2019-05-27 08:55:01 +02:00
/* SPDX-License-Identifier: GPL-2.0-or-later */
2005-11-11 14:25:24 +11:00
# ifndef _ASM_POWERPC_PAGE_H
# define _ASM_POWERPC_PAGE_H
/*
* Copyright ( C ) 2001 , 2005 IBM Corporation .
*/
2008-10-20 03:16:55 +00:00
# ifndef __ASSEMBLY__
# include <linux/types.h>
2015-10-08 13:29:28 +05:30
# include <linux/kernel.h>
2023-08-09 10:07:13 +02:00
# include <linux/bug.h>
powerpc: fix linux-next build failure
Today's linux-next build (powerpc allyesconfig) failed like this:
In file included from arch/powerpc/include/asm/mmu-hash64.h:17,
from arch/powerpc/include/asm/mmu.h:8,
from arch/powerpc/include/asm/pgtable.h:8,
from arch/powerpc/mm/slb.c:20:
arch/powerpc/include/asm/page.h:76: error: expected '=', ',', ';', 'asm' or '__attribute__' before 'memstart_addr'
arch/powerpc/include/asm/page.h:77: error: expected '=', ',', ';', 'asm' or '__attribute__' before 'kernstart_addr'
Caused by commit 600715dcdf567c86f8b2c6173fcfb4b873e25a19 ("generic: add
phys_addr_t for holding physical addresses") from the tip-core tree.
This only fails if CONFIG_RELOCATABLE is set.
So include that instead of asm/types.h in asm/page.h for
the CONFIG_RELOCATABLE case.
Signed-off-by: Stephen Rothwell <sfr@canb.auug.org.au>
Cc: ppc-dev <linuxppc-dev@ozlabs.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Jeremy Fitzhardinge <jeremy@goop.org>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-10-16 20:29:07 +11:00
# else
# include <asm/types.h>
2008-10-20 03:16:55 +00:00
# endif
2018-07-05 16:24:57 +00:00
# include <asm/asm-const.h>
2005-11-11 14:25:24 +11:00
/*
powerpc/44x: Support for 256KB PAGE_SIZE
This patch adds support for 256KB pages on ppc44x-based boards.
For simplification of implementation with 256KB pages we still assume
2-level paging. As a side effect this leads to wasting extra memory space
reserved for PTE tables: only 1/4 of pages allocated for PTEs are
actually used. But this may be an acceptable trade-off to achieve the
high performance we have with big PAGE_SIZEs in some applications (e.g.
RAID).
Also with 256KB PAGE_SIZE we increase THREAD_SIZE up to 32KB to minimize
the risk of stack overflows in the cases of on-stack arrays, which size
depends on the page size (e.g. multipage BIOs, NTFS, etc.).
With 256KB PAGE_SIZE we need to decrease the PKMAP_ORDER at least down
to 9, otherwise all high memory (2 ^ 10 * PAGE_SIZE == 256MB) we'll be
occupied by PKMAP addresses leaving no place for vmalloc. We do not
separate PKMAP_ORDER for 256K from 16K/64K PAGE_SIZE here; actually that
value of 10 in support for 16K/64K had been selected rather intuitively.
Thus now for all cases of PAGE_SIZE on ppc44x (including the default, 4KB,
one) we have 512 pages for PKMAP.
Because ELF standard supports only page sizes up to 64K, then you should
use binutils later than 2.17.50.0.3 with '-zmax-page-size' set to 256K
for building applications, which are to be run with the 256KB-page sized
kernel. If using the older binutils, then you should patch them like follows:
--- binutils/bfd/elf32-ppc.c.orig
+++ binutils/bfd/elf32-ppc.c
-#define ELF_MAXPAGESIZE 0x10000
+#define ELF_MAXPAGESIZE 0x40000
One more restriction we currently have with 256KB page sizes is inability
to use shmem safely, so, for now, the 256KB is available only if you turn
the CONFIG_SHMEM option off (another variant is to use BROKEN).
Though, if you need shmem with 256KB pages, you can always remove the !SHMEM
dependency in 'config PPC_256K_PAGES', and use the workaround available here:
http://lkml.org/lkml/2008/12/19/20
Signed-off-by: Yuri Tikhonov <yur@emcraft.com>
Signed-off-by: Ilya Yanok <yanok@emcraft.com>
Signed-off-by: Josh Boyer <jwboyer@linux.vnet.ibm.com>
2009-01-29 01:40:44 +00:00
* On regular PPC32 page size is 4 K ( but we support 4 K / 16 K / 64 K / 256 K pages
2019-02-21 19:08:46 +00:00
* on PPC44x and 4 K / 16 K on 8 xx ) . For PPC64 we support either 4 K or 64 K software
2005-11-11 14:25:24 +11:00
* page size . When using 64 K pages however , whether we are really supporting
* 64 K pages in HW or not is irrelevant to those definitions .
*/
2019-02-21 19:08:46 +00:00
# define PAGE_SHIFT CONFIG_PPC_PAGE_SHIFT
2005-11-11 14:25:24 +11:00
# define PAGE_SIZE (ASM_CONST(1) << PAGE_SHIFT)
2011-06-28 09:54:48 +00:00
# ifndef __ASSEMBLY__
2019-04-26 05:59:48 +00:00
# ifndef CONFIG_HUGETLB_PAGE
2011-06-28 09:54:48 +00:00
# define HPAGE_SHIFT PAGE_SHIFT
2019-04-26 05:59:48 +00:00
# elif defined(CONFIG_PPC_BOOK3S_64)
extern unsigned int hpage_shift ;
# define HPAGE_SHIFT hpage_shift
# elif defined(CONFIG_PPC_8xx)
# define HPAGE_SHIFT 19 /* 512k pages */
2022-09-19 19:01:38 +02:00
# elif defined(CONFIG_PPC_E500)
2019-04-26 05:59:48 +00:00
# define HPAGE_SHIFT 22 /* 4M pages */
2011-06-28 09:54:48 +00:00
# endif
# define HPAGE_SIZE ((1UL) << HPAGE_SHIFT)
# define HPAGE_MASK (~(HPAGE_SIZE - 1))
# define HUGETLB_PAGE_ORDER (HPAGE_SHIFT - PAGE_SHIFT)
# define HUGE_MAX_HSTATE (MMU_PAGE_COUNT-1)
# endif
2005-11-11 14:25:24 +11:00
/*
* Subtle : ( 1 < < PAGE_SHIFT ) is an int , not an unsigned long . So if we
* assign PAGE_MASK to a larger type it gets extended the way we want
* ( i . e . with 1 s in the high bits )
*/
# define PAGE_MASK (~((1 << PAGE_SHIFT) - 1))
2005-12-05 10:24:33 -06:00
/*
* KERNELBASE is the virtual address of the start of the kernel , it ' s often
* the same as PAGE_OFFSET , but _might not be_ .
*
* The kdump dump kernel is one example where KERNELBASE ! = PAGE_OFFSET .
*
2008-04-22 04:22:34 +10:00
* PAGE_OFFSET is the virtual address of the start of lowmem .
*
* PHYSICAL_START is the physical address of the start of the kernel .
*
* MEMORY_START is the physical address of the start of lowmem .
*
* KERNELBASE , PAGE_OFFSET , and PHYSICAL_START are all configurable on
* ppc32 and based on how they are set we determine MEMORY_START .
*
* For the linear mapping the following equation should be true :
* KERNELBASE - PAGE_OFFSET = PHYSICAL_START - MEMORY_START
*
* Also , KERNELBASE > = PAGE_OFFSET and PHYSICAL_START > = MEMORY_START
*
2013-10-27 11:47:19 +05:30
* There are two ways to determine a physical address from a virtual one :
2008-04-22 04:22:34 +10:00
* va = pa + PAGE_OFFSET - MEMORY_START
* va = pa + KERNELBASE - PHYSICAL_START
2005-12-05 10:24:33 -06:00
*
* If you want to know something ' s offset from the start of the kernel you
* should subtract KERNELBASE .
*
* If you want to test if something ' s a kernel address , use is_kernel_addr ( ) .
*/
2005-12-04 18:39:23 +11:00
2008-04-22 04:22:34 +10:00
# define KERNELBASE ASM_CONST(CONFIG_KERNEL_START)
# define PAGE_OFFSET ASM_CONST(CONFIG_PAGE_OFFSET)
# define LOAD_OFFSET ASM_CONST((CONFIG_KERNEL_START-CONFIG_PHYSICAL_START))
2011-12-14 22:57:15 +00:00
# if defined(CONFIG_NONSTATIC_KERNEL)
2008-04-22 04:22:34 +10:00
# ifndef __ASSEMBLY__
2008-10-20 03:16:55 +00:00
2008-04-22 04:22:34 +10:00
extern phys_addr_t memstart_addr ;
extern phys_addr_t kernstart_addr ;
powerpc: Define virtual-physical translations for RELOCATABLE
We find the runtime address of _stext and relocate ourselves based
on the following calculation.
virtual_base = ALIGN(KERNELBASE,KERNEL_TLB_PIN_SIZE) +
MODULO(_stext.run,KERNEL_TLB_PIN_SIZE)
relocate() is called with the Effective Virtual Base Address (as
shown below)
| Phys. Addr| Virt. Addr |
Page |------------------------|
Boundary | | |
| | |
| | |
Kernel Load |___________|_ __ _ _ _ _|<- Effective
Addr(_stext)| | ^ |Virt. Base Addr
| | | |
| | | |
| |reloc_offset|
| | | |
| | | |
| |______v_____|<-(KERNELBASE)%TLB_SIZE
| | |
| | |
| | |
Page |-----------|------------|
Boundary | | |
On BookE, we need __va() & __pa() early in the boot process to access
the device tree.
Currently this has been defined as :
#define __va(x) ((void *)(unsigned long)((phys_addr_t)(x) -
PHYSICAL_START + KERNELBASE)
where:
PHYSICAL_START is kernstart_addr - a variable updated at runtime.
KERNELBASE is the compile time Virtual base address of kernel.
This won't work for us, as kernstart_addr is dynamic and will yield different
results for __va()/__pa() for same mapping.
e.g.,
Let the kernel be loaded at 64MB and KERNELBASE be 0xc0000000 (same as
PAGE_OFFSET).
In this case, we would be mapping 0 to 0xc0000000, and kernstart_addr = 64M
Now __va(1MB) = (0x100000) - (0x4000000) + 0xc0000000
= 0xbc100000 , which is wrong.
it should be : 0xc0000000 + 0x100000 = 0xc0100000
On platforms which support AMP, like PPC_47x (based on 44x), the kernel
could be loaded at highmem. Hence we cannot always depend on the compile
time constants for mapping.
Here are the possible solutions:
1) Update kernstart_addr(PHSYICAL_START) to match the Physical address of
compile time KERNELBASE value, instead of the actual Physical_Address(_stext).
The disadvantage is that we may break other users of PHYSICAL_START. They
could be replaced with __pa(_stext).
2) Redefine __va() & __pa() with relocation offset
#ifdef CONFIG_RELOCATABLE_PPC32
#define __va(x) ((void *)(unsigned long)((phys_addr_t)(x) - PHYSICAL_START + (KERNELBASE + RELOC_OFFSET)))
#define __pa(x) ((unsigned long)(x) + PHYSICAL_START - (KERNELBASE + RELOC_OFFSET))
#endif
where, RELOC_OFFSET could be
a) A variable, say relocation_offset (like kernstart_addr), updated
at boot time. This impacts performance, as we have to load an additional
variable from memory.
OR
b) #define RELOC_OFFSET ((PHYSICAL_START & PPC_PIN_SIZE_OFFSET_MASK) - \
(KERNELBASE & PPC_PIN_SIZE_OFFSET_MASK))
This introduces more calculations for doing the translation.
3) Redefine __va() & __pa() with a new variable
i.e,
#define __va(x) ((void *)(unsigned long)((phys_addr_t)(x) + VIRT_PHYS_OFFSET))
where VIRT_PHYS_OFFSET :
#ifdef CONFIG_RELOCATABLE_PPC32
#define VIRT_PHYS_OFFSET virt_phys_offset
#else
#define VIRT_PHYS_OFFSET (KERNELBASE - PHYSICAL_START)
#endif /* CONFIG_RELOCATABLE_PPC32 */
where virt_phy_offset is updated at runtime to :
Effective KERNELBASE - kernstart_addr.
Taking our example, above:
virt_phys_offset = effective_kernelstart_vaddr - kernstart_addr
= 0xc0400000 - 0x400000
= 0xc0000000
and
__va(0x100000) = 0xc0000000 + 0x100000 = 0xc0100000
which is what we want.
I have implemented (3) in the following patch which has same cost of
operation as the existing one.
I have tested the patches on 440x platforms only. However this should
work fine for PPC_47x also, as we only depend on the runtime address
and the current TLB XLAT entry for the startup code, which is available
in r25. I don't have access to a 47x board yet. So, it would be great if
somebody could test this on 47x.
Signed-off-by: Suzuki K. Poulose <suzuki@in.ibm.com>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Kumar Gala <galak@kernel.crashing.org>
Cc: linuxppc-dev <linuxppc-dev@lists.ozlabs.org>
Signed-off-by: Josh Boyer <jwboyer@gmail.com>
2011-12-14 22:58:37 +00:00
2016-07-13 09:14:40 +08:00
# if defined(CONFIG_RELOCATABLE) && defined(CONFIG_PPC32)
powerpc: Define virtual-physical translations for RELOCATABLE
We find the runtime address of _stext and relocate ourselves based
on the following calculation.
virtual_base = ALIGN(KERNELBASE,KERNEL_TLB_PIN_SIZE) +
MODULO(_stext.run,KERNEL_TLB_PIN_SIZE)
relocate() is called with the Effective Virtual Base Address (as
shown below)
| Phys. Addr| Virt. Addr |
Page |------------------------|
Boundary | | |
| | |
| | |
Kernel Load |___________|_ __ _ _ _ _|<- Effective
Addr(_stext)| | ^ |Virt. Base Addr
| | | |
| | | |
| |reloc_offset|
| | | |
| | | |
| |______v_____|<-(KERNELBASE)%TLB_SIZE
| | |
| | |
| | |
Page |-----------|------------|
Boundary | | |
On BookE, we need __va() & __pa() early in the boot process to access
the device tree.
Currently this has been defined as :
#define __va(x) ((void *)(unsigned long)((phys_addr_t)(x) -
PHYSICAL_START + KERNELBASE)
where:
PHYSICAL_START is kernstart_addr - a variable updated at runtime.
KERNELBASE is the compile time Virtual base address of kernel.
This won't work for us, as kernstart_addr is dynamic and will yield different
results for __va()/__pa() for same mapping.
e.g.,
Let the kernel be loaded at 64MB and KERNELBASE be 0xc0000000 (same as
PAGE_OFFSET).
In this case, we would be mapping 0 to 0xc0000000, and kernstart_addr = 64M
Now __va(1MB) = (0x100000) - (0x4000000) + 0xc0000000
= 0xbc100000 , which is wrong.
it should be : 0xc0000000 + 0x100000 = 0xc0100000
On platforms which support AMP, like PPC_47x (based on 44x), the kernel
could be loaded at highmem. Hence we cannot always depend on the compile
time constants for mapping.
Here are the possible solutions:
1) Update kernstart_addr(PHSYICAL_START) to match the Physical address of
compile time KERNELBASE value, instead of the actual Physical_Address(_stext).
The disadvantage is that we may break other users of PHYSICAL_START. They
could be replaced with __pa(_stext).
2) Redefine __va() & __pa() with relocation offset
#ifdef CONFIG_RELOCATABLE_PPC32
#define __va(x) ((void *)(unsigned long)((phys_addr_t)(x) - PHYSICAL_START + (KERNELBASE + RELOC_OFFSET)))
#define __pa(x) ((unsigned long)(x) + PHYSICAL_START - (KERNELBASE + RELOC_OFFSET))
#endif
where, RELOC_OFFSET could be
a) A variable, say relocation_offset (like kernstart_addr), updated
at boot time. This impacts performance, as we have to load an additional
variable from memory.
OR
b) #define RELOC_OFFSET ((PHYSICAL_START & PPC_PIN_SIZE_OFFSET_MASK) - \
(KERNELBASE & PPC_PIN_SIZE_OFFSET_MASK))
This introduces more calculations for doing the translation.
3) Redefine __va() & __pa() with a new variable
i.e,
#define __va(x) ((void *)(unsigned long)((phys_addr_t)(x) + VIRT_PHYS_OFFSET))
where VIRT_PHYS_OFFSET :
#ifdef CONFIG_RELOCATABLE_PPC32
#define VIRT_PHYS_OFFSET virt_phys_offset
#else
#define VIRT_PHYS_OFFSET (KERNELBASE - PHYSICAL_START)
#endif /* CONFIG_RELOCATABLE_PPC32 */
where virt_phy_offset is updated at runtime to :
Effective KERNELBASE - kernstart_addr.
Taking our example, above:
virt_phys_offset = effective_kernelstart_vaddr - kernstart_addr
= 0xc0400000 - 0x400000
= 0xc0000000
and
__va(0x100000) = 0xc0000000 + 0x100000 = 0xc0100000
which is what we want.
I have implemented (3) in the following patch which has same cost of
operation as the existing one.
I have tested the patches on 440x platforms only. However this should
work fine for PPC_47x also, as we only depend on the runtime address
and the current TLB XLAT entry for the startup code, which is available
in r25. I don't have access to a 47x board yet. So, it would be great if
somebody could test this on 47x.
Signed-off-by: Suzuki K. Poulose <suzuki@in.ibm.com>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Kumar Gala <galak@kernel.crashing.org>
Cc: linuxppc-dev <linuxppc-dev@lists.ozlabs.org>
Signed-off-by: Josh Boyer <jwboyer@gmail.com>
2011-12-14 22:58:37 +00:00
extern long long virt_phys_offset ;
2008-04-22 04:22:34 +10:00
# endif
powerpc: Define virtual-physical translations for RELOCATABLE
We find the runtime address of _stext and relocate ourselves based
on the following calculation.
virtual_base = ALIGN(KERNELBASE,KERNEL_TLB_PIN_SIZE) +
MODULO(_stext.run,KERNEL_TLB_PIN_SIZE)
relocate() is called with the Effective Virtual Base Address (as
shown below)
| Phys. Addr| Virt. Addr |
Page |------------------------|
Boundary | | |
| | |
| | |
Kernel Load |___________|_ __ _ _ _ _|<- Effective
Addr(_stext)| | ^ |Virt. Base Addr
| | | |
| | | |
| |reloc_offset|
| | | |
| | | |
| |______v_____|<-(KERNELBASE)%TLB_SIZE
| | |
| | |
| | |
Page |-----------|------------|
Boundary | | |
On BookE, we need __va() & __pa() early in the boot process to access
the device tree.
Currently this has been defined as :
#define __va(x) ((void *)(unsigned long)((phys_addr_t)(x) -
PHYSICAL_START + KERNELBASE)
where:
PHYSICAL_START is kernstart_addr - a variable updated at runtime.
KERNELBASE is the compile time Virtual base address of kernel.
This won't work for us, as kernstart_addr is dynamic and will yield different
results for __va()/__pa() for same mapping.
e.g.,
Let the kernel be loaded at 64MB and KERNELBASE be 0xc0000000 (same as
PAGE_OFFSET).
In this case, we would be mapping 0 to 0xc0000000, and kernstart_addr = 64M
Now __va(1MB) = (0x100000) - (0x4000000) + 0xc0000000
= 0xbc100000 , which is wrong.
it should be : 0xc0000000 + 0x100000 = 0xc0100000
On platforms which support AMP, like PPC_47x (based on 44x), the kernel
could be loaded at highmem. Hence we cannot always depend on the compile
time constants for mapping.
Here are the possible solutions:
1) Update kernstart_addr(PHSYICAL_START) to match the Physical address of
compile time KERNELBASE value, instead of the actual Physical_Address(_stext).
The disadvantage is that we may break other users of PHYSICAL_START. They
could be replaced with __pa(_stext).
2) Redefine __va() & __pa() with relocation offset
#ifdef CONFIG_RELOCATABLE_PPC32
#define __va(x) ((void *)(unsigned long)((phys_addr_t)(x) - PHYSICAL_START + (KERNELBASE + RELOC_OFFSET)))
#define __pa(x) ((unsigned long)(x) + PHYSICAL_START - (KERNELBASE + RELOC_OFFSET))
#endif
where, RELOC_OFFSET could be
a) A variable, say relocation_offset (like kernstart_addr), updated
at boot time. This impacts performance, as we have to load an additional
variable from memory.
OR
b) #define RELOC_OFFSET ((PHYSICAL_START & PPC_PIN_SIZE_OFFSET_MASK) - \
(KERNELBASE & PPC_PIN_SIZE_OFFSET_MASK))
This introduces more calculations for doing the translation.
3) Redefine __va() & __pa() with a new variable
i.e,
#define __va(x) ((void *)(unsigned long)((phys_addr_t)(x) + VIRT_PHYS_OFFSET))
where VIRT_PHYS_OFFSET :
#ifdef CONFIG_RELOCATABLE_PPC32
#define VIRT_PHYS_OFFSET virt_phys_offset
#else
#define VIRT_PHYS_OFFSET (KERNELBASE - PHYSICAL_START)
#endif /* CONFIG_RELOCATABLE_PPC32 */
where virt_phy_offset is updated at runtime to :
Effective KERNELBASE - kernstart_addr.
Taking our example, above:
virt_phys_offset = effective_kernelstart_vaddr - kernstart_addr
= 0xc0400000 - 0x400000
= 0xc0000000
and
__va(0x100000) = 0xc0000000 + 0x100000 = 0xc0100000
which is what we want.
I have implemented (3) in the following patch which has same cost of
operation as the existing one.
I have tested the patches on 440x platforms only. However this should
work fine for PPC_47x also, as we only depend on the runtime address
and the current TLB XLAT entry for the startup code, which is available
in r25. I don't have access to a 47x board yet. So, it would be great if
somebody could test this on 47x.
Signed-off-by: Suzuki K. Poulose <suzuki@in.ibm.com>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Kumar Gala <galak@kernel.crashing.org>
Cc: linuxppc-dev <linuxppc-dev@lists.ozlabs.org>
Signed-off-by: Josh Boyer <jwboyer@gmail.com>
2011-12-14 22:58:37 +00:00
# endif /* __ASSEMBLY__ */
2008-04-22 04:22:34 +10:00
# define PHYSICAL_START kernstart_addr
powerpc: Define virtual-physical translations for RELOCATABLE
We find the runtime address of _stext and relocate ourselves based
on the following calculation.
virtual_base = ALIGN(KERNELBASE,KERNEL_TLB_PIN_SIZE) +
MODULO(_stext.run,KERNEL_TLB_PIN_SIZE)
relocate() is called with the Effective Virtual Base Address (as
shown below)
| Phys. Addr| Virt. Addr |
Page |------------------------|
Boundary | | |
| | |
| | |
Kernel Load |___________|_ __ _ _ _ _|<- Effective
Addr(_stext)| | ^ |Virt. Base Addr
| | | |
| | | |
| |reloc_offset|
| | | |
| | | |
| |______v_____|<-(KERNELBASE)%TLB_SIZE
| | |
| | |
| | |
Page |-----------|------------|
Boundary | | |
On BookE, we need __va() & __pa() early in the boot process to access
the device tree.
Currently this has been defined as :
#define __va(x) ((void *)(unsigned long)((phys_addr_t)(x) -
PHYSICAL_START + KERNELBASE)
where:
PHYSICAL_START is kernstart_addr - a variable updated at runtime.
KERNELBASE is the compile time Virtual base address of kernel.
This won't work for us, as kernstart_addr is dynamic and will yield different
results for __va()/__pa() for same mapping.
e.g.,
Let the kernel be loaded at 64MB and KERNELBASE be 0xc0000000 (same as
PAGE_OFFSET).
In this case, we would be mapping 0 to 0xc0000000, and kernstart_addr = 64M
Now __va(1MB) = (0x100000) - (0x4000000) + 0xc0000000
= 0xbc100000 , which is wrong.
it should be : 0xc0000000 + 0x100000 = 0xc0100000
On platforms which support AMP, like PPC_47x (based on 44x), the kernel
could be loaded at highmem. Hence we cannot always depend on the compile
time constants for mapping.
Here are the possible solutions:
1) Update kernstart_addr(PHSYICAL_START) to match the Physical address of
compile time KERNELBASE value, instead of the actual Physical_Address(_stext).
The disadvantage is that we may break other users of PHYSICAL_START. They
could be replaced with __pa(_stext).
2) Redefine __va() & __pa() with relocation offset
#ifdef CONFIG_RELOCATABLE_PPC32
#define __va(x) ((void *)(unsigned long)((phys_addr_t)(x) - PHYSICAL_START + (KERNELBASE + RELOC_OFFSET)))
#define __pa(x) ((unsigned long)(x) + PHYSICAL_START - (KERNELBASE + RELOC_OFFSET))
#endif
where, RELOC_OFFSET could be
a) A variable, say relocation_offset (like kernstart_addr), updated
at boot time. This impacts performance, as we have to load an additional
variable from memory.
OR
b) #define RELOC_OFFSET ((PHYSICAL_START & PPC_PIN_SIZE_OFFSET_MASK) - \
(KERNELBASE & PPC_PIN_SIZE_OFFSET_MASK))
This introduces more calculations for doing the translation.
3) Redefine __va() & __pa() with a new variable
i.e,
#define __va(x) ((void *)(unsigned long)((phys_addr_t)(x) + VIRT_PHYS_OFFSET))
where VIRT_PHYS_OFFSET :
#ifdef CONFIG_RELOCATABLE_PPC32
#define VIRT_PHYS_OFFSET virt_phys_offset
#else
#define VIRT_PHYS_OFFSET (KERNELBASE - PHYSICAL_START)
#endif /* CONFIG_RELOCATABLE_PPC32 */
where virt_phy_offset is updated at runtime to :
Effective KERNELBASE - kernstart_addr.
Taking our example, above:
virt_phys_offset = effective_kernelstart_vaddr - kernstart_addr
= 0xc0400000 - 0x400000
= 0xc0000000
and
__va(0x100000) = 0xc0000000 + 0x100000 = 0xc0100000
which is what we want.
I have implemented (3) in the following patch which has same cost of
operation as the existing one.
I have tested the patches on 440x platforms only. However this should
work fine for PPC_47x also, as we only depend on the runtime address
and the current TLB XLAT entry for the startup code, which is available
in r25. I don't have access to a 47x board yet. So, it would be great if
somebody could test this on 47x.
Signed-off-by: Suzuki K. Poulose <suzuki@in.ibm.com>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Kumar Gala <galak@kernel.crashing.org>
Cc: linuxppc-dev <linuxppc-dev@lists.ozlabs.org>
Signed-off-by: Josh Boyer <jwboyer@gmail.com>
2011-12-14 22:58:37 +00:00
# else /* !CONFIG_NONSTATIC_KERNEL */
2008-04-22 04:22:34 +10:00
# define PHYSICAL_START ASM_CONST(CONFIG_PHYSICAL_START)
powerpc: Make the 64-bit kernel as a position-independent executable
This implements CONFIG_RELOCATABLE for 64-bit by making the kernel as
a position-independent executable (PIE) when it is set. This involves
processing the dynamic relocations in the image in the early stages of
booting, even if the kernel is being run at the address it is linked at,
since the linker does not necessarily fill in words in the image for
which there are dynamic relocations. (In fact the linker does fill in
such words for 64-bit executables, though not for 32-bit executables,
so in principle we could avoid calling relocate() entirely when we're
running a 64-bit kernel at the linked address.)
The dynamic relocations are processed by a new function relocate(addr),
where the addr parameter is the virtual address where the image will be
run. In fact we call it twice; once before calling prom_init, and again
when starting the main kernel. This means that reloc_offset() returns
0 in prom_init (since it has been relocated to the address it is running
at), which necessitated a few adjustments.
This also changes __va and __pa to use an equivalent definition that is
simpler. With the relocatable kernel, PAGE_OFFSET and MEMORY_START are
constants (for 64-bit) whereas PHYSICAL_START is a variable (and
KERNELBASE ideally should be too, but isn't yet).
With this, relocatable kernels still copy themselves down to physical
address 0 and run there.
Signed-off-by: Paul Mackerras <paulus@samba.org>
2008-08-30 11:43:47 +10:00
# endif
powerpc: Define virtual-physical translations for RELOCATABLE
We find the runtime address of _stext and relocate ourselves based
on the following calculation.
virtual_base = ALIGN(KERNELBASE,KERNEL_TLB_PIN_SIZE) +
MODULO(_stext.run,KERNEL_TLB_PIN_SIZE)
relocate() is called with the Effective Virtual Base Address (as
shown below)
| Phys. Addr| Virt. Addr |
Page |------------------------|
Boundary | | |
| | |
| | |
Kernel Load |___________|_ __ _ _ _ _|<- Effective
Addr(_stext)| | ^ |Virt. Base Addr
| | | |
| | | |
| |reloc_offset|
| | | |
| | | |
| |______v_____|<-(KERNELBASE)%TLB_SIZE
| | |
| | |
| | |
Page |-----------|------------|
Boundary | | |
On BookE, we need __va() & __pa() early in the boot process to access
the device tree.
Currently this has been defined as :
#define __va(x) ((void *)(unsigned long)((phys_addr_t)(x) -
PHYSICAL_START + KERNELBASE)
where:
PHYSICAL_START is kernstart_addr - a variable updated at runtime.
KERNELBASE is the compile time Virtual base address of kernel.
This won't work for us, as kernstart_addr is dynamic and will yield different
results for __va()/__pa() for same mapping.
e.g.,
Let the kernel be loaded at 64MB and KERNELBASE be 0xc0000000 (same as
PAGE_OFFSET).
In this case, we would be mapping 0 to 0xc0000000, and kernstart_addr = 64M
Now __va(1MB) = (0x100000) - (0x4000000) + 0xc0000000
= 0xbc100000 , which is wrong.
it should be : 0xc0000000 + 0x100000 = 0xc0100000
On platforms which support AMP, like PPC_47x (based on 44x), the kernel
could be loaded at highmem. Hence we cannot always depend on the compile
time constants for mapping.
Here are the possible solutions:
1) Update kernstart_addr(PHSYICAL_START) to match the Physical address of
compile time KERNELBASE value, instead of the actual Physical_Address(_stext).
The disadvantage is that we may break other users of PHYSICAL_START. They
could be replaced with __pa(_stext).
2) Redefine __va() & __pa() with relocation offset
#ifdef CONFIG_RELOCATABLE_PPC32
#define __va(x) ((void *)(unsigned long)((phys_addr_t)(x) - PHYSICAL_START + (KERNELBASE + RELOC_OFFSET)))
#define __pa(x) ((unsigned long)(x) + PHYSICAL_START - (KERNELBASE + RELOC_OFFSET))
#endif
where, RELOC_OFFSET could be
a) A variable, say relocation_offset (like kernstart_addr), updated
at boot time. This impacts performance, as we have to load an additional
variable from memory.
OR
b) #define RELOC_OFFSET ((PHYSICAL_START & PPC_PIN_SIZE_OFFSET_MASK) - \
(KERNELBASE & PPC_PIN_SIZE_OFFSET_MASK))
This introduces more calculations for doing the translation.
3) Redefine __va() & __pa() with a new variable
i.e,
#define __va(x) ((void *)(unsigned long)((phys_addr_t)(x) + VIRT_PHYS_OFFSET))
where VIRT_PHYS_OFFSET :
#ifdef CONFIG_RELOCATABLE_PPC32
#define VIRT_PHYS_OFFSET virt_phys_offset
#else
#define VIRT_PHYS_OFFSET (KERNELBASE - PHYSICAL_START)
#endif /* CONFIG_RELOCATABLE_PPC32 */
where virt_phy_offset is updated at runtime to :
Effective KERNELBASE - kernstart_addr.
Taking our example, above:
virt_phys_offset = effective_kernelstart_vaddr - kernstart_addr
= 0xc0400000 - 0x400000
= 0xc0000000
and
__va(0x100000) = 0xc0000000 + 0x100000 = 0xc0100000
which is what we want.
I have implemented (3) in the following patch which has same cost of
operation as the existing one.
I have tested the patches on 440x platforms only. However this should
work fine for PPC_47x also, as we only depend on the runtime address
and the current TLB XLAT entry for the startup code, which is available
in r25. I don't have access to a 47x board yet. So, it would be great if
somebody could test this on 47x.
Signed-off-by: Suzuki K. Poulose <suzuki@in.ibm.com>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Kumar Gala <galak@kernel.crashing.org>
Cc: linuxppc-dev <linuxppc-dev@lists.ozlabs.org>
Signed-off-by: Josh Boyer <jwboyer@gmail.com>
2011-12-14 22:58:37 +00:00
/* See Description below for VIRT_PHYS_OFFSET */
2015-10-06 22:48:20 -05:00
# if defined(CONFIG_PPC32) && defined(CONFIG_BOOKE)
# ifdef CONFIG_RELOCATABLE
powerpc: Define virtual-physical translations for RELOCATABLE
We find the runtime address of _stext and relocate ourselves based
on the following calculation.
virtual_base = ALIGN(KERNELBASE,KERNEL_TLB_PIN_SIZE) +
MODULO(_stext.run,KERNEL_TLB_PIN_SIZE)
relocate() is called with the Effective Virtual Base Address (as
shown below)
| Phys. Addr| Virt. Addr |
Page |------------------------|
Boundary | | |
| | |
| | |
Kernel Load |___________|_ __ _ _ _ _|<- Effective
Addr(_stext)| | ^ |Virt. Base Addr
| | | |
| | | |
| |reloc_offset|
| | | |
| | | |
| |______v_____|<-(KERNELBASE)%TLB_SIZE
| | |
| | |
| | |
Page |-----------|------------|
Boundary | | |
On BookE, we need __va() & __pa() early in the boot process to access
the device tree.
Currently this has been defined as :
#define __va(x) ((void *)(unsigned long)((phys_addr_t)(x) -
PHYSICAL_START + KERNELBASE)
where:
PHYSICAL_START is kernstart_addr - a variable updated at runtime.
KERNELBASE is the compile time Virtual base address of kernel.
This won't work for us, as kernstart_addr is dynamic and will yield different
results for __va()/__pa() for same mapping.
e.g.,
Let the kernel be loaded at 64MB and KERNELBASE be 0xc0000000 (same as
PAGE_OFFSET).
In this case, we would be mapping 0 to 0xc0000000, and kernstart_addr = 64M
Now __va(1MB) = (0x100000) - (0x4000000) + 0xc0000000
= 0xbc100000 , which is wrong.
it should be : 0xc0000000 + 0x100000 = 0xc0100000
On platforms which support AMP, like PPC_47x (based on 44x), the kernel
could be loaded at highmem. Hence we cannot always depend on the compile
time constants for mapping.
Here are the possible solutions:
1) Update kernstart_addr(PHSYICAL_START) to match the Physical address of
compile time KERNELBASE value, instead of the actual Physical_Address(_stext).
The disadvantage is that we may break other users of PHYSICAL_START. They
could be replaced with __pa(_stext).
2) Redefine __va() & __pa() with relocation offset
#ifdef CONFIG_RELOCATABLE_PPC32
#define __va(x) ((void *)(unsigned long)((phys_addr_t)(x) - PHYSICAL_START + (KERNELBASE + RELOC_OFFSET)))
#define __pa(x) ((unsigned long)(x) + PHYSICAL_START - (KERNELBASE + RELOC_OFFSET))
#endif
where, RELOC_OFFSET could be
a) A variable, say relocation_offset (like kernstart_addr), updated
at boot time. This impacts performance, as we have to load an additional
variable from memory.
OR
b) #define RELOC_OFFSET ((PHYSICAL_START & PPC_PIN_SIZE_OFFSET_MASK) - \
(KERNELBASE & PPC_PIN_SIZE_OFFSET_MASK))
This introduces more calculations for doing the translation.
3) Redefine __va() & __pa() with a new variable
i.e,
#define __va(x) ((void *)(unsigned long)((phys_addr_t)(x) + VIRT_PHYS_OFFSET))
where VIRT_PHYS_OFFSET :
#ifdef CONFIG_RELOCATABLE_PPC32
#define VIRT_PHYS_OFFSET virt_phys_offset
#else
#define VIRT_PHYS_OFFSET (KERNELBASE - PHYSICAL_START)
#endif /* CONFIG_RELOCATABLE_PPC32 */
where virt_phy_offset is updated at runtime to :
Effective KERNELBASE - kernstart_addr.
Taking our example, above:
virt_phys_offset = effective_kernelstart_vaddr - kernstart_addr
= 0xc0400000 - 0x400000
= 0xc0000000
and
__va(0x100000) = 0xc0000000 + 0x100000 = 0xc0100000
which is what we want.
I have implemented (3) in the following patch which has same cost of
operation as the existing one.
I have tested the patches on 440x platforms only. However this should
work fine for PPC_47x also, as we only depend on the runtime address
and the current TLB XLAT entry for the startup code, which is available
in r25. I don't have access to a 47x board yet. So, it would be great if
somebody could test this on 47x.
Signed-off-by: Suzuki K. Poulose <suzuki@in.ibm.com>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Kumar Gala <galak@kernel.crashing.org>
Cc: linuxppc-dev <linuxppc-dev@lists.ozlabs.org>
Signed-off-by: Josh Boyer <jwboyer@gmail.com>
2011-12-14 22:58:37 +00:00
# define VIRT_PHYS_OFFSET virt_phys_offset
# else
# define VIRT_PHYS_OFFSET (KERNELBASE - PHYSICAL_START)
# endif
2015-10-06 22:48:20 -05:00
# endif
powerpc: Define virtual-physical translations for RELOCATABLE
We find the runtime address of _stext and relocate ourselves based
on the following calculation.
virtual_base = ALIGN(KERNELBASE,KERNEL_TLB_PIN_SIZE) +
MODULO(_stext.run,KERNEL_TLB_PIN_SIZE)
relocate() is called with the Effective Virtual Base Address (as
shown below)
| Phys. Addr| Virt. Addr |
Page |------------------------|
Boundary | | |
| | |
| | |
Kernel Load |___________|_ __ _ _ _ _|<- Effective
Addr(_stext)| | ^ |Virt. Base Addr
| | | |
| | | |
| |reloc_offset|
| | | |
| | | |
| |______v_____|<-(KERNELBASE)%TLB_SIZE
| | |
| | |
| | |
Page |-----------|------------|
Boundary | | |
On BookE, we need __va() & __pa() early in the boot process to access
the device tree.
Currently this has been defined as :
#define __va(x) ((void *)(unsigned long)((phys_addr_t)(x) -
PHYSICAL_START + KERNELBASE)
where:
PHYSICAL_START is kernstart_addr - a variable updated at runtime.
KERNELBASE is the compile time Virtual base address of kernel.
This won't work for us, as kernstart_addr is dynamic and will yield different
results for __va()/__pa() for same mapping.
e.g.,
Let the kernel be loaded at 64MB and KERNELBASE be 0xc0000000 (same as
PAGE_OFFSET).
In this case, we would be mapping 0 to 0xc0000000, and kernstart_addr = 64M
Now __va(1MB) = (0x100000) - (0x4000000) + 0xc0000000
= 0xbc100000 , which is wrong.
it should be : 0xc0000000 + 0x100000 = 0xc0100000
On platforms which support AMP, like PPC_47x (based on 44x), the kernel
could be loaded at highmem. Hence we cannot always depend on the compile
time constants for mapping.
Here are the possible solutions:
1) Update kernstart_addr(PHSYICAL_START) to match the Physical address of
compile time KERNELBASE value, instead of the actual Physical_Address(_stext).
The disadvantage is that we may break other users of PHYSICAL_START. They
could be replaced with __pa(_stext).
2) Redefine __va() & __pa() with relocation offset
#ifdef CONFIG_RELOCATABLE_PPC32
#define __va(x) ((void *)(unsigned long)((phys_addr_t)(x) - PHYSICAL_START + (KERNELBASE + RELOC_OFFSET)))
#define __pa(x) ((unsigned long)(x) + PHYSICAL_START - (KERNELBASE + RELOC_OFFSET))
#endif
where, RELOC_OFFSET could be
a) A variable, say relocation_offset (like kernstart_addr), updated
at boot time. This impacts performance, as we have to load an additional
variable from memory.
OR
b) #define RELOC_OFFSET ((PHYSICAL_START & PPC_PIN_SIZE_OFFSET_MASK) - \
(KERNELBASE & PPC_PIN_SIZE_OFFSET_MASK))
This introduces more calculations for doing the translation.
3) Redefine __va() & __pa() with a new variable
i.e,
#define __va(x) ((void *)(unsigned long)((phys_addr_t)(x) + VIRT_PHYS_OFFSET))
where VIRT_PHYS_OFFSET :
#ifdef CONFIG_RELOCATABLE_PPC32
#define VIRT_PHYS_OFFSET virt_phys_offset
#else
#define VIRT_PHYS_OFFSET (KERNELBASE - PHYSICAL_START)
#endif /* CONFIG_RELOCATABLE_PPC32 */
where virt_phy_offset is updated at runtime to :
Effective KERNELBASE - kernstart_addr.
Taking our example, above:
virt_phys_offset = effective_kernelstart_vaddr - kernstart_addr
= 0xc0400000 - 0x400000
= 0xc0000000
and
__va(0x100000) = 0xc0000000 + 0x100000 = 0xc0100000
which is what we want.
I have implemented (3) in the following patch which has same cost of
operation as the existing one.
I have tested the patches on 440x platforms only. However this should
work fine for PPC_47x also, as we only depend on the runtime address
and the current TLB XLAT entry for the startup code, which is available
in r25. I don't have access to a 47x board yet. So, it would be great if
somebody could test this on 47x.
Signed-off-by: Suzuki K. Poulose <suzuki@in.ibm.com>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Kumar Gala <galak@kernel.crashing.org>
Cc: linuxppc-dev <linuxppc-dev@lists.ozlabs.org>
Signed-off-by: Josh Boyer <jwboyer@gmail.com>
2011-12-14 22:58:37 +00:00
powerpc: Make the 64-bit kernel as a position-independent executable
This implements CONFIG_RELOCATABLE for 64-bit by making the kernel as
a position-independent executable (PIE) when it is set. This involves
processing the dynamic relocations in the image in the early stages of
booting, even if the kernel is being run at the address it is linked at,
since the linker does not necessarily fill in words in the image for
which there are dynamic relocations. (In fact the linker does fill in
such words for 64-bit executables, though not for 32-bit executables,
so in principle we could avoid calling relocate() entirely when we're
running a 64-bit kernel at the linked address.)
The dynamic relocations are processed by a new function relocate(addr),
where the addr parameter is the virtual address where the image will be
run. In fact we call it twice; once before calling prom_init, and again
when starting the main kernel. This means that reloc_offset() returns
0 in prom_init (since it has been relocated to the address it is running
at), which necessitated a few adjustments.
This also changes __va and __pa to use an equivalent definition that is
simpler. With the relocatable kernel, PAGE_OFFSET and MEMORY_START are
constants (for 64-bit) whereas PHYSICAL_START is a variable (and
KERNELBASE ideally should be too, but isn't yet).
With this, relocatable kernels still copy themselves down to physical
address 0 and run there.
Signed-off-by: Paul Mackerras <paulus@samba.org>
2008-08-30 11:43:47 +10:00
# ifdef CONFIG_PPC64
# define MEMORY_START 0UL
2011-12-14 22:57:15 +00:00
# elif defined(CONFIG_NONSTATIC_KERNEL)
powerpc: Make the 64-bit kernel as a position-independent executable
This implements CONFIG_RELOCATABLE for 64-bit by making the kernel as
a position-independent executable (PIE) when it is set. This involves
processing the dynamic relocations in the image in the early stages of
booting, even if the kernel is being run at the address it is linked at,
since the linker does not necessarily fill in words in the image for
which there are dynamic relocations. (In fact the linker does fill in
such words for 64-bit executables, though not for 32-bit executables,
so in principle we could avoid calling relocate() entirely when we're
running a 64-bit kernel at the linked address.)
The dynamic relocations are processed by a new function relocate(addr),
where the addr parameter is the virtual address where the image will be
run. In fact we call it twice; once before calling prom_init, and again
when starting the main kernel. This means that reloc_offset() returns
0 in prom_init (since it has been relocated to the address it is running
at), which necessitated a few adjustments.
This also changes __va and __pa to use an equivalent definition that is
simpler. With the relocatable kernel, PAGE_OFFSET and MEMORY_START are
constants (for 64-bit) whereas PHYSICAL_START is a variable (and
KERNELBASE ideally should be too, but isn't yet).
With this, relocatable kernels still copy themselves down to physical
address 0 and run there.
Signed-off-by: Paul Mackerras <paulus@samba.org>
2008-08-30 11:43:47 +10:00
# define MEMORY_START memstart_addr
# else
2008-04-22 04:22:34 +10:00
# define MEMORY_START (PHYSICAL_START + PAGE_OFFSET - KERNELBASE)
# endif
2005-11-11 14:25:24 +11:00
# ifdef CONFIG_FLATMEM
2011-03-24 11:51:19 +00:00
# define ARCH_PFN_OFFSET ((unsigned long)(MEMORY_START >> PAGE_SHIFT))
2005-11-11 14:25:24 +11:00
# endif
2010-04-21 02:12:58 -05:00
/*
* On Book - E parts we need __va to parse the device tree and we can ' t
* determine MEMORY_START until then . However we can determine PHYSICAL_START
* from information at hand ( program counter , TLB lookup ) .
*
2016-07-13 09:14:40 +08:00
* On BookE with RELOCATABLE & & PPC32
powerpc: Define virtual-physical translations for RELOCATABLE
We find the runtime address of _stext and relocate ourselves based
on the following calculation.
virtual_base = ALIGN(KERNELBASE,KERNEL_TLB_PIN_SIZE) +
MODULO(_stext.run,KERNEL_TLB_PIN_SIZE)
relocate() is called with the Effective Virtual Base Address (as
shown below)
| Phys. Addr| Virt. Addr |
Page |------------------------|
Boundary | | |
| | |
| | |
Kernel Load |___________|_ __ _ _ _ _|<- Effective
Addr(_stext)| | ^ |Virt. Base Addr
| | | |
| | | |
| |reloc_offset|
| | | |
| | | |
| |______v_____|<-(KERNELBASE)%TLB_SIZE
| | |
| | |
| | |
Page |-----------|------------|
Boundary | | |
On BookE, we need __va() & __pa() early in the boot process to access
the device tree.
Currently this has been defined as :
#define __va(x) ((void *)(unsigned long)((phys_addr_t)(x) -
PHYSICAL_START + KERNELBASE)
where:
PHYSICAL_START is kernstart_addr - a variable updated at runtime.
KERNELBASE is the compile time Virtual base address of kernel.
This won't work for us, as kernstart_addr is dynamic and will yield different
results for __va()/__pa() for same mapping.
e.g.,
Let the kernel be loaded at 64MB and KERNELBASE be 0xc0000000 (same as
PAGE_OFFSET).
In this case, we would be mapping 0 to 0xc0000000, and kernstart_addr = 64M
Now __va(1MB) = (0x100000) - (0x4000000) + 0xc0000000
= 0xbc100000 , which is wrong.
it should be : 0xc0000000 + 0x100000 = 0xc0100000
On platforms which support AMP, like PPC_47x (based on 44x), the kernel
could be loaded at highmem. Hence we cannot always depend on the compile
time constants for mapping.
Here are the possible solutions:
1) Update kernstart_addr(PHSYICAL_START) to match the Physical address of
compile time KERNELBASE value, instead of the actual Physical_Address(_stext).
The disadvantage is that we may break other users of PHYSICAL_START. They
could be replaced with __pa(_stext).
2) Redefine __va() & __pa() with relocation offset
#ifdef CONFIG_RELOCATABLE_PPC32
#define __va(x) ((void *)(unsigned long)((phys_addr_t)(x) - PHYSICAL_START + (KERNELBASE + RELOC_OFFSET)))
#define __pa(x) ((unsigned long)(x) + PHYSICAL_START - (KERNELBASE + RELOC_OFFSET))
#endif
where, RELOC_OFFSET could be
a) A variable, say relocation_offset (like kernstart_addr), updated
at boot time. This impacts performance, as we have to load an additional
variable from memory.
OR
b) #define RELOC_OFFSET ((PHYSICAL_START & PPC_PIN_SIZE_OFFSET_MASK) - \
(KERNELBASE & PPC_PIN_SIZE_OFFSET_MASK))
This introduces more calculations for doing the translation.
3) Redefine __va() & __pa() with a new variable
i.e,
#define __va(x) ((void *)(unsigned long)((phys_addr_t)(x) + VIRT_PHYS_OFFSET))
where VIRT_PHYS_OFFSET :
#ifdef CONFIG_RELOCATABLE_PPC32
#define VIRT_PHYS_OFFSET virt_phys_offset
#else
#define VIRT_PHYS_OFFSET (KERNELBASE - PHYSICAL_START)
#endif /* CONFIG_RELOCATABLE_PPC32 */
where virt_phy_offset is updated at runtime to :
Effective KERNELBASE - kernstart_addr.
Taking our example, above:
virt_phys_offset = effective_kernelstart_vaddr - kernstart_addr
= 0xc0400000 - 0x400000
= 0xc0000000
and
__va(0x100000) = 0xc0000000 + 0x100000 = 0xc0100000
which is what we want.
I have implemented (3) in the following patch which has same cost of
operation as the existing one.
I have tested the patches on 440x platforms only. However this should
work fine for PPC_47x also, as we only depend on the runtime address
and the current TLB XLAT entry for the startup code, which is available
in r25. I don't have access to a 47x board yet. So, it would be great if
somebody could test this on 47x.
Signed-off-by: Suzuki K. Poulose <suzuki@in.ibm.com>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Kumar Gala <galak@kernel.crashing.org>
Cc: linuxppc-dev <linuxppc-dev@lists.ozlabs.org>
Signed-off-by: Josh Boyer <jwboyer@gmail.com>
2011-12-14 22:58:37 +00:00
*
2016-07-13 09:14:40 +08:00
* With RELOCATABLE & & PPC32 , we support loading the kernel at any physical
powerpc: Define virtual-physical translations for RELOCATABLE
We find the runtime address of _stext and relocate ourselves based
on the following calculation.
virtual_base = ALIGN(KERNELBASE,KERNEL_TLB_PIN_SIZE) +
MODULO(_stext.run,KERNEL_TLB_PIN_SIZE)
relocate() is called with the Effective Virtual Base Address (as
shown below)
| Phys. Addr| Virt. Addr |
Page |------------------------|
Boundary | | |
| | |
| | |
Kernel Load |___________|_ __ _ _ _ _|<- Effective
Addr(_stext)| | ^ |Virt. Base Addr
| | | |
| | | |
| |reloc_offset|
| | | |
| | | |
| |______v_____|<-(KERNELBASE)%TLB_SIZE
| | |
| | |
| | |
Page |-----------|------------|
Boundary | | |
On BookE, we need __va() & __pa() early in the boot process to access
the device tree.
Currently this has been defined as :
#define __va(x) ((void *)(unsigned long)((phys_addr_t)(x) -
PHYSICAL_START + KERNELBASE)
where:
PHYSICAL_START is kernstart_addr - a variable updated at runtime.
KERNELBASE is the compile time Virtual base address of kernel.
This won't work for us, as kernstart_addr is dynamic and will yield different
results for __va()/__pa() for same mapping.
e.g.,
Let the kernel be loaded at 64MB and KERNELBASE be 0xc0000000 (same as
PAGE_OFFSET).
In this case, we would be mapping 0 to 0xc0000000, and kernstart_addr = 64M
Now __va(1MB) = (0x100000) - (0x4000000) + 0xc0000000
= 0xbc100000 , which is wrong.
it should be : 0xc0000000 + 0x100000 = 0xc0100000
On platforms which support AMP, like PPC_47x (based on 44x), the kernel
could be loaded at highmem. Hence we cannot always depend on the compile
time constants for mapping.
Here are the possible solutions:
1) Update kernstart_addr(PHSYICAL_START) to match the Physical address of
compile time KERNELBASE value, instead of the actual Physical_Address(_stext).
The disadvantage is that we may break other users of PHYSICAL_START. They
could be replaced with __pa(_stext).
2) Redefine __va() & __pa() with relocation offset
#ifdef CONFIG_RELOCATABLE_PPC32
#define __va(x) ((void *)(unsigned long)((phys_addr_t)(x) - PHYSICAL_START + (KERNELBASE + RELOC_OFFSET)))
#define __pa(x) ((unsigned long)(x) + PHYSICAL_START - (KERNELBASE + RELOC_OFFSET))
#endif
where, RELOC_OFFSET could be
a) A variable, say relocation_offset (like kernstart_addr), updated
at boot time. This impacts performance, as we have to load an additional
variable from memory.
OR
b) #define RELOC_OFFSET ((PHYSICAL_START & PPC_PIN_SIZE_OFFSET_MASK) - \
(KERNELBASE & PPC_PIN_SIZE_OFFSET_MASK))
This introduces more calculations for doing the translation.
3) Redefine __va() & __pa() with a new variable
i.e,
#define __va(x) ((void *)(unsigned long)((phys_addr_t)(x) + VIRT_PHYS_OFFSET))
where VIRT_PHYS_OFFSET :
#ifdef CONFIG_RELOCATABLE_PPC32
#define VIRT_PHYS_OFFSET virt_phys_offset
#else
#define VIRT_PHYS_OFFSET (KERNELBASE - PHYSICAL_START)
#endif /* CONFIG_RELOCATABLE_PPC32 */
where virt_phy_offset is updated at runtime to :
Effective KERNELBASE - kernstart_addr.
Taking our example, above:
virt_phys_offset = effective_kernelstart_vaddr - kernstart_addr
= 0xc0400000 - 0x400000
= 0xc0000000
and
__va(0x100000) = 0xc0000000 + 0x100000 = 0xc0100000
which is what we want.
I have implemented (3) in the following patch which has same cost of
operation as the existing one.
I have tested the patches on 440x platforms only. However this should
work fine for PPC_47x also, as we only depend on the runtime address
and the current TLB XLAT entry for the startup code, which is available
in r25. I don't have access to a 47x board yet. So, it would be great if
somebody could test this on 47x.
Signed-off-by: Suzuki K. Poulose <suzuki@in.ibm.com>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Kumar Gala <galak@kernel.crashing.org>
Cc: linuxppc-dev <linuxppc-dev@lists.ozlabs.org>
Signed-off-by: Josh Boyer <jwboyer@gmail.com>
2011-12-14 22:58:37 +00:00
* address without any restriction on the page alignment .
*
* We find the runtime address of _stext and relocate ourselves based on
* the following calculation :
*
* virtual_base = ALIGN_DOWN ( KERNELBASE , 256 M ) +
* MODULO ( _stext . run , 256 M )
* and create the following mapping :
*
* ALIGN_DOWN ( _stext . run , 256 M ) = > ALIGN_DOWN ( KERNELBASE , 256 M )
*
* When we process relocations , we cannot depend on the
* existing equation for the __va ( ) / __pa ( ) translations :
*
* __va ( x ) = ( x ) - PHYSICAL_START + KERNELBASE
*
* Where :
* PHYSICAL_START = kernstart_addr = Physical address of _stext
* KERNELBASE = Compiled virtual address of _stext .
*
* This formula holds true iff , kernel load address is TLB page aligned .
*
* In our case , we need to also account for the shift in the kernel Virtual
* address .
*
* E . g . ,
*
* Let the kernel be loaded at 64 MB and KERNELBASE be 0xc0000000 ( same as PAGE_OFFSET ) .
* In this case , we would be mapping 0 to 0xc0000000 , and kernstart_addr = 64 M
*
* Now __va ( 1 MB ) = ( 0x100000 ) - ( 0x4000000 ) + 0xc0000000
* = 0xbc100000 , which is wrong .
*
* Rather , it should be : 0xc0000000 + 0x100000 = 0xc0100000
* according to our mapping .
*
* Hence we use the following formula to get the translations right :
*
* __va ( x ) = ( x ) - [ PHYSICAL_START - Effective KERNELBASE ]
*
* Where :
* PHYSICAL_START = dynamic load address . ( kernstart_addr variable )
* Effective KERNELBASE = virtual_base =
* = ALIGN_DOWN ( KERNELBASE , 256 M ) +
* MODULO ( PHYSICAL_START , 256 M )
*
* To make the cost of __va ( ) / __pa ( ) more light weight , we introduce
* a new variable virt_phys_offset , which will hold :
*
* virt_phys_offset = Effective KERNELBASE - PHYSICAL_START
* = ALIGN_DOWN ( KERNELBASE , 256 M ) -
* ALIGN_DOWN ( PHYSICALSTART , 256 M )
*
* Hence :
*
* __va ( x ) = x - PHYSICAL_START + Effective KERNELBASE
* = x + virt_phys_offset
*
* and
* __pa ( x ) = x + PHYSICAL_START - Effective KERNELBASE
* = x - virt_phys_offset
*
2010-04-21 02:12:58 -05:00
* On non - Book - E PPC64 PAGE_OFFSET and MEMORY_START are constants so use
* the other definitions for __va & __pa .
*/
2015-10-06 22:48:20 -05:00
# if defined(CONFIG_PPC32) && defined(CONFIG_BOOKE)
powerpc: Define virtual-physical translations for RELOCATABLE
We find the runtime address of _stext and relocate ourselves based
on the following calculation.
virtual_base = ALIGN(KERNELBASE,KERNEL_TLB_PIN_SIZE) +
MODULO(_stext.run,KERNEL_TLB_PIN_SIZE)
relocate() is called with the Effective Virtual Base Address (as
shown below)
| Phys. Addr| Virt. Addr |
Page |------------------------|
Boundary | | |
| | |
| | |
Kernel Load |___________|_ __ _ _ _ _|<- Effective
Addr(_stext)| | ^ |Virt. Base Addr
| | | |
| | | |
| |reloc_offset|
| | | |
| | | |
| |______v_____|<-(KERNELBASE)%TLB_SIZE
| | |
| | |
| | |
Page |-----------|------------|
Boundary | | |
On BookE, we need __va() & __pa() early in the boot process to access
the device tree.
Currently this has been defined as :
#define __va(x) ((void *)(unsigned long)((phys_addr_t)(x) -
PHYSICAL_START + KERNELBASE)
where:
PHYSICAL_START is kernstart_addr - a variable updated at runtime.
KERNELBASE is the compile time Virtual base address of kernel.
This won't work for us, as kernstart_addr is dynamic and will yield different
results for __va()/__pa() for same mapping.
e.g.,
Let the kernel be loaded at 64MB and KERNELBASE be 0xc0000000 (same as
PAGE_OFFSET).
In this case, we would be mapping 0 to 0xc0000000, and kernstart_addr = 64M
Now __va(1MB) = (0x100000) - (0x4000000) + 0xc0000000
= 0xbc100000 , which is wrong.
it should be : 0xc0000000 + 0x100000 = 0xc0100000
On platforms which support AMP, like PPC_47x (based on 44x), the kernel
could be loaded at highmem. Hence we cannot always depend on the compile
time constants for mapping.
Here are the possible solutions:
1) Update kernstart_addr(PHSYICAL_START) to match the Physical address of
compile time KERNELBASE value, instead of the actual Physical_Address(_stext).
The disadvantage is that we may break other users of PHYSICAL_START. They
could be replaced with __pa(_stext).
2) Redefine __va() & __pa() with relocation offset
#ifdef CONFIG_RELOCATABLE_PPC32
#define __va(x) ((void *)(unsigned long)((phys_addr_t)(x) - PHYSICAL_START + (KERNELBASE + RELOC_OFFSET)))
#define __pa(x) ((unsigned long)(x) + PHYSICAL_START - (KERNELBASE + RELOC_OFFSET))
#endif
where, RELOC_OFFSET could be
a) A variable, say relocation_offset (like kernstart_addr), updated
at boot time. This impacts performance, as we have to load an additional
variable from memory.
OR
b) #define RELOC_OFFSET ((PHYSICAL_START & PPC_PIN_SIZE_OFFSET_MASK) - \
(KERNELBASE & PPC_PIN_SIZE_OFFSET_MASK))
This introduces more calculations for doing the translation.
3) Redefine __va() & __pa() with a new variable
i.e,
#define __va(x) ((void *)(unsigned long)((phys_addr_t)(x) + VIRT_PHYS_OFFSET))
where VIRT_PHYS_OFFSET :
#ifdef CONFIG_RELOCATABLE_PPC32
#define VIRT_PHYS_OFFSET virt_phys_offset
#else
#define VIRT_PHYS_OFFSET (KERNELBASE - PHYSICAL_START)
#endif /* CONFIG_RELOCATABLE_PPC32 */
where virt_phy_offset is updated at runtime to :
Effective KERNELBASE - kernstart_addr.
Taking our example, above:
virt_phys_offset = effective_kernelstart_vaddr - kernstart_addr
= 0xc0400000 - 0x400000
= 0xc0000000
and
__va(0x100000) = 0xc0000000 + 0x100000 = 0xc0100000
which is what we want.
I have implemented (3) in the following patch which has same cost of
operation as the existing one.
I have tested the patches on 440x platforms only. However this should
work fine for PPC_47x also, as we only depend on the runtime address
and the current TLB XLAT entry for the startup code, which is available
in r25. I don't have access to a 47x board yet. So, it would be great if
somebody could test this on 47x.
Signed-off-by: Suzuki K. Poulose <suzuki@in.ibm.com>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Kumar Gala <galak@kernel.crashing.org>
Cc: linuxppc-dev <linuxppc-dev@lists.ozlabs.org>
Signed-off-by: Josh Boyer <jwboyer@gmail.com>
2011-12-14 22:58:37 +00:00
# define __va(x) ((void *)(unsigned long)((phys_addr_t)(x) + VIRT_PHYS_OFFSET))
2020-01-06 12:29:53 +08:00
# define __pa(x) ((phys_addr_t)(unsigned long)(x) - VIRT_PHYS_OFFSET)
2010-04-21 02:12:58 -05:00
# else
powerpc: Work around gcc miscompilation of __pa() on 64-bit
On 64-bit, __pa(&static_var) gets miscompiled by recent versions of
gcc as something like:
addis 3,2,.LANCHOR1+4611686018427387904@toc@ha
addi 3,3,.LANCHOR1+4611686018427387904@toc@l
This ends up effectively ignoring the offset, since its bottom 32 bits
are zero, and means that the result of __pa() still has 0xC in the top
nibble. This happens with gcc 4.8.1, at least.
To work around this, for 64-bit we make __pa() use an AND operator,
and for symmetry, we make __va() use an OR operator. Using an AND
operator rather than a subtraction ends up with slightly shorter code
since it can be done with a single clrldi instruction, whereas it
takes three instructions to form the constant (-PAGE_OFFSET) and add
it on. (Note that MEMORY_START is always 0 on 64-bit.)
CC: <stable@vger.kernel.org>
Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
2013-08-27 16:07:49 +10:00
# ifdef CONFIG_PPC64
2022-04-07 00:58:01 +10:00
# define VIRTUAL_WARN_ON(x) WARN_ON(IS_ENABLED(CONFIG_DEBUG_VIRTUAL) && (x))
powerpc: Work around gcc miscompilation of __pa() on 64-bit
On 64-bit, __pa(&static_var) gets miscompiled by recent versions of
gcc as something like:
addis 3,2,.LANCHOR1+4611686018427387904@toc@ha
addi 3,3,.LANCHOR1+4611686018427387904@toc@l
This ends up effectively ignoring the offset, since its bottom 32 bits
are zero, and means that the result of __pa() still has 0xC in the top
nibble. This happens with gcc 4.8.1, at least.
To work around this, for 64-bit we make __pa() use an AND operator,
and for symmetry, we make __va() use an OR operator. Using an AND
operator rather than a subtraction ends up with slightly shorter code
since it can be done with a single clrldi instruction, whereas it
takes three instructions to form the constant (-PAGE_OFFSET) and add
it on. (Note that MEMORY_START is always 0 on 64-bit.)
CC: <stable@vger.kernel.org>
Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
2013-08-27 16:07:49 +10:00
/*
* gcc miscompiles ( unsigned long ) ( & static_var ) - PAGE_OFFSET
* with - mcmodel = medium , so we use & and | instead of - and + on 64 - bit .
2019-07-24 18:46:37 +10:00
* This also results in better code generation .
powerpc: Work around gcc miscompilation of __pa() on 64-bit
On 64-bit, __pa(&static_var) gets miscompiled by recent versions of
gcc as something like:
addis 3,2,.LANCHOR1+4611686018427387904@toc@ha
addi 3,3,.LANCHOR1+4611686018427387904@toc@l
This ends up effectively ignoring the offset, since its bottom 32 bits
are zero, and means that the result of __pa() still has 0xC in the top
nibble. This happens with gcc 4.8.1, at least.
To work around this, for 64-bit we make __pa() use an AND operator,
and for symmetry, we make __va() use an OR operator. Using an AND
operator rather than a subtraction ends up with slightly shorter code
since it can be done with a single clrldi instruction, whereas it
takes three instructions to form the constant (-PAGE_OFFSET) and add
it on. (Note that MEMORY_START is always 0 on 64-bit.)
CC: <stable@vger.kernel.org>
Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
2013-08-27 16:07:49 +10:00
*/
2019-07-24 18:46:37 +10:00
# define __va(x) \
( { \
2022-04-07 00:58:01 +10:00
VIRTUAL_WARN_ON ( ( unsigned long ) ( x ) > = PAGE_OFFSET ) ; \
2019-07-24 18:46:37 +10:00
( void * ) ( unsigned long ) ( ( phys_addr_t ) ( x ) | PAGE_OFFSET ) ; \
} )
# define __pa(x) \
( { \
2022-04-07 00:58:01 +10:00
VIRTUAL_WARN_ON ( ( unsigned long ) ( x ) < PAGE_OFFSET ) ; \
2019-07-24 18:46:37 +10:00
( unsigned long ) ( x ) & 0x0fffffffffffffffUL ; \
} )
powerpc: Work around gcc miscompilation of __pa() on 64-bit
On 64-bit, __pa(&static_var) gets miscompiled by recent versions of
gcc as something like:
addis 3,2,.LANCHOR1+4611686018427387904@toc@ha
addi 3,3,.LANCHOR1+4611686018427387904@toc@l
This ends up effectively ignoring the offset, since its bottom 32 bits
are zero, and means that the result of __pa() still has 0xC in the top
nibble. This happens with gcc 4.8.1, at least.
To work around this, for 64-bit we make __pa() use an AND operator,
and for symmetry, we make __va() use an OR operator. Using an AND
operator rather than a subtraction ends up with slightly shorter code
since it can be done with a single clrldi instruction, whereas it
takes three instructions to form the constant (-PAGE_OFFSET) and add
it on. (Note that MEMORY_START is always 0 on 64-bit.)
CC: <stable@vger.kernel.org>
Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
2013-08-27 16:07:49 +10:00
# else /* 32-bit, non book E */
2010-04-21 02:12:58 -05:00
# define __va(x) ((void *)(unsigned long)((phys_addr_t)(x) + PAGE_OFFSET - MEMORY_START))
powerpc: Make the 64-bit kernel as a position-independent executable
This implements CONFIG_RELOCATABLE for 64-bit by making the kernel as
a position-independent executable (PIE) when it is set. This involves
processing the dynamic relocations in the image in the early stages of
booting, even if the kernel is being run at the address it is linked at,
since the linker does not necessarily fill in words in the image for
which there are dynamic relocations. (In fact the linker does fill in
such words for 64-bit executables, though not for 32-bit executables,
so in principle we could avoid calling relocate() entirely when we're
running a 64-bit kernel at the linked address.)
The dynamic relocations are processed by a new function relocate(addr),
where the addr parameter is the virtual address where the image will be
run. In fact we call it twice; once before calling prom_init, and again
when starting the main kernel. This means that reloc_offset() returns
0 in prom_init (since it has been relocated to the address it is running
at), which necessitated a few adjustments.
This also changes __va and __pa to use an equivalent definition that is
simpler. With the relocatable kernel, PAGE_OFFSET and MEMORY_START are
constants (for 64-bit) whereas PHYSICAL_START is a variable (and
KERNELBASE ideally should be too, but isn't yet).
With this, relocatable kernels still copy themselves down to physical
address 0 and run there.
Signed-off-by: Paul Mackerras <paulus@samba.org>
2008-08-30 11:43:47 +10:00
# define __pa(x) ((unsigned long)(x) - PAGE_OFFSET + MEMORY_START)
2010-04-21 02:12:58 -05:00
# endif
powerpc: Work around gcc miscompilation of __pa() on 64-bit
On 64-bit, __pa(&static_var) gets miscompiled by recent versions of
gcc as something like:
addis 3,2,.LANCHOR1+4611686018427387904@toc@ha
addi 3,3,.LANCHOR1+4611686018427387904@toc@l
This ends up effectively ignoring the offset, since its bottom 32 bits
are zero, and means that the result of __pa() still has 0xC in the top
nibble. This happens with gcc 4.8.1, at least.
To work around this, for 64-bit we make __pa() use an AND operator,
and for symmetry, we make __va() use an OR operator. Using an AND
operator rather than a subtraction ends up with slightly shorter code
since it can be done with a single clrldi instruction, whereas it
takes three instructions to form the constant (-PAGE_OFFSET) and add
it on. (Note that MEMORY_START is always 0 on 64-bit.)
CC: <stable@vger.kernel.org>
Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
2013-08-27 16:07:49 +10:00
# endif
2005-11-11 14:25:24 +11:00
2023-08-09 10:07:13 +02:00
# ifndef __ASSEMBLY__
static inline unsigned long virt_to_pfn ( const void * kaddr )
{
return __pa ( kaddr ) > > PAGE_SHIFT ;
}
static inline const void * pfn_to_kaddr ( unsigned long pfn )
{
return __va ( pfn < < PAGE_SHIFT ) ;
}
# endif
# define virt_to_page(kaddr) pfn_to_page(virt_to_pfn(kaddr))
# define virt_addr_valid(vaddr) ({ \
unsigned long _addr = ( unsigned long ) vaddr ; \
_addr > = PAGE_OFFSET & & _addr < ( unsigned long ) high_memory & & \
pfn_valid ( virt_to_pfn ( ( void * ) _addr ) ) ; \
} )
2005-11-11 14:25:24 +11:00
/*
* Unfortunately the PLT is in the BSS in the PPC32 ELF ABI ,
* and needs to be executable . This means the whole heap ends
* up being executable .
*/
2020-04-10 14:33:05 -07:00
# define VM_DATA_DEFAULT_FLAGS32 VM_DATA_FLAGS_TSK_EXEC
# define VM_DATA_DEFAULT_FLAGS64 VM_DATA_FLAGS_NON_EXEC
2005-11-11 14:25:24 +11:00
# ifdef __powerpc64__
# include <asm/page_64.h>
# else
# include <asm/page_32.h>
# endif
2005-12-04 18:39:15 +11:00
/*
* Don ' t compare things with KERNELBASE or PAGE_OFFSET to test for
* " kernelness " , use is_kernel_addr ( ) - it should do what you want .
*/
2009-07-28 11:59:34 +10:00
# ifdef CONFIG_PPC_BOOK3E_64
# define is_kernel_addr(x) ((x) >= 0x8000000000000000ul)
2020-06-29 11:15:23 +00:00
# elif defined(CONFIG_PPC_BOOK3S_64)
2005-12-04 18:39:15 +11:00
# define is_kernel_addr(x) ((x) >= PAGE_OFFSET)
2020-06-29 11:15:23 +00:00
# else
# define is_kernel_addr(x) ((x) >= TASK_SIZE)
2009-07-28 11:59:34 +10:00
# endif
2005-12-04 18:39:15 +11:00
2013-04-28 09:37:29 +00:00
# ifndef CONFIG_PPC_BOOK3S_64
2011-06-28 09:54:48 +00:00
/*
* Use the top bit of the higher - level page table entries to indicate whether
* the entries we point to contain hugepages . This works because we know that
* the page tables live in kernel space . If we ever decide to support having
* page tables at arbitrary addresses , this breaks and will have to change .
*/
# ifdef CONFIG_PPC64
2018-11-07 01:48:03 +11:00
# define PD_HUGE 0x8000000000000000UL
2011-06-28 09:54:48 +00:00
# else
# define PD_HUGE 0x80000000
# endif
2016-02-23 13:36:17 +11:00
# else /* CONFIG_PPC_BOOK3S_64 */
/*
* Book3S 64 stores real addresses in the hugepd entries to
* avoid overlaps with _PAGE_PRESENT and _PAGE_PTE .
*/
# define HUGEPD_ADDR_MASK (0x0ffffffffffffffful & ~HUGEPD_SHIFT_MASK)
2013-04-28 09:37:29 +00:00
# endif /* CONFIG_PPC_BOOK3S_64 */
2011-06-28 09:54:48 +00:00
/*
* Some number of bits at the level of the page table that points to
* a hugepte are used to encode the size . This masks those bits .
2020-02-09 16:02:41 +00:00
* On 8 xx , HW assistance requires 4 k alignment for the hugepte .
2011-06-28 09:54:48 +00:00
*/
2020-02-09 16:02:41 +00:00
# ifdef CONFIG_PPC_8xx
# define HUGEPD_SHIFT_MASK 0xfff
# else
2011-06-28 09:54:48 +00:00
# define HUGEPD_SHIFT_MASK 0x3f
2020-02-09 16:02:41 +00:00
# endif
2011-06-28 09:54:48 +00:00
2005-11-11 14:25:24 +11:00
# ifndef __ASSEMBLY__
2016-04-29 23:25:28 +10:00
# ifdef CONFIG_PPC_BOOK3S_64
# include <asm/pgtable-be-types.h>
# else
2016-03-01 09:45:11 +05:30
# include <asm/pgtable-types.h>
2016-04-29 23:25:28 +10:00
# endif
2005-11-11 14:25:24 +11:00
struct page ;
extern void clear_user_page ( void * page , unsigned long vaddr , struct page * pg ) ;
extern void copy_user_page ( void * to , void * from , unsigned long vaddr ,
struct page * p ) ;
2011-08-30 09:19:17 +00:00
extern int devmem_is_allowed ( unsigned long pfn ) ;
2005-11-11 14:25:24 +11:00
2009-04-15 05:55:32 +00:00
# ifdef CONFIG_PPC_SMLPAR
void arch_free_page ( struct page * page , int order ) ;
# define HAVE_ARCH_FREE_PAGE
# endif
2006-05-30 13:51:37 +10:00
struct vm_area_struct ;
2008-02-08 04:22:04 -08:00
2019-09-20 17:45:37 +08:00
extern unsigned long kernstart_virt_addr ;
2019-09-20 17:45:44 +08:00
static inline unsigned long kaslr_offset ( void )
{
return kernstart_virt_addr - KERNELBASE ;
}
2006-03-27 01:15:35 -08:00
# include <asm-generic/memory_model.h>
2005-11-11 14:25:24 +11:00
# endif /* __ASSEMBLY__ */
# endif /* _ASM_POWERPC_PAGE_H */