linux/sound/soc/codecs/wm8971.c

717 lines
21 KiB
C
Raw Normal View History

// SPDX-License-Identifier: GPL-2.0-or-later
/*
* wm8971.c -- WM8971 ALSA SoC Audio driver
*
* Copyright 2005 Lab126, Inc.
*
* Author: Kenneth Kiraly <kiraly@lab126.com>
*
* Based on wm8753.c by Liam Girdwood
*/
#include <linux/module.h>
#include <linux/moduleparam.h>
#include <linux/init.h>
#include <linux/delay.h>
#include <linux/pm.h>
#include <linux/i2c.h>
#include <linux/regmap.h>
include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit slab.h inclusion from percpu.h percpu.h is included by sched.h and module.h and thus ends up being included when building most .c files. percpu.h includes slab.h which in turn includes gfp.h making everything defined by the two files universally available and complicating inclusion dependencies. percpu.h -> slab.h dependency is about to be removed. Prepare for this change by updating users of gfp and slab facilities include those headers directly instead of assuming availability. As this conversion needs to touch large number of source files, the following script is used as the basis of conversion. http://userweb.kernel.org/~tj/misc/slabh-sweep.py The script does the followings. * Scan files for gfp and slab usages and update includes such that only the necessary includes are there. ie. if only gfp is used, gfp.h, if slab is used, slab.h. * When the script inserts a new include, it looks at the include blocks and try to put the new include such that its order conforms to its surrounding. It's put in the include block which contains core kernel includes, in the same order that the rest are ordered - alphabetical, Christmas tree, rev-Xmas-tree or at the end if there doesn't seem to be any matching order. * If the script can't find a place to put a new include (mostly because the file doesn't have fitting include block), it prints out an error message indicating which .h file needs to be added to the file. The conversion was done in the following steps. 1. The initial automatic conversion of all .c files updated slightly over 4000 files, deleting around 700 includes and adding ~480 gfp.h and ~3000 slab.h inclusions. The script emitted errors for ~400 files. 2. Each error was manually checked. Some didn't need the inclusion, some needed manual addition while adding it to implementation .h or embedding .c file was more appropriate for others. This step added inclusions to around 150 files. 3. The script was run again and the output was compared to the edits from #2 to make sure no file was left behind. 4. Several build tests were done and a couple of problems were fixed. e.g. lib/decompress_*.c used malloc/free() wrappers around slab APIs requiring slab.h to be added manually. 5. The script was run on all .h files but without automatically editing them as sprinkling gfp.h and slab.h inclusions around .h files could easily lead to inclusion dependency hell. Most gfp.h inclusion directives were ignored as stuff from gfp.h was usually wildly available and often used in preprocessor macros. Each slab.h inclusion directive was examined and added manually as necessary. 6. percpu.h was updated not to include slab.h. 7. Build test were done on the following configurations and failures were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my distributed build env didn't work with gcov compiles) and a few more options had to be turned off depending on archs to make things build (like ipr on powerpc/64 which failed due to missing writeq). * x86 and x86_64 UP and SMP allmodconfig and a custom test config. * powerpc and powerpc64 SMP allmodconfig * sparc and sparc64 SMP allmodconfig * ia64 SMP allmodconfig * s390 SMP allmodconfig * alpha SMP allmodconfig * um on x86_64 SMP allmodconfig 8. percpu.h modifications were reverted so that it could be applied as a separate patch and serve as bisection point. Given the fact that I had only a couple of failures from tests on step 6, I'm fairly confident about the coverage of this conversion patch. If there is a breakage, it's likely to be something in one of the arch headers which should be easily discoverable easily on most builds of the specific arch. Signed-off-by: Tejun Heo <tj@kernel.org> Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
2010-03-24 17:04:11 +09:00
#include <linux/slab.h>
#include <sound/core.h>
#include <sound/pcm.h>
#include <sound/pcm_params.h>
#include <sound/soc.h>
#include <sound/initval.h>
#include "wm8971.h"
#define WM8971_REG_COUNT 43
/* codec private data */
struct wm8971_priv {
unsigned int sysclk;
ASoC: wm8971: Integrate capacitor charging into the DAPM sequence When being powered on, either initially on probe or when resuming from suspend, the wm8971 configures the device for quick output capacitor charging. Since the charging can take a rather long time (up to multiple seconds) it is done asynchronously without blocking. A delayed work item is run once the charging is finished and the device is switched to the target bias level. This all done asynchronously to the regular DAPM sequence accessing the same data structures and registers without any looking, which can lead to race conditions. Furthermore this potentially delays the start of stream on the CODEC while the rest of the system is already up and running, meaning the first bytes of audio are lost. It also does no comply with the assumption of the DAPM core that if set_bias_level() returned successfully the device will be at the requested bias level. This patch slightly refactors things and makes sure that the caps charging is properly integrated into the DAPM sequence. When transitioning from SND_SOC_BIAS_OFF to SND_SOC_BIAS_STANDBY the part will be put into fast charging mode and a work item will be scheduled that puts it back into standby charging once the charging period has elapsed. If a playback or capture stream is started while charging is in progress the driver will now wait in SND_SOC_BIAS_PREPARE until the charging is done. This makes sure that charging is done asynchronously in the background when the chip is idle, but at the same time makes sure that playback/capture is not started before the charging is done. Signed-off-by: Lars-Peter Clausen <lars@metafoo.de> Acked-by: Charles Keepax <ckeepax@opensource.wolfsonmicro.com> Signed-off-by: Mark Brown <broonie@kernel.org>
2015-03-30 21:04:46 +02:00
struct delayed_work charge_work;
struct regmap *regmap;
};
/*
* wm8971 register cache
* We can't read the WM8971 register space when we
* are using 2 wire for device control, so we cache them instead.
*/
static const struct reg_default wm8971_reg_defaults[] = {
{ 0, 0x0097 },
{ 1, 0x0097 },
{ 2, 0x0079 },
{ 3, 0x0079 },
{ 4, 0x0000 },
{ 5, 0x0008 },
{ 6, 0x0000 },
{ 7, 0x000a },
{ 8, 0x0000 },
{ 9, 0x0000 },
{ 10, 0x00ff },
{ 11, 0x00ff },
{ 12, 0x000f },
{ 13, 0x000f },
{ 14, 0x0000 },
{ 15, 0x0000 },
{ 16, 0x0000 },
{ 17, 0x007b },
{ 18, 0x0000 },
{ 19, 0x0032 },
{ 20, 0x0000 },
{ 21, 0x00c3 },
{ 22, 0x00c3 },
{ 23, 0x00c0 },
{ 24, 0x0000 },
{ 25, 0x0000 },
{ 26, 0x0000 },
{ 27, 0x0000 },
{ 28, 0x0000 },
{ 29, 0x0000 },
{ 30, 0x0000 },
{ 31, 0x0000 },
{ 32, 0x0000 },
{ 33, 0x0000 },
{ 34, 0x0050 },
{ 35, 0x0050 },
{ 36, 0x0050 },
{ 37, 0x0050 },
{ 38, 0x0050 },
{ 39, 0x0050 },
{ 40, 0x0079 },
{ 41, 0x0079 },
{ 42, 0x0079 },
};
#define wm8971_reset(c) snd_soc_component_write(c, WM8971_RESET, 0)
/* WM8971 Controls */
static const char *wm8971_bass[] = { "Linear Control", "Adaptive Boost" };
static const char *wm8971_bass_filter[] = { "130Hz @ 48kHz",
"200Hz @ 48kHz" };
static const char *wm8971_treble[] = { "8kHz", "4kHz" };
static const char *wm8971_alc_func[] = { "Off", "Right", "Left", "Stereo" };
static const char *wm8971_ng_type[] = { "Constant PGA Gain",
"Mute ADC Output" };
static const char *wm8971_deemp[] = { "None", "32kHz", "44.1kHz", "48kHz" };
static const char *wm8971_mono_mux[] = {"Stereo", "Mono (Left)",
"Mono (Right)", "Digital Mono"};
static const char *wm8971_dac_phase[] = { "Non Inverted", "Inverted" };
static const char *wm8971_lline_mux[] = {"Line", "NC", "NC", "PGA",
"Differential"};
static const char *wm8971_rline_mux[] = {"Line", "Mic", "NC", "PGA",
"Differential"};
static const char *wm8971_lpga_sel[] = {"Line", "NC", "NC", "Differential"};
static const char *wm8971_rpga_sel[] = {"Line", "Mic", "NC", "Differential"};
static const char *wm8971_adcpol[] = {"Normal", "L Invert", "R Invert",
"L + R Invert"};
static const struct soc_enum wm8971_enum[] = {
SOC_ENUM_SINGLE(WM8971_BASS, 7, 2, wm8971_bass), /* 0 */
SOC_ENUM_SINGLE(WM8971_BASS, 6, 2, wm8971_bass_filter),
SOC_ENUM_SINGLE(WM8971_TREBLE, 6, 2, wm8971_treble),
SOC_ENUM_SINGLE(WM8971_ALC1, 7, 4, wm8971_alc_func),
SOC_ENUM_SINGLE(WM8971_NGATE, 1, 2, wm8971_ng_type), /* 4 */
SOC_ENUM_SINGLE(WM8971_ADCDAC, 1, 4, wm8971_deemp),
SOC_ENUM_SINGLE(WM8971_ADCTL1, 4, 4, wm8971_mono_mux),
SOC_ENUM_SINGLE(WM8971_ADCTL1, 1, 2, wm8971_dac_phase),
SOC_ENUM_SINGLE(WM8971_LOUTM1, 0, 5, wm8971_lline_mux), /* 8 */
SOC_ENUM_SINGLE(WM8971_ROUTM1, 0, 5, wm8971_rline_mux),
SOC_ENUM_SINGLE(WM8971_LADCIN, 6, 4, wm8971_lpga_sel),
SOC_ENUM_SINGLE(WM8971_RADCIN, 6, 4, wm8971_rpga_sel),
SOC_ENUM_SINGLE(WM8971_ADCDAC, 5, 4, wm8971_adcpol), /* 12 */
SOC_ENUM_SINGLE(WM8971_ADCIN, 6, 4, wm8971_mono_mux),
};
static const struct snd_kcontrol_new wm8971_snd_controls[] = {
SOC_DOUBLE_R("Capture Volume", WM8971_LINVOL, WM8971_RINVOL, 0, 63, 0),
SOC_DOUBLE_R("Capture ZC Switch", WM8971_LINVOL, WM8971_RINVOL,
6, 1, 0),
SOC_DOUBLE_R("Capture Switch", WM8971_LINVOL, WM8971_RINVOL, 7, 1, 1),
SOC_DOUBLE_R("Headphone Playback ZC Switch", WM8971_LOUT1V,
WM8971_ROUT1V, 7, 1, 0),
SOC_DOUBLE_R("Speaker Playback ZC Switch", WM8971_LOUT2V,
WM8971_ROUT2V, 7, 1, 0),
SOC_SINGLE("Mono Playback ZC Switch", WM8971_MOUTV, 7, 1, 0),
SOC_DOUBLE_R("PCM Volume", WM8971_LDAC, WM8971_RDAC, 0, 255, 0),
SOC_DOUBLE_R("Bypass Left Playback Volume", WM8971_LOUTM1,
WM8971_LOUTM2, 4, 7, 1),
SOC_DOUBLE_R("Bypass Right Playback Volume", WM8971_ROUTM1,
WM8971_ROUTM2, 4, 7, 1),
SOC_DOUBLE_R("Bypass Mono Playback Volume", WM8971_MOUTM1,
WM8971_MOUTM2, 4, 7, 1),
SOC_DOUBLE_R("Headphone Playback Volume", WM8971_LOUT1V,
WM8971_ROUT1V, 0, 127, 0),
SOC_DOUBLE_R("Speaker Playback Volume", WM8971_LOUT2V,
WM8971_ROUT2V, 0, 127, 0),
SOC_ENUM("Bass Boost", wm8971_enum[0]),
SOC_ENUM("Bass Filter", wm8971_enum[1]),
SOC_SINGLE("Bass Volume", WM8971_BASS, 0, 7, 1),
SOC_SINGLE("Treble Volume", WM8971_TREBLE, 0, 7, 0),
SOC_ENUM("Treble Cut-off", wm8971_enum[2]),
SOC_SINGLE("Capture Filter Switch", WM8971_ADCDAC, 0, 1, 1),
SOC_SINGLE("ALC Target Volume", WM8971_ALC1, 0, 7, 0),
SOC_SINGLE("ALC Max Volume", WM8971_ALC1, 4, 7, 0),
SOC_SINGLE("ALC Capture Target Volume", WM8971_ALC1, 0, 7, 0),
SOC_SINGLE("ALC Capture Max Volume", WM8971_ALC1, 4, 7, 0),
SOC_ENUM("ALC Capture Function", wm8971_enum[3]),
SOC_SINGLE("ALC Capture ZC Switch", WM8971_ALC2, 7, 1, 0),
SOC_SINGLE("ALC Capture Hold Time", WM8971_ALC2, 0, 15, 0),
SOC_SINGLE("ALC Capture Decay Time", WM8971_ALC3, 4, 15, 0),
SOC_SINGLE("ALC Capture Attack Time", WM8971_ALC3, 0, 15, 0),
SOC_SINGLE("ALC Capture NG Threshold", WM8971_NGATE, 3, 31, 0),
SOC_ENUM("ALC Capture NG Type", wm8971_enum[4]),
SOC_SINGLE("ALC Capture NG Switch", WM8971_NGATE, 0, 1, 0),
SOC_SINGLE("Capture 6dB Attenuate", WM8971_ADCDAC, 8, 1, 0),
SOC_SINGLE("Playback 6dB Attenuate", WM8971_ADCDAC, 7, 1, 0),
SOC_ENUM("Playback De-emphasis", wm8971_enum[5]),
SOC_ENUM("Playback Function", wm8971_enum[6]),
SOC_ENUM("Playback Phase", wm8971_enum[7]),
SOC_DOUBLE_R("Mic Boost", WM8971_LADCIN, WM8971_RADCIN, 4, 3, 0),
};
/*
* DAPM Controls
*/
/* Left Mixer */
static const struct snd_kcontrol_new wm8971_left_mixer_controls[] = {
SOC_DAPM_SINGLE("Playback Switch", WM8971_LOUTM1, 8, 1, 0),
SOC_DAPM_SINGLE("Left Bypass Switch", WM8971_LOUTM1, 7, 1, 0),
SOC_DAPM_SINGLE("Right Playback Switch", WM8971_LOUTM2, 8, 1, 0),
SOC_DAPM_SINGLE("Right Bypass Switch", WM8971_LOUTM2, 7, 1, 0),
};
/* Right Mixer */
static const struct snd_kcontrol_new wm8971_right_mixer_controls[] = {
SOC_DAPM_SINGLE("Left Playback Switch", WM8971_ROUTM1, 8, 1, 0),
SOC_DAPM_SINGLE("Left Bypass Switch", WM8971_ROUTM1, 7, 1, 0),
SOC_DAPM_SINGLE("Playback Switch", WM8971_ROUTM2, 8, 1, 0),
SOC_DAPM_SINGLE("Right Bypass Switch", WM8971_ROUTM2, 7, 1, 0),
};
/* Mono Mixer */
static const struct snd_kcontrol_new wm8971_mono_mixer_controls[] = {
SOC_DAPM_SINGLE("Left Playback Switch", WM8971_MOUTM1, 8, 1, 0),
SOC_DAPM_SINGLE("Left Bypass Switch", WM8971_MOUTM1, 7, 1, 0),
SOC_DAPM_SINGLE("Right Playback Switch", WM8971_MOUTM2, 8, 1, 0),
SOC_DAPM_SINGLE("Right Bypass Switch", WM8971_MOUTM2, 7, 1, 0),
};
/* Left Line Mux */
static const struct snd_kcontrol_new wm8971_left_line_controls =
SOC_DAPM_ENUM("Route", wm8971_enum[8]);
/* Right Line Mux */
static const struct snd_kcontrol_new wm8971_right_line_controls =
SOC_DAPM_ENUM("Route", wm8971_enum[9]);
/* Left PGA Mux */
static const struct snd_kcontrol_new wm8971_left_pga_controls =
SOC_DAPM_ENUM("Route", wm8971_enum[10]);
/* Right PGA Mux */
static const struct snd_kcontrol_new wm8971_right_pga_controls =
SOC_DAPM_ENUM("Route", wm8971_enum[11]);
/* Mono ADC Mux */
static const struct snd_kcontrol_new wm8971_monomux_controls =
SOC_DAPM_ENUM("Route", wm8971_enum[13]);
static const struct snd_soc_dapm_widget wm8971_dapm_widgets[] = {
SND_SOC_DAPM_MIXER("Left Mixer", SND_SOC_NOPM, 0, 0,
&wm8971_left_mixer_controls[0],
ARRAY_SIZE(wm8971_left_mixer_controls)),
SND_SOC_DAPM_MIXER("Right Mixer", SND_SOC_NOPM, 0, 0,
&wm8971_right_mixer_controls[0],
ARRAY_SIZE(wm8971_right_mixer_controls)),
SND_SOC_DAPM_MIXER("Mono Mixer", WM8971_PWR2, 2, 0,
&wm8971_mono_mixer_controls[0],
ARRAY_SIZE(wm8971_mono_mixer_controls)),
SND_SOC_DAPM_PGA("Right Out 2", WM8971_PWR2, 3, 0, NULL, 0),
SND_SOC_DAPM_PGA("Left Out 2", WM8971_PWR2, 4, 0, NULL, 0),
SND_SOC_DAPM_PGA("Right Out 1", WM8971_PWR2, 5, 0, NULL, 0),
SND_SOC_DAPM_PGA("Left Out 1", WM8971_PWR2, 6, 0, NULL, 0),
SND_SOC_DAPM_DAC("Right DAC", "Right Playback", WM8971_PWR2, 7, 0),
SND_SOC_DAPM_DAC("Left DAC", "Left Playback", WM8971_PWR2, 8, 0),
SND_SOC_DAPM_PGA("Mono Out 1", WM8971_PWR2, 2, 0, NULL, 0),
SND_SOC_DAPM_SUPPLY("Mic Bias", WM8971_PWR1, 1, 0, NULL, 0),
SND_SOC_DAPM_ADC("Right ADC", "Right Capture", WM8971_PWR1, 2, 0),
SND_SOC_DAPM_ADC("Left ADC", "Left Capture", WM8971_PWR1, 3, 0),
SND_SOC_DAPM_MUX("Left PGA Mux", WM8971_PWR1, 5, 0,
&wm8971_left_pga_controls),
SND_SOC_DAPM_MUX("Right PGA Mux", WM8971_PWR1, 4, 0,
&wm8971_right_pga_controls),
SND_SOC_DAPM_MUX("Left Line Mux", SND_SOC_NOPM, 0, 0,
&wm8971_left_line_controls),
SND_SOC_DAPM_MUX("Right Line Mux", SND_SOC_NOPM, 0, 0,
&wm8971_right_line_controls),
SND_SOC_DAPM_MUX("Left ADC Mux", SND_SOC_NOPM, 0, 0,
&wm8971_monomux_controls),
SND_SOC_DAPM_MUX("Right ADC Mux", SND_SOC_NOPM, 0, 0,
&wm8971_monomux_controls),
SND_SOC_DAPM_OUTPUT("LOUT1"),
SND_SOC_DAPM_OUTPUT("ROUT1"),
SND_SOC_DAPM_OUTPUT("LOUT2"),
SND_SOC_DAPM_OUTPUT("ROUT2"),
SND_SOC_DAPM_OUTPUT("MONO"),
SND_SOC_DAPM_INPUT("LINPUT1"),
SND_SOC_DAPM_INPUT("RINPUT1"),
SND_SOC_DAPM_INPUT("MIC"),
};
static const struct snd_soc_dapm_route wm8971_dapm_routes[] = {
/* left mixer */
{"Left Mixer", "Playback Switch", "Left DAC"},
{"Left Mixer", "Left Bypass Switch", "Left Line Mux"},
{"Left Mixer", "Right Playback Switch", "Right DAC"},
{"Left Mixer", "Right Bypass Switch", "Right Line Mux"},
/* right mixer */
{"Right Mixer", "Left Playback Switch", "Left DAC"},
{"Right Mixer", "Left Bypass Switch", "Left Line Mux"},
{"Right Mixer", "Playback Switch", "Right DAC"},
{"Right Mixer", "Right Bypass Switch", "Right Line Mux"},
/* left out 1 */
{"Left Out 1", NULL, "Left Mixer"},
{"LOUT1", NULL, "Left Out 1"},
/* left out 2 */
{"Left Out 2", NULL, "Left Mixer"},
{"LOUT2", NULL, "Left Out 2"},
/* right out 1 */
{"Right Out 1", NULL, "Right Mixer"},
{"ROUT1", NULL, "Right Out 1"},
/* right out 2 */
{"Right Out 2", NULL, "Right Mixer"},
{"ROUT2", NULL, "Right Out 2"},
/* mono mixer */
{"Mono Mixer", "Left Playback Switch", "Left DAC"},
{"Mono Mixer", "Left Bypass Switch", "Left Line Mux"},
{"Mono Mixer", "Right Playback Switch", "Right DAC"},
{"Mono Mixer", "Right Bypass Switch", "Right Line Mux"},
/* mono out */
{"Mono Out", NULL, "Mono Mixer"},
{"MONO1", NULL, "Mono Out"},
/* Left Line Mux */
{"Left Line Mux", "Line", "LINPUT1"},
{"Left Line Mux", "PGA", "Left PGA Mux"},
{"Left Line Mux", "Differential", "Differential Mux"},
/* Right Line Mux */
{"Right Line Mux", "Line", "RINPUT1"},
{"Right Line Mux", "Mic", "MIC"},
{"Right Line Mux", "PGA", "Right PGA Mux"},
{"Right Line Mux", "Differential", "Differential Mux"},
/* Left PGA Mux */
{"Left PGA Mux", "Line", "LINPUT1"},
{"Left PGA Mux", "Differential", "Differential Mux"},
/* Right PGA Mux */
{"Right PGA Mux", "Line", "RINPUT1"},
{"Right PGA Mux", "Differential", "Differential Mux"},
/* Differential Mux */
{"Differential Mux", "Line", "LINPUT1"},
{"Differential Mux", "Line", "RINPUT1"},
/* Left ADC Mux */
{"Left ADC Mux", "Stereo", "Left PGA Mux"},
{"Left ADC Mux", "Mono (Left)", "Left PGA Mux"},
{"Left ADC Mux", "Digital Mono", "Left PGA Mux"},
/* Right ADC Mux */
{"Right ADC Mux", "Stereo", "Right PGA Mux"},
{"Right ADC Mux", "Mono (Right)", "Right PGA Mux"},
{"Right ADC Mux", "Digital Mono", "Right PGA Mux"},
/* ADC */
{"Left ADC", NULL, "Left ADC Mux"},
{"Right ADC", NULL, "Right ADC Mux"},
};
struct _coeff_div {
u32 mclk;
u32 rate;
u16 fs;
u8 sr:5;
u8 usb:1;
};
/* codec hifi mclk clock divider coefficients */
static const struct _coeff_div coeff_div[] = {
/* 8k */
{12288000, 8000, 1536, 0x6, 0x0},
{11289600, 8000, 1408, 0x16, 0x0},
{18432000, 8000, 2304, 0x7, 0x0},
{16934400, 8000, 2112, 0x17, 0x0},
{12000000, 8000, 1500, 0x6, 0x1},
/* 11.025k */
{11289600, 11025, 1024, 0x18, 0x0},
{16934400, 11025, 1536, 0x19, 0x0},
{12000000, 11025, 1088, 0x19, 0x1},
/* 16k */
{12288000, 16000, 768, 0xa, 0x0},
{18432000, 16000, 1152, 0xb, 0x0},
{12000000, 16000, 750, 0xa, 0x1},
/* 22.05k */
{11289600, 22050, 512, 0x1a, 0x0},
{16934400, 22050, 768, 0x1b, 0x0},
{12000000, 22050, 544, 0x1b, 0x1},
/* 32k */
{12288000, 32000, 384, 0xc, 0x0},
{18432000, 32000, 576, 0xd, 0x0},
{12000000, 32000, 375, 0xa, 0x1},
/* 44.1k */
{11289600, 44100, 256, 0x10, 0x0},
{16934400, 44100, 384, 0x11, 0x0},
{12000000, 44100, 272, 0x11, 0x1},
/* 48k */
{12288000, 48000, 256, 0x0, 0x0},
{18432000, 48000, 384, 0x1, 0x0},
{12000000, 48000, 250, 0x0, 0x1},
/* 88.2k */
{11289600, 88200, 128, 0x1e, 0x0},
{16934400, 88200, 192, 0x1f, 0x0},
{12000000, 88200, 136, 0x1f, 0x1},
/* 96k */
{12288000, 96000, 128, 0xe, 0x0},
{18432000, 96000, 192, 0xf, 0x0},
{12000000, 96000, 125, 0xe, 0x1},
};
static int get_coeff(int mclk, int rate)
{
int i;
for (i = 0; i < ARRAY_SIZE(coeff_div); i++) {
if (coeff_div[i].rate == rate && coeff_div[i].mclk == mclk)
return i;
}
return -EINVAL;
}
static int wm8971_set_dai_sysclk(struct snd_soc_dai *codec_dai,
int clk_id, unsigned int freq, int dir)
{
struct snd_soc_component *component = codec_dai->component;
struct wm8971_priv *wm8971 = snd_soc_component_get_drvdata(component);
switch (freq) {
case 11289600:
case 12000000:
case 12288000:
case 16934400:
case 18432000:
wm8971->sysclk = freq;
return 0;
}
return -EINVAL;
}
static int wm8971_set_dai_fmt(struct snd_soc_dai *codec_dai,
unsigned int fmt)
{
struct snd_soc_component *component = codec_dai->component;
u16 iface = 0;
/* set master/slave audio interface */
switch (fmt & SND_SOC_DAIFMT_MASTER_MASK) {
case SND_SOC_DAIFMT_CBM_CFM:
iface = 0x0040;
break;
case SND_SOC_DAIFMT_CBS_CFS:
break;
default:
return -EINVAL;
}
/* interface format */
switch (fmt & SND_SOC_DAIFMT_FORMAT_MASK) {
case SND_SOC_DAIFMT_I2S:
iface |= 0x0002;
break;
case SND_SOC_DAIFMT_RIGHT_J:
break;
case SND_SOC_DAIFMT_LEFT_J:
iface |= 0x0001;
break;
case SND_SOC_DAIFMT_DSP_A:
iface |= 0x0003;
break;
case SND_SOC_DAIFMT_DSP_B:
iface |= 0x0013;
break;
default:
return -EINVAL;
}
/* clock inversion */
switch (fmt & SND_SOC_DAIFMT_INV_MASK) {
case SND_SOC_DAIFMT_NB_NF:
break;
case SND_SOC_DAIFMT_IB_IF:
iface |= 0x0090;
break;
case SND_SOC_DAIFMT_IB_NF:
iface |= 0x0080;
break;
case SND_SOC_DAIFMT_NB_IF:
iface |= 0x0010;
break;
default:
return -EINVAL;
}
snd_soc_component_write(component, WM8971_IFACE, iface);
return 0;
}
static int wm8971_pcm_hw_params(struct snd_pcm_substream *substream,
struct snd_pcm_hw_params *params,
struct snd_soc_dai *dai)
{
struct snd_soc_component *component = dai->component;
struct wm8971_priv *wm8971 = snd_soc_component_get_drvdata(component);
u16 iface = snd_soc_component_read(component, WM8971_IFACE) & 0x1f3;
u16 srate = snd_soc_component_read(component, WM8971_SRATE) & 0x1c0;
int coeff = get_coeff(wm8971->sysclk, params_rate(params));
/* bit size */
switch (params_width(params)) {
case 16:
break;
case 20:
iface |= 0x0004;
break;
case 24:
iface |= 0x0008;
break;
case 32:
iface |= 0x000c;
break;
}
/* set iface & srate */
snd_soc_component_write(component, WM8971_IFACE, iface);
if (coeff >= 0)
snd_soc_component_write(component, WM8971_SRATE, srate |
(coeff_div[coeff].sr << 1) | coeff_div[coeff].usb);
return 0;
}
static int wm8971_mute(struct snd_soc_dai *dai, int mute, int direction)
{
struct snd_soc_component *component = dai->component;
u16 mute_reg = snd_soc_component_read(component, WM8971_ADCDAC) & 0xfff7;
if (mute)
snd_soc_component_write(component, WM8971_ADCDAC, mute_reg | 0x8);
else
snd_soc_component_write(component, WM8971_ADCDAC, mute_reg);
return 0;
}
ASoC: wm8971: Integrate capacitor charging into the DAPM sequence When being powered on, either initially on probe or when resuming from suspend, the wm8971 configures the device for quick output capacitor charging. Since the charging can take a rather long time (up to multiple seconds) it is done asynchronously without blocking. A delayed work item is run once the charging is finished and the device is switched to the target bias level. This all done asynchronously to the regular DAPM sequence accessing the same data structures and registers without any looking, which can lead to race conditions. Furthermore this potentially delays the start of stream on the CODEC while the rest of the system is already up and running, meaning the first bytes of audio are lost. It also does no comply with the assumption of the DAPM core that if set_bias_level() returned successfully the device will be at the requested bias level. This patch slightly refactors things and makes sure that the caps charging is properly integrated into the DAPM sequence. When transitioning from SND_SOC_BIAS_OFF to SND_SOC_BIAS_STANDBY the part will be put into fast charging mode and a work item will be scheduled that puts it back into standby charging once the charging period has elapsed. If a playback or capture stream is started while charging is in progress the driver will now wait in SND_SOC_BIAS_PREPARE until the charging is done. This makes sure that charging is done asynchronously in the background when the chip is idle, but at the same time makes sure that playback/capture is not started before the charging is done. Signed-off-by: Lars-Peter Clausen <lars@metafoo.de> Acked-by: Charles Keepax <ckeepax@opensource.wolfsonmicro.com> Signed-off-by: Mark Brown <broonie@kernel.org>
2015-03-30 21:04:46 +02:00
static void wm8971_charge_work(struct work_struct *work)
{
struct wm8971_priv *wm8971 =
container_of(work, struct wm8971_priv, charge_work.work);
/* Set to 500k */
regmap_update_bits(wm8971->regmap, WM8971_PWR1, 0x0180, 0x0100);
}
static int wm8971_set_bias_level(struct snd_soc_component *component,
enum snd_soc_bias_level level)
{
struct wm8971_priv *wm8971 = snd_soc_component_get_drvdata(component);
u16 pwr_reg = snd_soc_component_read(component, WM8971_PWR1) & 0xfe3e;
switch (level) {
case SND_SOC_BIAS_ON:
/* set vmid to 50k and unmute dac */
snd_soc_component_write(component, WM8971_PWR1, pwr_reg | 0x00c1);
break;
case SND_SOC_BIAS_PREPARE:
ASoC: wm8971: Integrate capacitor charging into the DAPM sequence When being powered on, either initially on probe or when resuming from suspend, the wm8971 configures the device for quick output capacitor charging. Since the charging can take a rather long time (up to multiple seconds) it is done asynchronously without blocking. A delayed work item is run once the charging is finished and the device is switched to the target bias level. This all done asynchronously to the regular DAPM sequence accessing the same data structures and registers without any looking, which can lead to race conditions. Furthermore this potentially delays the start of stream on the CODEC while the rest of the system is already up and running, meaning the first bytes of audio are lost. It also does no comply with the assumption of the DAPM core that if set_bias_level() returned successfully the device will be at the requested bias level. This patch slightly refactors things and makes sure that the caps charging is properly integrated into the DAPM sequence. When transitioning from SND_SOC_BIAS_OFF to SND_SOC_BIAS_STANDBY the part will be put into fast charging mode and a work item will be scheduled that puts it back into standby charging once the charging period has elapsed. If a playback or capture stream is started while charging is in progress the driver will now wait in SND_SOC_BIAS_PREPARE until the charging is done. This makes sure that charging is done asynchronously in the background when the chip is idle, but at the same time makes sure that playback/capture is not started before the charging is done. Signed-off-by: Lars-Peter Clausen <lars@metafoo.de> Acked-by: Charles Keepax <ckeepax@opensource.wolfsonmicro.com> Signed-off-by: Mark Brown <broonie@kernel.org>
2015-03-30 21:04:46 +02:00
/* Wait until fully charged */
flush_delayed_work(&wm8971->charge_work);
break;
case SND_SOC_BIAS_STANDBY:
if (snd_soc_component_get_bias_level(component) == SND_SOC_BIAS_OFF) {
snd_soc_component_cache_sync(component);
ASoC: wm8971: Integrate capacitor charging into the DAPM sequence When being powered on, either initially on probe or when resuming from suspend, the wm8971 configures the device for quick output capacitor charging. Since the charging can take a rather long time (up to multiple seconds) it is done asynchronously without blocking. A delayed work item is run once the charging is finished and the device is switched to the target bias level. This all done asynchronously to the regular DAPM sequence accessing the same data structures and registers without any looking, which can lead to race conditions. Furthermore this potentially delays the start of stream on the CODEC while the rest of the system is already up and running, meaning the first bytes of audio are lost. It also does no comply with the assumption of the DAPM core that if set_bias_level() returned successfully the device will be at the requested bias level. This patch slightly refactors things and makes sure that the caps charging is properly integrated into the DAPM sequence. When transitioning from SND_SOC_BIAS_OFF to SND_SOC_BIAS_STANDBY the part will be put into fast charging mode and a work item will be scheduled that puts it back into standby charging once the charging period has elapsed. If a playback or capture stream is started while charging is in progress the driver will now wait in SND_SOC_BIAS_PREPARE until the charging is done. This makes sure that charging is done asynchronously in the background when the chip is idle, but at the same time makes sure that playback/capture is not started before the charging is done. Signed-off-by: Lars-Peter Clausen <lars@metafoo.de> Acked-by: Charles Keepax <ckeepax@opensource.wolfsonmicro.com> Signed-off-by: Mark Brown <broonie@kernel.org>
2015-03-30 21:04:46 +02:00
/* charge output caps - set vmid to 5k for quick power up */
snd_soc_component_write(component, WM8971_PWR1, pwr_reg | 0x01c0);
ASoC: wm8971: Integrate capacitor charging into the DAPM sequence When being powered on, either initially on probe or when resuming from suspend, the wm8971 configures the device for quick output capacitor charging. Since the charging can take a rather long time (up to multiple seconds) it is done asynchronously without blocking. A delayed work item is run once the charging is finished and the device is switched to the target bias level. This all done asynchronously to the regular DAPM sequence accessing the same data structures and registers without any looking, which can lead to race conditions. Furthermore this potentially delays the start of stream on the CODEC while the rest of the system is already up and running, meaning the first bytes of audio are lost. It also does no comply with the assumption of the DAPM core that if set_bias_level() returned successfully the device will be at the requested bias level. This patch slightly refactors things and makes sure that the caps charging is properly integrated into the DAPM sequence. When transitioning from SND_SOC_BIAS_OFF to SND_SOC_BIAS_STANDBY the part will be put into fast charging mode and a work item will be scheduled that puts it back into standby charging once the charging period has elapsed. If a playback or capture stream is started while charging is in progress the driver will now wait in SND_SOC_BIAS_PREPARE until the charging is done. This makes sure that charging is done asynchronously in the background when the chip is idle, but at the same time makes sure that playback/capture is not started before the charging is done. Signed-off-by: Lars-Peter Clausen <lars@metafoo.de> Acked-by: Charles Keepax <ckeepax@opensource.wolfsonmicro.com> Signed-off-by: Mark Brown <broonie@kernel.org>
2015-03-30 21:04:46 +02:00
queue_delayed_work(system_power_efficient_wq,
&wm8971->charge_work, msecs_to_jiffies(1000));
} else {
/* mute dac and set vmid to 500k, enable VREF */
snd_soc_component_write(component, WM8971_PWR1, pwr_reg | 0x0140);
ASoC: wm8971: Integrate capacitor charging into the DAPM sequence When being powered on, either initially on probe or when resuming from suspend, the wm8971 configures the device for quick output capacitor charging. Since the charging can take a rather long time (up to multiple seconds) it is done asynchronously without blocking. A delayed work item is run once the charging is finished and the device is switched to the target bias level. This all done asynchronously to the regular DAPM sequence accessing the same data structures and registers without any looking, which can lead to race conditions. Furthermore this potentially delays the start of stream on the CODEC while the rest of the system is already up and running, meaning the first bytes of audio are lost. It also does no comply with the assumption of the DAPM core that if set_bias_level() returned successfully the device will be at the requested bias level. This patch slightly refactors things and makes sure that the caps charging is properly integrated into the DAPM sequence. When transitioning from SND_SOC_BIAS_OFF to SND_SOC_BIAS_STANDBY the part will be put into fast charging mode and a work item will be scheduled that puts it back into standby charging once the charging period has elapsed. If a playback or capture stream is started while charging is in progress the driver will now wait in SND_SOC_BIAS_PREPARE until the charging is done. This makes sure that charging is done asynchronously in the background when the chip is idle, but at the same time makes sure that playback/capture is not started before the charging is done. Signed-off-by: Lars-Peter Clausen <lars@metafoo.de> Acked-by: Charles Keepax <ckeepax@opensource.wolfsonmicro.com> Signed-off-by: Mark Brown <broonie@kernel.org>
2015-03-30 21:04:46 +02:00
}
break;
case SND_SOC_BIAS_OFF:
ASoC: wm8971: Integrate capacitor charging into the DAPM sequence When being powered on, either initially on probe or when resuming from suspend, the wm8971 configures the device for quick output capacitor charging. Since the charging can take a rather long time (up to multiple seconds) it is done asynchronously without blocking. A delayed work item is run once the charging is finished and the device is switched to the target bias level. This all done asynchronously to the regular DAPM sequence accessing the same data structures and registers without any looking, which can lead to race conditions. Furthermore this potentially delays the start of stream on the CODEC while the rest of the system is already up and running, meaning the first bytes of audio are lost. It also does no comply with the assumption of the DAPM core that if set_bias_level() returned successfully the device will be at the requested bias level. This patch slightly refactors things and makes sure that the caps charging is properly integrated into the DAPM sequence. When transitioning from SND_SOC_BIAS_OFF to SND_SOC_BIAS_STANDBY the part will be put into fast charging mode and a work item will be scheduled that puts it back into standby charging once the charging period has elapsed. If a playback or capture stream is started while charging is in progress the driver will now wait in SND_SOC_BIAS_PREPARE until the charging is done. This makes sure that charging is done asynchronously in the background when the chip is idle, but at the same time makes sure that playback/capture is not started before the charging is done. Signed-off-by: Lars-Peter Clausen <lars@metafoo.de> Acked-by: Charles Keepax <ckeepax@opensource.wolfsonmicro.com> Signed-off-by: Mark Brown <broonie@kernel.org>
2015-03-30 21:04:46 +02:00
cancel_delayed_work_sync(&wm8971->charge_work);
snd_soc_component_write(component, WM8971_PWR1, 0x0001);
break;
}
return 0;
}
#define WM8971_RATES (SNDRV_PCM_RATE_8000 | SNDRV_PCM_RATE_11025 |\
SNDRV_PCM_RATE_16000 | SNDRV_PCM_RATE_22050 | SNDRV_PCM_RATE_44100 | \
SNDRV_PCM_RATE_48000 | SNDRV_PCM_RATE_88200 | SNDRV_PCM_RATE_96000)
#define WM8971_FORMATS (SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_S20_3LE |\
SNDRV_PCM_FMTBIT_S24_LE)
static const struct snd_soc_dai_ops wm8971_dai_ops = {
.hw_params = wm8971_pcm_hw_params,
.mute_stream = wm8971_mute,
.set_fmt = wm8971_set_dai_fmt,
.set_sysclk = wm8971_set_dai_sysclk,
.no_capture_mute = 1,
};
ASoC: multi-component - ASoC Multi-Component Support This patch extends the ASoC API to allow sound cards to have more than one CODEC and more than one platform DMA controller. This is achieved by dividing some current ASoC structures that contain both driver data and device data into structures that only either contain device data or driver data. i.e. struct snd_soc_codec ---> struct snd_soc_codec (device data) +-> struct snd_soc_codec_driver (driver data) struct snd_soc_platform ---> struct snd_soc_platform (device data) +-> struct snd_soc_platform_driver (driver data) struct snd_soc_dai ---> struct snd_soc_dai (device data) +-> struct snd_soc_dai_driver (driver data) struct snd_soc_device ---> deleted This now allows ASoC to be more tightly aligned with the Linux driver model and also means that every ASoC codec, platform and (platform) DAI is a kernel device. ASoC component private data is now stored as device private data. The ASoC sound card struct snd_soc_card has also been updated to store lists of it's components rather than a pointer to a codec and platform. The PCM runtime struct soc_pcm_runtime now has pointers to all its components. This patch adds DAPM support for ASoC multi-component and removes struct snd_soc_socdev from DAPM core. All DAPM calls are now made on a card, codec or runtime PCM level basis rather than using snd_soc_socdev. Other notable multi-component changes:- * Stream operations now de-reference less structures. * close_delayed work() now runs on a DAI basis rather than looping all DAIs in a card. * PM suspend()/resume() operations can now handle N CODECs and Platforms per sound card. * Added soc_bind_dai_link() to bind the component devices to the sound card. * Added soc_dai_link_probe() and soc_dai_link_remove() to probe and remove DAI link components. * sysfs entries can now be registered per component per card. * snd_soc_new_pcms() functionailty rolled into dai_link_probe(). * snd_soc_register_codec() now does all the codec list and mutex init. This patch changes the probe() and remove() of the CODEC drivers as follows:- o Make CODEC driver a platform driver o Moved all struct snd_soc_codec list, mutex, etc initialiasation to core. o Removed all static codec pointers (drivers now support > 1 codec dev) o snd_soc_register_pcms() now done by core. o snd_soc_register_dai() folded into snd_soc_register_codec(). CS4270 portions: Acked-by: Timur Tabi <timur@freescale.com> Some TLV320aic23 and Cirrus platform fixes. Signed-off-by: Ryan Mallon <ryan@bluewatersys.com> TI CODEC and OMAP fixes Signed-off-by: Peter Ujfalusi <peter.ujfalusi@nokia.com> Signed-off-by: Janusz Krzysztofik <jkrzyszt@tis.icnet.pl> Signed-off-by: Jarkko Nikula <jhnikula@gmail.com> Samsung platform and misc fixes :- Signed-off-by: Chanwoo Choi <cw00.choi@samsung.com> Signed-off-by: Joonyoung Shim <jy0922.shim@samsung.com> Signed-off-by: Kyungmin Park <kyungmin.park@samsung.com> Reviewed-by: Jassi Brar <jassi.brar@samsung.com> Signed-off-by: Seungwhan Youn <sw.youn@samsung.com> MPC8610 and PPC fixes. Signed-off-by: Timur Tabi <timur@freescale.com> i.MX fixes and some core fixes. Signed-off-by: Sascha Hauer <s.hauer@pengutronix.de> J4740 platform fixes:- Signed-off-by: Lars-Peter Clausen <lars@metafoo.de> CC: Tony Lindgren <tony@atomide.com> CC: Nicolas Ferre <nicolas.ferre@atmel.com> CC: Kevin Hilman <khilman@deeprootsystems.com> CC: Sascha Hauer <s.hauer@pengutronix.de> CC: Atsushi Nemoto <anemo@mba.ocn.ne.jp> CC: Kuninori Morimoto <morimoto.kuninori@renesas.com> CC: Daniel Gloeckner <dg@emlix.com> CC: Manuel Lauss <mano@roarinelk.homelinux.net> CC: Mike Frysinger <vapier.adi@gmail.com> CC: Arnaud Patard <apatard@mandriva.com> CC: Wan ZongShun <mcuos.com@gmail.com> Acked-by: Mark Brown <broonie@opensource.wolfsonmicro.com> Signed-off-by: Liam Girdwood <lrg@slimlogic.co.uk>
2010-03-17 20:15:21 +00:00
static struct snd_soc_dai_driver wm8971_dai = {
.name = "wm8971-hifi",
.playback = {
.stream_name = "Playback",
.channels_min = 1,
.channels_max = 2,
.rates = WM8971_RATES,
.formats = WM8971_FORMATS,},
.capture = {
.stream_name = "Capture",
.channels_min = 1,
.channels_max = 2,
.rates = WM8971_RATES,
.formats = WM8971_FORMATS,},
.ops = &wm8971_dai_ops,
};
static int wm8971_probe(struct snd_soc_component *component)
{
struct wm8971_priv *wm8971 = snd_soc_component_get_drvdata(component);
ASoC: multi-component - ASoC Multi-Component Support This patch extends the ASoC API to allow sound cards to have more than one CODEC and more than one platform DMA controller. This is achieved by dividing some current ASoC structures that contain both driver data and device data into structures that only either contain device data or driver data. i.e. struct snd_soc_codec ---> struct snd_soc_codec (device data) +-> struct snd_soc_codec_driver (driver data) struct snd_soc_platform ---> struct snd_soc_platform (device data) +-> struct snd_soc_platform_driver (driver data) struct snd_soc_dai ---> struct snd_soc_dai (device data) +-> struct snd_soc_dai_driver (driver data) struct snd_soc_device ---> deleted This now allows ASoC to be more tightly aligned with the Linux driver model and also means that every ASoC codec, platform and (platform) DAI is a kernel device. ASoC component private data is now stored as device private data. The ASoC sound card struct snd_soc_card has also been updated to store lists of it's components rather than a pointer to a codec and platform. The PCM runtime struct soc_pcm_runtime now has pointers to all its components. This patch adds DAPM support for ASoC multi-component and removes struct snd_soc_socdev from DAPM core. All DAPM calls are now made on a card, codec or runtime PCM level basis rather than using snd_soc_socdev. Other notable multi-component changes:- * Stream operations now de-reference less structures. * close_delayed work() now runs on a DAI basis rather than looping all DAIs in a card. * PM suspend()/resume() operations can now handle N CODECs and Platforms per sound card. * Added soc_bind_dai_link() to bind the component devices to the sound card. * Added soc_dai_link_probe() and soc_dai_link_remove() to probe and remove DAI link components. * sysfs entries can now be registered per component per card. * snd_soc_new_pcms() functionailty rolled into dai_link_probe(). * snd_soc_register_codec() now does all the codec list and mutex init. This patch changes the probe() and remove() of the CODEC drivers as follows:- o Make CODEC driver a platform driver o Moved all struct snd_soc_codec list, mutex, etc initialiasation to core. o Removed all static codec pointers (drivers now support > 1 codec dev) o snd_soc_register_pcms() now done by core. o snd_soc_register_dai() folded into snd_soc_register_codec(). CS4270 portions: Acked-by: Timur Tabi <timur@freescale.com> Some TLV320aic23 and Cirrus platform fixes. Signed-off-by: Ryan Mallon <ryan@bluewatersys.com> TI CODEC and OMAP fixes Signed-off-by: Peter Ujfalusi <peter.ujfalusi@nokia.com> Signed-off-by: Janusz Krzysztofik <jkrzyszt@tis.icnet.pl> Signed-off-by: Jarkko Nikula <jhnikula@gmail.com> Samsung platform and misc fixes :- Signed-off-by: Chanwoo Choi <cw00.choi@samsung.com> Signed-off-by: Joonyoung Shim <jy0922.shim@samsung.com> Signed-off-by: Kyungmin Park <kyungmin.park@samsung.com> Reviewed-by: Jassi Brar <jassi.brar@samsung.com> Signed-off-by: Seungwhan Youn <sw.youn@samsung.com> MPC8610 and PPC fixes. Signed-off-by: Timur Tabi <timur@freescale.com> i.MX fixes and some core fixes. Signed-off-by: Sascha Hauer <s.hauer@pengutronix.de> J4740 platform fixes:- Signed-off-by: Lars-Peter Clausen <lars@metafoo.de> CC: Tony Lindgren <tony@atomide.com> CC: Nicolas Ferre <nicolas.ferre@atmel.com> CC: Kevin Hilman <khilman@deeprootsystems.com> CC: Sascha Hauer <s.hauer@pengutronix.de> CC: Atsushi Nemoto <anemo@mba.ocn.ne.jp> CC: Kuninori Morimoto <morimoto.kuninori@renesas.com> CC: Daniel Gloeckner <dg@emlix.com> CC: Manuel Lauss <mano@roarinelk.homelinux.net> CC: Mike Frysinger <vapier.adi@gmail.com> CC: Arnaud Patard <apatard@mandriva.com> CC: Wan ZongShun <mcuos.com@gmail.com> Acked-by: Mark Brown <broonie@opensource.wolfsonmicro.com> Signed-off-by: Liam Girdwood <lrg@slimlogic.co.uk>
2010-03-17 20:15:21 +00:00
ASoC: wm8971: Integrate capacitor charging into the DAPM sequence When being powered on, either initially on probe or when resuming from suspend, the wm8971 configures the device for quick output capacitor charging. Since the charging can take a rather long time (up to multiple seconds) it is done asynchronously without blocking. A delayed work item is run once the charging is finished and the device is switched to the target bias level. This all done asynchronously to the regular DAPM sequence accessing the same data structures and registers without any looking, which can lead to race conditions. Furthermore this potentially delays the start of stream on the CODEC while the rest of the system is already up and running, meaning the first bytes of audio are lost. It also does no comply with the assumption of the DAPM core that if set_bias_level() returned successfully the device will be at the requested bias level. This patch slightly refactors things and makes sure that the caps charging is properly integrated into the DAPM sequence. When transitioning from SND_SOC_BIAS_OFF to SND_SOC_BIAS_STANDBY the part will be put into fast charging mode and a work item will be scheduled that puts it back into standby charging once the charging period has elapsed. If a playback or capture stream is started while charging is in progress the driver will now wait in SND_SOC_BIAS_PREPARE until the charging is done. This makes sure that charging is done asynchronously in the background when the chip is idle, but at the same time makes sure that playback/capture is not started before the charging is done. Signed-off-by: Lars-Peter Clausen <lars@metafoo.de> Acked-by: Charles Keepax <ckeepax@opensource.wolfsonmicro.com> Signed-off-by: Mark Brown <broonie@kernel.org>
2015-03-30 21:04:46 +02:00
INIT_DELAYED_WORK(&wm8971->charge_work, wm8971_charge_work);
wm8971_reset(component);
/* set the update bits */
snd_soc_component_update_bits(component, WM8971_LDAC, 0x0100, 0x0100);
snd_soc_component_update_bits(component, WM8971_RDAC, 0x0100, 0x0100);
snd_soc_component_update_bits(component, WM8971_LOUT1V, 0x0100, 0x0100);
snd_soc_component_update_bits(component, WM8971_ROUT1V, 0x0100, 0x0100);
snd_soc_component_update_bits(component, WM8971_LOUT2V, 0x0100, 0x0100);
snd_soc_component_update_bits(component, WM8971_ROUT2V, 0x0100, 0x0100);
snd_soc_component_update_bits(component, WM8971_LINVOL, 0x0100, 0x0100);
snd_soc_component_update_bits(component, WM8971_RINVOL, 0x0100, 0x0100);
ASoC: wm8971: Integrate capacitor charging into the DAPM sequence When being powered on, either initially on probe or when resuming from suspend, the wm8971 configures the device for quick output capacitor charging. Since the charging can take a rather long time (up to multiple seconds) it is done asynchronously without blocking. A delayed work item is run once the charging is finished and the device is switched to the target bias level. This all done asynchronously to the regular DAPM sequence accessing the same data structures and registers without any looking, which can lead to race conditions. Furthermore this potentially delays the start of stream on the CODEC while the rest of the system is already up and running, meaning the first bytes of audio are lost. It also does no comply with the assumption of the DAPM core that if set_bias_level() returned successfully the device will be at the requested bias level. This patch slightly refactors things and makes sure that the caps charging is properly integrated into the DAPM sequence. When transitioning from SND_SOC_BIAS_OFF to SND_SOC_BIAS_STANDBY the part will be put into fast charging mode and a work item will be scheduled that puts it back into standby charging once the charging period has elapsed. If a playback or capture stream is started while charging is in progress the driver will now wait in SND_SOC_BIAS_PREPARE until the charging is done. This makes sure that charging is done asynchronously in the background when the chip is idle, but at the same time makes sure that playback/capture is not started before the charging is done. Signed-off-by: Lars-Peter Clausen <lars@metafoo.de> Acked-by: Charles Keepax <ckeepax@opensource.wolfsonmicro.com> Signed-off-by: Mark Brown <broonie@kernel.org>
2015-03-30 21:04:46 +02:00
return 0;
}
static const struct snd_soc_component_driver soc_component_dev_wm8971 = {
.probe = wm8971_probe,
.set_bias_level = wm8971_set_bias_level,
.controls = wm8971_snd_controls,
.num_controls = ARRAY_SIZE(wm8971_snd_controls),
.dapm_widgets = wm8971_dapm_widgets,
.num_dapm_widgets = ARRAY_SIZE(wm8971_dapm_widgets),
.dapm_routes = wm8971_dapm_routes,
.num_dapm_routes = ARRAY_SIZE(wm8971_dapm_routes),
.suspend_bias_off = 1,
.idle_bias_on = 1,
.use_pmdown_time = 1,
.endianness = 1,
.non_legacy_dai_naming = 1,
ASoC: multi-component - ASoC Multi-Component Support This patch extends the ASoC API to allow sound cards to have more than one CODEC and more than one platform DMA controller. This is achieved by dividing some current ASoC structures that contain both driver data and device data into structures that only either contain device data or driver data. i.e. struct snd_soc_codec ---> struct snd_soc_codec (device data) +-> struct snd_soc_codec_driver (driver data) struct snd_soc_platform ---> struct snd_soc_platform (device data) +-> struct snd_soc_platform_driver (driver data) struct snd_soc_dai ---> struct snd_soc_dai (device data) +-> struct snd_soc_dai_driver (driver data) struct snd_soc_device ---> deleted This now allows ASoC to be more tightly aligned with the Linux driver model and also means that every ASoC codec, platform and (platform) DAI is a kernel device. ASoC component private data is now stored as device private data. The ASoC sound card struct snd_soc_card has also been updated to store lists of it's components rather than a pointer to a codec and platform. The PCM runtime struct soc_pcm_runtime now has pointers to all its components. This patch adds DAPM support for ASoC multi-component and removes struct snd_soc_socdev from DAPM core. All DAPM calls are now made on a card, codec or runtime PCM level basis rather than using snd_soc_socdev. Other notable multi-component changes:- * Stream operations now de-reference less structures. * close_delayed work() now runs on a DAI basis rather than looping all DAIs in a card. * PM suspend()/resume() operations can now handle N CODECs and Platforms per sound card. * Added soc_bind_dai_link() to bind the component devices to the sound card. * Added soc_dai_link_probe() and soc_dai_link_remove() to probe and remove DAI link components. * sysfs entries can now be registered per component per card. * snd_soc_new_pcms() functionailty rolled into dai_link_probe(). * snd_soc_register_codec() now does all the codec list and mutex init. This patch changes the probe() and remove() of the CODEC drivers as follows:- o Make CODEC driver a platform driver o Moved all struct snd_soc_codec list, mutex, etc initialiasation to core. o Removed all static codec pointers (drivers now support > 1 codec dev) o snd_soc_register_pcms() now done by core. o snd_soc_register_dai() folded into snd_soc_register_codec(). CS4270 portions: Acked-by: Timur Tabi <timur@freescale.com> Some TLV320aic23 and Cirrus platform fixes. Signed-off-by: Ryan Mallon <ryan@bluewatersys.com> TI CODEC and OMAP fixes Signed-off-by: Peter Ujfalusi <peter.ujfalusi@nokia.com> Signed-off-by: Janusz Krzysztofik <jkrzyszt@tis.icnet.pl> Signed-off-by: Jarkko Nikula <jhnikula@gmail.com> Samsung platform and misc fixes :- Signed-off-by: Chanwoo Choi <cw00.choi@samsung.com> Signed-off-by: Joonyoung Shim <jy0922.shim@samsung.com> Signed-off-by: Kyungmin Park <kyungmin.park@samsung.com> Reviewed-by: Jassi Brar <jassi.brar@samsung.com> Signed-off-by: Seungwhan Youn <sw.youn@samsung.com> MPC8610 and PPC fixes. Signed-off-by: Timur Tabi <timur@freescale.com> i.MX fixes and some core fixes. Signed-off-by: Sascha Hauer <s.hauer@pengutronix.de> J4740 platform fixes:- Signed-off-by: Lars-Peter Clausen <lars@metafoo.de> CC: Tony Lindgren <tony@atomide.com> CC: Nicolas Ferre <nicolas.ferre@atmel.com> CC: Kevin Hilman <khilman@deeprootsystems.com> CC: Sascha Hauer <s.hauer@pengutronix.de> CC: Atsushi Nemoto <anemo@mba.ocn.ne.jp> CC: Kuninori Morimoto <morimoto.kuninori@renesas.com> CC: Daniel Gloeckner <dg@emlix.com> CC: Manuel Lauss <mano@roarinelk.homelinux.net> CC: Mike Frysinger <vapier.adi@gmail.com> CC: Arnaud Patard <apatard@mandriva.com> CC: Wan ZongShun <mcuos.com@gmail.com> Acked-by: Mark Brown <broonie@opensource.wolfsonmicro.com> Signed-off-by: Liam Girdwood <lrg@slimlogic.co.uk>
2010-03-17 20:15:21 +00:00
};
static const struct regmap_config wm8971_regmap = {
.reg_bits = 7,
.val_bits = 9,
.max_register = WM8971_MOUTV,
.reg_defaults = wm8971_reg_defaults,
.num_reg_defaults = ARRAY_SIZE(wm8971_reg_defaults),
.cache_type = REGCACHE_RBTREE,
};
static int wm8971_i2c_probe(struct i2c_client *i2c,
const struct i2c_device_id *id)
{
ASoC: multi-component - ASoC Multi-Component Support This patch extends the ASoC API to allow sound cards to have more than one CODEC and more than one platform DMA controller. This is achieved by dividing some current ASoC structures that contain both driver data and device data into structures that only either contain device data or driver data. i.e. struct snd_soc_codec ---> struct snd_soc_codec (device data) +-> struct snd_soc_codec_driver (driver data) struct snd_soc_platform ---> struct snd_soc_platform (device data) +-> struct snd_soc_platform_driver (driver data) struct snd_soc_dai ---> struct snd_soc_dai (device data) +-> struct snd_soc_dai_driver (driver data) struct snd_soc_device ---> deleted This now allows ASoC to be more tightly aligned with the Linux driver model and also means that every ASoC codec, platform and (platform) DAI is a kernel device. ASoC component private data is now stored as device private data. The ASoC sound card struct snd_soc_card has also been updated to store lists of it's components rather than a pointer to a codec and platform. The PCM runtime struct soc_pcm_runtime now has pointers to all its components. This patch adds DAPM support for ASoC multi-component and removes struct snd_soc_socdev from DAPM core. All DAPM calls are now made on a card, codec or runtime PCM level basis rather than using snd_soc_socdev. Other notable multi-component changes:- * Stream operations now de-reference less structures. * close_delayed work() now runs on a DAI basis rather than looping all DAIs in a card. * PM suspend()/resume() operations can now handle N CODECs and Platforms per sound card. * Added soc_bind_dai_link() to bind the component devices to the sound card. * Added soc_dai_link_probe() and soc_dai_link_remove() to probe and remove DAI link components. * sysfs entries can now be registered per component per card. * snd_soc_new_pcms() functionailty rolled into dai_link_probe(). * snd_soc_register_codec() now does all the codec list and mutex init. This patch changes the probe() and remove() of the CODEC drivers as follows:- o Make CODEC driver a platform driver o Moved all struct snd_soc_codec list, mutex, etc initialiasation to core. o Removed all static codec pointers (drivers now support > 1 codec dev) o snd_soc_register_pcms() now done by core. o snd_soc_register_dai() folded into snd_soc_register_codec(). CS4270 portions: Acked-by: Timur Tabi <timur@freescale.com> Some TLV320aic23 and Cirrus platform fixes. Signed-off-by: Ryan Mallon <ryan@bluewatersys.com> TI CODEC and OMAP fixes Signed-off-by: Peter Ujfalusi <peter.ujfalusi@nokia.com> Signed-off-by: Janusz Krzysztofik <jkrzyszt@tis.icnet.pl> Signed-off-by: Jarkko Nikula <jhnikula@gmail.com> Samsung platform and misc fixes :- Signed-off-by: Chanwoo Choi <cw00.choi@samsung.com> Signed-off-by: Joonyoung Shim <jy0922.shim@samsung.com> Signed-off-by: Kyungmin Park <kyungmin.park@samsung.com> Reviewed-by: Jassi Brar <jassi.brar@samsung.com> Signed-off-by: Seungwhan Youn <sw.youn@samsung.com> MPC8610 and PPC fixes. Signed-off-by: Timur Tabi <timur@freescale.com> i.MX fixes and some core fixes. Signed-off-by: Sascha Hauer <s.hauer@pengutronix.de> J4740 platform fixes:- Signed-off-by: Lars-Peter Clausen <lars@metafoo.de> CC: Tony Lindgren <tony@atomide.com> CC: Nicolas Ferre <nicolas.ferre@atmel.com> CC: Kevin Hilman <khilman@deeprootsystems.com> CC: Sascha Hauer <s.hauer@pengutronix.de> CC: Atsushi Nemoto <anemo@mba.ocn.ne.jp> CC: Kuninori Morimoto <morimoto.kuninori@renesas.com> CC: Daniel Gloeckner <dg@emlix.com> CC: Manuel Lauss <mano@roarinelk.homelinux.net> CC: Mike Frysinger <vapier.adi@gmail.com> CC: Arnaud Patard <apatard@mandriva.com> CC: Wan ZongShun <mcuos.com@gmail.com> Acked-by: Mark Brown <broonie@opensource.wolfsonmicro.com> Signed-off-by: Liam Girdwood <lrg@slimlogic.co.uk>
2010-03-17 20:15:21 +00:00
struct wm8971_priv *wm8971;
int ret;
wm8971 = devm_kzalloc(&i2c->dev, sizeof(struct wm8971_priv),
GFP_KERNEL);
ASoC: multi-component - ASoC Multi-Component Support This patch extends the ASoC API to allow sound cards to have more than one CODEC and more than one platform DMA controller. This is achieved by dividing some current ASoC structures that contain both driver data and device data into structures that only either contain device data or driver data. i.e. struct snd_soc_codec ---> struct snd_soc_codec (device data) +-> struct snd_soc_codec_driver (driver data) struct snd_soc_platform ---> struct snd_soc_platform (device data) +-> struct snd_soc_platform_driver (driver data) struct snd_soc_dai ---> struct snd_soc_dai (device data) +-> struct snd_soc_dai_driver (driver data) struct snd_soc_device ---> deleted This now allows ASoC to be more tightly aligned with the Linux driver model and also means that every ASoC codec, platform and (platform) DAI is a kernel device. ASoC component private data is now stored as device private data. The ASoC sound card struct snd_soc_card has also been updated to store lists of it's components rather than a pointer to a codec and platform. The PCM runtime struct soc_pcm_runtime now has pointers to all its components. This patch adds DAPM support for ASoC multi-component and removes struct snd_soc_socdev from DAPM core. All DAPM calls are now made on a card, codec or runtime PCM level basis rather than using snd_soc_socdev. Other notable multi-component changes:- * Stream operations now de-reference less structures. * close_delayed work() now runs on a DAI basis rather than looping all DAIs in a card. * PM suspend()/resume() operations can now handle N CODECs and Platforms per sound card. * Added soc_bind_dai_link() to bind the component devices to the sound card. * Added soc_dai_link_probe() and soc_dai_link_remove() to probe and remove DAI link components. * sysfs entries can now be registered per component per card. * snd_soc_new_pcms() functionailty rolled into dai_link_probe(). * snd_soc_register_codec() now does all the codec list and mutex init. This patch changes the probe() and remove() of the CODEC drivers as follows:- o Make CODEC driver a platform driver o Moved all struct snd_soc_codec list, mutex, etc initialiasation to core. o Removed all static codec pointers (drivers now support > 1 codec dev) o snd_soc_register_pcms() now done by core. o snd_soc_register_dai() folded into snd_soc_register_codec(). CS4270 portions: Acked-by: Timur Tabi <timur@freescale.com> Some TLV320aic23 and Cirrus platform fixes. Signed-off-by: Ryan Mallon <ryan@bluewatersys.com> TI CODEC and OMAP fixes Signed-off-by: Peter Ujfalusi <peter.ujfalusi@nokia.com> Signed-off-by: Janusz Krzysztofik <jkrzyszt@tis.icnet.pl> Signed-off-by: Jarkko Nikula <jhnikula@gmail.com> Samsung platform and misc fixes :- Signed-off-by: Chanwoo Choi <cw00.choi@samsung.com> Signed-off-by: Joonyoung Shim <jy0922.shim@samsung.com> Signed-off-by: Kyungmin Park <kyungmin.park@samsung.com> Reviewed-by: Jassi Brar <jassi.brar@samsung.com> Signed-off-by: Seungwhan Youn <sw.youn@samsung.com> MPC8610 and PPC fixes. Signed-off-by: Timur Tabi <timur@freescale.com> i.MX fixes and some core fixes. Signed-off-by: Sascha Hauer <s.hauer@pengutronix.de> J4740 platform fixes:- Signed-off-by: Lars-Peter Clausen <lars@metafoo.de> CC: Tony Lindgren <tony@atomide.com> CC: Nicolas Ferre <nicolas.ferre@atmel.com> CC: Kevin Hilman <khilman@deeprootsystems.com> CC: Sascha Hauer <s.hauer@pengutronix.de> CC: Atsushi Nemoto <anemo@mba.ocn.ne.jp> CC: Kuninori Morimoto <morimoto.kuninori@renesas.com> CC: Daniel Gloeckner <dg@emlix.com> CC: Manuel Lauss <mano@roarinelk.homelinux.net> CC: Mike Frysinger <vapier.adi@gmail.com> CC: Arnaud Patard <apatard@mandriva.com> CC: Wan ZongShun <mcuos.com@gmail.com> Acked-by: Mark Brown <broonie@opensource.wolfsonmicro.com> Signed-off-by: Liam Girdwood <lrg@slimlogic.co.uk>
2010-03-17 20:15:21 +00:00
if (wm8971 == NULL)
return -ENOMEM;
ASoC: wm8971: Integrate capacitor charging into the DAPM sequence When being powered on, either initially on probe or when resuming from suspend, the wm8971 configures the device for quick output capacitor charging. Since the charging can take a rather long time (up to multiple seconds) it is done asynchronously without blocking. A delayed work item is run once the charging is finished and the device is switched to the target bias level. This all done asynchronously to the regular DAPM sequence accessing the same data structures and registers without any looking, which can lead to race conditions. Furthermore this potentially delays the start of stream on the CODEC while the rest of the system is already up and running, meaning the first bytes of audio are lost. It also does no comply with the assumption of the DAPM core that if set_bias_level() returned successfully the device will be at the requested bias level. This patch slightly refactors things and makes sure that the caps charging is properly integrated into the DAPM sequence. When transitioning from SND_SOC_BIAS_OFF to SND_SOC_BIAS_STANDBY the part will be put into fast charging mode and a work item will be scheduled that puts it back into standby charging once the charging period has elapsed. If a playback or capture stream is started while charging is in progress the driver will now wait in SND_SOC_BIAS_PREPARE until the charging is done. This makes sure that charging is done asynchronously in the background when the chip is idle, but at the same time makes sure that playback/capture is not started before the charging is done. Signed-off-by: Lars-Peter Clausen <lars@metafoo.de> Acked-by: Charles Keepax <ckeepax@opensource.wolfsonmicro.com> Signed-off-by: Mark Brown <broonie@kernel.org>
2015-03-30 21:04:46 +02:00
wm8971->regmap = devm_regmap_init_i2c(i2c, &wm8971_regmap);
if (IS_ERR(wm8971->regmap))
return PTR_ERR(wm8971->regmap);
ASoC: multi-component - ASoC Multi-Component Support This patch extends the ASoC API to allow sound cards to have more than one CODEC and more than one platform DMA controller. This is achieved by dividing some current ASoC structures that contain both driver data and device data into structures that only either contain device data or driver data. i.e. struct snd_soc_codec ---> struct snd_soc_codec (device data) +-> struct snd_soc_codec_driver (driver data) struct snd_soc_platform ---> struct snd_soc_platform (device data) +-> struct snd_soc_platform_driver (driver data) struct snd_soc_dai ---> struct snd_soc_dai (device data) +-> struct snd_soc_dai_driver (driver data) struct snd_soc_device ---> deleted This now allows ASoC to be more tightly aligned with the Linux driver model and also means that every ASoC codec, platform and (platform) DAI is a kernel device. ASoC component private data is now stored as device private data. The ASoC sound card struct snd_soc_card has also been updated to store lists of it's components rather than a pointer to a codec and platform. The PCM runtime struct soc_pcm_runtime now has pointers to all its components. This patch adds DAPM support for ASoC multi-component and removes struct snd_soc_socdev from DAPM core. All DAPM calls are now made on a card, codec or runtime PCM level basis rather than using snd_soc_socdev. Other notable multi-component changes:- * Stream operations now de-reference less structures. * close_delayed work() now runs on a DAI basis rather than looping all DAIs in a card. * PM suspend()/resume() operations can now handle N CODECs and Platforms per sound card. * Added soc_bind_dai_link() to bind the component devices to the sound card. * Added soc_dai_link_probe() and soc_dai_link_remove() to probe and remove DAI link components. * sysfs entries can now be registered per component per card. * snd_soc_new_pcms() functionailty rolled into dai_link_probe(). * snd_soc_register_codec() now does all the codec list and mutex init. This patch changes the probe() and remove() of the CODEC drivers as follows:- o Make CODEC driver a platform driver o Moved all struct snd_soc_codec list, mutex, etc initialiasation to core. o Removed all static codec pointers (drivers now support > 1 codec dev) o snd_soc_register_pcms() now done by core. o snd_soc_register_dai() folded into snd_soc_register_codec(). CS4270 portions: Acked-by: Timur Tabi <timur@freescale.com> Some TLV320aic23 and Cirrus platform fixes. Signed-off-by: Ryan Mallon <ryan@bluewatersys.com> TI CODEC and OMAP fixes Signed-off-by: Peter Ujfalusi <peter.ujfalusi@nokia.com> Signed-off-by: Janusz Krzysztofik <jkrzyszt@tis.icnet.pl> Signed-off-by: Jarkko Nikula <jhnikula@gmail.com> Samsung platform and misc fixes :- Signed-off-by: Chanwoo Choi <cw00.choi@samsung.com> Signed-off-by: Joonyoung Shim <jy0922.shim@samsung.com> Signed-off-by: Kyungmin Park <kyungmin.park@samsung.com> Reviewed-by: Jassi Brar <jassi.brar@samsung.com> Signed-off-by: Seungwhan Youn <sw.youn@samsung.com> MPC8610 and PPC fixes. Signed-off-by: Timur Tabi <timur@freescale.com> i.MX fixes and some core fixes. Signed-off-by: Sascha Hauer <s.hauer@pengutronix.de> J4740 platform fixes:- Signed-off-by: Lars-Peter Clausen <lars@metafoo.de> CC: Tony Lindgren <tony@atomide.com> CC: Nicolas Ferre <nicolas.ferre@atmel.com> CC: Kevin Hilman <khilman@deeprootsystems.com> CC: Sascha Hauer <s.hauer@pengutronix.de> CC: Atsushi Nemoto <anemo@mba.ocn.ne.jp> CC: Kuninori Morimoto <morimoto.kuninori@renesas.com> CC: Daniel Gloeckner <dg@emlix.com> CC: Manuel Lauss <mano@roarinelk.homelinux.net> CC: Mike Frysinger <vapier.adi@gmail.com> CC: Arnaud Patard <apatard@mandriva.com> CC: Wan ZongShun <mcuos.com@gmail.com> Acked-by: Mark Brown <broonie@opensource.wolfsonmicro.com> Signed-off-by: Liam Girdwood <lrg@slimlogic.co.uk>
2010-03-17 20:15:21 +00:00
i2c_set_clientdata(i2c, wm8971);
ret = devm_snd_soc_register_component(&i2c->dev,
&soc_component_dev_wm8971, &wm8971_dai, 1);
return ret;
}
static const struct i2c_device_id wm8971_i2c_id[] = {
{ "wm8971", 0 },
{ }
};
MODULE_DEVICE_TABLE(i2c, wm8971_i2c_id);
static struct i2c_driver wm8971_i2c_driver = {
.driver = {
.name = "wm8971",
},
ASoC: multi-component - ASoC Multi-Component Support This patch extends the ASoC API to allow sound cards to have more than one CODEC and more than one platform DMA controller. This is achieved by dividing some current ASoC structures that contain both driver data and device data into structures that only either contain device data or driver data. i.e. struct snd_soc_codec ---> struct snd_soc_codec (device data) +-> struct snd_soc_codec_driver (driver data) struct snd_soc_platform ---> struct snd_soc_platform (device data) +-> struct snd_soc_platform_driver (driver data) struct snd_soc_dai ---> struct snd_soc_dai (device data) +-> struct snd_soc_dai_driver (driver data) struct snd_soc_device ---> deleted This now allows ASoC to be more tightly aligned with the Linux driver model and also means that every ASoC codec, platform and (platform) DAI is a kernel device. ASoC component private data is now stored as device private data. The ASoC sound card struct snd_soc_card has also been updated to store lists of it's components rather than a pointer to a codec and platform. The PCM runtime struct soc_pcm_runtime now has pointers to all its components. This patch adds DAPM support for ASoC multi-component and removes struct snd_soc_socdev from DAPM core. All DAPM calls are now made on a card, codec or runtime PCM level basis rather than using snd_soc_socdev. Other notable multi-component changes:- * Stream operations now de-reference less structures. * close_delayed work() now runs on a DAI basis rather than looping all DAIs in a card. * PM suspend()/resume() operations can now handle N CODECs and Platforms per sound card. * Added soc_bind_dai_link() to bind the component devices to the sound card. * Added soc_dai_link_probe() and soc_dai_link_remove() to probe and remove DAI link components. * sysfs entries can now be registered per component per card. * snd_soc_new_pcms() functionailty rolled into dai_link_probe(). * snd_soc_register_codec() now does all the codec list and mutex init. This patch changes the probe() and remove() of the CODEC drivers as follows:- o Make CODEC driver a platform driver o Moved all struct snd_soc_codec list, mutex, etc initialiasation to core. o Removed all static codec pointers (drivers now support > 1 codec dev) o snd_soc_register_pcms() now done by core. o snd_soc_register_dai() folded into snd_soc_register_codec(). CS4270 portions: Acked-by: Timur Tabi <timur@freescale.com> Some TLV320aic23 and Cirrus platform fixes. Signed-off-by: Ryan Mallon <ryan@bluewatersys.com> TI CODEC and OMAP fixes Signed-off-by: Peter Ujfalusi <peter.ujfalusi@nokia.com> Signed-off-by: Janusz Krzysztofik <jkrzyszt@tis.icnet.pl> Signed-off-by: Jarkko Nikula <jhnikula@gmail.com> Samsung platform and misc fixes :- Signed-off-by: Chanwoo Choi <cw00.choi@samsung.com> Signed-off-by: Joonyoung Shim <jy0922.shim@samsung.com> Signed-off-by: Kyungmin Park <kyungmin.park@samsung.com> Reviewed-by: Jassi Brar <jassi.brar@samsung.com> Signed-off-by: Seungwhan Youn <sw.youn@samsung.com> MPC8610 and PPC fixes. Signed-off-by: Timur Tabi <timur@freescale.com> i.MX fixes and some core fixes. Signed-off-by: Sascha Hauer <s.hauer@pengutronix.de> J4740 platform fixes:- Signed-off-by: Lars-Peter Clausen <lars@metafoo.de> CC: Tony Lindgren <tony@atomide.com> CC: Nicolas Ferre <nicolas.ferre@atmel.com> CC: Kevin Hilman <khilman@deeprootsystems.com> CC: Sascha Hauer <s.hauer@pengutronix.de> CC: Atsushi Nemoto <anemo@mba.ocn.ne.jp> CC: Kuninori Morimoto <morimoto.kuninori@renesas.com> CC: Daniel Gloeckner <dg@emlix.com> CC: Manuel Lauss <mano@roarinelk.homelinux.net> CC: Mike Frysinger <vapier.adi@gmail.com> CC: Arnaud Patard <apatard@mandriva.com> CC: Wan ZongShun <mcuos.com@gmail.com> Acked-by: Mark Brown <broonie@opensource.wolfsonmicro.com> Signed-off-by: Liam Girdwood <lrg@slimlogic.co.uk>
2010-03-17 20:15:21 +00:00
.probe = wm8971_i2c_probe,
.id_table = wm8971_i2c_id,
};
module_i2c_driver(wm8971_i2c_driver);
MODULE_DESCRIPTION("ASoC WM8971 driver");
MODULE_AUTHOR("Lab126");
MODULE_LICENSE("GPL");