
***************************************************************************/
#ifndef SO_PROTOCOL
# ifdef SO_PROTOTYPE /* The Solaris name */
# define SO_PROTOCOL SO_PROTOTYPE
# endif /* SO_PROTOTYPE */
#endif /* SO_PROTOCOL */
static int swrap_getsockopt(int s, int level, int optname,
void *optval, socklen_t *optlen)
{
struct socket_info *si = find_socket_info(s);
int ret;
if (!si) {
return libc_getsockopt(s,
level,
optname,
optval,
optlen);
}
SWRAP_LOCK_SI(si);
if (level == SOL_SOCKET) {
switch (optname) {
#ifdef SO_DOMAIN
case SO_DOMAIN:
if (optval == NULL || optlen == NULL ||
*optlen < (socklen_t)sizeof(int)) {
errno = EINVAL;
ret = -1;
goto done;
}
*optlen = sizeof(int);
*(int *)optval = si->family;
ret = 0;
goto done;
#endif /* SO_DOMAIN */
#ifdef SO_PROTOCOL
case SO_PROTOCOL:
if (optval == NULL || optlen == NULL ||
*optlen < (socklen_t)sizeof(int)) {
errno = EINVAL;
ret = -1;
goto done;
}
*optlen = sizeof(int);
*(int *)optval = si->protocol;
ret = 0;
goto done;
#endif /* SO_PROTOCOL */
case SO_TYPE:
if (optval == NULL || optlen == NULL ||
*optlen < (socklen_t)sizeof(int)) {
errno = EINVAL;
ret = -1;
goto done;
}
*optlen = sizeof(int);
*(int *)optval = si->type;
ret = 0;
goto done;
default:
ret = libc_getsockopt(s,
level,
optname,
optval,
optlen);
goto done;
}
} else if (level == IPPROTO_TCP) {
switch (optname) {
#ifdef TCP_NODELAY
case TCP_NODELAY:
/*
* This enables sending packets directly out over TCP.
* As a unix socket is doing that any way, report it as
* enabled.
*/
if (optval == NULL || optlen == NULL ||
*optlen < (socklen_t)sizeof(int)) {
errno = EINVAL;
ret = -1;
goto done;
}
*optlen = sizeof(int);
*(int *)optval = si->tcp_nodelay;
ret = 0;
goto done;
#endif /* TCP_NODELAY */
#ifdef TCP_INFO
case TCP_INFO: {
struct tcp_info info;
socklen_t ilen = sizeof(info);
#ifdef HAVE_NETINET_TCP_FSM_H
/* This is FreeBSD */
# define __TCP_LISTEN TCPS_LISTEN
# define __TCP_ESTABLISHED TCPS_ESTABLISHED
# define __TCP_CLOSE TCPS_CLOSED
#else
/* This is Linux */
# define __TCP_LISTEN TCP_LISTEN
# define __TCP_ESTABLISHED TCP_ESTABLISHED
# define __TCP_CLOSE TCP_CLOSE
#endif
ZERO_STRUCT(info);
if (si->listening) {
info.tcpi_state = __TCP_LISTEN;
} else if (si->connected) {
/*
* For now we just fake a few values
* supported both by FreeBSD and Linux
*/
info.tcpi_state = __TCP_ESTABLISHED;
info.tcpi_rto = 200000; /* 200 msec */
info.tcpi_rtt = 5000; /* 5 msec */
info.tcpi_rttvar = 5000; /* 5 msec */
} else {
info.tcpi_state = __TCP_CLOSE;
info.tcpi_rto = 1000000; /* 1 sec */
info.tcpi_rtt = 0;
info.tcpi_rttvar = 250000; /* 250 msec */
}
if (optval == NULL || optlen == NULL ||
*optlen < (socklen_t)ilen) {
errno = EINVAL;
ret = -1;
goto done;
}
*optlen = ilen;
memcpy(optval, &info, ilen);
ret = 0;
goto done;
}
#endif /* TCP_INFO */
default:
break;
}
}
errno = ENOPROTOOPT;
ret = -1;
done:
SWRAP_UNLOCK_SI(si);
return ret;
}
#ifdef HAVE_ACCEPT_PSOCKLEN_T
int getsockopt(int s, int level, int optname, void *optval, Psocklen_t optlen)
#else
int getsockopt(int s, int level, int optname, void *optval, socklen_t *optlen)
#endif
{
return swrap_getsockopt(s, level, optname, optval, (socklen_t *)optlen);
}
/****************************************************************************
* SETSOCKOPT
***************************************************************************/
static int swrap_setsockopt(int s, int level, int optname,
const void *optval, socklen_t optlen)
{
struct socket_info *si = find_socket_info(s);
int ret;
if (!si) {
return libc_setsockopt(s,
level,
optname,
optval,
optlen);
}
if (level == SOL_SOCKET) {
return libc_setsockopt(s,
level,
optname,
optval,
optlen);
}
SWRAP_LOCK_SI(si);
if (level == IPPROTO_TCP) {
switch (optname) {
#ifdef TCP_NODELAY
case TCP_NODELAY: {
int i;
/*
* This enables sending packets directly out over TCP.
* A unix socket is doing that any way.
*/
if (optval == NULL || optlen == 0 ||
optlen < (socklen_t)sizeof(int)) {
errno = EINVAL;
ret = -1;
goto done;
}
i = *discard_const_p(int, optval);
if (i != 0 && i != 1) {
errno = EINVAL;
ret = -1;
goto done;
}
si->tcp_nodelay = i;
ret = 0;
goto done;
}
#endif /* TCP_NODELAY */
default:
break;
}
}
switch (si->family) {
case AF_INET:
if (level == IPPROTO_IP) {
#ifdef IP_PKTINFO
if (optname == IP_PKTINFO) {
si->pktinfo = AF_INET;
}
#endif /* IP_PKTINFO */
}
ret = 0;
goto done;
#ifdef HAVE_IPV6
case AF_INET6:
if (level == IPPROTO_IPV6) {
#ifdef IPV6_RECVPKTINFO
if (optname == IPV6_RECVPKTINFO) {
si->pktinfo = AF_INET6;
}
#endif /* IPV6_PKTINFO */
}
ret = 0;
goto done;
#endif
default:
errno = ENOPROTOOPT;
ret = -1;
goto done;
}
done:
SWRAP_UNLOCK_SI(si);
return ret;
}
int setsockopt(int s, int level, int optname,
const void *optval, socklen_t optlen)
{
return swrap_setsockopt(s, level, optname, optval, optlen);
}
/****************************************************************************
* IOCTL
***************************************************************************/
static int swrap_vioctl(int s, unsigned long int r, va_list va)
{
struct socket_info *si = find_socket_info(s);
va_list ap;
int *value_ptr = NULL;
int rc;
if (!si) {
return libc_vioctl(s, r, va);
}
SWRAP_LOCK_SI(si);
va_copy(ap, va);
rc = libc_vioctl(s, r, va);
switch (r) {
case FIONREAD:
if (rc == 0) {
value_ptr = ((int *)va_arg(ap, int *));
}
if (rc == -1 && errno != EAGAIN && errno != ENOBUFS) {
swrap_pcap_dump_packet(si, NULL, SWRAP_PENDING_RST, NULL, 0);
} else if (value_ptr != NULL && *value_ptr == 0) { /* END OF FILE */
swrap_pcap_dump_packet(si, NULL, SWRAP_PENDING_RST, NULL, 0);
}
break;
#ifdef FIONWRITE
case FIONWRITE:
/* this is FreeBSD */
FALL_THROUGH; /* to TIOCOUTQ */
#endif /* FIONWRITE */
case TIOCOUTQ: /* same as SIOCOUTQ on Linux */
/*
* This may return more bytes then the application
* sent into the socket, for tcp it should
* return the number of unacked bytes.
*
* On AF_UNIX, all bytes are immediately acked!
*/
if (rc == 0) {
value_ptr = ((int *)va_arg(ap, int *));
*value_ptr = 0;
}
break;
}
va_end(ap);
SWRAP_UNLOCK_SI(si);
return rc;
}
#ifdef HAVE_IOCTL_INT
int ioctl(int s, int r, ...)
#else
int ioctl(int s, unsigned long int r, ...)
#endif
{
va_list va;
int rc;
va_start(va, r);
rc = swrap_vioctl(s, (unsigned long int) r, va);
va_end(va);
return rc;
}
/*****************
* CMSG
*****************/
#ifdef HAVE_STRUCT_MSGHDR_MSG_CONTROL
#ifndef CMSG_ALIGN
# ifdef _ALIGN /* BSD */
#define CMSG_ALIGN _ALIGN
# else
#define CMSG_ALIGN(len) (((len) + sizeof(size_t) - 1) & ~(sizeof(size_t) - 1))
# endif /* _ALIGN */
#endif /* CMSG_ALIGN */
/**
* @brief Add a cmsghdr to a msghdr.
*
* This is an function to add any type of cmsghdr. It will operate on the
* msg->msg_control and msg->msg_controllen you pass in by adapting them to
* the buffer position after the added cmsg element. Hence, this function is
* intended to be used with an intermediate msghdr and not on the original
* one handed in by the client.
*
* @param[in] msg The msghdr to which to add the cmsg.
*
* @param[in] level The cmsg level to set.
*
* @param[in] type The cmsg type to set.
*
* @param[in] data The cmsg data to set.
*
* @param[in] len the length of the data to set.
*/
static void swrap_msghdr_add_cmsghdr(struct msghdr *msg,
int level,
int type,
const void *data,
size_t len)
{
size_t cmlen = CMSG_LEN(len);
size_t cmspace = CMSG_SPACE(len);
uint8_t cmbuf[cmspace];
void *cast_ptr = (void *)cmbuf;
struct cmsghdr *cm = (struct cmsghdr *)cast_ptr;
uint8_t *p;
memset(cmbuf, 0, cmspace);
if (msg->msg_controllen < cmlen) {
cmlen = msg->msg_controllen;
msg->msg_flags |= MSG_CTRUNC;
}
if (msg->msg_controllen < cmspace) {
cmspace = msg->msg_controllen;
}
/*
* We copy the full input data into an intermediate cmsghdr first
* in order to more easily cope with truncation.
*/
cm->cmsg_len = cmlen;
cm->cmsg_level = level;
cm->cmsg_type = type;
memcpy(CMSG_DATA(cm), data, len);
/*
* We now copy the possibly truncated buffer.
* We copy cmlen bytes, but consume cmspace bytes,
* leaving the possible padding uninitialiazed.
*/
p = (uint8_t *)msg->msg_control;
memcpy(p, cm, cmlen);
p += cmspace;
msg->msg_control = p;
msg->msg_controllen -= cmspace;
return;
}
static int swrap_msghdr_add_pktinfo(struct socket_info *si,
struct msghdr *msg)
{
/* Add packet info */
switch (si->pktinfo) {
#if defined(IP_PKTINFO) && (defined(HAVE_STRUCT_IN_PKTINFO) || defined(IP_RECVDSTADDR))
case AF_INET: {
struct sockaddr_in *sin;
#if defined(HAVE_STRUCT_IN_PKTINFO)
struct in_pktinfo pkt;
#elif defined(IP_RECVDSTADDR)
struct in_addr pkt;
#endif
if (si->bindname.sa_socklen == sizeof(struct sockaddr_in)) {
sin = &si->bindname.sa.in;
} else {
if (si->myname.sa_socklen != sizeof(struct sockaddr_in)) {
return 0;
}
sin = &si->myname.sa.in;
}
ZERO_STRUCT(pkt);
#if defined(HAVE_STRUCT_IN_PKTINFO)
pkt.ipi_ifindex = socket_wrapper_default_iface();
pkt.ipi_addr.s_addr = sin->sin_addr.s_addr;
#elif defined(IP_RECVDSTADDR)
pkt = sin->sin_addr;
#endif
swrap_msghdr_add_cmsghdr(msg, IPPROTO_IP, IP_PKTINFO,
&pkt, sizeof(pkt));
break;
}
#endif /* IP_PKTINFO */
#if defined(HAVE_IPV6)
case AF_INET6: {
#if defined(IPV6_PKTINFO) && defined(HAVE_STRUCT_IN6_PKTINFO)
struct sockaddr_in6 *sin6;
struct in6_pktinfo pkt6;
if (si->bindname.sa_socklen == sizeof(struct sockaddr_in6)) {
sin6 = &si->bindname.sa.in6;
} else {
if (si->myname.sa_socklen != sizeof(struct sockaddr_in6)) {
return 0;
}
sin6 = &si->myname.sa.in6;
}
ZERO_STRUCT(pkt6);
pkt6.ipi6_ifindex = socket_wrapper_default_iface();
pkt6.ipi6_addr = sin6->sin6_addr;
swrap_msghdr_add_cmsghdr(msg, IPPROTO_IPV6, IPV6_PKTINFO,
&pkt6, sizeof(pkt6));
#endif /* HAVE_STRUCT_IN6_PKTINFO */
break;
}
#endif /* IPV6_PKTINFO */
default:
return -1;
}
return 0;
}
static int swrap_msghdr_add_socket_info(struct socket_info *si,
struct msghdr *omsg)
{
int rc = 0;
if (si->pktinfo > 0) {
rc = swrap_msghdr_add_pktinfo(si, omsg);
}
return rc;
}
static int swrap_sendmsg_copy_cmsg(const struct cmsghdr *cmsg,
uint8_t **cm_data,
size_t *cm_data_space);
static int swrap_sendmsg_filter_cmsg_ipproto_ip(const struct cmsghdr *cmsg,
uint8_t **cm_data,
size_t *cm_data_space);
static int swrap_sendmsg_filter_cmsg_sol_socket(const struct cmsghdr *cmsg,
uint8_t **cm_data,
size_t *cm_data_space);
static int swrap_sendmsg_filter_cmsghdr(const struct msghdr *_msg,
uint8_t **cm_data,
size_t *cm_data_space)
{
struct msghdr *msg = discard_const_p(struct msghdr, _msg);
struct cmsghdr *cmsg;
int rc = -1;
/* Nothing to do */
if (msg->msg_controllen == 0 || msg->msg_control == NULL) {
return 0;
}
for (cmsg = CMSG_FIRSTHDR(msg);
cmsg != NULL;
cmsg = CMSG_NXTHDR(msg, cmsg)) {
switch (cmsg->cmsg_level) {
case IPPROTO_IP:
rc = swrap_sendmsg_filter_cmsg_ipproto_ip(cmsg,
cm_data,
cm_data_space);
break;
case SOL_SOCKET:
rc = swrap_sendmsg_filter_cmsg_sol_socket(cmsg,
cm_data,
cm_data_space);
break;
default:
rc = swrap_sendmsg_copy_cmsg(cmsg,
cm_data,
cm_data_space);
break;
}
if (rc < 0) {
int saved_errno = errno;
SAFE_FREE(*cm_data);
*cm_data_space = 0;
errno = saved_errno;
return rc;
}
}
return rc;
}
static int swrap_sendmsg_copy_cmsg(const struct cmsghdr *cmsg,
uint8_t **cm_data,
size_t *cm_data_space)
{
size_t cmspace;
uint8_t *p;
cmspace = *cm_data_space + CMSG_ALIGN(cmsg->cmsg_len);
p = realloc((*cm_data), cmspace);
if (p == NULL) {
return -1;
}
(*cm_data) = p;
p = (*cm_data) + (*cm_data_space);
*cm_data_space = cmspace;
memcpy(p, cmsg, cmsg->cmsg_len);
return 0;
}
static int swrap_sendmsg_filter_cmsg_pktinfo(const struct cmsghdr *cmsg,
uint8_t **cm_data,
size_t *cm_data_space);
static int swrap_sendmsg_filter_cmsg_ipproto_ip(const struct cmsghdr *cmsg,
uint8_t **cm_data,
size_t *cm_data_space)
{
int rc = -1;
switch(cmsg->cmsg_type) {
#ifdef IP_PKTINFO
case IP_PKTINFO:
rc = swrap_sendmsg_filter_cmsg_pktinfo(cmsg,
cm_data,
cm_data_space);
break;
#endif
#ifdef IPV6_PKTINFO
case IPV6_PKTINFO:
rc = swrap_sendmsg_filter_cmsg_pktinfo(cmsg,
cm_data,
cm_data_space);
break;
#endif
default:
break;
}
return rc;
}
static int swrap_sendmsg_filter_cmsg_pktinfo(const struct cmsghdr *cmsg,
uint8_t **cm_data,
size_t *cm_data_space)
{
(void)cmsg; /* unused */
(void)cm_data; /* unused */
(void)cm_data_space; /* unused */
/*
* Passing a IP pktinfo to a unix socket might be rejected by the
* Kernel, at least on FreeBSD. So skip this cmsg.
*/
return 0;
}
static int swrap_sendmsg_filter_cmsg_sol_socket(const struct cmsghdr *cmsg,
uint8_t **cm_data,
size_t *cm_data_space)
{
int rc = -1;
switch (cmsg->cmsg_type) {
case SCM_RIGHTS:
SWRAP_LOG(SWRAP_LOG_TRACE,
"Ignoring SCM_RIGHTS on inet socket!");
rc = 0;
break;
#ifdef SCM_CREDENTIALS
case SCM_CREDENTIALS:
SWRAP_LOG(SWRAP_LOG_TRACE,
"Ignoring SCM_CREDENTIALS on inet socket!");
rc = 0;
break;
#endif /* SCM_CREDENTIALS */
default:
rc = swrap_sendmsg_copy_cmsg(cmsg,
cm_data,
cm_data_space);
break;
}
return rc;
}
static const uint64_t swrap_unix_scm_right_magic = 0x8e0e13f27c42fc36;
/*
* We only allow up to 6 fds at a time
* as that's more than enough for Samba
* and it means we can keep the logic simple
* and work with fixed size arrays.
*
* We also keep sizeof(struct swrap_unix_scm_rights)
* under PIPE_BUF (4096) in order to allow a non-blocking
* write into the pipe.
*/
#ifndef PIPE_BUF
#define PIPE_BUF 4096
#endif
#define SWRAP_MAX_PASSED_FDS ((size_t)6)
#define SWRAP_MAX_PASSED_SOCKET_INFO SWRAP_MAX_PASSED_FDS
struct swrap_unix_scm_rights_payload {
uint8_t num_idxs;
int8_t idxs[SWRAP_MAX_PASSED_FDS];
struct socket_info infos[SWRAP_MAX_PASSED_SOCKET_INFO];
};
struct swrap_unix_scm_rights {
uint64_t magic;
char package_name[sizeof(SOCKET_WRAPPER_PACKAGE)];
char package_version[sizeof(SOCKET_WRAPPER_VERSION)];
uint32_t full_size;
uint32_t payload_size;
struct swrap_unix_scm_rights_payload payload;
};
static void swrap_dec_fd_passed_array(size_t num, struct socket_info **array)
{
int saved_errno = errno;
size_t i;
for (i = 0; i < num; i++) {
struct socket_info *si = array[i];
if (si == NULL) {
continue;
}
SWRAP_LOCK_SI(si);
swrap_dec_refcount(si);
if (si->fd_passed > 0) {
si->fd_passed -= 1;
}
SWRAP_UNLOCK_SI(si);
array[i] = NULL;
}
errno = saved_errno;
}
static void swrap_undo_si_idx_array(size_t num, int *array)
{
int saved_errno = errno;
size_t i;
swrap_mutex_lock(&first_free_mutex);
for (i = 0; i < num; i++) {
struct socket_info *si = NULL;
if (array[i] == -1) {
continue;
}
si = swrap_get_socket_info(array[i]);
if (si == NULL) {
continue;
}
SWRAP_LOCK_SI(si);
swrap_dec_refcount(si);
SWRAP_UNLOCK_SI(si);
swrap_set_next_free(si, first_free);
first_free = array[i];
array[i] = -1;
}
swrap_mutex_unlock(&first_free_mutex);
errno = saved_errno;
}
static void swrap_close_fd_array(size_t num, const int *array)
{
int saved_errno = errno;
size_t i;
for (i = 0; i < num; i++) {
if (array[i] == -1) {
continue;
}
libc_close(array[i]);
}
errno = saved_errno;
}
union __swrap_fds {
const uint8_t *p;
int *fds;
};
union __swrap_cmsghdr {
const uint8_t *p;
struct cmsghdr *cmsg;
};
static int swrap_sendmsg_unix_scm_rights(struct cmsghdr *cmsg,
uint8_t **cm_data,
size_t *cm_data_space,
int *scm_rights_pipe_fd)
{
struct swrap_unix_scm_rights info;
struct swrap_unix_scm_rights_payload *payload = NULL;
int si_idx_array[SWRAP_MAX_PASSED_FDS];
struct socket_info *si_array[SWRAP_MAX_PASSED_FDS] = { NULL, };
size_t info_idx = 0;
size_t size_fds_in;
size_t num_fds_in;
union __swrap_fds __fds_in = { .p = NULL, };
const int *fds_in = NULL;
size_t num_fds_out;
size_t size_fds_out;
union __swrap_fds __fds_out = { .p = NULL, };
int *fds_out = NULL;
size_t cmsg_len;
size_t cmsg_space;
size_t new_cm_data_space;
union __swrap_cmsghdr __new_cmsg = { .p = NULL, };
struct cmsghdr *new_cmsg = NULL;
uint8_t *p = NULL;
size_t i;
int pipefd[2] = { -1, -1 };
int rc;
ssize_t sret;
/*
* We pass this a buffer to the kernel make sure any padding
* is also cleared.
*/
ZERO_STRUCT(info);
info.magic = swrap_unix_scm_right_magic;
memcpy(info.package_name,
SOCKET_WRAPPER_PACKAGE,
sizeof(info.package_name));
memcpy(info.package_version,
SOCKET_WRAPPER_VERSION,
sizeof(info.package_version));
info.full_size = sizeof(info);
info.payload_size = sizeof(info.payload);
payload = &info.payload;
if (*scm_rights_pipe_fd != -1) {
SWRAP_LOG(SWRAP_LOG_ERROR,
"Two SCM_RIGHTS headers are not supported by socket_wrapper");
errno = EINVAL;
return -1;
}
if (cmsg->cmsg_len < CMSG_LEN(0)) {
SWRAP_LOG(SWRAP_LOG_ERROR,
"cmsg->cmsg_len=%zu < CMSG_LEN(0)=%zu",
(size_t)cmsg->cmsg_len,
CMSG_LEN(0));
errno = EINVAL;
return -1;
}
size_fds_in = cmsg->cmsg_len - CMSG_LEN(0);
if ((size_fds_in % sizeof(int)) != 0) {
SWRAP_LOG(SWRAP_LOG_ERROR,
"cmsg->cmsg_len=%zu => (size_fds_in=%zu %% sizeof(int)=%zu) != 0",
(size_t)cmsg->cmsg_len,
size_fds_in,
sizeof(int));
errno = EINVAL;
return -1;
}
num_fds_in = size_fds_in / sizeof(int);
if (num_fds_in > SWRAP_MAX_PASSED_FDS) {
SWRAP_LOG(SWRAP_LOG_ERROR,
"cmsg->cmsg_len=%zu,size_fds_in=%zu => "
"num_fds_in=%zu > "
"SWRAP_MAX_PASSED_FDS(%zu)",
(size_t)cmsg->cmsg_len,
size_fds_in,
num_fds_in,
SWRAP_MAX_PASSED_FDS);
errno = EINVAL;
return -1;
}
if (num_fds_in == 0) {
SWRAP_LOG(SWRAP_LOG_ERROR,
"cmsg->cmsg_len=%zu,size_fds_in=%zu => "
"num_fds_in=%zu",
(size_t)cmsg->cmsg_len,
size_fds_in,
num_fds_in);
errno = EINVAL;
return -1;
}
__fds_in.p = CMSG_DATA(cmsg);
fds_in = __fds_in.fds;
num_fds_out = num_fds_in + 1;
SWRAP_LOG(SWRAP_LOG_TRACE,
"num_fds_in=%zu num_fds_out=%zu",
num_fds_in, num_fds_out);
size_fds_out = sizeof(int) * num_fds_out;
cmsg_len = CMSG_LEN(size_fds_out);
cmsg_space = CMSG_SPACE(size_fds_out);
new_cm_data_space = *cm_data_space + cmsg_space;
p = realloc((*cm_data), new_cm_data_space);
if (p == NULL) {
return -1;
}
(*cm_data) = p;
p = (*cm_data) + (*cm_data_space);
memset(p, 0, cmsg_space);
__new_cmsg.p = p;
new_cmsg = __new_cmsg.cmsg;
*new_cmsg = *cmsg;
__fds_out.p = CMSG_DATA(new_cmsg);
fds_out = __fds_out.fds;
memcpy(fds_out, fds_in, size_fds_in);
new_cmsg->cmsg_len = cmsg->cmsg_len;
for (i = 0; i < num_fds_in; i++) {
size_t j;
payload->idxs[i] = -1;
payload->num_idxs++;
si_idx_array[i] = find_socket_info_index(fds_in[i]);
if (si_idx_array[i] == -1) {
continue;
}
si_array[i] = swrap_get_socket_info(si_idx_array[i]);
if (si_array[i] == NULL) {
SWRAP_LOG(SWRAP_LOG_ERROR,
"fds_in[%zu]=%d si_idx_array[%zu]=%d missing!",
i, fds_in[i], i, si_idx_array[i]);
errno = EINVAL;
return -1;
}
for (j = 0; j < i; j++) {
if (si_array[j] == si_array[i]) {
payload->idxs[i] = payload->idxs[j];
break;
}
}
if (payload->idxs[i] == -1) {
if (info_idx >= SWRAP_MAX_PASSED_SOCKET_INFO) {
SWRAP_LOG(SWRAP_LOG_ERROR,
"fds_in[%zu]=%d,si_idx_array[%zu]=%d: "
"info_idx=%zu >= SWRAP_MAX_PASSED_FDS(%zu)!",
i, fds_in[i], i, si_idx_array[i],
info_idx,
SWRAP_MAX_PASSED_SOCKET_INFO);
errno = EINVAL;
return -1;
}
payload->idxs[i] = info_idx;
info_idx += 1;
continue;
}
}
for (i = 0; i < num_fds_in; i++) {
struct socket_info *si = si_array[i];
if (si == NULL) {
SWRAP_LOG(SWRAP_LOG_TRACE,
"fds_in[%zu]=%d not an inet socket",
i, fds_in[i]);
continue;
}
SWRAP_LOG(SWRAP_LOG_TRACE,
"fds_in[%zu]=%d si_idx_array[%zu]=%d "
"passing as info.idxs[%zu]=%d!",
i, fds_in[i],
i, si_idx_array[i],
i, payload->idxs[i]);
SWRAP_LOCK_SI(si);
si->fd_passed += 1;
payload->infos[payload->idxs[i]] = *si;
payload->infos[payload->idxs[i]].fd_passed = 0;
SWRAP_UNLOCK_SI(si);
}
rc = pipe(pipefd);
if (rc == -1) {
int saved_errno = errno;
SWRAP_LOG(SWRAP_LOG_ERROR,
"pipe() failed - %d %s",
saved_errno,
strerror(saved_errno));
swrap_dec_fd_passed_array(num_fds_in, si_array);
errno = saved_errno;
return -1;
}
sret = libc_write(pipefd[1], &info, sizeof(info));
if (sret != sizeof(info)) {
int saved_errno = errno;
if (sret != -1) {
saved_errno = EINVAL;
}
SWRAP_LOG(SWRAP_LOG_ERROR,
"write() failed - sret=%zd - %d %s",
sret, saved_errno,
strerror(saved_errno));
swrap_dec_fd_passed_array(num_fds_in, si_array);
libc_close(pipefd[1]);
libc_close(pipefd[0]);
errno = saved_errno;
return -1;
}
libc_close(pipefd[1]);
/*
* Add the pipe read end to the end of the passed fd array
*/
fds_out[num_fds_in] = pipefd[0];
new_cmsg->cmsg_len = cmsg_len;
/* we're done ... */
*scm_rights_pipe_fd = pipefd[0];
*cm_data_space = new_cm_data_space;
return 0;
}
static int swrap_sendmsg_unix_sol_socket(struct cmsghdr *cmsg,
uint8_t **cm_data,
size_t *cm_data_space,
int *scm_rights_pipe_fd)
{
int rc = -1;
switch (cmsg->cmsg_type) {
case SCM_RIGHTS:
rc = swrap_sendmsg_unix_scm_rights(cmsg,
cm_data,
cm_data_space,
scm_rights_pipe_fd);
break;
default:
rc = swrap_sendmsg_copy_cmsg(cmsg,
cm_data,
cm_data_space);
break;
}
return rc;
}
static int swrap_recvmsg_unix_scm_rights(struct cmsghdr *cmsg,
uint8_t **cm_data,
size_t *cm_data_space)
{
int scm_rights_pipe_fd = -1;
struct swrap_unix_scm_rights info;
struct swrap_unix_scm_rights_payload *payload = NULL;
int si_idx_array[SWRAP_MAX_PASSED_FDS];
size_t size_fds_in;
size_t num_fds_in;
union __swrap_fds __fds_in = { .p = NULL, };
const int *fds_in = NULL;
size_t num_fds_out;
size_t size_fds_out;
union __swrap_fds __fds_out = { .p = NULL, };
int *fds_out = NULL;
size_t cmsg_len;
size_t cmsg_space;
size_t new_cm_data_space;
union __swrap_cmsghdr __new_cmsg = { .p = NULL, };
struct cmsghdr *new_cmsg = NULL;
uint8_t *p = NULL;
ssize_t sret;
size_t i;
int cmp;
if (cmsg->cmsg_len < CMSG_LEN(0)) {
SWRAP_LOG(SWRAP_LOG_ERROR,
"cmsg->cmsg_len=%zu < CMSG_LEN(0)=%zu",
(size_t)cmsg->cmsg_len,
CMSG_LEN(0));
errno = EINVAL;
return -1;
}
size_fds_in = cmsg->cmsg_len - CMSG_LEN(0);
if ((size_fds_in % sizeof(int)) != 0) {
SWRAP_LOG(SWRAP_LOG_ERROR,
"cmsg->cmsg_len=%zu => (size_fds_in=%zu %% sizeof(int)=%zu) != 0",
(size_t)cmsg->cmsg_len,
size_fds_in,
sizeof(int));
errno = EINVAL;
return -1;
}
num_fds_in = size_fds_in / sizeof(int);
if (num_fds_in > (SWRAP_MAX_PASSED_FDS + 1)) {
SWRAP_LOG(SWRAP_LOG_ERROR,
"cmsg->cmsg_len=%zu,size_fds_in=%zu => "
"num_fds_in=%zu > SWRAP_MAX_PASSED_FDS+1(%zu)",
(size_t)cmsg->cmsg_len,
size_fds_in,
num_fds_in,
SWRAP_MAX_PASSED_FDS+1);
errno = EINVAL;
return -1;
}
if (num_fds_in <= 1) {
SWRAP_LOG(SWRAP_LOG_ERROR,
"cmsg->cmsg_len=%zu,size_fds_in=%zu => "
"num_fds_in=%zu",
(size_t)cmsg->cmsg_len,
size_fds_in,
num_fds_in);
errno = EINVAL;
return -1;
}
__fds_in.p = CMSG_DATA(cmsg);
fds_in = __fds_in.fds;
num_fds_out = num_fds_in - 1;
SWRAP_LOG(SWRAP_LOG_TRACE,
"num_fds_in=%zu num_fds_out=%zu",
num_fds_in, num_fds_out);
for (i = 0; i < num_fds_in; i++) {
/* Check if we have a stale fd and remove it */
swrap_remove_stale(fds_in[i]);
}
scm_rights_pipe_fd = fds_in[num_fds_out];
size_fds_out = sizeof(int) * num_fds_out;
cmsg_len = CMSG_LEN(size_fds_out);
cmsg_space = CMSG_SPACE(size_fds_out);
new_cm_data_space = *cm_data_space + cmsg_space;
p = realloc((*cm_data), new_cm_data_space);
if (p == NULL) {
swrap_close_fd_array(num_fds_in, fds_in);
return -1;
}
(*cm_data) = p;
p = (*cm_data) + (*cm_data_space);
memset(p, 0, cmsg_space);
__new_cmsg.p = p;
new_cmsg = __new_cmsg.cmsg;
*new_cmsg = *cmsg;
__fds_out.p = CMSG_DATA(new_cmsg);
fds_out = __fds_out.fds;
memcpy(fds_out, fds_in, size_fds_out);
new_cmsg->cmsg_len = cmsg_len;
sret = read(scm_rights_pipe_fd, &info, sizeof(info));
if (sret != sizeof(info)) {
int saved_errno = errno;
if (sret != -1) {
saved_errno = EINVAL;
}
SWRAP_LOG(SWRAP_LOG_ERROR,
"read() failed - sret=%zd - %d %s",
sret, saved_errno,
strerror(saved_errno));
swrap_close_fd_array(num_fds_in, fds_in);
errno = saved_errno;
return -1;
}
libc_close(scm_rights_pipe_fd);
payload = &info.payload;
if (info.magic != swrap_unix_scm_right_magic) {
SWRAP_LOG(SWRAP_LOG_ERROR,
"info.magic=0x%llx != swrap_unix_scm_right_magic=0x%llx",
(unsigned long long)info.magic,
(unsigned long long)swrap_unix_scm_right_magic);
swrap_close_fd_array(num_fds_out, fds_out);
errno = EINVAL;
return -1;
}
cmp = memcmp(info.package_name,
SOCKET_WRAPPER_PACKAGE,
sizeof(info.package_name));
if (cmp != 0) {
SWRAP_LOG(SWRAP_LOG_ERROR,
"info.package_name='%.*s' != '%s'",
(int)sizeof(info.package_name),
info.package_name,
SOCKET_WRAPPER_PACKAGE);
swrap_close_fd_array(num_fds_out, fds_out);
errno = EINVAL;
return -1;
}
cmp = memcmp(info.package_version,
SOCKET_WRAPPER_VERSION,
sizeof(info.package_version));
if (cmp != 0) {
SWRAP_LOG(SWRAP_LOG_ERROR,
"info.package_version='%.*s' != '%s'",
(int)sizeof(info.package_version),
info.package_version,
SOCKET_WRAPPER_VERSION);
swrap_close_fd_array(num_fds_out, fds_out);
errno = EINVAL;
return -1;
}
if (info.full_size != sizeof(info)) {
SWRAP_LOG(SWRAP_LOG_ERROR,
"info.full_size=%zu != sizeof(info)=%zu",
(size_t)info.full_size,
sizeof(info));
swrap_close_fd_array(num_fds_out, fds_out);
errno = EINVAL;
return -1;
}
if (info.payload_size != sizeof(info.payload)) {
SWRAP_LOG(SWRAP_LOG_ERROR,
"info.payload_size=%zu != sizeof(info.payload)=%zu",
(size_t)info.payload_size,
sizeof(info.payload));
swrap_close_fd_array(num_fds_out, fds_out);
errno = EINVAL;
return -1;
}
if (payload->num_idxs != num_fds_out) {
SWRAP_LOG(SWRAP_LOG_ERROR,
"info.num_idxs=%u != num_fds_out=%zu",
payload->num_idxs, num_fds_out);
swrap_close_fd_array(num_fds_out, fds_out);
errno = EINVAL;
return -1;
}
for (i = 0; i < num_fds_out; i++) {
size_t j;
si_idx_array[i] = -1;
if (payload->idxs[i] == -1) {
SWRAP_LOG(SWRAP_LOG_TRACE,
"fds_out[%zu]=%d not an inet socket",
i, fds_out[i]);
continue;
}
if (payload->idxs[i] < 0) {
SWRAP_LOG(SWRAP_LOG_ERROR,
"fds_out[%zu]=%d info.idxs[%zu]=%d < 0!",
i, fds_out[i], i, payload->idxs[i]);
swrap_close_fd_array(num_fds_out, fds_out);
errno = EINVAL;
return -1;
}
if (payload->idxs[i] >= payload->num_idxs) {
SWRAP_LOG(SWRAP_LOG_ERROR,
"fds_out[%zu]=%d info.idxs[%zu]=%d >= %u!",
i, fds_out[i], i, payload->idxs[i],
payload->num_idxs);
swrap_close_fd_array(num_fds_out, fds_out);
errno = EINVAL;
return -1;
}
if ((size_t)fds_out[i] >= socket_fds_max) {
SWRAP_LOG(SWRAP_LOG_ERROR,
"The max socket index limit of %zu has been reached, "
"trying to add %d",
socket_fds_max,
fds_out[i]);
swrap_close_fd_array(num_fds_out, fds_out);
errno = EMFILE;
return -1;
}
SWRAP_LOG(SWRAP_LOG_TRACE,
"fds_in[%zu]=%d "
"received as info.idxs[%zu]=%d!",
i, fds_out[i],
i, payload->idxs[i]);
for (j = 0; j < i; j++) {
if (payload->idxs[j] == -1) {
continue;
}
if (payload->idxs[j] == payload->idxs[i]) {
si_idx_array[i] = si_idx_array[j];
}
}
if (si_idx_array[i] == -1) {
const struct socket_info *si = &payload->infos[payload->idxs[i]];
si_idx_array[i] = swrap_add_socket_info(si);
if (si_idx_array[i] == -1) {
int saved_errno = errno;
SWRAP_LOG(SWRAP_LOG_ERROR,
"The max socket index limit of %zu has been reached, "
"trying to add %d",
socket_fds_max,
fds_out[i]);
swrap_undo_si_idx_array(i, si_idx_array);
swrap_close_fd_array(num_fds_out, fds_out);
errno = saved_errno;
return -1;
}
SWRAP_LOG(SWRAP_LOG_TRACE,
"Imported %s socket for protocol %s, fd=%d",
si->family == AF_INET ? "IPv4" : "IPv6",
si->type == SOCK_DGRAM ? "UDP" : "TCP",
fds_out[i]);
}
}
for (i = 0; i < num_fds_out; i++) {
if (si_idx_array[i] == -1) {
continue;
}
set_socket_info_index(fds_out[i], si_idx_array[i]);
}
/* we're done ... */
*cm_data_space = new_cm_data_space;
return 0;
}
static int swrap_recvmsg_unix_sol_socket(struct cmsghdr *cmsg,
uint8_t **cm_data,
size_t *cm_data_space)
{
int rc = -1;
switch (cmsg->cmsg_type) {
case SCM_RIGHTS:
rc = swrap_recvmsg_unix_scm_rights(cmsg,
cm_data,
cm_data_space);
break;
default:
rc = swrap_sendmsg_copy_cmsg(cmsg,
cm_data,
cm_data_space);
break;
}
return rc;
}
#endif /* HAVE_STRUCT_MSGHDR_MSG_CONTROL */
static int swrap_sendmsg_before_unix(const struct msghdr *_msg_in,
struct msghdr *msg_tmp,
int *scm_rights_pipe_fd)
{
#ifdef HAVE_STRUCT_MSGHDR_MSG_CONTROL
struct msghdr *msg_in = discard_const_p(struct msghdr, _msg_in);
struct cmsghdr *cmsg = NULL;
uint8_t *cm_data = NULL;
size_t cm_data_space = 0;
int rc = -1;
*msg_tmp = *msg_in;
*scm_rights_pipe_fd = -1;
/* Nothing to do */
if (msg_in->msg_controllen == 0 || msg_in->msg_control == NULL) {
return 0;
}
for (cmsg = CMSG_FIRSTHDR(msg_in);
cmsg != NULL;
cmsg = CMSG_NXTHDR(msg_in, cmsg)) {
switch (cmsg->cmsg_level) {
case SOL_SOCKET:
rc = swrap_sendmsg_unix_sol_socket(cmsg,
&cm_data,
&cm_data_space,
scm_rights_pipe_fd);
break;
default:
rc = swrap_sendmsg_copy_cmsg(cmsg,
&cm_data,
&cm_data_space);
break;
}
if (rc < 0) {
int saved_errno = errno;
SAFE_FREE(cm_data);
errno = saved_errno;
return rc;
}
}
msg_tmp->msg_controllen = cm_data_space;
msg_tmp->msg_control = cm_data;
return 0;
#else /* HAVE_STRUCT_MSGHDR_MSG_CONTROL */
*msg_tmp = *_msg_in;
return 0;
#endif /* ! HAVE_STRUCT_MSGHDR_MSG_CONTROL */
}
static ssize_t swrap_sendmsg_after_unix(struct msghdr *msg_tmp,
ssize_t ret,
int scm_rights_pipe_fd)
{
#ifdef HAVE_STRUCT_MSGHDR_MSG_CONTROL
int saved_errno = errno;
SAFE_FREE(msg_tmp->msg_control);
if (scm_rights_pipe_fd != -1) {
libc_close(scm_rights_pipe_fd);
}
errno = saved_errno;
#endif /* HAVE_STRUCT_MSGHDR_MSG_CONTROL */
return ret;
}
static int swrap_recvmsg_before_unix(struct msghdr *msg_in,
struct msghdr *msg_tmp,
uint8_t **tmp_control)
{
#ifdef HAVE_STRUCT_MSGHDR_MSG_CONTROL
const size_t cm_extra_space = CMSG_SPACE(sizeof(int));
uint8_t *cm_data = NULL;
size_t cm_data_space = 0;
*msg_tmp = *msg_in;
*tmp_control = NULL;
SWRAP_LOG(SWRAP_LOG_TRACE,
"msg_in->msg_controllen=%zu",
(size_t)msg_in->msg_controllen);
/* Nothing to do */
if (msg_in->msg_controllen == 0 || msg_in->msg_control == NULL) {
return 0;
}
/*
* We need to give the kernel a bit more space in order
* recv the pipe fd, added by swrap_sendmsg_before_unix()).
* swrap_recvmsg_after_unix() will hide it again.
*/
cm_data_space = msg_in->msg_controllen;
if (cm_data_space < (INT32_MAX - cm_extra_space)) {
cm_data_space += cm_extra_space;
}
cm_data = calloc(1, cm_data_space);
if (cm_data == NULL) {
return -1;
}
msg_tmp->msg_controllen = cm_data_space;
msg_tmp->msg_control = cm_data;
*tmp_control = cm_data;
SWRAP_LOG(SWRAP_LOG_TRACE,
"msg_tmp->msg_controllen=%zu",
(size_t)msg_tmp->msg_controllen);
return 0;
#else /* HAVE_STRUCT_MSGHDR_MSG_CONTROL */
*msg_tmp = *msg_in;
*tmp_control = NULL;
return 0;
#endif /* ! HAVE_STRUCT_MSGHDR_MSG_CONTROL */
}
static ssize_t swrap_recvmsg_after_unix(struct msghdr *msg_tmp,
uint8_t **tmp_control,
struct msghdr *msg_out,
ssize_t ret)
{
#ifdef HAVE_STRUCT_MSGHDR_MSG_CONTROL
struct cmsghdr *cmsg = NULL;
uint8_t *cm_data = NULL;
size_t cm_data_space = 0;
int rc = -1;
if (ret < 0) {
int saved_errno = errno;
SWRAP_LOG(SWRAP_LOG_TRACE, "ret=%zd - %d - %s", ret,
saved_errno, strerror(saved_errno));
SAFE_FREE(*tmp_control);
/* msg_out should not be touched on error */
errno = saved_errno;
return ret;
}
SWRAP_LOG(SWRAP_LOG_TRACE,
"msg_tmp->msg_controllen=%zu",
(size_t)msg_tmp->msg_controllen);
/* Nothing to do */
if (msg_tmp->msg_controllen == 0 || msg_tmp->msg_control == NULL) {
int saved_errno = errno;
*msg_out = *msg_tmp;
SAFE_FREE(*tmp_control);
errno = saved_errno;
return ret;
}
for (cmsg = CMSG_FIRSTHDR(msg_tmp);
cmsg != NULL;
cmsg = CMSG_NXTHDR(msg_tmp, cmsg)) {
switch (cmsg->cmsg_level) {
case SOL_SOCKET:
rc = swrap_recvmsg_unix_sol_socket(cmsg,
&cm_data,
&cm_data_space);
break;
default:
rc = swrap_sendmsg_copy_cmsg(cmsg,
&cm_data,
&cm_data_space);
break;
}
if (rc < 0) {
int saved_errno = errno;
SAFE_FREE(cm_data);
SAFE_FREE(*tmp_control);
errno = saved_errno;
return rc;
}
}
/*
* msg_tmp->msg_control (*tmp_control) was created by
* swrap_recvmsg_before_unix() and msg_out->msg_control
* is still the buffer of the caller.
*/
msg_tmp->msg_control = msg_out->msg_control;
msg_tmp->msg_controllen = msg_out->msg_controllen;
*msg_out = *msg_tmp;
cm_data_space = MIN(cm_data_space, msg_out->msg_controllen);
memcpy(msg_out->msg_control, cm_data, cm_data_space);
msg_out->msg_controllen = cm_data_space;
SAFE_FREE(cm_data);
SAFE_FREE(*tmp_control);
SWRAP_LOG(SWRAP_LOG_TRACE,
"msg_out->msg_controllen=%zu",
(size_t)msg_out->msg_controllen);
return ret;
#else /* HAVE_STRUCT_MSGHDR_MSG_CONTROL */
int saved_errno = errno;
*msg_out = *msg_tmp;
SAFE_FREE(*tmp_control);
errno = saved_errno;
return ret;
#endif /* ! HAVE_STRUCT_MSGHDR_MSG_CONTROL */
}
static ssize_t swrap_sendmsg_before(int fd,
struct socket_info *si,
struct msghdr *msg,
struct iovec *tmp_iov,
struct sockaddr_un *tmp_un,
const struct sockaddr_un **to_un,
const struct sockaddr **to,
int *bcast)
{
size_t i, len = 0;
ssize_t ret = -1;
struct swrap_sockaddr_buf buf = {};
if (to_un) {
*to_un = NULL;
}
if (to) {
*to = NULL;
}
if (bcast) {
*bcast = 0;
}
SWRAP_LOCK_SI(si);
switch (si->type) {
case SOCK_STREAM: {
unsigned long mtu;
if (!si->connected) {
errno = ENOTCONN;
goto out;
}
if (msg->msg_iovlen == 0) {
break;
}
mtu = socket_wrapper_mtu();
for (i = 0; i < (size_t)msg->msg_iovlen; i++) {
size_t nlen;
nlen = len + msg->msg_iov[i].iov_len;
if (nlen < len) {
/* overflow */
errno = EMSGSIZE;
goto out;
}
if (nlen > mtu) {
break;
}
}
msg->msg_iovlen = i;
if (msg->msg_iovlen == 0) {
*tmp_iov = msg->msg_iov[0];
tmp_iov->iov_len = MIN((size_t)tmp_iov->iov_len,
(size_t)mtu);
msg->msg_iov = tmp_iov;
msg->msg_iovlen = 1;
}
break;
}
case SOCK_DGRAM:
if (si->connected) {
if (msg->msg_name != NULL) {
/*
* We are dealing with unix sockets and if we
* are connected, we should only talk to the
* connected unix path. Using the fd to send
* to another server would be hard to achieve.
*/
msg->msg_name = NULL;
msg->msg_namelen = 0;
}
SWRAP_LOG(SWRAP_LOG_TRACE,
"connected(%s) fd=%d",
swrap_sockaddr_string(&buf, &si->peername.sa.s),
fd);
} else {
const struct sockaddr *msg_name;
msg_name = (const struct sockaddr *)msg->msg_name;
if (msg_name == NULL) {
errno = ENOTCONN;
goto out;
}
ret = sockaddr_convert_to_un(si, msg_name, msg->msg_namelen,
tmp_un, 0, bcast);
if (ret == -1) {
goto out;
}
if (to_un) {
*to_un = tmp_un;
}
if (to) {
*to = msg_name;
}
msg->msg_name = tmp_un;
msg->msg_namelen = sizeof(*tmp_un);
}
if (si->bound == 0) {
ret = swrap_auto_bind(fd, si, si->family);
if (ret == -1) {
SWRAP_UNLOCK_SI(si);
if (errno == ENOTSOCK) {
swrap_remove_stale(fd);
ret = -ENOTSOCK;
} else {
SWRAP_LOG(SWRAP_LOG_ERROR, "swrap_sendmsg_before failed");
}
return ret;
}
}
if (!si->defer_connect) {
break;
}
ret = sockaddr_convert_to_un(si,
&si->peername.sa.s,
si->peername.sa_socklen,
tmp_un,
0,
NULL);
if (ret == -1) {
goto out;
}
SWRAP_LOG(SWRAP_LOG_TRACE,
"deferred connect(%s) path=%s, fd=%d",
swrap_sockaddr_string(&buf, &si->peername.sa.s),
tmp_un->sun_path, fd);
ret = libc_connect(fd,
(struct sockaddr *)(void *)tmp_un,
sizeof(*tmp_un));
/* to give better errors */
if (ret == -1 && errno == ENOENT) {
errno = EHOSTUNREACH;
}
if (ret == -1) {
goto out;
}
si->defer_connect = 0;
break;
default:
errno = EHOSTUNREACH;
goto out;
}
ret = 0;
out:
SWRAP_UNLOCK_SI(si);
return ret;
}
static void swrap_sendmsg_after(int fd,
struct socket_info *si,
struct msghdr *msg,
const struct sockaddr *to,
ssize_t ret)
{
int saved_errno = errno;
size_t i, len = 0;
uint8_t *buf;
off_t ofs = 0;
size_t avail = 0;
size_t remain;
/* to give better errors */
if (ret == -1) {
if (saved_errno == ENOENT) {
saved_errno = EHOSTUNREACH;
} else if (saved_errno == ENOTSOCK) {
/* If the fd is not a socket, remove it */
swrap_remove_stale(fd);
}
}
for (i = 0; i < (size_t)msg->msg_iovlen; i++) {
avail += msg->msg_iov[i].iov_len;
}
if (ret == -1) {
remain = MIN(80, avail);
} else {
remain = ret;
}
/* we capture it as one single packet */
buf = (uint8_t *)malloc(remain);
if (!buf) {
/* we just not capture the packet */
errno = saved_errno;
return;
}
for (i = 0; i < (size_t)msg->msg_iovlen; i++) {
size_t this_time = MIN(remain, (size_t)msg->msg_iov[i].iov_len);
if (this_time > 0) {
memcpy(buf + ofs,
msg->msg_iov[i].iov_base,
this_time);
}
ofs += this_time;
remain -= this_time;
}
len = ofs;
SWRAP_LOCK_SI(si);
switch (si->type) {
case SOCK_STREAM:
if (ret == -1) {
swrap_pcap_dump_packet(si, NULL, SWRAP_SEND, buf, len);
swrap_pcap_dump_packet(si, NULL, SWRAP_SEND_RST, NULL, 0);
} else {
swrap_pcap_dump_packet(si, NULL, SWRAP_SEND, buf, len);
}
break;
case SOCK_DGRAM:
if (si->connected) {
to = &si->peername.sa.s;
}
if (ret == -1) {
swrap_pcap_dump_packet(si, to, SWRAP_SENDTO, buf, len);
swrap_pcap_dump_packet(si, to, SWRAP_SENDTO_UNREACH, buf, len);
} else {
swrap_pcap_dump_packet(si, to, SWRAP_SENDTO, buf, len);
}
break;
}
SWRAP_UNLOCK_SI(si);
free(buf);
errno = saved_errno;
}
static int swrap_recvmsg_before(int fd,
struct socket_info *si,
struct msghdr *msg,
struct iovec *tmp_iov)
{
size_t i, len = 0;
int ret = -1;
SWRAP_LOCK_SI(si);
(void)fd; /* unused */
switch (si->type) {
case SOCK_STREAM: {
unsigned int mtu;
if (!si->connected) {
errno = ENOTCONN;
goto out;
}
if (msg->msg_iovlen == 0) {
break;
}
mtu = socket_wrapper_mtu();
for (i = 0; i < (size_t)msg->msg_iovlen; i++) {
size_t nlen;
nlen = len + msg->msg_iov[i].iov_len;
if (nlen > mtu) {
break;
}
}
msg->msg_iovlen = i;
if (msg->msg_iovlen == 0) {
*tmp_iov = msg->msg_iov[0];
tmp_iov->iov_len = MIN((size_t)tmp_iov->iov_len,
(size_t)mtu);
msg->msg_iov = tmp_iov;
msg->msg_iovlen = 1;
}
break;
}
case SOCK_DGRAM:
if (msg->msg_name == NULL) {
errno = EINVAL;
goto out;
}
if (msg->msg_iovlen == 0) {
break;
}
if (si->bound == 0) {
ret = swrap_auto_bind(fd, si, si->family);
if (ret == -1) {
SWRAP_UNLOCK_SI(si);
/*
* When attempting to read or write to a
* descriptor, if an underlying autobind fails
* because it's not a socket, stop intercepting
* uses of that descriptor.
*/
if (errno == ENOTSOCK) {
swrap_remove_stale(fd);
ret = -ENOTSOCK;
} else {
SWRAP_LOG(SWRAP_LOG_ERROR,
"swrap_recvmsg_before failed");
}
return ret;
}
}
break;
default:
errno = EHOSTUNREACH;
goto out;
}
ret = 0;
out:
SWRAP_UNLOCK_SI(si);
return ret;
}
static int swrap_recvmsg_after(int fd,
struct socket_info *si,
struct msghdr *msg,
const struct sockaddr_un *un_addr,
socklen_t un_addrlen,
ssize_t ret)
{
int saved_errno = errno;
size_t i;
uint8_t *buf = NULL;
off_t ofs = 0;
size_t avail = 0;
size_t remain;
int rc;
/* to give better errors */
if (ret == -1) {
if (saved_errno == ENOENT) {
saved_errno = EHOSTUNREACH;
} else if (saved_errno == ENOTSOCK) {
/* If the fd is not a socket, remove it */
swrap_remove_stale(fd);
}
}
for (i = 0; i < (size_t)msg->msg_iovlen; i++) {
avail += msg->msg_iov[i].iov_len;
}
SWRAP_LOCK_SI(si);
/* Convert the socket address before we leave */
if (si->type == SOCK_DGRAM && un_addr != NULL) {
rc = sockaddr_convert_from_un(si,
un_addr,
un_addrlen,
si->family,
msg->msg_name,
&msg->msg_namelen);
if (rc == -1) {
goto done;
}
}
if (avail == 0) {
rc = 0;
goto done;
}
if (ret == -1) {
remain = MIN(80, avail);
} else {
remain = ret;
}
/* we capture it as one single packet */
buf = (uint8_t *)malloc(remain);
if (buf == NULL) {
/* we just not capture the packet */
SWRAP_UNLOCK_SI(si);
errno = saved_errno;
return -1;
}
for (i = 0; i < (size_t)msg->msg_iovlen; i++) {
size_t this_time = MIN(remain, (size_t)msg->msg_iov[i].iov_len);
memcpy(buf + ofs,
msg->msg_iov[i].iov_base,
this_time);
ofs += this_time;
remain -= this_time;
}
switch (si->type) {
case SOCK_STREAM:
if (ret == -1 && saved_errno != EAGAIN && saved_errno != ENOBUFS) {
swrap_pcap_dump_packet(si, NULL, SWRAP_RECV_RST, NULL, 0);
} else if (ret == 0) { /* END OF FILE */
swrap_pcap_dump_packet(si, NULL, SWRAP_RECV_RST, NULL, 0);
} else if (ret > 0) {
swrap_pcap_dump_packet(si, NULL, SWRAP_RECV, buf, ret);
}
break;
case SOCK_DGRAM:
if (ret == -1) {
break;
}
if (un_addr != NULL) {
swrap_pcap_dump_packet(si,
msg->msg_name,
SWRAP_RECVFROM,
buf,
ret);
} else {
swrap_pcap_dump_packet(si,
msg->msg_name,
SWRAP_RECV,
buf,
ret);
}
break;
}
rc = 0;
done:
free(buf);
errno = saved_errno;
#ifdef HAVE_STRUCT_MSGHDR_MSG_CONTROL
if (rc == 0 &&
msg->msg_controllen > 0 &&
msg->msg_control != NULL) {
rc = swrap_msghdr_add_socket_info(si, msg);
if (rc < 0) {
SWRAP_UNLOCK_SI(si);
return -1;
}
}
#endif
SWRAP_UNLOCK_SI(si);
return rc;
}
/****************************************************************************
* RECVFROM
***************************************************************************/
static ssize_t swrap_recvfrom(int s, void *buf, size_t len, int flags,
struct sockaddr *from, socklen_t *fromlen)
{
struct swrap_address from_addr = {
.sa_socklen = sizeof(struct sockaddr_un),
};
ssize_t ret;
struct socket_info *si = find_socket_info(s);
struct swrap_address saddr = {
.sa_socklen = sizeof(struct sockaddr_storage),
};
struct msghdr msg;
struct iovec tmp;
int tret;
if (!si) {
return libc_recvfrom(s,
buf,
len,
flags,
from,
fromlen);
}
tmp.iov_base = buf;
tmp.iov_len = len;
ZERO_STRUCT(msg);
if (from != NULL && fromlen != NULL) {
msg.msg_name = from; /* optional address */
msg.msg_namelen = *fromlen; /* size of address */
} else {
msg.msg_name = &saddr.sa.s; /* optional address */
msg.msg_namelen = saddr.sa_socklen; /* size of address */
}
msg.msg_iov = &tmp; /* scatter/gather array */
msg.msg_iovlen = 1; /* # elements in msg_iov */
#ifdef HAVE_STRUCT_MSGHDR_MSG_CONTROL
msg.msg_control = NULL; /* ancillary data, see below */
msg.msg_controllen = 0; /* ancillary data buffer len */
msg.msg_flags = 0; /* flags on received message */
#endif
tret = swrap_recvmsg_before(s, si, &msg, &tmp);
if (tret < 0) {
return -1;
}
buf = msg.msg_iov[0].iov_base;
len = msg.msg_iov[0].iov_len;
ret = libc_recvfrom(s,
buf,
len,
flags,
&from_addr.sa.s,
&from_addr.sa_socklen);
if (ret == -1) {
return ret;
}
tret = swrap_recvmsg_after(s,
si,
&msg,
&from_addr.sa.un,
from_addr.sa_socklen,
ret);
if (tret != 0) {
return tret;
}
if (from != NULL && fromlen != NULL) {
*fromlen = msg.msg_namelen;
}
return ret;
}
#ifdef HAVE_ACCEPT_PSOCKLEN_T
ssize_t recvfrom(int s, void *buf, size_t len, int flags,
struct sockaddr *from, Psocklen_t fromlen)
#else
ssize_t recvfrom(int s, void *buf, size_t len, int flags,
struct sockaddr *from, socklen_t *fromlen)
#endif
{
return swrap_recvfrom(s, buf, len, flags, from, (socklen_t *)fromlen);
}
/****************************************************************************
* SENDTO
***************************************************************************/
static ssize_t swrap_sendto(int s, const void *buf, size_t len, int flags,
const struct sockaddr *to, socklen_t tolen)
{
struct msghdr msg;
struct iovec tmp;
struct swrap_address un_addr = {
.sa_socklen = sizeof(struct sockaddr_un),
};
const struct sockaddr_un *to_un = NULL;
ssize_t ret;
int rc;
struct socket_info *si = find_socket_info(s);
int bcast = 0;
if (!si) {
return libc_sendto(s, buf, len, flags, to, tolen);
}
tmp.iov_base = discard_const_p(char, buf);
tmp.iov_len = len;
ZERO_STRUCT(msg);
msg.msg_name = discard_const_p(struct sockaddr, to); /* optional address */
msg.msg_namelen = tolen; /* size of address */
msg.msg_iov = &tmp; /* scatter/gather array */
msg.msg_iovlen = 1; /* # elements in msg_iov */
#ifdef HAVE_STRUCT_MSGHDR_MSG_CONTROL
msg.msg_control = NULL; /* ancillary data, see below */
msg.msg_controllen = 0; /* ancillary data buffer len */
msg.msg_flags = 0; /* flags on received message */
#endif
rc = swrap_sendmsg_before(s,
si,
&msg,
&tmp,
&un_addr.sa.un,
&to_un,
&to,
&bcast);
if (rc < 0) {
return -1;
}
buf = msg.msg_iov[0].iov_base;
len = msg.msg_iov[0].iov_len;
if (bcast) {
struct stat st;
unsigned int iface;
unsigned int prt = ntohs(((const struct sockaddr_in *)(const void *)to)->sin_port);
char type;
char *swrap_dir = NULL;
type = SOCKET_TYPE_CHAR_UDP;
swrap_dir = socket_wrapper_dir();
if (swrap_dir == NULL) {
return -1;
}
for(iface=0; iface <= MAX_WRAPPED_INTERFACES; iface++) {
swrap_un_path(&un_addr.sa.un,
swrap_dir,
type,
iface,
prt);
if (stat(un_addr.sa.un.sun_path, &st) != 0) continue;
/* ignore the any errors in broadcast sends */
libc_sendto(s,
buf,
len,
flags,
&un_addr.sa.s,
un_addr.sa_socklen);
}
SAFE_FREE(swrap_dir);
SWRAP_LOCK_SI(si);
swrap_pcap_dump_packet(si, to, SWRAP_SENDTO, buf, len);
SWRAP_UNLOCK_SI(si);
return len;
}
SWRAP_LOCK_SI(si);
/*
* If it is a dgram socket and we are connected, don't include the
* 'to' address.
*/
if (si->type == SOCK_DGRAM && si->connected) {
ret = libc_sendto(s,
buf,
len,
flags,
NULL,
0);
} else {
ret = libc_sendto(s,
buf,
len,
flags,
(struct sockaddr *)msg.msg_name,
msg.msg_namelen);
}
SWRAP_UNLOCK_SI(si);
swrap_sendmsg_after(s, si, &msg, to, ret);
return ret;
}
ssize_t sendto(int s, const void *buf, size_t len, int flags,
const struct sockaddr *to, socklen_t tolen)
{
return swrap_sendto(s, buf, len, flags, to, tolen);
}
/****************************************************************************
* READV
***************************************************************************/
static ssize_t swrap_recv(int s, void *buf, size_t len, int flags)
{
struct socket_info *si;
struct msghdr msg;
struct swrap_address saddr = {
.sa_socklen = sizeof(struct sockaddr_storage),
};
struct iovec tmp;
ssize_t ret;
int tret;
si = find_socket_info(s);
if (si == NULL) {
return libc_recv(s, buf, len, flags);
}
tmp.iov_base = buf;
tmp.iov_len = len;
ZERO_STRUCT(msg);
msg.msg_name = &saddr.sa.s; /* optional address */
msg.msg_namelen = saddr.sa_socklen; /* size of address */
msg.msg_iov = &tmp; /* scatter/gather array */
msg.msg_iovlen = 1; /* # elements in msg_iov */
#ifdef HAVE_STRUCT_MSGHDR_MSG_CONTROL
msg.msg_control = NULL; /* ancillary data, see below */
msg.msg_controllen = 0; /* ancillary data buffer len */
msg.msg_flags = 0; /* flags on received message */
#endif
tret = swrap_recvmsg_before(s, si, &msg, &tmp);
if (tret < 0) {
return -1;
}
buf = msg.msg_iov[0].iov_base;
len = msg.msg_iov[0].iov_len;
ret = libc_recv(s, buf, len, flags);
tret = swrap_recvmsg_after(s, si, &msg, NULL, 0, ret);
if (tret != 0) {
return tret;
}
return ret;
}
ssize_t recv(int s, void *buf, size_t len, int flags)
{
return swrap_recv(s, buf, len, flags);
}
/****************************************************************************
* READ
***************************************************************************/
static ssize_t swrap_read(int s, void *buf, size_t len)
{
struct socket_info *si;
struct msghdr msg;
struct iovec tmp;
struct swrap_address saddr = {
.sa_socklen = sizeof(struct sockaddr_storage),
};
ssize_t ret;
int tret;
si = find_socket_info(s);
if (si == NULL) {
return libc_read(s, buf, len);
}
tmp.iov_base = buf;
tmp.iov_len = len;
ZERO_STRUCT(msg);
msg.msg_name = &saddr.sa.ss; /* optional address */
msg.msg_namelen = saddr.sa_socklen; /* size of address */
msg.msg_iov = &tmp; /* scatter/gather array */
msg.msg_iovlen = 1; /* # elements in msg_iov */
#ifdef HAVE_STRUCT_MSGHDR_MSG_CONTROL
msg.msg_control = NULL; /* ancillary data, see below */
msg.msg_controllen = 0; /* ancillary data buffer len */
msg.msg_flags = 0; /* flags on received message */
#endif
tret = swrap_recvmsg_before(s, si, &msg, &tmp);
if (tret < 0) {
if (tret == -ENOTSOCK) {
return libc_read(s, buf, len);
}
return -1;
}
buf = msg.msg_iov[0].iov_base;
len = msg.msg_iov[0].iov_len;
ret = libc_read(s, buf, len);
tret = swrap_recvmsg_after(s, si, &msg, NULL, 0, ret);
if (tret != 0) {
return tret;
}
return ret;
}
ssize_t read(int s, void *buf, size_t len)
{
return swrap_read(s, buf, len);
}
/****************************************************************************
* WRITE
***************************************************************************/
static ssize_t swrap_write(int s, const void *buf, size_t len)
{
struct msghdr msg;
struct iovec tmp;
struct sockaddr_un un_addr;
ssize_t ret;
int rc;
struct socket_info *si;
si = find_socket_info(s);
if (si == NULL) {
return libc_write(s, buf, len);
}
tmp.iov_base = discard_const_p(char, buf);
tmp.iov_len = len;
ZERO_STRUCT(msg);
msg.msg_name = NULL; /* optional address */
msg.msg_namelen = 0; /* size of address */
msg.msg_iov = &tmp; /* scatter/gather array */
msg.msg_iovlen = 1; /* # elements in msg_iov */
#ifdef HAVE_STRUCT_MSGHDR_MSG_CONTROL
msg.msg_control = NULL; /* ancillary data, see below */
msg.msg_controllen = 0; /* ancillary data buffer len */
msg.msg_flags = 0; /* flags on received message */
#endif
rc = swrap_sendmsg_before(s, si, &msg, &tmp, &un_addr, NULL, NULL, NULL);
if (rc < 0) {
return -1;
}
buf = msg.msg_iov[0].iov_base;
len = msg.msg_iov[0].iov_len;
ret = libc_write(s, buf, len);
swrap_sendmsg_after(s, si, &msg, NULL, ret);
return ret;
}
ssize_t write(int s, const void *buf, size_t len)
{
return swrap_write(s, buf, len);
}
/****************************************************************************
* SEND
***************************************************************************/
static ssize_t swrap_send(int s, const void *buf, size_t len, int flags)
{
struct msghdr msg;
struct iovec tmp;
struct sockaddr_un un_addr;
ssize_t ret;
int rc;
struct socket_info *si = find_socket_info(s);
if (!si) {
return libc_send(s, buf, len, flags);
}
tmp.iov_base = discard_const_p(char, buf);
tmp.iov_len = len;
ZERO_STRUCT(msg);
msg.msg_name = NULL; /* optional address */
msg.msg_namelen = 0; /* size of address */
msg.msg_iov = &tmp; /* scatter/gather array */
msg.msg_iovlen = 1; /* # elements in msg_iov */
#ifdef HAVE_STRUCT_MSGHDR_MSG_CONTROL
msg.msg_control = NULL; /* ancillary data, see below */
msg.msg_controllen = 0; /* ancillary data buffer len */
msg.msg_flags = 0; /* flags on received message */
#endif
rc = swrap_sendmsg_before(s, si, &msg, &tmp, &un_addr, NULL, NULL, NULL);
if (rc < 0) {
return -1;
}
buf = msg.msg_iov[0].iov_base;
len = msg.msg_iov[0].iov_len;
ret = libc_send(s, buf, len, flags);
swrap_sendmsg_after(s, si, &msg, NULL, ret);
return ret;
}
ssize_t send(int s, const void *buf, size_t len, int flags)
{
return swrap_send(s, buf, len, flags);
}
/****************************************************************************
* RECVMSG
***************************************************************************/
static ssize_t swrap_recvmsg(int s, struct msghdr *omsg, int flags)
{
struct swrap_address from_addr = {
.sa_socklen = sizeof(struct sockaddr_un),
};
struct swrap_address convert_addr = {
.sa_socklen = sizeof(struct sockaddr_storage),
};
struct socket_info *si;
struct msghdr msg;
struct iovec tmp;
#ifdef HAVE_STRUCT_MSGHDR_MSG_CONTROL
size_t msg_ctrllen_filled;
size_t msg_ctrllen_left;
#endif
ssize_t ret;
int rc;
si = find_socket_info(s);
if (si == NULL) {
uint8_t *tmp_control = NULL;
rc = swrap_recvmsg_before_unix(omsg, &msg, &tmp_control);
if (rc < 0) {
return rc;
}
ret = libc_recvmsg(s, &msg, flags);
return swrap_recvmsg_after_unix(&msg, &tmp_control, omsg, ret);
}
tmp.iov_base = NULL;
tmp.iov_len = 0;
ZERO_STRUCT(msg);
msg.msg_name = &from_addr.sa; /* optional address */
msg.msg_namelen = from_addr.sa_socklen; /* size of address */
msg.msg_iov = omsg->msg_iov; /* scatter/gather array */
msg.msg_iovlen = omsg->msg_iovlen; /* # elements in msg_iov */
#ifdef HAVE_STRUCT_MSGHDR_MSG_CONTROL
msg_ctrllen_filled = 0;
msg_ctrllen_left = omsg->msg_controllen;
msg.msg_control = omsg->msg_control; /* ancillary data, see below */
msg.msg_controllen = omsg->msg_controllen; /* ancillary data buffer len */
msg.msg_flags = omsg->msg_flags; /* flags on received message */
#endif
rc = swrap_recvmsg_before(s, si, &msg, &tmp);
if (rc < 0) {
return -1;
}
ret = libc_recvmsg(s, &msg, flags);
#ifdef HAVE_STRUCT_MSGHDR_MSG_CONTROL
msg_ctrllen_filled += msg.msg_controllen;
msg_ctrllen_left -= msg.msg_controllen;
if (omsg->msg_control != NULL) {
uint8_t *p;
p = omsg->msg_control;
p += msg_ctrllen_filled;
msg.msg_control = p;
msg.msg_controllen = msg_ctrllen_left;
} else {
msg.msg_control = NULL;
msg.msg_controllen = 0;
}
#endif
/*
* We convert the unix address to a IP address so we need a buffer
* which can store the address in case of SOCK_DGRAM, see below.
*/
msg.msg_name = &convert_addr.sa;
msg.msg_namelen = convert_addr.sa_socklen;
rc = swrap_recvmsg_after(s,
si,
&msg,
&from_addr.sa.un,
from_addr.sa_socklen,
ret);
if (rc != 0) {
return rc;
}
#ifdef HAVE_STRUCT_MSGHDR_MSG_CONTROL
if (omsg->msg_control != NULL) {
/* msg.msg_controllen = space left */
msg_ctrllen_left = msg.msg_controllen;
msg_ctrllen_filled = omsg->msg_controllen - msg_ctrllen_left;
}
/* Update the original message length */
omsg->msg_controllen = msg_ctrllen_filled;
omsg->msg_flags = msg.msg_flags;
#endif
omsg->msg_iovlen = msg.msg_iovlen;
SWRAP_LOCK_SI(si);
/*
* From the manpage:
*
* The msg_name field points to a caller-allocated buffer that is
* used to return the source address if the socket is unconnected. The
* caller should set msg_namelen to the size of this buffer before this
* call; upon return from a successful call, msg_name will contain the
* length of the returned address. If the application does not need
* to know the source address, msg_name can be specified as NULL.
*/
if (si->type == SOCK_STREAM) {
omsg->msg_namelen = 0;
} else if (omsg->msg_name != NULL &&
omsg->msg_namelen != 0 &&
omsg->msg_namelen >= msg.msg_namelen) {
memcpy(omsg->msg_name, msg.msg_name, msg.msg_namelen);
omsg->msg_namelen = msg.msg_namelen;
}
SWRAP_UNLOCK_SI(si);
return ret;
}
ssize_t recvmsg(int sockfd, struct msghdr *msg, int flags)
{
return swrap_recvmsg(sockfd, msg, flags);
}
/****************************************************************************
* RECVMMSG
***************************************************************************/
#ifdef HAVE_RECVMMSG
#if defined(HAVE_RECVMMSG_SSIZE_T_CONST_TIMEOUT)
/* FreeBSD */
static ssize_t swrap_recvmmsg(int s, struct mmsghdr *omsgvec, size_t _vlen, int flags, const struct timespec *timeout)
#elif defined(HAVE_RECVMMSG_CONST_TIMEOUT)
/* Linux legacy glibc < 2.21 */
static int swrap_recvmmsg(int s, struct mmsghdr *omsgvec, unsigned int _vlen, int flags, const struct timespec *timeout)
#else
/* Linux glibc >= 2.21 */
static int swrap_recvmmsg(int s, struct mmsghdr *omsgvec, unsigned int _vlen, int flags, struct timespec *timeout)
#endif
{
struct socket_info *si = find_socket_info(s);
#define __SWRAP_RECVMMSG_MAX_VLEN 16
struct mmsghdr msgvec[__SWRAP_RECVMMSG_MAX_VLEN] = {};
struct {
struct iovec iov;
struct swrap_address from_addr;
struct swrap_address convert_addr;
#ifdef HAVE_STRUCT_MSGHDR_MSG_CONTROL
size_t msg_ctrllen_filled;
size_t msg_ctrllen_left;
#endif
} tmp[__SWRAP_RECVMMSG_MAX_VLEN] = {};
int vlen;
int i;
int ret;
int rc;
int saved_errno;
if (_vlen > __SWRAP_RECVMMSG_MAX_VLEN) {
vlen = __SWRAP_RECVMMSG_MAX_VLEN;
} else {
vlen = _vlen;
}
if (si == NULL) {
uint8_t *tmp_control[__SWRAP_RECVMMSG_MAX_VLEN] = { NULL, };
for (i = 0; i < vlen; i++) {
struct msghdr *omsg = &omsgvec[i].msg_hdr;
struct msghdr *msg = &msgvec[i].msg_hdr;
rc = swrap_recvmsg_before_unix(omsg, msg,
&tmp_control[i]);
if (rc < 0) {
ret = rc;
goto fail_libc;
}
}
ret = libc_recvmmsg(s, msgvec, vlen, flags, timeout);
if (ret < 0) {
goto fail_libc;
}
for (i = 0; i < ret; i++) {
omsgvec[i].msg_len = msgvec[i].msg_len;
}
fail_libc:
saved_errno = errno;
for (i = 0; i < vlen; i++) {
struct msghdr *omsg = &omsgvec[i].msg_hdr;
struct msghdr *msg = &msgvec[i].msg_hdr;
if (i == 0 || i < ret) {
swrap_recvmsg_after_unix(msg, &tmp_control[i], omsg, ret);
}
SAFE_FREE(tmp_control[i]);
}
errno = saved_errno;
return ret;
}
for (i = 0; i < vlen; i++) {
struct msghdr *omsg = &omsgvec[i].msg_hdr;
struct msghdr *msg = &msgvec[i].msg_hdr;
tmp[i].from_addr.sa_socklen = sizeof(struct sockaddr_un);
tmp[i].convert_addr.sa_socklen = sizeof(struct sockaddr_storage);
msg->msg_name = &tmp[i].from_addr.sa; /* optional address */
msg->msg_namelen = tmp[i].from_addr.sa_socklen; /* size of address */
msg->msg_iov = omsg->msg_iov; /* scatter/gather array */
msg->msg_iovlen = omsg->msg_iovlen; /* # elements in msg_iov */
#ifdef HAVE_STRUCT_MSGHDR_MSG_CONTROL
tmp[i].msg_ctrllen_filled = 0;
tmp[i].msg_ctrllen_left = omsg->msg_controllen;
msg->msg_control = omsg->msg_control; /* ancillary data, see below */
msg->msg_controllen = omsg->msg_controllen; /* ancillary data buffer len */
msg->msg_flags = omsg->msg_flags; /* flags on received message */
#endif
rc = swrap_recvmsg_before(s, si, msg, &tmp[i].iov);
if (rc < 0) {
ret = rc;
goto fail_swrap;
}
}
ret = libc_recvmmsg(s, msgvec, vlen, flags, timeout);
if (ret < 0) {
goto fail_swrap;
}
for (i = 0; i < ret; i++) {
omsgvec[i].msg_len = msgvec[i].msg_len;
}
fail_swrap:
saved_errno = errno;
for (i = 0; i < vlen; i++) {
struct msghdr *omsg = &omsgvec[i].msg_hdr;
struct msghdr *msg = &msgvec[i].msg_hdr;
if (!(i == 0 || i < ret)) {
break;
}
#ifdef HAVE_STRUCT_MSGHDR_MSG_CONTROL
tmp[i].msg_ctrllen_filled += msg->msg_controllen;
tmp[i].msg_ctrllen_left -= msg->msg_controllen;
if (omsg->msg_control != NULL) {
uint8_t *p;
p = omsg->msg_control;
p += tmp[i].msg_ctrllen_filled;
msg->msg_control = p;
msg->msg_controllen = tmp[i].msg_ctrllen_left;
} else {
msg->msg_control = NULL;
msg->msg_controllen = 0;
}
#endif
/*
* We convert the unix address to a IP address so we need a buffer
* which can store the address in case of SOCK_DGRAM, see below.
*/
msg->msg_name = &tmp[i].convert_addr.sa;
msg->msg_namelen = tmp[i].convert_addr.sa_socklen;
swrap_recvmsg_after(s, si, msg,
&tmp[i].from_addr.sa.un,
tmp[i].from_addr.sa_socklen,
ret);
#ifdef HAVE_STRUCT_MSGHDR_MSG_CONTROL
if (omsg->msg_control != NULL) {
/* msg->msg_controllen = space left */
tmp[i].msg_ctrllen_left = msg->msg_controllen;
tmp[i].msg_ctrllen_filled = omsg->msg_controllen - tmp[i].msg_ctrllen_left;
}
/* Update the original message length */
omsg->msg_controllen = tmp[i].msg_ctrllen_filled;
omsg->msg_flags = msg->msg_flags;
#endif
omsg->msg_iovlen = msg->msg_iovlen;
SWRAP_LOCK_SI(si);
/*
* From the manpage:
*
* The msg_name field points to a caller-allocated buffer that is
* used to return the source address if the socket is unconnected. The
* caller should set msg_namelen to the size of this buffer before this
* call; upon return from a successful call, msg_name will contain the
* length of the returned address. If the application does not need
* to know the source address, msg_name can be specified as NULL.
*/
if (si->type == SOCK_STREAM) {
omsg->msg_namelen = 0;
} else if (omsg->msg_name != NULL &&
omsg->msg_namelen != 0 &&
omsg->msg_namelen >= msg->msg_namelen) {
memcpy(omsg->msg_name, msg->msg_name, msg->msg_namelen);
omsg->msg_namelen = msg->msg_namelen;
}
SWRAP_UNLOCK_SI(si);
}
errno = saved_errno;
return ret;
}
#if defined(HAVE_RECVMMSG_SSIZE_T_CONST_TIMEOUT)
/* FreeBSD */
ssize_t recvmmsg(int sockfd, struct mmsghdr *msgvec, size_t vlen, int flags, const struct timespec *timeout)
#elif defined(HAVE_RECVMMSG_CONST_TIMEOUT)
/* Linux legacy glibc < 2.21 */
int recvmmsg(int sockfd, struct mmsghdr *msgvec, unsigned int vlen, int flags, const struct timespec *timeout)
#else
/* Linux glibc >= 2.21 */
int recvmmsg(int sockfd, struct mmsghdr *msgvec, unsigned int vlen, int flags, struct timespec *timeout)
#endif
{
return swrap_recvmmsg(sockfd, msgvec, vlen, flags, timeout);
}
#endif /* HAVE_RECVMMSG */
/****************************************************************************
* SENDMSG
***************************************************************************/
static ssize_t swrap_sendmsg(int s, const struct msghdr *omsg, int flags)
{
struct msghdr msg;
struct iovec tmp;
struct sockaddr_un un_addr;
const struct sockaddr_un *to_un = NULL;
const struct sockaddr *to = NULL;
ssize_t ret;
int rc;
struct socket_info *si = find_socket_info(s);
int bcast = 0;
if (!si) {
int scm_rights_pipe_fd = -1;
rc = swrap_sendmsg_before_unix(omsg, &msg,
&scm_rights_pipe_fd);
if (rc < 0) {
return rc;
}
ret = libc_sendmsg(s, &msg, flags);
return swrap_sendmsg_after_unix(&msg, ret, scm_rights_pipe_fd);
}
ZERO_STRUCT(un_addr);
tmp.iov_base = NULL;
tmp.iov_len = 0;
ZERO_STRUCT(msg);
SWRAP_LOCK_SI(si);
if (si->connected == 0) {
msg.msg_name = omsg->msg_name; /* optional address */
msg.msg_namelen = omsg->msg_namelen; /* size of address */
}
msg.msg_iov = omsg->msg_iov; /* scatter/gather array */
msg.msg_iovlen = omsg->msg_iovlen; /* # elements in msg_iov */
SWRAP_UNLOCK_SI(si);
#ifdef HAVE_STRUCT_MSGHDR_MSG_CONTROL
if (omsg != NULL && omsg->msg_controllen > 0 && omsg->msg_control != NULL) {
uint8_t *cmbuf = NULL;
size_t cmlen = 0;
rc = swrap_sendmsg_filter_cmsghdr(omsg, &cmbuf, &cmlen);
if (rc < 0) {
return rc;
}
if (cmlen == 0) {
msg.msg_controllen = 0;
msg.msg_control = NULL;
} else {
msg.msg_control = cmbuf;
msg.msg_controllen = cmlen;
}
}
msg.msg_flags = omsg->msg_flags; /* flags on received message */
#endif
rc = swrap_sendmsg_before(s, si, &msg, &tmp, &un_addr, &to_un, &to, &bcast);
if (rc < 0) {
int saved_errno = errno;
#ifdef HAVE_STRUCT_MSGHDR_MSG_CONTROL
SAFE_FREE(msg.msg_control);
#endif
errno = saved_errno;
return -1;
}
if (bcast) {
struct stat st;
unsigned int iface;
unsigned int prt = ntohs(((const struct sockaddr_in *)(const void *)to)->sin_port);
char type;
size_t i, len = 0;
uint8_t *buf;
off_t ofs = 0;
size_t avail = 0;
size_t remain;
char *swrap_dir = NULL;
for (i = 0; i < (size_t)msg.msg_iovlen; i++) {
avail += msg.msg_iov[i].iov_len;
}
len = avail;
remain = avail;
/* we capture it as one single packet */
buf = (uint8_t *)malloc(remain);
if (!buf) {
int saved_errno = errno;
#ifdef HAVE_STRUCT_MSGHDR_MSG_CONTROL
SAFE_FREE(msg.msg_control);
#endif
errno = saved_errno;
return -1;
}
for (i = 0; i < (size_t)msg.msg_iovlen; i++) {
size_t this_time = MIN(remain, (size_t)msg.msg_iov[i].iov_len);
memcpy(buf + ofs,
msg.msg_iov[i].iov_base,
this_time);
ofs += this_time;
remain -= this_time;
}
type = SOCKET_TYPE_CHAR_UDP;
swrap_dir = socket_wrapper_dir();
if (swrap_dir == NULL) {
int saved_errno = errno;
#ifdef HAVE_STRUCT_MSGHDR_MSG_CONTROL
SAFE_FREE(msg.msg_control);
#endif
SAFE_FREE(buf);
errno = saved_errno;
return -1;
}
for(iface=0; iface <= MAX_WRAPPED_INTERFACES; iface++) {
swrap_un_path(&un_addr, swrap_dir, type, iface, prt);
if (stat(un_addr.sun_path, &st) != 0) continue;
msg.msg_name = &un_addr; /* optional address */
msg.msg_namelen = sizeof(un_addr); /* size of address */
/* ignore the any errors in broadcast sends */
libc_sendmsg(s, &msg, flags);
}
SAFE_FREE(swrap_dir);
SWRAP_LOCK_SI(si);
swrap_pcap_dump_packet(si, to, SWRAP_SENDTO, buf, len);
free(buf);
SWRAP_UNLOCK_SI(si);
return len;
}
ret = libc_sendmsg(s, &msg, flags);
swrap_sendmsg_after(s, si, &msg, to, ret);
#ifdef HAVE_STRUCT_MSGHDR_MSG_CONTROL
{
int saved_errno = errno;
SAFE_FREE(msg.msg_control);
errno = saved_errno;
}
#endif
return ret;
}
ssize_t sendmsg(int s, const struct msghdr *omsg, int flags)
{
return swrap_sendmsg(s, omsg, flags);
}
/****************************************************************************
* SENDMMSG
***************************************************************************/
#ifdef HAVE_SENDMMSG
#if defined(HAVE_SENDMMSG_SSIZE_T)
/* FreeBSD */
static ssize_t swrap_sendmmsg(int s, struct mmsghdr *omsgvec, size_t _vlen, int flags)
#else
/* Linux */
static int swrap_sendmmsg(int s, struct mmsghdr *omsgvec, unsigned int _vlen, int flags)
#endif
{
struct socket_info *si = find_socket_info(s);
#define __SWRAP_SENDMMSG_MAX_VLEN 16
struct mmsghdr msgvec[__SWRAP_SENDMMSG_MAX_VLEN] = {};
struct {
struct iovec iov;
struct sockaddr_un un_addr;
const struct sockaddr_un *to_un;
const struct sockaddr *to;
int bcast;
} tmp[__SWRAP_SENDMMSG_MAX_VLEN] = {};
int vlen;
int i;
char *swrap_dir = NULL;
int connected = 0;
int found_bcast = 0;
int ret;
int rc;
int saved_errno;
if (_vlen > __SWRAP_SENDMMSG_MAX_VLEN) {
vlen = __SWRAP_SENDMMSG_MAX_VLEN;
} else {
vlen = _vlen;
}
if (!si) {
int scm_rights_pipe_fd[__SWRAP_SENDMMSG_MAX_VLEN];
for (i = 0; i < __SWRAP_SENDMMSG_MAX_VLEN; i++) {
scm_rights_pipe_fd[i] = -1;
}
for (i = 0; i < vlen; i++) {
struct msghdr *omsg = &omsgvec[i].msg_hdr;
struct msghdr *msg = &msgvec[i].msg_hdr;
rc = swrap_sendmsg_before_unix(omsg, msg,
&scm_rights_pipe_fd[i]);
if (rc < 0) {
ret = rc;
goto fail_libc;
}
}
ret = libc_sendmmsg(s, msgvec, vlen, flags);
if (ret < 0) {
goto fail_libc;
}
for (i = 0; i < ret; i++) {
omsgvec[i].msg_len = msgvec[i].msg_len;
}
fail_libc:
saved_errno = errno;
for (i = 0; i < vlen; i++) {
struct msghdr *msg = &msgvec[i].msg_hdr;
swrap_sendmsg_after_unix(msg, ret,
scm_rights_pipe_fd[i]);
}
errno = saved_errno;
return ret;
}
SWRAP_LOCK_SI(si);
connected = si->connected;
SWRAP_UNLOCK_SI(si);
for (i = 0; i < vlen; i++) {
struct msghdr *omsg = &omsgvec[i].msg_hdr;
struct msghdr *msg = &msgvec[i].msg_hdr;
if (connected == 0) {
msg->msg_name = omsg->msg_name; /* optional address */
msg->msg_namelen = omsg->msg_namelen; /* size of address */
}
msg->msg_iov = omsg->msg_iov; /* scatter/gather array */
msg->msg_iovlen = omsg->msg_iovlen; /* # elements in msg_iov */
#ifdef HAVE_STRUCT_MSGHDR_MSG_CONTROL
if (omsg->msg_controllen > 0 && omsg->msg_control != NULL) {
uint8_t *cmbuf = NULL;
size_t cmlen = 0;
rc = swrap_sendmsg_filter_cmsghdr(omsg, &cmbuf, &cmlen);
if (rc < 0) {
ret = rc;
goto fail_swrap;
}
if (cmlen != 0) {
msg->msg_control = cmbuf;
msg->msg_controllen = cmlen;
}
}
msg->msg_flags = omsg->msg_flags; /* flags on received message */
#endif
rc = swrap_sendmsg_before(s, si, msg,
&tmp[i].iov,
&tmp[i].un_addr,
&tmp[i].to_un,
&tmp[i].to,
&tmp[i].bcast);
if (rc < 0) {
ret = rc;
goto fail_swrap;
}
if (tmp[i].bcast) {
found_bcast = 1;
}
}
if (found_bcast) {
swrap_dir = socket_wrapper_dir();
if (swrap_dir == NULL) {
ret = -1;
goto fail_swrap;
}
for (i = 0; i < vlen; i++) {
struct msghdr *msg = &msgvec[i].msg_hdr;
struct sockaddr_un *un_addr = &tmp[i].un_addr;
const struct sockaddr *to = tmp[i].to;
struct stat st;
unsigned int iface;
unsigned int prt = ntohs(((const struct sockaddr_in *)(const void *)to)->sin_port);
char type;
size_t l, len = 0;
uint8_t *buf;
off_t ofs = 0;
size_t avail = 0;
size_t remain;
for (l = 0; l < (size_t)msg->msg_iovlen; l++) {
avail += msg->msg_iov[l].iov_len;
}
len = avail;
remain = avail;
/* we capture it as one single packet */
buf = (uint8_t *)malloc(remain);
if (!buf) {
ret = -1;
goto fail_swrap;
}
for (l = 0; l < (size_t)msg->msg_iovlen; l++) {
size_t this_time = MIN(remain, (size_t)msg->msg_iov[l].iov_len);
memcpy(buf + ofs,
msg->msg_iov[l].iov_base,
this_time);
ofs += this_time;
remain -= this_time;
}
type = SOCKET_TYPE_CHAR_UDP;
for(iface=0; iface <= MAX_WRAPPED_INTERFACES; iface++) {
swrap_un_path(un_addr, swrap_dir, type, iface, prt);
if (stat(un_addr->sun_path, &st) != 0) continue;
msg->msg_name = un_addr; /* optional address */
msg->msg_namelen = sizeof(*un_addr); /* size of address */
/*
* ignore the any errors in broadcast sends and
* do a single sendmsg instead of sendmmsg
*/
libc_sendmsg(s, msg, flags);
}
SWRAP_LOCK_SI(si);
swrap_pcap_dump_packet(si, to, SWRAP_SENDTO, buf, len);
SWRAP_UNLOCK_SI(si);
SAFE_FREE(buf);
msgvec[i].msg_len = len;
}
ret = vlen;
goto bcast_done;
}
ret = libc_sendmmsg(s, msgvec, vlen, flags);
if (ret < 0) {
goto fail_swrap;
}
bcast_done:
for (i = 0; i < ret; i++) {
omsgvec[i].msg_len = msgvec[i].msg_len;
}
fail_swrap:
saved_errno = errno;
for (i = 0; i < vlen; i++) {
struct msghdr *msg = &msgvec[i].msg_hdr;
if (i == 0 || i < ret) {
swrap_sendmsg_after(s, si, msg, tmp[i].to, ret);
}
#ifdef HAVE_STRUCT_MSGHDR_MSG_CONTROL
SAFE_FREE(msg->msg_control);
#endif
}
SAFE_FREE(swrap_dir);
errno = saved_errno;
return ret;
}
#if defined(HAVE_SENDMMSG_SSIZE_T)
/* FreeBSD */
ssize_t sendmmsg(int s, struct mmsghdr *msgvec, size_t vlen, int flags)
#else
/* Linux */
int sendmmsg(int s, struct mmsghdr *msgvec, unsigned int vlen, int flags)
#endif
{
return swrap_sendmmsg(s, msgvec, vlen, flags);
}
#endif /* HAVE_SENDMMSG */
/****************************************************************************
* READV
***************************************************************************/
static ssize_t swrap_readv(int s, const struct iovec *vector, int count)
{
struct socket_info *si;
struct msghdr msg;
struct iovec tmp;
struct swrap_address saddr = {
.sa_socklen = sizeof(struct sockaddr_storage)
};
ssize_t ret;
int rc;
si = find_socket_info(s);
if (si == NULL) {
return libc_readv(s, vector, count);
}
tmp.iov_base = NULL;
tmp.iov_len = 0;
ZERO_STRUCT(msg);
msg.msg_name = &saddr.sa.s; /* optional address */
msg.msg_namelen = saddr.sa_socklen; /* size of address */
msg.msg_iov = discard_const_p(struct iovec, vector); /* scatter/gather array */
msg.msg_iovlen = count; /* # elements in msg_iov */
#ifdef HAVE_STRUCT_MSGHDR_MSG_CONTROL
msg.msg_control = NULL; /* ancillary data, see below */
msg.msg_controllen = 0; /* ancillary data buffer len */
msg.msg_flags = 0; /* flags on received message */
#endif
rc = swrap_recvmsg_before(s, si, &msg, &tmp);
if (rc < 0) {
if (rc == -ENOTSOCK) {
return libc_readv(s, vector, count);
}
return -1;
}
ret = libc_readv(s, msg.msg_iov, msg.msg_iovlen);
rc = swrap_recvmsg_after(s, si, &msg, NULL, 0, ret);
if (rc != 0) {
return rc;
}
return ret;
}
ssize_t readv(int s, const struct iovec *vector, int count)
{
return swrap_readv(s, vector, count);
}
/****************************************************************************
* WRITEV
***************************************************************************/
static ssize_t swrap_writev(int s, const struct iovec *vector, int count)
{
struct msghdr msg;
struct iovec tmp;
struct sockaddr_un un_addr;
ssize_t ret;
int rc;
struct socket_info *si = find_socket_info(s);
if (!si) {
return libc_writev(s, vector, count);
}
tmp.iov_base = NULL;
tmp.iov_len = 0;
ZERO_STRUCT(msg);
msg.msg_name = NULL; /* optional address */
msg.msg_namelen = 0; /* size of address */
msg.msg_iov = discard_const_p(struct iovec, vector); /* scatter/gather array */
msg.msg_iovlen = count; /* # elements in msg_iov */
#ifdef HAVE_STRUCT_MSGHDR_MSG_CONTROL
msg.msg_control = NULL; /* ancillary data, see below */
msg.msg_controllen = 0; /* ancillary data buffer len */
msg.msg_flags = 0; /* flags on received message */
#endif
rc = swrap_sendmsg_before(s, si, &msg, &tmp, &un_addr, NULL, NULL, NULL);
if (rc < 0) {
if (rc == -ENOTSOCK) {
return libc_readv(s, vector, count);
}
return -1;
}
ret = libc_writev(s, msg.msg_iov, msg.msg_iovlen);
swrap_sendmsg_after(s, si, &msg, NULL, ret);
return ret;
}
ssize_t writev(int s, const struct iovec *vector, int count)
{
return swrap_writev(s, vector, count);
}
/****************************
* CLOSE
***************************/
static int swrap_remove_wrapper(const char *__func_name,
int (*__close_fd_fn)(int fd),
int fd)
{
struct socket_info *si = NULL;
int si_index;
int ret_errno = errno;
int ret;
swrap_mutex_lock(&socket_reset_mutex);
si_index = find_socket_info_index(fd);
if (si_index == -1) {
swrap_mutex_unlock(&socket_reset_mutex);
return __close_fd_fn(fd);
}
swrap_log(SWRAP_LOG_TRACE, __func_name, "Remove wrapper for fd=%d", fd);
reset_socket_info_index(fd);
si = swrap_get_socket_info(si_index);
swrap_mutex_lock(&first_free_mutex);
SWRAP_LOCK_SI(si);
ret = __close_fd_fn(fd);
if (ret == -1) {
ret_errno = errno;
}
swrap_dec_refcount(si);
if (swrap_get_refcount(si) > 0) {
/* there are still references left */
goto out;
}
if (si->fd_passed) {
goto set_next_free;
}
if (si->myname.sa_socklen > 0 && si->peername.sa_socklen > 0) {
swrap_pcap_dump_packet(si, NULL, SWRAP_CLOSE_SEND, NULL, 0);
}
if (si->myname.sa_socklen > 0 && si->peername.sa_socklen > 0) {
swrap_pcap_dump_packet(si, NULL, SWRAP_CLOSE_RECV, NULL, 0);
swrap_pcap_dump_packet(si, NULL, SWRAP_CLOSE_ACK, NULL, 0);
}
if (si->un_addr.sun_path[0] != '\0') {
unlink(si->un_addr.sun_path);
}
set_next_free:
swrap_set_next_free(si, first_free);
first_free = si_index;
out:
SWRAP_UNLOCK_SI(si);
swrap_mutex_unlock(&first_free_mutex);
swrap_mutex_unlock(&socket_reset_mutex);
errno = ret_errno;
return ret;
}
static int swrap_noop_close(int fd)
{
(void)fd; /* unused */
return 0;
}
static void swrap_remove_stale(int fd)
{
swrap_remove_wrapper(__func__, swrap_noop_close, fd);
}
/*
* This allows socket_wrapper aware applications to
* indicate that the given fd does not belong to
* an inet socket.
*
* We already overload a lot of unrelated functions
* like eventfd(), timerfd_create(), ... in order to
* call swrap_remove_stale() on the returned fd, but
* we'll never be able to handle all possible syscalls.
*
* socket_wrapper_indicate_no_inet_fd() gives them a way
* to do the same.
*
* We don't export swrap_remove_stale() in order to
* make it easier to analyze SOCKET_WRAPPER_DEBUGLEVEL=3
* log files.
*/
void socket_wrapper_indicate_no_inet_fd(int fd)
{
swrap_remove_wrapper(__func__, swrap_noop_close, fd);
}
static int swrap_close(int fd)
{
return swrap_remove_wrapper(__func__, libc_close, fd);
}
int close(int fd)
{
return swrap_close(fd);
}
#ifdef HAVE___CLOSE_NOCANCEL
static int swrap___close_nocancel(int fd)
{
return swrap_remove_wrapper(__func__, libc___close_nocancel, fd);
}
int __close_nocancel(int fd);
int __close_nocancel(int fd)
{
return swrap___close_nocancel(fd);
}
#endif /* HAVE___CLOSE_NOCANCEL */
/****************************
* DUP
***************************/
static int swrap_dup(int fd)
{
struct socket_info *si;
int dup_fd, idx;
idx = find_socket_info_index(fd);
if (idx == -1) {
return libc_dup(fd);
}
si = swrap_get_socket_info(idx);
dup_fd = libc_dup(fd);
if (dup_fd == -1) {
int saved_errno = errno;
errno = saved_errno;
return -1;
}
if ((size_t)dup_fd >= socket_fds_max) {
SWRAP_LOG(SWRAP_LOG_ERROR,
"The max socket index limit of %zu has been reached, "
"trying to add %d",
socket_fds_max,
dup_fd);
libc_close(dup_fd);
errno = EMFILE;
return -1;
}
SWRAP_LOCK_SI(si);
swrap_inc_refcount(si);
SWRAP_UNLOCK_SI(si);
/* Make sure we don't have an entry for the fd */
swrap_remove_stale(dup_fd);
set_socket_info_index(dup_fd, idx);
return dup_fd;
}
int dup(int fd)
{
return swrap_dup(fd);
}
/****************************
* DUP2
***************************/
static int swrap_dup2(int fd, int newfd)
{
struct socket_info *si;
int dup_fd, idx;
idx = find_socket_info_index(fd);
if (idx == -1) {
return libc_dup2(fd, newfd);
}
si = swrap_get_socket_info(idx);
if (fd == newfd) {
/*
* According to the manpage:
*
* "If oldfd is a valid file descriptor, and newfd has the same
* value as oldfd, then dup2() does nothing, and returns newfd."
*/
return newfd;
}
if ((size_t)newfd >= socket_fds_max) {
SWRAP_LOG(SWRAP_LOG_ERROR,
"The max socket index limit of %zu has been reached, "
"trying to add %d",
socket_fds_max,
newfd);
errno = EMFILE;
return -1;
}
if (find_socket_info(newfd)) {
/* dup2() does an implicit close of newfd, which we
* need to emulate */
swrap_close(newfd);
}
dup_fd = libc_dup2(fd, newfd);
if (dup_fd == -1) {
int saved_errno = errno;
errno = saved_errno;
return -1;
}
SWRAP_LOCK_SI(si);
swrap_inc_refcount(si);
SWRAP_UNLOCK_SI(si);
/* Make sure we don't have an entry for the fd */
swrap_remove_stale(dup_fd);
set_socket_info_index(dup_fd, idx);
return dup_fd;
}
int dup2(int fd, int newfd)
{
return swrap_dup2(fd, newfd);
}
/****************************
* FCNTL
***************************/
static int swrap_vfcntl(int fd, int cmd, va_list va)
{
struct socket_info *si;
int rc, dup_fd, idx;
idx = find_socket_info_index(fd);
if (idx == -1) {
return libc_vfcntl(fd, cmd, va);
}
si = swrap_get_socket_info(idx);
switch (cmd) {
case F_DUPFD:
dup_fd = libc_vfcntl(fd, cmd, va);
if (dup_fd == -1) {
int saved_errno = errno;
errno = saved_errno;
return -1;
}
/* Make sure we don't have an entry for the fd */
swrap_remove_stale(dup_fd);
if ((size_t)dup_fd >= socket_fds_max) {
SWRAP_LOG(SWRAP_LOG_ERROR,
"The max socket index limit of %zu has been reached, "
"trying to add %d",
socket_fds_max,
dup_fd);
libc_close(dup_fd);
errno = EMFILE;
return -1;
}
SWRAP_LOCK_SI(si);
swrap_inc_refcount(si);
SWRAP_UNLOCK_SI(si);
set_socket_info_index(dup_fd, idx);
rc = dup_fd;
break;
default:
rc = libc_vfcntl(fd, cmd, va);
break;
}
return rc;
}
#undef fcntl /* Needed for LFS handling */
int fcntl(int fd, int cmd, ...)
{
va_list va;
int rc;
va_start(va, cmd);
rc = swrap_vfcntl(fd, cmd, va);
va_end(va);
return rc;
}
/****************************
* FCNTL64
***************************/
#ifdef HAVE_FCNTL64
static int swrap_vfcntl64(int fd, int cmd, va_list va)
{
struct socket_info *si;
int rc, dup_fd, idx;
idx = find_socket_info_index(fd);
if (idx == -1) {
return libc_vfcntl64(fd, cmd, va);
}
si = swrap_get_socket_info(idx);
switch (cmd) {
case F_DUPFD:
dup_fd = libc_vfcntl64(fd, cmd, va);
if (dup_fd == -1) {
int saved_errno = errno;
errno = saved_errno;
return -1;
}
/* Make sure we don't have an entry for the fd */
swrap_remove_stale(dup_fd);
if ((size_t)dup_fd >= socket_fds_max) {
SWRAP_LOG(SWRAP_LOG_ERROR,
"The max socket index limit of %zu has been reached, "
"trying to add %d",
socket_fds_max,
dup_fd);
libc_close(dup_fd);
errno = EMFILE;
return -1;
}
SWRAP_LOCK_SI(si);
swrap_inc_refcount(si);
SWRAP_UNLOCK_SI(si);
set_socket_info_index(dup_fd, idx);
rc = dup_fd;
break;
default:
rc = libc_vfcntl64(fd, cmd, va);
break;
}
return rc;
}
int fcntl64(int fd, int cmd, ...)
{
va_list va;
int rc;
va_start(va, cmd);
rc = swrap_vfcntl64(fd, cmd, va);
va_end(va);
return rc;
}
#endif
/****************************
* EVENTFD
***************************/
#ifdef HAVE_EVENTFD
static int swrap_eventfd(int count, int flags)
{
int fd;
fd = libc_eventfd(count, flags);
if (fd != -1) {
swrap_remove_stale(fd);
}
return fd;
}
#ifdef HAVE_EVENTFD_UNSIGNED_INT
int eventfd(unsigned int count, int flags)
#else
int eventfd(int count, int flags)
#endif
{
return swrap_eventfd(count, flags);
}
#endif
#ifdef HAVE_PLEDGE
int pledge(const char *promises, const char *paths[])
{
(void)promises; /* unused */
(void)paths; /* unused */
return 0;
}
#endif /* HAVE_PLEDGE */
#ifdef HAVE_SYSCALL
static bool swrap_is_swrap_related_syscall(long int sysno)
{
switch (sysno) {
#ifdef SYS_close
case SYS_close:
return true;
#endif /* SYS_close */
#ifdef SYS_recvmmsg
case SYS_recvmmsg:
return true;
#endif /* SYS_recvmmsg */
#ifdef SYS_sendmmsg
case SYS_sendmmsg:
return true;
#endif /* SYS_sendmmsg */
default:
return false;
}
}
static long int swrap_syscall(long int sysno, va_list vp)
{
long int rc;
switch (sysno) {
#ifdef SYS_close
case SYS_close:
{
int fd = (int)va_arg(vp, int);
SWRAP_LOG(SWRAP_LOG_TRACE,
"calling swrap_close syscall %lu",
sysno);
rc = swrap_close(fd);
}
break;
#endif /* SYS_close */
#ifdef SYS_recvmmsg
case SYS_recvmmsg:
{
int fd = (int)va_arg(vp, int);
struct mmsghdr *msgvec = va_arg(vp, struct mmsghdr *);
unsigned int vlen = va_arg(vp, unsigned int);
int flags = va_arg(vp, int);
struct timespec *timeout = va_arg(vp, struct timespec *);
SWRAP_LOG(SWRAP_LOG_TRACE,
"calling swrap_recvmmsg syscall %lu",
sysno);
rc = swrap_recvmmsg(fd, msgvec, vlen, flags, timeout);
}
break;
#endif /* SYS_recvmmsg */
#ifdef SYS_sendmmsg
case SYS_sendmmsg:
{
int fd = (int)va_arg(vp, int);
struct mmsghdr *msgvec = va_arg(vp, struct mmsghdr *);
unsigned int vlen = va_arg(vp, unsigned int);
int flags = va_arg(vp, int);
SWRAP_LOG(SWRAP_LOG_TRACE,
"calling swrap_sendmmsg syscall %lu",
sysno);
rc = swrap_sendmmsg(fd, msgvec, vlen, flags);
}
break;
#endif /* SYS_sendmmsg */
default:
rc = -1;
errno = ENOSYS;
break;
}
return rc;
}
#ifdef HAVE_SYSCALL_INT
int syscall(int sysno, ...)
#else
long int syscall(long int sysno, ...)
#endif
{
#ifdef HAVE_SYSCALL_INT
int rc;
#else
long int rc;
#endif
va_list va;
va_start(va, sysno);
/*
* We should only handle the syscall numbers
* we care about...
*/
if (!swrap_is_swrap_related_syscall(sysno)) {
/*
* We need to give socket_wrapper a
* chance to take over...
*/
if (swrap_uwrap_syscall_valid(sysno)) {
rc = swrap_uwrap_syscall_va(sysno, va);
va_end(va);
return rc;
}
rc = libc_vsyscall(sysno, va);
va_end(va);
return rc;
}
if (!socket_wrapper_enabled()) {
rc = libc_vsyscall(sysno, va);
va_end(va);
return rc;
}
rc = swrap_syscall(sysno, va);
va_end(va);
return rc;
}
/* used by uid_wrapper */
bool socket_wrapper_syscall_valid(long int sysno);
bool socket_wrapper_syscall_valid(long int sysno)
{
if (!swrap_is_swrap_related_syscall(sysno)) {
return false;
}
if (!socket_wrapper_enabled()) {
return false;
}
return true;
}
/* used by uid_wrapper */
long int socket_wrapper_syscall_va(long int sysno, va_list va);
long int socket_wrapper_syscall_va(long int sysno, va_list va)
{
if (!swrap_is_swrap_related_syscall(sysno)) {
errno = ENOSYS;
return -1;
}
if (!socket_wrapper_enabled()) {
return libc_vsyscall(sysno, va);
}
return swrap_syscall(sysno, va);
}
#endif /* HAVE_SYSCALL */
static void swrap_thread_prepare(void)
{
/*
* This function should only be called here!!
*
* We bind all symobls to avoid deadlocks of the fork is
* interrupted by a signal handler using a symbol of this
* library.
*/
swrap_bind_symbol_all();
SWRAP_LOCK_ALL;
}
static void swrap_thread_parent(void)
{
SWRAP_UNLOCK_ALL;
}
static void swrap_thread_child(void)
{
SWRAP_REINIT_ALL;
}
/****************************
* CONSTRUCTOR
***************************/
void swrap_constructor(void)
{
if (PIPE_BUF < sizeof(struct swrap_unix_scm_rights)) {
SWRAP_LOG(SWRAP_LOG_ERROR,
"PIPE_BUF=%zu < "
"sizeof(struct swrap_unix_scm_rights)=%zu\n"
"sizeof(struct swrap_unix_scm_rights_payload)=%zu "
"sizeof(struct socket_info)=%zu",
(size_t)PIPE_BUF,
sizeof(struct swrap_unix_scm_rights),
sizeof(struct swrap_unix_scm_rights_payload),
sizeof(struct socket_info));
exit(-1);
}
SWRAP_REINIT_ALL;
/*
* If we hold a lock and the application forks, then the child
* is not able to unlock the mutex and we are in a deadlock.
* This should prevent such deadlocks.
*/
pthread_atfork(&swrap_thread_prepare,
&swrap_thread_parent,
&swrap_thread_child);
}
/****************************
* DESTRUCTOR
***************************/
/*
* This function is called when the library is unloaded and makes sure that
* sockets get closed and the unix file for the socket are unlinked.
*/
void swrap_destructor(void)
{
size_t i;
if (socket_fds_idx != NULL) {
for (i = 0; i < socket_fds_max; ++i) {
if (socket_fds_idx[i] != -1) {
swrap_close(i);
}
}
SAFE_FREE(socket_fds_idx);
}
SAFE_FREE(sockets);
if (swrap.libc.handle != NULL
#ifdef RTLD_NEXT
&& swrap.libc.handle != RTLD_NEXT
#endif
) {
dlclose(swrap.libc.handle);
}
if (swrap.libc.socket_handle
#ifdef RTLD_NEXT
&& swrap.libc.socket_handle != RTLD_NEXT
#endif
) {
dlclose(swrap.libc.socket_handle);
}
}
#if defined(HAVE__SOCKET) && defined(HAVE__CLOSE)
/*
* On FreeBSD 12 (and maybe other platforms)
* system libraries like libresolv prefix there
* syscalls with '_' in order to always use
* the symbols from libc.
*
* In the interaction with resolv_wrapper,
* we need to inject socket wrapper into libresolv,
* which means we need to private all socket
* related syscalls also with the '_' prefix.
*
* This is tested in Samba's 'make test',
* there we noticed that providing '_read',
* '_open' and '_close' would cause errors, which
* means we skip '_read', '_write' and
* all non socket related calls without
* further analyzing the problem.
*/
#define SWRAP_SYMBOL_ALIAS(__sym, __aliassym) \
extern typeof(__sym) __aliassym __attribute__ ((alias(#__sym)))
#ifdef HAVE_ACCEPT4
SWRAP_SYMBOL_ALIAS(accept4, _accept4);
#endif
SWRAP_SYMBOL_ALIAS(accept, _accept);
SWRAP_SYMBOL_ALIAS(bind, _bind);
SWRAP_SYMBOL_ALIAS(connect, _connect);
SWRAP_SYMBOL_ALIAS(dup, _dup);
SWRAP_SYMBOL_ALIAS(dup2, _dup2);
SWRAP_SYMBOL_ALIAS(fcntl, _fcntl);
SWRAP_SYMBOL_ALIAS(getpeername, _getpeername);
SWRAP_SYMBOL_ALIAS(getsockname, _getsockname);
SWRAP_SYMBOL_ALIAS(getsockopt, _getsockopt);
SWRAP_SYMBOL_ALIAS(ioctl, _ioctl);
SWRAP_SYMBOL_ALIAS(listen, _listen);
SWRAP_SYMBOL_ALIAS(readv, _readv);
SWRAP_SYMBOL_ALIAS(recv, _recv);
SWRAP_SYMBOL_ALIAS(recvfrom, _recvfrom);
SWRAP_SYMBOL_ALIAS(recvmsg, _recvmsg);
SWRAP_SYMBOL_ALIAS(send, _send);
SWRAP_SYMBOL_ALIAS(sendmsg, _sendmsg);
SWRAP_SYMBOL_ALIAS(sendto, _sendto);
SWRAP_SYMBOL_ALIAS(setsockopt, _setsockopt);
SWRAP_SYMBOL_ALIAS(socket, _socket);
SWRAP_SYMBOL_ALIAS(socketpair, _socketpair);
SWRAP_SYMBOL_ALIAS(writev, _writev);
#endif /* SOCKET_WRAPPER_EXPORT_UNDERSCORE_SYMBOLS */