2005-04-16 15:20:36 -07:00
/*------------------------------------------------------------------------
. smc91x . h - macros for SMSC ' s 91 C9x / 91 C1xx single - chip Ethernet device .
.
. Copyright ( C ) 1996 by Erik Stahlman
. Copyright ( C ) 2001 Standard Microsystems Corporation
. Developed by Simple Network Magic Corporation
. Copyright ( C ) 2003 Monta Vista Software , Inc .
. Unified SMC91x driver by Nicolas Pitre
.
. This program is free software ; you can redistribute it and / or modify
. it under the terms of the GNU General Public License as published by
. the Free Software Foundation ; either version 2 of the License , or
. ( at your option ) any later version .
.
. This program is distributed in the hope that it will be useful ,
. but WITHOUT ANY WARRANTY ; without even the implied warranty of
. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE . See the
. GNU General Public License for more details .
.
. You should have received a copy of the GNU General Public License
. along with this program ; if not , write to the Free Software
. Foundation , Inc . , 59 Temple Place , Suite 330 , Boston , MA 02111 - 1307 USA
.
. Information contained in this file was obtained from the LAN91C111
. manual from SMC . To get a copy , if you really want one , you can find
. information under www . smsc . com .
.
. Authors
. Erik Stahlman < erik @ vt . edu >
. Daris A Nevil < dnevil @ snmc . com >
. Nicolas Pitre < nico @ cam . org >
.
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
# ifndef _SMC91X_H_
# define _SMC91X_H_
/*
* Define your architecture specific bus configuration parameters here .
*/
# if defined(CONFIG_ARCH_LUBBOCK)
/* We can only do 16-bit reads and writes in the static memory space. */
# define SMC_CAN_USE_8BIT 0
# define SMC_CAN_USE_16BIT 1
# define SMC_CAN_USE_32BIT 0
# define SMC_NOWAIT 1
/* The first two address lines aren't connected... */
# define SMC_IO_SHIFT 2
# define SMC_inw(a, r) readw((a) + (r))
# define SMC_outw(v, a, r) writew(v, (a) + (r))
# define SMC_insw(a, r, p, l) readsw((a) + (r), p, l)
# define SMC_outsw(a, r, p, l) writesw((a) + (r), p, l)
# elif defined(CONFIG_REDWOOD_5) || defined(CONFIG_REDWOOD_6)
/* We can only do 16-bit reads and writes in the static memory space. */
# define SMC_CAN_USE_8BIT 0
# define SMC_CAN_USE_16BIT 1
# define SMC_CAN_USE_32BIT 0
# define SMC_NOWAIT 1
# define SMC_IO_SHIFT 0
# define SMC_inw(a, r) in_be16((volatile u16 *)((a) + (r)))
# define SMC_outw(v, a, r) out_be16((volatile u16 *)((a) + (r)), v)
# define SMC_insw(a, r, p, l) \
do { \
unsigned long __port = ( a ) + ( r ) ; \
u16 * __p = ( u16 * ) ( p ) ; \
int __l = ( l ) ; \
insw ( __port , __p , __l ) ; \
while ( __l > 0 ) { \
* __p = swab16 ( * __p ) ; \
__p + + ; \
__l - - ; \
} \
} while ( 0 )
# define SMC_outsw(a, r, p, l) \
do { \
unsigned long __port = ( a ) + ( r ) ; \
u16 * __p = ( u16 * ) ( p ) ; \
int __l = ( l ) ; \
while ( __l > 0 ) { \
/* Believe it or not, the swab isn't needed. */ \
outw ( /* swab16 */ ( * __p + + ) , __port ) ; \
__l - - ; \
} \
} while ( 0 )
[PATCH] IRQ type flags
Some ARM platforms have the ability to program the interrupt controller to
detect various interrupt edges and/or levels. For some platforms, this is
critical to setup correctly, particularly those which the setting is dependent
on the device.
Currently, ARM drivers do (eg) the following:
err = request_irq(irq, ...);
set_irq_type(irq, IRQT_RISING);
However, if the interrupt has previously been programmed to be level sensitive
(for whatever reason) then this will cause an interrupt storm.
Hence, if we combine set_irq_type() with request_irq(), we can then safely set
the type prior to unmasking the interrupt. The unfortunate problem is that in
order to support this, these flags need to be visible outside of the ARM
architecture - drivers such as smc91x need these flags and they're
cross-architecture.
Finally, the SA_TRIGGER_* flag passed to request_irq() should reflect the
property that the device would like. The IRQ controller code should do its
best to select the most appropriate supported mode.
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-01-08 01:02:07 -08:00
# define SMC_IRQ_FLAGS (0)
2005-04-16 15:20:36 -07:00
# elif defined(CONFIG_SA1100_PLEB)
/* We can only do 16-bit reads and writes in the static memory space. */
# define SMC_CAN_USE_8BIT 1
# define SMC_CAN_USE_16BIT 1
# define SMC_CAN_USE_32BIT 0
# define SMC_IO_SHIFT 0
# define SMC_NOWAIT 1
2005-11-12 21:49:36 +00:00
# define SMC_inb(a, r) readb((a) + (r))
# define SMC_insb(a, r, p, l) readsb((a) + (r), p, (l))
# define SMC_inw(a, r) readw((a) + (r))
# define SMC_insw(a, r, p, l) readsw((a) + (r), p, l)
# define SMC_outb(v, a, r) writeb(v, (a) + (r))
# define SMC_outsb(a, r, p, l) writesb((a) + (r), p, (l))
# define SMC_outw(v, a, r) writew(v, (a) + (r))
# define SMC_outsw(a, r, p, l) writesw((a) + (r), p, l)
2005-04-16 15:20:36 -07:00
[PATCH] IRQ type flags
Some ARM platforms have the ability to program the interrupt controller to
detect various interrupt edges and/or levels. For some platforms, this is
critical to setup correctly, particularly those which the setting is dependent
on the device.
Currently, ARM drivers do (eg) the following:
err = request_irq(irq, ...);
set_irq_type(irq, IRQT_RISING);
However, if the interrupt has previously been programmed to be level sensitive
(for whatever reason) then this will cause an interrupt storm.
Hence, if we combine set_irq_type() with request_irq(), we can then safely set
the type prior to unmasking the interrupt. The unfortunate problem is that in
order to support this, these flags need to be visible outside of the ARM
architecture - drivers such as smc91x need these flags and they're
cross-architecture.
Finally, the SA_TRIGGER_* flag passed to request_irq() should reflect the
property that the device would like. The IRQ controller code should do its
best to select the most appropriate supported mode.
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-01-08 01:02:07 -08:00
# define SMC_IRQ_FLAGS (0)
2005-04-16 15:20:36 -07:00
# elif defined(CONFIG_SA1100_ASSABET)
# include <asm/arch/neponset.h>
/* We can only do 8-bit reads and writes in the static memory space. */
# define SMC_CAN_USE_8BIT 1
# define SMC_CAN_USE_16BIT 0
# define SMC_CAN_USE_32BIT 0
# define SMC_NOWAIT 1
/* The first two address lines aren't connected... */
# define SMC_IO_SHIFT 2
# define SMC_inb(a, r) readb((a) + (r))
# define SMC_outb(v, a, r) writeb(v, (a) + (r))
# define SMC_insb(a, r, p, l) readsb((a) + (r), p, (l))
# define SMC_outsb(a, r, p, l) writesb((a) + (r), p, (l))
# elif defined(CONFIG_ARCH_INNOKOM) || \
defined ( CONFIG_MACH_MAINSTONE ) | | \
defined ( CONFIG_ARCH_PXA_IDP ) | | \
defined ( CONFIG_ARCH_RAMSES )
# define SMC_CAN_USE_8BIT 1
# define SMC_CAN_USE_16BIT 1
# define SMC_CAN_USE_32BIT 1
# define SMC_IO_SHIFT 0
# define SMC_NOWAIT 1
# define SMC_USE_PXA_DMA 1
# define SMC_inb(a, r) readb((a) + (r))
# define SMC_inw(a, r) readw((a) + (r))
# define SMC_inl(a, r) readl((a) + (r))
# define SMC_outb(v, a, r) writeb(v, (a) + (r))
# define SMC_outl(v, a, r) writel(v, (a) + (r))
# define SMC_insl(a, r, p, l) readsl((a) + (r), p, l)
# define SMC_outsl(a, r, p, l) writesl((a) + (r), p, l)
/* We actually can't write halfwords properly if not word aligned */
static inline void
2005-05-12 20:19:09 -04:00
SMC_outw ( u16 val , void __iomem * ioaddr , int reg )
2005-04-16 15:20:36 -07:00
{
if ( reg & 2 ) {
unsigned int v = val < < 16 ;
v | = readl ( ioaddr + ( reg & ~ 2 ) ) & 0xffff ;
writel ( v , ioaddr + ( reg & ~ 2 ) ) ;
} else {
writew ( val , ioaddr + reg ) ;
}
}
# elif defined(CONFIG_ARCH_OMAP)
/* We can only do 16-bit reads and writes in the static memory space. */
# define SMC_CAN_USE_8BIT 0
# define SMC_CAN_USE_16BIT 1
# define SMC_CAN_USE_32BIT 0
# define SMC_IO_SHIFT 0
# define SMC_NOWAIT 1
# define SMC_inb(a, r) readb((a) + (r))
# define SMC_outb(v, a, r) writeb(v, (a) + (r))
# define SMC_inw(a, r) readw((a) + (r))
# define SMC_outw(v, a, r) writew(v, (a) + (r))
# define SMC_insw(a, r, p, l) readsw((a) + (r), p, l)
# define SMC_outsw(a, r, p, l) writesw((a) + (r), p, l)
# define SMC_inl(a, r) readl((a) + (r))
# define SMC_outl(v, a, r) writel(v, (a) + (r))
# define SMC_insl(a, r, p, l) readsl((a) + (r), p, l)
# define SMC_outsl(a, r, p, l) writesl((a) + (r), p, l)
2005-05-16 08:53:52 -07:00
# include <asm/mach-types.h>
# include <asm/arch/cpu.h>
[PATCH] IRQ type flags
Some ARM platforms have the ability to program the interrupt controller to
detect various interrupt edges and/or levels. For some platforms, this is
critical to setup correctly, particularly those which the setting is dependent
on the device.
Currently, ARM drivers do (eg) the following:
err = request_irq(irq, ...);
set_irq_type(irq, IRQT_RISING);
However, if the interrupt has previously been programmed to be level sensitive
(for whatever reason) then this will cause an interrupt storm.
Hence, if we combine set_irq_type() with request_irq(), we can then safely set
the type prior to unmasking the interrupt. The unfortunate problem is that in
order to support this, these flags need to be visible outside of the ARM
architecture - drivers such as smc91x need these flags and they're
cross-architecture.
Finally, the SA_TRIGGER_* flag passed to request_irq() should reflect the
property that the device would like. The IRQ controller code should do its
best to select the most appropriate supported mode.
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-01-08 01:02:07 -08:00
# define SMC_IRQ_FLAGS (( \
2005-05-16 08:53:52 -07:00
machine_is_omap_h2 ( ) \
| | machine_is_omap_h3 ( ) \
2005-06-30 06:40:18 -07:00
| | ( machine_is_omap_innovator ( ) & & ! cpu_is_omap1510 ( ) ) \
[PATCH] IRQ type flags
Some ARM platforms have the ability to program the interrupt controller to
detect various interrupt edges and/or levels. For some platforms, this is
critical to setup correctly, particularly those which the setting is dependent
on the device.
Currently, ARM drivers do (eg) the following:
err = request_irq(irq, ...);
set_irq_type(irq, IRQT_RISING);
However, if the interrupt has previously been programmed to be level sensitive
(for whatever reason) then this will cause an interrupt storm.
Hence, if we combine set_irq_type() with request_irq(), we can then safely set
the type prior to unmasking the interrupt. The unfortunate problem is that in
order to support this, these flags need to be visible outside of the ARM
architecture - drivers such as smc91x need these flags and they're
cross-architecture.
Finally, the SA_TRIGGER_* flag passed to request_irq() should reflect the
property that the device would like. The IRQ controller code should do its
best to select the most appropriate supported mode.
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-01-08 01:02:07 -08:00
) ? SA_TRIGGER_FALLING : SA_TRIGGER_RISING )
2005-05-16 08:53:52 -07:00
2005-04-16 15:20:36 -07:00
# elif defined(CONFIG_SH_SH4202_MICRODEV)
# define SMC_CAN_USE_8BIT 0
# define SMC_CAN_USE_16BIT 1
# define SMC_CAN_USE_32BIT 0
# define SMC_inb(a, r) inb((a) + (r) - 0xa0000000)
# define SMC_inw(a, r) inw((a) + (r) - 0xa0000000)
# define SMC_inl(a, r) inl((a) + (r) - 0xa0000000)
# define SMC_outb(v, a, r) outb(v, (a) + (r) - 0xa0000000)
# define SMC_outw(v, a, r) outw(v, (a) + (r) - 0xa0000000)
# define SMC_outl(v, a, r) outl(v, (a) + (r) - 0xa0000000)
# define SMC_insl(a, r, p, l) insl((a) + (r) - 0xa0000000, p, l)
# define SMC_outsl(a, r, p, l) outsl((a) + (r) - 0xa0000000, p, l)
# define SMC_insw(a, r, p, l) insw((a) + (r) - 0xa0000000, p, l)
# define SMC_outsw(a, r, p, l) outsw((a) + (r) - 0xa0000000, p, l)
[PATCH] IRQ type flags
Some ARM platforms have the ability to program the interrupt controller to
detect various interrupt edges and/or levels. For some platforms, this is
critical to setup correctly, particularly those which the setting is dependent
on the device.
Currently, ARM drivers do (eg) the following:
err = request_irq(irq, ...);
set_irq_type(irq, IRQT_RISING);
However, if the interrupt has previously been programmed to be level sensitive
(for whatever reason) then this will cause an interrupt storm.
Hence, if we combine set_irq_type() with request_irq(), we can then safely set
the type prior to unmasking the interrupt. The unfortunate problem is that in
order to support this, these flags need to be visible outside of the ARM
architecture - drivers such as smc91x need these flags and they're
cross-architecture.
Finally, the SA_TRIGGER_* flag passed to request_irq() should reflect the
property that the device would like. The IRQ controller code should do its
best to select the most appropriate supported mode.
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-01-08 01:02:07 -08:00
# define SMC_IRQ_FLAGS (0)
2005-04-16 15:20:36 -07:00
# elif defined(CONFIG_ISA)
# define SMC_CAN_USE_8BIT 1
# define SMC_CAN_USE_16BIT 1
# define SMC_CAN_USE_32BIT 0
# define SMC_inb(a, r) inb((a) + (r))
# define SMC_inw(a, r) inw((a) + (r))
# define SMC_outb(v, a, r) outb(v, (a) + (r))
# define SMC_outw(v, a, r) outw(v, (a) + (r))
# define SMC_insw(a, r, p, l) insw((a) + (r), p, l)
# define SMC_outsw(a, r, p, l) outsw((a) + (r), p, l)
# elif defined(CONFIG_M32R)
# define SMC_CAN_USE_8BIT 0
# define SMC_CAN_USE_16BIT 1
# define SMC_CAN_USE_32BIT 0
2005-10-30 15:00:06 -08:00
# define SMC_inb(a, r) inb((u32)a) + (r))
# define SMC_inw(a, r) inw(((u32)a) + (r))
# define SMC_outb(v, a, r) outb(v, ((u32)a) + (r))
# define SMC_outw(v, a, r) outw(v, ((u32)a) + (r))
# define SMC_insw(a, r, p, l) insw(((u32)a) + (r), p, l)
# define SMC_outsw(a, r, p, l) outsw(((u32)a) + (r), p, l)
2005-04-16 15:20:36 -07:00
[PATCH] IRQ type flags
Some ARM platforms have the ability to program the interrupt controller to
detect various interrupt edges and/or levels. For some platforms, this is
critical to setup correctly, particularly those which the setting is dependent
on the device.
Currently, ARM drivers do (eg) the following:
err = request_irq(irq, ...);
set_irq_type(irq, IRQT_RISING);
However, if the interrupt has previously been programmed to be level sensitive
(for whatever reason) then this will cause an interrupt storm.
Hence, if we combine set_irq_type() with request_irq(), we can then safely set
the type prior to unmasking the interrupt. The unfortunate problem is that in
order to support this, these flags need to be visible outside of the ARM
architecture - drivers such as smc91x need these flags and they're
cross-architecture.
Finally, the SA_TRIGGER_* flag passed to request_irq() should reflect the
property that the device would like. The IRQ controller code should do its
best to select the most appropriate supported mode.
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-01-08 01:02:07 -08:00
# define SMC_IRQ_FLAGS (0)
2005-04-16 15:20:36 -07:00
# define RPC_LSA_DEFAULT RPC_LED_TX_RX
# define RPC_LSB_DEFAULT RPC_LED_100_10
# elif defined(CONFIG_MACH_LPD7A400) || defined(CONFIG_MACH_LPD7A404)
/* The LPD7A40X_IOBARRIER is necessary to overcome a mismatch between
* the way that the CPU handles chip selects and the way that the SMC
* chip expects the chip select to operate . Refer to
* Documentation / arm / Sharp - LH / IOBarrier for details . The read from
* IOBARRIER is a byte as a least - common denominator of possible
* regions to use as the barrier . It would be wasteful to read 32
* bits from a byte oriented region .
*
* There is no explicit protection against interrupts intervening
* between the writew and the IOBARRIER . In SMC ISR there is a
* preamble that performs an IOBARRIER in the extremely unlikely event
* that the driver interrupts itself between a writew to the chip an
* the IOBARRIER that follows * and * the cache is large enough that the
* first off - chip access while handing the interrupt is to the SMC
* chip . Other devices in the same address space as the SMC chip must
* be aware of the potential for trouble and perform a similar
* IOBARRIER on entry to their ISR .
*/
# include <asm/arch/constants.h> /* IOBARRIER_VIRT */
# define SMC_CAN_USE_8BIT 0
# define SMC_CAN_USE_16BIT 1
# define SMC_CAN_USE_32BIT 0
# define SMC_NOWAIT 0
# define LPD7A40X_IOBARRIER readb (IOBARRIER_VIRT)
# define SMC_inw(a,r) readw ((void*) ((a) + (r)))
# define SMC_insw(a,r,p,l) readsw ((void*) ((a) + (r)), p, l)
# define SMC_outw(v,a,r) ({ writew ((v), (a) + (r)); LPD7A40X_IOBARRIER; })
static inline void SMC_outsw ( unsigned long a , int r , unsigned char * p , int l )
{
unsigned short * ps = ( unsigned short * ) p ;
while ( l - - > 0 ) {
writew ( * ps + + , a + r ) ;
LPD7A40X_IOBARRIER ;
}
}
# define SMC_INTERRUPT_PREAMBLE LPD7A40X_IOBARRIER
# define RPC_LSA_DEFAULT RPC_LED_TX_RX
# define RPC_LSB_DEFAULT RPC_LED_100_10
2005-11-09 22:46:05 -05:00
# elif defined(CONFIG_SOC_AU1X00)
# include <au1xxx.h>
/* We can only do 16-bit reads and writes in the static memory space. */
# define SMC_CAN_USE_8BIT 0
# define SMC_CAN_USE_16BIT 1
# define SMC_CAN_USE_32BIT 0
# define SMC_IO_SHIFT 0
# define SMC_NOWAIT 1
# define SMC_inw(a, r) au_readw((unsigned long)((a) + (r)))
# define SMC_insw(a, r, p, l) \
do { \
unsigned long _a = ( unsigned long ) ( ( a ) + ( r ) ) ; \
int _l = ( l ) ; \
u16 * _p = ( u16 * ) ( p ) ; \
while ( _l - - > 0 ) \
* _p + + = au_readw ( _a ) ; \
} while ( 0 )
# define SMC_outw(v, a, r) au_writew(v, (unsigned long)((a) + (r)))
# define SMC_outsw(a, r, p, l) \
do { \
unsigned long _a = ( unsigned long ) ( ( a ) + ( r ) ) ; \
int _l = ( l ) ; \
const u16 * _p = ( const u16 * ) ( p ) ; \
while ( _l - - > 0 ) \
au_writew ( * _p + + , _a ) ; \
} while ( 0 )
[PATCH] IRQ type flags
Some ARM platforms have the ability to program the interrupt controller to
detect various interrupt edges and/or levels. For some platforms, this is
critical to setup correctly, particularly those which the setting is dependent
on the device.
Currently, ARM drivers do (eg) the following:
err = request_irq(irq, ...);
set_irq_type(irq, IRQT_RISING);
However, if the interrupt has previously been programmed to be level sensitive
(for whatever reason) then this will cause an interrupt storm.
Hence, if we combine set_irq_type() with request_irq(), we can then safely set
the type prior to unmasking the interrupt. The unfortunate problem is that in
order to support this, these flags need to be visible outside of the ARM
architecture - drivers such as smc91x need these flags and they're
cross-architecture.
Finally, the SA_TRIGGER_* flag passed to request_irq() should reflect the
property that the device would like. The IRQ controller code should do its
best to select the most appropriate supported mode.
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-01-08 01:02:07 -08:00
# define SMC_IRQ_FLAGS (0)
2005-11-09 22:46:05 -05:00
2005-04-16 15:20:36 -07:00
# else
# define SMC_CAN_USE_8BIT 1
# define SMC_CAN_USE_16BIT 1
# define SMC_CAN_USE_32BIT 1
# define SMC_NOWAIT 1
# define SMC_inb(a, r) readb((a) + (r))
# define SMC_inw(a, r) readw((a) + (r))
# define SMC_inl(a, r) readl((a) + (r))
# define SMC_outb(v, a, r) writeb(v, (a) + (r))
# define SMC_outw(v, a, r) writew(v, (a) + (r))
# define SMC_outl(v, a, r) writel(v, (a) + (r))
# define SMC_insl(a, r, p, l) readsl((a) + (r), p, l)
# define SMC_outsl(a, r, p, l) writesl((a) + (r), p, l)
# define RPC_LSA_DEFAULT RPC_LED_100_10
# define RPC_LSB_DEFAULT RPC_LED_TX_RX
# endif
[PATCH] IRQ type flags
Some ARM platforms have the ability to program the interrupt controller to
detect various interrupt edges and/or levels. For some platforms, this is
critical to setup correctly, particularly those which the setting is dependent
on the device.
Currently, ARM drivers do (eg) the following:
err = request_irq(irq, ...);
set_irq_type(irq, IRQT_RISING);
However, if the interrupt has previously been programmed to be level sensitive
(for whatever reason) then this will cause an interrupt storm.
Hence, if we combine set_irq_type() with request_irq(), we can then safely set
the type prior to unmasking the interrupt. The unfortunate problem is that in
order to support this, these flags need to be visible outside of the ARM
architecture - drivers such as smc91x need these flags and they're
cross-architecture.
Finally, the SA_TRIGGER_* flag passed to request_irq() should reflect the
property that the device would like. The IRQ controller code should do its
best to select the most appropriate supported mode.
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-01-08 01:02:07 -08:00
# ifndef SMC_IRQ_FLAGS
# define SMC_IRQ_FLAGS SA_TRIGGER_RISING
2005-05-16 08:53:52 -07:00
# endif
2005-04-16 15:20:36 -07:00
# ifdef SMC_USE_PXA_DMA
/*
* Let ' s use the DMA engine on the XScale PXA2xx for RX packets . This is
* always happening in irq context so no need to worry about races . TX is
* different and probably not worth it for that reason , and not as critical
* as RX which can overrun memory and lose packets .
*/
# include <linux/dma-mapping.h>
# include <asm/dma.h>
# include <asm/arch/pxa-regs.h>
# ifdef SMC_insl
# undef SMC_insl
# define SMC_insl(a, r, p, l) \
smc_pxa_dma_insl ( a , lp - > physaddr , r , dev - > dma , p , l )
static inline void
2005-05-12 20:19:09 -04:00
smc_pxa_dma_insl ( void __iomem * ioaddr , u_long physaddr , int reg , int dma ,
2005-04-16 15:20:36 -07:00
u_char * buf , int len )
{
dma_addr_t dmabuf ;
/* fallback if no DMA available */
if ( dma = = ( unsigned char ) - 1 ) {
readsl ( ioaddr + reg , buf , len ) ;
return ;
}
/* 64 bit alignment is required for memory to memory DMA */
if ( ( long ) buf & 4 ) {
* ( ( u32 * ) buf ) = SMC_inl ( ioaddr , reg ) ;
buf + = 4 ;
len - - ;
}
len * = 4 ;
dmabuf = dma_map_single ( NULL , buf , len , DMA_FROM_DEVICE ) ;
DCSR ( dma ) = DCSR_NODESC ;
DTADR ( dma ) = dmabuf ;
DSADR ( dma ) = physaddr + reg ;
DCMD ( dma ) = ( DCMD_INCTRGADDR | DCMD_BURST32 |
DCMD_WIDTH4 | ( DCMD_LENGTH & len ) ) ;
DCSR ( dma ) = DCSR_NODESC | DCSR_RUN ;
while ( ! ( DCSR ( dma ) & DCSR_STOPSTATE ) )
cpu_relax ( ) ;
DCSR ( dma ) = 0 ;
dma_unmap_single ( NULL , dmabuf , len , DMA_FROM_DEVICE ) ;
}
# endif
# ifdef SMC_insw
# undef SMC_insw
# define SMC_insw(a, r, p, l) \
smc_pxa_dma_insw ( a , lp - > physaddr , r , dev - > dma , p , l )
static inline void
2005-05-12 20:19:09 -04:00
smc_pxa_dma_insw ( void __iomem * ioaddr , u_long physaddr , int reg , int dma ,
2005-04-16 15:20:36 -07:00
u_char * buf , int len )
{
dma_addr_t dmabuf ;
/* fallback if no DMA available */
if ( dma = = ( unsigned char ) - 1 ) {
readsw ( ioaddr + reg , buf , len ) ;
return ;
}
/* 64 bit alignment is required for memory to memory DMA */
while ( ( long ) buf & 6 ) {
* ( ( u16 * ) buf ) = SMC_inw ( ioaddr , reg ) ;
buf + = 2 ;
len - - ;
}
len * = 2 ;
dmabuf = dma_map_single ( NULL , buf , len , DMA_FROM_DEVICE ) ;
DCSR ( dma ) = DCSR_NODESC ;
DTADR ( dma ) = dmabuf ;
DSADR ( dma ) = physaddr + reg ;
DCMD ( dma ) = ( DCMD_INCTRGADDR | DCMD_BURST32 |
DCMD_WIDTH2 | ( DCMD_LENGTH & len ) ) ;
DCSR ( dma ) = DCSR_NODESC | DCSR_RUN ;
while ( ! ( DCSR ( dma ) & DCSR_STOPSTATE ) )
cpu_relax ( ) ;
DCSR ( dma ) = 0 ;
dma_unmap_single ( NULL , dmabuf , len , DMA_FROM_DEVICE ) ;
}
# endif
static void
smc_pxa_dma_irq ( int dma , void * dummy , struct pt_regs * regs )
{
DCSR ( dma ) = 0 ;
}
# endif /* SMC_USE_PXA_DMA */
/* Because of bank switching, the LAN91x uses only 16 I/O ports */
# ifndef SMC_IO_SHIFT
# define SMC_IO_SHIFT 0
# endif
# define SMC_IO_EXTENT (16 << SMC_IO_SHIFT)
# define SMC_DATA_EXTENT (4)
/*
. Bank Select Register :
.
. yyyy yyyy 0000 00 xx
. xx = bank number
. yyyy yyyy = 0x33 , for identification purposes .
*/
# define BANK_SELECT (14 << SMC_IO_SHIFT)
// Transmit Control Register
/* BANK 0 */
# define TCR_REG SMC_REG(0x0000, 0)
# define TCR_ENABLE 0x0001 // When 1 we can transmit
# define TCR_LOOP 0x0002 // Controls output pin LBK
# define TCR_FORCOL 0x0004 // When 1 will force a collision
# define TCR_PAD_EN 0x0080 // When 1 will pad tx frames < 64 bytes w/0
# define TCR_NOCRC 0x0100 // When 1 will not append CRC to tx frames
# define TCR_MON_CSN 0x0400 // When 1 tx monitors carrier
# define TCR_FDUPLX 0x0800 // When 1 enables full duplex operation
# define TCR_STP_SQET 0x1000 // When 1 stops tx if Signal Quality Error
# define TCR_EPH_LOOP 0x2000 // When 1 enables EPH block loopback
# define TCR_SWFDUP 0x8000 // When 1 enables Switched Full Duplex mode
# define TCR_CLEAR 0 /* do NOTHING */
/* the default settings for the TCR register : */
# define TCR_DEFAULT (TCR_ENABLE | TCR_PAD_EN)
// EPH Status Register
/* BANK 0 */
# define EPH_STATUS_REG SMC_REG(0x0002, 0)
# define ES_TX_SUC 0x0001 // Last TX was successful
# define ES_SNGL_COL 0x0002 // Single collision detected for last tx
# define ES_MUL_COL 0x0004 // Multiple collisions detected for last tx
# define ES_LTX_MULT 0x0008 // Last tx was a multicast
# define ES_16COL 0x0010 // 16 Collisions Reached
# define ES_SQET 0x0020 // Signal Quality Error Test
# define ES_LTXBRD 0x0040 // Last tx was a broadcast
# define ES_TXDEFR 0x0080 // Transmit Deferred
# define ES_LATCOL 0x0200 // Late collision detected on last tx
# define ES_LOSTCARR 0x0400 // Lost Carrier Sense
# define ES_EXC_DEF 0x0800 // Excessive Deferral
# define ES_CTR_ROL 0x1000 // Counter Roll Over indication
# define ES_LINK_OK 0x4000 // Driven by inverted value of nLNK pin
# define ES_TXUNRN 0x8000 // Tx Underrun
// Receive Control Register
/* BANK 0 */
# define RCR_REG SMC_REG(0x0004, 0)
# define RCR_RX_ABORT 0x0001 // Set if a rx frame was aborted
# define RCR_PRMS 0x0002 // Enable promiscuous mode
# define RCR_ALMUL 0x0004 // When set accepts all multicast frames
# define RCR_RXEN 0x0100 // IFF this is set, we can receive packets
# define RCR_STRIP_CRC 0x0200 // When set strips CRC from rx packets
# define RCR_ABORT_ENB 0x0200 // When set will abort rx on collision
# define RCR_FILT_CAR 0x0400 // When set filters leading 12 bit s of carrier
# define RCR_SOFTRST 0x8000 // resets the chip
/* the normal settings for the RCR register : */
# define RCR_DEFAULT (RCR_STRIP_CRC | RCR_RXEN)
# define RCR_CLEAR 0x0 // set it to a base state
// Counter Register
/* BANK 0 */
# define COUNTER_REG SMC_REG(0x0006, 0)
// Memory Information Register
/* BANK 0 */
# define MIR_REG SMC_REG(0x0008, 0)
// Receive/Phy Control Register
/* BANK 0 */
# define RPC_REG SMC_REG(0x000A, 0)
# define RPC_SPEED 0x2000 // When 1 PHY is in 100Mbps mode.
# define RPC_DPLX 0x1000 // When 1 PHY is in Full-Duplex Mode
# define RPC_ANEG 0x0800 // When 1 PHY is in Auto-Negotiate Mode
# define RPC_LSXA_SHFT 5 // Bits to shift LS2A,LS1A,LS0A to lsb
# define RPC_LSXB_SHFT 2 // Bits to get LS2B,LS1B,LS0B to lsb
# define RPC_LED_100_10 (0x00) // LED = 100Mbps OR's with 10Mbps link detect
# define RPC_LED_RES (0x01) // LED = Reserved
# define RPC_LED_10 (0x02) // LED = 10Mbps link detect
# define RPC_LED_FD (0x03) // LED = Full Duplex Mode
# define RPC_LED_TX_RX (0x04) // LED = TX or RX packet occurred
# define RPC_LED_100 (0x05) // LED = 100Mbps link dectect
# define RPC_LED_TX (0x06) // LED = TX packet occurred
# define RPC_LED_RX (0x07) // LED = RX packet occurred
# ifndef RPC_LSA_DEFAULT
# define RPC_LSA_DEFAULT RPC_LED_100
# endif
# ifndef RPC_LSB_DEFAULT
# define RPC_LSB_DEFAULT RPC_LED_FD
# endif
# define RPC_DEFAULT (RPC_ANEG | (RPC_LSA_DEFAULT << RPC_LSXA_SHFT) | (RPC_LSB_DEFAULT << RPC_LSXB_SHFT) | RPC_SPEED | RPC_DPLX)
/* Bank 0 0x0C is reserved */
// Bank Select Register
/* All Banks */
# define BSR_REG 0x000E
// Configuration Reg
/* BANK 1 */
# define CONFIG_REG SMC_REG(0x0000, 1)
# define CONFIG_EXT_PHY 0x0200 // 1=external MII, 0=internal Phy
# define CONFIG_GPCNTRL 0x0400 // Inverse value drives pin nCNTRL
# define CONFIG_NO_WAIT 0x1000 // When 1 no extra wait states on ISA bus
# define CONFIG_EPH_POWER_EN 0x8000 // When 0 EPH is placed into low power mode.
// Default is powered-up, Internal Phy, Wait States, and pin nCNTRL=low
# define CONFIG_DEFAULT (CONFIG_EPH_POWER_EN)
// Base Address Register
/* BANK 1 */
# define BASE_REG SMC_REG(0x0002, 1)
// Individual Address Registers
/* BANK 1 */
# define ADDR0_REG SMC_REG(0x0004, 1)
# define ADDR1_REG SMC_REG(0x0006, 1)
# define ADDR2_REG SMC_REG(0x0008, 1)
// General Purpose Register
/* BANK 1 */
# define GP_REG SMC_REG(0x000A, 1)
// Control Register
/* BANK 1 */
# define CTL_REG SMC_REG(0x000C, 1)
# define CTL_RCV_BAD 0x4000 // When 1 bad CRC packets are received
# define CTL_AUTO_RELEASE 0x0800 // When 1 tx pages are released automatically
# define CTL_LE_ENABLE 0x0080 // When 1 enables Link Error interrupt
# define CTL_CR_ENABLE 0x0040 // When 1 enables Counter Rollover interrupt
# define CTL_TE_ENABLE 0x0020 // When 1 enables Transmit Error interrupt
# define CTL_EEPROM_SELECT 0x0004 // Controls EEPROM reload & store
# define CTL_RELOAD 0x0002 // When set reads EEPROM into registers
# define CTL_STORE 0x0001 // When set stores registers into EEPROM
// MMU Command Register
/* BANK 2 */
# define MMU_CMD_REG SMC_REG(0x0000, 2)
# define MC_BUSY 1 // When 1 the last release has not completed
# define MC_NOP (0<<5) // No Op
# define MC_ALLOC (1<<5) // OR with number of 256 byte packets
# define MC_RESET (2<<5) // Reset MMU to initial state
# define MC_REMOVE (3<<5) // Remove the current rx packet
# define MC_RELEASE (4<<5) // Remove and release the current rx packet
# define MC_FREEPKT (5<<5) // Release packet in PNR register
# define MC_ENQUEUE (6<<5) // Enqueue the packet for transmit
# define MC_RSTTXFIFO (7<<5) // Reset the TX FIFOs
// Packet Number Register
/* BANK 2 */
# define PN_REG SMC_REG(0x0002, 2)
// Allocation Result Register
/* BANK 2 */
# define AR_REG SMC_REG(0x0003, 2)
# define AR_FAILED 0x80 // Alocation Failed
// TX FIFO Ports Register
/* BANK 2 */
# define TXFIFO_REG SMC_REG(0x0004, 2)
# define TXFIFO_TEMPTY 0x80 // TX FIFO Empty
// RX FIFO Ports Register
/* BANK 2 */
# define RXFIFO_REG SMC_REG(0x0005, 2)
# define RXFIFO_REMPTY 0x80 // RX FIFO Empty
# define FIFO_REG SMC_REG(0x0004, 2)
// Pointer Register
/* BANK 2 */
# define PTR_REG SMC_REG(0x0006, 2)
# define PTR_RCV 0x8000 // 1=Receive area, 0=Transmit area
# define PTR_AUTOINC 0x4000 // Auto increment the pointer on each access
# define PTR_READ 0x2000 // When 1 the operation is a read
// Data Register
/* BANK 2 */
# define DATA_REG SMC_REG(0x0008, 2)
// Interrupt Status/Acknowledge Register
/* BANK 2 */
# define INT_REG SMC_REG(0x000C, 2)
// Interrupt Mask Register
/* BANK 2 */
# define IM_REG SMC_REG(0x000D, 2)
# define IM_MDINT 0x80 // PHY MI Register 18 Interrupt
# define IM_ERCV_INT 0x40 // Early Receive Interrupt
# define IM_EPH_INT 0x20 // Set by Ethernet Protocol Handler section
# define IM_RX_OVRN_INT 0x10 // Set by Receiver Overruns
# define IM_ALLOC_INT 0x08 // Set when allocation request is completed
# define IM_TX_EMPTY_INT 0x04 // Set if the TX FIFO goes empty
# define IM_TX_INT 0x02 // Transmit Interrupt
# define IM_RCV_INT 0x01 // Receive Interrupt
// Multicast Table Registers
/* BANK 3 */
# define MCAST_REG1 SMC_REG(0x0000, 3)
# define MCAST_REG2 SMC_REG(0x0002, 3)
# define MCAST_REG3 SMC_REG(0x0004, 3)
# define MCAST_REG4 SMC_REG(0x0006, 3)
// Management Interface Register (MII)
/* BANK 3 */
# define MII_REG SMC_REG(0x0008, 3)
# define MII_MSK_CRS100 0x4000 // Disables CRS100 detection during tx half dup
# define MII_MDOE 0x0008 // MII Output Enable
# define MII_MCLK 0x0004 // MII Clock, pin MDCLK
# define MII_MDI 0x0002 // MII Input, pin MDI
# define MII_MDO 0x0001 // MII Output, pin MDO
// Revision Register
/* BANK 3 */
/* ( hi: chip id low: rev # ) */
# define REV_REG SMC_REG(0x000A, 3)
// Early RCV Register
/* BANK 3 */
/* this is NOT on SMC9192 */
# define ERCV_REG SMC_REG(0x000C, 3)
# define ERCV_RCV_DISCRD 0x0080 // When 1 discards a packet being received
# define ERCV_THRESHOLD 0x001F // ERCV Threshold Mask
// External Register
/* BANK 7 */
# define EXT_REG SMC_REG(0x0000, 7)
# define CHIP_9192 3
# define CHIP_9194 4
# define CHIP_9195 5
# define CHIP_9196 6
# define CHIP_91100 7
# define CHIP_91100FD 8
# define CHIP_91111FD 9
static const char * chip_ids [ 16 ] = {
NULL , NULL , NULL ,
/* 3 */ " SMC91C90/91C92 " ,
/* 4 */ " SMC91C94 " ,
/* 5 */ " SMC91C95 " ,
/* 6 */ " SMC91C96 " ,
/* 7 */ " SMC91C100 " ,
/* 8 */ " SMC91C100FD " ,
/* 9 */ " SMC91C11xFD " ,
NULL , NULL , NULL ,
NULL , NULL , NULL } ;
/*
. Receive status bits
*/
# define RS_ALGNERR 0x8000
# define RS_BRODCAST 0x4000
# define RS_BADCRC 0x2000
# define RS_ODDFRAME 0x1000
# define RS_TOOLONG 0x0800
# define RS_TOOSHORT 0x0400
# define RS_MULTICAST 0x0001
# define RS_ERRORS (RS_ALGNERR | RS_BADCRC | RS_TOOLONG | RS_TOOSHORT)
/*
* PHY IDs
* LAN83C183 = = LAN91C111 Internal PHY
*/
# define PHY_LAN83C183 0x0016f840
# define PHY_LAN83C180 0x02821c50
/*
* PHY Register Addresses ( LAN91C111 Internal PHY )
*
* Generic PHY registers can be found in < linux / mii . h >
*
* These phy registers are specific to our on - board phy .
*/
// PHY Configuration Register 1
# define PHY_CFG1_REG 0x10
# define PHY_CFG1_LNKDIS 0x8000 // 1=Rx Link Detect Function disabled
# define PHY_CFG1_XMTDIS 0x4000 // 1=TP Transmitter Disabled
# define PHY_CFG1_XMTPDN 0x2000 // 1=TP Transmitter Powered Down
# define PHY_CFG1_BYPSCR 0x0400 // 1=Bypass scrambler/descrambler
# define PHY_CFG1_UNSCDS 0x0200 // 1=Unscramble Idle Reception Disable
# define PHY_CFG1_EQLZR 0x0100 // 1=Rx Equalizer Disabled
# define PHY_CFG1_CABLE 0x0080 // 1=STP(150ohm), 0=UTP(100ohm)
# define PHY_CFG1_RLVL0 0x0040 // 1=Rx Squelch level reduced by 4.5db
# define PHY_CFG1_TLVL_SHIFT 2 // Transmit Output Level Adjust
# define PHY_CFG1_TLVL_MASK 0x003C
# define PHY_CFG1_TRF_MASK 0x0003 // Transmitter Rise/Fall time
// PHY Configuration Register 2
# define PHY_CFG2_REG 0x11
# define PHY_CFG2_APOLDIS 0x0020 // 1=Auto Polarity Correction disabled
# define PHY_CFG2_JABDIS 0x0010 // 1=Jabber disabled
# define PHY_CFG2_MREG 0x0008 // 1=Multiple register access (MII mgt)
# define PHY_CFG2_INTMDIO 0x0004 // 1=Interrupt signaled with MDIO pulseo
// PHY Status Output (and Interrupt status) Register
# define PHY_INT_REG 0x12 // Status Output (Interrupt Status)
# define PHY_INT_INT 0x8000 // 1=bits have changed since last read
# define PHY_INT_LNKFAIL 0x4000 // 1=Link Not detected
# define PHY_INT_LOSSSYNC 0x2000 // 1=Descrambler has lost sync
# define PHY_INT_CWRD 0x1000 // 1=Invalid 4B5B code detected on rx
# define PHY_INT_SSD 0x0800 // 1=No Start Of Stream detected on rx
# define PHY_INT_ESD 0x0400 // 1=No End Of Stream detected on rx
# define PHY_INT_RPOL 0x0200 // 1=Reverse Polarity detected
# define PHY_INT_JAB 0x0100 // 1=Jabber detected
# define PHY_INT_SPDDET 0x0080 // 1=100Base-TX mode, 0=10Base-T mode
# define PHY_INT_DPLXDET 0x0040 // 1=Device in Full Duplex
// PHY Interrupt/Status Mask Register
# define PHY_MASK_REG 0x13 // Interrupt Mask
// Uses the same bit definitions as PHY_INT_REG
/*
* SMC91C96 ethernet config and status registers .
* These are in the " attribute " space .
*/
# define ECOR 0x8000
# define ECOR_RESET 0x80
# define ECOR_LEVEL_IRQ 0x40
# define ECOR_WR_ATTRIB 0x04
# define ECOR_ENABLE 0x01
# define ECSR 0x8002
# define ECSR_IOIS8 0x20
# define ECSR_PWRDWN 0x04
# define ECSR_INT 0x02
# define ATTRIB_SIZE ((64*1024) << SMC_IO_SHIFT)
/*
* Macros to abstract register access according to the data bus
* capabilities . Please use those and not the in / out primitives .
* Note : the following macros do * not * select the bank - - this must
* be done separately as needed in the main code . The SMC_REG ( ) macro
* only uses the bank argument for debugging purposes ( when enabled ) .
*/
# if SMC_DEBUG > 0
# define SMC_REG(reg, bank) \
( { \
int __b = SMC_CURRENT_BANK ( ) ; \
if ( unlikely ( ( __b & ~ 0xf0 ) ! = ( 0x3300 | bank ) ) ) { \
printk ( " %s: bank reg screwed (0x%04x) \n " , \
CARDNAME , __b ) ; \
BUG ( ) ; \
} \
reg < < SMC_IO_SHIFT ; \
} )
# else
# define SMC_REG(reg, bank) (reg<<SMC_IO_SHIFT)
# endif
# if SMC_CAN_USE_8BIT
# define SMC_GET_PN() SMC_inb( ioaddr, PN_REG )
# define SMC_SET_PN(x) SMC_outb( x, ioaddr, PN_REG )
# define SMC_GET_AR() SMC_inb( ioaddr, AR_REG )
# define SMC_GET_TXFIFO() SMC_inb( ioaddr, TXFIFO_REG )
# define SMC_GET_RXFIFO() SMC_inb( ioaddr, RXFIFO_REG )
# define SMC_GET_INT() SMC_inb( ioaddr, INT_REG )
# define SMC_ACK_INT(x) SMC_outb( x, ioaddr, INT_REG )
# define SMC_GET_INT_MASK() SMC_inb( ioaddr, IM_REG )
# define SMC_SET_INT_MASK(x) SMC_outb( x, ioaddr, IM_REG )
# else
# define SMC_GET_PN() (SMC_inw( ioaddr, PN_REG ) & 0xFF)
# define SMC_SET_PN(x) SMC_outw( x, ioaddr, PN_REG )
# define SMC_GET_AR() (SMC_inw( ioaddr, PN_REG ) >> 8)
# define SMC_GET_TXFIFO() (SMC_inw( ioaddr, TXFIFO_REG ) & 0xFF)
# define SMC_GET_RXFIFO() (SMC_inw( ioaddr, TXFIFO_REG ) >> 8)
# define SMC_GET_INT() (SMC_inw( ioaddr, INT_REG ) & 0xFF)
# define SMC_ACK_INT(x) \
do { \
unsigned long __flags ; \
int __mask ; \
local_irq_save ( __flags ) ; \
__mask = SMC_inw ( ioaddr , INT_REG ) & ~ 0xff ; \
SMC_outw ( __mask | ( x ) , ioaddr , INT_REG ) ; \
local_irq_restore ( __flags ) ; \
} while ( 0 )
# define SMC_GET_INT_MASK() (SMC_inw( ioaddr, INT_REG ) >> 8)
# define SMC_SET_INT_MASK(x) SMC_outw( (x) << 8, ioaddr, INT_REG )
# endif
# define SMC_CURRENT_BANK() SMC_inw( ioaddr, BANK_SELECT )
# define SMC_SELECT_BANK(x) SMC_outw( x, ioaddr, BANK_SELECT )
# define SMC_GET_BASE() SMC_inw( ioaddr, BASE_REG )
# define SMC_SET_BASE(x) SMC_outw( x, ioaddr, BASE_REG )
# define SMC_GET_CONFIG() SMC_inw( ioaddr, CONFIG_REG )
# define SMC_SET_CONFIG(x) SMC_outw( x, ioaddr, CONFIG_REG )
# define SMC_GET_COUNTER() SMC_inw( ioaddr, COUNTER_REG )
# define SMC_GET_CTL() SMC_inw( ioaddr, CTL_REG )
# define SMC_SET_CTL(x) SMC_outw( x, ioaddr, CTL_REG )
# define SMC_GET_MII() SMC_inw( ioaddr, MII_REG )
# define SMC_SET_MII(x) SMC_outw( x, ioaddr, MII_REG )
# define SMC_GET_MIR() SMC_inw( ioaddr, MIR_REG )
# define SMC_SET_MIR(x) SMC_outw( x, ioaddr, MIR_REG )
# define SMC_GET_MMU_CMD() SMC_inw( ioaddr, MMU_CMD_REG )
# define SMC_SET_MMU_CMD(x) SMC_outw( x, ioaddr, MMU_CMD_REG )
# define SMC_GET_FIFO() SMC_inw( ioaddr, FIFO_REG )
# define SMC_GET_PTR() SMC_inw( ioaddr, PTR_REG )
# define SMC_SET_PTR(x) SMC_outw( x, ioaddr, PTR_REG )
2005-04-12 16:21:11 -04:00
# define SMC_GET_EPH_STATUS() SMC_inw( ioaddr, EPH_STATUS_REG )
2005-04-16 15:20:36 -07:00
# define SMC_GET_RCR() SMC_inw( ioaddr, RCR_REG )
# define SMC_SET_RCR(x) SMC_outw( x, ioaddr, RCR_REG )
# define SMC_GET_REV() SMC_inw( ioaddr, REV_REG )
# define SMC_GET_RPC() SMC_inw( ioaddr, RPC_REG )
# define SMC_SET_RPC(x) SMC_outw( x, ioaddr, RPC_REG )
# define SMC_GET_TCR() SMC_inw( ioaddr, TCR_REG )
# define SMC_SET_TCR(x) SMC_outw( x, ioaddr, TCR_REG )
# ifndef SMC_GET_MAC_ADDR
# define SMC_GET_MAC_ADDR(addr) \
do { \
unsigned int __v ; \
__v = SMC_inw ( ioaddr , ADDR0_REG ) ; \
addr [ 0 ] = __v ; addr [ 1 ] = __v > > 8 ; \
__v = SMC_inw ( ioaddr , ADDR1_REG ) ; \
addr [ 2 ] = __v ; addr [ 3 ] = __v > > 8 ; \
__v = SMC_inw ( ioaddr , ADDR2_REG ) ; \
addr [ 4 ] = __v ; addr [ 5 ] = __v > > 8 ; \
} while ( 0 )
# endif
# define SMC_SET_MAC_ADDR(addr) \
do { \
SMC_outw ( addr [ 0 ] | ( addr [ 1 ] < < 8 ) , ioaddr , ADDR0_REG ) ; \
SMC_outw ( addr [ 2 ] | ( addr [ 3 ] < < 8 ) , ioaddr , ADDR1_REG ) ; \
SMC_outw ( addr [ 4 ] | ( addr [ 5 ] < < 8 ) , ioaddr , ADDR2_REG ) ; \
} while ( 0 )
# define SMC_SET_MCAST(x) \
do { \
const unsigned char * mt = ( x ) ; \
SMC_outw ( mt [ 0 ] | ( mt [ 1 ] < < 8 ) , ioaddr , MCAST_REG1 ) ; \
SMC_outw ( mt [ 2 ] | ( mt [ 3 ] < < 8 ) , ioaddr , MCAST_REG2 ) ; \
SMC_outw ( mt [ 4 ] | ( mt [ 5 ] < < 8 ) , ioaddr , MCAST_REG3 ) ; \
SMC_outw ( mt [ 6 ] | ( mt [ 7 ] < < 8 ) , ioaddr , MCAST_REG4 ) ; \
} while ( 0 )
# if SMC_CAN_USE_32BIT
/*
* Some setups just can ' t write 8 or 16 bits reliably when not aligned
* to a 32 bit boundary . I tell you that exists !
* We re - do the ones here that can be easily worked around if they can have
* their low parts written to 0 without adverse effects .
*/
# undef SMC_SELECT_BANK
# define SMC_SELECT_BANK(x) SMC_outl( (x)<<16, ioaddr, 12<<SMC_IO_SHIFT )
# undef SMC_SET_RPC
# define SMC_SET_RPC(x) SMC_outl( (x)<<16, ioaddr, SMC_REG(8, 0) )
# undef SMC_SET_PN
# define SMC_SET_PN(x) SMC_outl( (x)<<16, ioaddr, SMC_REG(0, 2) )
# undef SMC_SET_PTR
# define SMC_SET_PTR(x) SMC_outl( (x)<<16, ioaddr, SMC_REG(4, 2) )
# endif
# if SMC_CAN_USE_32BIT
# define SMC_PUT_PKT_HDR(status, length) \
SMC_outl ( ( status ) | ( length ) < < 16 , ioaddr , DATA_REG )
# define SMC_GET_PKT_HDR(status, length) \
do { \
unsigned int __val = SMC_inl ( ioaddr , DATA_REG ) ; \
( status ) = __val & 0xffff ; \
( length ) = __val > > 16 ; \
} while ( 0 )
# else
# define SMC_PUT_PKT_HDR(status, length) \
do { \
SMC_outw ( status , ioaddr , DATA_REG ) ; \
SMC_outw ( length , ioaddr , DATA_REG ) ; \
} while ( 0 )
# define SMC_GET_PKT_HDR(status, length) \
do { \
( status ) = SMC_inw ( ioaddr , DATA_REG ) ; \
( length ) = SMC_inw ( ioaddr , DATA_REG ) ; \
} while ( 0 )
# endif
# if SMC_CAN_USE_32BIT
# define _SMC_PUSH_DATA(p, l) \
do { \
char * __ptr = ( p ) ; \
int __len = ( l ) ; \
if ( __len > = 2 & & ( unsigned long ) __ptr & 2 ) { \
__len - = 2 ; \
SMC_outw ( * ( u16 * ) __ptr , ioaddr , DATA_REG ) ; \
__ptr + = 2 ; \
} \
SMC_outsl ( ioaddr , DATA_REG , __ptr , __len > > 2 ) ; \
if ( __len & 2 ) { \
__ptr + = ( __len & ~ 3 ) ; \
SMC_outw ( * ( ( u16 * ) __ptr ) , ioaddr , DATA_REG ) ; \
} \
} while ( 0 )
# define _SMC_PULL_DATA(p, l) \
do { \
char * __ptr = ( p ) ; \
int __len = ( l ) ; \
if ( ( unsigned long ) __ptr & 2 ) { \
/* \
* We want 32 bit alignment here . \
* Since some buses perform a full 32 bit \
* fetch even for 16 bit data we can ' t use \
* SMC_inw ( ) here . Back both source ( on chip \
* and destination ) pointers of 2 bytes . \
*/ \
__ptr - = 2 ; \
__len + = 2 ; \
SMC_SET_PTR ( 2 | PTR_READ | PTR_RCV | PTR_AUTOINC ) ; \
} \
__len + = 2 ; \
SMC_insl ( ioaddr , DATA_REG , __ptr , __len > > 2 ) ; \
} while ( 0 )
# elif SMC_CAN_USE_16BIT
# define _SMC_PUSH_DATA(p, l) SMC_outsw( ioaddr, DATA_REG, p, (l) >> 1 )
# define _SMC_PULL_DATA(p, l) SMC_insw ( ioaddr, DATA_REG, p, (l) >> 1 )
# elif SMC_CAN_USE_8BIT
# define _SMC_PUSH_DATA(p, l) SMC_outsb( ioaddr, DATA_REG, p, l )
# define _SMC_PULL_DATA(p, l) SMC_insb ( ioaddr, DATA_REG, p, l )
# endif
# if ! SMC_CAN_USE_16BIT
# define SMC_outw(x, ioaddr, reg) \
do { \
unsigned int __val16 = ( x ) ; \
SMC_outb ( __val16 , ioaddr , reg ) ; \
SMC_outb ( __val16 > > 8 , ioaddr , reg + ( 1 < < SMC_IO_SHIFT ) ) ; \
} while ( 0 )
# define SMC_inw(ioaddr, reg) \
( { \
unsigned int __val16 ; \
__val16 = SMC_inb ( ioaddr , reg ) ; \
__val16 | = SMC_inb ( ioaddr , reg + ( 1 < < SMC_IO_SHIFT ) ) < < 8 ; \
__val16 ; \
} )
# endif
2005-09-07 23:25:15 +01:00
# ifdef SMC_CAN_USE_DATACS
2005-04-16 15:20:36 -07:00
# define SMC_PUSH_DATA(p, l) \
if ( lp - > datacs ) { \
unsigned char * __ptr = ( p ) ; \
int __len = ( l ) ; \
if ( __len > = 2 & & ( unsigned long ) __ptr & 2 ) { \
__len - = 2 ; \
SMC_outw ( * ( ( u16 * ) __ptr ) , ioaddr , DATA_REG ) ; \
__ptr + = 2 ; \
} \
outsl ( lp - > datacs , __ptr , __len > > 2 ) ; \
if ( __len & 2 ) { \
__ptr + = ( __len & ~ 3 ) ; \
SMC_outw ( * ( ( u16 * ) __ptr ) , ioaddr , DATA_REG ) ; \
} \
} else { \
_SMC_PUSH_DATA ( p , l ) ; \
}
# define SMC_PULL_DATA(p, l) \
if ( lp - > datacs ) { \
unsigned char * __ptr = ( p ) ; \
int __len = ( l ) ; \
if ( ( unsigned long ) __ptr & 2 ) { \
/* \
* We want 32 bit alignment here . \
* Since some buses perform a full 32 bit \
* fetch even for 16 bit data we can ' t use \
* SMC_inw ( ) here . Back both source ( on chip \
* and destination ) pointers of 2 bytes . \
*/ \
__ptr - = 2 ; \
__len + = 2 ; \
SMC_SET_PTR ( 2 | PTR_READ | PTR_RCV | PTR_AUTOINC ) ; \
} \
__len + = 2 ; \
insl ( lp - > datacs , __ptr , __len > > 2 ) ; \
} else { \
_SMC_PULL_DATA ( p , l ) ; \
}
# else
# define SMC_PUSH_DATA(p, l) _SMC_PUSH_DATA(p, l)
# define SMC_PULL_DATA(p, l) _SMC_PULL_DATA(p, l)
# endif
# if !defined (SMC_INTERRUPT_PREAMBLE)
# define SMC_INTERRUPT_PREAMBLE
# endif
# endif /* _SMC91X_H_ */