[MINOR] merge ebtree version 3.0
Version 3.0 of ebtree has been merged in but is not used yet.
This commit is contained in:
parent
30e7101137
commit
e6d2e4dbdf
4
Makefile
4
Makefile
@ -232,7 +232,9 @@ OBJS = src/haproxy.o src/sessionhash.o src/base64.o src/protocols.o \
|
||||
src/checks.o src/queue.o src/client.o src/proxy.o src/proto_uxst.o \
|
||||
src/proto_http.o src/stream_sock.o src/appsession.o src/backend.o \
|
||||
src/senddata.o src/dumpstats.o src/proto_tcp.o \
|
||||
src/session.o src/hdr_idx.o src/ev_select.o src/acl.o src/memory.o
|
||||
src/session.o src/hdr_idx.o src/ev_select.o \
|
||||
src/acl.o src/memory.o \
|
||||
src/ebtree.o src/eb32tree.o
|
||||
|
||||
haproxy: $(OBJS) $(OPT_OBJS)
|
||||
$(LD) $(LDFLAGS) -o $@ $^ $(LIBS)
|
||||
|
@ -104,8 +104,10 @@ OBJS = src/haproxy.o src/sessionhash.o src/base64.o src/protocols.o \
|
||||
src/checks.o src/queue.o src/client.o src/proxy.o src/proto_uxst.o \
|
||||
src/proto_http.o src/stream_sock.o src/appsession.o src/backend.o \
|
||||
src/senddata.o src/dumpstats.o src/proto_tcp.o \
|
||||
src/session.o src/hdr_idx.o src/ev_select.o src/ev_poll.o \
|
||||
src/ev_kqueue.o src/acl.o src/memory.o
|
||||
src/session.o src/hdr_idx.o src/ev_select.o \
|
||||
src/ev_poll.o src/ev_kqueue.o \
|
||||
src/acl.o src/memory.o \
|
||||
src/ebtree.o src/eb32tree.o
|
||||
|
||||
all: haproxy
|
||||
|
||||
|
@ -101,8 +101,10 @@ OBJS = src/haproxy.o src/sessionhash.o src/base64.o src/protocols.o \
|
||||
src/checks.o src/queue.o src/client.o src/proxy.o src/proto_uxst.o \
|
||||
src/proto_http.o src/stream_sock.o src/appsession.o src/backend.o \
|
||||
src/senddata.o src/dumpstats.o src/proto_tcp.o \
|
||||
src/session.o src/hdr_idx.o src/ev_select.o src/ev_poll.o src/acl.o \
|
||||
src/memory.o
|
||||
src/session.o src/hdr_idx.o src/ev_select.o \
|
||||
src/ev_poll.o \
|
||||
src/acl.o src/memory.o \
|
||||
src/ebtree.o src/eb32tree.o
|
||||
|
||||
all: haproxy
|
||||
|
||||
|
14
doc/internals/ebtree
Normal file
14
doc/internals/ebtree
Normal file
@ -0,0 +1,14 @@
|
||||
Version 3.0 of ebtree has been imported in haproxy 1.3.14. The files have
|
||||
been split into two directories :
|
||||
- src/eb*.c
|
||||
- include/common/eb*.h
|
||||
|
||||
The .c files had their #include changed to find the include files in the
|
||||
common subdirectory. Changes have been committed right after the merge
|
||||
without the files being used. They are known to build without warnings
|
||||
on Linux at this stage.
|
||||
|
||||
Also, some optimizations are not redefined if already known: REGPRM*
|
||||
and likely/unlikely which are used in ebtree are also used and defined
|
||||
in haproxy. Thus, we just conditionally define them.
|
||||
|
513
include/common/eb32tree.h
Normal file
513
include/common/eb32tree.h
Normal file
@ -0,0 +1,513 @@
|
||||
/*
|
||||
* Elastic Binary Trees - macros and structures for operations on 32bit nodes.
|
||||
* (C) 2002-2007 - Willy Tarreau <w@1wt.eu>
|
||||
*
|
||||
* This program is free software; you can redistribute it and/or modify
|
||||
* it under the terms of the GNU General Public License as published by
|
||||
* the Free Software Foundation; either version 2 of the License, or
|
||||
* (at your option) any later version.
|
||||
*
|
||||
* This program is distributed in the hope that it will be useful,
|
||||
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
* GNU General Public License for more details.
|
||||
*
|
||||
* You should have received a copy of the GNU General Public License
|
||||
* along with this program; if not, write to the Free Software
|
||||
* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
|
||||
*/
|
||||
|
||||
#include "ebtree.h"
|
||||
|
||||
|
||||
/* Return the structure of type <type> whose member <member> points to <ptr> */
|
||||
#define eb32_entry(ptr, type, member) container_of(ptr, type, member)
|
||||
|
||||
#define EB32_ROOT EB_ROOT
|
||||
#define EB32_TREE_HEAD EB_TREE_HEAD
|
||||
|
||||
/* These types may sometimes already be defined */
|
||||
typedef unsigned int u32;
|
||||
typedef signed int s32;
|
||||
|
||||
/* This structure carries a node, a leaf, and a key. It must start with the
|
||||
* eb_node so that it can be cast into an eb_node. We could also have put some
|
||||
* sort of transparent union here to reduce the indirection level, but the fact
|
||||
* is, the end user is not meant to manipulate internals, so this is pointless.
|
||||
*/
|
||||
struct eb32_node {
|
||||
struct eb_node node; /* the tree node, must be at the beginning */
|
||||
u32 key;
|
||||
};
|
||||
|
||||
/*
|
||||
* Exported functions and macros.
|
||||
* Many of them are always inlined because they are extremely small, and
|
||||
* are generally called at most once or twice in a program.
|
||||
*/
|
||||
|
||||
/* Return leftmost node in the tree, or NULL if none */
|
||||
static inline struct eb32_node *eb32_first(struct eb_root *root)
|
||||
{
|
||||
return eb32_entry(eb_first(root), struct eb32_node, node);
|
||||
}
|
||||
|
||||
/* Return rightmost node in the tree, or NULL if none */
|
||||
static inline struct eb32_node *eb32_last(struct eb_root *root)
|
||||
{
|
||||
return eb32_entry(eb_last(root), struct eb32_node, node);
|
||||
}
|
||||
|
||||
/* Return next node in the tree, or NULL if none */
|
||||
static inline struct eb32_node *eb32_next(struct eb32_node *eb32)
|
||||
{
|
||||
return eb32_entry(eb_next(&eb32->node), struct eb32_node, node);
|
||||
}
|
||||
|
||||
/* Return previous node in the tree, or NULL if none */
|
||||
static inline struct eb32_node *eb32_prev(struct eb32_node *eb32)
|
||||
{
|
||||
return eb32_entry(eb_prev(&eb32->node), struct eb32_node, node);
|
||||
}
|
||||
|
||||
/* Return next node in the tree, skipping duplicates, or NULL if none */
|
||||
static inline struct eb32_node *eb32_next_unique(struct eb32_node *eb32)
|
||||
{
|
||||
return eb32_entry(eb_next_unique(&eb32->node), struct eb32_node, node);
|
||||
}
|
||||
|
||||
/* Return previous node in the tree, skipping duplicates, or NULL if none */
|
||||
static inline struct eb32_node *eb32_prev_unique(struct eb32_node *eb32)
|
||||
{
|
||||
return eb32_entry(eb_prev_unique(&eb32->node), struct eb32_node, node);
|
||||
}
|
||||
|
||||
/* Delete node from the tree if it was linked in. Mark the node unused. Note
|
||||
* that this function relies on a non-inlined generic function: eb_delete.
|
||||
*/
|
||||
static inline void eb32_delete(struct eb32_node *eb32)
|
||||
{
|
||||
eb_delete(&eb32->node);
|
||||
}
|
||||
|
||||
/*
|
||||
* The following functions are not inlined by default. They are declared
|
||||
* in eb32tree.c, which simply relies on their inline version.
|
||||
*/
|
||||
REGPRM2 struct eb32_node *eb32_lookup(struct eb_root *root, u32 x);
|
||||
REGPRM2 struct eb32_node *eb32i_lookup(struct eb_root *root, s32 x);
|
||||
REGPRM2 struct eb32_node *eb32_insert(struct eb_root *root, struct eb32_node *new);
|
||||
REGPRM2 struct eb32_node *eb32i_insert(struct eb_root *root, struct eb32_node *new);
|
||||
|
||||
/*
|
||||
* The following functions are less likely to be used directly, because their
|
||||
* code is larger. The non-inlined version is preferred.
|
||||
*/
|
||||
|
||||
/* Delete node from the tree if it was linked in. Mark the node unused. */
|
||||
static inline void __eb32_delete(struct eb32_node *eb32)
|
||||
{
|
||||
__eb_delete(&eb32->node);
|
||||
}
|
||||
|
||||
/*
|
||||
* Find the first occurence of a key in the tree <root>. If none can be
|
||||
* found, return NULL.
|
||||
*/
|
||||
static inline struct eb32_node *__eb32_lookup(struct eb_root *root, u32 x)
|
||||
{
|
||||
struct eb32_node *node;
|
||||
eb_troot_t *troot;
|
||||
|
||||
troot = root->b[EB_LEFT];
|
||||
if (unlikely(troot == NULL))
|
||||
return NULL;
|
||||
|
||||
while (1) {
|
||||
if ((eb_gettag(troot) == EB_LEAF)) {
|
||||
node = container_of(eb_untag(troot, EB_LEAF),
|
||||
struct eb32_node, node.branches);
|
||||
if (node->key == x)
|
||||
return node;
|
||||
else
|
||||
return NULL;
|
||||
}
|
||||
node = container_of(eb_untag(troot, EB_NODE),
|
||||
struct eb32_node, node.branches);
|
||||
|
||||
if (x == node->key) {
|
||||
/* Either we found the node which holds the key, or
|
||||
* we have a dup tree. In the later case, we have to
|
||||
* walk it down left to get the first entry.
|
||||
*/
|
||||
if (node->node.bit < 0) {
|
||||
troot = node->node.branches.b[EB_LEFT];
|
||||
while (eb_gettag(troot) != EB_LEAF)
|
||||
troot = (eb_untag(troot, EB_NODE))->b[EB_LEFT];
|
||||
node = container_of(eb_untag(troot, EB_LEAF),
|
||||
struct eb32_node, node.branches);
|
||||
}
|
||||
return node;
|
||||
}
|
||||
|
||||
troot = node->node.branches.b[(x >> node->node.bit) & EB_NODE_BRANCH_MASK];
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
* Find the first occurence of a signed key in the tree <root>. If none can
|
||||
* be found, return NULL.
|
||||
*/
|
||||
static inline struct eb32_node *__eb32i_lookup(struct eb_root *root, s32 x)
|
||||
{
|
||||
struct eb32_node *node;
|
||||
eb_troot_t *troot;
|
||||
u32 key = x ^ 0x80000000;
|
||||
|
||||
troot = root->b[EB_LEFT];
|
||||
if (unlikely(troot == NULL))
|
||||
return NULL;
|
||||
|
||||
while (1) {
|
||||
if ((eb_gettag(troot) == EB_LEAF)) {
|
||||
node = container_of(eb_untag(troot, EB_LEAF),
|
||||
struct eb32_node, node.branches);
|
||||
if (node->key == x)
|
||||
return node;
|
||||
else
|
||||
return NULL;
|
||||
}
|
||||
node = container_of(eb_untag(troot, EB_NODE),
|
||||
struct eb32_node, node.branches);
|
||||
|
||||
if (x == node->key) {
|
||||
/* Either we found the node which holds the key, or
|
||||
* we have a dup tree. In the later case, we have to
|
||||
* walk it down left to get the first entry.
|
||||
*/
|
||||
if (node->node.bit < 0) {
|
||||
troot = node->node.branches.b[EB_LEFT];
|
||||
while (eb_gettag(troot) != EB_LEAF)
|
||||
troot = (eb_untag(troot, EB_NODE))->b[EB_LEFT];
|
||||
node = container_of(eb_untag(troot, EB_LEAF),
|
||||
struct eb32_node, node.branches);
|
||||
}
|
||||
return node;
|
||||
}
|
||||
|
||||
troot = node->node.branches.b[(key >> node->node.bit) & EB_NODE_BRANCH_MASK];
|
||||
}
|
||||
}
|
||||
|
||||
/* Insert eb32_node <new> into subtree starting at node root <root>.
|
||||
* Only new->key needs be set with the key. The eb32_node is returned.
|
||||
*/
|
||||
static inline struct eb32_node *
|
||||
__eb32_insert(struct eb_root *root, struct eb32_node *new) {
|
||||
struct eb32_node *old;
|
||||
unsigned int side;
|
||||
eb_troot_t *troot;
|
||||
u32 newkey; /* caching the key saves approximately one cycle */
|
||||
|
||||
side = EB_LEFT;
|
||||
troot = root->b[EB_LEFT];
|
||||
if (unlikely(troot == NULL)) {
|
||||
/* Tree is empty, insert the leaf part below the left branch */
|
||||
root->b[EB_LEFT] = eb_dotag(&new->node.branches, EB_LEAF);
|
||||
new->node.leaf_p = eb_dotag(root, EB_LEFT);
|
||||
new->node.node_p = NULL; /* node part unused */
|
||||
return new;
|
||||
}
|
||||
|
||||
/* The tree descent is fairly easy :
|
||||
* - first, check if we have reached a leaf node
|
||||
* - second, check if we have gone too far
|
||||
* - third, reiterate
|
||||
* Everywhere, we use <new> for the node node we are inserting, <root>
|
||||
* for the node we attach it to, and <old> for the node we are
|
||||
* displacing below <new>. <troot> will always point to the future node
|
||||
* (tagged with its type). <side> carries the side the node <new> is
|
||||
* attached to below its parent, which is also where previous node
|
||||
* was attached. <newkey> carries the key being inserted.
|
||||
*/
|
||||
newkey = new->key;
|
||||
|
||||
while (1) {
|
||||
if (unlikely(eb_gettag(troot) == EB_LEAF)) {
|
||||
eb_troot_t *new_left, *new_rght;
|
||||
eb_troot_t *new_leaf, *old_leaf;
|
||||
|
||||
old = container_of(eb_untag(troot, EB_LEAF),
|
||||
struct eb32_node, node.branches);
|
||||
|
||||
new_left = eb_dotag(&new->node.branches, EB_LEFT);
|
||||
new_rght = eb_dotag(&new->node.branches, EB_RGHT);
|
||||
new_leaf = eb_dotag(&new->node.branches, EB_LEAF);
|
||||
old_leaf = eb_dotag(&old->node.branches, EB_LEAF);
|
||||
|
||||
new->node.node_p = old->node.leaf_p;
|
||||
|
||||
/* Right here, we have 3 possibilities :
|
||||
- the tree does not contain the key, and we have
|
||||
new->key < old->key. We insert new above old, on
|
||||
the left ;
|
||||
|
||||
- the tree does not contain the key, and we have
|
||||
new->key > old->key. We insert new above old, on
|
||||
the right ;
|
||||
|
||||
- the tree does contain the key, which implies it
|
||||
is alone. We add the new key next to it as a
|
||||
first duplicate.
|
||||
|
||||
The last two cases can easily be partially merged.
|
||||
*/
|
||||
|
||||
if (new->key < old->key) {
|
||||
new->node.leaf_p = new_left;
|
||||
old->node.leaf_p = new_rght;
|
||||
new->node.branches.b[EB_LEFT] = new_leaf;
|
||||
new->node.branches.b[EB_RGHT] = old_leaf;
|
||||
} else {
|
||||
/* new->key >= old->key, new goes the right */
|
||||
old->node.leaf_p = new_left;
|
||||
new->node.leaf_p = new_rght;
|
||||
new->node.branches.b[EB_LEFT] = old_leaf;
|
||||
new->node.branches.b[EB_RGHT] = new_leaf;
|
||||
|
||||
if (new->key == old->key) {
|
||||
new->node.bit = -1;
|
||||
root->b[side] = eb_dotag(&new->node.branches, EB_NODE);
|
||||
return new;
|
||||
}
|
||||
}
|
||||
break;
|
||||
}
|
||||
|
||||
/* OK we're walking down this link */
|
||||
old = container_of(eb_untag(troot, EB_NODE),
|
||||
struct eb32_node, node.branches);
|
||||
|
||||
/* Stop going down when we don't have common bits anymore. We
|
||||
* also stop in front of a duplicates tree because it means we
|
||||
* have to insert above.
|
||||
*/
|
||||
|
||||
if ((old->node.bit < 0) || /* we're above a duplicate tree, stop here */
|
||||
(((new->key ^ old->key) >> old->node.bit) >= EB_NODE_BRANCHES)) {
|
||||
/* The tree did not contain the key, so we insert <new> before the node
|
||||
* <old>, and set ->bit to designate the lowest bit position in <new>
|
||||
* which applies to ->branches.b[].
|
||||
*/
|
||||
eb_troot_t *new_left, *new_rght;
|
||||
eb_troot_t *new_leaf, *old_node;
|
||||
|
||||
new_left = eb_dotag(&new->node.branches, EB_LEFT);
|
||||
new_rght = eb_dotag(&new->node.branches, EB_RGHT);
|
||||
new_leaf = eb_dotag(&new->node.branches, EB_LEAF);
|
||||
old_node = eb_dotag(&old->node.branches, EB_NODE);
|
||||
|
||||
new->node.node_p = old->node.node_p;
|
||||
|
||||
if (new->key < old->key) {
|
||||
new->node.leaf_p = new_left;
|
||||
old->node.node_p = new_rght;
|
||||
new->node.branches.b[EB_LEFT] = new_leaf;
|
||||
new->node.branches.b[EB_RGHT] = old_node;
|
||||
}
|
||||
else if (new->key > old->key) {
|
||||
old->node.node_p = new_left;
|
||||
new->node.leaf_p = new_rght;
|
||||
new->node.branches.b[EB_LEFT] = old_node;
|
||||
new->node.branches.b[EB_RGHT] = new_leaf;
|
||||
}
|
||||
else {
|
||||
struct eb_node *ret;
|
||||
ret = eb_insert_dup(&old->node, &new->node);
|
||||
return container_of(ret, struct eb32_node, node);
|
||||
}
|
||||
break;
|
||||
}
|
||||
|
||||
/* walk down */
|
||||
root = &old->node.branches;
|
||||
side = (newkey >> old->node.bit) & EB_NODE_BRANCH_MASK;
|
||||
troot = root->b[side];
|
||||
}
|
||||
|
||||
/* Ok, now we are inserting <new> between <root> and <old>. <old>'s
|
||||
* parent is already set to <new>, and the <root>'s branch is still in
|
||||
* <side>. Update the root's leaf till we have it. Note that we can also
|
||||
* find the side by checking the side of new->node.node_p.
|
||||
*/
|
||||
|
||||
/* We need the common higher bits between new->key and old->key.
|
||||
* What differences are there between new->key and the node here ?
|
||||
* NOTE that bit(new) is always < bit(root) because highest
|
||||
* bit of new->key and old->key are identical here (otherwise they
|
||||
* would sit on different branches).
|
||||
*/
|
||||
// note that if EB_NODE_BITS > 1, we should check that it's still >= 0
|
||||
new->node.bit = flsnz(new->key ^ old->key) - EB_NODE_BITS;
|
||||
root->b[side] = eb_dotag(&new->node.branches, EB_NODE);
|
||||
|
||||
return new;
|
||||
}
|
||||
|
||||
/* Insert eb32_node <new> into subtree starting at node root <root>, using
|
||||
* signed keys. Only new->key needs be set with the key. The eb32_node
|
||||
* is returned
|
||||
*/
|
||||
static inline struct eb32_node *
|
||||
__eb32i_insert(struct eb_root *root, struct eb32_node *new) {
|
||||
struct eb32_node *old;
|
||||
unsigned int side;
|
||||
eb_troot_t *troot;
|
||||
int newkey; /* caching the key saves approximately one cycle */
|
||||
|
||||
side = EB_LEFT;
|
||||
troot = root->b[EB_LEFT];
|
||||
if (unlikely(troot == NULL)) {
|
||||
/* Tree is empty, insert the leaf part below the left branch */
|
||||
root->b[EB_LEFT] = eb_dotag(&new->node.branches, EB_LEAF);
|
||||
new->node.leaf_p = eb_dotag(root, EB_LEFT);
|
||||
new->node.node_p = NULL; /* node part unused */
|
||||
return new;
|
||||
}
|
||||
|
||||
/* The tree descent is fairly easy :
|
||||
* - first, check if we have reached a leaf node
|
||||
* - second, check if we have gone too far
|
||||
* - third, reiterate
|
||||
* Everywhere, we use <new> for the node node we are inserting, <root>
|
||||
* for the node we attach it to, and <old> for the node we are
|
||||
* displacing below <new>. <troot> will always point to the future node
|
||||
* (tagged with its type). <side> carries the side the node <new> is
|
||||
* attached to below its parent, which is also where previous node
|
||||
* was attached. <newkey> carries a high bit shift of the key being
|
||||
* inserted in order to have negative keys stored before positive
|
||||
* ones.
|
||||
*/
|
||||
newkey = new->key + 0x80000000;
|
||||
|
||||
while (1) {
|
||||
if (unlikely(eb_gettag(troot) == EB_LEAF)) {
|
||||
eb_troot_t *new_left, *new_rght;
|
||||
eb_troot_t *new_leaf, *old_leaf;
|
||||
|
||||
old = container_of(eb_untag(troot, EB_LEAF),
|
||||
struct eb32_node, node.branches);
|
||||
|
||||
new_left = eb_dotag(&new->node.branches, EB_LEFT);
|
||||
new_rght = eb_dotag(&new->node.branches, EB_RGHT);
|
||||
new_leaf = eb_dotag(&new->node.branches, EB_LEAF);
|
||||
old_leaf = eb_dotag(&old->node.branches, EB_LEAF);
|
||||
|
||||
new->node.node_p = old->node.leaf_p;
|
||||
|
||||
/* Right here, we have 3 possibilities :
|
||||
- the tree does not contain the key, and we have
|
||||
new->key < old->key. We insert new above old, on
|
||||
the left ;
|
||||
|
||||
- the tree does not contain the key, and we have
|
||||
new->key > old->key. We insert new above old, on
|
||||
the right ;
|
||||
|
||||
- the tree does contain the key, which implies it
|
||||
is alone. We add the new key next to it as a
|
||||
first duplicate.
|
||||
|
||||
The last two cases can easily be partially merged.
|
||||
*/
|
||||
|
||||
if ((s32)new->key < (s32)old->key) {
|
||||
new->node.leaf_p = new_left;
|
||||
old->node.leaf_p = new_rght;
|
||||
new->node.branches.b[EB_LEFT] = new_leaf;
|
||||
new->node.branches.b[EB_RGHT] = old_leaf;
|
||||
} else {
|
||||
/* new->key >= old->key, new goes the right */
|
||||
old->node.leaf_p = new_left;
|
||||
new->node.leaf_p = new_rght;
|
||||
new->node.branches.b[EB_LEFT] = old_leaf;
|
||||
new->node.branches.b[EB_RGHT] = new_leaf;
|
||||
|
||||
if (new->key == old->key) {
|
||||
new->node.bit = -1;
|
||||
root->b[side] = eb_dotag(&new->node.branches, EB_NODE);
|
||||
return new;
|
||||
}
|
||||
}
|
||||
break;
|
||||
}
|
||||
|
||||
/* OK we're walking down this link */
|
||||
old = container_of(eb_untag(troot, EB_NODE),
|
||||
struct eb32_node, node.branches);
|
||||
|
||||
/* Stop going down when we don't have common bits anymore. We
|
||||
* also stop in front of a duplicates tree because it means we
|
||||
* have to insert above.
|
||||
*/
|
||||
|
||||
if ((old->node.bit < 0) || /* we're above a duplicate tree, stop here */
|
||||
(((new->key ^ old->key) >> old->node.bit) >= EB_NODE_BRANCHES)) {
|
||||
/* The tree did not contain the key, so we insert <new> before the node
|
||||
* <old>, and set ->bit to designate the lowest bit position in <new>
|
||||
* which applies to ->branches.b[].
|
||||
*/
|
||||
eb_troot_t *new_left, *new_rght;
|
||||
eb_troot_t *new_leaf, *old_node;
|
||||
|
||||
new_left = eb_dotag(&new->node.branches, EB_LEFT);
|
||||
new_rght = eb_dotag(&new->node.branches, EB_RGHT);
|
||||
new_leaf = eb_dotag(&new->node.branches, EB_LEAF);
|
||||
old_node = eb_dotag(&old->node.branches, EB_NODE);
|
||||
|
||||
new->node.node_p = old->node.node_p;
|
||||
|
||||
if ((s32)new->key < (s32)old->key) {
|
||||
new->node.leaf_p = new_left;
|
||||
old->node.node_p = new_rght;
|
||||
new->node.branches.b[EB_LEFT] = new_leaf;
|
||||
new->node.branches.b[EB_RGHT] = old_node;
|
||||
}
|
||||
else if ((s32)new->key > (s32)old->key) {
|
||||
old->node.node_p = new_left;
|
||||
new->node.leaf_p = new_rght;
|
||||
new->node.branches.b[EB_LEFT] = old_node;
|
||||
new->node.branches.b[EB_RGHT] = new_leaf;
|
||||
}
|
||||
else {
|
||||
struct eb_node *ret;
|
||||
ret = eb_insert_dup(&old->node, &new->node);
|
||||
return container_of(ret, struct eb32_node, node);
|
||||
}
|
||||
break;
|
||||
}
|
||||
|
||||
/* walk down */
|
||||
root = &old->node.branches;
|
||||
side = (newkey >> old->node.bit) & EB_NODE_BRANCH_MASK;
|
||||
troot = root->b[side];
|
||||
}
|
||||
|
||||
/* Ok, now we are inserting <new> between <root> and <old>. <old>'s
|
||||
* parent is already set to <new>, and the <root>'s branch is still in
|
||||
* <side>. Update the root's leaf till we have it. Note that we can also
|
||||
* find the side by checking the side of new->node.node_p.
|
||||
*/
|
||||
|
||||
/* We need the common higher bits between new->key and old->key.
|
||||
* What differences are there between new->key and the node here ?
|
||||
* NOTE that bit(new) is always < bit(root) because highest
|
||||
* bit of new->key and old->key are identical here (otherwise they
|
||||
* would sit on different branches).
|
||||
*/
|
||||
// note that if EB_NODE_BITS > 1, we should check that it's still >= 0
|
||||
new->node.bit = flsnz(new->key ^ old->key) - EB_NODE_BITS;
|
||||
root->b[side] = eb_dotag(&new->node.branches, EB_NODE);
|
||||
|
||||
return new;
|
||||
}
|
534
include/common/eb64tree.h
Normal file
534
include/common/eb64tree.h
Normal file
@ -0,0 +1,534 @@
|
||||
/*
|
||||
* Elastic Binary Trees - macros and structures for operations on 64bit nodes.
|
||||
* (C) 2002-2007 - Willy Tarreau <w@1wt.eu>
|
||||
*
|
||||
* This program is free software; you can redistribute it and/or modify
|
||||
* it under the terms of the GNU General Public License as published by
|
||||
* the Free Software Foundation; either version 2 of the License, or
|
||||
* (at your option) any later version.
|
||||
*
|
||||
* This program is distributed in the hope that it will be useful,
|
||||
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
* GNU General Public License for more details.
|
||||
*
|
||||
* You should have received a copy of the GNU General Public License
|
||||
* along with this program; if not, write to the Free Software
|
||||
* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
|
||||
*/
|
||||
|
||||
#include "ebtree.h"
|
||||
|
||||
|
||||
/* Return the structure of type <type> whose member <member> points to <ptr> */
|
||||
#define eb64_entry(ptr, type, member) container_of(ptr, type, member)
|
||||
|
||||
#define EB64_ROOT EB_ROOT
|
||||
#define EB64_TREE_HEAD EB_TREE_HEAD
|
||||
|
||||
/* These types may sometimes already be defined */
|
||||
typedef unsigned long long u64;
|
||||
typedef signed long long s64;
|
||||
|
||||
/* This structure carries a node, a leaf, and a key. It must start with the
|
||||
* eb_node so that it can be cast into an eb_node. We could also have put some
|
||||
* sort of transparent union here to reduce the indirection level, but the fact
|
||||
* is, the end user is not meant to manipulate internals, so this is pointless.
|
||||
*/
|
||||
struct eb64_node {
|
||||
struct eb_node node; /* the tree node, must be at the beginning */
|
||||
u64 key;
|
||||
};
|
||||
|
||||
/*
|
||||
* Exported functions and macros.
|
||||
* Many of them are always inlined because they are extremely small, and
|
||||
* are generally called at most once or twice in a program.
|
||||
*/
|
||||
|
||||
/* Return leftmost node in the tree, or NULL if none */
|
||||
static inline struct eb64_node *eb64_first(struct eb_root *root)
|
||||
{
|
||||
return eb64_entry(eb_first(root), struct eb64_node, node);
|
||||
}
|
||||
|
||||
/* Return rightmost node in the tree, or NULL if none */
|
||||
static inline struct eb64_node *eb64_last(struct eb_root *root)
|
||||
{
|
||||
return eb64_entry(eb_last(root), struct eb64_node, node);
|
||||
}
|
||||
|
||||
/* Return next node in the tree, or NULL if none */
|
||||
static inline struct eb64_node *eb64_next(struct eb64_node *eb64)
|
||||
{
|
||||
return eb64_entry(eb_next(&eb64->node), struct eb64_node, node);
|
||||
}
|
||||
|
||||
/* Return previous node in the tree, or NULL if none */
|
||||
static inline struct eb64_node *eb64_prev(struct eb64_node *eb64)
|
||||
{
|
||||
return eb64_entry(eb_prev(&eb64->node), struct eb64_node, node);
|
||||
}
|
||||
|
||||
/* Return next node in the tree, skipping duplicates, or NULL if none */
|
||||
static inline struct eb64_node *eb64_next_unique(struct eb64_node *eb64)
|
||||
{
|
||||
return eb64_entry(eb_next_unique(&eb64->node), struct eb64_node, node);
|
||||
}
|
||||
|
||||
/* Return previous node in the tree, skipping duplicates, or NULL if none */
|
||||
static inline struct eb64_node *eb64_prev_unique(struct eb64_node *eb64)
|
||||
{
|
||||
return eb64_entry(eb_prev_unique(&eb64->node), struct eb64_node, node);
|
||||
}
|
||||
|
||||
/* Delete node from the tree if it was linked in. Mark the node unused. Note
|
||||
* that this function relies on a non-inlined generic function: eb_delete.
|
||||
*/
|
||||
static inline void eb64_delete(struct eb64_node *eb64)
|
||||
{
|
||||
eb_delete(&eb64->node);
|
||||
}
|
||||
|
||||
/*
|
||||
* The following functions are not inlined by default. They are declared
|
||||
* in eb64tree.c, which simply relies on their inline version.
|
||||
*/
|
||||
REGPRM2 struct eb64_node *eb64_lookup(struct eb_root *root, u64 x);
|
||||
REGPRM2 struct eb64_node *eb64i_lookup(struct eb_root *root, s64 x);
|
||||
REGPRM2 struct eb64_node *eb64_insert(struct eb_root *root, struct eb64_node *new);
|
||||
REGPRM2 struct eb64_node *eb64i_insert(struct eb_root *root, struct eb64_node *new);
|
||||
|
||||
/*
|
||||
* The following functions are less likely to be used directly, because their
|
||||
* code is larger. The non-inlined version is preferred.
|
||||
*/
|
||||
|
||||
/* Delete node from the tree if it was linked in. Mark the node unused. */
|
||||
static inline void __eb64_delete(struct eb64_node *eb64)
|
||||
{
|
||||
__eb_delete(&eb64->node);
|
||||
}
|
||||
|
||||
/*
|
||||
* Find the first occurence of a key in the tree <root>. If none can be
|
||||
* found, return NULL.
|
||||
*/
|
||||
static inline struct eb64_node *__eb64_lookup(struct eb_root *root, u64 x)
|
||||
{
|
||||
struct eb64_node *node;
|
||||
eb_troot_t *troot;
|
||||
|
||||
troot = root->b[EB_LEFT];
|
||||
if (unlikely(troot == NULL))
|
||||
return NULL;
|
||||
|
||||
while (1) {
|
||||
if ((eb_gettag(troot) == EB_LEAF)) {
|
||||
node = container_of(eb_untag(troot, EB_LEAF),
|
||||
struct eb64_node, node.branches);
|
||||
if (node->key == x)
|
||||
return node;
|
||||
else
|
||||
return NULL;
|
||||
}
|
||||
node = container_of(eb_untag(troot, EB_NODE),
|
||||
struct eb64_node, node.branches);
|
||||
|
||||
if (x == node->key) {
|
||||
/* Either we found the node which holds the key, or
|
||||
* we have a dup tree. In the later case, we have to
|
||||
* walk it down left to get the first entry.
|
||||
*/
|
||||
if (node->node.bit < 0) {
|
||||
troot = node->node.branches.b[EB_LEFT];
|
||||
while (eb_gettag(troot) != EB_LEAF)
|
||||
troot = (eb_untag(troot, EB_NODE))->b[EB_LEFT];
|
||||
node = container_of(eb_untag(troot, EB_LEAF),
|
||||
struct eb64_node, node.branches);
|
||||
}
|
||||
return node;
|
||||
}
|
||||
|
||||
troot = node->node.branches.b[(x >> node->node.bit) & EB_NODE_BRANCH_MASK];
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
* Find the first occurence of a signed key in the tree <root>. If none can
|
||||
* be found, return NULL.
|
||||
*/
|
||||
static inline struct eb64_node *__eb64i_lookup(struct eb_root *root, s64 x)
|
||||
{
|
||||
struct eb64_node *node;
|
||||
eb_troot_t *troot;
|
||||
u64 key = x ^ (1ULL << 63);
|
||||
|
||||
troot = root->b[EB_LEFT];
|
||||
if (unlikely(troot == NULL))
|
||||
return NULL;
|
||||
|
||||
while (1) {
|
||||
if ((eb_gettag(troot) == EB_LEAF)) {
|
||||
node = container_of(eb_untag(troot, EB_LEAF),
|
||||
struct eb64_node, node.branches);
|
||||
if (node->key == x)
|
||||
return node;
|
||||
else
|
||||
return NULL;
|
||||
}
|
||||
node = container_of(eb_untag(troot, EB_NODE),
|
||||
struct eb64_node, node.branches);
|
||||
|
||||
if (x == node->key) {
|
||||
/* Either we found the node which holds the key, or
|
||||
* we have a dup tree. In the later case, we have to
|
||||
* walk it down left to get the first entry.
|
||||
*/
|
||||
if (node->node.bit < 0) {
|
||||
troot = node->node.branches.b[EB_LEFT];
|
||||
while (eb_gettag(troot) != EB_LEAF)
|
||||
troot = (eb_untag(troot, EB_NODE))->b[EB_LEFT];
|
||||
node = container_of(eb_untag(troot, EB_LEAF),
|
||||
struct eb64_node, node.branches);
|
||||
}
|
||||
return node;
|
||||
}
|
||||
|
||||
troot = node->node.branches.b[(key >> node->node.bit) & EB_NODE_BRANCH_MASK];
|
||||
}
|
||||
}
|
||||
|
||||
/* Insert eb64_node <new> into subtree starting at node root <root>.
|
||||
* Only new->key needs be set with the key. The eb64_node is returned.
|
||||
*/
|
||||
static inline struct eb64_node *
|
||||
__eb64_insert(struct eb_root *root, struct eb64_node *new) {
|
||||
struct eb64_node *old;
|
||||
unsigned int side;
|
||||
eb_troot_t *troot;
|
||||
u64 newkey; /* caching the key saves approximately one cycle */
|
||||
|
||||
side = EB_LEFT;
|
||||
troot = root->b[EB_LEFT];
|
||||
if (unlikely(troot == NULL)) {
|
||||
/* Tree is empty, insert the leaf part below the left branch */
|
||||
root->b[EB_LEFT] = eb_dotag(&new->node.branches, EB_LEAF);
|
||||
new->node.leaf_p = eb_dotag(root, EB_LEFT);
|
||||
new->node.node_p = NULL; /* node part unused */
|
||||
return new;
|
||||
}
|
||||
|
||||
/* The tree descent is fairly easy :
|
||||
* - first, check if we have reached a leaf node
|
||||
* - second, check if we have gone too far
|
||||
* - third, reiterate
|
||||
* Everywhere, we use <new> for the node node we are inserting, <root>
|
||||
* for the node we attach it to, and <old> for the node we are
|
||||
* displacing below <new>. <troot> will always point to the future node
|
||||
* (tagged with its type). <side> carries the side the node <new> is
|
||||
* attached to below its parent, which is also where previous node
|
||||
* was attached. <newkey> carries the key being inserted.
|
||||
*/
|
||||
newkey = new->key;
|
||||
|
||||
while (1) {
|
||||
if (unlikely(eb_gettag(troot) == EB_LEAF)) {
|
||||
eb_troot_t *new_left, *new_rght;
|
||||
eb_troot_t *new_leaf, *old_leaf;
|
||||
|
||||
old = container_of(eb_untag(troot, EB_LEAF),
|
||||
struct eb64_node, node.branches);
|
||||
|
||||
new_left = eb_dotag(&new->node.branches, EB_LEFT);
|
||||
new_rght = eb_dotag(&new->node.branches, EB_RGHT);
|
||||
new_leaf = eb_dotag(&new->node.branches, EB_LEAF);
|
||||
old_leaf = eb_dotag(&old->node.branches, EB_LEAF);
|
||||
|
||||
new->node.node_p = old->node.leaf_p;
|
||||
|
||||
/* Right here, we have 3 possibilities :
|
||||
- the tree does not contain the key, and we have
|
||||
new->key < old->key. We insert new above old, on
|
||||
the left ;
|
||||
|
||||
- the tree does not contain the key, and we have
|
||||
new->key > old->key. We insert new above old, on
|
||||
the right ;
|
||||
|
||||
- the tree does contain the key, which implies it
|
||||
is alone. We add the new key next to it as a
|
||||
first duplicate.
|
||||
|
||||
The last two cases can easily be partially merged.
|
||||
*/
|
||||
|
||||
if (new->key < old->key) {
|
||||
new->node.leaf_p = new_left;
|
||||
old->node.leaf_p = new_rght;
|
||||
new->node.branches.b[EB_LEFT] = new_leaf;
|
||||
new->node.branches.b[EB_RGHT] = old_leaf;
|
||||
} else {
|
||||
/* new->key >= old->key, new goes the right */
|
||||
old->node.leaf_p = new_left;
|
||||
new->node.leaf_p = new_rght;
|
||||
new->node.branches.b[EB_LEFT] = old_leaf;
|
||||
new->node.branches.b[EB_RGHT] = new_leaf;
|
||||
|
||||
if (new->key == old->key) {
|
||||
new->node.bit = -1;
|
||||
root->b[side] = eb_dotag(&new->node.branches, EB_NODE);
|
||||
return new;
|
||||
}
|
||||
}
|
||||
break;
|
||||
}
|
||||
|
||||
/* OK we're walking down this link */
|
||||
old = container_of(eb_untag(troot, EB_NODE),
|
||||
struct eb64_node, node.branches);
|
||||
|
||||
/* Stop going down when we don't have common bits anymore. We
|
||||
* also stop in front of a duplicates tree because it means we
|
||||
* have to insert above.
|
||||
*/
|
||||
|
||||
if ((old->node.bit < 0) || /* we're above a duplicate tree, stop here */
|
||||
(((new->key ^ old->key) >> old->node.bit) >= EB_NODE_BRANCHES)) {
|
||||
/* The tree did not contain the key, so we insert <new> before the node
|
||||
* <old>, and set ->bit to designate the lowest bit position in <new>
|
||||
* which applies to ->branches.b[].
|
||||
*/
|
||||
eb_troot_t *new_left, *new_rght;
|
||||
eb_troot_t *new_leaf, *old_node;
|
||||
|
||||
new_left = eb_dotag(&new->node.branches, EB_LEFT);
|
||||
new_rght = eb_dotag(&new->node.branches, EB_RGHT);
|
||||
new_leaf = eb_dotag(&new->node.branches, EB_LEAF);
|
||||
old_node = eb_dotag(&old->node.branches, EB_NODE);
|
||||
|
||||
new->node.node_p = old->node.node_p;
|
||||
|
||||
if (new->key < old->key) {
|
||||
new->node.leaf_p = new_left;
|
||||
old->node.node_p = new_rght;
|
||||
new->node.branches.b[EB_LEFT] = new_leaf;
|
||||
new->node.branches.b[EB_RGHT] = old_node;
|
||||
}
|
||||
else if (new->key > old->key) {
|
||||
old->node.node_p = new_left;
|
||||
new->node.leaf_p = new_rght;
|
||||
new->node.branches.b[EB_LEFT] = old_node;
|
||||
new->node.branches.b[EB_RGHT] = new_leaf;
|
||||
}
|
||||
else {
|
||||
struct eb_node *ret;
|
||||
ret = eb_insert_dup(&old->node, &new->node);
|
||||
return container_of(ret, struct eb64_node, node);
|
||||
}
|
||||
break;
|
||||
}
|
||||
|
||||
/* walk down */
|
||||
root = &old->node.branches;
|
||||
#if BITS_PER_LONG >= 64
|
||||
side = (newkey >> old->node.bit) & EB_NODE_BRANCH_MASK;
|
||||
#else
|
||||
side = newkey;
|
||||
side >>= old->node.bit;
|
||||
if (old->node.bit >= 32) {
|
||||
side = newkey >> 32;
|
||||
side >>= old->node.bit & 0x1F;
|
||||
}
|
||||
side &= EB_NODE_BRANCH_MASK;
|
||||
#endif
|
||||
troot = root->b[side];
|
||||
}
|
||||
|
||||
/* Ok, now we are inserting <new> between <root> and <old>. <old>'s
|
||||
* parent is already set to <new>, and the <root>'s branch is still in
|
||||
* <side>. Update the root's leaf till we have it. Note that we can also
|
||||
* find the side by checking the side of new->node.node_p.
|
||||
*/
|
||||
|
||||
/* We need the common higher bits between new->key and old->key.
|
||||
* What differences are there between new->key and the node here ?
|
||||
* NOTE that bit(new) is always < bit(root) because highest
|
||||
* bit of new->key and old->key are identical here (otherwise they
|
||||
* would sit on different branches).
|
||||
*/
|
||||
// note that if EB_NODE_BITS > 1, we should check that it's still >= 0
|
||||
new->node.bit = fls64(new->key ^ old->key) - EB_NODE_BITS;
|
||||
root->b[side] = eb_dotag(&new->node.branches, EB_NODE);
|
||||
|
||||
return new;
|
||||
}
|
||||
|
||||
/* Insert eb64_node <new> into subtree starting at node root <root>, using
|
||||
* signed keys. Only new->key needs be set with the key. The eb64_node
|
||||
* is returned.
|
||||
*/
|
||||
static inline struct eb64_node *
|
||||
__eb64i_insert(struct eb_root *root, struct eb64_node *new) {
|
||||
struct eb64_node *old;
|
||||
unsigned int side;
|
||||
eb_troot_t *troot;
|
||||
u64 newkey; /* caching the key saves approximately one cycle */
|
||||
|
||||
side = EB_LEFT;
|
||||
troot = root->b[EB_LEFT];
|
||||
if (unlikely(troot == NULL)) {
|
||||
/* Tree is empty, insert the leaf part below the left branch */
|
||||
root->b[EB_LEFT] = eb_dotag(&new->node.branches, EB_LEAF);
|
||||
new->node.leaf_p = eb_dotag(root, EB_LEFT);
|
||||
new->node.node_p = NULL; /* node part unused */
|
||||
return new;
|
||||
}
|
||||
|
||||
/* The tree descent is fairly easy :
|
||||
* - first, check if we have reached a leaf node
|
||||
* - second, check if we have gone too far
|
||||
* - third, reiterate
|
||||
* Everywhere, we use <new> for the node node we are inserting, <root>
|
||||
* for the node we attach it to, and <old> for the node we are
|
||||
* displacing below <new>. <troot> will always point to the future node
|
||||
* (tagged with its type). <side> carries the side the node <new> is
|
||||
* attached to below its parent, which is also where previous node
|
||||
* was attached. <newkey> carries a high bit shift of the key being
|
||||
* inserted in order to have negative keys stored before positive
|
||||
* ones.
|
||||
*/
|
||||
newkey = new->key ^ (1ULL << 63);
|
||||
|
||||
while (1) {
|
||||
if (unlikely(eb_gettag(troot) == EB_LEAF)) {
|
||||
eb_troot_t *new_left, *new_rght;
|
||||
eb_troot_t *new_leaf, *old_leaf;
|
||||
|
||||
old = container_of(eb_untag(troot, EB_LEAF),
|
||||
struct eb64_node, node.branches);
|
||||
|
||||
new_left = eb_dotag(&new->node.branches, EB_LEFT);
|
||||
new_rght = eb_dotag(&new->node.branches, EB_RGHT);
|
||||
new_leaf = eb_dotag(&new->node.branches, EB_LEAF);
|
||||
old_leaf = eb_dotag(&old->node.branches, EB_LEAF);
|
||||
|
||||
new->node.node_p = old->node.leaf_p;
|
||||
|
||||
/* Right here, we have 3 possibilities :
|
||||
- the tree does not contain the key, and we have
|
||||
new->key < old->key. We insert new above old, on
|
||||
the left ;
|
||||
|
||||
- the tree does not contain the key, and we have
|
||||
new->key > old->key. We insert new above old, on
|
||||
the right ;
|
||||
|
||||
- the tree does contain the key, which implies it
|
||||
is alone. We add the new key next to it as a
|
||||
first duplicate.
|
||||
|
||||
The last two cases can easily be partially merged.
|
||||
*/
|
||||
|
||||
if ((s64)new->key < (s64)old->key) {
|
||||
new->node.leaf_p = new_left;
|
||||
old->node.leaf_p = new_rght;
|
||||
new->node.branches.b[EB_LEFT] = new_leaf;
|
||||
new->node.branches.b[EB_RGHT] = old_leaf;
|
||||
} else {
|
||||
/* new->key >= old->key, new goes the right */
|
||||
old->node.leaf_p = new_left;
|
||||
new->node.leaf_p = new_rght;
|
||||
new->node.branches.b[EB_LEFT] = old_leaf;
|
||||
new->node.branches.b[EB_RGHT] = new_leaf;
|
||||
|
||||
if (new->key == old->key) {
|
||||
new->node.bit = -1;
|
||||
root->b[side] = eb_dotag(&new->node.branches, EB_NODE);
|
||||
return new;
|
||||
}
|
||||
}
|
||||
break;
|
||||
}
|
||||
|
||||
/* OK we're walking down this link */
|
||||
old = container_of(eb_untag(troot, EB_NODE),
|
||||
struct eb64_node, node.branches);
|
||||
|
||||
/* Stop going down when we don't have common bits anymore. We
|
||||
* also stop in front of a duplicates tree because it means we
|
||||
* have to insert above.
|
||||
*/
|
||||
|
||||
if ((old->node.bit < 0) || /* we're above a duplicate tree, stop here */
|
||||
(((new->key ^ old->key) >> old->node.bit) >= EB_NODE_BRANCHES)) {
|
||||
/* The tree did not contain the key, so we insert <new> before the node
|
||||
* <old>, and set ->bit to designate the lowest bit position in <new>
|
||||
* which applies to ->branches.b[].
|
||||
*/
|
||||
eb_troot_t *new_left, *new_rght;
|
||||
eb_troot_t *new_leaf, *old_node;
|
||||
|
||||
new_left = eb_dotag(&new->node.branches, EB_LEFT);
|
||||
new_rght = eb_dotag(&new->node.branches, EB_RGHT);
|
||||
new_leaf = eb_dotag(&new->node.branches, EB_LEAF);
|
||||
old_node = eb_dotag(&old->node.branches, EB_NODE);
|
||||
|
||||
new->node.node_p = old->node.node_p;
|
||||
|
||||
if ((s64)new->key < (s64)old->key) {
|
||||
new->node.leaf_p = new_left;
|
||||
old->node.node_p = new_rght;
|
||||
new->node.branches.b[EB_LEFT] = new_leaf;
|
||||
new->node.branches.b[EB_RGHT] = old_node;
|
||||
}
|
||||
else if ((s64)new->key > (s64)old->key) {
|
||||
old->node.node_p = new_left;
|
||||
new->node.leaf_p = new_rght;
|
||||
new->node.branches.b[EB_LEFT] = old_node;
|
||||
new->node.branches.b[EB_RGHT] = new_leaf;
|
||||
}
|
||||
else {
|
||||
struct eb_node *ret;
|
||||
ret = eb_insert_dup(&old->node, &new->node);
|
||||
return container_of(ret, struct eb64_node, node);
|
||||
}
|
||||
break;
|
||||
}
|
||||
|
||||
/* walk down */
|
||||
root = &old->node.branches;
|
||||
#if BITS_PER_LONG >= 64
|
||||
side = (newkey >> old->node.bit) & EB_NODE_BRANCH_MASK;
|
||||
#else
|
||||
side = newkey;
|
||||
side >>= old->node.bit;
|
||||
if (old->node.bit >= 32) {
|
||||
side = newkey >> 32;
|
||||
side >>= old->node.bit & 0x1F;
|
||||
}
|
||||
side &= EB_NODE_BRANCH_MASK;
|
||||
#endif
|
||||
troot = root->b[side];
|
||||
}
|
||||
|
||||
/* Ok, now we are inserting <new> between <root> and <old>. <old>'s
|
||||
* parent is already set to <new>, and the <root>'s branch is still in
|
||||
* <side>. Update the root's leaf till we have it. Note that we can also
|
||||
* find the side by checking the side of new->node.node_p.
|
||||
*/
|
||||
|
||||
/* We need the common higher bits between new->key and old->key.
|
||||
* What differences are there between new->key and the node here ?
|
||||
* NOTE that bit(new) is always < bit(root) because highest
|
||||
* bit of new->key and old->key are identical here (otherwise they
|
||||
* would sit on different branches).
|
||||
*/
|
||||
// note that if EB_NODE_BITS > 1, we should check that it's still >= 0
|
||||
new->node.bit = fls64(new->key ^ old->key) - EB_NODE_BITS;
|
||||
root->b[side] = eb_dotag(&new->node.branches, EB_NODE);
|
||||
|
||||
return new;
|
||||
}
|
||||
|
317
include/common/ebpttree.h
Normal file
317
include/common/ebpttree.h
Normal file
@ -0,0 +1,317 @@
|
||||
/*
|
||||
* Elastic Binary Trees - macros and structures for operations on pointer nodes.
|
||||
* (C) 2002-2007 - Willy Tarreau <w@1wt.eu>
|
||||
*
|
||||
* This program is free software; you can redistribute it and/or modify
|
||||
* it under the terms of the GNU General Public License as published by
|
||||
* the Free Software Foundation; either version 2 of the License, or
|
||||
* (at your option) any later version.
|
||||
*
|
||||
* This program is distributed in the hope that it will be useful,
|
||||
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
* GNU General Public License for more details.
|
||||
*
|
||||
* You should have received a copy of the GNU General Public License
|
||||
* along with this program; if not, write to the Free Software
|
||||
* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
|
||||
*/
|
||||
|
||||
#include "ebtree.h"
|
||||
|
||||
|
||||
/* Return the structure of type <type> whose member <member> points to <ptr> */
|
||||
#define ebpt_entry(ptr, type, member) container_of(ptr, type, member)
|
||||
|
||||
#define EBPT_ROOT EB_ROOT
|
||||
#define EBPT_TREE_HEAD EB_TREE_HEAD
|
||||
|
||||
/* on *almost* all platforms, a pointer can be cast into a size_t which is unsigned */
|
||||
#ifndef PTR_INT_TYPE
|
||||
#define PTR_INT_TYPE size_t
|
||||
#endif
|
||||
|
||||
typedef PTR_INT_TYPE ptr_t;
|
||||
|
||||
/* This structure carries a node, a leaf, and a key. It must start with the
|
||||
* eb_node so that it can be cast into an eb_node. We could also have put some
|
||||
* sort of transparent union here to reduce the indirection level, but the fact
|
||||
* is, the end user is not meant to manipulate internals, so this is pointless.
|
||||
*/
|
||||
struct ebpt_node {
|
||||
struct eb_node node; /* the tree node, must be at the beginning */
|
||||
void *key;
|
||||
};
|
||||
|
||||
/*
|
||||
* Exported functions and macros.
|
||||
* Many of them are always inlined because they are extremely small, and
|
||||
* are generally called at most once or twice in a program.
|
||||
*/
|
||||
|
||||
/* Return leftmost node in the tree, or NULL if none */
|
||||
static inline struct ebpt_node *ebpt_first(struct eb_root *root)
|
||||
{
|
||||
return ebpt_entry(eb_first(root), struct ebpt_node, node);
|
||||
}
|
||||
|
||||
/* Return rightmost node in the tree, or NULL if none */
|
||||
static inline struct ebpt_node *ebpt_last(struct eb_root *root)
|
||||
{
|
||||
return ebpt_entry(eb_last(root), struct ebpt_node, node);
|
||||
}
|
||||
|
||||
/* Return next node in the tree, or NULL if none */
|
||||
static inline struct ebpt_node *ebpt_next(struct ebpt_node *ebpt)
|
||||
{
|
||||
return ebpt_entry(eb_next(&ebpt->node), struct ebpt_node, node);
|
||||
}
|
||||
|
||||
/* Return previous node in the tree, or NULL if none */
|
||||
static inline struct ebpt_node *ebpt_prev(struct ebpt_node *ebpt)
|
||||
{
|
||||
return ebpt_entry(eb_prev(&ebpt->node), struct ebpt_node, node);
|
||||
}
|
||||
|
||||
/* Return next node in the tree, skipping duplicates, or NULL if none */
|
||||
static inline struct ebpt_node *ebpt_next_unique(struct ebpt_node *ebpt)
|
||||
{
|
||||
return ebpt_entry(eb_next_unique(&ebpt->node), struct ebpt_node, node);
|
||||
}
|
||||
|
||||
/* Return previous node in the tree, skipping duplicates, or NULL if none */
|
||||
static inline struct ebpt_node *ebpt_prev_unique(struct ebpt_node *ebpt)
|
||||
{
|
||||
return ebpt_entry(eb_prev_unique(&ebpt->node), struct ebpt_node, node);
|
||||
}
|
||||
|
||||
/* Delete node from the tree if it was linked in. Mark the node unused. Note
|
||||
* that this function relies on a non-inlined generic function: eb_delete.
|
||||
*/
|
||||
static inline void ebpt_delete(struct ebpt_node *ebpt)
|
||||
{
|
||||
eb_delete(&ebpt->node);
|
||||
}
|
||||
|
||||
/*
|
||||
* The following functions are not inlined by default. They are declared
|
||||
* in ebpttree.c, which simply relies on their inline version.
|
||||
*/
|
||||
REGPRM2 struct ebpt_node *ebpt_lookup(struct eb_root *root, void *x);
|
||||
REGPRM2 struct ebpt_node *ebpt_insert(struct eb_root *root, struct ebpt_node *new);
|
||||
|
||||
/*
|
||||
* The following functions are less likely to be used directly, because their
|
||||
* code is larger. The non-inlined version is preferred.
|
||||
*/
|
||||
|
||||
/* Delete node from the tree if it was linked in. Mark the node unused. */
|
||||
static inline void __ebpt_delete(struct ebpt_node *ebpt)
|
||||
{
|
||||
__eb_delete(&ebpt->node);
|
||||
}
|
||||
|
||||
/*
|
||||
* Find the first occurence of a key in the tree <root>. If none can be
|
||||
* found, return NULL.
|
||||
*/
|
||||
static inline struct ebpt_node *__ebpt_lookup(struct eb_root *root, void *x)
|
||||
{
|
||||
struct ebpt_node *node;
|
||||
eb_troot_t *troot;
|
||||
|
||||
troot = root->b[EB_LEFT];
|
||||
if (unlikely(troot == NULL))
|
||||
return NULL;
|
||||
|
||||
while (1) {
|
||||
if ((eb_gettag(troot) == EB_LEAF)) {
|
||||
node = container_of(eb_untag(troot, EB_LEAF),
|
||||
struct ebpt_node, node.branches);
|
||||
if (node->key == x)
|
||||
return node;
|
||||
else
|
||||
return NULL;
|
||||
}
|
||||
node = container_of(eb_untag(troot, EB_NODE),
|
||||
struct ebpt_node, node.branches);
|
||||
|
||||
if (x == node->key) {
|
||||
/* Either we found the node which holds the key, or
|
||||
* we have a dup tree. In the later case, we have to
|
||||
* walk it down left to get the first entry.
|
||||
*/
|
||||
if (node->node.bit < 0) {
|
||||
troot = node->node.branches.b[EB_LEFT];
|
||||
while (eb_gettag(troot) != EB_LEAF)
|
||||
troot = (eb_untag(troot, EB_NODE))->b[EB_LEFT];
|
||||
node = container_of(eb_untag(troot, EB_LEAF),
|
||||
struct ebpt_node, node.branches);
|
||||
}
|
||||
return node;
|
||||
}
|
||||
|
||||
troot = node->node.branches.b[((ptr_t)x >> node->node.bit) & EB_NODE_BRANCH_MASK];
|
||||
}
|
||||
}
|
||||
|
||||
/* Insert ebpt_node <new> into subtree starting at node root <root>.
|
||||
* Only new->key needs be set with the key. The ebpt_node is returned.
|
||||
*/
|
||||
static inline struct ebpt_node *
|
||||
__ebpt_insert(struct eb_root *root, struct ebpt_node *new) {
|
||||
struct ebpt_node *old;
|
||||
unsigned int side;
|
||||
eb_troot_t *troot;
|
||||
void *newkey; /* caching the key saves approximately one cycle */
|
||||
|
||||
side = EB_LEFT;
|
||||
troot = root->b[EB_LEFT];
|
||||
if (unlikely(troot == NULL)) {
|
||||
/* Tree is empty, insert the leaf part below the left branch */
|
||||
root->b[EB_LEFT] = eb_dotag(&new->node.branches, EB_LEAF);
|
||||
new->node.leaf_p = eb_dotag(root, EB_LEFT);
|
||||
new->node.node_p = NULL; /* node part unused */
|
||||
return new;
|
||||
}
|
||||
|
||||
/* The tree descent is fairly easy :
|
||||
* - first, check if we have reached a leaf node
|
||||
* - second, check if we have gone too far
|
||||
* - third, reiterate
|
||||
* Everywhere, we use <new> for the node node we are inserting, <root>
|
||||
* for the node we attach it to, and <old> for the node we are
|
||||
* displacing below <new>. <troot> will always point to the future node
|
||||
* (tagged with its type). <side> carries the side the node <new> is
|
||||
* attached to below its parent, which is also where previous node
|
||||
* was attached. <newkey> carries the key being inserted.
|
||||
*/
|
||||
newkey = new->key;
|
||||
|
||||
while (1) {
|
||||
if (unlikely(eb_gettag(troot) == EB_LEAF)) {
|
||||
eb_troot_t *new_left, *new_rght;
|
||||
eb_troot_t *new_leaf, *old_leaf;
|
||||
|
||||
old = container_of(eb_untag(troot, EB_LEAF),
|
||||
struct ebpt_node, node.branches);
|
||||
|
||||
new_left = eb_dotag(&new->node.branches, EB_LEFT);
|
||||
new_rght = eb_dotag(&new->node.branches, EB_RGHT);
|
||||
new_leaf = eb_dotag(&new->node.branches, EB_LEAF);
|
||||
old_leaf = eb_dotag(&old->node.branches, EB_LEAF);
|
||||
|
||||
new->node.node_p = old->node.leaf_p;
|
||||
|
||||
/* Right here, we have 3 possibilities :
|
||||
- the tree does not contain the key, and we have
|
||||
new->key < old->key. We insert new above old, on
|
||||
the left ;
|
||||
|
||||
- the tree does not contain the key, and we have
|
||||
new->key > old->key. We insert new above old, on
|
||||
the right ;
|
||||
|
||||
- the tree does contain the key, which implies it
|
||||
is alone. We add the new key next to it as a
|
||||
first duplicate.
|
||||
|
||||
The last two cases can easily be partially merged.
|
||||
*/
|
||||
|
||||
if (new->key < old->key) {
|
||||
new->node.leaf_p = new_left;
|
||||
old->node.leaf_p = new_rght;
|
||||
new->node.branches.b[EB_LEFT] = new_leaf;
|
||||
new->node.branches.b[EB_RGHT] = old_leaf;
|
||||
} else {
|
||||
/* new->key >= old->key, new goes the right */
|
||||
old->node.leaf_p = new_left;
|
||||
new->node.leaf_p = new_rght;
|
||||
new->node.branches.b[EB_LEFT] = old_leaf;
|
||||
new->node.branches.b[EB_RGHT] = new_leaf;
|
||||
|
||||
if (new->key == old->key) {
|
||||
new->node.bit = -1;
|
||||
root->b[side] = eb_dotag(&new->node.branches, EB_NODE);
|
||||
return new;
|
||||
}
|
||||
}
|
||||
break;
|
||||
}
|
||||
|
||||
/* OK we're walking down this link */
|
||||
old = container_of(eb_untag(troot, EB_NODE),
|
||||
struct ebpt_node, node.branches);
|
||||
|
||||
/* Stop going down when we don't have common bits anymore. We
|
||||
* also stop in front of a duplicates tree because it means we
|
||||
* have to insert above.
|
||||
*/
|
||||
|
||||
if ((old->node.bit < 0) || /* we're above a duplicate tree, stop here */
|
||||
((((ptr_t)new->key ^ (ptr_t)old->key) >> old->node.bit) >= EB_NODE_BRANCHES)) {
|
||||
/* The tree did not contain the key, so we insert <new> before the node
|
||||
* <old>, and set ->bit to designate the lowest bit position in <new>
|
||||
* which applies to ->branches.b[].
|
||||
*/
|
||||
eb_troot_t *new_left, *new_rght;
|
||||
eb_troot_t *new_leaf, *old_node;
|
||||
|
||||
new_left = eb_dotag(&new->node.branches, EB_LEFT);
|
||||
new_rght = eb_dotag(&new->node.branches, EB_RGHT);
|
||||
new_leaf = eb_dotag(&new->node.branches, EB_LEAF);
|
||||
old_node = eb_dotag(&old->node.branches, EB_NODE);
|
||||
|
||||
new->node.node_p = old->node.node_p;
|
||||
|
||||
if (new->key < old->key) {
|
||||
new->node.leaf_p = new_left;
|
||||
old->node.node_p = new_rght;
|
||||
new->node.branches.b[EB_LEFT] = new_leaf;
|
||||
new->node.branches.b[EB_RGHT] = old_node;
|
||||
}
|
||||
else if (new->key > old->key) {
|
||||
old->node.node_p = new_left;
|
||||
new->node.leaf_p = new_rght;
|
||||
new->node.branches.b[EB_LEFT] = old_node;
|
||||
new->node.branches.b[EB_RGHT] = new_leaf;
|
||||
}
|
||||
else {
|
||||
struct eb_node *ret;
|
||||
ret = eb_insert_dup(&old->node, &new->node);
|
||||
return container_of(ret, struct ebpt_node, node);
|
||||
}
|
||||
break;
|
||||
}
|
||||
|
||||
/* walk down */
|
||||
root = &old->node.branches;
|
||||
side = ((ptr_t)newkey >> old->node.bit) & EB_NODE_BRANCH_MASK;
|
||||
troot = root->b[side];
|
||||
}
|
||||
|
||||
/* Ok, now we are inserting <new> between <root> and <old>. <old>'s
|
||||
* parent is already set to <new>, and the <root>'s branch is still in
|
||||
* <side>. Update the root's leaf till we have it. Note that we can also
|
||||
* find the side by checking the side of new->node.node_p.
|
||||
*/
|
||||
|
||||
/* We need the common higher bits between new->key and old->key.
|
||||
* What differences are there between new->key and the node here ?
|
||||
* NOTE that bit(new) is always < bit(root) because highest
|
||||
* bit of new->key and old->key are identical here (otherwise they
|
||||
* would sit on different branches).
|
||||
*/
|
||||
// note that if EB_NODE_BITS > 1, we should check that it's still >= 0
|
||||
|
||||
/* let the compiler choose the best branch based on the pointer size */
|
||||
if (sizeof(ptr_t) == 4)
|
||||
new->node.bit = flsnz((ptr_t)new->key ^ (ptr_t)old->key) - EB_NODE_BITS;
|
||||
else
|
||||
new->node.bit = fls64((ptr_t)new->key ^ (ptr_t)old->key) - EB_NODE_BITS;
|
||||
root->b[side] = eb_dotag(&new->node.branches, EB_NODE);
|
||||
|
||||
return new;
|
||||
}
|
||||
|
725
include/common/ebtree.h
Normal file
725
include/common/ebtree.h
Normal file
@ -0,0 +1,725 @@
|
||||
/*
|
||||
* Elastic Binary Trees - generic macros and structures.
|
||||
* (C) 2002-2007 - Willy Tarreau <w@1wt.eu>
|
||||
*
|
||||
* This program is free software; you can redistribute it and/or modify
|
||||
* it under the terms of the GNU General Public License as published by
|
||||
* the Free Software Foundation; either version 2 of the License, or
|
||||
* (at your option) any later version.
|
||||
*
|
||||
* This program is distributed in the hope that it will be useful,
|
||||
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
* GNU General Public License for more details.
|
||||
*
|
||||
* You should have received a copy of the GNU General Public License
|
||||
* along with this program; if not, write to the Free Software
|
||||
* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
|
||||
*
|
||||
*
|
||||
* Short history :
|
||||
*
|
||||
* 2007/09/28: full support for the duplicates tree => v3
|
||||
* 2007/07/08: merge back cleanups from kernel version.
|
||||
* 2007/07/01: merge into Linux Kernel (try 1).
|
||||
* 2007/05/27: version 2: compact everything into one single struct
|
||||
* 2007/05/18: adapted the structure to support embedded nodes
|
||||
* 2007/05/13: adapted to mempools v2.
|
||||
*/
|
||||
|
||||
|
||||
|
||||
/*
|
||||
General idea:
|
||||
-------------
|
||||
In a radix binary tree, we may have up to 2N-1 nodes for N keys if all of
|
||||
them are leaves. If we find a way to differentiate intermediate nodes (later
|
||||
called "nodes") and final nodes (later called "leaves"), and we associate
|
||||
them by two, it is possible to build sort of a self-contained radix tree with
|
||||
intermediate nodes always present. It will not be as cheap as the ultree for
|
||||
optimal cases as shown below, but the optimal case almost never happens :
|
||||
|
||||
Eg, to store 8, 10, 12, 13, 14 :
|
||||
|
||||
ultree this theorical tree
|
||||
|
||||
8 8
|
||||
/ \ / \
|
||||
10 12 10 12
|
||||
/ \ / \
|
||||
13 14 12 14
|
||||
/ \
|
||||
12 13
|
||||
|
||||
Note that on real-world tests (with a scheduler), is was verified that the
|
||||
case with data on an intermediate node never happens. This is because the
|
||||
data spectrum is too large for such coincidences to happen. It would require
|
||||
for instance that a task has its expiration time at an exact second, with
|
||||
other tasks sharing that second. This is too rare to try to optimize for it.
|
||||
|
||||
What is interesting is that the node will only be added above the leaf when
|
||||
necessary, which implies that it will always remain somewhere above it. So
|
||||
both the leaf and the node can share the exact value of the leaf, because
|
||||
when going down the node, the bit mask will be applied to comparisons. So we
|
||||
are tempted to have one single key shared between the node and the leaf.
|
||||
|
||||
The bit only serves the nodes, and the dups only serve the leaves. So we can
|
||||
put a lot of information in common. This results in one single entity with
|
||||
two branch pointers and two parent pointers, one for the node part, and one
|
||||
for the leaf part :
|
||||
|
||||
node's leaf's
|
||||
parent parent
|
||||
| |
|
||||
[node] [leaf]
|
||||
/ \
|
||||
left right
|
||||
branch branch
|
||||
|
||||
The node may very well refer to its leaf counterpart in one of its branches,
|
||||
indicating that its own leaf is just below it :
|
||||
|
||||
node's
|
||||
parent
|
||||
|
|
||||
[node]
|
||||
/ \
|
||||
left [leaf]
|
||||
branch
|
||||
|
||||
Adding keys in such a tree simply consists in inserting nodes between
|
||||
other nodes and/or leaves :
|
||||
|
||||
[root]
|
||||
|
|
||||
[node2]
|
||||
/ \
|
||||
[leaf1] [node3]
|
||||
/ \
|
||||
[leaf2] [leaf3]
|
||||
|
||||
On this diagram, we notice that [node2] and [leaf2] have been pulled away
|
||||
from each other due to the insertion of [node3], just as if there would be
|
||||
an elastic between both parts. This elastic-like behaviour gave its name to
|
||||
the tree : "Elastic Binary Tree", or "EBtree". The entity which associates a
|
||||
node part and a leaf part will be called an "EB node".
|
||||
|
||||
We also notice on the diagram that there is a root entity required to attach
|
||||
the tree. It only contains two branches and there is nothing above it. This
|
||||
is an "EB root". Some will note that [leaf1] has no [node1]. One property of
|
||||
the EBtree is that all nodes have their branches filled, and that if a node
|
||||
has only one branch, it does not need to exist. Here, [leaf1] was added
|
||||
below [root] and did not need any node.
|
||||
|
||||
An EB node contains :
|
||||
- a pointer to the node's parent (node_p)
|
||||
- a pointer to the leaf's parent (leaf_p)
|
||||
- two branches pointing to lower nodes or leaves (branches)
|
||||
- a bit position (bit)
|
||||
- an optional key.
|
||||
|
||||
The key here is optional because it's used only during insertion, in order
|
||||
to classify the nodes. Nothing else in the tree structure requires knowledge
|
||||
of the key. This makes it possible to write type-agnostic primitives for
|
||||
everything, and type-specific insertion primitives. This has led to consider
|
||||
two types of EB nodes. The type-agnostic ones will serve as a header for the
|
||||
other ones, and will simply be called "struct eb_node". The other ones will
|
||||
have their type indicated in the structure name. Eg: "struct eb32_node" for
|
||||
nodes carrying 32 bit keys.
|
||||
|
||||
We will also node that the two branches in a node serve exactly the same
|
||||
purpose as an EB root. For this reason, a "struct eb_root" will be used as
|
||||
well inside the struct eb_node. In order to ease pointer manipulation and
|
||||
ROOT detection when walking upwards, all the pointers inside an eb_node will
|
||||
point to the eb_root part of the referenced EB nodes, relying on the same
|
||||
principle as the linked lists in Linux.
|
||||
|
||||
Another important point to note, is that when walking inside a tree, it is
|
||||
very convenient to know where a node is attached in its parent, and what
|
||||
type of branch it has below it (leaf or node). In order to simplify the
|
||||
operations and to speed up the processing, it was decided in this specific
|
||||
implementation to use the lowest bit from the pointer to designate the side
|
||||
of the upper pointers (left/right) and the type of a branch (leaf/node).
|
||||
This practise is not mandatory by design, but an implementation-specific
|
||||
optimisation permitted on all platforms on which data must be aligned. All
|
||||
known 32 bit platforms align their integers and pointers to 32 bits, leaving
|
||||
the two lower bits unused. So, we say that the pointers are "tagged". And
|
||||
since they designate pointers to root parts, we simply call them
|
||||
"tagged root pointers", or "eb_troot" in the code.
|
||||
|
||||
Duplicate keys are stored in a special manner. When inserting a key, if
|
||||
the same one is found, then an incremental binary tree is built at this
|
||||
place from these keys. This ensures that no special case has to be written
|
||||
to handle duplicates when walking through the tree or when deleting entries.
|
||||
It also guarantees that duplicates will be walked in the exact same order
|
||||
they were inserted. This is very important when trying to achieve fair
|
||||
processing distribution for instance.
|
||||
|
||||
Algorithmic complexity can be derived from 3 variables :
|
||||
- the number of possible different keys in the tree : P
|
||||
- the number of entries in the tree : N
|
||||
- the number of duplicates for one key : D
|
||||
|
||||
Note that this tree is deliberately NOT balanced. For this reason, the worst
|
||||
case may happen with a small tree (eg: 32 distinct keys of one bit). BUT,
|
||||
the operations required to manage such data are so much cheap that they make
|
||||
it worth using it even under such conditions. For instance, a balanced tree
|
||||
may require only 6 levels to store those 32 keys when this tree will
|
||||
require 32. But if per-level operations are 5 times cheaper, it wins.
|
||||
|
||||
Minimal, Maximal and Average times are specified in number of operations.
|
||||
Minimal is given for best condition, Maximal for worst condition, and the
|
||||
average is reported for a tree containing random keys. An operation
|
||||
generally consists in jumping from one node to the other.
|
||||
|
||||
Complexity :
|
||||
- lookup : min=1, max=log(P), avg=log(N)
|
||||
- insertion from root : min=1, max=log(P), avg=log(N)
|
||||
- insertion of dups : min=1, max=log(D), avg=log(D)/2 after lookup
|
||||
- deletion : min=1, max=1, avg=1
|
||||
- prev/next : min=1, max=log(P), avg=2 :
|
||||
N/2 nodes need 1 hop => 1*N/2
|
||||
N/4 nodes need 2 hops => 2*N/4
|
||||
N/8 nodes need 3 hops => 3*N/8
|
||||
...
|
||||
N/x nodes need log(x) hops => log2(x)*N/x
|
||||
Total cost for all N nodes : sum[i=1..N](log2(i)*N/i) = N*sum[i=1..N](log2(i)/i)
|
||||
Average cost across N nodes = total / N = sum[i=1..N](log2(i)/i) = 2
|
||||
|
||||
This design is currently limited to only two branches per node. Most of the
|
||||
tree descent algorithm would be compatible with more branches (eg: 4, to cut
|
||||
the height in half), but this would probably require more complex operations
|
||||
and the deletion algorithm would be problematic.
|
||||
|
||||
Useful properties :
|
||||
- a node is always added above the leaf it is tied to, and never can get
|
||||
below nor in another branch. This implies that leaves directly attached
|
||||
to the root do not use their node part, which is indicated by a NULL
|
||||
value in node_p. This also enhances the cache efficiency when walking
|
||||
down the tree, because when the leaf is reached, its node part will
|
||||
already have been visited (unless it's the first leaf in the tree).
|
||||
|
||||
- pointers to lower nodes or leaves are stored in "branch" pointers. Only
|
||||
the root node may have a NULL in either branch, it is not possible for
|
||||
other branches. Since the nodes are attached to the left branch of the
|
||||
root, it is not possible to see a NULL left branch when walking up a
|
||||
tree. Thus, an empty tree is immediately identified by a NULL left
|
||||
branch at the root. Conversely, the one and only way to identify the
|
||||
root node is to check that it right branch is NULL.
|
||||
|
||||
- a node connected to its own leaf will have branch[0|1] pointing to
|
||||
itself, and leaf_p pointing to itself.
|
||||
|
||||
- a node can never have node_p pointing to itself.
|
||||
|
||||
- a node is linked in a tree if and only if it has a non-null leaf_p.
|
||||
|
||||
- a node can never have both branches equal, except for the root which can
|
||||
have them both NULL.
|
||||
|
||||
- deletion only applies to leaves. When a leaf is deleted, its parent must
|
||||
be released too (unless it's the root), and its sibling must attach to
|
||||
the grand-parent, replacing the parent. Also, when a leaf is deleted,
|
||||
the node tied to this leaf will be removed and must be released too. If
|
||||
this node is different from the leaf's parent, the freshly released
|
||||
leaf's parent will be used to replace the node which must go. A released
|
||||
node will never be used anymore, so there's no point in tracking it.
|
||||
|
||||
- the bit index in a node indicates the bit position in the key which is
|
||||
represented by the branches. That means that a node with (bit == 0) is
|
||||
just above two leaves. Negative bit values are used to build a duplicate
|
||||
tree. The first node above two identical leaves gets (bit == -1). This
|
||||
value logarithmically decreases as the duplicate tree grows. During
|
||||
duplicate insertion, a node is inserted above the highest bit value (the
|
||||
lowest absolute value) in the tree during the right-sided walk. If bit
|
||||
-1 is not encountered (highest < -1), we insert above last leaf.
|
||||
Otherwise, we insert above the node with the highest value which was not
|
||||
equal to the one of its parent + 1.
|
||||
|
||||
- the "eb_next" primitive walks from left to right, which means from lower
|
||||
to higher keys. It returns duplicates in the order they were inserted.
|
||||
The "eb_first" primitive returns the left-most entry.
|
||||
|
||||
- the "eb_prev" primitive walks from right to left, which means from
|
||||
higher to lower keys. It returns duplicates in the opposite order they
|
||||
were inserted. The "eb_last" primitive returns the right-most entry.
|
||||
|
||||
*/
|
||||
|
||||
|
||||
#include <stdlib.h>
|
||||
|
||||
/* Note: we never need to run fls on null keys, so we can optimize the fls
|
||||
* function by removing a conditional jump.
|
||||
*/
|
||||
#if defined(__i386__)
|
||||
static inline int flsnz(int x)
|
||||
{
|
||||
int r;
|
||||
__asm__("bsrl %1,%0\n"
|
||||
: "=r" (r) : "rm" (x));
|
||||
return r+1;
|
||||
}
|
||||
#else
|
||||
// returns 1 to 32 for 1<<0 to 1<<31. Undefined for 0.
|
||||
#define flsnz(___a) ({ \
|
||||
register int ___x, ___bits = 0; \
|
||||
___x = (___a); \
|
||||
if (___x & 0xffff0000) { ___x &= 0xffff0000; ___bits += 16;} \
|
||||
if (___x & 0xff00ff00) { ___x &= 0xff00ff00; ___bits += 8;} \
|
||||
if (___x & 0xf0f0f0f0) { ___x &= 0xf0f0f0f0; ___bits += 4;} \
|
||||
if (___x & 0xcccccccc) { ___x &= 0xcccccccc; ___bits += 2;} \
|
||||
if (___x & 0xaaaaaaaa) { ___x &= 0xaaaaaaaa; ___bits += 1;} \
|
||||
___bits + 1; \
|
||||
})
|
||||
#endif
|
||||
|
||||
static inline int fls64(unsigned long long x)
|
||||
{
|
||||
unsigned int h;
|
||||
unsigned int bits = 32;
|
||||
|
||||
h = x >> 32;
|
||||
if (!h) {
|
||||
h = x;
|
||||
bits = 0;
|
||||
}
|
||||
return flsnz(h) + bits;
|
||||
}
|
||||
|
||||
#define fls_auto(x) ((sizeof(x) > 4) ? fls64(x) : flsnz(x))
|
||||
|
||||
/* Linux-like "container_of". It returns a pointer to the structure of type
|
||||
* <type> which has its member <name> stored at address <ptr>.
|
||||
*/
|
||||
#ifndef container_of
|
||||
#define container_of(ptr, type, name) ((type *)(((void *)(ptr)) - ((long)&((type *)0)->name)))
|
||||
#endif
|
||||
|
||||
/*
|
||||
* Gcc >= 3 provides the ability for the program to give hints to the compiler
|
||||
* about what branch of an if is most likely to be taken. This helps the
|
||||
* compiler produce the most compact critical paths, which is generally better
|
||||
* for the cache and to reduce the number of jumps. Be very careful not to use
|
||||
* this in inline functions, because the code reordering it causes very often
|
||||
* has a negative impact on the calling functions.
|
||||
*/
|
||||
#if __GNUC__ < 3 && !defined(__builtin_expect)
|
||||
#define __builtin_expect(x,y) (x)
|
||||
#endif
|
||||
|
||||
#ifndef likely
|
||||
#define likely(x) (__builtin_expect((x) != 0, 1))
|
||||
#define unlikely(x) (__builtin_expect((x) != 0, 0))
|
||||
#endif
|
||||
|
||||
/* Support passing function parameters in registers. For this, the
|
||||
* CONFIG_EBTREE_REGPARM macro has to be set to the maximal number of registers
|
||||
* allowed. Some functions have intentionally received a regparm lower than
|
||||
* their parameter count, it is in order to avoid register clobbering where
|
||||
* they are called.
|
||||
*/
|
||||
#ifndef REGPRM1
|
||||
#if CONFIG_EBTREE_REGPARM >= 1
|
||||
#define REGPRM1 __attribute__((regparm(1)))
|
||||
#else
|
||||
#define REGPRM1
|
||||
#endif
|
||||
#endif
|
||||
|
||||
#ifndef REGPRM2
|
||||
#if CONFIG_EBTREE_REGPARM >= 2
|
||||
#define REGPRM2 __attribute__((regparm(2)))
|
||||
#else
|
||||
#define REGPRM2 REGPRM1
|
||||
#endif
|
||||
#endif
|
||||
|
||||
#ifndef REGPRM3
|
||||
#if CONFIG_EBTREE_REGPARM >= 3
|
||||
#define REGPRM3 __attribute__((regparm(3)))
|
||||
#else
|
||||
#define REGPRM3 REGPRM2
|
||||
#endif
|
||||
#endif
|
||||
|
||||
/* Number of bits per node, and number of leaves per node */
|
||||
#define EB_NODE_BITS 1
|
||||
#define EB_NODE_BRANCHES (1 << EB_NODE_BITS)
|
||||
#define EB_NODE_BRANCH_MASK (EB_NODE_BRANCHES - 1)
|
||||
|
||||
/* Be careful not to tweak those values. The walking code is optimized for NULL
|
||||
* detection on the assumption that the following values are intact.
|
||||
*/
|
||||
#define EB_LEFT 0
|
||||
#define EB_RGHT 1
|
||||
#define EB_LEAF 0
|
||||
#define EB_NODE 1
|
||||
|
||||
/* This is the same as an eb_node pointer, except that the lower bit embeds
|
||||
* a tag. See eb_dotag()/eb_untag()/eb_gettag(). This tag has two meanings :
|
||||
* - 0=left, 1=right to designate the parent's branch for leaf_p/node_p
|
||||
* - 0=link, 1=leaf to designate the branch's type for branch[]
|
||||
*/
|
||||
typedef void eb_troot_t;
|
||||
|
||||
/* The eb_root connects the node which contains it, to two nodes below it, one
|
||||
* of which may be the same node. At the top of the tree, we use an eb_root
|
||||
* too, which always has its right branch NULL.
|
||||
*/
|
||||
struct eb_root {
|
||||
eb_troot_t *b[EB_NODE_BRANCHES]; /* left and right branches */
|
||||
};
|
||||
|
||||
/* The eb_node contains the two parts, one for the leaf, which always exists,
|
||||
* and one for the node, which remains unused in the very first node inserted
|
||||
* into the tree. This structure is 20 bytes per node on 32-bit machines. Do
|
||||
* not change the order, benchmarks have shown that it's optimal this way.
|
||||
*/
|
||||
struct eb_node {
|
||||
struct eb_root branches; /* branches, must be at the beginning */
|
||||
eb_troot_t *node_p; /* link node's parent */
|
||||
eb_troot_t *leaf_p; /* leaf node's parent */
|
||||
int bit; /* link's bit position. */
|
||||
};
|
||||
|
||||
/* Return the structure of type <type> whose member <member> points to <ptr> */
|
||||
#define eb_entry(ptr, type, member) container_of(ptr, type, member)
|
||||
|
||||
/* The root of a tree is an eb_root initialized with both pointers NULL.
|
||||
* During its life, only the left pointer will change. The right one will
|
||||
* always remain NULL, which is the way we detect it.
|
||||
*/
|
||||
#define EB_ROOT \
|
||||
(struct eb_root) { \
|
||||
.b = {[0] = NULL, [1] = NULL }, \
|
||||
}
|
||||
|
||||
#define EB_TREE_HEAD(name) \
|
||||
struct eb_root name = EB_ROOT
|
||||
|
||||
|
||||
/***************************************\
|
||||
* Private functions. Not for end-user *
|
||||
\***************************************/
|
||||
|
||||
/* Converts a root pointer to its equivalent eb_troot_t pointer,
|
||||
* ready to be stored in ->branch[], leaf_p or node_p. NULL is not
|
||||
* conserved. To be used with EB_LEAF, EB_NODE, EB_LEFT or EB_RGHT in <tag>.
|
||||
*/
|
||||
static inline eb_troot_t *eb_dotag(const struct eb_root *root, const int tag)
|
||||
{
|
||||
return (eb_troot_t *)((void *)root + tag);
|
||||
}
|
||||
|
||||
/* Converts an eb_troot_t pointer pointer to its equivalent eb_root pointer,
|
||||
* for use with pointers from ->branch[], leaf_p or node_p. NULL is conserved
|
||||
* as long as the tree is not corrupted. To be used with EB_LEAF, EB_NODE,
|
||||
* EB_LEFT or EB_RGHT in <tag>.
|
||||
*/
|
||||
static inline struct eb_root *eb_untag(const eb_troot_t *troot, const int tag)
|
||||
{
|
||||
return (struct eb_root *)((void *)troot - tag);
|
||||
}
|
||||
|
||||
/* returns the tag associated with an eb_troot_t pointer */
|
||||
static inline int eb_gettag(eb_troot_t *troot)
|
||||
{
|
||||
return (unsigned long)troot & 1;
|
||||
}
|
||||
|
||||
/* Converts a root pointer to its equivalent eb_troot_t pointer and clears the
|
||||
* tag, no matter what its value was.
|
||||
*/
|
||||
static inline struct eb_root *eb_clrtag(const eb_troot_t *troot)
|
||||
{
|
||||
return (struct eb_root *)((unsigned long)troot & ~1UL);
|
||||
}
|
||||
|
||||
/* Returns a pointer to the eb_node holding <root> */
|
||||
static inline struct eb_node *eb_root_to_node(struct eb_root *root)
|
||||
{
|
||||
return container_of(root, struct eb_node, branches);
|
||||
}
|
||||
|
||||
/* Walks down starting at root pointer <start>, and always walking on side
|
||||
* <side>. It either returns the node hosting the first leaf on that side,
|
||||
* or NULL if no leaf is found. <start> may either be NULL or a branch pointer.
|
||||
* The pointer to the leaf (or NULL) is returned.
|
||||
*/
|
||||
static inline struct eb_node *eb_walk_down(eb_troot_t *start, unsigned int side)
|
||||
{
|
||||
/* A NULL pointer on an empty tree root will be returned as-is */
|
||||
while (eb_gettag(start) == EB_NODE)
|
||||
start = (eb_untag(start, EB_NODE))->b[side];
|
||||
/* NULL is left untouched (root==eb_node, EB_LEAF==0) */
|
||||
return eb_root_to_node(eb_untag(start, EB_LEAF));
|
||||
}
|
||||
|
||||
/* This function is used to build a tree of duplicates by adding a new node to
|
||||
* a subtree of at least 2 entries. It will probably never be needed inlined,
|
||||
* and it is not for end-user.
|
||||
*/
|
||||
static inline struct eb_node *
|
||||
__eb_insert_dup(struct eb_node *sub, struct eb_node *new)
|
||||
{
|
||||
struct eb_node *head = sub;
|
||||
|
||||
struct eb_troot *new_left = eb_dotag(&new->branches, EB_LEFT);
|
||||
struct eb_troot *new_rght = eb_dotag(&new->branches, EB_RGHT);
|
||||
struct eb_troot *new_leaf = eb_dotag(&new->branches, EB_LEAF);
|
||||
|
||||
/* first, identify the deepest hole on the right branch */
|
||||
while (eb_gettag(head->branches.b[EB_RGHT]) != EB_LEAF) {
|
||||
struct eb_node *last = head;
|
||||
head = container_of(eb_untag(head->branches.b[EB_RGHT], EB_NODE),
|
||||
struct eb_node, branches);
|
||||
if (head->bit > last->bit + 1)
|
||||
sub = head; /* there's a hole here */
|
||||
}
|
||||
|
||||
/* Here we have a leaf attached to (head)->b[EB_RGHT] */
|
||||
if (head->bit < -1) {
|
||||
/* A hole exists just before the leaf, we insert there */
|
||||
new->bit = -1;
|
||||
sub = container_of(eb_untag(head->branches.b[EB_RGHT], EB_LEAF),
|
||||
struct eb_node, branches);
|
||||
head->branches.b[EB_RGHT] = eb_dotag(&new->branches, EB_NODE);
|
||||
|
||||
new->node_p = sub->leaf_p;
|
||||
new->leaf_p = new_rght;
|
||||
sub->leaf_p = new_left;
|
||||
new->branches.b[EB_LEFT] = eb_dotag(&sub->branches, EB_LEAF);
|
||||
new->branches.b[EB_RGHT] = new_leaf;
|
||||
return new;
|
||||
} else {
|
||||
int side;
|
||||
/* No hole was found before a leaf. We have to insert above
|
||||
* <sub>. Note that we cannot be certain that <sub> is attached
|
||||
* to the right of its parent, as this is only true if <sub>
|
||||
* is inside the dup tree, not at the head.
|
||||
*/
|
||||
new->bit = sub->bit - 1; /* install at the lowest level */
|
||||
side = eb_gettag(sub->node_p);
|
||||
head = container_of(eb_untag(sub->node_p, side), struct eb_node, branches);
|
||||
head->branches.b[side] = eb_dotag(&new->branches, EB_NODE);
|
||||
|
||||
new->node_p = sub->node_p;
|
||||
new->leaf_p = new_rght;
|
||||
sub->node_p = new_left;
|
||||
new->branches.b[EB_LEFT] = eb_dotag(&sub->branches, EB_NODE);
|
||||
new->branches.b[EB_RGHT] = new_leaf;
|
||||
return new;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/**************************************\
|
||||
* Public functions, for the end-user *
|
||||
\**************************************/
|
||||
|
||||
/* Return the first leaf in the tree starting at <root>, or NULL if none */
|
||||
static inline struct eb_node *eb_first(struct eb_root *root)
|
||||
{
|
||||
return eb_walk_down(root->b[0], EB_LEFT);
|
||||
}
|
||||
|
||||
/* Return the last leaf in the tree starting at <root>, or NULL if none */
|
||||
static inline struct eb_node *eb_last(struct eb_root *root)
|
||||
{
|
||||
return eb_walk_down(root->b[0], EB_RGHT);
|
||||
}
|
||||
|
||||
/* Return previous leaf node before an existing leaf node, or NULL if none. */
|
||||
static inline struct eb_node *eb_prev(struct eb_node *node)
|
||||
{
|
||||
eb_troot_t *t = node->leaf_p;
|
||||
|
||||
while (eb_gettag(t) == EB_LEFT) {
|
||||
/* Walking up from left branch. We must ensure that we never
|
||||
* walk beyond root.
|
||||
*/
|
||||
if (unlikely((eb_untag(t, EB_LEFT))->b[EB_RGHT] == NULL))
|
||||
return NULL;
|
||||
t = (eb_root_to_node(eb_untag(t, EB_LEFT)))->node_p;
|
||||
}
|
||||
/* Note that <t> cannot be NULL at this stage */
|
||||
t = (eb_untag(t, EB_RGHT))->b[EB_LEFT];
|
||||
return eb_walk_down(t, EB_RGHT);
|
||||
}
|
||||
|
||||
/* Return next leaf node after an existing leaf node, or NULL if none. */
|
||||
static inline struct eb_node *eb_next(struct eb_node *node)
|
||||
{
|
||||
eb_troot_t *t = node->leaf_p;
|
||||
|
||||
while (eb_gettag(t) != EB_LEFT)
|
||||
/* Walking up from right branch, so we cannot be below root */
|
||||
t = (eb_root_to_node(eb_untag(t, EB_RGHT)))->node_p;
|
||||
|
||||
/* Note that <t> cannot be NULL at this stage */
|
||||
t = (eb_untag(t, EB_LEFT))->b[EB_RGHT];
|
||||
return eb_walk_down(t, EB_LEFT);
|
||||
}
|
||||
|
||||
/* Return previous leaf node before an existing leaf node, skipping duplicates,
|
||||
* or NULL if none. */
|
||||
static inline struct eb_node *eb_prev_unique(struct eb_node *node)
|
||||
{
|
||||
eb_troot_t *t = node->leaf_p;
|
||||
|
||||
while (1) {
|
||||
if (eb_gettag(t) != EB_LEFT) {
|
||||
node = eb_root_to_node(eb_untag(t, EB_RGHT));
|
||||
/* if we're right and not in duplicates, stop here */
|
||||
if (node->bit >= 0)
|
||||
break;
|
||||
t = node->node_p;
|
||||
}
|
||||
else {
|
||||
/* Walking up from left branch. We must ensure that we never
|
||||
* walk beyond root.
|
||||
*/
|
||||
if (unlikely((eb_untag(t, EB_LEFT))->b[EB_RGHT] == NULL))
|
||||
return NULL;
|
||||
t = (eb_root_to_node(eb_untag(t, EB_LEFT)))->node_p;
|
||||
}
|
||||
}
|
||||
/* Note that <t> cannot be NULL at this stage */
|
||||
t = (eb_untag(t, EB_RGHT))->b[EB_LEFT];
|
||||
return eb_walk_down(t, EB_RGHT);
|
||||
}
|
||||
|
||||
/* Return next leaf node after an existing leaf node, skipping duplicates, or
|
||||
* NULL if none.
|
||||
*/
|
||||
static inline struct eb_node *eb_next_unique(struct eb_node *node)
|
||||
{
|
||||
eb_troot_t *t = node->leaf_p;
|
||||
|
||||
while (1) {
|
||||
if (eb_gettag(t) == EB_LEFT) {
|
||||
if (unlikely((eb_untag(t, EB_LEFT))->b[EB_RGHT] == NULL))
|
||||
return NULL; /* we reached root */
|
||||
node = eb_root_to_node(eb_untag(t, EB_LEFT));
|
||||
/* if we're left and not in duplicates, stop here */
|
||||
if (node->bit >= 0)
|
||||
break;
|
||||
t = node->node_p;
|
||||
}
|
||||
else {
|
||||
/* Walking up from right branch, so we cannot be below root */
|
||||
t = (eb_root_to_node(eb_untag(t, EB_RGHT)))->node_p;
|
||||
}
|
||||
}
|
||||
|
||||
/* Note that <t> cannot be NULL at this stage */
|
||||
t = (eb_untag(t, EB_LEFT))->b[EB_RGHT];
|
||||
return eb_walk_down(t, EB_LEFT);
|
||||
}
|
||||
|
||||
|
||||
/* Removes a leaf node from the tree if it was still in it. Marks the node
|
||||
* as unlinked.
|
||||
*/
|
||||
static inline void __eb_delete(struct eb_node *node)
|
||||
{
|
||||
__label__ delete_unlink;
|
||||
unsigned int pside, gpside, sibtype;
|
||||
struct eb_node *parent;
|
||||
struct eb_root *gparent;
|
||||
|
||||
if (!node->leaf_p)
|
||||
return;
|
||||
|
||||
/* we need the parent, our side, and the grand parent */
|
||||
pside = eb_gettag(node->leaf_p);
|
||||
parent = eb_root_to_node(eb_untag(node->leaf_p, pside));
|
||||
|
||||
/* We likely have to release the parent link, unless it's the root,
|
||||
* in which case we only set our branch to NULL. Note that we can
|
||||
* only be attached to the root by its left branch.
|
||||
*/
|
||||
|
||||
if (parent->branches.b[EB_RGHT] == NULL) {
|
||||
/* we're just below the root, it's trivial. */
|
||||
parent->branches.b[EB_LEFT] = NULL;
|
||||
goto delete_unlink;
|
||||
}
|
||||
|
||||
/* To release our parent, we have to identify our sibling, and reparent
|
||||
* it directly to/from the grand parent. Note that the sibling can
|
||||
* either be a link or a leaf.
|
||||
*/
|
||||
|
||||
gpside = eb_gettag(parent->node_p);
|
||||
gparent = eb_untag(parent->node_p, gpside);
|
||||
|
||||
gparent->b[gpside] = parent->branches.b[!pside];
|
||||
sibtype = eb_gettag(gparent->b[gpside]);
|
||||
|
||||
if (sibtype == EB_LEAF) {
|
||||
eb_root_to_node(eb_untag(gparent->b[gpside], EB_LEAF))->leaf_p =
|
||||
eb_dotag(gparent, gpside);
|
||||
} else {
|
||||
eb_root_to_node(eb_untag(gparent->b[gpside], EB_NODE))->node_p =
|
||||
eb_dotag(gparent, gpside);
|
||||
}
|
||||
/* Mark the parent unused. Note that we do not check if the parent is
|
||||
* our own node, but that's not a problem because if it is, it will be
|
||||
* marked unused at the same time, which we'll use below to know we can
|
||||
* safely remove it.
|
||||
*/
|
||||
parent->node_p = NULL;
|
||||
|
||||
/* The parent node has been detached, and is currently unused. It may
|
||||
* belong to another node, so we cannot remove it that way. Also, our
|
||||
* own node part might still be used. so we can use this spare node
|
||||
* to replace ours if needed.
|
||||
*/
|
||||
|
||||
/* If our link part is unused, we can safely exit now */
|
||||
if (!node->node_p)
|
||||
goto delete_unlink;
|
||||
|
||||
/* From now on, <node> and <parent> are necessarily different, and the
|
||||
* <node>'s node part is in use. By definition, <parent> is at least
|
||||
* below <node>, so keeping its key for the bit string is OK.
|
||||
*/
|
||||
|
||||
parent->node_p = node->node_p;
|
||||
parent->branches = node->branches;
|
||||
parent->bit = node->bit;
|
||||
|
||||
/* We must now update the new node's parent... */
|
||||
gpside = eb_gettag(parent->node_p);
|
||||
gparent = eb_untag(parent->node_p, gpside);
|
||||
gparent->b[gpside] = eb_dotag(&parent->branches, EB_NODE);
|
||||
|
||||
/* ... and its branches */
|
||||
for (pside = 0; pside <= 1; pside++) {
|
||||
if (eb_gettag(parent->branches.b[pside]) == EB_NODE) {
|
||||
eb_root_to_node(eb_untag(parent->branches.b[pside], EB_NODE))->node_p =
|
||||
eb_dotag(&parent->branches, pside);
|
||||
} else {
|
||||
eb_root_to_node(eb_untag(parent->branches.b[pside], EB_LEAF))->leaf_p =
|
||||
eb_dotag(&parent->branches, pside);
|
||||
}
|
||||
}
|
||||
delete_unlink:
|
||||
/* Now the node has been completely unlinked */
|
||||
node->leaf_p = NULL;
|
||||
return; /* tree is not empty yet */
|
||||
}
|
||||
|
||||
/* These functions are declared in ebtree.c */
|
||||
void eb_delete(struct eb_node *node);
|
||||
REGPRM1 struct eb_node *eb_insert_dup(struct eb_node *sub, struct eb_node *new);
|
||||
|
||||
|
||||
/*
|
||||
* Local variables:
|
||||
* c-indent-level: 8
|
||||
* c-basic-offset: 8
|
||||
* End:
|
||||
*/
|
42
src/eb32tree.c
Normal file
42
src/eb32tree.c
Normal file
@ -0,0 +1,42 @@
|
||||
/*
|
||||
* Elastic Binary Trees - exported functions for operations on 32bit nodes.
|
||||
* (C) 2002-2007 - Willy Tarreau <w@1wt.eu>
|
||||
*
|
||||
* This program is free software; you can redistribute it and/or modify
|
||||
* it under the terms of the GNU General Public License as published by
|
||||
* the Free Software Foundation; either version 2 of the License, or
|
||||
* (at your option) any later version.
|
||||
*
|
||||
* This program is distributed in the hope that it will be useful,
|
||||
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
* GNU General Public License for more details.
|
||||
*
|
||||
* You should have received a copy of the GNU General Public License
|
||||
* along with this program; if not, write to the Free Software
|
||||
* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
|
||||
*/
|
||||
|
||||
/* Consult eb32tree.h for more details about those functions */
|
||||
|
||||
#include <common/eb32tree.h>
|
||||
|
||||
REGPRM2 struct eb32_node *eb32_insert(struct eb_root *root, struct eb32_node *new)
|
||||
{
|
||||
return __eb32_insert(root, new);
|
||||
}
|
||||
|
||||
REGPRM2 struct eb32_node *eb32i_insert(struct eb_root *root, struct eb32_node *new)
|
||||
{
|
||||
return __eb32i_insert(root, new);
|
||||
}
|
||||
|
||||
REGPRM2 struct eb32_node *eb32_lookup(struct eb_root *root, u32 x)
|
||||
{
|
||||
return __eb32_lookup(root, x);
|
||||
}
|
||||
|
||||
REGPRM2 struct eb32_node *eb32i_lookup(struct eb_root *root, s32 x)
|
||||
{
|
||||
return __eb32i_lookup(root, x);
|
||||
}
|
42
src/eb64tree.c
Normal file
42
src/eb64tree.c
Normal file
@ -0,0 +1,42 @@
|
||||
/*
|
||||
* Elastic Binary Trees - exported functions for operations on 64bit nodes.
|
||||
* (C) 2002-2007 - Willy Tarreau <w@1wt.eu>
|
||||
*
|
||||
* This program is free software; you can redistribute it and/or modify
|
||||
* it under the terms of the GNU General Public License as published by
|
||||
* the Free Software Foundation; either version 2 of the License, or
|
||||
* (at your option) any later version.
|
||||
*
|
||||
* This program is distributed in the hope that it will be useful,
|
||||
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
* GNU General Public License for more details.
|
||||
*
|
||||
* You should have received a copy of the GNU General Public License
|
||||
* along with this program; if not, write to the Free Software
|
||||
* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
|
||||
*/
|
||||
|
||||
/* Consult eb64tree.h for more details about those functions */
|
||||
|
||||
#include <common/eb64tree.h>
|
||||
|
||||
REGPRM2 struct eb64_node *eb64_insert(struct eb_root *root, struct eb64_node *new)
|
||||
{
|
||||
return __eb64_insert(root, new);
|
||||
}
|
||||
|
||||
REGPRM2 struct eb64_node *eb64i_insert(struct eb_root *root, struct eb64_node *new)
|
||||
{
|
||||
return __eb64i_insert(root, new);
|
||||
}
|
||||
|
||||
REGPRM2 struct eb64_node *eb64_lookup(struct eb_root *root, u64 x)
|
||||
{
|
||||
return __eb64_lookup(root, x);
|
||||
}
|
||||
|
||||
REGPRM2 struct eb64_node *eb64i_lookup(struct eb_root *root, s64 x)
|
||||
{
|
||||
return __eb64i_lookup(root, x);
|
||||
}
|
33
src/ebpttree.c
Normal file
33
src/ebpttree.c
Normal file
@ -0,0 +1,33 @@
|
||||
/*
|
||||
* Elastic Binary Trees - exported functions for operations on pointer nodes.
|
||||
* (C) 2002-2007 - Willy Tarreau <w@1wt.eu>
|
||||
*
|
||||
* This program is free software; you can redistribute it and/or modify
|
||||
* it under the terms of the GNU General Public License as published by
|
||||
* the Free Software Foundation; either version 2 of the License, or
|
||||
* (at your option) any later version.
|
||||
*
|
||||
* This program is distributed in the hope that it will be useful,
|
||||
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
* GNU General Public License for more details.
|
||||
*
|
||||
* You should have received a copy of the GNU General Public License
|
||||
* along with this program; if not, write to the Free Software
|
||||
* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
|
||||
*/
|
||||
|
||||
/* Consult ebpttree.h for more details about those functions */
|
||||
|
||||
#include <common/ebpttree.h>
|
||||
|
||||
REGPRM2 struct ebpt_node *ebpt_insert(struct eb_root *root, struct ebpt_node *new)
|
||||
{
|
||||
return __ebpt_insert(root, new);
|
||||
}
|
||||
|
||||
REGPRM2 struct ebpt_node *ebpt_lookup(struct eb_root *root, void *x)
|
||||
{
|
||||
return __ebpt_lookup(root, x);
|
||||
}
|
||||
|
31
src/ebtree.c
Normal file
31
src/ebtree.c
Normal file
@ -0,0 +1,31 @@
|
||||
/*
|
||||
* Elastic Binary Trees - exported generic functions
|
||||
* (C) 2002-2007 - Willy Tarreau <w@1wt.eu>
|
||||
*
|
||||
* This program is free software; you can redistribute it and/or modify
|
||||
* it under the terms of the GNU General Public License as published by
|
||||
* the Free Software Foundation; either version 2 of the License, or
|
||||
* (at your option) any later version.
|
||||
*
|
||||
* This program is distributed in the hope that it will be useful,
|
||||
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
* GNU General Public License for more details.
|
||||
*
|
||||
* You should have received a copy of the GNU General Public License
|
||||
* along with this program; if not, write to the Free Software
|
||||
* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
|
||||
*/
|
||||
|
||||
#include <common/ebtree.h>
|
||||
|
||||
void eb_delete(struct eb_node *node)
|
||||
{
|
||||
__eb_delete(node);
|
||||
}
|
||||
|
||||
/* used by insertion primitives */
|
||||
REGPRM1 struct eb_node *eb_insert_dup(struct eb_node *sub, struct eb_node *new)
|
||||
{
|
||||
return __eb_insert_dup(sub, new);
|
||||
}
|
Loading…
x
Reference in New Issue
Block a user