2011-08-13 12:34:56 -07:00
Ramoops oops/panic logger
=========================
Sergiu Iordache <sergiu@chromium.org>
2012-05-03 15:45:02 +10:00
Updated: 17 November 2011
2011-08-13 12:34:56 -07:00
2016-09-23 15:24:07 -03:00
Introduction
------------
2011-08-13 12:34:56 -07:00
Ramoops is an oops/panic logger that writes its logs to RAM before the system
crashes. It works by logging oopses and panics in a circular buffer. Ramoops
needs a system with persistent RAM so that the content of that area can
survive after a restart.
2016-09-23 15:24:07 -03:00
Ramoops concepts
----------------
2011-08-13 12:34:56 -07:00
2014-09-16 13:50:01 -07:00
Ramoops uses a predefined memory area to store the dump. The start and size
and type of the memory area are set using three variables:
2016-09-23 15:24:07 -03:00
* `` mem_address `` for the start
* `` mem_size `` for the size. The memory size will be rounded down to a
power of two.
* `` mem_type `` to specifiy if the memory type (default is pgprot_writecombine).
Typically the default value of `` mem_type=0 `` should be used as that sets the pstore
mapping to pgprot_writecombine. Setting `` mem_type=1 `` attempts to use
`` pgprot_noncached `` , which only works on some platforms. This is because pstore
2014-09-16 13:50:01 -07:00
depends on atomic operations. At least on ARM, pgprot_noncached causes the
memory to be mapped strongly ordered, and atomic operations on strongly ordered
memory are implementation defined, and won't work on many ARMs such as omaps.
2011-08-13 12:34:56 -07:00
2016-09-23 15:24:07 -03:00
The memory area is divided into `` record_size `` chunks (also rounded down to
2020-05-13 14:35:03 -07:00
power of two) and each kmesg dump writes a `` record_size `` chunk of
2011-08-13 12:34:56 -07:00
information.
2020-05-13 14:35:03 -07:00
Limiting which kinds of kmsg dumps are stored can be controlled via
the `` max_reason `` value, as defined in include/linux/kmsg_dump.h's
`` enum kmsg_dump_reason `` . For example, to store both Oopses and Panics,
`` max_reason `` should be set to 2 (KMSG_DUMP_OOPS), to store only Panics
`` max_reason `` should be set to 1 (KMSG_DUMP_PANIC). Setting this to 0
(KMSG_DUMP_UNDEF), means the reason filtering will be controlled by the
`` printk.always_kmsg_dump `` boot param: if unset, it'll be KMSG_DUMP_OOPS,
otherwise KMSG_DUMP_MAX.
2011-08-13 12:34:56 -07:00
The module uses a counter to record multiple dumps but the counter gets reset
on restart (i.e. new dumps after the restart will overwrite old ones).
2012-05-17 00:15:34 -07:00
Ramoops also supports software ECC protection of persistent memory regions.
This might be useful when a hardware reset was used to bring the machine back
to life (i.e. a watchdog triggered). In such cases, RAM may be somewhat
corrupt, but usually it is restorable.
2016-09-23 15:24:07 -03:00
Setting the parameters
----------------------
2011-08-13 12:34:56 -07:00
2016-07-29 18:11:32 -07:00
Setting the ramoops parameters can be done in several different manners:
A. Use the module parameters (which have the names of the variables described
as before). For quick debugging, you can also reserve parts of memory during
boot and then use the reserved memory for ramoops. For example, assuming a
machine with > 128 MB of memory, the following kernel command line will tell
the kernel to use only the first 128 MB of memory, and place ECC-protected
2016-09-23 15:24:07 -03:00
ramoops region at 128 MB boundary::
mem=128M ramoops.mem_address=0x8000000 ramoops.ecc=1
2016-07-29 18:11:32 -07:00
B. Use Device Tree bindings, as described in
2018-05-09 10:18:50 -03:00
`` Documentation/devicetree/bindings/reserved-memory/ramoops.txt `` .
2016-09-23 15:24:07 -03:00
For example::
2016-07-29 18:11:32 -07:00
reserved-memory {
#address-cells = <2>;
#size-cells = <2>;
ranges;
ramoops@8f000000 {
compatible = "ramoops";
reg = <0 0x8f000000 0 0x100000>;
record-size = <0x4000>;
console-size = <0x4000>;
};
};
C. Use a platform device and set the platform data. The parameters can then
2016-11-03 11:43:29 +02:00
be set through that platform data. An example of doing that is:
.. code-block :: c
2011-08-13 12:34:56 -07:00
2016-09-23 15:24:07 -03:00
#include <linux/pstore_ram.h>
[...]
2011-08-13 12:34:56 -07:00
2016-09-23 15:24:07 -03:00
static struct ramoops_platform_data ramoops_data = {
2011-08-13 12:34:56 -07:00
.mem_size = <...>,
.mem_address = <...>,
2014-09-16 13:50:01 -07:00
.mem_type = <...>,
2011-08-13 12:34:56 -07:00
.record_size = <...>,
2020-05-13 14:35:03 -07:00
.max_reason = <...>,
2012-05-17 00:15:34 -07:00
.ecc = <...>,
2016-09-23 15:24:07 -03:00
};
2011-08-13 12:34:56 -07:00
2016-09-23 15:24:07 -03:00
static struct platform_device ramoops_dev = {
2011-08-13 12:34:56 -07:00
.name = "ramoops",
.dev = {
.platform_data = &ramoops_data,
},
2016-09-23 15:24:07 -03:00
};
2011-08-13 12:34:56 -07:00
2016-09-23 15:24:07 -03:00
[... inside a function ...]
int ret;
2011-08-13 12:34:56 -07:00
2016-09-23 15:24:07 -03:00
ret = platform_device_register(&ramoops_dev);
if (ret) {
2011-08-13 12:34:56 -07:00
printk(KERN_ERR "unable to register platform device\n");
return ret;
2016-09-23 15:24:07 -03:00
}
2011-08-13 12:34:56 -07:00
2012-05-26 06:20:25 -07:00
You can specify either RAM memory or peripheral devices' memory. However, when
specifying RAM, be sure to reserve the memory by issuing memblock_reserve()
2016-09-23 15:24:07 -03:00
very early in the architecture code, e.g.::
2012-05-26 06:20:25 -07:00
2016-09-23 15:24:07 -03:00
#include <linux/memblock.h>
2012-05-26 06:20:25 -07:00
2016-09-23 15:24:07 -03:00
memblock_reserve(ramoops_data.mem_address, ramoops_data.mem_size);
2012-05-26 06:20:25 -07:00
2016-09-23 15:24:07 -03:00
Dump format
-----------
2011-08-13 12:34:56 -07:00
2016-09-23 15:24:07 -03:00
The data dump begins with a header, currently defined as `` ==== `` followed by a
2011-08-13 12:34:56 -07:00
timestamp and a new line. The dump then continues with the actual data.
2016-09-23 15:24:07 -03:00
Reading the data
----------------
2011-08-13 12:34:56 -07:00
2012-05-03 15:45:02 +10:00
The dump data can be read from the pstore filesystem. The format for these
2016-09-23 15:24:07 -03:00
files is `` dmesg-ramoops-N `` , where N is the record number in memory. To delete
2012-05-03 15:45:02 +10:00
a stored record from RAM, simply unlink the respective pstore file.
2012-07-09 17:10:44 -07:00
2016-09-23 15:24:07 -03:00
Persistent function tracing
---------------------------
2012-07-09 17:10:44 -07:00
Persistent function tracing might be useful for debugging software or hardware
2016-09-23 15:24:07 -03:00
related hangs. The functions call chain log is stored in a `` ftrace-ramoops ``
file. Here is an example of usage::
2012-07-09 17:10:44 -07:00
# mount -t debugfs debugfs /sys/kernel/debug/
pstore/ftrace: Convert to its own enable/disable debugfs knob
With this patch we no longer reuse function tracer infrastructure, now
we register our own tracer back-end via a debugfs knob.
It's a bit more code, but that is the only downside. On the bright side we
have:
- Ability to make persistent_ram module removable (when needed, we can
move ftrace_ops struct into a module). Note that persistent_ram is still
not removable for other reasons, but with this patch it's just one
thing less to worry about;
- Pstore part is more isolated from the generic function tracer. We tried
it already by registering our own tracer in available_tracers, but that
way we're loosing ability to see the traces while we record them to
pstore. This solution is somewhere in the middle: we only register
"internal ftracer" back-end, but not the "front-end";
- When there is only pstore tracing enabled, the kernel will only write
to the pstore buffer, omitting function tracer buffer (which, of course,
still can be enabled via 'echo function > current_tracer').
Suggested-by: Steven Rostedt <rostedt@goodmis.org>
Signed-off-by: Anton Vorontsov <anton.vorontsov@linaro.org>
2012-07-17 14:26:15 -07:00
# echo 1 > /sys/kernel/debug/pstore/record_ftrace
2012-07-09 17:10:44 -07:00
# reboot -f
[...]
# mount -t pstore pstore /mnt/
# tail /mnt/ftrace-ramoops
0 ffffffff8101ea64 ffffffff8101bcda native_apic_mem_read <- disconnect_bsp_APIC+0x6a/0xc0
0 ffffffff8101ea44 ffffffff8101bcf6 native_apic_mem_write <- disconnect_bsp_APIC+0x86/0xc0
0 ffffffff81020084 ffffffff8101a4b5 hpet_disable <- native_machine_shutdown+0x75/0x90
0 ffffffff81005f94 ffffffff8101a4bb iommu_shutdown_noop <- native_machine_shutdown+0x7b/0x90
0 ffffffff8101a6a1 ffffffff8101a437 native_machine_emergency_restart <- native_machine_restart+0x37/0x40
0 ffffffff811f9876 ffffffff8101a73a acpi_reboot <- native_machine_emergency_restart+0xaa/0x1e0
0 ffffffff8101a514 ffffffff8101a772 mach_reboot_fixups <- native_machine_emergency_restart+0xe2/0x1e0
0 ffffffff811d9c54 ffffffff8101a7a0 __const_udelay <- native_machine_emergency_restart+0x110/0x1e0
0 ffffffff811d9c34 ffffffff811d9c80 __delay <- __const_udelay+0x30/0x40
0 ffffffff811d9d14 ffffffff811d9c3f delay_tsc <- __delay+0xf/0x20