IF YOU WOULD LIKE TO GET AN ACCOUNT, please write an
email to Administrator. User accounts are meant only to access repo
and report issues and/or generate pull requests.
This is a purpose-specific Git hosting for
BaseALT
projects. Thank you for your understanding!
Только зарегистрированные пользователи имеют доступ к сервису!
Для получения аккаунта, обратитесь к администратору.
Today if we attached the "run-extra-tests" tag it adds at least 20
minutes because the dump-fuzzer test runs with full accuracy. This
fuzzer is useful, but probably only really needed for the daily, so
removing it from the PRs. We still run the fuzzers, just not for as
long.
Signed-off-by: Madelyn Olson <madelyneolson@gmail.com>
Fix feedback loop in key eviction with tracking clients when using I/O
threads.
Current issue:
Evicting keys while tracking clients or key space-notification exist
creates a feedback loop when using I/O threads:
While evicting keys we send tracking async writes to I/O threads,
preventing immediate release of tracking clients' COB memory
consumption.
Before the I/O thread finishes its write, we recheck used_memory, which
now includes the tracking clients' COB and thus continue to evict more
keys.
**Fix:**
We will skip the test for now while IO threads are active. We may
consider avoiding sending writes in `processPendingWrites` to I/O
threads for tracking clients when we are out of memory.
---------
Signed-off-by: Uri Yagelnik <uriy@amazon.com>
Signed-off-by: Madelyn Olson <madelyneolson@gmail.com>
Co-authored-by: Madelyn Olson <madelyneolson@gmail.com>
In #786, we did skip it in the daily, but not for the others.
When running ./runtest on MacOS, we will get the failure.
```
couldn't open socket: host is unreachable (nodename nor servname provided, or not known)
```
The reason is that TCL 8.5 doesn't support ipv6, so we skip tests
tagged with ipv6. This also revert #786.
Signed-off-by: Binbin <binloveplay1314@qq.com>
Few CI improvements witch will reduce occupation CI queue and eliminate
stale runs.
1. Kill CI jobs on PRs once PR branch gets a new push. This will prevent
situation happened today - a huge job triggered twice in less than an
hour and occupied all **org** (for all repositories) runners queue for
the rest of the day (see pic). This completely blocked valkey-glide
team.
2. Distribute nightly croned jobs on time to prevent them running
together. Keep in mind, cron's TZ is UTC, so midnight tasks incur
developers located in other timezones.
This must be backported to all release branches (`valkey-x.y` and `x.y`)
![image](https://github.com/user-attachments/assets/923d8237-3cb7-42f5-80c8-5322b3f5187d)
---------
Signed-off-by: Yury-Fridlyand <yury.fridlyand@improving.com>
This PR allows running a subset of the daily tests with a PR by
attaching the `run-extra-tests` flag. This is done by conditionally
running the daily tests when the label is attached. (I will do that for
this PR to demonstrate).
One downside of this PR is that a lot of tests will forever show-up as
"skipped" for most PRs, as long as that doesn't bother us it should be
OK. Skipped tests don't take up any of our runner compute.
Another note, if the label isn't attached on the first commit, the
submitter will need to push something to get the tests to run again.
There is a way to make it kick off tests during a label, but that added
a bunch more complexity so just wanted to start with this.
---------
Signed-off-by: Madelyn Olson <madelyneolson@gmail.com>
Adds an option to build RDMA support as a module:
make BUILD_RDMA=module
To start valkey-server with RDMA, use a command line like the following:
./src/valkey-server --loadmodule src/valkey-rdma.so \
port=6379 bind=xx.xx.xx.xx
* Implement server side of connection module only, this means we can
*NOT*
compile RDMA support as built-in.
* Add necessary information in README.md
* Support 'CONFIG SET/GET', for example, 'CONFIG Set rdma.port 6380',
then
check this by 'rdma res show cm_id' and valkey-cli (with RDMA support,
but not implemented in this patch).
* The full listeners show like:
listener0:name=tcp,bind=*,bind=-::*,port=6379
listener1:name=unix,bind=/var/run/valkey.sock
listener2:name=rdma,bind=xx.xx.xx.xx,bind=yy.yy.yy.yy,port=6379
listener3:name=tls,bind=*,bind=-::*,port=16379
Because the lack of RDMA support from TCL, use a simple C program to
test
Valkey Over RDMA (under tests/rdma/). This is a quite raw version with
basic
library dependence: libpthread, libibverbs, librdmacm. Run using the
script:
./runtest-rdma [ OPTIONS ]
To run RDMA in GitHub actions, a kernel module RXE for emulated soft
RDMA, needs
to be installed. The kernel module source code is fetched a repo
containing only
the RXE kernel driver from the Linux kernel, but stored in an separate
repo to
avoid cloning the whole Linux kernel repo.
----
Since 2021/06, I created a
[PR](https://github.com/redis/redis/pull/9161) for *Redis Over RDMA*
proposal. Then I did some work to [fully abstract connection and make
TLS dynamically loadable](https://github.com/redis/redis/pull/9320), a
new connection type could be built into Redis statically, or a separated
shared library(loaded by Redis on startup) since Redis 7.2.0.
Base on the new connection framework, I created a new
[PR](https://github.com/redis/redis/pull/11182), some
guys(@xiezhq-hermann @zhangyiming1201 @JSpewock @uvletter @FujiZ)
noticed, played and tested this PR. However, because of the lack of time
and knowledge from the maintainers, this PR has been pending about 2
years.
Related doc: [Introduce *Valkey Over RDMA*
specification](https://github.com/valkey-io/valkey-doc/pull/123). (same
as Redis, and this should be same)
Changes in this PR:
- implement *Valkey Over RDMA*. (compact the Valkey style)
Finally, if this feature is considered to merge, I volunteer to maintain
it.
---------
Signed-off-by: zhenwei pi <pizhenwei@bytedance.com>
This PR is 1 of 3 PRs intended to achieve the goal of 1 million requests
per second, as detailed by [dan touitou](https://github.com/touitou-dan)
in https://github.com/valkey-io/valkey/issues/22. This PR modifies the
IO threads to be fully asynchronous, which is a first and necessary step
to allow more work offloading and better utilization of the IO threads.
### Current IO threads state:
Valkey IO threads were introduced in Redis 6.0 to allow better
utilization of multi-core machines. Before this, Redis was
single-threaded and could only use one CPU core for network and command
processing. The introduction of IO threads helps in offloading the IO
operations to multiple threads.
**Current IO Threads flow:**
1. Initialization: When Redis starts, it initializes a specified number
of IO threads. These threads are in addition to the main thread, each
thread starts with an empty list, the main thread will populate that
list in each event-loop with pending-read-clients or
pending-write-clients.
2. Read Phase: The main thread accepts incoming connections and reads
requests from clients. The reading of requests are offloaded to IO
threads. The main thread puts the clients ready-to-read in a list and
set the global io_threads_op to IO_THREADS_OP_READ, the IO threads pick
the clients up, perform the read operation and parse the first incoming
command.
3. Command Processing: After reading the requests, command processing is
still single-threaded and handled by the main thread.
4. Write Phase: Similar to the read phase, the write phase is also be
offloaded to IO threads. The main thread prepares the response in the
clients’ output buffer then the main thread puts the client in the list,
and sets the global io_threads_op to the IO_THREADS_OP_WRITE. The IO
threads then pick the clients up and perform the write operation to send
the responses back to clients.
5. Synchronization: The main-thread communicate with the threads on how
many jobs left per each thread with atomic counter. The main-thread
doesn’t access the clients while being handled by the IO threads.
**Issues with current implementation:**
* Underutilized Cores: The current implementation of IO-threads leads to
the underutilization of CPU cores.
* The main thread remains responsible for a significant portion of
IO-related tasks that could be offloaded to IO-threads.
* When the main-thread is processing client’s commands, the IO threads
are idle for a considerable amount of time.
* Notably, the main thread's performance during the IO-related tasks is
constrained by the speed of the slowest IO-thread.
* Limited Offloading: Currently, Since the Main-threads waits
synchronously for the IO threads, the Threads perform only read-parse,
and write operations, with parsing done only for the first command. If
the threads can do work asynchronously we may offload more work to the
threads reducing the load from the main-thread.
* TLS: Currently, we don't support IO threads with TLS (where offloading
IO would be more beneficial) since TLS read/write operations are not
thread-safe with the current implementation.
### Suggested change
Non-blocking main thread - The main thread and IO threads will operate
in parallel to maximize efficiency. The main thread will not be blocked
by IO operations. It will continue to process commands independently of
the IO thread's activities.
**Implementation details**
**Inter-thread communication.**
* We use a static, lock-free ring buffer of fixed size (2048 jobs) for
the main thread to send jobs and for the IO to receive them. If the ring
buffer fills up, the main thread will handle the task itself, acting as
back pressure (in case IO operations are more expensive than command
processing). A static ring buffer is a better candidate than a dynamic
job queue as it eliminates the need for allocation/freeing per job.
* An IO job will be in the format: ` [void* function-call-back | void
*data] `where data is either a client to read/write from and the
function-ptr is the function to be called with the data for example
readQueryFromClient using this format we can use it later to offload
other types of works to the IO threads.
* The Ring buffer is one way from the main-thread to the IO thread, Upon
read/write event the main thread will send a read/write job then in
before sleep it will iterate over the pending read/write clients to
checking for each client if the IO threads has already finished handling
it. The IO thread signals it has finished handling a client read/write
by toggling an atomic flag read_state / write_state on the client
struct.
**Thread Safety**
As suggested in this solution, the IO threads are reading from and
writing to the clients' buffers while the main thread may access those
clients.
We must ensure no race conditions or unsafe access occurs while keeping
the Valkey code simple and lock free.
Minimal Action in the IO Threads
The main change is to limit the IO thread operations to the bare
minimum. The IO thread will access only the client's struct and only the
necessary fields in this struct.
The IO threads will be responsible for the following:
* Read Operation: The IO thread will only read and parse a single
command. It will not update the server stats, handle read errors, or
parsing errors. These tasks will be taken care of by the main thread.
* Write Operation: The IO thread will only write the available data. It
will not free the client's replies, handle write errors, or update the
server statistics.
To achieve this without code duplication, the read/write code has been
refactored into smaller, independent components:
* Functions that perform only the read/parse/write calls.
* Functions that handle the read/parse/write results.
This refactor accounts for the majority of the modifications in this PR.
**Client Struct Safe Access**
As we ensure that the IO threads access memory only within the client
struct, we need to ensure thread safety only for the client's struct's
shared fields.
* Query Buffer
* Command parsing - The main thread will not try to parse a command from
the query buffer when a client is offloaded to the IO thread.
* Client's memory checks in client-cron - The main thread will not
access the client query buffer if it is offloaded and will handle the
querybuf grow/shrink when the client is back.
* CLIENT LIST command - The main thread will busy-wait for the IO thread
to finish handling the client, falling back to the current behavior
where the main thread waits for the IO thread to finish their
processing.
* Output Buffer
* The IO thread will not change the client's bufpos and won't free the
client's reply lists. These actions will be done by the main thread on
the client's return from the IO thread.
* bufpos / block→used: As the main thread may change the bufpos, the
reply-block→used, or add/delete blocks to the reply list while the IO
thread writes, we add two fields to the client struct: io_last_bufpos
and io_last_reply_block. The IO thread will write until the
io_last_bufpos, which was set by the main-thread before sending the
client to the IO thread. If more data has been added to the cob in
between, it will be written in the next write-job. In addition, the main
thread will not trim or merge reply blocks while the client is
offloaded.
* Parsing Fields
* Client's cmd, argc, argv, reqtype, etc., are set during parsing.
* The main thread will indicate to the IO thread not to parse a cmd if
the client is not reset. In this case, the IO thread will only read from
the network and won't attempt to parse a new command.
* The main thread won't access the c→cmd/c→argv in the CLIENT LIST
command as stated before it will busy wait for the IO threads.
* Client Flags
* c→flags, which may be changed by the main thread in multiple places,
won't be accessed by the IO thread. Instead, the main thread will set
the c→io_flags with the information necessary for the IO thread to know
the client's state.
* Client Close
* On freeClient, the main thread will busy wait for the IO thread to
finish processing the client's read/write before proceeding to free the
client.
* Client's Memory Limits
* The IO thread won't handle the qb/cob limits. In case a client crosses
the qb limit, the IO thread will stop reading for it, letting the main
thread know that the client crossed the limit.
**TLS**
TLS is currently not supported with IO threads for the following
reasons:
1. Pending reads - If SSL has pending data that has already been read
from the socket, there is a risk of not calling the read handler again.
To handle this, a list is used to hold the pending clients. With IO
threads, multiple threads can access the list concurrently.
2. Event loop modification - Currently, the TLS code
registers/unregisters the file descriptor from the event loop depending
on the read/write results. With IO threads, multiple threads can modify
the event loop struct simultaneously.
3. The same client can be sent to 2 different threads concurrently
(https://github.com/redis/redis/issues/12540).
Those issues were handled in the current PR:
1. The IO thread only performs the read operation. The main thread will
check for pending reads after the client returns from the IO thread and
will be the only one to access the pending list.
2. The registering/unregistering of events will be similarly postponed
and handled by the main thread only.
3. Each client is being sent to the same dedicated thread (c→id %
num_of_threads).
**Sending Replies Immediately with IO threads.**
Currently, after processing a command, we add the client to the
pending_writes_list. Only after processing all the clients do we send
all the replies. Since the IO threads are now working asynchronously, we
can send the reply immediately after processing the client’s requests,
reducing the command latency. However, if we are using AOF=always, we
must wait for the AOF buffer to be written, in which case we revert to
the current behavior.
**IO threads dynamic adjustment**
Currently, we use an all-or-nothing approach when activating the IO
threads. The current logic is as follows: if the number of pending write
clients is greater than twice the number of threads (including the main
thread), we enable all threads; otherwise, we enable none. For example,
if 8 IO threads are defined, we enable all 8 threads if there are 16
pending clients; else, we enable none.
It makes more sense to enable partial activation of the IO threads. If
we have 10 pending clients, we will enable 5 threads, and so on. This
approach allows for a more granular and efficient allocation of
resources based on the current workload.
In addition, the user will now be able to change the number of I/O
threads at runtime. For example, when decreasing the number of threads
from 4 to 2, threads 3 and 4 will be closed after flushing their job
queues.
**Tests**
Currently, we run the io-threads tests with 4 IO threads
(443d80f168/.github/workflows/daily.yml (L353)).
This means that we will not activate the IO threads unless there are 8
(threads * 2) pending write clients per single loop, which is unlikely
to happened in most of tests, meaning the IO threads are not currently
being tested.
To enforce the main thread to always offload work to the IO threads,
regardless of the number of pending events, we add an
events-per-io-thread configuration with a default value of 2. When set
to 0, this configuration will force the main thread to always offload
work to the IO threads.
When we offload every single read/write operation to the IO threads, the
IO-threads are running with 100% CPU when running multiple tests
concurrently some tests fail as a result of larger than expected command
latencies. To address this issue, we have to add some after or wait_for
calls to some of the tests to ensure they pass with IO threads as well.
Signed-off-by: Uri Yagelnik <uriy@amazon.com>
Introduce a new hidden server configuration, `enable-debug-assert`, which
allows selectively enabling or disabling, at runtime, expensive or risky
assertions used primarily for debugging and testing.
Fix#569
---------
Signed-off-by: Ping Xie <pingxie@google.com>
In 3f725b8, we introduced a change back in march to reduce the
entropy of ASLR, because ASAN didn't support it. Now the
vm.mmap_rnd_bits
was reverted in actions/runner-images#9491 so can remove this changes.
Closes#519.
Signed-off-by: Binbin <binloveplay1314@qq.com>
This commit does four things:
1. On various images, the linker was not able to correctly load the flto
optimizations from the archive generated for unit tests, and was
throwing errors. I was able to solve this by updating the plugin for the
fortify test, but was unable to reproduce it on the ASAN tests or find a
solution. So I decided to go with a single solution for now, which was
to just disable the linker optimizations for those tests. This shouldn't
weaken the protections provided by ASAN.
2. The change to remove flto for some reason caused some odd inlining
behavior in the intset test, that I wasn't really able to understand.
The error was basically that we were doing a 4 byte write, starting at
byte offset 8, for the first addition to listpack that was of size 10.
Practically this has no effect, since I'm not aware of any allocator
that would give us a 10 byte block as opposed to 12 (or more likely 16)
bytes. The isn't the correct behavior, since an uninitialized listpack
defaults to 16bit encoding, which should only be writing 2 bytes. I
rabbit holed like 2 hours into this, and gave up and just ignored the
warning on the file.
3. Now that address sanitizer was correctly running, it picked up two
issues. A memory leak and uninitialized value, so those were easy to
fix.
4. There is also a small change to the fortify to build the test up
front instead of later, this is just to be consistent with other tests
and has no functional change.
Signed-off-by: Madelyn Olson <madelyneolson@gmail.com>
The core idea was to take a lot of the stuff from the C unity framework
and adapt it a bit here. Each file in the `unit` directory that starts
with `test_` is automatically assumed to be a test suite. Within each
file, all functions that start with `test_` are assumed to be a test.
See unit/README.md for details about the implementation.
Instead of compiling basically a net new binary, the way the tests are
compiled is that the main valkey server is compiled as a static archive,
which we then compile the individual test files against to create a new
test executable. This is not all that important now, other than it makes
the compilation simpler, but what it will allow us to do is overwrite
functions in the archive to enable mocking for cross compilation unit
functions. There are also ways to enable mocking from within the same
compilation unit, but I don't know how important this is.
Tests are also written in one of two styles:
1. Including the header file and directly calling functions from the
archive.
2. Importing the original file, and then calling the functions. This
second approach is cool because we can call static functions. It won't
mess up the archive either.
---------
Signed-off-by: Madelyn Olson <madelyneolson@gmail.com>
This PR introduces Codecov to automate code coverage tracking for our
project's tests.
For more information about the Codecov platform, please refer to
https://docs.codecov.com/docs/quick-start
---------
Signed-off-by: Vitah Lin <vitahlin@gmail.com>
Co-authored-by: Madelyn Olson <madelyneolson@gmail.com>
[related to](https://github.com/valkey-io/valkey/issues/230)
Adds workflows to build Valkey binaries and push to S3 to make it
available to download from the website
The Workflows can be triggered by pushing a release to the repo and the
other option is manually by one of the Maintainers.
Once the workflow triggers, it will generate a matrix of Jobs for the
platforms we need to build from `utils/releasetools/build-config.json`
and then the respective Jobs are triggered. These jobs make Valkey with
respect to the platform binaries we want to release and would push to a
private S3 bucket.
---------
Signed-off-by: Roshan Khatri <rvkhatri@amazon.com>
Update CONTRIBUTING.md:
* A more friendly approach, hopefully.
* The note about receiving patches is moved to the DCO section.
* Some "Get started" links in a bullet list (inspired by OpenTofu's
contributing file).
* For questions, refer to GitHub Discussions and Discord instead of only
Discord.
* Minor edits and formatting.
Update issue templates:
* The issue template for questions is replaced by a link to Discussions
and to Matrix and Discord chats.
* Add a link to the valkey-doc repo.
* The crash report template is extended into a form, with separate
fields for the crash report and the additional info.
---------
Signed-off-by: Viktor Söderqvist <viktor.soderqvist@est.tech>
This sets the default permission for current CI workflows to only be
able to read from the repository (scope: "contents").
When a used Github Action require additional permissions (like CodeQL)
we grant that permission on job-level instead.
This means that a compromised action will not be able to modify the repo
or even steal secrets since all other permission-scopes are implicit set
to "none", i.e. not permitted. This is recommended by
[OpenSSF](https://github.com/ossf/scorecard/blob/main/docs/checks.md#token-permissions).
This PR includes a small fix for the possibility of missing server logs
artifacts, found while verifying the permission.
The `upload-artifact@v3` action will replace artifacts which already
exists. Since both CI-jobs `test-external-standalone` and
`test-external-nodebug` uses the same artifact name, when both jobs
fail, we only get logs from the last finished job. This can be avoided
by using unique artifact names.
This PR is part of #211
More about permissions and scope can be found here:
https://docs.github.com/en/actions/using-workflows/workflow-syntax-for-github-actions#permissions
---------
Signed-off-by: Björn Svensson <bjorn.a.svensson@est.tech>
Fix the coverity name to reflect the actual name in coverity. See
successful build here:
https://github.com/valkey-io/valkey/actions/runs/8516329554. Also
removed unnecessary TCL dependency from the install.
Signed-off-by: Madelyn Olson <madelyneolson@gmail.com>
Documentation references should use `Valkey` while server and cli
references are all under `valkey`.
---------
Signed-off-by: Madelyn Olson <madelyneolson@gmail.com>
This test fails occasionally:
```
*** [err]: CLIENT KILL maxAGE will kill old clients in tests/unit/introspection.tcl
Expected 2 == 1 (context: type eval line 14 cmd {assert {$res == 1}} proc ::test)
```
This test is very likely to do a false positive if the execute time
takes longer than the max age, for example, if the execution time
between sleep and kill exceeds 1s, rd2 will also be killed due to
the max age.
The test can adjust the order of execution statements to increase
the probability of passing, but this is still will be a timing issue
in some slow machines, so decided give it a few more chances.
The test was introduced in #12299.
Bumps
[cross-platform-actions/action](https://github.com/cross-platform-actions/action)
from 0.21.1 to 0.22.0.
<details>
<summary>Release notes</summary>
<p><em>Sourced from <a
href="https://github.com/cross-platform-actions/action/releases">cross-platform-actions/action's
releases</a>.</em></p>
<blockquote>
<h2>Cross Platform Action 0.22.0</h2>
<h3>Added</h3>
<ul>
<li>
<p>Added support for using the action in multiple steps in the same job
(<a
href="https://redirect.github.com/cross-platform-actions/action/issues/26">#26</a>).
All the inputs need to be the same for all steps, except for the
following
inputs: <code>sync_files</code>, <code>shutdown_vm</code> and
<code>run</code>.</p>
</li>
<li>
<p>Added support for specifying that the VM should not shutdown after
the action
has run. This adds a new input parameter: <code>shutdown_vm</code>. When
set to <code>false</code>,
this will hopefully mitigate very frequent freezing of VM during
teardown (<a
href="https://redirect.github.com/cross-platform-actions/action/issues/61">#61</a>,
<a
href="https://redirect.github.com/cross-platform-actions/action/issues/72">#72</a>).</p>
</li>
</ul>
<h3>Changed</h3>
<ul>
<li>
<p>Always terminate VM instead of shutting down. This is more efficient
and this
will hopefully mitigate very frequent freezing of VM during teardown
(<a
href="https://redirect.github.com/cross-platform-actions/action/issues/61">#61</a>,
<a
href="https://redirect.github.com/cross-platform-actions/action/issues/72">#72</a>).</p>
</li>
<li>
<p>Use <code>unsafe</code> as the cache mode for QEMU disks. This should
improve performance (<a
href="https://redirect.github.com/cross-platform-actions/action/issues/67">#67</a>).</p>
</li>
</ul>
</blockquote>
</details>
<details>
<summary>Changelog</summary>
<p><em>Sourced from <a
href="https://github.com/cross-platform-actions/action/blob/master/changelog.md">cross-platform-actions/action's
changelog</a>.</em></p>
<blockquote>
<h2>[0.22.0] - 2023-12-27</h2>
<h3>Added</h3>
<ul>
<li>
<p>Added support for using the action in multiple steps in the same job
(<a
href="https://redirect.github.com/cross-platform-actions/action/issues/26">#26</a>).
All the inputs need to be the same for all steps, except for the
following
inputs: <code>sync_files</code>, <code>shutdown_vm</code> and
<code>run</code>.</p>
</li>
<li>
<p>Added support for specifying that the VM should not shutdown after
the action
has run. This adds a new input parameter: <code>shutdown_vm</code>. When
set to <code>false</code>,
this will hopefully mitigate very frequent freezing of VM during
teardown (<a
href="https://redirect.github.com/cross-platform-actions/action/issues/61">#61</a>,
<a
href="https://redirect.github.com/cross-platform-actions/action/issues/72">#72</a>).</p>
</li>
</ul>
<h3>Changed</h3>
<ul>
<li>
<p>Always terminate VM instead of shutting down. This is more efficient
and this
will hopefully mitigate very frequent freezing of VM during teardown
(<a
href="https://redirect.github.com/cross-platform-actions/action/issues/61">#61</a>,
<a
href="https://redirect.github.com/cross-platform-actions/action/issues/72">#72</a>).</p>
</li>
<li>
<p>Use <code>unsafe</code> as the cache mode for QEMU disks. This should
improve performance (<a
href="https://redirect.github.com/cross-platform-actions/action/issues/67">#67</a>).</p>
</li>
</ul>
</blockquote>
</details>
<details>
<summary>Commits</summary>
<ul>
<li><a
href="5800fa0060"><code>5800fa0</code></a>
Release 0.22.0</li>
<li><a
href="20ad4b2ceb"><code>20ad4b2</code></a>
Fix <a
href="https://redirect.github.com/cross-platform-actions/action/issues/67">#67</a>:
Use <code>unsafe</code> as the cache mode disks</li>
<li><a
href="d9184930c3"><code>d918493</code></a>
Always terminate VM instead of shutting down.</li>
<li><a
href="626f1d6c95"><code>626f1d6</code></a>
Fix error when terminating the VM</li>
<li><a
href="d59f08dc5c"><code>d59f08d</code></a>
Print stack trace for uncaught exceptions</li>
<li><a
href="7f2fab9c56"><code>7f2fab9</code></a>
Revert "Run SSH in verbose mode when debug mode is
enabled"</li>
<li><a
href="0f566c356e"><code>0f566c3</code></a>
[no ci] Update the changelog</li>
<li><a
href="b7f77446bb"><code>b7f7744</code></a>
[no ci] Fix spelling</li>
<li><a
href="9894a9b118"><code>9894a9b</code></a>
Wrap <code>host</code> module in namespace</li>
<li><a
href="87fdd346a2"><code>87fdd34</code></a>
Fix broken test-vm-shutdown tests</li>
<li>Additional commits viewable in <a
href="https://github.com/cross-platform-actions/action/compare/v0.21.1...v0.22.0">compare
view</a></li>
</ul>
</details>
<br />
[![Dependabot compatibility
score](https://dependabot-badges.githubapp.com/badges/compatibility_score?dependency-name=cross-platform-actions/action&package-manager=github_actions&previous-version=0.21.1&new-version=0.22.0)](https://docs.github.com/en/github/managing-security-vulnerabilities/about-dependabot-security-updates#about-compatibility-scores)
Dependabot will resolve any conflicts with this PR as long as you don't
alter it yourself. You can also trigger a rebase manually by commenting
`@dependabot rebase`.
[//]: # (dependabot-automerge-start)
[//]: # (dependabot-automerge-end)
---
<details>
<summary>Dependabot commands and options</summary>
<br />
You can trigger Dependabot actions by commenting on this PR:
- `@dependabot rebase` will rebase this PR
- `@dependabot recreate` will recreate this PR, overwriting any edits
that have been made to it
- `@dependabot merge` will merge this PR after your CI passes on it
- `@dependabot squash and merge` will squash and merge this PR after
your CI passes on it
- `@dependabot cancel merge` will cancel a previously requested merge
and block automerging
- `@dependabot reopen` will reopen this PR if it is closed
- `@dependabot close` will close this PR and stop Dependabot recreating
it. You can achieve the same result by closing it manually
- `@dependabot show <dependency name> ignore conditions` will show all
of the ignore conditions of the specified dependency
- `@dependabot ignore this major version` will close this PR and stop
Dependabot creating any more for this major version (unless you reopen
the PR or upgrade to it yourself)
- `@dependabot ignore this minor version` will close this PR and stop
Dependabot creating any more for this minor version (unless you reopen
the PR or upgrade to it yourself)
- `@dependabot ignore this dependency` will close this PR and stop
Dependabot creating any more for this dependency (unless you reopen the
PR or upgrade to it yourself)
</details>
Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
I've noticed that https://scan.coverity.com/projects/redis already
exists, but appears to be only updated on an ad-hoc basis. creating
[redis-unstable](https://scan.coverity.com/projects/redis-unstable?tab=project_settings)
project in coverity for this CI.
This PR adds a GitHub Action-based CI job to create a new Coverity build
once daily, so that there is always a recent scan available.
This is within the limit, as Redis is ~150K LOC and per
https://scan.coverity.com/faq#frequency :
> Up to 21 builds per week, with a maximum of 3 builds per day, for
projects with 100K to 500K lines of code
Before this is merged in, two new secrets will need to be created:
COVERITY_SCAN_EMAIL with the email address used for accessing Coverity
COVERITY_SCAN_TOKEN with the Project token from
https://scan.coverity.com/projects/redis-unstable?tab=project_settings
---------
Co-authored-by: Oran Agra <oran@redislabs.com>
Warning:
```
postnotifications.c:216:77: warning: format specifies type 'long' but the argument has type 'uint64_t' (aka 'unsigned long long') [-Wformat]
RedisModule_Log(ctx, "warning", "Got an unexpected subevent '%ld'", subevent);
~~~ ^~~~~~~~
%llu
```
CI:
https://github.com/redis/redis/actions/runs/6937308713/job/18871124342#step:6:115
## Other
Add `CFLAGS=-Werror` flag for module CI.
---------
Co-authored-by: Viktor Söderqvist <viktor.soderqvist@est.tech>
This PR introduces a new macro, serverAssertWithInfoDebug, to do complex assertions only for debugging. The main intention is to allow running complex operations during tests without impacting runtime performance. This assertion is enabled when setting DEBUG_ASSERTIONS.
The DEBUG_ASSERTIONS flag is set for the daily and CI variants of `test-sanitizer-address`.
This change overcomes many stability issues experienced with the
vmactions action.
We need to limit VMs to 8GB for better stability, as the 13GB default
seems to hang them occasionally.
Shell code has been simplified since this action seem to use `bash -e`
which will abort on non-zero exit codes anyway.