1
0
mirror of https://github.com/samba-team/samba.git synced 2024-12-23 17:34:34 +03:00
samba-mirror/lib/crypto/aes_gcm_128_test.c
Andreas Schneider 0ee398e8b2 lib:crypto: Include only the required header files
Signed-off-by: Andreas Schneider <asn@samba.org>
Reviewed-by: Volker Lendecke <vl@samba.org>
2019-02-27 07:59:26 +00:00

296 lines
7.8 KiB
C

/*
AES-GCM-128 tests
Copyright (C) Stefan Metzmacher 2014
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include "replace.h"
#include "../lib/util/samba_util.h"
#include "lib/crypto/aes.h"
#include "lib/crypto/aes_gcm_128.h"
#include "lib/crypto/aes_test.h"
#ifndef AES_GCM_128_ONLY_TESTVECTORS
struct torture_context;
bool torture_local_crypto_aes_gcm_128(struct torture_context *tctx);
/*
This uses the test values from ...
*/
bool torture_local_crypto_aes_gcm_128(struct torture_context *tctx)
{
bool ret = true;
uint32_t i;
struct aes_mode_testvector testarray[] = {
#endif /* AES_GCM_128_ONLY_TESTVECTORS */
#define AES_GCM_128_TESTVECTOR(_k, _n, _a, _p, _c, _t) \
AES_MODE_TESTVECTOR(aes_gcm_128, _k, _n, _a, _p, _c, _t)
AES_GCM_128_TESTVECTOR(
/* K */
"8BF9FBC2B8149484FF11AB1F3A544FF6",
/* N */
"010000000000000077F7A8FF",
/* A */
"010000000000000077F7A80000000000"
"A8000000000001004100002C00980000",
/* P */
"FE534D4240000100000000000B00811F"
"00000000000000000600000000000000"
"00000000010000004100002C00980000"
"00000000000000000000000000000000"
"3900000094010600FFFFFFFFFFFFFFFF"
"FFFFFFFFFFFFFFFF7800000030000000"
"000000007800000000000000FFFF0000"
"0100000000000000"
"03005C003100370032002E0033003100"
"2E0039002E003100380033005C006E00"
"650074006C006F0067006F006E000000",
/* C */
"863C07C1FBFA82D741A080C97DF52CFF"
"432A63A37E5ACFA3865AE4E6E422D502"
"FA7C6FBB9A7418F28C43F00A3869F687"
"257CA665E25E62A0F458C42AA9E95DC4"
"6CB351A0A497FABB7DCE58FEE5B20B08"
"522E0E701B112FB93B36E7A0FB084D35"
"62C0F3FDF0421079DD96BBCCA40949B3"
"A7FC1AA635A72384"
"2037DE3CA6385465D1884B29D7140790"
"88AD3E770E2528D527B302536B7E5B1B"
"430E048230AFE785DB89F4D87FC1F816",
/* T */
"BC9B5871EBFA89ADE21439ACDCD65D22"
),
AES_GCM_128_TESTVECTOR(
/* K */
"00000000000000000000000000000000",
/* N */
"000000000000000000000000",
/* A */
"",
/* P */
"",
/* C */
"",
/* T */
"58e2fccefa7e3061367f1d57a4e7455a"
),
AES_GCM_128_TESTVECTOR(
/* K */
"00000000000000000000000000000000",
/* N */
"000000000000000000000000",
/* A */
"",
/* P */
"00000000000000000000000000000000",
/* C */
"0388dace60b6a392f328c2b971b2fe78",
/* T */
"ab6e47d42cec13bdf53a67b21257bddf"
),
AES_GCM_128_TESTVECTOR(
/* K */
"feffe9928665731c6d6a8f9467308308",
/* N */
"cafebabefacedbaddecaf888",
/* A */
"",
/* P */
"d9313225f88406e5a55909c5aff5269a"
"86a7a9531534f7da2e4c303d8a318a72"
"1c3c0c95956809532fcf0e2449a6b525"
"b16aedf5aa0de657ba637b391aafd255",
/* C */
"42831ec2217774244b7221b784d0d49c"
"e3aa212f2c02a4e035c17e2329aca12e"
"21d514b25466931c7d8f6a5aac84aa05"
"1ba30b396a0aac973d58e091473f5985",
/* T */
"4d5c2af327cd64a62cf35abd2ba6fab4"
),
AES_GCM_128_TESTVECTOR(
/* K */
"feffe9928665731c6d6a8f9467308308",
/* N */
"cafebabefacedbaddecaf888",
/* A */
"feedfacedeadbeeffeedfacedeadbeef"
"abaddad2",
/* P */
"d9313225f88406e5a55909c5aff5269a"
"86a7a9531534f7da2e4c303d8a318a72"
"1c3c0c95956809532fcf0e2449a6b525"
"b16aedf5aa0de657ba637b39",
/* C */
"42831ec2217774244b7221b784d0d49c"
"e3aa212f2c02a4e035c17e2329aca12e"
"21d514b25466931c7d8f6a5aac84aa05"
"1ba30b396a0aac973d58e091",
/* T */
"5bc94fbc3221a5db94fae95ae7121a47"
),
#ifndef AES_GCM_128_ONLY_TESTVECTORS
};
for (i=0; i < ARRAY_SIZE(testarray); i++) {
struct aes_gcm_128_context ctx;
uint8_t T[AES_BLOCK_SIZE];
DATA_BLOB _T = data_blob_const(T, sizeof(T));
DATA_BLOB C;
int e;
C = data_blob_dup_talloc(tctx, testarray[i].P);
aes_gcm_128_init(&ctx, testarray[i].K.data, testarray[i].N.data);
aes_gcm_128_updateA(&ctx,
testarray[i].A.data,
testarray[i].A.length);
aes_gcm_128_crypt(&ctx, C.data, C.length);
aes_gcm_128_updateC(&ctx, C.data, C.length);
aes_gcm_128_digest(&ctx, T);
e = memcmp(testarray[i].T.data, T, sizeof(T));
if (e != 0) {
aes_mode_testvector_debug(&testarray[i], NULL, &C, &_T);
ret = false;
goto fail;
}
e = memcmp(testarray[i].C.data, C.data, C.length);
if (e != 0) {
aes_mode_testvector_debug(&testarray[i], NULL, &C, &_T);
ret = false;
goto fail;
}
}
for (i=0; i < ARRAY_SIZE(testarray); i++) {
struct aes_gcm_128_context ctx;
uint8_t T[AES_BLOCK_SIZE];
DATA_BLOB _T = data_blob_const(T, sizeof(T));
DATA_BLOB C;
int e;
size_t j;
C = data_blob_dup_talloc(tctx, testarray[i].P);
aes_gcm_128_init(&ctx, testarray[i].K.data, testarray[i].N.data);
for (j=0; j < testarray[i].A.length; j++) {
aes_gcm_128_updateA(&ctx, NULL, 0);
aes_gcm_128_updateA(&ctx, &testarray[i].A.data[j], 1);
aes_gcm_128_updateA(&ctx, NULL, 0);
}
for (j=0; j < C.length; j++) {
aes_gcm_128_crypt(&ctx, NULL, 0);
aes_gcm_128_updateC(&ctx, NULL, 0);
aes_gcm_128_crypt(&ctx, &C.data[j], 1);
aes_gcm_128_updateC(&ctx, &C.data[j], 1);
aes_gcm_128_crypt(&ctx, NULL, 0);
aes_gcm_128_updateC(&ctx, NULL, 0);
}
aes_gcm_128_digest(&ctx, T);
e = memcmp(testarray[i].T.data, T, sizeof(T));
if (e != 0) {
aes_mode_testvector_debug(&testarray[i], NULL, &C, &_T);
ret = false;
goto fail;
}
e = memcmp(testarray[i].C.data, C.data, C.length);
if (e != 0) {
aes_mode_testvector_debug(&testarray[i], NULL, &C, &_T);
ret = false;
goto fail;
}
}
for (i=0; i < ARRAY_SIZE(testarray); i++) {
struct aes_gcm_128_context ctx;
uint8_t T[AES_BLOCK_SIZE];
DATA_BLOB _T = data_blob_const(T, sizeof(T));
DATA_BLOB P;
int e;
size_t j;
P = data_blob_dup_talloc(tctx, testarray[i].C);
aes_gcm_128_init(&ctx, testarray[i].K.data, testarray[i].N.data);
for (j=0; j < testarray[i].A.length; j++) {
aes_gcm_128_updateA(&ctx, NULL, 0);
aes_gcm_128_updateA(&ctx, &testarray[i].A.data[j], 1);
aes_gcm_128_updateA(&ctx, NULL, 0);
}
for (j=0; j < P.length; j++) {
aes_gcm_128_updateC(&ctx, NULL, 0);
aes_gcm_128_crypt(&ctx, NULL, 0);
aes_gcm_128_updateC(&ctx, &P.data[j], 1);
aes_gcm_128_crypt(&ctx, &P.data[j], 1);
aes_gcm_128_updateC(&ctx, NULL, 0);
aes_gcm_128_crypt(&ctx, NULL, 0);
}
aes_gcm_128_digest(&ctx, T);
e = memcmp(testarray[i].T.data, T, sizeof(T));
if (e != 0) {
aes_mode_testvector_debug(&testarray[i], &P, NULL, &_T);
ret = false;
goto fail;
}
e = memcmp(testarray[i].P.data, P.data, P.length);
if (e != 0) {
aes_mode_testvector_debug(&testarray[i], &P, NULL, &_T);
ret = false;
goto fail;
}
}
for (i=0; i < ARRAY_SIZE(testarray); i++) {
struct aes_gcm_128_context ctx;
uint8_t T[AES_BLOCK_SIZE];
DATA_BLOB _T = data_blob_const(T, sizeof(T));
DATA_BLOB P;
int e;
P = data_blob_dup_talloc(tctx, testarray[i].C);
aes_gcm_128_init(&ctx, testarray[i].K.data, testarray[i].N.data);
aes_gcm_128_updateA(&ctx, testarray[i].A.data, testarray[i].A.length);
aes_gcm_128_updateC(&ctx, P.data, P.length);
aes_gcm_128_crypt(&ctx, P.data, P.length);
aes_gcm_128_digest(&ctx, T);
e = memcmp(testarray[i].T.data, T, sizeof(T));
if (e != 0) {
aes_mode_testvector_debug(&testarray[i], &P, NULL, &_T);
ret = false;
goto fail;
}
e = memcmp(testarray[i].P.data, P.data, P.length);
if (e != 0) {
aes_mode_testvector_debug(&testarray[i], &P, NULL, &_T);
ret = false;
goto fail;
}
}
fail:
return ret;
}
#endif /* AES_GCM_128_ONLY_TESTVECTORS */