1
0
mirror of https://github.com/samba-team/samba.git synced 2025-01-15 23:24:37 +03:00
Christian Ambach 2ff0d5882f s3:g_lock: g_lock.tdb should not be executable
TDBs are not executable, so do not create the file with
the execution bit set

Autobuild-User: Christian Ambach <ambi@samba.org>
Autobuild-Date: Mon Jun 27 17:09:12 CEST 2011 on sn-devel-104
2011-06-27 17:09:12 +02:00

795 lines
19 KiB
C

/*
Unix SMB/CIFS implementation.
global locks based on dbwrap and messaging
Copyright (C) 2009 by Volker Lendecke
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include "includes.h"
#include "system/filesys.h"
#include "g_lock.h"
#include "util_tdb.h"
#include "ctdbd_conn.h"
#include "../lib/util/select.h"
#include "system/select.h"
#include "messages.h"
static NTSTATUS g_lock_force_unlock(struct g_lock_ctx *ctx, const char *name,
struct server_id pid);
struct g_lock_ctx {
struct db_context *db;
struct messaging_context *msg;
};
/*
* The "g_lock.tdb" file contains records, indexed by the 0-terminated
* lockname. The record contains an array of "struct g_lock_rec"
* structures. Waiters have the lock_type with G_LOCK_PENDING or'ed.
*/
struct g_lock_rec {
enum g_lock_type lock_type;
struct server_id pid;
};
struct g_lock_ctx *g_lock_ctx_init(TALLOC_CTX *mem_ctx,
struct messaging_context *msg)
{
struct g_lock_ctx *result;
result = talloc(mem_ctx, struct g_lock_ctx);
if (result == NULL) {
return NULL;
}
result->msg = msg;
result->db = db_open(result, lock_path("g_lock.tdb"), 0,
TDB_CLEAR_IF_FIRST|TDB_INCOMPATIBLE_HASH,
O_RDWR|O_CREAT, 0600);
if (result->db == NULL) {
DEBUG(1, ("g_lock_init: Could not open g_lock.tdb"));
TALLOC_FREE(result);
return NULL;
}
return result;
}
static bool g_lock_conflicts(enum g_lock_type lock_type,
const struct g_lock_rec *rec)
{
enum g_lock_type rec_lock = rec->lock_type;
if ((rec_lock & G_LOCK_PENDING) != 0) {
return false;
}
/*
* Only tested write locks so far. Very likely this routine
* needs to be fixed for read locks....
*/
if ((lock_type == G_LOCK_READ) && (rec_lock == G_LOCK_READ)) {
return false;
}
return true;
}
static bool g_lock_parse(TALLOC_CTX *mem_ctx, TDB_DATA data,
int *pnum_locks, struct g_lock_rec **plocks)
{
int i, num_locks;
struct g_lock_rec *locks;
if ((data.dsize % sizeof(struct g_lock_rec)) != 0) {
DEBUG(1, ("invalid lock record length %d\n", (int)data.dsize));
return false;
}
num_locks = data.dsize / sizeof(struct g_lock_rec);
locks = talloc_array(mem_ctx, struct g_lock_rec, num_locks);
if (locks == NULL) {
DEBUG(1, ("talloc failed\n"));
return false;
}
memcpy(locks, data.dptr, data.dsize);
DEBUG(10, ("locks:\n"));
for (i=0; i<num_locks; i++) {
DEBUGADD(10, ("%s: %s %s\n",
server_id_str(talloc_tos(), &locks[i].pid),
((locks[i].lock_type & 1) == G_LOCK_READ) ?
"read" : "write",
(locks[i].lock_type & G_LOCK_PENDING) ?
"(pending)" : "(owner)"));
if (((locks[i].lock_type & G_LOCK_PENDING) == 0)
&& !process_exists(locks[i].pid)) {
DEBUGADD(10, ("lock owner %s died -- discarding\n",
server_id_str(talloc_tos(),
&locks[i].pid)));
if (i < (num_locks-1)) {
locks[i] = locks[num_locks-1];
}
num_locks -= 1;
}
}
*plocks = locks;
*pnum_locks = num_locks;
return true;
}
static void g_lock_cleanup(int *pnum_locks, struct g_lock_rec *locks)
{
int i, num_locks;
num_locks = *pnum_locks;
DEBUG(10, ("g_lock_cleanup: %d locks\n", num_locks));
for (i=0; i<num_locks; i++) {
if (process_exists(locks[i].pid)) {
continue;
}
DEBUGADD(10, ("%s does not exist -- discarding\n",
server_id_str(talloc_tos(), &locks[i].pid)));
if (i < (num_locks-1)) {
locks[i] = locks[num_locks-1];
}
num_locks -= 1;
}
*pnum_locks = num_locks;
return;
}
static struct g_lock_rec *g_lock_addrec(TALLOC_CTX *mem_ctx,
struct g_lock_rec *locks,
int *pnum_locks,
const struct server_id pid,
enum g_lock_type lock_type)
{
struct g_lock_rec *result;
int num_locks = *pnum_locks;
result = talloc_realloc(mem_ctx, locks, struct g_lock_rec,
num_locks+1);
if (result == NULL) {
return NULL;
}
result[num_locks].pid = pid;
result[num_locks].lock_type = lock_type;
*pnum_locks += 1;
return result;
}
static void g_lock_got_retry(struct messaging_context *msg,
void *private_data,
uint32_t msg_type,
struct server_id server_id,
DATA_BLOB *data);
static NTSTATUS g_lock_trylock(struct g_lock_ctx *ctx, const char *name,
enum g_lock_type lock_type)
{
struct db_record *rec = NULL;
struct g_lock_rec *locks = NULL;
int i, num_locks;
struct server_id self;
int our_index;
TDB_DATA data;
NTSTATUS status = NT_STATUS_OK;
NTSTATUS store_status;
again:
rec = ctx->db->fetch_locked(ctx->db, talloc_tos(),
string_term_tdb_data(name));
if (rec == NULL) {
DEBUG(10, ("fetch_locked(\"%s\") failed\n", name));
status = NT_STATUS_LOCK_NOT_GRANTED;
goto done;
}
if (!g_lock_parse(talloc_tos(), rec->value, &num_locks, &locks)) {
DEBUG(10, ("g_lock_parse for %s failed\n", name));
status = NT_STATUS_INTERNAL_ERROR;
goto done;
}
self = messaging_server_id(ctx->msg);
our_index = -1;
for (i=0; i<num_locks; i++) {
if (procid_equal(&self, &locks[i].pid)) {
if (our_index != -1) {
DEBUG(1, ("g_lock_trylock: Added ourself "
"twice!\n"));
status = NT_STATUS_INTERNAL_ERROR;
goto done;
}
if ((locks[i].lock_type & G_LOCK_PENDING) == 0) {
DEBUG(1, ("g_lock_trylock: Found ourself not "
"pending!\n"));
status = NT_STATUS_INTERNAL_ERROR;
goto done;
}
our_index = i;
/* never conflict with ourself */
continue;
}
if (g_lock_conflicts(lock_type, &locks[i])) {
struct server_id pid = locks[i].pid;
if (!process_exists(pid)) {
TALLOC_FREE(locks);
TALLOC_FREE(rec);
status = g_lock_force_unlock(ctx, name, pid);
if (!NT_STATUS_IS_OK(status)) {
DEBUG(1, ("Could not unlock dead lock "
"holder!\n"));
goto done;
}
goto again;
}
lock_type |= G_LOCK_PENDING;
}
}
if (our_index == -1) {
/* First round, add ourself */
locks = g_lock_addrec(talloc_tos(), locks, &num_locks,
self, lock_type);
if (locks == NULL) {
DEBUG(10, ("g_lock_addrec failed\n"));
status = NT_STATUS_NO_MEMORY;
goto done;
}
} else {
/*
* Retry. We were pending last time. Overwrite the
* stored lock_type with what we calculated, we might
* have acquired the lock this time.
*/
locks[our_index].lock_type = lock_type;
}
if (NT_STATUS_IS_OK(status) && ((lock_type & G_LOCK_PENDING) == 0)) {
/*
* Walk through the list of locks, search for dead entries
*/
g_lock_cleanup(&num_locks, locks);
}
data = make_tdb_data((uint8_t *)locks, num_locks * sizeof(*locks));
store_status = rec->store(rec, data, 0);
if (!NT_STATUS_IS_OK(store_status)) {
DEBUG(1, ("rec->store failed: %s\n",
nt_errstr(store_status)));
status = store_status;
}
done:
TALLOC_FREE(locks);
TALLOC_FREE(rec);
if (NT_STATUS_IS_OK(status) && (lock_type & G_LOCK_PENDING) != 0) {
return STATUS_PENDING;
}
return NT_STATUS_OK;
}
NTSTATUS g_lock_lock(struct g_lock_ctx *ctx, const char *name,
enum g_lock_type lock_type, struct timeval timeout)
{
struct tevent_timer *te = NULL;
NTSTATUS status;
bool retry = false;
struct timeval timeout_end;
struct timeval time_now;
DEBUG(10, ("Trying to acquire lock %d for %s\n", (int)lock_type,
name));
if (lock_type & ~1) {
DEBUG(1, ("Got invalid lock type %d for %s\n",
(int)lock_type, name));
return NT_STATUS_INVALID_PARAMETER;
}
#ifdef CLUSTER_SUPPORT
if (lp_clustering()) {
status = ctdb_watch_us(messaging_ctdbd_connection());
if (!NT_STATUS_IS_OK(status)) {
DEBUG(10, ("could not register retry with ctdb: %s\n",
nt_errstr(status)));
goto done;
}
}
#endif
status = messaging_register(ctx->msg, &retry, MSG_DBWRAP_G_LOCK_RETRY,
g_lock_got_retry);
if (!NT_STATUS_IS_OK(status)) {
DEBUG(10, ("messaging_register failed: %s\n",
nt_errstr(status)));
return status;
}
time_now = timeval_current();
timeout_end = timeval_sum(&time_now, &timeout);
while (true) {
struct pollfd *pollfds;
int num_pollfds;
int saved_errno;
int ret;
struct timeval timeout_remaining, select_timeout;
status = g_lock_trylock(ctx, name, lock_type);
if (NT_STATUS_IS_OK(status)) {
DEBUG(10, ("Got lock %s\n", name));
break;
}
if (!NT_STATUS_EQUAL(status, STATUS_PENDING)) {
DEBUG(10, ("g_lock_trylock failed: %s\n",
nt_errstr(status)));
break;
}
DEBUG(10, ("g_lock_trylock: Did not get lock, waiting...\n"));
/* ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
* !!! HACK ALERT --- FIX ME !!!
* ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
* What we really want to do here is to react to
* MSG_DBWRAP_G_LOCK_RETRY messages that are either sent
* by a client doing g_lock_unlock or by ourselves when
* we receive a CTDB_SRVID_SAMBA_NOTIFY or
* CTDB_SRVID_RECONFIGURE message from ctdbd, i.e. when
* either a client holding a lock or a complete node
* has died.
*
* Doing this properly involves calling tevent_loop_once(),
* but doing this here with the main ctdbd messaging context
* creates a nested event loop when g_lock_lock() is called
* from the main event loop, e.g. in a tcon_and_X where the
* share_info.tdb needs to be initialized and is locked by
* another process, or when the remore registry is accessed
* for writing and some other process already holds a lock
* on the registry.tdb.
*
* So as a quick fix, we act a little coarsely here: we do
* a select on the ctdb connection fd and when it is readable
* or we get EINTR, then we retry without actually parsing
* any ctdb packages or dispatching messages. This means that
* we retry more often than intended by design, but this does
* not harm and it is unobtrusive. When we have finished,
* the main loop will pick up all the messages and ctdb
* packets. The only extra twist is that we cannot use timed
* events here but have to handcode a timeout.
*/
/*
* We allocate 2 entries here. One is needed anyway for
* sys_poll and in the clustering case we might have to add
* the ctdb fd. This avoids the realloc then.
*/
pollfds = talloc_array(talloc_tos(), struct pollfd, 2);
if (pollfds == NULL) {
status = NT_STATUS_NO_MEMORY;
break;
}
num_pollfds = 0;
#ifdef CLUSTER_SUPPORT
if (lp_clustering()) {
struct ctdbd_connection *conn;
conn = messaging_ctdbd_connection();
pollfds[0].fd = ctdbd_conn_get_fd(conn);
pollfds[0].events = POLLIN|POLLHUP;
num_pollfds += 1;
}
#endif
time_now = timeval_current();
timeout_remaining = timeval_until(&time_now, &timeout_end);
select_timeout = timeval_set(60, 0);
select_timeout = timeval_min(&select_timeout,
&timeout_remaining);
ret = sys_poll(pollfds, num_pollfds,
timeval_to_msec(select_timeout));
/*
* We're not *really interested in the actual flags. We just
* need to retry this whole thing.
*/
saved_errno = errno;
TALLOC_FREE(pollfds);
errno = saved_errno;
if (ret == -1) {
if (errno != EINTR) {
DEBUG(1, ("error calling select: %s\n",
strerror(errno)));
status = NT_STATUS_INTERNAL_ERROR;
break;
}
/*
* errno == EINTR:
* This means a signal was received.
* It might have been a MSG_DBWRAP_G_LOCK_RETRY message.
* ==> retry
*/
} else if (ret == 0) {
if (timeval_expired(&timeout_end)) {
DEBUG(10, ("g_lock_lock timed out\n"));
status = NT_STATUS_LOCK_NOT_GRANTED;
break;
} else {
DEBUG(10, ("select returned 0 but timeout not "
"not expired, retrying\n"));
}
} else if (ret != 1) {
DEBUG(1, ("invalid return code of select: %d\n", ret));
status = NT_STATUS_INTERNAL_ERROR;
break;
}
/*
* ret == 1:
* This means ctdbd has sent us some data.
* Might be a CTDB_SRVID_RECONFIGURE or a
* CTDB_SRVID_SAMBA_NOTIFY message.
* ==> retry
*/
}
#ifdef CLUSTER_SUPPORT
done:
#endif
if (!NT_STATUS_IS_OK(status)) {
NTSTATUS unlock_status;
unlock_status = g_lock_unlock(ctx, name);
if (!NT_STATUS_IS_OK(unlock_status)) {
DEBUG(1, ("Could not remove ourself from the locking "
"db: %s\n", nt_errstr(status)));
}
}
messaging_deregister(ctx->msg, MSG_DBWRAP_G_LOCK_RETRY, &retry);
TALLOC_FREE(te);
return status;
}
static void g_lock_got_retry(struct messaging_context *msg,
void *private_data,
uint32_t msg_type,
struct server_id server_id,
DATA_BLOB *data)
{
bool *pretry = (bool *)private_data;
DEBUG(10, ("Got retry message from pid %s\n",
server_id_str(talloc_tos(), &server_id)));
*pretry = true;
}
static NTSTATUS g_lock_force_unlock(struct g_lock_ctx *ctx, const char *name,
struct server_id pid)
{
struct db_record *rec = NULL;
struct g_lock_rec *locks = NULL;
int i, num_locks;
enum g_lock_type lock_type;
NTSTATUS status;
rec = ctx->db->fetch_locked(ctx->db, talloc_tos(),
string_term_tdb_data(name));
if (rec == NULL) {
DEBUG(10, ("fetch_locked(\"%s\") failed\n", name));
status = NT_STATUS_INTERNAL_ERROR;
goto done;
}
if (!g_lock_parse(talloc_tos(), rec->value, &num_locks, &locks)) {
DEBUG(10, ("g_lock_parse for %s failed\n", name));
status = NT_STATUS_INTERNAL_ERROR;
goto done;
}
for (i=0; i<num_locks; i++) {
if (procid_equal(&pid, &locks[i].pid)) {
break;
}
}
if (i == num_locks) {
DEBUG(10, ("g_lock_force_unlock: Lock not found\n"));
status = NT_STATUS_INTERNAL_ERROR;
goto done;
}
lock_type = locks[i].lock_type;
if (i < (num_locks-1)) {
locks[i] = locks[num_locks-1];
}
num_locks -= 1;
if (num_locks == 0) {
status = rec->delete_rec(rec);
} else {
TDB_DATA data;
data = make_tdb_data((uint8_t *)locks,
sizeof(struct g_lock_rec) * num_locks);
status = rec->store(rec, data, 0);
}
if (!NT_STATUS_IS_OK(status)) {
DEBUG(1, ("g_lock_force_unlock: Could not store record: %s\n",
nt_errstr(status)));
goto done;
}
TALLOC_FREE(rec);
if ((lock_type & G_LOCK_PENDING) == 0) {
int num_wakeups = 0;
/*
* We've been the lock holder. Others to retry. Don't
* tell all others to avoid a thundering herd. In case
* this leads to a complete stall because we miss some
* processes, the loop in g_lock_lock tries at least
* once a minute.
*/
for (i=0; i<num_locks; i++) {
if ((locks[i].lock_type & G_LOCK_PENDING) == 0) {
continue;
}
if (!process_exists(locks[i].pid)) {
continue;
}
/*
* Ping all waiters to retry
*/
status = messaging_send(ctx->msg, locks[i].pid,
MSG_DBWRAP_G_LOCK_RETRY,
&data_blob_null);
if (!NT_STATUS_IS_OK(status)) {
DEBUG(1, ("sending retry to %s failed: %s\n",
server_id_str(talloc_tos(),
&locks[i].pid),
nt_errstr(status)));
} else {
num_wakeups += 1;
}
if (num_wakeups > 5) {
break;
}
}
}
done:
/*
* For the error path, TALLOC_FREE(rec) as well. In the good
* path we have already freed it.
*/
TALLOC_FREE(rec);
TALLOC_FREE(locks);
return status;
}
NTSTATUS g_lock_unlock(struct g_lock_ctx *ctx, const char *name)
{
NTSTATUS status;
status = g_lock_force_unlock(ctx, name, messaging_server_id(ctx->msg));
#ifdef CLUSTER_SUPPORT
if (lp_clustering()) {
ctdb_unwatch(messaging_ctdbd_connection());
}
#endif
return status;
}
struct g_lock_locks_state {
int (*fn)(const char *name, void *private_data);
void *private_data;
};
static int g_lock_locks_fn(struct db_record *rec, void *priv)
{
struct g_lock_locks_state *state = (struct g_lock_locks_state *)priv;
if ((rec->key.dsize == 0) || (rec->key.dptr[rec->key.dsize-1] != 0)) {
DEBUG(1, ("invalid key in g_lock.tdb, ignoring\n"));
return 0;
}
return state->fn((char *)rec->key.dptr, state->private_data);
}
int g_lock_locks(struct g_lock_ctx *ctx,
int (*fn)(const char *name, void *private_data),
void *private_data)
{
struct g_lock_locks_state state;
state.fn = fn;
state.private_data = private_data;
return ctx->db->traverse_read(ctx->db, g_lock_locks_fn, &state);
}
NTSTATUS g_lock_dump(struct g_lock_ctx *ctx, const char *name,
int (*fn)(struct server_id pid,
enum g_lock_type lock_type,
void *private_data),
void *private_data)
{
TDB_DATA data;
int i, num_locks;
struct g_lock_rec *locks = NULL;
bool ret;
if (ctx->db->fetch(ctx->db, talloc_tos(), string_term_tdb_data(name),
&data) != 0) {
return NT_STATUS_NOT_FOUND;
}
if ((data.dsize == 0) || (data.dptr == NULL)) {
return NT_STATUS_OK;
}
ret = g_lock_parse(talloc_tos(), data, &num_locks, &locks);
TALLOC_FREE(data.dptr);
if (!ret) {
DEBUG(10, ("g_lock_parse for %s failed\n", name));
return NT_STATUS_INTERNAL_ERROR;
}
for (i=0; i<num_locks; i++) {
if (fn(locks[i].pid, locks[i].lock_type, private_data) != 0) {
break;
}
}
TALLOC_FREE(locks);
return NT_STATUS_OK;
}
struct g_lock_get_state {
bool found;
struct server_id *pid;
};
static int g_lock_get_fn(struct server_id pid, enum g_lock_type lock_type,
void *priv)
{
struct g_lock_get_state *state = (struct g_lock_get_state *)priv;
if ((lock_type & G_LOCK_PENDING) != 0) {
return 0;
}
state->found = true;
*state->pid = pid;
return 1;
}
NTSTATUS g_lock_get(struct g_lock_ctx *ctx, const char *name,
struct server_id *pid)
{
struct g_lock_get_state state;
NTSTATUS status;
state.found = false;
state.pid = pid;
status = g_lock_dump(ctx, name, g_lock_get_fn, &state);
if (!NT_STATUS_IS_OK(status)) {
return status;
}
if (!state.found) {
return NT_STATUS_NOT_FOUND;
}
return NT_STATUS_OK;
}
static bool g_lock_init_all(TALLOC_CTX *mem_ctx,
struct tevent_context **pev,
struct messaging_context **pmsg,
const struct server_id self,
struct g_lock_ctx **pg_ctx)
{
struct tevent_context *ev = NULL;
struct messaging_context *msg = NULL;
struct g_lock_ctx *g_ctx = NULL;
ev = tevent_context_init(mem_ctx);
if (ev == NULL) {
d_fprintf(stderr, "ERROR: could not init event context\n");
goto fail;
}
msg = messaging_init(mem_ctx, self, ev);
if (msg == NULL) {
d_fprintf(stderr, "ERROR: could not init messaging context\n");
goto fail;
}
g_ctx = g_lock_ctx_init(mem_ctx, msg);
if (g_ctx == NULL) {
d_fprintf(stderr, "ERROR: could not init g_lock context\n");
goto fail;
}
*pev = ev;
*pmsg = msg;
*pg_ctx = g_ctx;
return true;
fail:
TALLOC_FREE(g_ctx);
TALLOC_FREE(msg);
TALLOC_FREE(ev);
return false;
}
NTSTATUS g_lock_do(const char *name, enum g_lock_type lock_type,
struct timeval timeout, const struct server_id self,
void (*fn)(void *private_data), void *private_data)
{
struct tevent_context *ev = NULL;
struct messaging_context *msg = NULL;
struct g_lock_ctx *g_ctx = NULL;
NTSTATUS status;
if (!g_lock_init_all(talloc_tos(), &ev, &msg, self, &g_ctx)) {
status = NT_STATUS_ACCESS_DENIED;
goto done;
}
status = g_lock_lock(g_ctx, name, lock_type, timeout);
if (!NT_STATUS_IS_OK(status)) {
goto done;
}
fn(private_data);
g_lock_unlock(g_ctx, name);
done:
TALLOC_FREE(g_ctx);
TALLOC_FREE(msg);
TALLOC_FREE(ev);
return status;
}