Go to file
Huang Zhw cf61ad14cc
When redis-cli received ASK, it didn't handle it (#8930)
When redis-cli received ASK, it used string matching wrong and didn't
handle it. 

When we access a slot which is in migrating state, it maybe
return ASK. After redirect to the new node, we need send ASKING
command before retry the command.  In this PR after redis-cli receives 
ASK, we send a ASKING command before send the origin command 
after reconnecting.

Other changes:
* Make redis-cli -u and -c (unix socket and cluster mode) incompatible 
  with one another.
* When send command fails, we avoid the 2nd reconnect retry and just
  print the error info. Users will decide how to do next. 
  See #9277.
* Add a test faking two redis nodes in TCL to just send ASK and OK in 
  redis protocol to test ASK behavior. 

Co-authored-by: Viktor Söderqvist <viktor.soderqvist@est.tech>
Co-authored-by: Oran Agra <oran@redislabs.com>
2021-08-02 14:59:08 +03:00
.github On 32 bit platform, the bit position of GETBIT/SETBIT/BITFIELD/BITCOUNT,BITPOS may overflow (see CVE-2021-32761) (#9191) 2021-07-21 16:25:19 +03:00
deps Resolve nonsense static analysis warnings 2021-05-03 18:59:47 +03:00
src When redis-cli received ASK, it didn't handle it (#8930) 2021-08-02 14:59:08 +03:00
tests When redis-cli received ASK, it didn't handle it (#8930) 2021-08-02 14:59:08 +03:00
utils Fixed some typos, add a spell check ci and others minor fix (#8890) 2021-06-10 15:39:33 +03:00
.gitignore Add GT and LT options to ZADD for conditional score updates (#7818) 2020-09-23 21:56:16 +03:00
00-RELEASENOTES Changes http to https in texts (#8495) 2021-03-10 19:11:16 +02:00
BUGS change references to the github repo location (#7479) 2020-07-10 08:25:26 +03:00
CONDUCT Adds code of conduct (#8471) 2021-02-09 14:38:09 +02:00
CONTRIBUTING Fixed some typos, add a spell check ci and others minor fix (#8890) 2021-06-10 15:39:33 +03:00
COPYING updated copyright year 2020-06-23 09:51:12 -07:00
INSTALL INSTALL now redirects the user to README 2012-02-05 09:38:41 +01:00
Makefile Fix install target on OSX (see #495) 2012-05-15 11:18:50 +02:00
MANIFESTO MANIFESTO: simplicity and lock-in. 2019-03-18 15:49:52 +01:00
README.md Fix link in README (#9145) 2021-06-25 19:04:04 -07:00
redis.conf Fix ACL category for SELECT, WAIT, ROLE, LASTSAVE, READONLY, READWRITE, ASKING (#9208) 2021-07-20 21:48:43 +03:00
runtest test suite conveniency improvements 2018-07-30 19:13:15 +03:00
runtest-cluster Correct error message of runtest-cluster and runtest-moduleapi (#7647) 2020-08-11 13:35:20 +03:00
runtest-moduleapi modules: Add newlen == 0 handling to RM_StringTruncate (#3717) (#3718) 2021-06-22 12:26:48 +03:00
runtest-sentinel Sentinel test files / directories layout improved. 2014-04-24 11:08:22 +02:00
SECURITY.md Moved security bugs and vulnerability policy to SECURITY.md (#8938) 2021-05-13 21:16:27 -07:00
sentinel.conf Fixed some typos, add a spell check ci and others minor fix (#8890) 2021-06-10 15:39:33 +03:00
TLS.md TLS: Session caching configuration support. (#7420) 2020-07-10 11:33:47 +03:00

This README is just a fast quick start document. You can find more detailed documentation at redis.io.

What is Redis?

Redis is often referred to as a data structures server. What this means is that Redis provides access to mutable data structures via a set of commands, which are sent using a server-client model with TCP sockets and a simple protocol. So different processes can query and modify the same data structures in a shared way.

Data structures implemented into Redis have a few special properties:

  • Redis cares to store them on disk, even if they are always served and modified into the server memory. This means that Redis is fast, but that it is also non-volatile.
  • The implementation of data structures emphasizes memory efficiency, so data structures inside Redis will likely use less memory compared to the same data structure modelled using a high-level programming language.
  • Redis offers a number of features that are natural to find in a database, like replication, tunable levels of durability, clustering, and high availability.

Another good example is to think of Redis as a more complex version of memcached, where the operations are not just SETs and GETs, but operations that work with complex data types like Lists, Sets, ordered data structures, and so forth.

If you want to know more, this is a list of selected starting points:

Building Redis

Redis can be compiled and used on Linux, OSX, OpenBSD, NetBSD, FreeBSD. We support big endian and little endian architectures, and both 32 bit and 64 bit systems.

It may compile on Solaris derived systems (for instance SmartOS) but our support for this platform is best effort and Redis is not guaranteed to work as well as in Linux, OSX, and *BSD.

It is as simple as:

% make

To build with TLS support, you'll need OpenSSL development libraries (e.g. libssl-dev on Debian/Ubuntu) and run:

% make BUILD_TLS=yes

To build with systemd support, you'll need systemd development libraries (such as libsystemd-dev on Debian/Ubuntu or systemd-devel on CentOS) and run:

% make USE_SYSTEMD=yes

To append a suffix to Redis program names, use:

% make PROG_SUFFIX="-alt"

You can build a 32 bit Redis binary using:

% make 32bit

After building Redis, it is a good idea to test it using:

% make test

If TLS is built, running the tests with TLS enabled (you will need tcl-tls installed):

% ./utils/gen-test-certs.sh
% ./runtest --tls

Fixing build problems with dependencies or cached build options

Redis has some dependencies which are included in the deps directory. make does not automatically rebuild dependencies even if something in the source code of dependencies changes.

When you update the source code with git pull or when code inside the dependencies tree is modified in any other way, make sure to use the following command in order to really clean everything and rebuild from scratch:

make distclean

This will clean: jemalloc, lua, hiredis, linenoise.

Also if you force certain build options like 32bit target, no C compiler optimizations (for debugging purposes), and other similar build time options, those options are cached indefinitely until you issue a make distclean command.

Fixing problems building 32 bit binaries

If after building Redis with a 32 bit target you need to rebuild it with a 64 bit target, or the other way around, you need to perform a make distclean in the root directory of the Redis distribution.

In case of build errors when trying to build a 32 bit binary of Redis, try the following steps:

  • Install the package libc6-dev-i386 (also try g++-multilib).
  • Try using the following command line instead of make 32bit: make CFLAGS="-m32 -march=native" LDFLAGS="-m32"

Allocator

Selecting a non-default memory allocator when building Redis is done by setting the MALLOC environment variable. Redis is compiled and linked against libc malloc by default, with the exception of jemalloc being the default on Linux systems. This default was picked because jemalloc has proven to have fewer fragmentation problems than libc malloc.

To force compiling against libc malloc, use:

% make MALLOC=libc

To compile against jemalloc on Mac OS X systems, use:

% make MALLOC=jemalloc

Monotonic clock

By default, Redis will build using the POSIX clock_gettime function as the monotonic clock source. On most modern systems, the internal processor clock can be used to improve performance. Cautions can be found here: http://oliveryang.net/2015/09/pitfalls-of-TSC-usage/

To build with support for the processor's internal instruction clock, use:

% make CFLAGS="-DUSE_PROCESSOR_CLOCK"

Verbose build

Redis will build with a user-friendly colorized output by default. If you want to see a more verbose output, use the following:

% make V=1

Running Redis

To run Redis with the default configuration, just type:

% cd src
% ./redis-server

If you want to provide your redis.conf, you have to run it using an additional parameter (the path of the configuration file):

% cd src
% ./redis-server /path/to/redis.conf

It is possible to alter the Redis configuration by passing parameters directly as options using the command line. Examples:

% ./redis-server --port 9999 --replicaof 127.0.0.1 6379
% ./redis-server /etc/redis/6379.conf --loglevel debug

All the options in redis.conf are also supported as options using the command line, with exactly the same name.

Running Redis with TLS:

Please consult the TLS.md file for more information on how to use Redis with TLS.

Playing with Redis

You can use redis-cli to play with Redis. Start a redis-server instance, then in another terminal try the following:

% cd src
% ./redis-cli
redis> ping
PONG
redis> set foo bar
OK
redis> get foo
"bar"
redis> incr mycounter
(integer) 1
redis> incr mycounter
(integer) 2
redis>

You can find the list of all the available commands at https://redis.io/commands.

Installing Redis

In order to install Redis binaries into /usr/local/bin, just use:

% make install

You can use make PREFIX=/some/other/directory install if you wish to use a different destination.

Make install will just install binaries in your system, but will not configure init scripts and configuration files in the appropriate place. This is not needed if you just want to play a bit with Redis, but if you are installing it the proper way for a production system, we have a script that does this for Ubuntu and Debian systems:

% cd utils
% ./install_server.sh

Note: install_server.sh will not work on Mac OSX; it is built for Linux only.

The script will ask you a few questions and will setup everything you need to run Redis properly as a background daemon that will start again on system reboots.

You'll be able to stop and start Redis using the script named /etc/init.d/redis_<portnumber>, for instance /etc/init.d/redis_6379.

Code contributions

Note: By contributing code to the Redis project in any form, including sending a pull request via Github, a code fragment or patch via private email or public discussion groups, you agree to release your code under the terms of the BSD license that you can find in the COPYING file included in the Redis source distribution.

Please see the CONTRIBUTING file in this source distribution for more information. For security bugs and vulnerabilities, please see SECURITY.md.

Redis internals

If you are reading this README you are likely in front of a Github page or you just untarred the Redis distribution tar ball. In both the cases you are basically one step away from the source code, so here we explain the Redis source code layout, what is in each file as a general idea, the most important functions and structures inside the Redis server and so forth. We keep all the discussion at a high level without digging into the details since this document would be huge otherwise and our code base changes continuously, but a general idea should be a good starting point to understand more. Moreover most of the code is heavily commented and easy to follow.

Source code layout

The Redis root directory just contains this README, the Makefile which calls the real Makefile inside the src directory and an example configuration for Redis and Sentinel. You can find a few shell scripts that are used in order to execute the Redis, Redis Cluster and Redis Sentinel unit tests, which are implemented inside the tests directory.

Inside the root are the following important directories:

  • src: contains the Redis implementation, written in C.
  • tests: contains the unit tests, implemented in Tcl.
  • deps: contains libraries Redis uses. Everything needed to compile Redis is inside this directory; your system just needs to provide libc, a POSIX compatible interface and a C compiler. Notably deps contains a copy of jemalloc, which is the default allocator of Redis under Linux. Note that under deps there are also things which started with the Redis project, but for which the main repository is not redis/redis.

There are a few more directories but they are not very important for our goals here. We'll focus mostly on src, where the Redis implementation is contained, exploring what there is inside each file. The order in which files are exposed is the logical one to follow in order to disclose different layers of complexity incrementally.

Note: lately Redis was refactored quite a bit. Function names and file names have been changed, so you may find that this documentation reflects the unstable branch more closely. For instance, in Redis 3.0 the server.c and server.h files were named redis.c and redis.h. However the overall structure is the same. Keep in mind that all the new developments and pull requests should be performed against the unstable branch.

server.h

The simplest way to understand how a program works is to understand the data structures it uses. So we'll start from the main header file of Redis, which is server.h.

All the server configuration and in general all the shared state is defined in a global structure called server, of type struct redisServer. A few important fields in this structure are:

  • server.db is an array of Redis databases, where data is stored.
  • server.commands is the command table.
  • server.clients is a linked list of clients connected to the server.
  • server.master is a special client, the master, if the instance is a replica.

There are tons of other fields. Most fields are commented directly inside the structure definition.

Another important Redis data structure is the one defining a client. In the past it was called redisClient, now just client. The structure has many fields, here we'll just show the main ones:

struct client {
    int fd;
    sds querybuf;
    int argc;
    robj **argv;
    redisDb *db;
    int flags;
    list *reply;
    // ... many other fields ...
    char buf[PROTO_REPLY_CHUNK_BYTES];
}

The client structure defines a connected client:

  • The fd field is the client socket file descriptor.
  • argc and argv are populated with the command the client is executing, so that functions implementing a given Redis command can read the arguments.
  • querybuf accumulates the requests from the client, which are parsed by the Redis server according to the Redis protocol and executed by calling the implementations of the commands the client is executing.
  • reply and buf are dynamic and static buffers that accumulate the replies the server sends to the client. These buffers are incrementally written to the socket as soon as the file descriptor is writeable.

As you can see in the client structure above, arguments in a command are described as robj structures. The following is the full robj structure, which defines a Redis object:

typedef struct redisObject {
    unsigned type:4;
    unsigned encoding:4;
    unsigned lru:LRU_BITS; /* lru time (relative to server.lruclock) */
    int refcount;
    void *ptr;
} robj;

Basically this structure can represent all the basic Redis data types like strings, lists, sets, sorted sets and so forth. The interesting thing is that it has a type field, so that it is possible to know what type a given object has, and a refcount, so that the same object can be referenced in multiple places without allocating it multiple times. Finally the ptr field points to the actual representation of the object, which might vary even for the same type, depending on the encoding used.

Redis objects are used extensively in the Redis internals, however in order to avoid the overhead of indirect accesses, recently in many places we just use plain dynamic strings not wrapped inside a Redis object.

server.c

This is the entry point of the Redis server, where the main() function is defined. The following are the most important steps in order to startup the Redis server.

  • initServerConfig() sets up the default values of the server structure.
  • initServer() allocates the data structures needed to operate, setup the listening socket, and so forth.
  • aeMain() starts the event loop which listens for new connections.

There are two special functions called periodically by the event loop:

  1. serverCron() is called periodically (according to server.hz frequency), and performs tasks that must be performed from time to time, like checking for timed out clients.
  2. beforeSleep() is called every time the event loop fired, Redis served a few requests, and is returning back into the event loop.

Inside server.c you can find code that handles other vital things of the Redis server:

  • call() is used in order to call a given command in the context of a given client.
  • activeExpireCycle() handles eviction of keys with a time to live set via the EXPIRE command.
  • performEvictions() is called when a new write command should be performed but Redis is out of memory according to the maxmemory directive.
  • The global variable redisCommandTable defines all the Redis commands, specifying the name of the command, the function implementing the command, the number of arguments required, and other properties of each command.

networking.c

This file defines all the I/O functions with clients, masters and replicas (which in Redis are just special clients):

  • createClient() allocates and initializes a new client.
  • the addReply*() family of functions are used by command implementations in order to append data to the client structure, that will be transmitted to the client as a reply for a given command executed.
  • writeToClient() transmits the data pending in the output buffers to the client and is called by the writable event handler sendReplyToClient().
  • readQueryFromClient() is the readable event handler and accumulates data read from the client into the query buffer.
  • processInputBuffer() is the entry point in order to parse the client query buffer according to the Redis protocol. Once commands are ready to be processed, it calls processCommand() which is defined inside server.c in order to actually execute the command.
  • freeClient() deallocates, disconnects and removes a client.

aof.c and rdb.c

As you can guess from the names, these files implement the RDB and AOF persistence for Redis. Redis uses a persistence model based on the fork() system call in order to create a process with the same (shared) memory content of the main Redis process. This secondary process dumps the content of the memory on disk. This is used by rdb.c to create the snapshots on disk and by aof.c in order to perform the AOF rewrite when the append only file gets too big.

The implementation inside aof.c has additional functions in order to implement an API that allows commands to append new commands into the AOF file as clients execute them.

The call() function defined inside server.c is responsible for calling the functions that in turn will write the commands into the AOF.

db.c

Certain Redis commands operate on specific data types; others are general. Examples of generic commands are DEL and EXPIRE. They operate on keys and not on their values specifically. All those generic commands are defined inside db.c.

Moreover db.c implements an API in order to perform certain operations on the Redis dataset without directly accessing the internal data structures.

The most important functions inside db.c which are used in many command implementations are the following:

  • lookupKeyRead() and lookupKeyWrite() are used in order to get a pointer to the value associated to a given key, or NULL if the key does not exist.
  • dbAdd() and its higher level counterpart setKey() create a new key in a Redis database.
  • dbDelete() removes a key and its associated value.
  • emptyDb() removes an entire single database or all the databases defined.

The rest of the file implements the generic commands exposed to the client.

object.c

The robj structure defining Redis objects was already described. Inside object.c there are all the functions that operate with Redis objects at a basic level, like functions to allocate new objects, handle the reference counting and so forth. Notable functions inside this file:

  • incrRefCount() and decrRefCount() are used in order to increment or decrement an object reference count. When it drops to 0 the object is finally freed.
  • createObject() allocates a new object. There are also specialized functions to allocate string objects having a specific content, like createStringObjectFromLongLong() and similar functions.

This file also implements the OBJECT command.

replication.c

This is one of the most complex files inside Redis, it is recommended to approach it only after getting a bit familiar with the rest of the code base. In this file there is the implementation of both the master and replica role of Redis.

One of the most important functions inside this file is replicationFeedSlaves() that writes commands to the clients representing replica instances connected to our master, so that the replicas can get the writes performed by the clients: this way their data set will remain synchronized with the one in the master.

This file also implements both the SYNC and PSYNC commands that are used in order to perform the first synchronization between masters and replicas, or to continue the replication after a disconnection.

Other C files

  • t_hash.c, t_list.c, t_set.c, t_string.c, t_zset.c and t_stream.c contains the implementation of the Redis data types. They implement both an API to access a given data type, and the client command implementations for these data types.
  • ae.c implements the Redis event loop, it's a self contained library which is simple to read and understand.
  • sds.c is the Redis string library, check https://github.com/antirez/sds for more information.
  • anet.c is a library to use POSIX networking in a simpler way compared to the raw interface exposed by the kernel.
  • dict.c is an implementation of a non-blocking hash table which rehashes incrementally.
  • scripting.c implements Lua scripting. It is completely self-contained and isolated from the rest of the Redis implementation and is simple enough to understand if you are familiar with the Lua API.
  • cluster.c implements the Redis Cluster. Probably a good read only after being very familiar with the rest of the Redis code base. If you want to read cluster.c make sure to read the Redis Cluster specification.

Anatomy of a Redis command

All the Redis commands are defined in the following way:

void foobarCommand(client *c) {
    printf("%s",c->argv[1]->ptr); /* Do something with the argument. */
    addReply(c,shared.ok); /* Reply something to the client. */
}

The command is then referenced inside server.c in the command table:

{"foobar",foobarCommand,2,"rtF",0,NULL,0,0,0,0,0},

In the above example 2 is the number of arguments the command takes, while "rtF" are the command flags, as documented in the command table top comment inside server.c.

After the command operates in some way, it returns a reply to the client, usually using addReply() or a similar function defined inside networking.c.

There are tons of command implementations inside the Redis source code that can serve as examples of actual commands implementations. Writing a few toy commands can be a good exercise to get familiar with the code base.

There are also many other files not described here, but it is useless to cover everything. We just want to help you with the first steps. Eventually you'll find your way inside the Redis code base :-)

Enjoy!