IF YOU WOULD LIKE TO GET AN ACCOUNT, please write an
email to Administrator. User accounts are meant only to access repo
and report issues and/or generate pull requests.
This is a purpose-specific Git hosting for
BaseALT
projects. Thank you for your understanding!
Только зарегистрированные пользователи имеют доступ к сервису!
Для получения аккаунта, обратитесь к администратору.
The new name mor eclearly indicates that a stream connector cannot make
any more progress because it needs room in the channel buffer, or that
it may be unblocked because the buffer now has more room available. The
testing function is sc_waiting_room(). This is mostly used by applets.
Note that the flags will change soon.
This makes SE_FL_APPLET_NEED_CONN autonomous, in that we check for it
everywhere we have a relevant cs_rx_blocked(), so that the flag doesn't
need anymore to be covered by cs_rx_blocked(). Indeed, this flag doesn't
really translate a receive blocking condition but rather a refusal to
wake up an applet that is waiting for a connection to finish to setup.
This also ensures we will not risk to set it back on a new endpoint
after cs_reset_endp() via SE_FL_APP_MASK, because the flag being
specific to the endpoint only and not to the connector, we don't
want to preserve it when replacing the endpoint.
It's possible that cs_chk_rcv() could later be further simplified if
we can demonstrate that the two tests in it can be merged.
This flag is exclusively used when a front applet needs to wait for the
other side to connect (or fail to). Let's give it a more explicit name
and remove the ambiguous function that was used only once.
This also ensures we will not risk to set it back on a new endpoint
after cs_reset_endp() via SE_FL_APP_MASK, because the flag being
specific to the endpoint only and not to the connector, we don't
want to preserve it when replacing the endpoint.
This flag is no more needed, it was only set on shut read to be tested
by cs_rx_blocked() which is now properly tested for shutr as well. The
cs_rx_blk_shut() calls were removed. Interestingly it allowed to remove
a special case in the L7 retry code.
This also ensures we will not risk to set it back on a new endpoint
after cs_reset_endp() via SE_FL_APP_MASK.
One flag (RXBLK_SHUT) is always set with CF_SHUTR, so in order to remove
it, we first need to make sure we always check for CF_SHUTR where
cs_rx_blocked() is being used.
When a shutdown(WR) is performed, send is no longer allowed, and that is
currently handled by the explicit cs_done_get() in the various shutw()
calls. That's a bit ugly and complicated for no reason, let's simply
integrate the test of SHUTW in sc_is_send_allowed().
Note that the test could also be added wherever sc_is_send_allowed() is
used but for now proceeding like this limits the changes.
sc_is_send_allowed() is now used everywhere instead of the combination
of cs_tx_endp_ready() && !cs_tx_blocked(). There's no place where we
need them individually thus it's simpler. The test was placed in cs_util
as we'll complete it later.
A number of functions in cs_utils.h are not usable from functions taking
a const because they're not declared as using const, despite never
modifying the stconn. Let's address this for the following ones:
sc_ic(), sc_oc(), sc_ib(), sc_ob(), sc_strm_task(),
cs_opposite(), sc_conn_ready(), cs_src(), cs_dst(),
First it applies to the stream endpoint and not the conn_stream, and
second it only tests and touches the flags so it makes sense to call
it se_fl_ like other functions which only manipulate the flags, as
it's just a special case of flags.
It returns an stconn from a connection and not the opposite, so the name
change was more appropriate. In addition it was moved to connection.h
which manipulates the connection stuff, and it happens that only
connection.c uses it.
The following functions which act on a connection-based stream connector
were renamed to sc_conn_* (~60 places):
cs_conn_drain_and_shut
cs_conn_process
cs_conn_read0
cs_conn_ready
cs_conn_recv
cs_conn_send
cs_conn_shut
cs_conn_shutr
cs_conn_shutw
The function doesn't return a pointer to the mux but to the mux stream
(h1s, h2s etc). Let's adjust its name to reflect this. It's rarely used,
the name can be enlarged a bit. And of course s/cs/sc to accommodate for
the updated name.
These functions return the app-layer associated with an stconn, which
is a check, a stream or a stream's task. They're used a lot to access
channels, flags and for waking up tasks. Let's just name them
appropriately for the stream connector.
We're starting to propagate the stream connector's new name through the
API. Most call places of these functions that retrieve the channel or its
buffer are in applets. The local variable names are not changed in order
to keep the changes small and reviewable. There were ~92 uses of cs_ic(),
~96 of cs_oc() (due to co_get*() being less factorizable than ci_put*),
and ~5 accesses to the buffer itself.
The vast majority of calls to ci_putchk() etc are performed from applets
which directly know an endpoint. Figuring the correct API (writing into
input channel etc) isn't trivial for newcomers, and knowing that they
must mark the flag indicating a buffer full condition isn't trivial
either.
Here we're adding wrappers to these functions but to be used directly
from the appctx. That's already what is being done in multiple steps in
the applet code, where the endp is derived from the appctx, then the cs
from the endp, then the stream from the cs, then the channel from the
stream, and so on. But this time the function doesn't require to know
much of the internals, applet_putchr() writes a char from the appctx,
and marks the buffer full if needed. Period. This will allow to remove
a significant amount of obscure ci_putchk() and cs_ic() calls from the
code, hence a significant number of possible mistakes.
For historical reasons (stream-interface and connections), we used to
require two independent fields for the application level callbacks and
the transport-level functions. Over time the distinction faded away so
much that the low-level functions became specific to the application
and conversely. For example, applets may only work with streams on top
since they rely on the channels, and the stream-level functions differ
between applets and connections. Right now the application level only
contains a wake() callback and the low-level ones contain the functions
that act at the lower level to perform the shutr/shutw and at the upper
level to notify about readability and writability. Let's just merge them
together into a single set and get rid of this confusing distinction.
Note that the check ops do not define any app-level function since these
are only called by streams.
We currently call all ->shutr, ->chk_snd etc from ->ops unconditionally,
while the ->wake() call from data_cb is checked. Better check ops as
well for consistency, this will help get them merged.
This also follows the natural naming. There are roughly 238 changes, all
totally trivial. conn_stream-t.h has become completely void of any
"conn_stream" related stuff now (except its name).
This renames the "struct conn_stream" to "struct stconn" and updates
the descriptions in all comments (and the rare help descriptions) to
"stream connector" or "connector". This touches a lot of files but
the change is minimal. The local variables were not even renamed, so
there's still a lot of "cs" everywhere.
Let's start to introduce the stream connector at the app_ops level.
This is entirely self-contained into conn_stream.c. The functions
were also updated to reflect the new name, and the comments were
updated.
Just like for the appctx, this is a pointer to a stream endpoint descriptor,
so let's make this explicit and not confuse it with the full endpoint. There
are very few changes thanks to the preliminary refactoring of the flags
manipulation.
Now at least it makes it obvious that it's the stream endpoint descriptor
and not an endpoint. There were few changes thanks to the previous refactor
of the flags.
After some discussion we found that the cs_endpoint was precisely the
descriptor for a stream endpoint, hence the naturally coming name,
stream endpoint constructor.
This patch renames only the type everywhere and the new/init/free functions
to remain consistent with it. Future patches will address field names and
argument names in various code areas.
That's the "stream endpoint" pointer. Let's change it now while it's
not much spread. The function __cs_endp_target() wasn't yet renamed
because that will change more globally soon.
This changes all main uses of endp->flags to the se_fl_*() equivalent
by applying coccinelle script endp_flags.cocci. The se_fl_*() functions
themselves were manually excluded from the change, of course.
Note: 144 locations were touched, manually reviewed and found to be OK.
The script was applied with all includes:
spatch --in-place --recursive-includes -I include --sp-file $script $files
This changes all main uses of cs->endp->flags to the sc_ep_*() equivalent
by applying coccinelle script cs_endp_flags.cocci.
Note: 143 locations were touched, manually reviewed and found to be OK,
except a single one that was adjusted in cs_reset_endp() where the flags
are read and filtered to be used as-is and not as a boolean, hence was
replaced with sc_ep_get() & $FLAGS.
The script was applied with all includes:
spatch --in-place --recursive-includes -I include --sp-file $script $files
At plenty of places we need to manipulate the conn_stream's endpoint just
to set or clear a flag. This patch adds a handful of functions to perform
the common operations (clr/set/get etc) on these flags at both the endpoint
and at the conn_stream level.
The functions were named after the target names, i.e. se_fl_*() to act on
the stream endpoint flags, and sc_ep_* to manipulate the endpoint flags
from the stream connector (currently conn_stream).
For now they're not used.
This one is exclusively used by the connection, regardless its generic
name "ctx" is rather confusing. Let's make it a struct connection* and
call it "conn". This way there's no doubt about what it is and there's
no way it will be used by accident by being taken for something else.
This reverts commit d9404b464faae3340ac1745b594929e4b7edd650.
In fact, there is a BUG_ON() in __task_free() function to be sure the task
is no longer in the wait-queue or the run-queue. Because the patch tries to
fix a "leak" on deinit, it is safer to revert it. there is no reason to
introduce potential bug for this kind of issues. And there is no reason to
impact the normal use-cases at runtime with additionnal conditions to only
remove a task on deinit.
Bring some improvment to h3_parse_settings_frm() function. The first one
is the parsing which now manipulates a buffer instead of a plain char*.
This is more to unify with other parsing functions rather than dealing
with data wrapping : it's unlikely to happen as SETTINGS is only
received as the first frame on the control STREAM.
Various errors are now properly reported as connection error :
* on incomplete frame payload
* on a duplicated settings in the same frame
* on reserved settings receive
As specified by HTTP/3 draft, an unknown unidirectional stream can be
aborted. To do this, use a new flag QC_SF_READ_ABORTED. When the MUX
detects this flag, QCS instance is automatically freed.
Previously, such streams were instead automatically drained. By aborting
them, we economize some useless memcpy instruction. On future data
reception, QCS instance is not found in the tree and considered as
already closed. The frame payload is thus deleted without copying it.
Remove all unnecessary bits of code for H3 unidirectional streams. Most
notable, an individual tasklet is not require anymore for each stream.
This is useless since the merge of RX/TX uni streams handling with
bidirectional streams code.
The whole QUIC stack is impacted by this change :
* at quic-conn level, a single function is now used to handle uni and
bidirectional streams. It uses qcc_recv() function from MUX.
* at MUX level, qc_recv() io-handler function does not skip uni streams
* most changes are conducted at app layer. Most notably, all received
data is handle by decode_qcs operation.
Now that decode_qcs is the single app read function, the H3 layer can be
simplified. Uni streams parsing was extracted from h3_attach_ruqs() to
h3_decode_qcs().
h3_decode_qcs() is able to deal with all HTTP/3 frame types. It first
check if the frame is valid for the H3 stream type. Most notably,
SETTINGS parsing was moved from h3_control_recv() into h3_decode_qcs().
This commit has some major benefits besides removing duplicated code.
Mainly, QUIC flow control is now enforced for uni streams as with bidi
streams. Also, an unknown frame received on control stream does not set
an error : it is now silently ignored as required by the specification.
Some cleaning in H3 code is already done with this patch :
h3_control_recv() and h3_attach_ruqs() are removed as they are now
unused. A final patch should clean up the unneeded remaining bit.
Define a new enum h3s_t. This is used to differentiate between the
different stream types used in a HTTP/3 connection, including the QPACK
encoder/decoder streams.
For the moment, only bidirectional streams is positioned. This patch
will be useful to unify reception of uni streams with bidirectional
ones.
Replace h3_uqs type by qcs in stream callbacks. This change is done in
the context of unification between bidi and uni-streams. h3_uqs type
will be unneeded when this is achieved.
Complete quic-conn API for error reporting. A new parameter <app> is
defined in the function quic_set_connection_close(). This will transform
the frame into a CONNECTION_CLOSE_APP type.
This type of frame will be generated by the applicative layer, h3 or
hq-interop for the moment. A new function qcc_emit_cc_app() is exported
by the MUX layer for them.
Do not allocate cs_endpoint for every QCS instances in qcs_new().
Instead, this is delayed to qc_attach_cs() function.
In effect, with H3 as app protocol, cs_endpoint will be allocated on
HEADERS parsing. Thus, no cs_endpoint is allocated for H3 unidirectional
streams which do not convey any HTTP data.
A running or queued task is not released when task_destroy() is called,
except if it is the current task. Its process function is set to NULL and we
let the scheduler to release the task. However, when HAProxy is stopping, it
never happens and some tasks may leak. To fix the issue, we now also rely on
the global MODE_STOPPING flag. When this flag is set, the task is always
immediately released.
This patch should fix the issue #1714. It could be backported as far as 2.4
but it's not a real problem in practice because it only happens on
deinit. The leak exists on previous versions but not MODE_STOPPING flag.