linux/drivers/scsi/lpfc/lpfc_nportdisc.c

3141 lines
93 KiB
C
Raw Normal View History

/*******************************************************************
* This file is part of the Emulex Linux Device Driver for *
* Fibre Channel Host Bus Adapters. *
* Copyright (C) 2017-2021 Broadcom. All Rights Reserved. The term *
* Broadcom refers to Broadcom Inc. and/or its subsidiaries. *
* Copyright (C) 2004-2016 Emulex. All rights reserved. *
* EMULEX and SLI are trademarks of Emulex. *
* www.broadcom.com *
* Portions Copyright (C) 2004-2005 Christoph Hellwig *
* *
* This program is free software; you can redistribute it and/or *
* modify it under the terms of version 2 of the GNU General *
* Public License as published by the Free Software Foundation. *
* This program is distributed in the hope that it will be useful. *
* ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND *
* WARRANTIES, INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, *
* FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT, ARE *
* DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD *
* TO BE LEGALLY INVALID. See the GNU General Public License for *
* more details, a copy of which can be found in the file COPYING *
* included with this package. *
*******************************************************************/
#include <linux/blkdev.h>
#include <linux/pci.h>
include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit slab.h inclusion from percpu.h percpu.h is included by sched.h and module.h and thus ends up being included when building most .c files. percpu.h includes slab.h which in turn includes gfp.h making everything defined by the two files universally available and complicating inclusion dependencies. percpu.h -> slab.h dependency is about to be removed. Prepare for this change by updating users of gfp and slab facilities include those headers directly instead of assuming availability. As this conversion needs to touch large number of source files, the following script is used as the basis of conversion. http://userweb.kernel.org/~tj/misc/slabh-sweep.py The script does the followings. * Scan files for gfp and slab usages and update includes such that only the necessary includes are there. ie. if only gfp is used, gfp.h, if slab is used, slab.h. * When the script inserts a new include, it looks at the include blocks and try to put the new include such that its order conforms to its surrounding. It's put in the include block which contains core kernel includes, in the same order that the rest are ordered - alphabetical, Christmas tree, rev-Xmas-tree or at the end if there doesn't seem to be any matching order. * If the script can't find a place to put a new include (mostly because the file doesn't have fitting include block), it prints out an error message indicating which .h file needs to be added to the file. The conversion was done in the following steps. 1. The initial automatic conversion of all .c files updated slightly over 4000 files, deleting around 700 includes and adding ~480 gfp.h and ~3000 slab.h inclusions. The script emitted errors for ~400 files. 2. Each error was manually checked. Some didn't need the inclusion, some needed manual addition while adding it to implementation .h or embedding .c file was more appropriate for others. This step added inclusions to around 150 files. 3. The script was run again and the output was compared to the edits from #2 to make sure no file was left behind. 4. Several build tests were done and a couple of problems were fixed. e.g. lib/decompress_*.c used malloc/free() wrappers around slab APIs requiring slab.h to be added manually. 5. The script was run on all .h files but without automatically editing them as sprinkling gfp.h and slab.h inclusions around .h files could easily lead to inclusion dependency hell. Most gfp.h inclusion directives were ignored as stuff from gfp.h was usually wildly available and often used in preprocessor macros. Each slab.h inclusion directive was examined and added manually as necessary. 6. percpu.h was updated not to include slab.h. 7. Build test were done on the following configurations and failures were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my distributed build env didn't work with gcov compiles) and a few more options had to be turned off depending on archs to make things build (like ipr on powerpc/64 which failed due to missing writeq). * x86 and x86_64 UP and SMP allmodconfig and a custom test config. * powerpc and powerpc64 SMP allmodconfig * sparc and sparc64 SMP allmodconfig * ia64 SMP allmodconfig * s390 SMP allmodconfig * alpha SMP allmodconfig * um on x86_64 SMP allmodconfig 8. percpu.h modifications were reverted so that it could be applied as a separate patch and serve as bisection point. Given the fact that I had only a couple of failures from tests on step 6, I'm fairly confident about the coverage of this conversion patch. If there is a breakage, it's likely to be something in one of the arch headers which should be easily discoverable easily on most builds of the specific arch. Signed-off-by: Tejun Heo <tj@kernel.org> Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
2010-03-24 17:04:11 +09:00
#include <linux/slab.h>
#include <linux/interrupt.h>
#include <scsi/scsi.h>
#include <scsi/scsi_device.h>
#include <scsi/scsi_host.h>
#include <scsi/scsi_transport_fc.h>
#include <scsi/fc/fc_fs.h>
#include "lpfc_hw4.h"
#include "lpfc_hw.h"
#include "lpfc_sli.h"
#include "lpfc_sli4.h"
#include "lpfc_nl.h"
#include "lpfc_disc.h"
#include "lpfc.h"
#include "lpfc_scsi.h"
#include "lpfc_nvme.h"
#include "lpfc_logmsg.h"
#include "lpfc_crtn.h"
#include "lpfc_vport.h"
#include "lpfc_debugfs.h"
/* Called to verify a rcv'ed ADISC was intended for us. */
static int
lpfc_check_adisc(struct lpfc_vport *vport, struct lpfc_nodelist *ndlp,
struct lpfc_name *nn, struct lpfc_name *pn)
{
/* First, we MUST have a RPI registered */
if (!(ndlp->nlp_flag & NLP_RPI_REGISTERED))
return 0;
/* Compare the ADISC rsp WWNN / WWPN matches our internal node
* table entry for that node.
*/
if (memcmp(nn, &ndlp->nlp_nodename, sizeof (struct lpfc_name)))
return 0;
if (memcmp(pn, &ndlp->nlp_portname, sizeof (struct lpfc_name)))
return 0;
/* we match, return success */
return 1;
}
int
lpfc_check_sparm(struct lpfc_vport *vport, struct lpfc_nodelist *ndlp,
struct serv_parm *sp, uint32_t class, int flogi)
{
volatile struct serv_parm *hsp = &vport->fc_sparam;
uint16_t hsp_value, ssp_value = 0;
/*
* The receive data field size and buffer-to-buffer receive data field
* size entries are 16 bits but are represented as two 8-bit fields in
* the driver data structure to account for rsvd bits and other control
* bits. Reconstruct and compare the fields as a 16-bit values before
* correcting the byte values.
*/
if (sp->cls1.classValid) {
if (!flogi) {
hsp_value = ((hsp->cls1.rcvDataSizeMsb << 8) |
hsp->cls1.rcvDataSizeLsb);
ssp_value = ((sp->cls1.rcvDataSizeMsb << 8) |
sp->cls1.rcvDataSizeLsb);
if (!ssp_value)
goto bad_service_param;
if (ssp_value > hsp_value) {
sp->cls1.rcvDataSizeLsb =
hsp->cls1.rcvDataSizeLsb;
sp->cls1.rcvDataSizeMsb =
hsp->cls1.rcvDataSizeMsb;
}
}
} else if (class == CLASS1)
goto bad_service_param;
if (sp->cls2.classValid) {
if (!flogi) {
hsp_value = ((hsp->cls2.rcvDataSizeMsb << 8) |
hsp->cls2.rcvDataSizeLsb);
ssp_value = ((sp->cls2.rcvDataSizeMsb << 8) |
sp->cls2.rcvDataSizeLsb);
if (!ssp_value)
goto bad_service_param;
if (ssp_value > hsp_value) {
sp->cls2.rcvDataSizeLsb =
hsp->cls2.rcvDataSizeLsb;
sp->cls2.rcvDataSizeMsb =
hsp->cls2.rcvDataSizeMsb;
}
}
} else if (class == CLASS2)
goto bad_service_param;
if (sp->cls3.classValid) {
if (!flogi) {
hsp_value = ((hsp->cls3.rcvDataSizeMsb << 8) |
hsp->cls3.rcvDataSizeLsb);
ssp_value = ((sp->cls3.rcvDataSizeMsb << 8) |
sp->cls3.rcvDataSizeLsb);
if (!ssp_value)
goto bad_service_param;
if (ssp_value > hsp_value) {
sp->cls3.rcvDataSizeLsb =
hsp->cls3.rcvDataSizeLsb;
sp->cls3.rcvDataSizeMsb =
hsp->cls3.rcvDataSizeMsb;
}
}
} else if (class == CLASS3)
goto bad_service_param;
/*
* Preserve the upper four bits of the MSB from the PLOGI response.
* These bits contain the Buffer-to-Buffer State Change Number
* from the target and need to be passed to the FW.
*/
hsp_value = (hsp->cmn.bbRcvSizeMsb << 8) | hsp->cmn.bbRcvSizeLsb;
ssp_value = (sp->cmn.bbRcvSizeMsb << 8) | sp->cmn.bbRcvSizeLsb;
if (ssp_value > hsp_value) {
sp->cmn.bbRcvSizeLsb = hsp->cmn.bbRcvSizeLsb;
sp->cmn.bbRcvSizeMsb = (sp->cmn.bbRcvSizeMsb & 0xF0) |
(hsp->cmn.bbRcvSizeMsb & 0x0F);
}
memcpy(&ndlp->nlp_nodename, &sp->nodeName, sizeof (struct lpfc_name));
memcpy(&ndlp->nlp_portname, &sp->portName, sizeof (struct lpfc_name));
return 1;
bad_service_param:
scsi: lpfc: Add an internal trace log buffer The current logging methods typically end up requesting a reproduction with a different logging level set to figure out what happened. This was mainly by design to not clutter the kernel log messages with things that were typically not interesting and the messages themselves could cause other issues. When looking to make a better system, it was seen that in many cases when more data was wanted was when another message, usually at KERN_ERR level, was logged. And in most cases, what the additional logging that was then enabled was typically. Most of these areas fell into the discovery machine. Based on this summary, the following design has been put in place: The driver will maintain an internal log (256 elements of 256 bytes). The "additional logging" messages that are usually enabled in a reproduction will be changed to now log all the time to the internal log. A new logging level is defined - LOG_TRACE_EVENT. When this level is set (it is not by default) and a message marked as KERN_ERR is logged, all the messages in the internal log will be dumped to the kernel log before the KERN_ERR message is logged. There is a timestamp on each message added to the internal log. However, this timestamp is not converted to wall time when logged. The value of the timestamp is solely to give a crude time reference for the messages. Link: https://lore.kernel.org/r/20200630215001.70793-14-jsmart2021@gmail.com Signed-off-by: Dick Kennedy <dick.kennedy@broadcom.com> Signed-off-by: James Smart <jsmart2021@gmail.com> Signed-off-by: Martin K. Petersen <martin.petersen@oracle.com>
2020-06-30 14:50:00 -07:00
lpfc_printf_vlog(vport, KERN_ERR, LOG_TRACE_EVENT,
"0207 Device %x "
"(%02x:%02x:%02x:%02x:%02x:%02x:%02x:%02x) sent "
"invalid service parameters. Ignoring device.\n",
ndlp->nlp_DID,
sp->nodeName.u.wwn[0], sp->nodeName.u.wwn[1],
sp->nodeName.u.wwn[2], sp->nodeName.u.wwn[3],
sp->nodeName.u.wwn[4], sp->nodeName.u.wwn[5],
sp->nodeName.u.wwn[6], sp->nodeName.u.wwn[7]);
return 0;
}
static void *
lpfc_check_elscmpl_iocb(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocb,
struct lpfc_iocbq *rspiocb)
{
struct lpfc_dmabuf *pcmd, *prsp;
uint32_t *lp;
void *ptr = NULL;
u32 ulp_status = get_job_ulpstatus(phba, rspiocb);
pcmd = (struct lpfc_dmabuf *) cmdiocb->context2;
/* For lpfc_els_abort, context2 could be zero'ed to delay
* freeing associated memory till after ABTS completes.
*/
if (pcmd) {
prsp = list_get_first(&pcmd->list, struct lpfc_dmabuf,
list);
if (prsp) {
lp = (uint32_t *) prsp->virt;
ptr = (void *)((uint8_t *)lp + sizeof(uint32_t));
}
} else {
/* Force ulp_status error since we are returning NULL ptr */
if (!(ulp_status)) {
if (phba->sli_rev == LPFC_SLI_REV4) {
bf_set(lpfc_wcqe_c_status, &rspiocb->wcqe_cmpl,
IOSTAT_LOCAL_REJECT);
rspiocb->wcqe_cmpl.parameter = IOERR_SLI_ABORTED;
} else {
rspiocb->iocb.ulpStatus = IOSTAT_LOCAL_REJECT;
rspiocb->iocb.un.ulpWord[4] = IOERR_SLI_ABORTED;
}
}
ptr = NULL;
}
return ptr;
}
/*
* Free resources / clean up outstanding I/Os
* associated with a LPFC_NODELIST entry. This
* routine effectively results in a "software abort".
*/
void
lpfc_els_abort(struct lpfc_hba *phba, struct lpfc_nodelist *ndlp)
{
LIST_HEAD(abort_list);
scsi: lpfc: NVME Initiator: Base modifications NVME Initiator: Base modifications This patch adds base modifications for NVME initiator support. The base modifications consist of: - Formal split of SLI3 rings from SLI-4 WQs (sometimes referred to as rings as well) as implementation now widely varies between the two. - Addition of configuration modes: SCSI initiator only; NVME initiator only; NVME target only; and SCSI and NVME initiator. The configuration mode drives overall adapter configuration, offloads enabled, and resource splits. NVME support is only available on SLI-4 devices and newer fw. - Implements the following based on configuration mode: - Exchange resources are split by protocol; Obviously, if only 1 mode, then no split occurs. Default is 50/50. module attribute allows tuning. - Pools and config parameters are separated per-protocol - Each protocol has it's own set of queues, but share interrupt vectors. SCSI: SLI3 devices have few queues and the original style of queue allocation remains. SLI4 devices piggy back on an "io-channel" concept that eventually needs to merge with scsi-mq/blk-mq support (it is underway). For now, the paradigm continues as it existed prior. io channel allocates N msix and N WQs (N=4 default) and either round robins or uses cpu # modulo N for scheduling. A bunch of module parameters allow the configuration to be tuned. NVME (initiator): Allocates an msix per cpu (or whatever pci_alloc_irq_vectors gets) Allocates a WQ per cpu, and maps the WQs to msix on a WQ # modulo msix vector count basis. Module parameters exist to cap/control the config if desired. - Each protocol has its own buffer and dma pools. I apologize for the size of the patch. Signed-off-by: Dick Kennedy <dick.kennedy@broadcom.com> Signed-off-by: James Smart <james.smart@broadcom.com> ---- Reviewed-by: Hannes Reinecke <hare@suse.com> Signed-off-by: Martin K. Petersen <martin.petersen@oracle.com>
2017-02-12 13:52:30 -08:00
struct lpfc_sli_ring *pring;
struct lpfc_iocbq *iocb, *next_iocb;
scsi: lpfc: NVME Initiator: Base modifications NVME Initiator: Base modifications This patch adds base modifications for NVME initiator support. The base modifications consist of: - Formal split of SLI3 rings from SLI-4 WQs (sometimes referred to as rings as well) as implementation now widely varies between the two. - Addition of configuration modes: SCSI initiator only; NVME initiator only; NVME target only; and SCSI and NVME initiator. The configuration mode drives overall adapter configuration, offloads enabled, and resource splits. NVME support is only available on SLI-4 devices and newer fw. - Implements the following based on configuration mode: - Exchange resources are split by protocol; Obviously, if only 1 mode, then no split occurs. Default is 50/50. module attribute allows tuning. - Pools and config parameters are separated per-protocol - Each protocol has it's own set of queues, but share interrupt vectors. SCSI: SLI3 devices have few queues and the original style of queue allocation remains. SLI4 devices piggy back on an "io-channel" concept that eventually needs to merge with scsi-mq/blk-mq support (it is underway). For now, the paradigm continues as it existed prior. io channel allocates N msix and N WQs (N=4 default) and either round robins or uses cpu # modulo N for scheduling. A bunch of module parameters allow the configuration to be tuned. NVME (initiator): Allocates an msix per cpu (or whatever pci_alloc_irq_vectors gets) Allocates a WQ per cpu, and maps the WQs to msix on a WQ # modulo msix vector count basis. Module parameters exist to cap/control the config if desired. - Each protocol has its own buffer and dma pools. I apologize for the size of the patch. Signed-off-by: Dick Kennedy <dick.kennedy@broadcom.com> Signed-off-by: James Smart <james.smart@broadcom.com> ---- Reviewed-by: Hannes Reinecke <hare@suse.com> Signed-off-by: Martin K. Petersen <martin.petersen@oracle.com>
2017-02-12 13:52:30 -08:00
pring = lpfc_phba_elsring(phba);
/* In case of error recovery path, we might have a NULL pring here */
if (unlikely(!pring))
return;
/* Abort outstanding I/O on NPort <nlp_DID> */
lpfc_printf_vlog(ndlp->vport, KERN_INFO, LOG_DISCOVERY,
"2819 Abort outstanding I/O on NPort x%x "
"Data: x%x x%x x%x\n",
ndlp->nlp_DID, ndlp->nlp_flag, ndlp->nlp_state,
ndlp->nlp_rpi);
/* Clean up all fabric IOs first.*/
lpfc_fabric_abort_nport(ndlp);
/*
* Lock the ELS ring txcmplq for SLI3/SLI4 and build a local list
* of all ELS IOs that need an ABTS. The IOs need to stay on the
* txcmplq so that the abort operation completes them successfully.
*/
spin_lock_irq(&phba->hbalock);
if (phba->sli_rev == LPFC_SLI_REV4)
spin_lock(&pring->ring_lock);
list_for_each_entry_safe(iocb, next_iocb, &pring->txcmplq, list) {
/* Add to abort_list on on NDLP match. */
if (lpfc_check_sli_ndlp(phba, pring, iocb, ndlp))
list_add_tail(&iocb->dlist, &abort_list);
}
if (phba->sli_rev == LPFC_SLI_REV4)
spin_unlock(&pring->ring_lock);
spin_unlock_irq(&phba->hbalock);
/* Abort the targeted IOs and remove them from the abort list. */
list_for_each_entry_safe(iocb, next_iocb, &abort_list, dlist) {
spin_lock_irq(&phba->hbalock);
list_del_init(&iocb->dlist);
scsi: lpfc: Convert abort handling to SLI-3 and SLI-4 handlers This patch reworks the abort interfaces such that SLI-3 retains the iocb-based formatting and completions and SLI-4 now uses native WQEs and completion routines. The following changes are made: - The code is refactored from a confusing 2 routine sequence of xx_abort_iotag_issue(), which creates/formats and abort cmd, and xx_issue_abort_tag(), which then issues and handles the completion of the abort cmd - into a single interface of xx_issue_abort_iotag(). The new interface will determine whether SLI-3 or SLI-4 and then call the appropriate handler. A completion handler can now be specified to address the differences in completion handling. Note: original code is all iocb based, with SLI-4 converting to SLI-3 for the SCSI/ELS path, and NVMe natively using wqes. - The SLI-3 side is refactored: The older iocb-base lpfc_sli_issue_abort_iotag() routine is combined with the logic of lpfc_sli_abort_iotag_issue() as well as the iocb-specific code in lpfc_abort_handler() and lpfc_sli_abort_iocb() to create the new single SLI-3 abort routine that formats and issues the iocb. - The SLI-4 side is refactored and added to: The native WQE abort code in NVMe is moved to the new SLI-4 issue_abort_iotag() routine. Items in SCSI that set fields not set by NVMe is migrated into the new routine. Thus the routine supports NVMe and SCSI initiators. The nvmet block (target) formats the abort slightly different (like the old NVMe initiator) thus it has its own prep routine stolen from NVMe initiator and it retains the current code it has for issuing the WQE (does not use the commonized routine the initiators do). SLI-4 completion handlers were also added. - lpfc_abort_handler now becomes a wrapper that determines whether SLI-3 or SLI-4 and calls the proper abort handler. Link: https://lore.kernel.org/r/20201115192646.12977-16-james.smart@broadcom.com Co-developed-by: Dick Kennedy <dick.kennedy@broadcom.com> Signed-off-by: Dick Kennedy <dick.kennedy@broadcom.com> Signed-off-by: James Smart <james.smart@broadcom.com> Signed-off-by: Martin K. Petersen <martin.petersen@oracle.com>
2020-11-15 11:26:44 -08:00
lpfc_sli_issue_abort_iotag(phba, pring, iocb, NULL);
spin_unlock_irq(&phba->hbalock);
}
scsi: lpfc: Implement health checking when aborting I/O Several errors have occurred where the adapter stops or fails but does not raise the register values for the driver to detect failure. Thus driver is unaware of the failure. The failure typically results in I/O timeouts, the I/O timeout handler failing (after several seconds), and the error handler escalating recovery policy and resulting in more errors. Eventually, the driver is in a position where things have spiraled and it can't do recovery because other recovery ops are still outstanding and it becomes unusable. Resolve the situation by having the I/O timeout handler (actually a els, SCSI I/O, NVMe ls, or NVMe I/O timeout), in addition to aborting the I/O, perform a mailbox command and look for a response from the hardware. If the mailbox command fails, it will mark the adapter offline and then invoke the adapter reset handler to clean up. The new I/O timeout test will be limited to a test every 5s. If there are multiple I/O timeouts concurrently, only the 1st I/O timeout will generate the mailbox command. Further testing will only occur once a timeout occurs after a 5s delay from the last mailbox command has expired. Link: https://lore.kernel.org/r/20210104180240.46824-14-jsmart2021@gmail.com Co-developed-by: Dick Kennedy <dick.kennedy@broadcom.com> Signed-off-by: Dick Kennedy <dick.kennedy@broadcom.com> Signed-off-by: James Smart <jsmart2021@gmail.com> Signed-off-by: Martin K. Petersen <martin.petersen@oracle.com>
2021-01-04 10:02:38 -08:00
/* Make sure HBA is alive */
lpfc_issue_hb_tmo(phba);
INIT_LIST_HEAD(&abort_list);
/* Now process the txq */
spin_lock_irq(&phba->hbalock);
if (phba->sli_rev == LPFC_SLI_REV4)
spin_lock(&pring->ring_lock);
list_for_each_entry_safe(iocb, next_iocb, &pring->txq, list) {
/* Check to see if iocb matches the nport we are looking for */
if (lpfc_check_sli_ndlp(phba, pring, iocb, ndlp)) {
list_del_init(&iocb->list);
list_add_tail(&iocb->list, &abort_list);
}
}
if (phba->sli_rev == LPFC_SLI_REV4)
spin_unlock(&pring->ring_lock);
spin_unlock_irq(&phba->hbalock);
[SCSI] lpfc 8.3.1: misc fixes/changes 8.3.1 Fixes/Changes : - Fix incorrect byte-swapping on word 4 of IOCB (data length) which caused LUNs to not be discovered on big-endian (e.g. PPC) - Remove a bad cast of MBslimaddr which loses the __iomem (sparse) - Make lpfc_debugfs_mask_disc_trc static (sparse) - Correct misspelled word BlockGuard in lpfc_logmsg.h comment - Replaced repeated code segment for canceling IOCBs from a list with a function call, lpfc_sli_cancel_iocbs(). - Increased HBQ buffers to support 40KB SSC sequences. - Added sysfs interface to update speed and topology parameter without link bounce. - Fixed bug with sysfs fc_host WWNs not being updated after changing the WWNs. - Check if the active mailbox is NULL in the beginning of the mailbox timeout handler - fixes panic in the mailbox timeout handler while running IO stress test - Fixed system panic in lpfc_pci_remove_one() due to ndlp indirect reference to phba through vport - Removed de-reference of scsi device after call to scsi_done() to fix panic in scsi completion path while accessing scsi device after scsi_done is called. - Fixed "Nodelist not empty" message when unloading the driver after target reboot test - Added LP2105 HBA model description - Added code to print all 16 words of unrecognized ASYNC events - Fixed memory leak in vport create + delete loop - Added support for handling dual error bit from HBA - Fixed a driver NULL pointer dereference in lpfc_sli_process_sol_iocb - Fixed a discovery bug with FC switch reboot in lpfc_setup_disc_node - Take NULL termintator into account when calculating available buffer space Signed-off-by: James Smart <james.smart@emulex.com> Signed-off-by: James Bottomley <James.Bottomley@HansenPartnership.com>
2009-04-06 18:48:10 -04:00
/* Cancel all the IOCBs from the completions list */
lpfc_sli_cancel_iocbs(phba, &abort_list,
IOSTAT_LOCAL_REJECT, IOERR_SLI_ABORTED);
lpfc_cancel_retry_delay_tmo(phba->pport, ndlp);
}
/* lpfc_defer_plogi_acc - Issue PLOGI ACC after reg_login completes
* @phba: pointer to lpfc hba data structure.
* @login_mbox: pointer to REG_RPI mailbox object
*
* The ACC for a rcv'ed PLOGI is deferred until AFTER the REG_RPI completes
*/
static void
lpfc_defer_plogi_acc(struct lpfc_hba *phba, LPFC_MBOXQ_t *login_mbox)
{
struct lpfc_iocbq *save_iocb;
struct lpfc_nodelist *ndlp;
MAILBOX_t *mb = &login_mbox->u.mb;
int rc;
ndlp = login_mbox->ctx_ndlp;
save_iocb = login_mbox->context3;
if (mb->mbxStatus == MBX_SUCCESS) {
/* Now that REG_RPI completed successfully,
* we can now proceed with sending the PLOGI ACC.
*/
rc = lpfc_els_rsp_acc(login_mbox->vport, ELS_CMD_PLOGI,
save_iocb, ndlp, NULL);
if (rc) {
lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
"4576 PLOGI ACC fails pt2pt discovery: "
"DID %x Data: %x\n", ndlp->nlp_DID, rc);
}
}
/* Now process the REG_RPI cmpl */
lpfc_mbx_cmpl_reg_login(phba, login_mbox);
ndlp->nlp_flag &= ~NLP_ACC_REGLOGIN;
scsi: lpfc: Fix incomplete NVME discovery when target NVMe device re-discovery does not complete. Dev_loss_tmo messages seen on initiator after recovery from a link disturbance. The failing case is the following: When the driver (as a NVME target) receives a PLOGI, the driver initiates an "unreg rpi" mailbox command. While the mailbox command is in progress, the driver requests that an ACC be sent to the initiator. The target's ACC is received by the initiator and the initiator then transmits a PLOGI. The driver receives the PLOGI prior to receiving the completion for the PLOGI response WQE that sent the ACC. (Different delivery sources from the hw so the race is very possible). Given the PLOGI is prior to the ACC completion (signifying PLOGI exchange complete), the driver LS_RJT's the PRLI. The "unreg rpi" mailbox then completes. Since PRLI has been received, the driver transmits a PLOGI to restart discovery, which the initiator then ACC's. If the driver processes the (re)PLOGI ACC prior to the completing the handling for the earlier ACC it sent the intiators original PLOGI, there is no state change for completion of the (re)PLOGI. The ndlp remains in "PLOGI Sent" and the initiator continues sending PRLI's which are rejected by the target until timeout or retry is reached. Fix by: When in target mode, defer sending an ACC for the received PLOGI until unreg RPI completes. Link: https://lore.kernel.org/r/20191218235808.31922-2-jsmart2021@gmail.com Signed-off-by: Dick Kennedy <dick.kennedy@broadcom.com> Signed-off-by: James Smart <jsmart2021@gmail.com> Signed-off-by: Martin K. Petersen <martin.petersen@oracle.com>
2019-12-18 15:57:59 -08:00
kfree(save_iocb);
}
static int
lpfc_rcv_plogi(struct lpfc_vport *vport, struct lpfc_nodelist *ndlp,
struct lpfc_iocbq *cmdiocb)
{
struct lpfc_hba *phba = vport->phba;
struct lpfc_dmabuf *pcmd;
struct lpfc_dmabuf *mp;
uint64_t nlp_portwwn = 0;
uint32_t *lp;
union lpfc_wqe128 *wqe;
IOCB_t *icmd;
struct serv_parm *sp;
uint32_t ed_tov;
LPFC_MBOXQ_t *link_mbox;
LPFC_MBOXQ_t *login_mbox;
struct lpfc_iocbq *save_iocb;
struct ls_rjt stat;
uint32_t vid, flag;
int rc;
u32 remote_did;
memset(&stat, 0, sizeof (struct ls_rjt));
pcmd = (struct lpfc_dmabuf *) cmdiocb->context2;
lp = (uint32_t *) pcmd->virt;
sp = (struct serv_parm *) ((uint8_t *) lp + sizeof (uint32_t));
if (wwn_to_u64(sp->portName.u.wwn) == 0) {
scsi: lpfc: Add an internal trace log buffer The current logging methods typically end up requesting a reproduction with a different logging level set to figure out what happened. This was mainly by design to not clutter the kernel log messages with things that were typically not interesting and the messages themselves could cause other issues. When looking to make a better system, it was seen that in many cases when more data was wanted was when another message, usually at KERN_ERR level, was logged. And in most cases, what the additional logging that was then enabled was typically. Most of these areas fell into the discovery machine. Based on this summary, the following design has been put in place: The driver will maintain an internal log (256 elements of 256 bytes). The "additional logging" messages that are usually enabled in a reproduction will be changed to now log all the time to the internal log. A new logging level is defined - LOG_TRACE_EVENT. When this level is set (it is not by default) and a message marked as KERN_ERR is logged, all the messages in the internal log will be dumped to the kernel log before the KERN_ERR message is logged. There is a timestamp on each message added to the internal log. However, this timestamp is not converted to wall time when logged. The value of the timestamp is solely to give a crude time reference for the messages. Link: https://lore.kernel.org/r/20200630215001.70793-14-jsmart2021@gmail.com Signed-off-by: Dick Kennedy <dick.kennedy@broadcom.com> Signed-off-by: James Smart <jsmart2021@gmail.com> Signed-off-by: Martin K. Petersen <martin.petersen@oracle.com>
2020-06-30 14:50:00 -07:00
lpfc_printf_vlog(vport, KERN_ERR, LOG_TRACE_EVENT,
"0140 PLOGI Reject: invalid pname\n");
stat.un.b.lsRjtRsnCode = LSRJT_UNABLE_TPC;
stat.un.b.lsRjtRsnCodeExp = LSEXP_INVALID_PNAME;
lpfc_els_rsp_reject(vport, stat.un.lsRjtError, cmdiocb, ndlp,
NULL);
return 0;
}
if (wwn_to_u64(sp->nodeName.u.wwn) == 0) {
scsi: lpfc: Add an internal trace log buffer The current logging methods typically end up requesting a reproduction with a different logging level set to figure out what happened. This was mainly by design to not clutter the kernel log messages with things that were typically not interesting and the messages themselves could cause other issues. When looking to make a better system, it was seen that in many cases when more data was wanted was when another message, usually at KERN_ERR level, was logged. And in most cases, what the additional logging that was then enabled was typically. Most of these areas fell into the discovery machine. Based on this summary, the following design has been put in place: The driver will maintain an internal log (256 elements of 256 bytes). The "additional logging" messages that are usually enabled in a reproduction will be changed to now log all the time to the internal log. A new logging level is defined - LOG_TRACE_EVENT. When this level is set (it is not by default) and a message marked as KERN_ERR is logged, all the messages in the internal log will be dumped to the kernel log before the KERN_ERR message is logged. There is a timestamp on each message added to the internal log. However, this timestamp is not converted to wall time when logged. The value of the timestamp is solely to give a crude time reference for the messages. Link: https://lore.kernel.org/r/20200630215001.70793-14-jsmart2021@gmail.com Signed-off-by: Dick Kennedy <dick.kennedy@broadcom.com> Signed-off-by: James Smart <jsmart2021@gmail.com> Signed-off-by: Martin K. Petersen <martin.petersen@oracle.com>
2020-06-30 14:50:00 -07:00
lpfc_printf_vlog(vport, KERN_ERR, LOG_TRACE_EVENT,
"0141 PLOGI Reject: invalid nname\n");
stat.un.b.lsRjtRsnCode = LSRJT_UNABLE_TPC;
stat.un.b.lsRjtRsnCodeExp = LSEXP_INVALID_NNAME;
lpfc_els_rsp_reject(vport, stat.un.lsRjtError, cmdiocb, ndlp,
NULL);
return 0;
}
nlp_portwwn = wwn_to_u64(ndlp->nlp_portname.u.wwn);
if ((lpfc_check_sparm(vport, ndlp, sp, CLASS3, 0) == 0)) {
/* Reject this request because invalid parameters */
stat.un.b.lsRjtRsnCode = LSRJT_UNABLE_TPC;
stat.un.b.lsRjtRsnCodeExp = LSEXP_SPARM_OPTIONS;
lpfc_els_rsp_reject(vport, stat.un.lsRjtError, cmdiocb, ndlp,
NULL);
return 0;
}
if (phba->sli_rev == LPFC_SLI_REV4)
wqe = &cmdiocb->wqe;
else
icmd = &cmdiocb->iocb;
/* PLOGI chkparm OK */
lpfc_printf_vlog(vport, KERN_INFO, LOG_ELS,
"0114 PLOGI chkparm OK Data: x%x x%x x%x "
"x%x x%x x%x\n",
ndlp->nlp_DID, ndlp->nlp_state, ndlp->nlp_flag,
ndlp->nlp_rpi, vport->port_state,
vport->fc_flag);
if (vport->cfg_fcp_class == 2 && sp->cls2.classValid)
ndlp->nlp_fcp_info |= CLASS2;
else
ndlp->nlp_fcp_info |= CLASS3;
ndlp->nlp_class_sup = 0;
if (sp->cls1.classValid)
ndlp->nlp_class_sup |= FC_COS_CLASS1;
if (sp->cls2.classValid)
ndlp->nlp_class_sup |= FC_COS_CLASS2;
if (sp->cls3.classValid)
ndlp->nlp_class_sup |= FC_COS_CLASS3;
if (sp->cls4.classValid)
ndlp->nlp_class_sup |= FC_COS_CLASS4;
ndlp->nlp_maxframe =
((sp->cmn.bbRcvSizeMsb & 0x0F) << 8) | sp->cmn.bbRcvSizeLsb;
/* if already logged in, do implicit logout */
switch (ndlp->nlp_state) {
case NLP_STE_NPR_NODE:
if (!(ndlp->nlp_flag & NLP_NPR_ADISC))
break;
fallthrough;
case NLP_STE_REG_LOGIN_ISSUE:
case NLP_STE_PRLI_ISSUE:
case NLP_STE_UNMAPPED_NODE:
case NLP_STE_MAPPED_NODE:
/* For initiators, lpfc_plogi_confirm_nport skips fabric did.
* For target mode, execute implicit logo.
* Fabric nodes go into NPR.
*/
if (!(ndlp->nlp_type & NLP_FABRIC) &&
!(phba->nvmet_support)) {
/* Clear ndlp info, since follow up PRLI may have
* updated ndlp information
*/
ndlp->nlp_type &= ~(NLP_FCP_TARGET | NLP_FCP_INITIATOR);
ndlp->nlp_type &= ~(NLP_NVME_TARGET | NLP_NVME_INITIATOR);
ndlp->nlp_fcp_info &= ~NLP_FCP_2_DEVICE;
ndlp->nlp_nvme_info &= ~NLP_NVME_NSLER;
ndlp->nlp_flag &= ~NLP_FIRSTBURST;
lpfc_els_rsp_acc(vport, ELS_CMD_PLOGI, cmdiocb,
ndlp, NULL);
return 1;
}
if (nlp_portwwn != 0 &&
nlp_portwwn != wwn_to_u64(sp->portName.u.wwn))
scsi: lpfc: Add an internal trace log buffer The current logging methods typically end up requesting a reproduction with a different logging level set to figure out what happened. This was mainly by design to not clutter the kernel log messages with things that were typically not interesting and the messages themselves could cause other issues. When looking to make a better system, it was seen that in many cases when more data was wanted was when another message, usually at KERN_ERR level, was logged. And in most cases, what the additional logging that was then enabled was typically. Most of these areas fell into the discovery machine. Based on this summary, the following design has been put in place: The driver will maintain an internal log (256 elements of 256 bytes). The "additional logging" messages that are usually enabled in a reproduction will be changed to now log all the time to the internal log. A new logging level is defined - LOG_TRACE_EVENT. When this level is set (it is not by default) and a message marked as KERN_ERR is logged, all the messages in the internal log will be dumped to the kernel log before the KERN_ERR message is logged. There is a timestamp on each message added to the internal log. However, this timestamp is not converted to wall time when logged. The value of the timestamp is solely to give a crude time reference for the messages. Link: https://lore.kernel.org/r/20200630215001.70793-14-jsmart2021@gmail.com Signed-off-by: Dick Kennedy <dick.kennedy@broadcom.com> Signed-off-by: James Smart <jsmart2021@gmail.com> Signed-off-by: Martin K. Petersen <martin.petersen@oracle.com>
2020-06-30 14:50:00 -07:00
lpfc_printf_vlog(vport, KERN_ERR, LOG_TRACE_EVENT,
"0143 PLOGI recv'd from DID: x%x "
"WWPN changed: old %llx new %llx\n",
ndlp->nlp_DID,
(unsigned long long)nlp_portwwn,
(unsigned long long)
wwn_to_u64(sp->portName.u.wwn));
/* Notify transport of connectivity loss to trigger cleanup. */
if (phba->nvmet_support &&
ndlp->nlp_state == NLP_STE_UNMAPPED_NODE)
lpfc_nvmet_invalidate_host(phba, ndlp);
ndlp->nlp_prev_state = ndlp->nlp_state;
/* rport needs to be unregistered first */
lpfc_nlp_set_state(vport, ndlp, NLP_STE_NPR_NODE);
break;
}
ndlp->nlp_type &= ~(NLP_FCP_TARGET | NLP_FCP_INITIATOR);
ndlp->nlp_type &= ~(NLP_NVME_TARGET | NLP_NVME_INITIATOR);
ndlp->nlp_fcp_info &= ~NLP_FCP_2_DEVICE;
ndlp->nlp_nvme_info &= ~NLP_NVME_NSLER;
ndlp->nlp_flag &= ~NLP_FIRSTBURST;
login_mbox = NULL;
link_mbox = NULL;
save_iocb = NULL;
/* Check for Nport to NPort pt2pt protocol */
if ((vport->fc_flag & FC_PT2PT) &&
!(vport->fc_flag & FC_PT2PT_PLOGI)) {
/* rcv'ed PLOGI decides what our NPortId will be */
if (phba->sli_rev == LPFC_SLI_REV4) {
vport->fc_myDID = bf_get(els_rsp64_sid,
&cmdiocb->wqe.xmit_els_rsp);
} else {
vport->fc_myDID = icmd->un.rcvels.parmRo;
}
/* If there is an outstanding FLOGI, abort it now.
* The remote NPort is not going to ACC our FLOGI
* if its already issuing a PLOGI for pt2pt mode.
* This indicates our FLOGI was dropped; however, we
* must have ACCed the remote NPorts FLOGI to us
* to make it here.
*/
if (phba->hba_flag & HBA_FLOGI_OUTSTANDING)
lpfc_els_abort_flogi(phba);
ed_tov = be32_to_cpu(sp->cmn.e_d_tov);
if (sp->cmn.edtovResolution) {
/* E_D_TOV ticks are in nanoseconds */
ed_tov = (phba->fc_edtov + 999999) / 1000000;
}
/*
* For pt-to-pt, use the larger EDTOV
* RATOV = 2 * EDTOV
*/
if (ed_tov > phba->fc_edtov)
phba->fc_edtov = ed_tov;
phba->fc_ratov = (2 * phba->fc_edtov) / 1000;
memcpy(&phba->fc_fabparam, sp, sizeof(struct serv_parm));
/* Issue CONFIG_LINK for SLI3 or REG_VFI for SLI4,
* to account for updated TOV's / parameters
*/
if (phba->sli_rev == LPFC_SLI_REV4)
lpfc_issue_reg_vfi(vport);
else {
link_mbox = mempool_alloc(phba->mbox_mem_pool,
GFP_KERNEL);
if (!link_mbox)
goto out;
lpfc_config_link(phba, link_mbox);
link_mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
link_mbox->vport = vport;
link_mbox->ctx_ndlp = ndlp;
rc = lpfc_sli_issue_mbox(phba, link_mbox, MBX_NOWAIT);
if (rc == MBX_NOT_FINISHED) {
mempool_free(link_mbox, phba->mbox_mem_pool);
goto out;
}
}
lpfc_can_disctmo(vport);
}
ndlp->nlp_flag &= ~NLP_SUPPRESS_RSP;
if ((phba->sli.sli_flag & LPFC_SLI_SUPPRESS_RSP) &&
sp->cmn.valid_vendor_ver_level) {
vid = be32_to_cpu(sp->un.vv.vid);
flag = be32_to_cpu(sp->un.vv.flags);
if ((vid == LPFC_VV_EMLX_ID) && (flag & LPFC_VV_SUPPRESS_RSP))
ndlp->nlp_flag |= NLP_SUPPRESS_RSP;
}
login_mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
if (!login_mbox)
goto out;
save_iocb = kzalloc(sizeof(*save_iocb), GFP_KERNEL);
if (!save_iocb)
goto out;
/* Save info from cmd IOCB to be used in rsp after all mbox completes */
memcpy((uint8_t *)save_iocb, (uint8_t *)cmdiocb,
sizeof(struct lpfc_iocbq));
/* Registering an existing RPI behaves differently for SLI3 vs SLI4 */
if (phba->sli_rev == LPFC_SLI_REV4)
lpfc_unreg_rpi(vport, ndlp);
/* Issue REG_LOGIN first, before ACCing the PLOGI, thus we will
* always be deferring the ACC.
*/
if (phba->sli_rev == LPFC_SLI_REV4)
remote_did = bf_get(wqe_els_did, &wqe->xmit_els_rsp.wqe_dest);
else
remote_did = icmd->un.rcvels.remoteID;
rc = lpfc_reg_rpi(phba, vport->vpi, remote_did,
(uint8_t *)sp, login_mbox, ndlp->nlp_rpi);
if (rc)
goto out;
login_mbox->mbox_cmpl = lpfc_mbx_cmpl_reg_login;
login_mbox->vport = vport;
/*
* If there is an outstanding PLOGI issued, abort it before
* sending ACC rsp for received PLOGI. If pending plogi
* is not canceled here, the plogi will be rejected by
* remote port and will be retried. On a configuration with
* single discovery thread, this will cause a huge delay in
* discovery. Also this will cause multiple state machines
* running in parallel for this node.
* This only applies to a fabric environment.
*/
if ((ndlp->nlp_state == NLP_STE_PLOGI_ISSUE) &&
(vport->fc_flag & FC_FABRIC)) {
/* software abort outstanding PLOGI */
lpfc_els_abort(phba, ndlp);
}
if ((vport->port_type == LPFC_NPIV_PORT &&
vport->cfg_restrict_login)) {
scsi: lpfc: Fix incomplete NVME discovery when target NVMe device re-discovery does not complete. Dev_loss_tmo messages seen on initiator after recovery from a link disturbance. The failing case is the following: When the driver (as a NVME target) receives a PLOGI, the driver initiates an "unreg rpi" mailbox command. While the mailbox command is in progress, the driver requests that an ACC be sent to the initiator. The target's ACC is received by the initiator and the initiator then transmits a PLOGI. The driver receives the PLOGI prior to receiving the completion for the PLOGI response WQE that sent the ACC. (Different delivery sources from the hw so the race is very possible). Given the PLOGI is prior to the ACC completion (signifying PLOGI exchange complete), the driver LS_RJT's the PRLI. The "unreg rpi" mailbox then completes. Since PRLI has been received, the driver transmits a PLOGI to restart discovery, which the initiator then ACC's. If the driver processes the (re)PLOGI ACC prior to the completing the handling for the earlier ACC it sent the intiators original PLOGI, there is no state change for completion of the (re)PLOGI. The ndlp remains in "PLOGI Sent" and the initiator continues sending PRLI's which are rejected by the target until timeout or retry is reached. Fix by: When in target mode, defer sending an ACC for the received PLOGI until unreg RPI completes. Link: https://lore.kernel.org/r/20191218235808.31922-2-jsmart2021@gmail.com Signed-off-by: Dick Kennedy <dick.kennedy@broadcom.com> Signed-off-by: James Smart <jsmart2021@gmail.com> Signed-off-by: Martin K. Petersen <martin.petersen@oracle.com>
2019-12-18 15:57:59 -08:00
/* no deferred ACC */
kfree(save_iocb);
scsi: lpfc: Fix unreleased RPIs when NPIV ports are created While testing NPIV and watching logins and used RPI levels, it was seen the used RPI count was much higher than the number of remote ports discovered. Code inspection showed that remote port removals on any NPIV instance are releasing the RPI, but not performing an UNREG_RPI with the adapter thus the reference counting never fully drops and the RPI is never fully released. This was happening on NPIV nodes due to a log of fabric ELS's to fabric addresses. This lack of UNREG_RPI was introduced by a prior node rework patch that performed the UNREG_RPI as part of node cleanup. To resolve the issue, do the following: - Restore the RPI release code, but move the location to so that it is in line with the new node cleanup design. - NPIV ports now release the RPI and drop the node when the caller sets the NLP_RELEASE_RPI flag. - Set the NLP_RELEASE_RPI flag in node cleanup which will trigger a release of RPI to free pool. - Ensure there's an UNREG_RPI at LOGO completion so that RPI release is completed. - Stop offline_prep from skipping nodes that are UNUSED. The RPI may not have been released. - Stop the default RPI handling in lpfc_cmpl_els_rsp() for SLI4. - Fixed up debugfs RPI displays for better debugging. Fixes: a70e63eee1c1 ("scsi: lpfc: Fix NPIV Fabric Node reference counting") Link: https://lore.kernel.org/r/20210514195559.119853-2-jsmart2021@gmail.com Cc: <stable@vger.kernel.org> # v5.11+ Co-developed-by: Justin Tee <justin.tee@broadcom.com> Signed-off-by: Justin Tee <justin.tee@broadcom.com> Signed-off-by: James Smart <jsmart2021@gmail.com> Signed-off-by: Martin K. Petersen <martin.petersen@oracle.com>
2021-05-14 12:55:49 -07:00
/* This is an NPIV SLI4 instance that does not need to register
* a default RPI.
*/
scsi: lpfc: Fix unreleased RPIs when NPIV ports are created While testing NPIV and watching logins and used RPI levels, it was seen the used RPI count was much higher than the number of remote ports discovered. Code inspection showed that remote port removals on any NPIV instance are releasing the RPI, but not performing an UNREG_RPI with the adapter thus the reference counting never fully drops and the RPI is never fully released. This was happening on NPIV nodes due to a log of fabric ELS's to fabric addresses. This lack of UNREG_RPI was introduced by a prior node rework patch that performed the UNREG_RPI as part of node cleanup. To resolve the issue, do the following: - Restore the RPI release code, but move the location to so that it is in line with the new node cleanup design. - NPIV ports now release the RPI and drop the node when the caller sets the NLP_RELEASE_RPI flag. - Set the NLP_RELEASE_RPI flag in node cleanup which will trigger a release of RPI to free pool. - Ensure there's an UNREG_RPI at LOGO completion so that RPI release is completed. - Stop offline_prep from skipping nodes that are UNUSED. The RPI may not have been released. - Stop the default RPI handling in lpfc_cmpl_els_rsp() for SLI4. - Fixed up debugfs RPI displays for better debugging. Fixes: a70e63eee1c1 ("scsi: lpfc: Fix NPIV Fabric Node reference counting") Link: https://lore.kernel.org/r/20210514195559.119853-2-jsmart2021@gmail.com Cc: <stable@vger.kernel.org> # v5.11+ Co-developed-by: Justin Tee <justin.tee@broadcom.com> Signed-off-by: Justin Tee <justin.tee@broadcom.com> Signed-off-by: James Smart <jsmart2021@gmail.com> Signed-off-by: Martin K. Petersen <martin.petersen@oracle.com>
2021-05-14 12:55:49 -07:00
if (phba->sli_rev == LPFC_SLI_REV4) {
mp = (struct lpfc_dmabuf *)login_mbox->ctx_buf;
if (mp) {
lpfc_mbuf_free(phba, mp->virt, mp->phys);
kfree(mp);
}
scsi: lpfc: Fix unreleased RPIs when NPIV ports are created While testing NPIV and watching logins and used RPI levels, it was seen the used RPI count was much higher than the number of remote ports discovered. Code inspection showed that remote port removals on any NPIV instance are releasing the RPI, but not performing an UNREG_RPI with the adapter thus the reference counting never fully drops and the RPI is never fully released. This was happening on NPIV nodes due to a log of fabric ELS's to fabric addresses. This lack of UNREG_RPI was introduced by a prior node rework patch that performed the UNREG_RPI as part of node cleanup. To resolve the issue, do the following: - Restore the RPI release code, but move the location to so that it is in line with the new node cleanup design. - NPIV ports now release the RPI and drop the node when the caller sets the NLP_RELEASE_RPI flag. - Set the NLP_RELEASE_RPI flag in node cleanup which will trigger a release of RPI to free pool. - Ensure there's an UNREG_RPI at LOGO completion so that RPI release is completed. - Stop offline_prep from skipping nodes that are UNUSED. The RPI may not have been released. - Stop the default RPI handling in lpfc_cmpl_els_rsp() for SLI4. - Fixed up debugfs RPI displays for better debugging. Fixes: a70e63eee1c1 ("scsi: lpfc: Fix NPIV Fabric Node reference counting") Link: https://lore.kernel.org/r/20210514195559.119853-2-jsmart2021@gmail.com Cc: <stable@vger.kernel.org> # v5.11+ Co-developed-by: Justin Tee <justin.tee@broadcom.com> Signed-off-by: Justin Tee <justin.tee@broadcom.com> Signed-off-by: James Smart <jsmart2021@gmail.com> Signed-off-by: Martin K. Petersen <martin.petersen@oracle.com>
2021-05-14 12:55:49 -07:00
mempool_free(login_mbox, phba->mbox_mem_pool);
login_mbox = NULL;
} else {
/* In order to preserve RPIs, we want to cleanup
* the default RPI the firmware created to rcv
* this ELS request. The only way to do this is
* to register, then unregister the RPI.
*/
spin_lock_irq(&ndlp->lock);
ndlp->nlp_flag |= (NLP_RM_DFLT_RPI | NLP_ACC_REGLOGIN |
NLP_RCV_PLOGI);
spin_unlock_irq(&ndlp->lock);
}
stat.un.b.lsRjtRsnCode = LSRJT_INVALID_CMD;
stat.un.b.lsRjtRsnCodeExp = LSEXP_NOTHING_MORE;
rc = lpfc_els_rsp_reject(vport, stat.un.lsRjtError, cmdiocb,
ndlp, login_mbox);
if (rc)
mempool_free(login_mbox, phba->mbox_mem_pool);
return 1;
}
/* So the order here should be:
* SLI3 pt2pt
* Issue CONFIG_LINK mbox
* CONFIG_LINK cmpl
* SLI4 pt2pt
* Issue REG_VFI mbox
* REG_VFI cmpl
* SLI4
* Issue UNREG RPI mbx
* UNREG RPI cmpl
* Issue REG_RPI mbox
* REG RPI cmpl
* Issue PLOGI ACC
* PLOGI ACC cmpl
*/
login_mbox->mbox_cmpl = lpfc_defer_plogi_acc;
login_mbox->ctx_ndlp = lpfc_nlp_get(ndlp);
login_mbox->context3 = save_iocb; /* For PLOGI ACC */
spin_lock_irq(&ndlp->lock);
ndlp->nlp_flag |= (NLP_ACC_REGLOGIN | NLP_RCV_PLOGI);
spin_unlock_irq(&ndlp->lock);
/* Start the ball rolling by issuing REG_LOGIN here */
rc = lpfc_sli_issue_mbox(phba, login_mbox, MBX_NOWAIT);
if (rc == MBX_NOT_FINISHED)
goto out;
lpfc_nlp_set_state(vport, ndlp, NLP_STE_REG_LOGIN_ISSUE);
return 1;
out:
scsi: lpfc: Fix incomplete NVME discovery when target NVMe device re-discovery does not complete. Dev_loss_tmo messages seen on initiator after recovery from a link disturbance. The failing case is the following: When the driver (as a NVME target) receives a PLOGI, the driver initiates an "unreg rpi" mailbox command. While the mailbox command is in progress, the driver requests that an ACC be sent to the initiator. The target's ACC is received by the initiator and the initiator then transmits a PLOGI. The driver receives the PLOGI prior to receiving the completion for the PLOGI response WQE that sent the ACC. (Different delivery sources from the hw so the race is very possible). Given the PLOGI is prior to the ACC completion (signifying PLOGI exchange complete), the driver LS_RJT's the PRLI. The "unreg rpi" mailbox then completes. Since PRLI has been received, the driver transmits a PLOGI to restart discovery, which the initiator then ACC's. If the driver processes the (re)PLOGI ACC prior to the completing the handling for the earlier ACC it sent the intiators original PLOGI, there is no state change for completion of the (re)PLOGI. The ndlp remains in "PLOGI Sent" and the initiator continues sending PRLI's which are rejected by the target until timeout or retry is reached. Fix by: When in target mode, defer sending an ACC for the received PLOGI until unreg RPI completes. Link: https://lore.kernel.org/r/20191218235808.31922-2-jsmart2021@gmail.com Signed-off-by: Dick Kennedy <dick.kennedy@broadcom.com> Signed-off-by: James Smart <jsmart2021@gmail.com> Signed-off-by: Martin K. Petersen <martin.petersen@oracle.com>
2019-12-18 15:57:59 -08:00
kfree(save_iocb);
if (login_mbox)
mempool_free(login_mbox, phba->mbox_mem_pool);
stat.un.b.lsRjtRsnCode = LSRJT_UNABLE_TPC;
stat.un.b.lsRjtRsnCodeExp = LSEXP_OUT_OF_RESOURCE;
lpfc_els_rsp_reject(vport, stat.un.lsRjtError, cmdiocb, ndlp, NULL);
return 0;
}
/**
* lpfc_mbx_cmpl_resume_rpi - Resume RPI completion routine
* @phba: pointer to lpfc hba data structure.
* @mboxq: pointer to mailbox object
*
* This routine is invoked to issue a completion to a rcv'ed
* ADISC or PDISC after the paused RPI has been resumed.
**/
static void
lpfc_mbx_cmpl_resume_rpi(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq)
{
struct lpfc_vport *vport;
struct lpfc_iocbq *elsiocb;
struct lpfc_nodelist *ndlp;
uint32_t cmd;
elsiocb = (struct lpfc_iocbq *)mboxq->ctx_buf;
ndlp = (struct lpfc_nodelist *)mboxq->ctx_ndlp;
vport = mboxq->vport;
cmd = elsiocb->drvrTimeout;
if (cmd == ELS_CMD_ADISC) {
lpfc_els_rsp_adisc_acc(vport, elsiocb, ndlp);
} else {
lpfc_els_rsp_acc(vport, ELS_CMD_PLOGI, elsiocb,
ndlp, NULL);
}
/* This nlp_put pairs with lpfc_sli4_resume_rpi */
lpfc_nlp_put(ndlp);
kfree(elsiocb);
mempool_free(mboxq, phba->mbox_mem_pool);
}
static int
lpfc_rcv_padisc(struct lpfc_vport *vport, struct lpfc_nodelist *ndlp,
struct lpfc_iocbq *cmdiocb)
{
struct lpfc_hba *phba = vport->phba;
struct lpfc_iocbq *elsiocb;
struct lpfc_dmabuf *pcmd;
struct serv_parm *sp;
struct lpfc_name *pnn, *ppn;
struct ls_rjt stat;
ADISC *ap;
uint32_t *lp;
uint32_t cmd;
pcmd = (struct lpfc_dmabuf *) cmdiocb->context2;
lp = (uint32_t *) pcmd->virt;
cmd = *lp++;
if (cmd == ELS_CMD_ADISC) {
ap = (ADISC *) lp;
pnn = (struct lpfc_name *) & ap->nodeName;
ppn = (struct lpfc_name *) & ap->portName;
} else {
sp = (struct serv_parm *) lp;
pnn = (struct lpfc_name *) & sp->nodeName;
ppn = (struct lpfc_name *) & sp->portName;
}
if (get_job_ulpstatus(phba, cmdiocb) == 0 &&
lpfc_check_adisc(vport, ndlp, pnn, ppn)) {
/*
* As soon as we send ACC, the remote NPort can
* start sending us data. Thus, for SLI4 we must
* resume the RPI before the ACC goes out.
*/
if (vport->phba->sli_rev == LPFC_SLI_REV4) {
elsiocb = kmalloc(sizeof(struct lpfc_iocbq),
GFP_KERNEL);
if (elsiocb) {
/* Save info from cmd IOCB used in rsp */
memcpy((uint8_t *)elsiocb, (uint8_t *)cmdiocb,
sizeof(struct lpfc_iocbq));
/* Save the ELS cmd */
elsiocb->drvrTimeout = cmd;
lpfc_sli4_resume_rpi(ndlp,
lpfc_mbx_cmpl_resume_rpi, elsiocb);
goto out;
}
}
if (cmd == ELS_CMD_ADISC) {
lpfc_els_rsp_adisc_acc(vport, cmdiocb, ndlp);
} else {
lpfc_els_rsp_acc(vport, ELS_CMD_PLOGI, cmdiocb,
ndlp, NULL);
}
out:
2020-06-30 14:49:51 -07:00
/* If we are authenticated, move to the proper state.
* It is possible an ADISC arrived and the remote nport
* is already in MAPPED or UNMAPPED state. Catch this
* condition and don't set the nlp_state again because
* it causes an unnecessary transport unregister/register.
*
* Nodes marked for ADISC will move MAPPED or UNMAPPED state
* after issuing ADISC
2020-06-30 14:49:51 -07:00
*/
if (ndlp->nlp_type & (NLP_FCP_TARGET | NLP_NVME_TARGET)) {
if ((ndlp->nlp_state != NLP_STE_MAPPED_NODE) &&
!(ndlp->nlp_flag & NLP_NPR_ADISC))
2020-06-30 14:49:51 -07:00
lpfc_nlp_set_state(vport, ndlp,
NLP_STE_MAPPED_NODE);
}
return 1;
}
/* Reject this request because invalid parameters */
stat.un.b.lsRjtRsvd0 = 0;
stat.un.b.lsRjtRsnCode = LSRJT_UNABLE_TPC;
stat.un.b.lsRjtRsnCodeExp = LSEXP_SPARM_OPTIONS;
stat.un.b.vendorUnique = 0;
lpfc_els_rsp_reject(vport, stat.un.lsRjtError, cmdiocb, ndlp, NULL);
/* 1 sec timeout */
mod_timer(&ndlp->nlp_delayfunc, jiffies + msecs_to_jiffies(1000));
spin_lock_irq(&ndlp->lock);
ndlp->nlp_flag |= NLP_DELAY_TMO;
spin_unlock_irq(&ndlp->lock);
ndlp->nlp_last_elscmd = ELS_CMD_PLOGI;
ndlp->nlp_prev_state = ndlp->nlp_state;
lpfc_nlp_set_state(vport, ndlp, NLP_STE_NPR_NODE);
return 0;
}
static int
lpfc_rcv_logo(struct lpfc_vport *vport, struct lpfc_nodelist *ndlp,
struct lpfc_iocbq *cmdiocb, uint32_t els_cmd)
{
struct Scsi_Host *shost = lpfc_shost_from_vport(vport);
struct lpfc_hba *phba = vport->phba;
struct lpfc_vport **vports;
int i, active_vlink_present = 0 ;
/* Put ndlp in NPR state with 1 sec timeout for plogi, ACC logo */
/* Only call LOGO ACC for first LOGO, this avoids sending unnecessary
* PLOGIs during LOGO storms from a device.
*/
spin_lock_irq(&ndlp->lock);
ndlp->nlp_flag |= NLP_LOGO_ACC;
spin_unlock_irq(&ndlp->lock);
if (els_cmd == ELS_CMD_PRLO)
lpfc_els_rsp_acc(vport, ELS_CMD_PRLO, cmdiocb, ndlp, NULL);
else
lpfc_els_rsp_acc(vport, ELS_CMD_ACC, cmdiocb, ndlp, NULL);
/* This clause allows the initiator to ACC the LOGO back to the
* Fabric Domain Controller. It does deliberately skip all other
* steps because some fabrics send RDP requests after logging out
* from the initiator.
*/
if (ndlp->nlp_type & NLP_FABRIC &&
((ndlp->nlp_DID & WELL_KNOWN_DID_MASK) != WELL_KNOWN_DID_MASK))
return 0;
/* Notify transport of connectivity loss to trigger cleanup. */
if (phba->nvmet_support &&
ndlp->nlp_state == NLP_STE_UNMAPPED_NODE)
lpfc_nvmet_invalidate_host(phba, ndlp);
if (ndlp->nlp_DID == Fabric_DID) {
if (vport->port_state <= LPFC_FDISC)
goto out;
lpfc_linkdown_port(vport);
spin_lock_irq(shost->host_lock);
vport->fc_flag |= FC_VPORT_LOGO_RCVD;
spin_unlock_irq(shost->host_lock);
vports = lpfc_create_vport_work_array(phba);
if (vports) {
for (i = 0; i <= phba->max_vports && vports[i] != NULL;
i++) {
if ((!(vports[i]->fc_flag &
FC_VPORT_LOGO_RCVD)) &&
(vports[i]->port_state > LPFC_FDISC)) {
active_vlink_present = 1;
break;
}
}
lpfc_destroy_vport_work_array(phba, vports);
}
/*
* Don't re-instantiate if vport is marked for deletion.
* If we are here first then vport_delete is going to wait
* for discovery to complete.
*/
if (!(vport->load_flag & FC_UNLOADING) &&
active_vlink_present) {
/*
* If there are other active VLinks present,
* re-instantiate the Vlink using FDISC.
*/
mod_timer(&ndlp->nlp_delayfunc,
jiffies + msecs_to_jiffies(1000));
spin_lock_irq(&ndlp->lock);
ndlp->nlp_flag |= NLP_DELAY_TMO;
spin_unlock_irq(&ndlp->lock);
ndlp->nlp_last_elscmd = ELS_CMD_FDISC;
vport->port_state = LPFC_FDISC;
} else {
spin_lock_irq(shost->host_lock);
phba->pport->fc_flag &= ~FC_LOGO_RCVD_DID_CHNG;
spin_unlock_irq(shost->host_lock);
lpfc_retry_pport_discovery(phba);
}
} else if ((!(ndlp->nlp_type & NLP_FABRIC) &&
((ndlp->nlp_type & NLP_FCP_TARGET) ||
(ndlp->nlp_type & NLP_NVME_TARGET) ||
(vport->fc_flag & FC_PT2PT))) ||
(ndlp->nlp_state == NLP_STE_ADISC_ISSUE)) {
/* Only try to re-login if this is NOT a Fabric Node
* AND the remote NPORT is a FCP/NVME Target or we
* are in pt2pt mode. NLP_STE_ADISC_ISSUE is a special
* case for LOGO as a response to ADISC behavior.
*/
mod_timer(&ndlp->nlp_delayfunc,
jiffies + msecs_to_jiffies(1000 * 1));
spin_lock_irq(&ndlp->lock);
ndlp->nlp_flag |= NLP_DELAY_TMO;
spin_unlock_irq(&ndlp->lock);
ndlp->nlp_last_elscmd = ELS_CMD_PLOGI;
}
out:
scsi: lpfc: Delay unregistering from transport until GIDFT or ADISC completes On an RSCN event, the nodes specified in RSCN payload and in MAPPED state are moved to NPR state in order to revalidate the login. This triggers an immediate unregister from SCSI/NVMe backend. The assumption is that the node may be missing. The re-registration with the backend happens after either relogin (PLOGI/PRLI; if ADISC is disabled or login truly lost) or when ADISC completes successfully (rediscover with ADISC enabled). However, the NVMe-FC standard provides for an RSCN to be triggered when the remote port supports a discovery controller and there was a change of discovery log content. As the remote port typically also supports storage subsystems, this unregister causes all storage controller connections to fail and require reconnect. Correct by reworking the code to ensure that the unregistration only occurs when a login state is truly terminated, thereby leaving the NVMe storage controllers in place. The changes made are: - Retain node state in ADISC_ISSUE when scheduling ADISC ELS retry. - Do not clear wwpn/wwnn values upon ADISC failure. - Move MAPPED nodes to NPR during RSCN processing, but do not unregister with transport. On GIDFT completion, identify missing nodes (not marked NLP_NPR_2B_DISC) and unregister them. - Perform unregistration for nodes that will go through ADISC processing if ADISC completion fails. - Successful ADISC completion will move node back to MAPPED state. Link: https://lore.kernel.org/r/20210707184351.67872-16-jsmart2021@gmail.com Co-developed-by: Justin Tee <justin.tee@broadcom.com> Signed-off-by: Justin Tee <justin.tee@broadcom.com> Signed-off-by: James Smart <jsmart2021@gmail.com> Signed-off-by: Martin K. Petersen <martin.petersen@oracle.com>
2021-07-07 11:43:46 -07:00
/* Unregister from backend, could have been skipped due to ADISC */
lpfc_nlp_unreg_node(vport, ndlp);
ndlp->nlp_prev_state = ndlp->nlp_state;
lpfc_nlp_set_state(vport, ndlp, NLP_STE_NPR_NODE);
spin_lock_irq(&ndlp->lock);
ndlp->nlp_flag &= ~NLP_NPR_ADISC;
spin_unlock_irq(&ndlp->lock);
/* The driver has to wait until the ACC completes before it continues
* processing the LOGO. The action will resume in
* lpfc_cmpl_els_logo_acc routine. Since part of processing includes an
* unreg_login, the driver waits so the ACC does not get aborted.
*/
return 0;
}
static uint32_t
lpfc_rcv_prli_support_check(struct lpfc_vport *vport,
struct lpfc_nodelist *ndlp,
struct lpfc_iocbq *cmdiocb)
{
struct ls_rjt stat;
uint32_t *payload;
uint32_t cmd;
payload = ((struct lpfc_dmabuf *)cmdiocb->context2)->virt;
cmd = *payload;
if (vport->phba->nvmet_support) {
/* Must be a NVME PRLI */
if (cmd == ELS_CMD_PRLI)
goto out;
} else {
/* Initiator mode. */
if (!vport->nvmei_support && (cmd == ELS_CMD_NVMEPRLI))
goto out;
}
return 1;
out:
lpfc_printf_vlog(vport, KERN_WARNING, LOG_NVME_DISC,
"6115 Rcv PRLI (%x) check failed: ndlp rpi %d "
"state x%x flags x%x\n",
cmd, ndlp->nlp_rpi, ndlp->nlp_state,
ndlp->nlp_flag);
memset(&stat, 0, sizeof(struct ls_rjt));
stat.un.b.lsRjtRsnCode = LSRJT_CMD_UNSUPPORTED;
stat.un.b.lsRjtRsnCodeExp = LSEXP_REQ_UNSUPPORTED;
lpfc_els_rsp_reject(vport, stat.un.lsRjtError, cmdiocb,
ndlp, NULL);
return 0;
}
static void
lpfc_rcv_prli(struct lpfc_vport *vport, struct lpfc_nodelist *ndlp,
struct lpfc_iocbq *cmdiocb)
{
struct lpfc_hba *phba = vport->phba;
struct lpfc_dmabuf *pcmd;
uint32_t *lp;
PRLI *npr;
struct fc_rport *rport = ndlp->rport;
u32 roles;
pcmd = (struct lpfc_dmabuf *) cmdiocb->context2;
lp = (uint32_t *) pcmd->virt;
npr = (PRLI *) ((uint8_t *) lp + sizeof (uint32_t));
if ((npr->prliType == PRLI_FCP_TYPE) ||
(npr->prliType == PRLI_NVME_TYPE)) {
if (npr->initiatorFunc) {
if (npr->prliType == PRLI_FCP_TYPE)
ndlp->nlp_type |= NLP_FCP_INITIATOR;
if (npr->prliType == PRLI_NVME_TYPE)
ndlp->nlp_type |= NLP_NVME_INITIATOR;
}
if (npr->targetFunc) {
if (npr->prliType == PRLI_FCP_TYPE)
ndlp->nlp_type |= NLP_FCP_TARGET;
if (npr->prliType == PRLI_NVME_TYPE)
ndlp->nlp_type |= NLP_NVME_TARGET;
if (npr->writeXferRdyDis)
ndlp->nlp_flag |= NLP_FIRSTBURST;
}
if (npr->Retry && ndlp->nlp_type &
(NLP_FCP_INITIATOR | NLP_FCP_TARGET))
ndlp->nlp_fcp_info |= NLP_FCP_2_DEVICE;
if (npr->Retry && phba->nsler &&
ndlp->nlp_type & (NLP_NVME_INITIATOR | NLP_NVME_TARGET))
ndlp->nlp_nvme_info |= NLP_NVME_NSLER;
/* If this driver is in nvme target mode, set the ndlp's fc4
* type to NVME provided the PRLI response claims NVME FC4
* type. Target mode does not issue gft_id so doesn't get
* the fc4 type set until now.
*/
if (phba->nvmet_support && (npr->prliType == PRLI_NVME_TYPE)) {
ndlp->nlp_fc4_type |= NLP_FC4_NVME;
lpfc_nlp_set_state(vport, ndlp, NLP_STE_UNMAPPED_NODE);
}
/* Fabric Controllers send FCP PRLI as an initiator but should
* not get recognized as FCP type and registered with transport.
*/
if (npr->prliType == PRLI_FCP_TYPE &&
!(ndlp->nlp_type & NLP_FABRIC))
ndlp->nlp_fc4_type |= NLP_FC4_FCP;
}
if (rport) {
/* We need to update the rport role values */
roles = FC_RPORT_ROLE_UNKNOWN;
if (ndlp->nlp_type & NLP_FCP_INITIATOR)
roles |= FC_RPORT_ROLE_FCP_INITIATOR;
if (ndlp->nlp_type & NLP_FCP_TARGET)
roles |= FC_RPORT_ROLE_FCP_TARGET;
lpfc_debugfs_disc_trc(vport, LPFC_DISC_TRC_RPORT,
"rport rolechg: role:x%x did:x%x flg:x%x",
roles, ndlp->nlp_DID, ndlp->nlp_flag);
if (vport->cfg_enable_fc4_type != LPFC_ENABLE_NVME)
fc_remote_port_rolechg(rport, roles);
}
}
static uint32_t
lpfc_disc_set_adisc(struct lpfc_vport *vport, struct lpfc_nodelist *ndlp)
{
if (!(ndlp->nlp_flag & NLP_RPI_REGISTERED)) {
spin_lock_irq(&ndlp->lock);
ndlp->nlp_flag &= ~NLP_NPR_ADISC;
spin_unlock_irq(&ndlp->lock);
return 0;
}
if (!(vport->fc_flag & FC_PT2PT)) {
/* Check config parameter use-adisc or FCP-2 */
if (vport->cfg_use_adisc && ((vport->fc_flag & FC_RSCN_MODE) ||
((ndlp->nlp_fcp_info & NLP_FCP_2_DEVICE) &&
(ndlp->nlp_type & NLP_FCP_TARGET)))) {
spin_lock_irq(&ndlp->lock);
ndlp->nlp_flag |= NLP_NPR_ADISC;
spin_unlock_irq(&ndlp->lock);
return 1;
}
}
spin_lock_irq(&ndlp->lock);
ndlp->nlp_flag &= ~NLP_NPR_ADISC;
spin_unlock_irq(&ndlp->lock);
lpfc_unreg_rpi(vport, ndlp);
return 0;
}
/**
* lpfc_release_rpi - Release a RPI by issuing unreg_login mailbox cmd.
* @phba : Pointer to lpfc_hba structure.
* @vport: Pointer to lpfc_vport structure.
* @ndlp: Pointer to lpfc_nodelist structure.
* @rpi : rpi to be release.
*
* This function will send a unreg_login mailbox command to the firmware
* to release a rpi.
**/
static void
lpfc_release_rpi(struct lpfc_hba *phba, struct lpfc_vport *vport,
struct lpfc_nodelist *ndlp, uint16_t rpi)
{
LPFC_MBOXQ_t *pmb;
int rc;
/* If there is already an UNREG in progress for this ndlp,
* no need to queue up another one.
*/
if (ndlp->nlp_flag & NLP_UNREG_INP) {
lpfc_printf_vlog(vport, KERN_INFO, LOG_DISCOVERY,
"1435 release_rpi SKIP UNREG x%x on "
"NPort x%x deferred x%x flg x%x "
"Data: x%px\n",
ndlp->nlp_rpi, ndlp->nlp_DID,
ndlp->nlp_defer_did,
ndlp->nlp_flag, ndlp);
return;
}
pmb = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool,
GFP_KERNEL);
if (!pmb)
scsi: lpfc: Add an internal trace log buffer The current logging methods typically end up requesting a reproduction with a different logging level set to figure out what happened. This was mainly by design to not clutter the kernel log messages with things that were typically not interesting and the messages themselves could cause other issues. When looking to make a better system, it was seen that in many cases when more data was wanted was when another message, usually at KERN_ERR level, was logged. And in most cases, what the additional logging that was then enabled was typically. Most of these areas fell into the discovery machine. Based on this summary, the following design has been put in place: The driver will maintain an internal log (256 elements of 256 bytes). The "additional logging" messages that are usually enabled in a reproduction will be changed to now log all the time to the internal log. A new logging level is defined - LOG_TRACE_EVENT. When this level is set (it is not by default) and a message marked as KERN_ERR is logged, all the messages in the internal log will be dumped to the kernel log before the KERN_ERR message is logged. There is a timestamp on each message added to the internal log. However, this timestamp is not converted to wall time when logged. The value of the timestamp is solely to give a crude time reference for the messages. Link: https://lore.kernel.org/r/20200630215001.70793-14-jsmart2021@gmail.com Signed-off-by: Dick Kennedy <dick.kennedy@broadcom.com> Signed-off-by: James Smart <jsmart2021@gmail.com> Signed-off-by: Martin K. Petersen <martin.petersen@oracle.com>
2020-06-30 14:50:00 -07:00
lpfc_printf_vlog(vport, KERN_ERR, LOG_TRACE_EVENT,
"2796 mailbox memory allocation failed \n");
else {
lpfc_unreg_login(phba, vport->vpi, rpi, pmb);
pmb->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
pmb->vport = vport;
scsi: lpfc: Rework locations of ndlp reference taking Now that the driver has gone to a normal ref interface (with no odd logic) the discovery logic needs to be updated to reworked so that it properly takes references when it should and give them up when it should. Rework the driver for the following get/put model: - Move gets to just before an I/O is issued. Add gets for places where an I/O was issued without one. - Ensure that failures from lpfc_nlp_get() are handled by the driver. - Check and fix the placement of lpfc_nlp_puts relative to io completions. Note: some of these paths may not release the reference on the exact io completion as the reference is held as the code takes another step in the discovery thread and which may cause another io to be issued. - Rearrange some code for error processing and calling lpfc_nlp_put. - Fix some places of incorrect reference freeing that was causing the premature releasing of the structure. - Nvmet plogi handling performs unreg_rpi's. The reference counts were unbalanced resulting in premature node removal. In some cases this caused loss of node discovery. Corrected the reftaking around nvmet plogis. Nodes that experience devloss now get released from the node list now that there is a proper reference taking. Link: https://lore.kernel.org/r/20201115192646.12977-3-james.smart@broadcom.com Co-developed-by: Dick Kennedy <dick.kennedy@broadcom.com> Signed-off-by: Dick Kennedy <dick.kennedy@broadcom.com> Signed-off-by: James Smart <james.smart@broadcom.com> Signed-off-by: Martin K. Petersen <martin.petersen@oracle.com>
2020-11-15 11:26:31 -08:00
pmb->ctx_ndlp = lpfc_nlp_get(ndlp);
if (!pmb->ctx_ndlp) {
mempool_free(pmb, phba->mbox_mem_pool);
return;
}
if (((ndlp->nlp_DID & Fabric_DID_MASK) != Fabric_DID_MASK) &&
(!(vport->fc_flag & FC_OFFLINE_MODE)))
ndlp->nlp_flag |= NLP_UNREG_INP;
lpfc_printf_vlog(vport, KERN_INFO, LOG_DISCOVERY,
"1437 release_rpi UNREG x%x "
"on NPort x%x flg x%x\n",
ndlp->nlp_rpi, ndlp->nlp_DID, ndlp->nlp_flag);
rc = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT);
if (rc == MBX_NOT_FINISHED)
mempool_free(pmb, phba->mbox_mem_pool);
}
}
static uint32_t
lpfc_disc_illegal(struct lpfc_vport *vport, struct lpfc_nodelist *ndlp,
void *arg, uint32_t evt)
{
struct lpfc_hba *phba;
LPFC_MBOXQ_t *pmb = (LPFC_MBOXQ_t *) arg;
uint16_t rpi;
phba = vport->phba;
/* Release the RPI if reglogin completing */
if (!(phba->pport->load_flag & FC_UNLOADING) &&
(evt == NLP_EVT_CMPL_REG_LOGIN) &&
(!pmb->u.mb.mbxStatus)) {
rpi = pmb->u.mb.un.varWords[0];
lpfc_release_rpi(phba, vport, ndlp, rpi);
}
scsi: lpfc: Add an internal trace log buffer The current logging methods typically end up requesting a reproduction with a different logging level set to figure out what happened. This was mainly by design to not clutter the kernel log messages with things that were typically not interesting and the messages themselves could cause other issues. When looking to make a better system, it was seen that in many cases when more data was wanted was when another message, usually at KERN_ERR level, was logged. And in most cases, what the additional logging that was then enabled was typically. Most of these areas fell into the discovery machine. Based on this summary, the following design has been put in place: The driver will maintain an internal log (256 elements of 256 bytes). The "additional logging" messages that are usually enabled in a reproduction will be changed to now log all the time to the internal log. A new logging level is defined - LOG_TRACE_EVENT. When this level is set (it is not by default) and a message marked as KERN_ERR is logged, all the messages in the internal log will be dumped to the kernel log before the KERN_ERR message is logged. There is a timestamp on each message added to the internal log. However, this timestamp is not converted to wall time when logged. The value of the timestamp is solely to give a crude time reference for the messages. Link: https://lore.kernel.org/r/20200630215001.70793-14-jsmart2021@gmail.com Signed-off-by: Dick Kennedy <dick.kennedy@broadcom.com> Signed-off-by: James Smart <jsmart2021@gmail.com> Signed-off-by: Martin K. Petersen <martin.petersen@oracle.com>
2020-06-30 14:50:00 -07:00
lpfc_printf_vlog(vport, KERN_ERR, LOG_TRACE_EVENT,
"0271 Illegal State Transition: node x%x "
"event x%x, state x%x Data: x%x x%x\n",
ndlp->nlp_DID, evt, ndlp->nlp_state, ndlp->nlp_rpi,
ndlp->nlp_flag);
return ndlp->nlp_state;
}
static uint32_t
lpfc_cmpl_plogi_illegal(struct lpfc_vport *vport, struct lpfc_nodelist *ndlp,
void *arg, uint32_t evt)
{
/* This transition is only legal if we previously
* rcv'ed a PLOGI. Since we don't want 2 discovery threads
* working on the same NPortID, do nothing for this thread
* to stop it.
*/
if (!(ndlp->nlp_flag & NLP_RCV_PLOGI)) {
scsi: lpfc: Add an internal trace log buffer The current logging methods typically end up requesting a reproduction with a different logging level set to figure out what happened. This was mainly by design to not clutter the kernel log messages with things that were typically not interesting and the messages themselves could cause other issues. When looking to make a better system, it was seen that in many cases when more data was wanted was when another message, usually at KERN_ERR level, was logged. And in most cases, what the additional logging that was then enabled was typically. Most of these areas fell into the discovery machine. Based on this summary, the following design has been put in place: The driver will maintain an internal log (256 elements of 256 bytes). The "additional logging" messages that are usually enabled in a reproduction will be changed to now log all the time to the internal log. A new logging level is defined - LOG_TRACE_EVENT. When this level is set (it is not by default) and a message marked as KERN_ERR is logged, all the messages in the internal log will be dumped to the kernel log before the KERN_ERR message is logged. There is a timestamp on each message added to the internal log. However, this timestamp is not converted to wall time when logged. The value of the timestamp is solely to give a crude time reference for the messages. Link: https://lore.kernel.org/r/20200630215001.70793-14-jsmart2021@gmail.com Signed-off-by: Dick Kennedy <dick.kennedy@broadcom.com> Signed-off-by: James Smart <jsmart2021@gmail.com> Signed-off-by: Martin K. Petersen <martin.petersen@oracle.com>
2020-06-30 14:50:00 -07:00
lpfc_printf_vlog(vport, KERN_ERR, LOG_TRACE_EVENT,
"0272 Illegal State Transition: node x%x "
"event x%x, state x%x Data: x%x x%x\n",
ndlp->nlp_DID, evt, ndlp->nlp_state,
ndlp->nlp_rpi, ndlp->nlp_flag);
}
return ndlp->nlp_state;
}
/* Start of Discovery State Machine routines */
static uint32_t
lpfc_rcv_plogi_unused_node(struct lpfc_vport *vport, struct lpfc_nodelist *ndlp,
void *arg, uint32_t evt)
{
struct lpfc_iocbq *cmdiocb;
cmdiocb = (struct lpfc_iocbq *) arg;
if (lpfc_rcv_plogi(vport, ndlp, cmdiocb)) {
return ndlp->nlp_state;
}
return NLP_STE_FREED_NODE;
}
static uint32_t
lpfc_rcv_els_unused_node(struct lpfc_vport *vport, struct lpfc_nodelist *ndlp,
void *arg, uint32_t evt)
{
lpfc_issue_els_logo(vport, ndlp, 0);
return ndlp->nlp_state;
}
static uint32_t
lpfc_rcv_logo_unused_node(struct lpfc_vport *vport, struct lpfc_nodelist *ndlp,
void *arg, uint32_t evt)
{
struct lpfc_iocbq *cmdiocb = (struct lpfc_iocbq *) arg;
spin_lock_irq(&ndlp->lock);
ndlp->nlp_flag |= NLP_LOGO_ACC;
spin_unlock_irq(&ndlp->lock);
lpfc_els_rsp_acc(vport, ELS_CMD_ACC, cmdiocb, ndlp, NULL);
return ndlp->nlp_state;
}
static uint32_t
lpfc_cmpl_logo_unused_node(struct lpfc_vport *vport, struct lpfc_nodelist *ndlp,
void *arg, uint32_t evt)
{
return NLP_STE_FREED_NODE;
}
static uint32_t
lpfc_device_rm_unused_node(struct lpfc_vport *vport, struct lpfc_nodelist *ndlp,
void *arg, uint32_t evt)
{
return NLP_STE_FREED_NODE;
}
static uint32_t
lpfc_device_recov_unused_node(struct lpfc_vport *vport,
struct lpfc_nodelist *ndlp,
void *arg, uint32_t evt)
{
return ndlp->nlp_state;
}
static uint32_t
lpfc_rcv_plogi_plogi_issue(struct lpfc_vport *vport, struct lpfc_nodelist *ndlp,
void *arg, uint32_t evt)
{
struct Scsi_Host *shost = lpfc_shost_from_vport(vport);
struct lpfc_hba *phba = vport->phba;
struct lpfc_iocbq *cmdiocb = arg;
struct lpfc_dmabuf *pcmd = (struct lpfc_dmabuf *) cmdiocb->context2;
uint32_t *lp = (uint32_t *) pcmd->virt;
struct serv_parm *sp = (struct serv_parm *) (lp + 1);
struct ls_rjt stat;
int port_cmp;
memset(&stat, 0, sizeof (struct ls_rjt));
/* For a PLOGI, we only accept if our portname is less
* than the remote portname.
*/
phba->fc_stat.elsLogiCol++;
port_cmp = memcmp(&vport->fc_portname, &sp->portName,
sizeof(struct lpfc_name));
if (port_cmp >= 0) {
/* Reject this request because the remote node will accept
ours */
stat.un.b.lsRjtRsnCode = LSRJT_UNABLE_TPC;
stat.un.b.lsRjtRsnCodeExp = LSEXP_CMD_IN_PROGRESS;
lpfc_els_rsp_reject(vport, stat.un.lsRjtError, cmdiocb, ndlp,
NULL);
} else {
if (lpfc_rcv_plogi(vport, ndlp, cmdiocb) &&
(ndlp->nlp_flag & NLP_NPR_2B_DISC) &&
(vport->num_disc_nodes)) {
spin_lock_irq(&ndlp->lock);
ndlp->nlp_flag &= ~NLP_NPR_2B_DISC;
spin_unlock_irq(&ndlp->lock);
/* Check if there are more PLOGIs to be sent */
lpfc_more_plogi(vport);
if (vport->num_disc_nodes == 0) {
spin_lock_irq(shost->host_lock);
vport->fc_flag &= ~FC_NDISC_ACTIVE;
spin_unlock_irq(shost->host_lock);
lpfc_can_disctmo(vport);
lpfc_end_rscn(vport);
}
}
} /* If our portname was less */
return ndlp->nlp_state;
}
static uint32_t
lpfc_rcv_prli_plogi_issue(struct lpfc_vport *vport, struct lpfc_nodelist *ndlp,
void *arg, uint32_t evt)
{
struct lpfc_iocbq *cmdiocb = (struct lpfc_iocbq *) arg;
struct ls_rjt stat;
memset(&stat, 0, sizeof (struct ls_rjt));
stat.un.b.lsRjtRsnCode = LSRJT_LOGICAL_BSY;
stat.un.b.lsRjtRsnCodeExp = LSEXP_NOTHING_MORE;
lpfc_els_rsp_reject(vport, stat.un.lsRjtError, cmdiocb, ndlp, NULL);
return ndlp->nlp_state;
}
static uint32_t
lpfc_rcv_logo_plogi_issue(struct lpfc_vport *vport, struct lpfc_nodelist *ndlp,
void *arg, uint32_t evt)
{
struct lpfc_iocbq *cmdiocb = (struct lpfc_iocbq *) arg;
/* Retrieve RPI from LOGO IOCB. RPI is used for CMD_ABORT_XRI_CN */
if (vport->phba->sli_rev == LPFC_SLI_REV3)
ndlp->nlp_rpi = cmdiocb->iocb.ulpIoTag;
/* software abort outstanding PLOGI */
lpfc_els_abort(vport->phba, ndlp);
lpfc_rcv_logo(vport, ndlp, cmdiocb, ELS_CMD_LOGO);
return ndlp->nlp_state;
}
static uint32_t
lpfc_rcv_els_plogi_issue(struct lpfc_vport *vport, struct lpfc_nodelist *ndlp,
void *arg, uint32_t evt)
{
struct lpfc_hba *phba = vport->phba;
struct lpfc_iocbq *cmdiocb = (struct lpfc_iocbq *) arg;
/* software abort outstanding PLOGI */
lpfc_els_abort(phba, ndlp);
if (evt == NLP_EVT_RCV_LOGO) {
lpfc_els_rsp_acc(vport, ELS_CMD_ACC, cmdiocb, ndlp, NULL);
} else {
lpfc_issue_els_logo(vport, ndlp, 0);
}
/* Put ndlp in npr state set plogi timer for 1 sec */
mod_timer(&ndlp->nlp_delayfunc, jiffies + msecs_to_jiffies(1000 * 1));
spin_lock_irq(&ndlp->lock);
ndlp->nlp_flag |= NLP_DELAY_TMO;
spin_unlock_irq(&ndlp->lock);
ndlp->nlp_last_elscmd = ELS_CMD_PLOGI;
ndlp->nlp_prev_state = NLP_STE_PLOGI_ISSUE;
lpfc_nlp_set_state(vport, ndlp, NLP_STE_NPR_NODE);
return ndlp->nlp_state;
}
static uint32_t
lpfc_cmpl_plogi_plogi_issue(struct lpfc_vport *vport,
struct lpfc_nodelist *ndlp,
void *arg,
uint32_t evt)
{
struct lpfc_hba *phba = vport->phba;
struct lpfc_iocbq *cmdiocb, *rspiocb;
struct lpfc_dmabuf *pcmd, *prsp, *mp;
uint32_t *lp;
uint32_t vid, flag;
struct serv_parm *sp;
uint32_t ed_tov;
LPFC_MBOXQ_t *mbox;
int rc;
u32 ulp_status;
u32 did;
cmdiocb = (struct lpfc_iocbq *) arg;
rspiocb = cmdiocb->context_un.rsp_iocb;
ulp_status = get_job_ulpstatus(phba, rspiocb);
if (ndlp->nlp_flag & NLP_ACC_REGLOGIN) {
/* Recovery from PLOGI collision logic */
return ndlp->nlp_state;
}
if (ulp_status)
goto out;
pcmd = (struct lpfc_dmabuf *) cmdiocb->context2;
prsp = list_get_first(&pcmd->list, struct lpfc_dmabuf, list);
if (!prsp)
goto out;
lp = (uint32_t *) prsp->virt;
sp = (struct serv_parm *) ((uint8_t *) lp + sizeof (uint32_t));
[SCSI] lpfc 8.2.6 : Multiple discovery fixes Multiple Discovery Fixes: - Fix race on discovery due to link events coinciding with vport_delete. - Use NLP_FABRIC state to filter out switch-based pseudo initiators that reuse the same WWNs. - Correct erroneous setting of DID=0 in lpfc_matchdid() - Correct extra reference count that was in the lookup path for the remoteid from an unsolicited ELS. - Correct double-free bug in els abort path. - Correct FDMI server discovery logic for switch that return a WWN of 0. - Fix bugs in ndlp mgmt when a node changes address - Correct bug that did not delete RSCNs for vports upon link transitions - Fix "0216 Link event during NS query" error which pops up when vports are swapped to different switch ports. - Add sanity checks on ndlp structures - Fix devloss log message to dump WWN correctly - Hold off mgmt commands that were interferring with discovery mailbox cmds - Remove unnecessary FC_ESTABLISH_LINK logic. - Correct some race conditions in the worker thread, resulting in devloss: - Clear the work_port_events field before handling the work port events - Clear the deferred ring event before handling a deferred ring event - Hold the hba lock when waking up the work thread - Send an acc for the rscn even when we aren't going to handle it - Fix locking behavior that was not properly protecting the ACTIVE flag, thus allowing mailbox command order to shift. Signed-off-by: James Smart <james.smart@emulex.com> Signed-off-by: James Bottomley <James.Bottomley@HansenPartnership.com>
2008-04-07 10:15:56 -04:00
/* Some switches have FDMI servers returning 0 for WWN */
if ((ndlp->nlp_DID != FDMI_DID) &&
(wwn_to_u64(sp->portName.u.wwn) == 0 ||
wwn_to_u64(sp->nodeName.u.wwn) == 0)) {
scsi: lpfc: Add an internal trace log buffer The current logging methods typically end up requesting a reproduction with a different logging level set to figure out what happened. This was mainly by design to not clutter the kernel log messages with things that were typically not interesting and the messages themselves could cause other issues. When looking to make a better system, it was seen that in many cases when more data was wanted was when another message, usually at KERN_ERR level, was logged. And in most cases, what the additional logging that was then enabled was typically. Most of these areas fell into the discovery machine. Based on this summary, the following design has been put in place: The driver will maintain an internal log (256 elements of 256 bytes). The "additional logging" messages that are usually enabled in a reproduction will be changed to now log all the time to the internal log. A new logging level is defined - LOG_TRACE_EVENT. When this level is set (it is not by default) and a message marked as KERN_ERR is logged, all the messages in the internal log will be dumped to the kernel log before the KERN_ERR message is logged. There is a timestamp on each message added to the internal log. However, this timestamp is not converted to wall time when logged. The value of the timestamp is solely to give a crude time reference for the messages. Link: https://lore.kernel.org/r/20200630215001.70793-14-jsmart2021@gmail.com Signed-off-by: Dick Kennedy <dick.kennedy@broadcom.com> Signed-off-by: James Smart <jsmart2021@gmail.com> Signed-off-by: Martin K. Petersen <martin.petersen@oracle.com>
2020-06-30 14:50:00 -07:00
lpfc_printf_vlog(vport, KERN_ERR, LOG_TRACE_EVENT,
"0142 PLOGI RSP: Invalid WWN.\n");
goto out;
}
if (!lpfc_check_sparm(vport, ndlp, sp, CLASS3, 0))
goto out;
/* PLOGI chkparm OK */
lpfc_printf_vlog(vport, KERN_INFO, LOG_ELS,
"0121 PLOGI chkparm OK Data: x%x x%x x%x x%x\n",
ndlp->nlp_DID, ndlp->nlp_state,
ndlp->nlp_flag, ndlp->nlp_rpi);
if (vport->cfg_fcp_class == 2 && (sp->cls2.classValid))
ndlp->nlp_fcp_info |= CLASS2;
else
ndlp->nlp_fcp_info |= CLASS3;
ndlp->nlp_class_sup = 0;
if (sp->cls1.classValid)
ndlp->nlp_class_sup |= FC_COS_CLASS1;
if (sp->cls2.classValid)
ndlp->nlp_class_sup |= FC_COS_CLASS2;
if (sp->cls3.classValid)
ndlp->nlp_class_sup |= FC_COS_CLASS3;
if (sp->cls4.classValid)
ndlp->nlp_class_sup |= FC_COS_CLASS4;
ndlp->nlp_maxframe =
((sp->cmn.bbRcvSizeMsb & 0x0F) << 8) | sp->cmn.bbRcvSizeLsb;
if ((vport->fc_flag & FC_PT2PT) &&
(vport->fc_flag & FC_PT2PT_PLOGI)) {
ed_tov = be32_to_cpu(sp->cmn.e_d_tov);
if (sp->cmn.edtovResolution) {
/* E_D_TOV ticks are in nanoseconds */
ed_tov = (phba->fc_edtov + 999999) / 1000000;
}
ndlp->nlp_flag &= ~NLP_SUPPRESS_RSP;
if ((phba->sli.sli_flag & LPFC_SLI_SUPPRESS_RSP) &&
sp->cmn.valid_vendor_ver_level) {
vid = be32_to_cpu(sp->un.vv.vid);
flag = be32_to_cpu(sp->un.vv.flags);
if ((vid == LPFC_VV_EMLX_ID) &&
(flag & LPFC_VV_SUPPRESS_RSP))
ndlp->nlp_flag |= NLP_SUPPRESS_RSP;
}
/*
* Use the larger EDTOV
* RATOV = 2 * EDTOV for pt-to-pt
*/
if (ed_tov > phba->fc_edtov)
phba->fc_edtov = ed_tov;
phba->fc_ratov = (2 * phba->fc_edtov) / 1000;
memcpy(&phba->fc_fabparam, sp, sizeof(struct serv_parm));
/* Issue config_link / reg_vfi to account for updated TOV's */
if (phba->sli_rev == LPFC_SLI_REV4) {
lpfc_issue_reg_vfi(vport);
} else {
mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
if (!mbox) {
scsi: lpfc: Add an internal trace log buffer The current logging methods typically end up requesting a reproduction with a different logging level set to figure out what happened. This was mainly by design to not clutter the kernel log messages with things that were typically not interesting and the messages themselves could cause other issues. When looking to make a better system, it was seen that in many cases when more data was wanted was when another message, usually at KERN_ERR level, was logged. And in most cases, what the additional logging that was then enabled was typically. Most of these areas fell into the discovery machine. Based on this summary, the following design has been put in place: The driver will maintain an internal log (256 elements of 256 bytes). The "additional logging" messages that are usually enabled in a reproduction will be changed to now log all the time to the internal log. A new logging level is defined - LOG_TRACE_EVENT. When this level is set (it is not by default) and a message marked as KERN_ERR is logged, all the messages in the internal log will be dumped to the kernel log before the KERN_ERR message is logged. There is a timestamp on each message added to the internal log. However, this timestamp is not converted to wall time when logged. The value of the timestamp is solely to give a crude time reference for the messages. Link: https://lore.kernel.org/r/20200630215001.70793-14-jsmart2021@gmail.com Signed-off-by: Dick Kennedy <dick.kennedy@broadcom.com> Signed-off-by: James Smart <jsmart2021@gmail.com> Signed-off-by: Martin K. Petersen <martin.petersen@oracle.com>
2020-06-30 14:50:00 -07:00
lpfc_printf_vlog(vport, KERN_ERR,
LOG_TRACE_EVENT,
"0133 PLOGI: no memory "
"for config_link "
"Data: x%x x%x x%x x%x\n",
ndlp->nlp_DID, ndlp->nlp_state,
ndlp->nlp_flag, ndlp->nlp_rpi);
goto out;
}
lpfc_config_link(phba, mbox);
mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
mbox->vport = vport;
rc = lpfc_sli_issue_mbox(phba, mbox, MBX_NOWAIT);
if (rc == MBX_NOT_FINISHED) {
mempool_free(mbox, phba->mbox_mem_pool);
goto out;
}
}
}
lpfc_unreg_rpi(vport, ndlp);
mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
if (!mbox) {
scsi: lpfc: Add an internal trace log buffer The current logging methods typically end up requesting a reproduction with a different logging level set to figure out what happened. This was mainly by design to not clutter the kernel log messages with things that were typically not interesting and the messages themselves could cause other issues. When looking to make a better system, it was seen that in many cases when more data was wanted was when another message, usually at KERN_ERR level, was logged. And in most cases, what the additional logging that was then enabled was typically. Most of these areas fell into the discovery machine. Based on this summary, the following design has been put in place: The driver will maintain an internal log (256 elements of 256 bytes). The "additional logging" messages that are usually enabled in a reproduction will be changed to now log all the time to the internal log. A new logging level is defined - LOG_TRACE_EVENT. When this level is set (it is not by default) and a message marked as KERN_ERR is logged, all the messages in the internal log will be dumped to the kernel log before the KERN_ERR message is logged. There is a timestamp on each message added to the internal log. However, this timestamp is not converted to wall time when logged. The value of the timestamp is solely to give a crude time reference for the messages. Link: https://lore.kernel.org/r/20200630215001.70793-14-jsmart2021@gmail.com Signed-off-by: Dick Kennedy <dick.kennedy@broadcom.com> Signed-off-by: James Smart <jsmart2021@gmail.com> Signed-off-by: Martin K. Petersen <martin.petersen@oracle.com>
2020-06-30 14:50:00 -07:00
lpfc_printf_vlog(vport, KERN_ERR, LOG_TRACE_EVENT,
"0018 PLOGI: no memory for reg_login "
"Data: x%x x%x x%x x%x\n",
ndlp->nlp_DID, ndlp->nlp_state,
ndlp->nlp_flag, ndlp->nlp_rpi);
goto out;
}
did = get_job_els_rsp64_did(phba, cmdiocb);
if (lpfc_reg_rpi(phba, vport->vpi, did,
(uint8_t *) sp, mbox, ndlp->nlp_rpi) == 0) {
switch (ndlp->nlp_DID) {
case NameServer_DID:
mbox->mbox_cmpl = lpfc_mbx_cmpl_ns_reg_login;
/* Fabric Controller Node needs these parameters. */
memcpy(&ndlp->fc_sparam, sp, sizeof(struct serv_parm));
break;
case FDMI_DID:
mbox->mbox_cmpl = lpfc_mbx_cmpl_fdmi_reg_login;
break;
default:
ndlp->nlp_flag |= NLP_REG_LOGIN_SEND;
mbox->mbox_cmpl = lpfc_mbx_cmpl_reg_login;
}
scsi: lpfc: Rework locations of ndlp reference taking Now that the driver has gone to a normal ref interface (with no odd logic) the discovery logic needs to be updated to reworked so that it properly takes references when it should and give them up when it should. Rework the driver for the following get/put model: - Move gets to just before an I/O is issued. Add gets for places where an I/O was issued without one. - Ensure that failures from lpfc_nlp_get() are handled by the driver. - Check and fix the placement of lpfc_nlp_puts relative to io completions. Note: some of these paths may not release the reference on the exact io completion as the reference is held as the code takes another step in the discovery thread and which may cause another io to be issued. - Rearrange some code for error processing and calling lpfc_nlp_put. - Fix some places of incorrect reference freeing that was causing the premature releasing of the structure. - Nvmet plogi handling performs unreg_rpi's. The reference counts were unbalanced resulting in premature node removal. In some cases this caused loss of node discovery. Corrected the reftaking around nvmet plogis. Nodes that experience devloss now get released from the node list now that there is a proper reference taking. Link: https://lore.kernel.org/r/20201115192646.12977-3-james.smart@broadcom.com Co-developed-by: Dick Kennedy <dick.kennedy@broadcom.com> Signed-off-by: Dick Kennedy <dick.kennedy@broadcom.com> Signed-off-by: James Smart <james.smart@broadcom.com> Signed-off-by: Martin K. Petersen <martin.petersen@oracle.com>
2020-11-15 11:26:31 -08:00
mbox->ctx_ndlp = lpfc_nlp_get(ndlp);
scsi: lpfc: Rework locations of ndlp reference taking Now that the driver has gone to a normal ref interface (with no odd logic) the discovery logic needs to be updated to reworked so that it properly takes references when it should and give them up when it should. Rework the driver for the following get/put model: - Move gets to just before an I/O is issued. Add gets for places where an I/O was issued without one. - Ensure that failures from lpfc_nlp_get() are handled by the driver. - Check and fix the placement of lpfc_nlp_puts relative to io completions. Note: some of these paths may not release the reference on the exact io completion as the reference is held as the code takes another step in the discovery thread and which may cause another io to be issued. - Rearrange some code for error processing and calling lpfc_nlp_put. - Fix some places of incorrect reference freeing that was causing the premature releasing of the structure. - Nvmet plogi handling performs unreg_rpi's. The reference counts were unbalanced resulting in premature node removal. In some cases this caused loss of node discovery. Corrected the reftaking around nvmet plogis. Nodes that experience devloss now get released from the node list now that there is a proper reference taking. Link: https://lore.kernel.org/r/20201115192646.12977-3-james.smart@broadcom.com Co-developed-by: Dick Kennedy <dick.kennedy@broadcom.com> Signed-off-by: Dick Kennedy <dick.kennedy@broadcom.com> Signed-off-by: James Smart <james.smart@broadcom.com> Signed-off-by: Martin K. Petersen <martin.petersen@oracle.com>
2020-11-15 11:26:31 -08:00
if (!mbox->ctx_ndlp)
goto out;
mbox->vport = vport;
if (lpfc_sli_issue_mbox(phba, mbox, MBX_NOWAIT)
!= MBX_NOT_FINISHED) {
lpfc_nlp_set_state(vport, ndlp,
NLP_STE_REG_LOGIN_ISSUE);
return ndlp->nlp_state;
}
if (ndlp->nlp_flag & NLP_REG_LOGIN_SEND)
ndlp->nlp_flag &= ~NLP_REG_LOGIN_SEND;
/* decrement node reference count to the failed mbox
* command
*/
lpfc_nlp_put(ndlp);
mp = (struct lpfc_dmabuf *)mbox->ctx_buf;
lpfc_mbuf_free(phba, mp->virt, mp->phys);
kfree(mp);
mempool_free(mbox, phba->mbox_mem_pool);
scsi: lpfc: Add an internal trace log buffer The current logging methods typically end up requesting a reproduction with a different logging level set to figure out what happened. This was mainly by design to not clutter the kernel log messages with things that were typically not interesting and the messages themselves could cause other issues. When looking to make a better system, it was seen that in many cases when more data was wanted was when another message, usually at KERN_ERR level, was logged. And in most cases, what the additional logging that was then enabled was typically. Most of these areas fell into the discovery machine. Based on this summary, the following design has been put in place: The driver will maintain an internal log (256 elements of 256 bytes). The "additional logging" messages that are usually enabled in a reproduction will be changed to now log all the time to the internal log. A new logging level is defined - LOG_TRACE_EVENT. When this level is set (it is not by default) and a message marked as KERN_ERR is logged, all the messages in the internal log will be dumped to the kernel log before the KERN_ERR message is logged. There is a timestamp on each message added to the internal log. However, this timestamp is not converted to wall time when logged. The value of the timestamp is solely to give a crude time reference for the messages. Link: https://lore.kernel.org/r/20200630215001.70793-14-jsmart2021@gmail.com Signed-off-by: Dick Kennedy <dick.kennedy@broadcom.com> Signed-off-by: James Smart <jsmart2021@gmail.com> Signed-off-by: Martin K. Petersen <martin.petersen@oracle.com>
2020-06-30 14:50:00 -07:00
lpfc_printf_vlog(vport, KERN_ERR, LOG_TRACE_EVENT,
"0134 PLOGI: cannot issue reg_login "
"Data: x%x x%x x%x x%x\n",
ndlp->nlp_DID, ndlp->nlp_state,
ndlp->nlp_flag, ndlp->nlp_rpi);
} else {
mempool_free(mbox, phba->mbox_mem_pool);
scsi: lpfc: Add an internal trace log buffer The current logging methods typically end up requesting a reproduction with a different logging level set to figure out what happened. This was mainly by design to not clutter the kernel log messages with things that were typically not interesting and the messages themselves could cause other issues. When looking to make a better system, it was seen that in many cases when more data was wanted was when another message, usually at KERN_ERR level, was logged. And in most cases, what the additional logging that was then enabled was typically. Most of these areas fell into the discovery machine. Based on this summary, the following design has been put in place: The driver will maintain an internal log (256 elements of 256 bytes). The "additional logging" messages that are usually enabled in a reproduction will be changed to now log all the time to the internal log. A new logging level is defined - LOG_TRACE_EVENT. When this level is set (it is not by default) and a message marked as KERN_ERR is logged, all the messages in the internal log will be dumped to the kernel log before the KERN_ERR message is logged. There is a timestamp on each message added to the internal log. However, this timestamp is not converted to wall time when logged. The value of the timestamp is solely to give a crude time reference for the messages. Link: https://lore.kernel.org/r/20200630215001.70793-14-jsmart2021@gmail.com Signed-off-by: Dick Kennedy <dick.kennedy@broadcom.com> Signed-off-by: James Smart <jsmart2021@gmail.com> Signed-off-by: Martin K. Petersen <martin.petersen@oracle.com>
2020-06-30 14:50:00 -07:00
lpfc_printf_vlog(vport, KERN_ERR, LOG_TRACE_EVENT,
"0135 PLOGI: cannot format reg_login "
"Data: x%x x%x x%x x%x\n",
ndlp->nlp_DID, ndlp->nlp_state,
ndlp->nlp_flag, ndlp->nlp_rpi);
}
out:
if (ndlp->nlp_DID == NameServer_DID) {
lpfc_vport_set_state(vport, FC_VPORT_FAILED);
scsi: lpfc: Add an internal trace log buffer The current logging methods typically end up requesting a reproduction with a different logging level set to figure out what happened. This was mainly by design to not clutter the kernel log messages with things that were typically not interesting and the messages themselves could cause other issues. When looking to make a better system, it was seen that in many cases when more data was wanted was when another message, usually at KERN_ERR level, was logged. And in most cases, what the additional logging that was then enabled was typically. Most of these areas fell into the discovery machine. Based on this summary, the following design has been put in place: The driver will maintain an internal log (256 elements of 256 bytes). The "additional logging" messages that are usually enabled in a reproduction will be changed to now log all the time to the internal log. A new logging level is defined - LOG_TRACE_EVENT. When this level is set (it is not by default) and a message marked as KERN_ERR is logged, all the messages in the internal log will be dumped to the kernel log before the KERN_ERR message is logged. There is a timestamp on each message added to the internal log. However, this timestamp is not converted to wall time when logged. The value of the timestamp is solely to give a crude time reference for the messages. Link: https://lore.kernel.org/r/20200630215001.70793-14-jsmart2021@gmail.com Signed-off-by: Dick Kennedy <dick.kennedy@broadcom.com> Signed-off-by: James Smart <jsmart2021@gmail.com> Signed-off-by: Martin K. Petersen <martin.petersen@oracle.com>
2020-06-30 14:50:00 -07:00
lpfc_printf_vlog(vport, KERN_ERR, LOG_TRACE_EVENT,
"0261 Cannot Register NameServer login\n");
}
/*
** In case the node reference counter does not go to zero, ensure that
** the stale state for the node is not processed.
*/
ndlp->nlp_prev_state = ndlp->nlp_state;
lpfc_nlp_set_state(vport, ndlp, NLP_STE_NPR_NODE);
return NLP_STE_FREED_NODE;
}
static uint32_t
lpfc_cmpl_logo_plogi_issue(struct lpfc_vport *vport, struct lpfc_nodelist *ndlp,
void *arg, uint32_t evt)
{
return ndlp->nlp_state;
}
static uint32_t
lpfc_cmpl_reglogin_plogi_issue(struct lpfc_vport *vport,
struct lpfc_nodelist *ndlp, void *arg, uint32_t evt)
{
struct lpfc_hba *phba;
LPFC_MBOXQ_t *pmb = (LPFC_MBOXQ_t *) arg;
MAILBOX_t *mb = &pmb->u.mb;
uint16_t rpi;
phba = vport->phba;
/* Release the RPI */
if (!(phba->pport->load_flag & FC_UNLOADING) &&
!mb->mbxStatus) {
rpi = pmb->u.mb.un.varWords[0];
lpfc_release_rpi(phba, vport, ndlp, rpi);
}
return ndlp->nlp_state;
}
static uint32_t
lpfc_device_rm_plogi_issue(struct lpfc_vport *vport, struct lpfc_nodelist *ndlp,
void *arg, uint32_t evt)
{
if (ndlp->nlp_flag & NLP_NPR_2B_DISC) {
spin_lock_irq(&ndlp->lock);
ndlp->nlp_flag |= NLP_NODEV_REMOVE;
spin_unlock_irq(&ndlp->lock);
return ndlp->nlp_state;
} else {
/* software abort outstanding PLOGI */
lpfc_els_abort(vport->phba, ndlp);
lpfc_drop_node(vport, ndlp);
return NLP_STE_FREED_NODE;
}
}
static uint32_t
lpfc_device_recov_plogi_issue(struct lpfc_vport *vport,
struct lpfc_nodelist *ndlp,
void *arg,
uint32_t evt)
{
struct lpfc_hba *phba = vport->phba;
/* Don't do anything that will mess up processing of the
* previous RSCN.
*/
if (vport->fc_flag & FC_RSCN_DEFERRED)
return ndlp->nlp_state;
/* software abort outstanding PLOGI */
lpfc_els_abort(phba, ndlp);
ndlp->nlp_prev_state = NLP_STE_PLOGI_ISSUE;
lpfc_nlp_set_state(vport, ndlp, NLP_STE_NPR_NODE);
spin_lock_irq(&ndlp->lock);
ndlp->nlp_flag &= ~(NLP_NODEV_REMOVE | NLP_NPR_2B_DISC);
spin_unlock_irq(&ndlp->lock);
return ndlp->nlp_state;
}
static uint32_t
lpfc_rcv_plogi_adisc_issue(struct lpfc_vport *vport, struct lpfc_nodelist *ndlp,
void *arg, uint32_t evt)
{
struct lpfc_hba *phba = vport->phba;
struct lpfc_iocbq *cmdiocb;
/* software abort outstanding ADISC */
lpfc_els_abort(phba, ndlp);
cmdiocb = (struct lpfc_iocbq *) arg;
if (lpfc_rcv_plogi(vport, ndlp, cmdiocb)) {
if (ndlp->nlp_flag & NLP_NPR_2B_DISC) {
spin_lock_irq(&ndlp->lock);
ndlp->nlp_flag &= ~NLP_NPR_2B_DISC;
spin_unlock_irq(&ndlp->lock);
if (vport->num_disc_nodes)
lpfc_more_adisc(vport);
}
return ndlp->nlp_state;
}
ndlp->nlp_prev_state = NLP_STE_ADISC_ISSUE;
lpfc_issue_els_plogi(vport, ndlp->nlp_DID, 0);
lpfc_nlp_set_state(vport, ndlp, NLP_STE_PLOGI_ISSUE);
return ndlp->nlp_state;
}
static uint32_t
lpfc_rcv_prli_adisc_issue(struct lpfc_vport *vport, struct lpfc_nodelist *ndlp,
void *arg, uint32_t evt)
{
struct lpfc_iocbq *cmdiocb = (struct lpfc_iocbq *) arg;
if (lpfc_rcv_prli_support_check(vport, ndlp, cmdiocb))
lpfc_els_rsp_prli_acc(vport, cmdiocb, ndlp);
return ndlp->nlp_state;
}
static uint32_t
lpfc_rcv_logo_adisc_issue(struct lpfc_vport *vport, struct lpfc_nodelist *ndlp,
void *arg, uint32_t evt)
{
struct lpfc_hba *phba = vport->phba;
struct lpfc_iocbq *cmdiocb;
cmdiocb = (struct lpfc_iocbq *) arg;
/* software abort outstanding ADISC */
lpfc_els_abort(phba, ndlp);
lpfc_rcv_logo(vport, ndlp, cmdiocb, ELS_CMD_LOGO);
return ndlp->nlp_state;
}
static uint32_t
lpfc_rcv_padisc_adisc_issue(struct lpfc_vport *vport,
struct lpfc_nodelist *ndlp,
void *arg, uint32_t evt)
{
struct lpfc_iocbq *cmdiocb;
cmdiocb = (struct lpfc_iocbq *) arg;
lpfc_rcv_padisc(vport, ndlp, cmdiocb);
return ndlp->nlp_state;
}
static uint32_t
lpfc_rcv_prlo_adisc_issue(struct lpfc_vport *vport, struct lpfc_nodelist *ndlp,
void *arg, uint32_t evt)
{
struct lpfc_iocbq *cmdiocb;
cmdiocb = (struct lpfc_iocbq *) arg;
/* Treat like rcv logo */
lpfc_rcv_logo(vport, ndlp, cmdiocb, ELS_CMD_PRLO);
return ndlp->nlp_state;
}
static uint32_t
lpfc_cmpl_adisc_adisc_issue(struct lpfc_vport *vport,
struct lpfc_nodelist *ndlp,
void *arg, uint32_t evt)
{
struct lpfc_hba *phba = vport->phba;
struct lpfc_iocbq *cmdiocb, *rspiocb;
ADISC *ap;
int rc;
u32 ulp_status;
cmdiocb = (struct lpfc_iocbq *) arg;
rspiocb = cmdiocb->context_un.rsp_iocb;
ulp_status = get_job_ulpstatus(phba, rspiocb);
ap = (ADISC *)lpfc_check_elscmpl_iocb(phba, cmdiocb, rspiocb);
if ((ulp_status) ||
(!lpfc_check_adisc(vport, ndlp, &ap->nodeName, &ap->portName))) {
/* 1 sec timeout */
mod_timer(&ndlp->nlp_delayfunc,
jiffies + msecs_to_jiffies(1000));
spin_lock_irq(&ndlp->lock);
ndlp->nlp_flag |= NLP_DELAY_TMO;
spin_unlock_irq(&ndlp->lock);
ndlp->nlp_last_elscmd = ELS_CMD_PLOGI;
ndlp->nlp_prev_state = NLP_STE_ADISC_ISSUE;
lpfc_nlp_set_state(vport, ndlp, NLP_STE_NPR_NODE);
lpfc_unreg_rpi(vport, ndlp);
return ndlp->nlp_state;
}
if (phba->sli_rev == LPFC_SLI_REV4) {
rc = lpfc_sli4_resume_rpi(ndlp, NULL, NULL);
if (rc) {
/* Stay in state and retry. */
ndlp->nlp_prev_state = NLP_STE_ADISC_ISSUE;
return ndlp->nlp_state;
}
}
if (ndlp->nlp_type & NLP_FCP_TARGET)
ndlp->nlp_fc4_type |= NLP_FC4_FCP;
if (ndlp->nlp_type & NLP_NVME_TARGET)
ndlp->nlp_fc4_type |= NLP_FC4_NVME;
if (ndlp->nlp_type & (NLP_FCP_TARGET | NLP_NVME_TARGET)) {
ndlp->nlp_prev_state = NLP_STE_ADISC_ISSUE;
lpfc_nlp_set_state(vport, ndlp, NLP_STE_MAPPED_NODE);
} else {
ndlp->nlp_prev_state = NLP_STE_ADISC_ISSUE;
lpfc_nlp_set_state(vport, ndlp, NLP_STE_UNMAPPED_NODE);
}
return ndlp->nlp_state;
}
static uint32_t
lpfc_device_rm_adisc_issue(struct lpfc_vport *vport, struct lpfc_nodelist *ndlp,
void *arg, uint32_t evt)
{
if (ndlp->nlp_flag & NLP_NPR_2B_DISC) {
spin_lock_irq(&ndlp->lock);
ndlp->nlp_flag |= NLP_NODEV_REMOVE;
spin_unlock_irq(&ndlp->lock);
return ndlp->nlp_state;
} else {
/* software abort outstanding ADISC */
lpfc_els_abort(vport->phba, ndlp);
lpfc_drop_node(vport, ndlp);
return NLP_STE_FREED_NODE;
}
}
static uint32_t
lpfc_device_recov_adisc_issue(struct lpfc_vport *vport,
struct lpfc_nodelist *ndlp,
void *arg,
uint32_t evt)
{
struct lpfc_hba *phba = vport->phba;
/* Don't do anything that will mess up processing of the
* previous RSCN.
*/
if (vport->fc_flag & FC_RSCN_DEFERRED)
return ndlp->nlp_state;
/* software abort outstanding ADISC */
lpfc_els_abort(phba, ndlp);
ndlp->nlp_prev_state = NLP_STE_ADISC_ISSUE;
lpfc_nlp_set_state(vport, ndlp, NLP_STE_NPR_NODE);
spin_lock_irq(&ndlp->lock);
ndlp->nlp_flag &= ~(NLP_NODEV_REMOVE | NLP_NPR_2B_DISC);
spin_unlock_irq(&ndlp->lock);
lpfc_disc_set_adisc(vport, ndlp);
return ndlp->nlp_state;
}
static uint32_t
lpfc_rcv_plogi_reglogin_issue(struct lpfc_vport *vport,
struct lpfc_nodelist *ndlp,
void *arg,
uint32_t evt)
{
struct lpfc_iocbq *cmdiocb = (struct lpfc_iocbq *) arg;
lpfc_rcv_plogi(vport, ndlp, cmdiocb);
return ndlp->nlp_state;
}
static uint32_t
lpfc_rcv_prli_reglogin_issue(struct lpfc_vport *vport,
struct lpfc_nodelist *ndlp,
void *arg,
uint32_t evt)
{
struct lpfc_iocbq *cmdiocb = (struct lpfc_iocbq *) arg;
struct ls_rjt stat;
if (!lpfc_rcv_prli_support_check(vport, ndlp, cmdiocb)) {
return ndlp->nlp_state;
}
if (vport->phba->nvmet_support) {
/* NVME Target mode. Handle and respond to the PRLI and
* transition to UNMAPPED provided the RPI has completed
* registration.
*/
if (ndlp->nlp_flag & NLP_RPI_REGISTERED) {
lpfc_rcv_prli(vport, ndlp, cmdiocb);
lpfc_els_rsp_prli_acc(vport, cmdiocb, ndlp);
} else {
/* RPI registration has not completed. Reject the PRLI
* to prevent an illegal state transition when the
* rpi registration does complete.
*/
memset(&stat, 0, sizeof(struct ls_rjt));
stat.un.b.lsRjtRsnCode = LSRJT_LOGICAL_BSY;
stat.un.b.lsRjtRsnCodeExp = LSEXP_NOTHING_MORE;
lpfc_els_rsp_reject(vport, stat.un.lsRjtError, cmdiocb,
ndlp, NULL);
return ndlp->nlp_state;
}
} else {
/* Initiator mode. */
lpfc_els_rsp_prli_acc(vport, cmdiocb, ndlp);
}
return ndlp->nlp_state;
}
static uint32_t
lpfc_rcv_logo_reglogin_issue(struct lpfc_vport *vport,
struct lpfc_nodelist *ndlp,
void *arg,
uint32_t evt)
{
struct lpfc_hba *phba = vport->phba;
struct lpfc_iocbq *cmdiocb = (struct lpfc_iocbq *) arg;
LPFC_MBOXQ_t *mb;
LPFC_MBOXQ_t *nextmb;
struct lpfc_dmabuf *mp;
struct lpfc_nodelist *ns_ndlp;
cmdiocb = (struct lpfc_iocbq *) arg;
/* cleanup any ndlp on mbox q waiting for reglogin cmpl */
if ((mb = phba->sli.mbox_active)) {
if ((mb->u.mb.mbxCommand == MBX_REG_LOGIN64) &&
(ndlp == (struct lpfc_nodelist *)mb->ctx_ndlp)) {
ndlp->nlp_flag &= ~NLP_REG_LOGIN_SEND;
lpfc_nlp_put(ndlp);
mb->ctx_ndlp = NULL;
mb->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
}
}
spin_lock_irq(&phba->hbalock);
list_for_each_entry_safe(mb, nextmb, &phba->sli.mboxq, list) {
if ((mb->u.mb.mbxCommand == MBX_REG_LOGIN64) &&
(ndlp == (struct lpfc_nodelist *)mb->ctx_ndlp)) {
mp = (struct lpfc_dmabuf *)(mb->ctx_buf);
if (mp) {
__lpfc_mbuf_free(phba, mp->virt, mp->phys);
kfree(mp);
}
ndlp->nlp_flag &= ~NLP_REG_LOGIN_SEND;
lpfc_nlp_put(ndlp);
list_del(&mb->list);
phba->sli.mboxq_cnt--;
mempool_free(mb, phba->mbox_mem_pool);
}
}
spin_unlock_irq(&phba->hbalock);
/* software abort if any GID_FT is outstanding */
if (vport->cfg_enable_fc4_type != LPFC_ENABLE_FCP) {
ns_ndlp = lpfc_findnode_did(vport, NameServer_DID);
scsi: lpfc: Rework remote port ref counting and node freeing When a remote port is disconnected and disappears, its node structure (ndlp) stays allocated and on a vport node list. While on the list it can be matched, thus requires validation checks on state to be added in numerous code paths. If the node comes back, its possible for there to be multiple node structures for the same device on the vport node list. There is no reason to keep the node structure around after it is no longer in existence, and the current implementation creates problems for itself (multiple nodes) and lots of unnecessary code for state validation. Additionally, the reference taking on the node structure didn't follow the normal model used by the kernel kref api. It included lots of odd logic to match state with reference count. The combination of this odd logic plus the way it was implicitly used in the discovery engine made its reference taking implementation suspect and extremely hard to follow. Change the driver such that the reference taking routines are now normal ref increments/decrements and callout on refcount=0. With this in place, the rework can be done such that the node structure is fully removed and deallocated when the remote port no longer exists and all references are removed. This removal logic, and the basic ref counting are intrically tied, thus in a single patch. Link: https://lore.kernel.org/r/20201115192646.12977-2-james.smart@broadcom.com Co-developed-by: Dick Kennedy <dick.kennedy@broadcom.com> Signed-off-by: Dick Kennedy <dick.kennedy@broadcom.com> Signed-off-by: James Smart <james.smart@broadcom.com> Signed-off-by: Martin K. Petersen <martin.petersen@oracle.com>
2020-11-15 11:26:30 -08:00
if (ns_ndlp)
lpfc_els_abort(phba, ns_ndlp);
}
lpfc_rcv_logo(vport, ndlp, cmdiocb, ELS_CMD_LOGO);
return ndlp->nlp_state;
}
static uint32_t
lpfc_rcv_padisc_reglogin_issue(struct lpfc_vport *vport,
struct lpfc_nodelist *ndlp,
void *arg,
uint32_t evt)
{
struct lpfc_iocbq *cmdiocb = (struct lpfc_iocbq *) arg;
lpfc_rcv_padisc(vport, ndlp, cmdiocb);
return ndlp->nlp_state;
}
static uint32_t
lpfc_rcv_prlo_reglogin_issue(struct lpfc_vport *vport,
struct lpfc_nodelist *ndlp,
void *arg,
uint32_t evt)
{
struct lpfc_iocbq *cmdiocb;
cmdiocb = (struct lpfc_iocbq *) arg;
lpfc_els_rsp_acc(vport, ELS_CMD_PRLO, cmdiocb, ndlp, NULL);
return ndlp->nlp_state;
}
static uint32_t
lpfc_cmpl_reglogin_reglogin_issue(struct lpfc_vport *vport,
struct lpfc_nodelist *ndlp,
void *arg,
uint32_t evt)
{
struct lpfc_hba *phba = vport->phba;
LPFC_MBOXQ_t *pmb = (LPFC_MBOXQ_t *) arg;
MAILBOX_t *mb = &pmb->u.mb;
uint32_t did = mb->un.varWords[1];
if (mb->mbxStatus) {
/* RegLogin failed */
scsi: lpfc: Add an internal trace log buffer The current logging methods typically end up requesting a reproduction with a different logging level set to figure out what happened. This was mainly by design to not clutter the kernel log messages with things that were typically not interesting and the messages themselves could cause other issues. When looking to make a better system, it was seen that in many cases when more data was wanted was when another message, usually at KERN_ERR level, was logged. And in most cases, what the additional logging that was then enabled was typically. Most of these areas fell into the discovery machine. Based on this summary, the following design has been put in place: The driver will maintain an internal log (256 elements of 256 bytes). The "additional logging" messages that are usually enabled in a reproduction will be changed to now log all the time to the internal log. A new logging level is defined - LOG_TRACE_EVENT. When this level is set (it is not by default) and a message marked as KERN_ERR is logged, all the messages in the internal log will be dumped to the kernel log before the KERN_ERR message is logged. There is a timestamp on each message added to the internal log. However, this timestamp is not converted to wall time when logged. The value of the timestamp is solely to give a crude time reference for the messages. Link: https://lore.kernel.org/r/20200630215001.70793-14-jsmart2021@gmail.com Signed-off-by: Dick Kennedy <dick.kennedy@broadcom.com> Signed-off-by: James Smart <jsmart2021@gmail.com> Signed-off-by: Martin K. Petersen <martin.petersen@oracle.com>
2020-06-30 14:50:00 -07:00
lpfc_printf_vlog(vport, KERN_ERR, LOG_TRACE_EVENT,
"0246 RegLogin failed Data: x%x x%x x%x x%x "
"x%x\n",
did, mb->mbxStatus, vport->port_state,
mb->un.varRegLogin.vpi,
mb->un.varRegLogin.rpi);
/*
* If RegLogin failed due to lack of HBA resources do not
* retry discovery.
*/
if (mb->mbxStatus == MBXERR_RPI_FULL) {
ndlp->nlp_prev_state = NLP_STE_REG_LOGIN_ISSUE;
lpfc_nlp_set_state(vport, ndlp, NLP_STE_NPR_NODE);
return ndlp->nlp_state;
}
/* Put ndlp in npr state set plogi timer for 1 sec */
mod_timer(&ndlp->nlp_delayfunc,
jiffies + msecs_to_jiffies(1000 * 1));
spin_lock_irq(&ndlp->lock);
ndlp->nlp_flag |= NLP_DELAY_TMO;
spin_unlock_irq(&ndlp->lock);
ndlp->nlp_last_elscmd = ELS_CMD_PLOGI;
lpfc_issue_els_logo(vport, ndlp, 0);
return ndlp->nlp_state;
}
/* SLI4 ports have preallocated logical rpis. */
if (phba->sli_rev < LPFC_SLI_REV4)
ndlp->nlp_rpi = mb->un.varWords[0];
ndlp->nlp_flag |= NLP_RPI_REGISTERED;
/* Only if we are not a fabric nport do we issue PRLI */
lpfc_printf_vlog(vport, KERN_INFO, LOG_DISCOVERY,
"3066 RegLogin Complete on x%x x%x x%x\n",
did, ndlp->nlp_type, ndlp->nlp_fc4_type);
if (!(ndlp->nlp_type & NLP_FABRIC) &&
(phba->nvmet_support == 0)) {
/* The driver supports FCP and NVME concurrently. If the
* ndlp's nlp_fc4_type is still zero, the driver doesn't
* know what PRLI to send yet. Figure that out now and
* call PRLI depending on the outcome.
*/
if (vport->fc_flag & FC_PT2PT) {
/* If we are pt2pt, there is no Fabric to determine
* the FC4 type of the remote nport. So if NVME
* is configured try it.
*/
ndlp->nlp_fc4_type |= NLP_FC4_FCP;
if ((vport->cfg_enable_fc4_type == LPFC_ENABLE_BOTH) ||
(vport->cfg_enable_fc4_type == LPFC_ENABLE_NVME)) {
ndlp->nlp_fc4_type |= NLP_FC4_NVME;
/* We need to update the localport also */
lpfc_nvme_update_localport(vport);
}
} else if (phba->fc_topology == LPFC_TOPOLOGY_LOOP) {
ndlp->nlp_fc4_type |= NLP_FC4_FCP;
} else if (ndlp->nlp_fc4_type == 0) {
/* If we are only configured for FCP, the driver
* should just issue PRLI for FCP. Otherwise issue
* GFT_ID to determine if remote port supports NVME.
*/
if (vport->cfg_enable_fc4_type != LPFC_ENABLE_FCP) {
lpfc_ns_cmd(vport, SLI_CTNS_GFT_ID, 0,
ndlp->nlp_DID);
return ndlp->nlp_state;
}
ndlp->nlp_fc4_type = NLP_FC4_FCP;
}
ndlp->nlp_prev_state = NLP_STE_REG_LOGIN_ISSUE;
lpfc_nlp_set_state(vport, ndlp, NLP_STE_PRLI_ISSUE);
if (lpfc_issue_els_prli(vport, ndlp, 0)) {
lpfc_issue_els_logo(vport, ndlp, 0);
ndlp->nlp_prev_state = NLP_STE_REG_LOGIN_ISSUE;
lpfc_nlp_set_state(vport, ndlp, NLP_STE_NPR_NODE);
}
} else {
if ((vport->fc_flag & FC_PT2PT) && phba->nvmet_support)
phba->targetport->port_id = vport->fc_myDID;
/* Only Fabric ports should transition. NVME target
* must complete PRLI.
*/
if (ndlp->nlp_type & NLP_FABRIC) {
ndlp->nlp_fc4_type &= ~NLP_FC4_FCP;
ndlp->nlp_prev_state = NLP_STE_REG_LOGIN_ISSUE;
lpfc_nlp_set_state(vport, ndlp, NLP_STE_UNMAPPED_NODE);
}
}
return ndlp->nlp_state;
}
static uint32_t
lpfc_device_rm_reglogin_issue(struct lpfc_vport *vport,
struct lpfc_nodelist *ndlp,
void *arg,
uint32_t evt)
{
if (ndlp->nlp_flag & NLP_NPR_2B_DISC) {
spin_lock_irq(&ndlp->lock);
ndlp->nlp_flag |= NLP_NODEV_REMOVE;
spin_unlock_irq(&ndlp->lock);
return ndlp->nlp_state;
} else {
lpfc_drop_node(vport, ndlp);
return NLP_STE_FREED_NODE;
}
}
static uint32_t
lpfc_device_recov_reglogin_issue(struct lpfc_vport *vport,
struct lpfc_nodelist *ndlp,
void *arg,
uint32_t evt)
{
/* Don't do anything that will mess up processing of the
* previous RSCN.
*/
if (vport->fc_flag & FC_RSCN_DEFERRED)
return ndlp->nlp_state;
ndlp->nlp_prev_state = NLP_STE_REG_LOGIN_ISSUE;
lpfc_nlp_set_state(vport, ndlp, NLP_STE_NPR_NODE);
spin_lock_irq(&ndlp->lock);
/* If we are a target we won't immediately transition into PRLI,
* so if REG_LOGIN already completed we don't need to ignore it.
*/
if (!(ndlp->nlp_flag & NLP_RPI_REGISTERED) ||
!vport->phba->nvmet_support)
ndlp->nlp_flag |= NLP_IGNR_REG_CMPL;
ndlp->nlp_flag &= ~(NLP_NODEV_REMOVE | NLP_NPR_2B_DISC);
spin_unlock_irq(&ndlp->lock);
lpfc_disc_set_adisc(vport, ndlp);
return ndlp->nlp_state;
}
static uint32_t
lpfc_rcv_plogi_prli_issue(struct lpfc_vport *vport, struct lpfc_nodelist *ndlp,
void *arg, uint32_t evt)
{
struct lpfc_iocbq *cmdiocb;
cmdiocb = (struct lpfc_iocbq *) arg;
lpfc_rcv_plogi(vport, ndlp, cmdiocb);
return ndlp->nlp_state;
}
static uint32_t
lpfc_rcv_prli_prli_issue(struct lpfc_vport *vport, struct lpfc_nodelist *ndlp,
void *arg, uint32_t evt)
{
struct lpfc_iocbq *cmdiocb = (struct lpfc_iocbq *) arg;
if (!lpfc_rcv_prli_support_check(vport, ndlp, cmdiocb))
return ndlp->nlp_state;
lpfc_rcv_prli(vport, ndlp, cmdiocb);
lpfc_els_rsp_prli_acc(vport, cmdiocb, ndlp);
return ndlp->nlp_state;
}
static uint32_t
lpfc_rcv_logo_prli_issue(struct lpfc_vport *vport, struct lpfc_nodelist *ndlp,
void *arg, uint32_t evt)
{
struct lpfc_iocbq *cmdiocb = (struct lpfc_iocbq *) arg;
/* Software abort outstanding PRLI before sending acc */
lpfc_els_abort(vport->phba, ndlp);
lpfc_rcv_logo(vport, ndlp, cmdiocb, ELS_CMD_LOGO);
return ndlp->nlp_state;
}
static uint32_t
lpfc_rcv_padisc_prli_issue(struct lpfc_vport *vport, struct lpfc_nodelist *ndlp,
void *arg, uint32_t evt)
{
struct lpfc_iocbq *cmdiocb = (struct lpfc_iocbq *) arg;
lpfc_rcv_padisc(vport, ndlp, cmdiocb);
return ndlp->nlp_state;
}
/* This routine is envoked when we rcv a PRLO request from a nport
* we are logged into. We should send back a PRLO rsp setting the
* appropriate bits.
* NEXT STATE = PRLI_ISSUE
*/
static uint32_t
lpfc_rcv_prlo_prli_issue(struct lpfc_vport *vport, struct lpfc_nodelist *ndlp,
void *arg, uint32_t evt)
{
struct lpfc_iocbq *cmdiocb = (struct lpfc_iocbq *) arg;
lpfc_els_rsp_acc(vport, ELS_CMD_PRLO, cmdiocb, ndlp, NULL);
return ndlp->nlp_state;
}
static uint32_t
lpfc_cmpl_prli_prli_issue(struct lpfc_vport *vport, struct lpfc_nodelist *ndlp,
void *arg, uint32_t evt)
{
struct lpfc_iocbq *cmdiocb, *rspiocb;
struct lpfc_hba *phba = vport->phba;
PRLI *npr;
struct lpfc_nvme_prli *nvpr;
void *temp_ptr;
u32 ulp_status;
cmdiocb = (struct lpfc_iocbq *) arg;
rspiocb = cmdiocb->context_un.rsp_iocb;
ulp_status = get_job_ulpstatus(phba, rspiocb);
/* A solicited PRLI is either FCP or NVME. The PRLI cmd/rsp
* format is different so NULL the two PRLI types so that the
* driver correctly gets the correct context.
*/
npr = NULL;
nvpr = NULL;
temp_ptr = lpfc_check_elscmpl_iocb(phba, cmdiocb, rspiocb);
2022-02-24 18:22:52 -08:00
if (cmdiocb->cmd_flag & LPFC_PRLI_FCP_REQ)
npr = (PRLI *) temp_ptr;
2022-02-24 18:22:52 -08:00
else if (cmdiocb->cmd_flag & LPFC_PRLI_NVME_REQ)
nvpr = (struct lpfc_nvme_prli *) temp_ptr;
if (ulp_status) {
if ((vport->port_type == LPFC_NPIV_PORT) &&
vport->cfg_restrict_login) {
goto out;
}
/* Adjust the nlp_type accordingly if the PRLI failed */
if (npr)
ndlp->nlp_fc4_type &= ~NLP_FC4_FCP;
if (nvpr)
ndlp->nlp_fc4_type &= ~NLP_FC4_NVME;
/* We can't set the DSM state till BOTH PRLIs complete */
goto out_err;
}
if (npr && (npr->acceptRspCode == PRLI_REQ_EXECUTED) &&
(npr->prliType == PRLI_FCP_TYPE)) {
lpfc_printf_vlog(vport, KERN_INFO, LOG_NVME_DISC,
"6028 FCP NPR PRLI Cmpl Init %d Target %d\n",
npr->initiatorFunc,
npr->targetFunc);
if (npr->initiatorFunc)
ndlp->nlp_type |= NLP_FCP_INITIATOR;
if (npr->targetFunc) {
ndlp->nlp_type |= NLP_FCP_TARGET;
if (npr->writeXferRdyDis)
ndlp->nlp_flag |= NLP_FIRSTBURST;
}
if (npr->Retry)
ndlp->nlp_fcp_info |= NLP_FCP_2_DEVICE;
} else if (nvpr &&
(bf_get_be32(prli_acc_rsp_code, nvpr) ==
PRLI_REQ_EXECUTED) &&
(bf_get_be32(prli_type_code, nvpr) ==
PRLI_NVME_TYPE)) {
/* Complete setting up the remote ndlp personality. */
if (bf_get_be32(prli_init, nvpr))
ndlp->nlp_type |= NLP_NVME_INITIATOR;
if (phba->nsler && bf_get_be32(prli_nsler, nvpr) &&
bf_get_be32(prli_conf, nvpr))
ndlp->nlp_nvme_info |= NLP_NVME_NSLER;
else
ndlp->nlp_nvme_info &= ~NLP_NVME_NSLER;
/* Target driver cannot solicit NVME FB. */
if (bf_get_be32(prli_tgt, nvpr)) {
/* Complete the nvme target roles. The transport
* needs to know if the rport is capable of
* discovery in addition to its role.
*/
ndlp->nlp_type |= NLP_NVME_TARGET;
if (bf_get_be32(prli_disc, nvpr))
ndlp->nlp_type |= NLP_NVME_DISCOVERY;
/*
* If prli_fba is set, the Target supports FirstBurst.
* If prli_fb_sz is 0, the FirstBurst size is unlimited,
* otherwise it defines the actual size supported by
* the NVME Target.
*/
if ((bf_get_be32(prli_fba, nvpr) == 1) &&
(phba->cfg_nvme_enable_fb) &&
(!phba->nvmet_support)) {
/* Both sides support FB. The target's first
* burst size is a 512 byte encoded value.
*/
ndlp->nlp_flag |= NLP_FIRSTBURST;
ndlp->nvme_fb_size = bf_get_be32(prli_fb_sz,
nvpr);
/* Expressed in units of 512 bytes */
if (ndlp->nvme_fb_size)
ndlp->nvme_fb_size <<=
LPFC_NVME_FB_SHIFT;
else
ndlp->nvme_fb_size = LPFC_NVME_MAX_FB;
}
}
lpfc_printf_vlog(vport, KERN_INFO, LOG_NVME_DISC,
"6029 NVME PRLI Cmpl w1 x%08x "
"w4 x%08x w5 x%08x flag x%x, "
"fcp_info x%x nlp_type x%x\n",
be32_to_cpu(nvpr->word1),
be32_to_cpu(nvpr->word4),
be32_to_cpu(nvpr->word5),
ndlp->nlp_flag, ndlp->nlp_fcp_info,
ndlp->nlp_type);
}
if (!(ndlp->nlp_type & NLP_FCP_TARGET) &&
(vport->port_type == LPFC_NPIV_PORT) &&
vport->cfg_restrict_login) {
out:
spin_lock_irq(&ndlp->lock);
ndlp->nlp_flag |= NLP_TARGET_REMOVE;
spin_unlock_irq(&ndlp->lock);
lpfc_issue_els_logo(vport, ndlp, 0);
ndlp->nlp_prev_state = NLP_STE_PRLI_ISSUE;
lpfc_nlp_set_state(vport, ndlp, NLP_STE_NPR_NODE);
return ndlp->nlp_state;
}
out_err:
/* The ndlp state cannot move to MAPPED or UNMAPPED before all PRLIs
* are complete.
*/
if (ndlp->fc4_prli_sent == 0) {
ndlp->nlp_prev_state = NLP_STE_PRLI_ISSUE;
if (ndlp->nlp_type & (NLP_FCP_TARGET | NLP_NVME_TARGET))
lpfc_nlp_set_state(vport, ndlp, NLP_STE_MAPPED_NODE);
else if (ndlp->nlp_type &
(NLP_FCP_INITIATOR | NLP_NVME_INITIATOR))
lpfc_nlp_set_state(vport, ndlp, NLP_STE_UNMAPPED_NODE);
} else
lpfc_printf_vlog(vport,
KERN_INFO, LOG_ELS,
"3067 PRLI's still outstanding "
"on x%06x - count %d, Pend Node Mode "
"transition...\n",
ndlp->nlp_DID, ndlp->fc4_prli_sent);
return ndlp->nlp_state;
}
/*! lpfc_device_rm_prli_issue
*
* \pre
* \post
* \param phba
* \param ndlp
* \param arg
* \param evt
* \return uint32_t
*
* \b Description:
* This routine is envoked when we a request to remove a nport we are in the
* process of PRLIing. We should software abort outstanding prli, unreg
* login, send a logout. We will change node state to UNUSED_NODE, put it
* on plogi list so it can be freed when LOGO completes.
*
*/
static uint32_t
lpfc_device_rm_prli_issue(struct lpfc_vport *vport, struct lpfc_nodelist *ndlp,
void *arg, uint32_t evt)
{
if (ndlp->nlp_flag & NLP_NPR_2B_DISC) {
spin_lock_irq(&ndlp->lock);
ndlp->nlp_flag |= NLP_NODEV_REMOVE;
spin_unlock_irq(&ndlp->lock);
return ndlp->nlp_state;
} else {
/* software abort outstanding PLOGI */
lpfc_els_abort(vport->phba, ndlp);
lpfc_drop_node(vport, ndlp);
return NLP_STE_FREED_NODE;
}
}
/*! lpfc_device_recov_prli_issue
*
* \pre
* \post
* \param phba
* \param ndlp
* \param arg
* \param evt
* \return uint32_t
*
* \b Description:
* The routine is envoked when the state of a device is unknown, like
* during a link down. We should remove the nodelist entry from the
* unmapped list, issue a UNREG_LOGIN, do a software abort of the
* outstanding PRLI command, then free the node entry.
*/
static uint32_t
lpfc_device_recov_prli_issue(struct lpfc_vport *vport,
struct lpfc_nodelist *ndlp,
void *arg,
uint32_t evt)
{
struct lpfc_hba *phba = vport->phba;
/* Don't do anything that will mess up processing of the
* previous RSCN.
*/
if (vport->fc_flag & FC_RSCN_DEFERRED)
return ndlp->nlp_state;
/* software abort outstanding PRLI */
lpfc_els_abort(phba, ndlp);
ndlp->nlp_prev_state = NLP_STE_PRLI_ISSUE;
lpfc_nlp_set_state(vport, ndlp, NLP_STE_NPR_NODE);
spin_lock_irq(&ndlp->lock);
ndlp->nlp_flag &= ~(NLP_NODEV_REMOVE | NLP_NPR_2B_DISC);
spin_unlock_irq(&ndlp->lock);
lpfc_disc_set_adisc(vport, ndlp);
return ndlp->nlp_state;
}
static uint32_t
lpfc_rcv_plogi_logo_issue(struct lpfc_vport *vport, struct lpfc_nodelist *ndlp,
void *arg, uint32_t evt)
{
struct lpfc_iocbq *cmdiocb = (struct lpfc_iocbq *)arg;
struct ls_rjt stat;
memset(&stat, 0, sizeof(struct ls_rjt));
stat.un.b.lsRjtRsnCode = LSRJT_UNABLE_TPC;
stat.un.b.lsRjtRsnCodeExp = LSEXP_NOTHING_MORE;
lpfc_els_rsp_reject(vport, stat.un.lsRjtError, cmdiocb, ndlp, NULL);
return ndlp->nlp_state;
}
static uint32_t
lpfc_rcv_prli_logo_issue(struct lpfc_vport *vport, struct lpfc_nodelist *ndlp,
void *arg, uint32_t evt)
{
struct lpfc_iocbq *cmdiocb = (struct lpfc_iocbq *)arg;
struct ls_rjt stat;
memset(&stat, 0, sizeof(struct ls_rjt));
stat.un.b.lsRjtRsnCode = LSRJT_UNABLE_TPC;
stat.un.b.lsRjtRsnCodeExp = LSEXP_NOTHING_MORE;
lpfc_els_rsp_reject(vport, stat.un.lsRjtError, cmdiocb, ndlp, NULL);
return ndlp->nlp_state;
}
static uint32_t
lpfc_rcv_logo_logo_issue(struct lpfc_vport *vport, struct lpfc_nodelist *ndlp,
void *arg, uint32_t evt)
{
struct lpfc_iocbq *cmdiocb = (struct lpfc_iocbq *)arg;
spin_lock_irq(&ndlp->lock);
ndlp->nlp_flag |= NLP_LOGO_ACC;
spin_unlock_irq(&ndlp->lock);
lpfc_els_rsp_acc(vport, ELS_CMD_ACC, cmdiocb, ndlp, NULL);
return ndlp->nlp_state;
}
static uint32_t
lpfc_rcv_padisc_logo_issue(struct lpfc_vport *vport, struct lpfc_nodelist *ndlp,
void *arg, uint32_t evt)
{
struct lpfc_iocbq *cmdiocb = (struct lpfc_iocbq *)arg;
struct ls_rjt stat;
memset(&stat, 0, sizeof(struct ls_rjt));
stat.un.b.lsRjtRsnCode = LSRJT_UNABLE_TPC;
stat.un.b.lsRjtRsnCodeExp = LSEXP_NOTHING_MORE;
lpfc_els_rsp_reject(vport, stat.un.lsRjtError, cmdiocb, ndlp, NULL);
return ndlp->nlp_state;
}
static uint32_t
lpfc_rcv_prlo_logo_issue(struct lpfc_vport *vport, struct lpfc_nodelist *ndlp,
void *arg, uint32_t evt)
{
struct lpfc_iocbq *cmdiocb = (struct lpfc_iocbq *)arg;
struct ls_rjt stat;
memset(&stat, 0, sizeof(struct ls_rjt));
stat.un.b.lsRjtRsnCode = LSRJT_UNABLE_TPC;
stat.un.b.lsRjtRsnCodeExp = LSEXP_NOTHING_MORE;
lpfc_els_rsp_reject(vport, stat.un.lsRjtError, cmdiocb, ndlp, NULL);
return ndlp->nlp_state;
}
static uint32_t
lpfc_cmpl_logo_logo_issue(struct lpfc_vport *vport, struct lpfc_nodelist *ndlp,
void *arg, uint32_t evt)
{
ndlp->nlp_prev_state = NLP_STE_LOGO_ISSUE;
lpfc_nlp_set_state(vport, ndlp, NLP_STE_NPR_NODE);
spin_lock_irq(&ndlp->lock);
ndlp->nlp_flag &= ~(NLP_NODEV_REMOVE | NLP_NPR_2B_DISC);
spin_unlock_irq(&ndlp->lock);
lpfc_disc_set_adisc(vport, ndlp);
return ndlp->nlp_state;
}
static uint32_t
lpfc_device_rm_logo_issue(struct lpfc_vport *vport, struct lpfc_nodelist *ndlp,
void *arg, uint32_t evt)
{
/*
* DevLoss has timed out and is calling for Device Remove.
* In this case, abort the LOGO and cleanup the ndlp
*/
lpfc_unreg_rpi(vport, ndlp);
/* software abort outstanding PLOGI */
lpfc_els_abort(vport->phba, ndlp);
lpfc_drop_node(vport, ndlp);
return NLP_STE_FREED_NODE;
}
static uint32_t
lpfc_device_recov_logo_issue(struct lpfc_vport *vport,
struct lpfc_nodelist *ndlp,
void *arg, uint32_t evt)
{
/*
* Device Recovery events have no meaning for a node with a LOGO
* outstanding. The LOGO has to complete first and handle the
* node from that point.
*/
return ndlp->nlp_state;
}
static uint32_t
lpfc_rcv_plogi_unmap_node(struct lpfc_vport *vport, struct lpfc_nodelist *ndlp,
void *arg, uint32_t evt)
{
struct lpfc_iocbq *cmdiocb = (struct lpfc_iocbq *) arg;
lpfc_rcv_plogi(vport, ndlp, cmdiocb);
return ndlp->nlp_state;
}
static uint32_t
lpfc_rcv_prli_unmap_node(struct lpfc_vport *vport, struct lpfc_nodelist *ndlp,
void *arg, uint32_t evt)
{
struct lpfc_iocbq *cmdiocb = (struct lpfc_iocbq *) arg;
if (!lpfc_rcv_prli_support_check(vport, ndlp, cmdiocb))
return ndlp->nlp_state;
lpfc_rcv_prli(vport, ndlp, cmdiocb);
lpfc_els_rsp_prli_acc(vport, cmdiocb, ndlp);
return ndlp->nlp_state;
}
static uint32_t
lpfc_rcv_logo_unmap_node(struct lpfc_vport *vport, struct lpfc_nodelist *ndlp,
void *arg, uint32_t evt)
{
struct lpfc_iocbq *cmdiocb = (struct lpfc_iocbq *) arg;
lpfc_rcv_logo(vport, ndlp, cmdiocb, ELS_CMD_LOGO);
return ndlp->nlp_state;
}
static uint32_t
lpfc_rcv_padisc_unmap_node(struct lpfc_vport *vport, struct lpfc_nodelist *ndlp,
void *arg, uint32_t evt)
{
struct lpfc_iocbq *cmdiocb = (struct lpfc_iocbq *) arg;
lpfc_rcv_padisc(vport, ndlp, cmdiocb);
return ndlp->nlp_state;
}
static uint32_t
lpfc_rcv_prlo_unmap_node(struct lpfc_vport *vport, struct lpfc_nodelist *ndlp,
void *arg, uint32_t evt)
{
struct lpfc_iocbq *cmdiocb = (struct lpfc_iocbq *) arg;
lpfc_els_rsp_acc(vport, ELS_CMD_PRLO, cmdiocb, ndlp, NULL);
return ndlp->nlp_state;
}
static uint32_t
lpfc_device_rm_unmap_node(struct lpfc_vport *vport,
struct lpfc_nodelist *ndlp,
void *arg,
uint32_t evt)
{
lpfc_drop_node(vport, ndlp);
return NLP_STE_FREED_NODE;
}
static uint32_t
lpfc_device_recov_unmap_node(struct lpfc_vport *vport,
struct lpfc_nodelist *ndlp,
void *arg,
uint32_t evt)
{
ndlp->nlp_prev_state = NLP_STE_UNMAPPED_NODE;
lpfc_nlp_set_state(vport, ndlp, NLP_STE_NPR_NODE);
spin_lock_irq(&ndlp->lock);
ndlp->nlp_flag &= ~(NLP_NODEV_REMOVE | NLP_NPR_2B_DISC);
ndlp->nlp_fc4_type &= ~(NLP_FC4_FCP | NLP_FC4_NVME);
spin_unlock_irq(&ndlp->lock);
lpfc_disc_set_adisc(vport, ndlp);
return ndlp->nlp_state;
}
static uint32_t
lpfc_rcv_plogi_mapped_node(struct lpfc_vport *vport, struct lpfc_nodelist *ndlp,
void *arg, uint32_t evt)
{
struct lpfc_iocbq *cmdiocb = (struct lpfc_iocbq *) arg;
lpfc_rcv_plogi(vport, ndlp, cmdiocb);
return ndlp->nlp_state;
}
static uint32_t
lpfc_rcv_prli_mapped_node(struct lpfc_vport *vport, struct lpfc_nodelist *ndlp,
void *arg, uint32_t evt)
{
struct lpfc_iocbq *cmdiocb = (struct lpfc_iocbq *) arg;
if (!lpfc_rcv_prli_support_check(vport, ndlp, cmdiocb))
return ndlp->nlp_state;
lpfc_els_rsp_prli_acc(vport, cmdiocb, ndlp);
return ndlp->nlp_state;
}
static uint32_t
lpfc_rcv_logo_mapped_node(struct lpfc_vport *vport, struct lpfc_nodelist *ndlp,
void *arg, uint32_t evt)
{
struct lpfc_iocbq *cmdiocb = (struct lpfc_iocbq *) arg;
lpfc_rcv_logo(vport, ndlp, cmdiocb, ELS_CMD_LOGO);
return ndlp->nlp_state;
}
static uint32_t
lpfc_rcv_padisc_mapped_node(struct lpfc_vport *vport,
struct lpfc_nodelist *ndlp,
void *arg, uint32_t evt)
{
struct lpfc_iocbq *cmdiocb = (struct lpfc_iocbq *) arg;
lpfc_rcv_padisc(vport, ndlp, cmdiocb);
return ndlp->nlp_state;
}
static uint32_t
lpfc_rcv_prlo_mapped_node(struct lpfc_vport *vport, struct lpfc_nodelist *ndlp,
void *arg, uint32_t evt)
{
struct lpfc_iocbq *cmdiocb = (struct lpfc_iocbq *) arg;
/* flush the target */
lpfc_sli_abort_iocb(vport, ndlp->nlp_sid, 0, LPFC_CTX_TGT);
/* Treat like rcv logo */
lpfc_rcv_logo(vport, ndlp, cmdiocb, ELS_CMD_PRLO);
return ndlp->nlp_state;
}
static uint32_t
lpfc_device_recov_mapped_node(struct lpfc_vport *vport,
struct lpfc_nodelist *ndlp,
void *arg,
uint32_t evt)
{
scsi: lpfc: Delay unregistering from transport until GIDFT or ADISC completes On an RSCN event, the nodes specified in RSCN payload and in MAPPED state are moved to NPR state in order to revalidate the login. This triggers an immediate unregister from SCSI/NVMe backend. The assumption is that the node may be missing. The re-registration with the backend happens after either relogin (PLOGI/PRLI; if ADISC is disabled or login truly lost) or when ADISC completes successfully (rediscover with ADISC enabled). However, the NVMe-FC standard provides for an RSCN to be triggered when the remote port supports a discovery controller and there was a change of discovery log content. As the remote port typically also supports storage subsystems, this unregister causes all storage controller connections to fail and require reconnect. Correct by reworking the code to ensure that the unregistration only occurs when a login state is truly terminated, thereby leaving the NVMe storage controllers in place. The changes made are: - Retain node state in ADISC_ISSUE when scheduling ADISC ELS retry. - Do not clear wwpn/wwnn values upon ADISC failure. - Move MAPPED nodes to NPR during RSCN processing, but do not unregister with transport. On GIDFT completion, identify missing nodes (not marked NLP_NPR_2B_DISC) and unregister them. - Perform unregistration for nodes that will go through ADISC processing if ADISC completion fails. - Successful ADISC completion will move node back to MAPPED state. Link: https://lore.kernel.org/r/20210707184351.67872-16-jsmart2021@gmail.com Co-developed-by: Justin Tee <justin.tee@broadcom.com> Signed-off-by: Justin Tee <justin.tee@broadcom.com> Signed-off-by: James Smart <jsmart2021@gmail.com> Signed-off-by: Martin K. Petersen <martin.petersen@oracle.com>
2021-07-07 11:43:46 -07:00
lpfc_disc_set_adisc(vport, ndlp);
ndlp->nlp_prev_state = NLP_STE_MAPPED_NODE;
lpfc_nlp_set_state(vport, ndlp, NLP_STE_NPR_NODE);
spin_lock_irq(&ndlp->lock);
ndlp->nlp_flag &= ~(NLP_NODEV_REMOVE | NLP_NPR_2B_DISC);
ndlp->nlp_fc4_type &= ~(NLP_FC4_FCP | NLP_FC4_NVME);
spin_unlock_irq(&ndlp->lock);
return ndlp->nlp_state;
}
static uint32_t
lpfc_rcv_plogi_npr_node(struct lpfc_vport *vport, struct lpfc_nodelist *ndlp,
void *arg, uint32_t evt)
{
struct lpfc_iocbq *cmdiocb = (struct lpfc_iocbq *) arg;
/* Ignore PLOGI if we have an outstanding LOGO */
if (ndlp->nlp_flag & (NLP_LOGO_SND | NLP_LOGO_ACC))
return ndlp->nlp_state;
if (lpfc_rcv_plogi(vport, ndlp, cmdiocb)) {
lpfc_cancel_retry_delay_tmo(vport, ndlp);
spin_lock_irq(&ndlp->lock);
ndlp->nlp_flag &= ~(NLP_NPR_ADISC | NLP_NPR_2B_DISC);
spin_unlock_irq(&ndlp->lock);
} else if (!(ndlp->nlp_flag & NLP_NPR_2B_DISC)) {
/* send PLOGI immediately, move to PLOGI issue state */
if (!(ndlp->nlp_flag & NLP_DELAY_TMO)) {
ndlp->nlp_prev_state = NLP_STE_NPR_NODE;
lpfc_nlp_set_state(vport, ndlp, NLP_STE_PLOGI_ISSUE);
lpfc_issue_els_plogi(vport, ndlp->nlp_DID, 0);
}
}
return ndlp->nlp_state;
}
static uint32_t
lpfc_rcv_prli_npr_node(struct lpfc_vport *vport, struct lpfc_nodelist *ndlp,
void *arg, uint32_t evt)
{
struct lpfc_iocbq *cmdiocb = (struct lpfc_iocbq *) arg;
struct ls_rjt stat;
memset(&stat, 0, sizeof (struct ls_rjt));
stat.un.b.lsRjtRsnCode = LSRJT_UNABLE_TPC;
stat.un.b.lsRjtRsnCodeExp = LSEXP_NOTHING_MORE;
lpfc_els_rsp_reject(vport, stat.un.lsRjtError, cmdiocb, ndlp, NULL);
if (!(ndlp->nlp_flag & NLP_DELAY_TMO)) {
/*
* ADISC nodes will be handled in regular discovery path after
* receiving response from NS.
*
* For other nodes, Send PLOGI to trigger an implicit LOGO.
*/
if (!(ndlp->nlp_flag & NLP_NPR_ADISC)) {
ndlp->nlp_prev_state = NLP_STE_NPR_NODE;
lpfc_nlp_set_state(vport, ndlp, NLP_STE_PLOGI_ISSUE);
lpfc_issue_els_plogi(vport, ndlp->nlp_DID, 0);
}
}
return ndlp->nlp_state;
}
static uint32_t
lpfc_rcv_logo_npr_node(struct lpfc_vport *vport, struct lpfc_nodelist *ndlp,
void *arg, uint32_t evt)
{
struct lpfc_iocbq *cmdiocb = (struct lpfc_iocbq *) arg;
lpfc_rcv_logo(vport, ndlp, cmdiocb, ELS_CMD_LOGO);
return ndlp->nlp_state;
}
static uint32_t
lpfc_rcv_padisc_npr_node(struct lpfc_vport *vport, struct lpfc_nodelist *ndlp,
void *arg, uint32_t evt)
{
struct lpfc_iocbq *cmdiocb = (struct lpfc_iocbq *) arg;
lpfc_rcv_padisc(vport, ndlp, cmdiocb);
/*
* Do not start discovery if discovery is about to start
* or discovery in progress for this node. Starting discovery
* here will affect the counting of discovery threads.
*/
if (!(ndlp->nlp_flag & NLP_DELAY_TMO) &&
!(ndlp->nlp_flag & NLP_NPR_2B_DISC)) {
/*
* ADISC nodes will be handled in regular discovery path after
* receiving response from NS.
*
* For other nodes, Send PLOGI to trigger an implicit LOGO.
*/
if (!(ndlp->nlp_flag & NLP_NPR_ADISC)) {
ndlp->nlp_prev_state = NLP_STE_NPR_NODE;
lpfc_nlp_set_state(vport, ndlp, NLP_STE_PLOGI_ISSUE);
lpfc_issue_els_plogi(vport, ndlp->nlp_DID, 0);
}
}
return ndlp->nlp_state;
}
static uint32_t
lpfc_rcv_prlo_npr_node(struct lpfc_vport *vport, struct lpfc_nodelist *ndlp,
void *arg, uint32_t evt)
{
struct lpfc_iocbq *cmdiocb = (struct lpfc_iocbq *) arg;
spin_lock_irq(&ndlp->lock);
ndlp->nlp_flag |= NLP_LOGO_ACC;
spin_unlock_irq(&ndlp->lock);
lpfc_els_rsp_acc(vport, ELS_CMD_ACC, cmdiocb, ndlp, NULL);
if ((ndlp->nlp_flag & NLP_DELAY_TMO) == 0) {
mod_timer(&ndlp->nlp_delayfunc,
jiffies + msecs_to_jiffies(1000 * 1));
spin_lock_irq(&ndlp->lock);
ndlp->nlp_flag |= NLP_DELAY_TMO;
ndlp->nlp_flag &= ~NLP_NPR_ADISC;
spin_unlock_irq(&ndlp->lock);
ndlp->nlp_last_elscmd = ELS_CMD_PLOGI;
} else {
spin_lock_irq(&ndlp->lock);
ndlp->nlp_flag &= ~NLP_NPR_ADISC;
spin_unlock_irq(&ndlp->lock);
}
return ndlp->nlp_state;
}
static uint32_t
lpfc_cmpl_plogi_npr_node(struct lpfc_vport *vport, struct lpfc_nodelist *ndlp,
void *arg, uint32_t evt)
{
struct lpfc_hba *phba = vport->phba;
struct lpfc_iocbq *cmdiocb, *rspiocb;
u32 ulp_status;
cmdiocb = (struct lpfc_iocbq *) arg;
rspiocb = cmdiocb->context_un.rsp_iocb;
ulp_status = get_job_ulpstatus(phba, rspiocb);
if (ulp_status)
return NLP_STE_FREED_NODE;
return ndlp->nlp_state;
}
static uint32_t
lpfc_cmpl_prli_npr_node(struct lpfc_vport *vport, struct lpfc_nodelist *ndlp,
void *arg, uint32_t evt)
{
struct lpfc_hba *phba = vport->phba;
struct lpfc_iocbq *cmdiocb, *rspiocb;
u32 ulp_status;
cmdiocb = (struct lpfc_iocbq *) arg;
rspiocb = cmdiocb->context_un.rsp_iocb;
ulp_status = get_job_ulpstatus(phba, rspiocb);
if (ulp_status && (ndlp->nlp_flag & NLP_NODEV_REMOVE)) {
lpfc_drop_node(vport, ndlp);
return NLP_STE_FREED_NODE;
}
return ndlp->nlp_state;
}
static uint32_t
lpfc_cmpl_logo_npr_node(struct lpfc_vport *vport, struct lpfc_nodelist *ndlp,
void *arg, uint32_t evt)
{
struct Scsi_Host *shost = lpfc_shost_from_vport(vport);
/* For the fabric port just clear the fc flags. */
if (ndlp->nlp_DID == Fabric_DID) {
spin_lock_irq(shost->host_lock);
vport->fc_flag &= ~(FC_FABRIC | FC_PUBLIC_LOOP);
spin_unlock_irq(shost->host_lock);
}
lpfc_unreg_rpi(vport, ndlp);
return ndlp->nlp_state;
}
static uint32_t
lpfc_cmpl_adisc_npr_node(struct lpfc_vport *vport, struct lpfc_nodelist *ndlp,
void *arg, uint32_t evt)
{
struct lpfc_hba *phba = vport->phba;
struct lpfc_iocbq *cmdiocb, *rspiocb;
u32 ulp_status;
cmdiocb = (struct lpfc_iocbq *) arg;
rspiocb = cmdiocb->context_un.rsp_iocb;
ulp_status = get_job_ulpstatus(phba, rspiocb);
if (ulp_status && (ndlp->nlp_flag & NLP_NODEV_REMOVE)) {
lpfc_drop_node(vport, ndlp);
return NLP_STE_FREED_NODE;
}
return ndlp->nlp_state;
}
static uint32_t
lpfc_cmpl_reglogin_npr_node(struct lpfc_vport *vport,
struct lpfc_nodelist *ndlp,
void *arg, uint32_t evt)
{
LPFC_MBOXQ_t *pmb = (LPFC_MBOXQ_t *) arg;
MAILBOX_t *mb = &pmb->u.mb;
if (!mb->mbxStatus) {
/* SLI4 ports have preallocated logical rpis. */
if (vport->phba->sli_rev < LPFC_SLI_REV4)
ndlp->nlp_rpi = mb->un.varWords[0];
ndlp->nlp_flag |= NLP_RPI_REGISTERED;
if (ndlp->nlp_flag & NLP_LOGO_ACC) {
lpfc_unreg_rpi(vport, ndlp);
}
} else {
if (ndlp->nlp_flag & NLP_NODEV_REMOVE) {
lpfc_drop_node(vport, ndlp);
return NLP_STE_FREED_NODE;
}
}
return ndlp->nlp_state;
}
static uint32_t
lpfc_device_rm_npr_node(struct lpfc_vport *vport, struct lpfc_nodelist *ndlp,
void *arg, uint32_t evt)
{
if (ndlp->nlp_flag & NLP_NPR_2B_DISC) {
spin_lock_irq(&ndlp->lock);
ndlp->nlp_flag |= NLP_NODEV_REMOVE;
spin_unlock_irq(&ndlp->lock);
return ndlp->nlp_state;
}
lpfc_drop_node(vport, ndlp);
return NLP_STE_FREED_NODE;
}
static uint32_t
lpfc_device_recov_npr_node(struct lpfc_vport *vport, struct lpfc_nodelist *ndlp,
void *arg, uint32_t evt)
{
/* Don't do anything that will mess up processing of the
* previous RSCN.
*/
if (vport->fc_flag & FC_RSCN_DEFERRED)
return ndlp->nlp_state;
lpfc_cancel_retry_delay_tmo(vport, ndlp);
spin_lock_irq(&ndlp->lock);
ndlp->nlp_flag &= ~(NLP_NODEV_REMOVE | NLP_NPR_2B_DISC);
ndlp->nlp_fc4_type &= ~(NLP_FC4_FCP | NLP_FC4_NVME);
spin_unlock_irq(&ndlp->lock);
return ndlp->nlp_state;
}
/* This next section defines the NPort Discovery State Machine */
/* There are 4 different double linked lists nodelist entries can reside on.
* The plogi list and adisc list are used when Link Up discovery or RSCN
* processing is needed. Each list holds the nodes that we will send PLOGI
* or ADISC on. These lists will keep track of what nodes will be effected
* by an RSCN, or a Link Up (Typically, all nodes are effected on Link Up).
* The unmapped_list will contain all nodes that we have successfully logged
* into at the Fibre Channel level. The mapped_list will contain all nodes
* that are mapped FCP targets.
*/
/*
* The bind list is a list of undiscovered (potentially non-existent) nodes
* that we have saved binding information on. This information is used when
* nodes transition from the unmapped to the mapped list.
*/
/* For UNUSED_NODE state, the node has just been allocated .
* For PLOGI_ISSUE and REG_LOGIN_ISSUE, the node is on
* the PLOGI list. For REG_LOGIN_COMPL, the node is taken off the PLOGI list
* and put on the unmapped list. For ADISC processing, the node is taken off
* the ADISC list and placed on either the mapped or unmapped list (depending
* on its previous state). Once on the unmapped list, a PRLI is issued and the
* state changed to PRLI_ISSUE. When the PRLI completion occurs, the state is
* changed to UNMAPPED_NODE. If the completion indicates a mapped
* node, the node is taken off the unmapped list. The binding list is checked
* for a valid binding, or a binding is automatically assigned. If binding
* assignment is unsuccessful, the node is left on the unmapped list. If
* binding assignment is successful, the associated binding list entry (if
* any) is removed, and the node is placed on the mapped list.
*/
/*
* For a Link Down, all nodes on the ADISC, PLOGI, unmapped or mapped
* lists will receive a DEVICE_RECOVERY event. If the linkdown or devloss timers
* expire, all effected nodes will receive a DEVICE_RM event.
*/
/*
* For a Link Up or RSCN, all nodes will move from the mapped / unmapped lists
* to either the ADISC or PLOGI list. After a Nameserver query or ALPA loopmap
* check, additional nodes may be added or removed (via DEVICE_RM) to / from
* the PLOGI or ADISC lists. Once the PLOGI and ADISC lists are populated,
* we will first process the ADISC list. 32 entries are processed initially and
* ADISC is initited for each one. Completions / Events for each node are
* funnelled thru the state machine. As each node finishes ADISC processing, it
* starts ADISC for any nodes waiting for ADISC processing. If no nodes are
* waiting, and the ADISC list count is identically 0, then we are done. For
* Link Up discovery, since all nodes on the PLOGI list are UNREG_LOGIN'ed, we
* can issue a CLEAR_LA and reenable Link Events. Next we will process the PLOGI
* list. 32 entries are processed initially and PLOGI is initited for each one.
* Completions / Events for each node are funnelled thru the state machine. As
* each node finishes PLOGI processing, it starts PLOGI for any nodes waiting
* for PLOGI processing. If no nodes are waiting, and the PLOGI list count is
* indentically 0, then we are done. We have now completed discovery / RSCN
* handling. Upon completion, ALL nodes should be on either the mapped or
* unmapped lists.
*/
static uint32_t (*lpfc_disc_action[NLP_STE_MAX_STATE * NLP_EVT_MAX_EVENT])
(struct lpfc_vport *, struct lpfc_nodelist *, void *, uint32_t) = {
/* Action routine Event Current State */
lpfc_rcv_plogi_unused_node, /* RCV_PLOGI UNUSED_NODE */
lpfc_rcv_els_unused_node, /* RCV_PRLI */
lpfc_rcv_logo_unused_node, /* RCV_LOGO */
lpfc_rcv_els_unused_node, /* RCV_ADISC */
lpfc_rcv_els_unused_node, /* RCV_PDISC */
lpfc_rcv_els_unused_node, /* RCV_PRLO */
lpfc_disc_illegal, /* CMPL_PLOGI */
lpfc_disc_illegal, /* CMPL_PRLI */
lpfc_cmpl_logo_unused_node, /* CMPL_LOGO */
lpfc_disc_illegal, /* CMPL_ADISC */
lpfc_disc_illegal, /* CMPL_REG_LOGIN */
lpfc_device_rm_unused_node, /* DEVICE_RM */
lpfc_device_recov_unused_node, /* DEVICE_RECOVERY */
lpfc_rcv_plogi_plogi_issue, /* RCV_PLOGI PLOGI_ISSUE */
lpfc_rcv_prli_plogi_issue, /* RCV_PRLI */
lpfc_rcv_logo_plogi_issue, /* RCV_LOGO */
lpfc_rcv_els_plogi_issue, /* RCV_ADISC */
lpfc_rcv_els_plogi_issue, /* RCV_PDISC */
lpfc_rcv_els_plogi_issue, /* RCV_PRLO */
lpfc_cmpl_plogi_plogi_issue, /* CMPL_PLOGI */
lpfc_disc_illegal, /* CMPL_PRLI */
lpfc_cmpl_logo_plogi_issue, /* CMPL_LOGO */
lpfc_disc_illegal, /* CMPL_ADISC */
lpfc_cmpl_reglogin_plogi_issue,/* CMPL_REG_LOGIN */
lpfc_device_rm_plogi_issue, /* DEVICE_RM */
lpfc_device_recov_plogi_issue, /* DEVICE_RECOVERY */
lpfc_rcv_plogi_adisc_issue, /* RCV_PLOGI ADISC_ISSUE */
lpfc_rcv_prli_adisc_issue, /* RCV_PRLI */
lpfc_rcv_logo_adisc_issue, /* RCV_LOGO */
lpfc_rcv_padisc_adisc_issue, /* RCV_ADISC */
lpfc_rcv_padisc_adisc_issue, /* RCV_PDISC */
lpfc_rcv_prlo_adisc_issue, /* RCV_PRLO */
lpfc_disc_illegal, /* CMPL_PLOGI */
lpfc_disc_illegal, /* CMPL_PRLI */
lpfc_disc_illegal, /* CMPL_LOGO */
lpfc_cmpl_adisc_adisc_issue, /* CMPL_ADISC */
lpfc_disc_illegal, /* CMPL_REG_LOGIN */
lpfc_device_rm_adisc_issue, /* DEVICE_RM */
lpfc_device_recov_adisc_issue, /* DEVICE_RECOVERY */
lpfc_rcv_plogi_reglogin_issue, /* RCV_PLOGI REG_LOGIN_ISSUE */
lpfc_rcv_prli_reglogin_issue, /* RCV_PLOGI */
lpfc_rcv_logo_reglogin_issue, /* RCV_LOGO */
lpfc_rcv_padisc_reglogin_issue, /* RCV_ADISC */
lpfc_rcv_padisc_reglogin_issue, /* RCV_PDISC */
lpfc_rcv_prlo_reglogin_issue, /* RCV_PRLO */
lpfc_cmpl_plogi_illegal, /* CMPL_PLOGI */
lpfc_disc_illegal, /* CMPL_PRLI */
lpfc_disc_illegal, /* CMPL_LOGO */
lpfc_disc_illegal, /* CMPL_ADISC */
lpfc_cmpl_reglogin_reglogin_issue,/* CMPL_REG_LOGIN */
lpfc_device_rm_reglogin_issue, /* DEVICE_RM */
lpfc_device_recov_reglogin_issue,/* DEVICE_RECOVERY */
lpfc_rcv_plogi_prli_issue, /* RCV_PLOGI PRLI_ISSUE */
lpfc_rcv_prli_prli_issue, /* RCV_PRLI */
lpfc_rcv_logo_prli_issue, /* RCV_LOGO */
lpfc_rcv_padisc_prli_issue, /* RCV_ADISC */
lpfc_rcv_padisc_prli_issue, /* RCV_PDISC */
lpfc_rcv_prlo_prli_issue, /* RCV_PRLO */
lpfc_cmpl_plogi_illegal, /* CMPL_PLOGI */
lpfc_cmpl_prli_prli_issue, /* CMPL_PRLI */
lpfc_disc_illegal, /* CMPL_LOGO */
lpfc_disc_illegal, /* CMPL_ADISC */
lpfc_disc_illegal, /* CMPL_REG_LOGIN */
lpfc_device_rm_prli_issue, /* DEVICE_RM */
lpfc_device_recov_prli_issue, /* DEVICE_RECOVERY */
lpfc_rcv_plogi_logo_issue, /* RCV_PLOGI LOGO_ISSUE */
lpfc_rcv_prli_logo_issue, /* RCV_PRLI */
lpfc_rcv_logo_logo_issue, /* RCV_LOGO */
lpfc_rcv_padisc_logo_issue, /* RCV_ADISC */
lpfc_rcv_padisc_logo_issue, /* RCV_PDISC */
lpfc_rcv_prlo_logo_issue, /* RCV_PRLO */
lpfc_cmpl_plogi_illegal, /* CMPL_PLOGI */
lpfc_disc_illegal, /* CMPL_PRLI */
lpfc_cmpl_logo_logo_issue, /* CMPL_LOGO */
lpfc_disc_illegal, /* CMPL_ADISC */
lpfc_disc_illegal, /* CMPL_REG_LOGIN */
lpfc_device_rm_logo_issue, /* DEVICE_RM */
lpfc_device_recov_logo_issue, /* DEVICE_RECOVERY */
lpfc_rcv_plogi_unmap_node, /* RCV_PLOGI UNMAPPED_NODE */
lpfc_rcv_prli_unmap_node, /* RCV_PRLI */
lpfc_rcv_logo_unmap_node, /* RCV_LOGO */
lpfc_rcv_padisc_unmap_node, /* RCV_ADISC */
lpfc_rcv_padisc_unmap_node, /* RCV_PDISC */
lpfc_rcv_prlo_unmap_node, /* RCV_PRLO */
lpfc_disc_illegal, /* CMPL_PLOGI */
lpfc_disc_illegal, /* CMPL_PRLI */
lpfc_disc_illegal, /* CMPL_LOGO */
lpfc_disc_illegal, /* CMPL_ADISC */
lpfc_disc_illegal, /* CMPL_REG_LOGIN */
lpfc_device_rm_unmap_node, /* DEVICE_RM */
lpfc_device_recov_unmap_node, /* DEVICE_RECOVERY */
lpfc_rcv_plogi_mapped_node, /* RCV_PLOGI MAPPED_NODE */
lpfc_rcv_prli_mapped_node, /* RCV_PRLI */
lpfc_rcv_logo_mapped_node, /* RCV_LOGO */
lpfc_rcv_padisc_mapped_node, /* RCV_ADISC */
lpfc_rcv_padisc_mapped_node, /* RCV_PDISC */
lpfc_rcv_prlo_mapped_node, /* RCV_PRLO */
lpfc_disc_illegal, /* CMPL_PLOGI */
lpfc_disc_illegal, /* CMPL_PRLI */
lpfc_disc_illegal, /* CMPL_LOGO */
lpfc_disc_illegal, /* CMPL_ADISC */
lpfc_disc_illegal, /* CMPL_REG_LOGIN */
lpfc_disc_illegal, /* DEVICE_RM */
lpfc_device_recov_mapped_node, /* DEVICE_RECOVERY */
lpfc_rcv_plogi_npr_node, /* RCV_PLOGI NPR_NODE */
lpfc_rcv_prli_npr_node, /* RCV_PRLI */
lpfc_rcv_logo_npr_node, /* RCV_LOGO */
lpfc_rcv_padisc_npr_node, /* RCV_ADISC */
lpfc_rcv_padisc_npr_node, /* RCV_PDISC */
lpfc_rcv_prlo_npr_node, /* RCV_PRLO */
lpfc_cmpl_plogi_npr_node, /* CMPL_PLOGI */
lpfc_cmpl_prli_npr_node, /* CMPL_PRLI */
lpfc_cmpl_logo_npr_node, /* CMPL_LOGO */
lpfc_cmpl_adisc_npr_node, /* CMPL_ADISC */
lpfc_cmpl_reglogin_npr_node, /* CMPL_REG_LOGIN */
lpfc_device_rm_npr_node, /* DEVICE_RM */
lpfc_device_recov_npr_node, /* DEVICE_RECOVERY */
};
int
lpfc_disc_state_machine(struct lpfc_vport *vport, struct lpfc_nodelist *ndlp,
void *arg, uint32_t evt)
{
uint32_t cur_state, rc;
uint32_t(*func) (struct lpfc_vport *, struct lpfc_nodelist *, void *,
uint32_t);
uint32_t got_ndlp = 0;
uint32_t data1;
if (lpfc_nlp_get(ndlp))
got_ndlp = 1;
cur_state = ndlp->nlp_state;
data1 = (((uint32_t)ndlp->nlp_fc4_type << 16) |
((uint32_t)ndlp->nlp_type));
/* DSM in event <evt> on NPort <nlp_DID> in state <cur_state> */
lpfc_printf_vlog(vport, KERN_INFO, LOG_DISCOVERY,
"0211 DSM in event x%x on NPort x%x in "
"state %d rpi x%x Data: x%x x%x\n",
evt, ndlp->nlp_DID, cur_state, ndlp->nlp_rpi,
ndlp->nlp_flag, data1);
lpfc_debugfs_disc_trc(vport, LPFC_DISC_TRC_DSM,
"DSM in: evt:%d ste:%d did:x%x",
evt, cur_state, ndlp->nlp_DID);
func = lpfc_disc_action[(cur_state * NLP_EVT_MAX_EVENT) + evt];
rc = (func) (vport, ndlp, arg, evt);
/* DSM out state <rc> on NPort <nlp_DID> */
if (got_ndlp) {
data1 = (((uint32_t)ndlp->nlp_fc4_type << 16) |
((uint32_t)ndlp->nlp_type));
lpfc_printf_vlog(vport, KERN_INFO, LOG_DISCOVERY,
"0212 DSM out state %d on NPort x%x "
"rpi x%x Data: x%x x%x\n",
rc, ndlp->nlp_DID, ndlp->nlp_rpi, ndlp->nlp_flag,
data1);
lpfc_debugfs_disc_trc(vport, LPFC_DISC_TRC_DSM,
"DSM out: ste:%d did:x%x flg:x%x",
rc, ndlp->nlp_DID, ndlp->nlp_flag);
/* Decrement the ndlp reference count held for this function */
lpfc_nlp_put(ndlp);
} else {
lpfc_printf_vlog(vport, KERN_INFO, LOG_DISCOVERY,
"0213 DSM out state %d on NPort free\n", rc);
lpfc_debugfs_disc_trc(vport, LPFC_DISC_TRC_DSM,
"DSM out: ste:%d did:x%x flg:x%x",
rc, 0, 0);
}
return rc;
}