2013-12-12 16:32:47 +01:00
/*
* Performance event support for the System z CPU - measurement Sampling Facility
*
* Copyright IBM Corp . 2013
* Author ( s ) : Hendrik Brueckner < brueckner @ linux . vnet . ibm . com >
*
* This program is free software ; you can redistribute it and / or modify
* it under the terms of the GNU General Public License ( version 2 only )
* as published by the Free Software Foundation .
*/
# define KMSG_COMPONENT "cpum_sf"
# define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
# include <linux/kernel.h>
# include <linux/kernel_stat.h>
# include <linux/perf_event.h>
# include <linux/percpu.h>
# include <linux/notifier.h>
# include <linux/export.h>
2013-12-13 11:42:44 +01:00
# include <linux/slab.h>
2013-12-12 17:03:48 +01:00
# include <linux/mm.h>
# include <linux/moduleparam.h>
2013-12-12 16:32:47 +01:00
# include <asm/cpu_mf.h>
# include <asm/irq.h>
# include <asm/debug.h>
# include <asm/timex.h>
/* Minimum number of sample-data-block-tables:
* At least one table is required for the sampling buffer structure .
* A single table contains up to 511 pointers to sample - data - blocks .
*/
2013-12-12 17:03:48 +01:00
# define CPUM_SF_MIN_SDBT 1
2013-12-12 16:32:47 +01:00
2013-12-12 17:03:48 +01:00
/* Number of sample-data-blocks per sample-data-block-table (SDBT):
2013-12-13 11:42:44 +01:00
* A table contains SDB pointers ( 8 bytes ) and one table - link entry
* that points to the origin of the next SDBT .
2013-12-12 16:32:47 +01:00
*/
2013-12-12 17:03:48 +01:00
# define CPUM_SF_SDB_PER_TABLE ((PAGE_SIZE - 8) / 8)
2013-12-12 16:32:47 +01:00
2013-12-12 17:03:48 +01:00
/* Maximum page offset for an SDBT table-link entry:
* If this page offset is reached , a table - link entry to the next SDBT
* must be added .
*/
# define CPUM_SF_SDBT_TL_OFFSET (CPUM_SF_SDB_PER_TABLE * 8)
static inline int require_table_link ( const void * sdbt )
{
return ( ( unsigned long ) sdbt & ~ PAGE_MASK ) = = CPUM_SF_SDBT_TL_OFFSET ;
}
/* Minimum and maximum sampling buffer sizes:
*
2013-12-13 11:42:44 +01:00
* This number represents the maximum size of the sampling buffer taking
* the number of sample - data - block - tables into account . Note that these
* numbers apply to the basic - sampling function only .
* The maximum number of SDBs is increased by CPUM_SF_SDB_DIAG_FACTOR if
* the diagnostic - sampling function is active .
2013-12-12 16:32:47 +01:00
*
2013-12-12 17:03:48 +01:00
* Sampling buffer size Buffer characteristics
* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
* 64 KB = = 16 pages ( 4 KB per page )
* 1 page for SDB - tables
* 15 pages for SDBs
*
* 32 MB = = 8192 pages ( 4 KB per page )
* 16 pages for SDB - tables
* 8176 pages for SDBs
2013-12-12 16:32:47 +01:00
*/
2013-12-12 17:03:48 +01:00
static unsigned long __read_mostly CPUM_SF_MIN_SDB = 15 ;
static unsigned long __read_mostly CPUM_SF_MAX_SDB = 8176 ;
2013-12-13 11:42:44 +01:00
static unsigned long __read_mostly CPUM_SF_SDB_DIAG_FACTOR = 1 ;
2013-12-12 16:32:47 +01:00
struct sf_buffer {
2013-12-12 17:03:48 +01:00
unsigned long * sdbt ; /* Sample-data-block-table origin */
2013-12-12 16:32:47 +01:00
/* buffer characteristics (required for buffer increments) */
2013-12-12 17:03:48 +01:00
unsigned long num_sdb ; /* Number of sample-data-blocks */
unsigned long num_sdbt ; /* Number of sample-data-block-tables */
unsigned long * tail ; /* last sample-data-block-table */
2013-12-12 16:32:47 +01:00
} ;
struct cpu_hw_sf {
/* CPU-measurement sampling information block */
struct hws_qsi_info_block qsi ;
2013-12-12 17:03:48 +01:00
/* CPU-measurement sampling control block */
2013-12-12 16:32:47 +01:00
struct hws_lsctl_request_block lsctl ;
struct sf_buffer sfb ; /* Sampling buffer */
unsigned int flags ; /* Status flags */
struct perf_event * event ; /* Scheduled perf event */
} ;
static DEFINE_PER_CPU ( struct cpu_hw_sf , cpu_hw_sf ) ;
/* Debug feature */
static debug_info_t * sfdbg ;
2013-12-12 17:03:48 +01:00
/*
* sf_disable ( ) - Switch off sampling facility
*/
static int sf_disable ( void )
{
struct hws_lsctl_request_block sreq ;
memset ( & sreq , 0 , sizeof ( sreq ) ) ;
return lsctl ( & sreq ) ;
}
2013-12-12 16:32:47 +01:00
/*
* sf_buffer_available ( ) - Check for an allocated sampling buffer
*/
static int sf_buffer_available ( struct cpu_hw_sf * cpuhw )
{
2013-12-12 17:03:48 +01:00
return ! ! cpuhw - > sfb . sdbt ;
2013-12-12 16:32:47 +01:00
}
/*
* deallocate sampling facility buffer
*/
static void free_sampling_buffer ( struct sf_buffer * sfb )
{
2013-12-12 17:03:48 +01:00
unsigned long * sdbt , * curr ;
2013-12-12 16:32:47 +01:00
if ( ! sfb - > sdbt )
return ;
sdbt = sfb - > sdbt ;
2013-12-12 17:03:48 +01:00
curr = sdbt ;
2013-12-12 16:32:47 +01:00
2013-12-12 17:03:48 +01:00
/* Free the SDBT after all SDBs are processed... */
2013-12-12 16:32:47 +01:00
while ( 1 ) {
if ( ! * curr | | ! sdbt )
break ;
2013-12-12 17:03:48 +01:00
/* Process table-link entries */
2013-12-12 16:32:47 +01:00
if ( is_link_entry ( curr ) ) {
curr = get_next_sdbt ( curr ) ;
if ( sdbt )
2013-12-12 17:03:48 +01:00
free_page ( ( unsigned long ) sdbt ) ;
2013-12-12 16:32:47 +01:00
2013-12-12 17:03:48 +01:00
/* If the origin is reached, sampling buffer is freed */
if ( curr = = sfb - > sdbt )
2013-12-12 16:32:47 +01:00
break ;
else
2013-12-12 17:03:48 +01:00
sdbt = curr ;
2013-12-12 16:32:47 +01:00
} else {
2013-12-12 17:03:48 +01:00
/* Process SDB pointer */
2013-12-12 16:32:47 +01:00
if ( * curr ) {
free_page ( * curr ) ;
curr + + ;
}
}
}
debug_sprintf_event ( sfdbg , 5 ,
2013-12-12 17:03:48 +01:00
" free_sampling_buffer: freed sdbt=%p \n " , sfb - > sdbt ) ;
2013-12-12 16:32:47 +01:00
memset ( sfb , 0 , sizeof ( * sfb ) ) ;
}
2013-12-12 17:03:48 +01:00
static int alloc_sample_data_block ( unsigned long * sdbt , gfp_t gfp_flags )
{
unsigned long sdb , * trailer ;
/* Allocate and initialize sample-data-block */
sdb = get_zeroed_page ( gfp_flags ) ;
if ( ! sdb )
return - ENOMEM ;
trailer = trailer_entry_ptr ( sdb ) ;
* trailer = SDB_TE_ALERT_REQ_MASK ;
/* Link SDB into the sample-data-block-table */
* sdbt = sdb ;
return 0 ;
}
/*
* realloc_sampling_buffer ( ) - extend sampler memory
*
* Allocates new sample - data - blocks and adds them to the specified sampling
* buffer memory .
*
* Important : This modifies the sampling buffer and must be called when the
* sampling facility is disabled .
*
* Returns zero on success , non - zero otherwise .
*/
static int realloc_sampling_buffer ( struct sf_buffer * sfb ,
unsigned long num_sdb , gfp_t gfp_flags )
{
int i , rc ;
unsigned long * new , * tail ;
if ( ! sfb - > sdbt | | ! sfb - > tail )
return - EINVAL ;
if ( ! is_link_entry ( sfb - > tail ) )
return - EINVAL ;
/* Append to the existing sampling buffer, overwriting the table-link
* register .
* The tail variables always points to the " tail " ( last and table - link )
* entry in an SDB - table .
*/
tail = sfb - > tail ;
/* Do a sanity check whether the table-link entry points to
* the sampling buffer origin .
*/
if ( sfb - > sdbt ! = get_next_sdbt ( tail ) ) {
debug_sprintf_event ( sfdbg , 3 , " realloc_sampling_buffer: "
" sampling buffer is not linked: origin=%p "
" tail=%p \n " ,
( void * ) sfb - > sdbt , ( void * ) tail ) ;
return - EINVAL ;
}
/* Allocate remaining SDBs */
rc = 0 ;
for ( i = 0 ; i < num_sdb ; i + + ) {
/* Allocate a new SDB-table if it is full. */
if ( require_table_link ( tail ) ) {
new = ( unsigned long * ) get_zeroed_page ( gfp_flags ) ;
if ( ! new ) {
rc = - ENOMEM ;
break ;
}
sfb - > num_sdbt + + ;
/* Link current page to tail of chain */
* tail = ( unsigned long ) ( void * ) new + 1 ;
tail = new ;
}
/* Allocate a new sample-data-block.
* If there is not enough memory , stop the realloc process
* and simply use what was allocated . If this is a temporary
* issue , a new realloc call ( if required ) might succeed .
*/
rc = alloc_sample_data_block ( tail , gfp_flags ) ;
if ( rc )
break ;
sfb - > num_sdb + + ;
tail + + ;
}
/* Link sampling buffer to its origin */
* tail = ( unsigned long ) sfb - > sdbt + 1 ;
sfb - > tail = tail ;
debug_sprintf_event ( sfdbg , 4 , " realloc_sampling_buffer: new buffer "
" settings: sdbt=%lu sdb=%lu \n " ,
sfb - > num_sdbt , sfb - > num_sdb ) ;
return rc ;
}
2013-12-12 16:32:47 +01:00
/*
* allocate_sampling_buffer ( ) - allocate sampler memory
*
* Allocates and initializes a sampling buffer structure using the
* specified number of sample - data - blocks ( SDB ) . For each allocation ,
* a 4 K page is used . The number of sample - data - block - tables ( SDBT )
* are calculated from SDBs .
* Also set the ALERT_REQ mask in each SDBs trailer .
*
* Returns zero on success , non - zero otherwise .
*/
static int alloc_sampling_buffer ( struct sf_buffer * sfb , unsigned long num_sdb )
{
2013-12-12 17:03:48 +01:00
int rc ;
2013-12-12 16:32:47 +01:00
if ( sfb - > sdbt )
return - EINVAL ;
2013-12-12 17:03:48 +01:00
/* Allocate the sample-data-block-table origin */
sfb - > sdbt = ( unsigned long * ) get_zeroed_page ( GFP_KERNEL ) ;
if ( ! sfb - > sdbt )
return - ENOMEM ;
2013-12-12 16:32:47 +01:00
sfb - > num_sdb = 0 ;
2013-12-12 17:03:48 +01:00
sfb - > num_sdbt = 1 ;
2013-12-12 16:32:47 +01:00
2013-12-12 17:03:48 +01:00
/* Link the table origin to point to itself to prepare for
* realloc_sampling_buffer ( ) invocation .
*/
sfb - > tail = sfb - > sdbt ;
* sfb - > tail = ( unsigned long ) ( void * ) sfb - > sdbt + 1 ;
2013-12-12 16:32:47 +01:00
2013-12-12 17:03:48 +01:00
/* Allocate requested number of sample-data-blocks */
rc = realloc_sampling_buffer ( sfb , num_sdb , GFP_KERNEL ) ;
if ( rc ) {
free_sampling_buffer ( sfb ) ;
debug_sprintf_event ( sfdbg , 4 , " alloc_sampling_buffer: "
" realloc_sampling_buffer failed with rc=%i \n " , rc ) ;
} else
debug_sprintf_event ( sfdbg , 4 ,
" alloc_sampling_buffer: tear=%p dear=%p \n " ,
sfb - > sdbt , ( void * ) * sfb - > sdbt ) ;
return rc ;
}
2013-12-12 16:32:47 +01:00
2013-12-12 17:03:48 +01:00
static void sfb_set_limits ( unsigned long min , unsigned long max )
{
2013-12-13 11:42:44 +01:00
struct hws_qsi_info_block si ;
2013-12-12 17:03:48 +01:00
CPUM_SF_MIN_SDB = min ;
CPUM_SF_MAX_SDB = max ;
2013-12-13 11:42:44 +01:00
memset ( & si , 0 , sizeof ( si ) ) ;
if ( ! qsi ( & si ) )
CPUM_SF_SDB_DIAG_FACTOR = DIV_ROUND_UP ( si . dsdes , si . bsdes ) ;
}
static unsigned long sfb_max_limit ( struct hw_perf_event * hwc )
{
return SAMPL_DIAG_MODE ( hwc ) ? CPUM_SF_MAX_SDB * CPUM_SF_SDB_DIAG_FACTOR
: CPUM_SF_MAX_SDB ;
2013-12-12 17:03:48 +01:00
}
2013-12-12 16:32:47 +01:00
2013-12-12 17:03:48 +01:00
static unsigned long sfb_pending_allocs ( struct sf_buffer * sfb ,
struct hw_perf_event * hwc )
{
if ( ! sfb - > sdbt )
return SFB_ALLOC_REG ( hwc ) ;
if ( SFB_ALLOC_REG ( hwc ) > sfb - > num_sdb )
return SFB_ALLOC_REG ( hwc ) - sfb - > num_sdb ;
return 0 ;
}
2013-12-12 16:32:47 +01:00
2013-12-12 17:03:48 +01:00
static int sfb_has_pending_allocs ( struct sf_buffer * sfb ,
struct hw_perf_event * hwc )
{
return sfb_pending_allocs ( sfb , hwc ) > 0 ;
}
2013-12-12 16:32:47 +01:00
2013-12-12 17:03:48 +01:00
static void sfb_account_allocs ( unsigned long num , struct hw_perf_event * hwc )
{
2013-12-13 11:42:44 +01:00
/* Limit the number of SDBs to not exceed the maximum */
num = min_t ( unsigned long , num , sfb_max_limit ( hwc ) - SFB_ALLOC_REG ( hwc ) ) ;
2013-12-12 17:03:48 +01:00
if ( num )
SFB_ALLOC_REG ( hwc ) + = num ;
2013-12-12 16:32:47 +01:00
}
2013-12-12 17:03:48 +01:00
static void sfb_init_allocs ( unsigned long num , struct hw_perf_event * hwc )
{
SFB_ALLOC_REG ( hwc ) = 0 ;
sfb_account_allocs ( num , hwc ) ;
}
2013-12-13 11:42:44 +01:00
static size_t event_sample_size ( struct hw_perf_event * hwc )
{
struct sf_raw_sample * sfr = ( struct sf_raw_sample * ) RAWSAMPLE_REG ( hwc ) ;
size_t sample_size ;
/* The sample size depends on the sampling function: The basic-sampling
* function must be always enabled , diagnostic - sampling function is
* optional .
*/
sample_size = sfr - > bsdes ;
if ( SAMPL_DIAG_MODE ( hwc ) )
sample_size + = sfr - > dsdes ;
return sample_size ;
}
static void deallocate_buffers ( struct cpu_hw_sf * cpuhw )
{
if ( cpuhw - > sfb . sdbt )
free_sampling_buffer ( & cpuhw - > sfb ) ;
}
static int allocate_buffers ( struct cpu_hw_sf * cpuhw , struct hw_perf_event * hwc )
2013-12-12 16:32:47 +01:00
{
2013-12-13 11:42:44 +01:00
unsigned long n_sdb , freq , factor ;
size_t sfr_size , sample_size ;
struct sf_raw_sample * sfr ;
/* Allocate raw sample buffer
*
* The raw sample buffer is used to temporarily store sampling data
* entries for perf raw sample processing . The buffer size mainly
* depends on the size of diagnostic - sampling data entries which is
* machine - specific . The exact size calculation includes :
* 1. The first 4 bytes of diagnostic - sampling data entries are
* already reflected in the sf_raw_sample structure . Subtract
* these bytes .
* 2. The perf raw sample data must be 8 - byte aligned ( u64 ) and
* perf ' s internal data size must be considered too . So add
* an additional u32 for correct alignment and subtract before
* allocating the buffer .
* 3. Store the raw sample buffer pointer in the perf event
* hardware structure .
*/
sfr_size = ALIGN ( ( sizeof ( * sfr ) - sizeof ( sfr - > diag ) + cpuhw - > qsi . dsdes ) +
sizeof ( u32 ) , sizeof ( u64 ) ) ;
sfr_size - = sizeof ( u32 ) ;
sfr = kzalloc ( sfr_size , GFP_KERNEL ) ;
if ( ! sfr )
return - ENOMEM ;
sfr - > size = sfr_size ;
sfr - > bsdes = cpuhw - > qsi . bsdes ;
sfr - > dsdes = cpuhw - > qsi . dsdes ;
RAWSAMPLE_REG ( hwc ) = ( unsigned long ) sfr ;
2013-12-12 16:32:47 +01:00
/* Calculate sampling buffers using 4K pages
*
2013-12-13 11:42:44 +01:00
* 1. Determine the sample data size which depends on the used
* sampling functions , for example , basic - sampling or
* basic - sampling with diagnostic - sampling .
*
* 2. Use the sampling frequency as input . The sampling buffer is
* designed for almost one second . This can be adjusted through
* the " factor " variable .
2013-12-12 16:32:47 +01:00
* In any case , alloc_sampling_buffer ( ) sets the Alert Request
2013-12-13 11:42:44 +01:00
* Control indicator to trigger a measurement - alert to harvest
2013-12-12 16:32:47 +01:00
* sample - data - blocks ( sdb ) .
*
2013-12-13 11:42:44 +01:00
* 3. Compute the number of sample - data - blocks and ensure a minimum
2013-12-12 16:32:47 +01:00
* of CPUM_SF_MIN_SDB . Also ensure the upper limit does not
2013-12-13 11:42:44 +01:00
* exceed a " calculated " maximum . The symbolic maximum is
* designed for basic - sampling only and needs to be increased if
* diagnostic - sampling is active .
* See also the remarks for these symbolic constants .
2013-12-12 16:32:47 +01:00
*
2013-12-13 11:42:44 +01:00
* 4. Compute the number of sample - data - block - tables ( SDBT ) and
* ensure a minimum of CPUM_SF_MIN_SDBT ( one table can manage up
* to 511 SDBs ) .
2013-12-12 16:32:47 +01:00
*/
2013-12-13 11:42:44 +01:00
sample_size = event_sample_size ( hwc ) ;
2013-12-12 16:32:47 +01:00
freq = sample_rate_to_freq ( & cpuhw - > qsi , SAMPL_RATE ( hwc ) ) ;
factor = 1 ;
2013-12-13 11:42:44 +01:00
n_sdb = DIV_ROUND_UP ( freq , factor * ( ( PAGE_SIZE - 64 ) / sample_size ) ) ;
2013-12-12 16:32:47 +01:00
if ( n_sdb < CPUM_SF_MIN_SDB )
n_sdb = CPUM_SF_MIN_SDB ;
2013-12-12 17:03:48 +01:00
/* If there is already a sampling buffer allocated, it is very likely
* that the sampling facility is enabled too . If the event to be
* initialized requires a greater sampling buffer , the allocation must
* be postponed . Changing the sampling buffer requires the sampling
* facility to be in the disabled state . So , account the number of
* required SDBs and let cpumsf_pmu_enable ( ) resize the buffer just
* before the event is started .
2013-12-12 16:32:47 +01:00
*/
2013-12-12 17:03:48 +01:00
sfb_init_allocs ( n_sdb , hwc ) ;
2013-12-12 16:32:47 +01:00
if ( sf_buffer_available ( cpuhw ) )
return 0 ;
debug_sprintf_event ( sfdbg , 3 ,
2013-12-13 11:42:44 +01:00
" allocate_buffers: rate=%lu f=%lu sdb=%lu/%lu "
" sample_size=%lu cpuhw=%p \n " ,
SAMPL_RATE ( hwc ) , freq , n_sdb , sfb_max_limit ( hwc ) ,
sample_size , cpuhw ) ;
2013-12-12 16:32:47 +01:00
return alloc_sampling_buffer ( & cpuhw - > sfb ,
2013-12-12 17:03:48 +01:00
sfb_pending_allocs ( & cpuhw - > sfb , hwc ) ) ;
2013-12-12 16:32:47 +01:00
}
2013-12-12 17:03:48 +01:00
static unsigned long min_percent ( unsigned int percent , unsigned long base ,
unsigned long min )
{
return min_t ( unsigned long , min , DIV_ROUND_UP ( percent * base , 100 ) ) ;
}
2013-12-12 16:32:47 +01:00
2013-12-12 17:03:48 +01:00
static unsigned long compute_sfb_extent ( unsigned long ratio , unsigned long base )
{
/* Use a percentage-based approach to extend the sampling facility
* buffer . Accept up to 5 % sample data loss .
* Vary the extents between 1 % to 5 % of the current number of
* sample - data - blocks .
*/
if ( ratio < = 5 )
return 0 ;
if ( ratio < = 25 )
return min_percent ( 1 , base , 1 ) ;
if ( ratio < = 50 )
return min_percent ( 1 , base , 1 ) ;
if ( ratio < = 75 )
return min_percent ( 2 , base , 2 ) ;
if ( ratio < = 100 )
return min_percent ( 3 , base , 3 ) ;
if ( ratio < = 250 )
return min_percent ( 4 , base , 4 ) ;
return min_percent ( 5 , base , 8 ) ;
}
2013-12-12 16:32:47 +01:00
2013-12-12 17:03:48 +01:00
static void sfb_account_overflows ( struct cpu_hw_sf * cpuhw ,
struct hw_perf_event * hwc )
{
unsigned long ratio , num ;
if ( ! OVERFLOW_REG ( hwc ) )
return ;
/* The sample_overflow contains the average number of sample data
* that has been lost because sample - data - blocks were full .
*
* Calculate the total number of sample data entries that has been
* discarded . Then calculate the ratio of lost samples to total samples
* per second in percent .
*/
ratio = DIV_ROUND_UP ( 100 * OVERFLOW_REG ( hwc ) * cpuhw - > sfb . num_sdb ,
sample_rate_to_freq ( & cpuhw - > qsi , SAMPL_RATE ( hwc ) ) ) ;
/* Compute number of sample-data-blocks */
num = compute_sfb_extent ( ratio , cpuhw - > sfb . num_sdb ) ;
if ( num )
sfb_account_allocs ( num , hwc ) ;
debug_sprintf_event ( sfdbg , 5 , " sfb: overflow: overflow=%llu ratio=%lu "
" num=%lu \n " , OVERFLOW_REG ( hwc ) , ratio , num ) ;
OVERFLOW_REG ( hwc ) = 0 ;
}
/* extend_sampling_buffer() - Extend sampling buffer
* @ sfb : Sampling buffer structure ( for local CPU )
* @ hwc : Perf event hardware structure
*
* Use this function to extend the sampling buffer based on the overflow counter
* and postponed allocation extents stored in the specified Perf event hardware .
*
* Important : This function disables the sampling facility in order to safely
* change the sampling buffer structure . Do not call this function
* when the PMU is active .
2013-12-12 16:32:47 +01:00
*/
2013-12-12 17:03:48 +01:00
static void extend_sampling_buffer ( struct sf_buffer * sfb ,
struct hw_perf_event * hwc )
2013-12-12 16:32:47 +01:00
{
2013-12-12 17:03:48 +01:00
unsigned long num , num_old ;
int rc ;
2013-12-12 16:32:47 +01:00
2013-12-12 17:03:48 +01:00
num = sfb_pending_allocs ( sfb , hwc ) ;
if ( ! num )
return ;
num_old = sfb - > num_sdb ;
/* Disable the sampling facility to reset any states and also
* clear pending measurement alerts .
*/
sf_disable ( ) ;
/* Extend the sampling buffer.
* This memory allocation typically happens in an atomic context when
* called by perf . Because this is a reallocation , it is fine if the
* new SDB - request cannot be satisfied immediately .
*/
rc = realloc_sampling_buffer ( sfb , num , GFP_ATOMIC ) ;
if ( rc )
debug_sprintf_event ( sfdbg , 5 , " sfb: extend: realloc "
" failed with rc=%i \n " , rc ) ;
if ( sfb_has_pending_allocs ( sfb , hwc ) )
debug_sprintf_event ( sfdbg , 5 , " sfb: extend: "
" req=%lu alloc=%lu remaining=%lu \n " ,
num , sfb - > num_sdb - num_old ,
sfb_pending_allocs ( sfb , hwc ) ) ;
2013-12-12 16:32:47 +01:00
}
2013-12-12 17:03:48 +01:00
/* Number of perf events counting hardware events */
static atomic_t num_events ;
/* Used to avoid races in calling reserve/release_cpumf_hardware */
static DEFINE_MUTEX ( pmc_reserve_mutex ) ;
2013-12-12 16:32:47 +01:00
# define PMC_INIT 0
# define PMC_RELEASE 1
2013-12-12 16:52:48 +01:00
# define PMC_FAILURE 2
2013-12-12 16:32:47 +01:00
static void setup_pmc_cpu ( void * flags )
{
int err ;
s390: Replace __get_cpu_var uses
__get_cpu_var() is used for multiple purposes in the kernel source. One of
them is address calculation via the form &__get_cpu_var(x). This calculates
the address for the instance of the percpu variable of the current processor
based on an offset.
Other use cases are for storing and retrieving data from the current
processors percpu area. __get_cpu_var() can be used as an lvalue when
writing data or on the right side of an assignment.
__get_cpu_var() is defined as :
#define __get_cpu_var(var) (*this_cpu_ptr(&(var)))
__get_cpu_var() always only does an address determination. However, store
and retrieve operations could use a segment prefix (or global register on
other platforms) to avoid the address calculation.
this_cpu_write() and this_cpu_read() can directly take an offset into a
percpu area and use optimized assembly code to read and write per cpu
variables.
This patch converts __get_cpu_var into either an explicit address
calculation using this_cpu_ptr() or into a use of this_cpu operations that
use the offset. Thereby address calculations are avoided and less registers
are used when code is generated.
At the end of the patch set all uses of __get_cpu_var have been removed so
the macro is removed too.
The patch set includes passes over all arches as well. Once these operations
are used throughout then specialized macros can be defined in non -x86
arches as well in order to optimize per cpu access by f.e. using a global
register that may be set to the per cpu base.
Transformations done to __get_cpu_var()
1. Determine the address of the percpu instance of the current processor.
DEFINE_PER_CPU(int, y);
int *x = &__get_cpu_var(y);
Converts to
int *x = this_cpu_ptr(&y);
2. Same as #1 but this time an array structure is involved.
DEFINE_PER_CPU(int, y[20]);
int *x = __get_cpu_var(y);
Converts to
int *x = this_cpu_ptr(y);
3. Retrieve the content of the current processors instance of a per cpu
variable.
DEFINE_PER_CPU(int, y);
int x = __get_cpu_var(y)
Converts to
int x = __this_cpu_read(y);
4. Retrieve the content of a percpu struct
DEFINE_PER_CPU(struct mystruct, y);
struct mystruct x = __get_cpu_var(y);
Converts to
memcpy(&x, this_cpu_ptr(&y), sizeof(x));
5. Assignment to a per cpu variable
DEFINE_PER_CPU(int, y)
__get_cpu_var(y) = x;
Converts to
this_cpu_write(y, x);
6. Increment/Decrement etc of a per cpu variable
DEFINE_PER_CPU(int, y);
__get_cpu_var(y)++
Converts to
this_cpu_inc(y)
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
CC: linux390@de.ibm.com
Acked-by: Heiko Carstens <heiko.carstens@de.ibm.com>
Signed-off-by: Christoph Lameter <cl@linux.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
2014-08-17 12:30:45 -05:00
struct cpu_hw_sf * cpusf = this_cpu_ptr ( & cpu_hw_sf ) ;
2013-12-12 16:32:47 +01:00
err = 0 ;
switch ( * ( ( int * ) flags ) ) {
case PMC_INIT :
memset ( cpusf , 0 , sizeof ( * cpusf ) ) ;
err = qsi ( & cpusf - > qsi ) ;
if ( err )
break ;
cpusf - > flags | = PMU_F_RESERVED ;
err = sf_disable ( ) ;
if ( err )
pr_err ( " Switching off the sampling facility failed "
" with rc=%i \n " , err ) ;
debug_sprintf_event ( sfdbg , 5 ,
" setup_pmc_cpu: initialized: cpuhw=%p \n " , cpusf ) ;
break ;
case PMC_RELEASE :
cpusf - > flags & = ~ PMU_F_RESERVED ;
err = sf_disable ( ) ;
if ( err ) {
pr_err ( " Switching off the sampling facility failed "
" with rc=%i \n " , err ) ;
2013-12-13 11:42:44 +01:00
} else
deallocate_buffers ( cpusf ) ;
2013-12-12 16:32:47 +01:00
debug_sprintf_event ( sfdbg , 5 ,
" setup_pmc_cpu: released: cpuhw=%p \n " , cpusf ) ;
break ;
}
2013-12-12 16:52:48 +01:00
if ( err )
* ( ( int * ) flags ) | = PMC_FAILURE ;
2013-12-12 16:32:47 +01:00
}
static void release_pmc_hardware ( void )
{
int flags = PMC_RELEASE ;
irq_subclass_unregister ( IRQ_SUBCLASS_MEASUREMENT_ALERT ) ;
on_each_cpu ( setup_pmc_cpu , & flags , 1 ) ;
2013-12-12 16:52:48 +01:00
perf_release_sampling ( ) ;
2013-12-12 16:32:47 +01:00
}
static int reserve_pmc_hardware ( void )
{
int flags = PMC_INIT ;
2013-12-12 16:52:48 +01:00
int err ;
2013-12-12 16:32:47 +01:00
2013-12-12 16:52:48 +01:00
err = perf_reserve_sampling ( ) ;
if ( err )
return err ;
2013-12-12 16:32:47 +01:00
on_each_cpu ( setup_pmc_cpu , & flags , 1 ) ;
2013-12-12 16:52:48 +01:00
if ( flags & PMC_FAILURE ) {
release_pmc_hardware ( ) ;
return - ENODEV ;
}
2013-12-12 16:32:47 +01:00
irq_subclass_register ( IRQ_SUBCLASS_MEASUREMENT_ALERT ) ;
return 0 ;
}
static void hw_perf_event_destroy ( struct perf_event * event )
{
2013-12-13 11:42:44 +01:00
/* Free raw sample buffer */
if ( RAWSAMPLE_REG ( & event - > hw ) )
kfree ( ( void * ) RAWSAMPLE_REG ( & event - > hw ) ) ;
2013-12-12 16:32:47 +01:00
/* Release PMC if this is the last perf event */
if ( ! atomic_add_unless ( & num_events , - 1 , 1 ) ) {
mutex_lock ( & pmc_reserve_mutex ) ;
if ( atomic_dec_return ( & num_events ) = = 0 )
release_pmc_hardware ( ) ;
mutex_unlock ( & pmc_reserve_mutex ) ;
}
}
static void hw_init_period ( struct hw_perf_event * hwc , u64 period )
{
hwc - > sample_period = period ;
hwc - > last_period = hwc - > sample_period ;
local64_set ( & hwc - > period_left , hwc - > sample_period ) ;
}
static void hw_reset_registers ( struct hw_perf_event * hwc ,
2013-12-12 17:03:48 +01:00
unsigned long * sdbt_origin )
2013-12-12 16:32:47 +01:00
{
2013-12-13 11:42:44 +01:00
struct sf_raw_sample * sfr ;
2013-12-12 17:03:48 +01:00
/* (Re)set to first sample-data-block-table */
TEAR_REG ( hwc ) = ( unsigned long ) sdbt_origin ;
2013-12-13 11:42:44 +01:00
/* (Re)set raw sampling buffer register */
sfr = ( struct sf_raw_sample * ) RAWSAMPLE_REG ( hwc ) ;
memset ( & sfr - > basic , 0 , sizeof ( sfr - > basic ) ) ;
memset ( & sfr - > diag , 0 , sfr - > dsdes ) ;
2013-12-12 16:32:47 +01:00
}
static unsigned long hw_limit_rate ( const struct hws_qsi_info_block * si ,
unsigned long rate )
{
2013-12-12 17:03:48 +01:00
return clamp_t ( unsigned long , rate ,
si - > min_sampl_rate , si - > max_sampl_rate ) ;
2013-12-12 16:32:47 +01:00
}
static int __hw_perf_event_init ( struct perf_event * event )
{
struct cpu_hw_sf * cpuhw ;
struct hws_qsi_info_block si ;
struct perf_event_attr * attr = & event - > attr ;
struct hw_perf_event * hwc = & event - > hw ;
unsigned long rate ;
int cpu , err ;
/* Reserve CPU-measurement sampling facility */
err = 0 ;
if ( ! atomic_inc_not_zero ( & num_events ) ) {
mutex_lock ( & pmc_reserve_mutex ) ;
if ( atomic_read ( & num_events ) = = 0 & & reserve_pmc_hardware ( ) )
err = - EBUSY ;
else
atomic_inc ( & num_events ) ;
mutex_unlock ( & pmc_reserve_mutex ) ;
}
event - > destroy = hw_perf_event_destroy ;
if ( err )
goto out ;
/* Access per-CPU sampling information (query sampling info) */
/*
* The event - > cpu value can be - 1 to count on every CPU , for example ,
* when attaching to a task . If this is specified , use the query
* sampling info from the current CPU , otherwise use event - > cpu to
* retrieve the per - CPU information .
* Later , cpuhw indicates whether to allocate sampling buffers for a
* particular CPU ( cpuhw ! = NULL ) or each online CPU ( cpuw = = NULL ) .
*/
memset ( & si , 0 , sizeof ( si ) ) ;
cpuhw = NULL ;
if ( event - > cpu = = - 1 )
qsi ( & si ) ;
else {
/* Event is pinned to a particular CPU, retrieve the per-CPU
* sampling structure for accessing the CPU - specific QSI .
*/
cpuhw = & per_cpu ( cpu_hw_sf , event - > cpu ) ;
si = cpuhw - > qsi ;
}
/* Check sampling facility authorization and, if not authorized,
* fall back to other PMUs . It is safe to check any CPU because
* the authorization is identical for all configured CPUs .
*/
if ( ! si . as ) {
err = - ENOENT ;
goto out ;
}
2013-12-13 11:42:44 +01:00
/* Always enable basic sampling */
SAMPL_FLAGS ( hwc ) = PERF_CPUM_SF_BASIC_MODE ;
/* Check if diagnostic sampling is requested. Deny if the required
* sampling authorization is missing .
*/
if ( attr - > config = = PERF_EVENT_CPUM_SF_DIAG ) {
if ( ! si . ad ) {
err = - EPERM ;
goto out ;
}
SAMPL_FLAGS ( hwc ) | = PERF_CPUM_SF_DIAG_MODE ;
}
2013-12-13 12:45:01 +01:00
/* Check and set other sampling flags */
if ( attr - > config1 & PERF_CPUM_SF_FULL_BLOCKS )
SAMPL_FLAGS ( hwc ) | = PERF_CPUM_SF_FULL_BLOCKS ;
2013-12-12 16:32:47 +01:00
/* The sampling information (si) contains information about the
* min / max sampling intervals and the CPU speed . So calculate the
* correct sampling interval and avoid the whole period adjust
* feedback loop .
*/
rate = 0 ;
if ( attr - > freq ) {
rate = freq_to_sample_rate ( & si , attr - > sample_freq ) ;
rate = hw_limit_rate ( & si , rate ) ;
attr - > freq = 0 ;
attr - > sample_period = rate ;
} else {
/* The min/max sampling rates specifies the valid range
* of sample periods . If the specified sample period is
* out of range , limit the period to the range boundary .
*/
rate = hw_limit_rate ( & si , hwc - > sample_period ) ;
/* The perf core maintains a maximum sample rate that is
* configurable through the sysctl interface . Ensure the
* sampling rate does not exceed this value . This also helps
* to avoid throttling when pushing samples with
* perf_event_overflow ( ) .
*/
if ( sample_rate_to_freq ( & si , rate ) >
sysctl_perf_event_sample_rate ) {
err = - EINVAL ;
debug_sprintf_event ( sfdbg , 1 , " Sampling rate exceeds maximum perf sample rate \n " ) ;
goto out ;
}
}
SAMPL_RATE ( hwc ) = rate ;
hw_init_period ( hwc , SAMPL_RATE ( hwc ) ) ;
2013-12-12 17:03:48 +01:00
/* Initialize sample data overflow accounting */
hwc - > extra_reg . reg = REG_OVERFLOW ;
OVERFLOW_REG ( hwc ) = 0 ;
2013-12-12 16:32:47 +01:00
/* Allocate the per-CPU sampling buffer using the CPU information
* from the event . If the event is not pinned to a particular
* CPU ( event - > cpu = = - 1 ; or cpuhw = = NULL ) , allocate sampling
* buffers for each online CPU .
*/
if ( cpuhw )
/* Event is pinned to a particular CPU */
2013-12-13 11:42:44 +01:00
err = allocate_buffers ( cpuhw , hwc ) ;
2013-12-12 16:32:47 +01:00
else {
/* Event is not pinned, allocate sampling buffer on
* each online CPU
*/
for_each_online_cpu ( cpu ) {
cpuhw = & per_cpu ( cpu_hw_sf , cpu ) ;
2013-12-13 11:42:44 +01:00
err = allocate_buffers ( cpuhw , hwc ) ;
2013-12-12 16:32:47 +01:00
if ( err )
break ;
}
}
out :
return err ;
}
static int cpumsf_pmu_event_init ( struct perf_event * event )
{
int err ;
2013-12-12 16:47:00 +01:00
/* No support for taken branch sampling */
if ( has_branch_stack ( event ) )
return - EOPNOTSUPP ;
switch ( event - > attr . type ) {
case PERF_TYPE_RAW :
2013-12-13 11:42:44 +01:00
if ( ( event - > attr . config ! = PERF_EVENT_CPUM_SF ) & &
( event - > attr . config ! = PERF_EVENT_CPUM_SF_DIAG ) )
2013-12-12 16:47:00 +01:00
return - ENOENT ;
break ;
case PERF_TYPE_HARDWARE :
/* Support sampling of CPU cycles in addition to the
* counter facility . However , the counter facility
* is more precise and , hence , restrict this PMU to
* sampling events only .
*/
if ( event - > attr . config ! = PERF_COUNT_HW_CPU_CYCLES )
return - ENOENT ;
if ( ! is_sampling_event ( event ) )
return - ENOENT ;
break ;
default :
2013-12-12 16:32:47 +01:00
return - ENOENT ;
2013-12-12 16:47:00 +01:00
}
2013-12-12 16:32:47 +01:00
2013-12-12 18:05:20 +01:00
/* Check online status of the CPU to which the event is pinned */
2013-12-12 16:32:47 +01:00
if ( event - > cpu > = nr_cpumask_bits | |
( event - > cpu > = 0 & & ! cpu_online ( event - > cpu ) ) )
return - ENODEV ;
2013-12-12 18:05:20 +01:00
/* Force reset of idle/hv excludes regardless of what the
* user requested .
*/
if ( event - > attr . exclude_hv )
event - > attr . exclude_hv = 0 ;
if ( event - > attr . exclude_idle )
event - > attr . exclude_idle = 0 ;
2013-12-12 16:32:47 +01:00
err = __hw_perf_event_init ( event ) ;
if ( unlikely ( err ) )
if ( event - > destroy )
event - > destroy ( event ) ;
return err ;
}
static void cpumsf_pmu_enable ( struct pmu * pmu )
{
s390: Replace __get_cpu_var uses
__get_cpu_var() is used for multiple purposes in the kernel source. One of
them is address calculation via the form &__get_cpu_var(x). This calculates
the address for the instance of the percpu variable of the current processor
based on an offset.
Other use cases are for storing and retrieving data from the current
processors percpu area. __get_cpu_var() can be used as an lvalue when
writing data or on the right side of an assignment.
__get_cpu_var() is defined as :
#define __get_cpu_var(var) (*this_cpu_ptr(&(var)))
__get_cpu_var() always only does an address determination. However, store
and retrieve operations could use a segment prefix (or global register on
other platforms) to avoid the address calculation.
this_cpu_write() and this_cpu_read() can directly take an offset into a
percpu area and use optimized assembly code to read and write per cpu
variables.
This patch converts __get_cpu_var into either an explicit address
calculation using this_cpu_ptr() or into a use of this_cpu operations that
use the offset. Thereby address calculations are avoided and less registers
are used when code is generated.
At the end of the patch set all uses of __get_cpu_var have been removed so
the macro is removed too.
The patch set includes passes over all arches as well. Once these operations
are used throughout then specialized macros can be defined in non -x86
arches as well in order to optimize per cpu access by f.e. using a global
register that may be set to the per cpu base.
Transformations done to __get_cpu_var()
1. Determine the address of the percpu instance of the current processor.
DEFINE_PER_CPU(int, y);
int *x = &__get_cpu_var(y);
Converts to
int *x = this_cpu_ptr(&y);
2. Same as #1 but this time an array structure is involved.
DEFINE_PER_CPU(int, y[20]);
int *x = __get_cpu_var(y);
Converts to
int *x = this_cpu_ptr(y);
3. Retrieve the content of the current processors instance of a per cpu
variable.
DEFINE_PER_CPU(int, y);
int x = __get_cpu_var(y)
Converts to
int x = __this_cpu_read(y);
4. Retrieve the content of a percpu struct
DEFINE_PER_CPU(struct mystruct, y);
struct mystruct x = __get_cpu_var(y);
Converts to
memcpy(&x, this_cpu_ptr(&y), sizeof(x));
5. Assignment to a per cpu variable
DEFINE_PER_CPU(int, y)
__get_cpu_var(y) = x;
Converts to
this_cpu_write(y, x);
6. Increment/Decrement etc of a per cpu variable
DEFINE_PER_CPU(int, y);
__get_cpu_var(y)++
Converts to
this_cpu_inc(y)
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
CC: linux390@de.ibm.com
Acked-by: Heiko Carstens <heiko.carstens@de.ibm.com>
Signed-off-by: Christoph Lameter <cl@linux.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
2014-08-17 12:30:45 -05:00
struct cpu_hw_sf * cpuhw = this_cpu_ptr ( & cpu_hw_sf ) ;
2013-12-12 17:03:48 +01:00
struct hw_perf_event * hwc ;
2013-12-12 16:32:47 +01:00
int err ;
if ( cpuhw - > flags & PMU_F_ENABLED )
return ;
if ( cpuhw - > flags & PMU_F_ERR_MASK )
return ;
2013-12-12 17:03:48 +01:00
/* Check whether to extent the sampling buffer.
*
* Two conditions trigger an increase of the sampling buffer for a
* perf event :
* 1. Postponed buffer allocations from the event initialization .
* 2. Sampling overflows that contribute to pending allocations .
*
* Note that the extend_sampling_buffer ( ) function disables the sampling
* facility , but it can be fully re - enabled using sampling controls that
* have been saved in cpumsf_pmu_disable ( ) .
*/
if ( cpuhw - > event ) {
hwc = & cpuhw - > event - > hw ;
/* Account number of overflow-designated buffer extents */
sfb_account_overflows ( cpuhw , hwc ) ;
if ( sfb_has_pending_allocs ( & cpuhw - > sfb , hwc ) )
extend_sampling_buffer ( & cpuhw - > sfb , hwc ) ;
}
/* (Re)enable the PMU and sampling facility */
2013-12-12 16:32:47 +01:00
cpuhw - > flags | = PMU_F_ENABLED ;
barrier ( ) ;
err = lsctl ( & cpuhw - > lsctl ) ;
if ( err ) {
cpuhw - > flags & = ~ PMU_F_ENABLED ;
pr_err ( " Loading sampling controls failed: op=%i err=%i \n " ,
1 , err ) ;
return ;
}
2013-12-13 11:42:44 +01:00
debug_sprintf_event ( sfdbg , 6 , " pmu_enable: es=%i cs=%i ed=%i cd=%i "
" tear=%p dear=%p \n " , cpuhw - > lsctl . es , cpuhw - > lsctl . cs ,
cpuhw - > lsctl . ed , cpuhw - > lsctl . cd ,
2013-12-12 16:32:47 +01:00
( void * ) cpuhw - > lsctl . tear , ( void * ) cpuhw - > lsctl . dear ) ;
}
static void cpumsf_pmu_disable ( struct pmu * pmu )
{
s390: Replace __get_cpu_var uses
__get_cpu_var() is used for multiple purposes in the kernel source. One of
them is address calculation via the form &__get_cpu_var(x). This calculates
the address for the instance of the percpu variable of the current processor
based on an offset.
Other use cases are for storing and retrieving data from the current
processors percpu area. __get_cpu_var() can be used as an lvalue when
writing data or on the right side of an assignment.
__get_cpu_var() is defined as :
#define __get_cpu_var(var) (*this_cpu_ptr(&(var)))
__get_cpu_var() always only does an address determination. However, store
and retrieve operations could use a segment prefix (or global register on
other platforms) to avoid the address calculation.
this_cpu_write() and this_cpu_read() can directly take an offset into a
percpu area and use optimized assembly code to read and write per cpu
variables.
This patch converts __get_cpu_var into either an explicit address
calculation using this_cpu_ptr() or into a use of this_cpu operations that
use the offset. Thereby address calculations are avoided and less registers
are used when code is generated.
At the end of the patch set all uses of __get_cpu_var have been removed so
the macro is removed too.
The patch set includes passes over all arches as well. Once these operations
are used throughout then specialized macros can be defined in non -x86
arches as well in order to optimize per cpu access by f.e. using a global
register that may be set to the per cpu base.
Transformations done to __get_cpu_var()
1. Determine the address of the percpu instance of the current processor.
DEFINE_PER_CPU(int, y);
int *x = &__get_cpu_var(y);
Converts to
int *x = this_cpu_ptr(&y);
2. Same as #1 but this time an array structure is involved.
DEFINE_PER_CPU(int, y[20]);
int *x = __get_cpu_var(y);
Converts to
int *x = this_cpu_ptr(y);
3. Retrieve the content of the current processors instance of a per cpu
variable.
DEFINE_PER_CPU(int, y);
int x = __get_cpu_var(y)
Converts to
int x = __this_cpu_read(y);
4. Retrieve the content of a percpu struct
DEFINE_PER_CPU(struct mystruct, y);
struct mystruct x = __get_cpu_var(y);
Converts to
memcpy(&x, this_cpu_ptr(&y), sizeof(x));
5. Assignment to a per cpu variable
DEFINE_PER_CPU(int, y)
__get_cpu_var(y) = x;
Converts to
this_cpu_write(y, x);
6. Increment/Decrement etc of a per cpu variable
DEFINE_PER_CPU(int, y);
__get_cpu_var(y)++
Converts to
this_cpu_inc(y)
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
CC: linux390@de.ibm.com
Acked-by: Heiko Carstens <heiko.carstens@de.ibm.com>
Signed-off-by: Christoph Lameter <cl@linux.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
2014-08-17 12:30:45 -05:00
struct cpu_hw_sf * cpuhw = this_cpu_ptr ( & cpu_hw_sf ) ;
2013-12-12 16:32:47 +01:00
struct hws_lsctl_request_block inactive ;
struct hws_qsi_info_block si ;
int err ;
if ( ! ( cpuhw - > flags & PMU_F_ENABLED ) )
return ;
if ( cpuhw - > flags & PMU_F_ERR_MASK )
return ;
/* Switch off sampling activation control */
inactive = cpuhw - > lsctl ;
inactive . cs = 0 ;
2013-12-13 11:42:44 +01:00
inactive . cd = 0 ;
2013-12-12 16:32:47 +01:00
err = lsctl ( & inactive ) ;
if ( err ) {
pr_err ( " Loading sampling controls failed: op=%i err=%i \n " ,
2 , err ) ;
return ;
}
/* Save state of TEAR and DEAR register contents */
if ( ! qsi ( & si ) ) {
/* TEAR/DEAR values are valid only if the sampling facility is
* enabled . Note that cpumsf_pmu_disable ( ) might be called even
* for a disabled sampling facility because cpumsf_pmu_enable ( )
* controls the enable / disable state .
*/
if ( si . es ) {
cpuhw - > lsctl . tear = si . tear ;
cpuhw - > lsctl . dear = si . dear ;
}
} else
debug_sprintf_event ( sfdbg , 3 , " cpumsf_pmu_disable: "
" qsi() failed with err=%i \n " , err ) ;
cpuhw - > flags & = ~ PMU_F_ENABLED ;
}
2013-12-12 18:05:20 +01:00
/* perf_exclude_event() - Filter event
* @ event : The perf event
* @ regs : pt_regs structure
* @ sde_regs : Sample - data - entry ( sde ) regs structure
*
* Filter perf events according to their exclude specification .
*
* Return non - zero if the event shall be excluded .
*/
static int perf_exclude_event ( struct perf_event * event , struct pt_regs * regs ,
struct perf_sf_sde_regs * sde_regs )
{
if ( event - > attr . exclude_user & & user_mode ( regs ) )
return 1 ;
if ( event - > attr . exclude_kernel & & ! user_mode ( regs ) )
return 1 ;
if ( event - > attr . exclude_guest & & sde_regs - > in_guest )
return 1 ;
if ( event - > attr . exclude_host & & ! sde_regs - > in_guest )
return 1 ;
return 0 ;
}
2013-12-12 16:32:47 +01:00
/* perf_push_sample() - Push samples to perf
* @ event : The perf event
* @ sample : Hardware sample data
*
* Use the hardware sample data to create perf event sample . The sample
* is the pushed to the event subsystem and the function checks for
* possible event overflows . If an event overflow occurs , the PMU is
* stopped .
*
* Return non - zero if an event overflow occurred .
*/
2013-12-13 11:42:44 +01:00
static int perf_push_sample ( struct perf_event * event , struct sf_raw_sample * sfr )
2013-12-12 16:32:47 +01:00
{
int overflow ;
struct pt_regs regs ;
2013-12-12 17:54:57 +01:00
struct perf_sf_sde_regs * sde_regs ;
2013-12-12 16:32:47 +01:00
struct perf_sample_data data ;
2013-12-13 11:42:44 +01:00
struct perf_raw_record raw ;
2013-12-12 16:32:47 +01:00
2013-12-13 11:42:44 +01:00
/* Setup perf sample */
2013-12-12 16:32:47 +01:00
perf_sample_data_init ( & data , 0 , event - > hw . last_period ) ;
2013-12-13 11:42:44 +01:00
raw . size = sfr - > size ;
raw . data = sfr ;
data . raw = & raw ;
2013-12-12 16:32:47 +01:00
2013-12-12 17:54:57 +01:00
/* Setup pt_regs to look like an CPU-measurement external interrupt
* using the Program Request Alert code . The regs . int_parm_long
* field which is unused contains additional sample - data - entry related
* indicators .
*/
2013-12-12 16:32:47 +01:00
memset ( & regs , 0 , sizeof ( regs ) ) ;
2013-12-12 17:54:57 +01:00
regs . int_code = 0x1407 ;
regs . int_parm = CPU_MF_INT_SF_PRA ;
sde_regs = ( struct perf_sf_sde_regs * ) & regs . int_parm_long ;
2013-12-13 11:42:44 +01:00
regs . psw . addr = sfr - > basic . ia ;
if ( sfr - > basic . T )
2013-12-12 16:32:47 +01:00
regs . psw . mask | = PSW_MASK_DAT ;
2013-12-13 11:42:44 +01:00
if ( sfr - > basic . W )
2013-12-12 16:32:47 +01:00
regs . psw . mask | = PSW_MASK_WAIT ;
2013-12-13 11:42:44 +01:00
if ( sfr - > basic . P )
2013-12-12 16:32:47 +01:00
regs . psw . mask | = PSW_MASK_PSTATE ;
2013-12-13 11:42:44 +01:00
switch ( sfr - > basic . AS ) {
2013-12-12 16:32:47 +01:00
case 0x0 :
regs . psw . mask | = PSW_ASC_PRIMARY ;
break ;
case 0x1 :
regs . psw . mask | = PSW_ASC_ACCREG ;
break ;
case 0x2 :
regs . psw . mask | = PSW_ASC_SECONDARY ;
break ;
case 0x3 :
regs . psw . mask | = PSW_ASC_HOME ;
break ;
}
2015-07-09 17:56:13 +02:00
/* The host-program-parameter (hpp) contains the pid of
* the CPU thread as set by sie64a ( ) in entry . S .
* If non - zero assume a guest sample .
2013-12-12 17:54:57 +01:00
*/
2013-12-13 11:42:44 +01:00
if ( sfr - > basic . hpp )
2013-12-12 17:54:57 +01:00
sde_regs - > in_guest = 1 ;
2013-12-12 16:32:47 +01:00
overflow = 0 ;
2013-12-12 18:05:20 +01:00
if ( perf_exclude_event ( event , & regs , sde_regs ) )
goto out ;
2013-12-12 16:32:47 +01:00
if ( perf_event_overflow ( event , & data , & regs ) ) {
overflow = 1 ;
event - > pmu - > stop ( event , 0 ) ;
}
perf_event_update_userpage ( event ) ;
2013-12-12 18:05:20 +01:00
out :
2013-12-12 16:32:47 +01:00
return overflow ;
}
static void perf_event_count_update ( struct perf_event * event , u64 count )
{
local64_add ( count , & event - > count ) ;
}
2013-12-13 11:42:44 +01:00
static int sample_format_is_valid ( struct hws_combined_entry * sample ,
unsigned int flags )
{
if ( likely ( flags & PERF_CPUM_SF_BASIC_MODE ) )
/* Only basic-sampling data entries with data-entry-format
* version of 0x0001 can be processed .
*/
if ( sample - > basic . def ! = 0x0001 )
return 0 ;
if ( flags & PERF_CPUM_SF_DIAG_MODE )
/* The data-entry-format number of diagnostic-sampling data
* entries can vary . Because diagnostic data is just passed
* through , do only a sanity check on the DEF .
*/
if ( sample - > diag . def < 0x8001 )
return 0 ;
return 1 ;
}
static int sample_is_consistent ( struct hws_combined_entry * sample ,
unsigned long flags )
{
/* This check applies only to basic-sampling data entries of potentially
* combined - sampling data entries . Invalid entries cannot be processed
* by the PMU and , thus , do not deliver an associated
* diagnostic - sampling data entry .
*/
if ( unlikely ( ! ( flags & PERF_CPUM_SF_BASIC_MODE ) ) )
return 0 ;
/*
* Samples are skipped , if they are invalid or for which the
* instruction address is not predictable , i . e . , the wait - state bit is
* set .
*/
if ( sample - > basic . I | | sample - > basic . W )
return 0 ;
return 1 ;
}
static void reset_sample_slot ( struct hws_combined_entry * sample ,
unsigned long flags )
{
if ( likely ( flags & PERF_CPUM_SF_BASIC_MODE ) )
sample - > basic . def = 0 ;
if ( flags & PERF_CPUM_SF_DIAG_MODE )
sample - > diag . def = 0 ;
}
static void sfr_store_sample ( struct sf_raw_sample * sfr ,
struct hws_combined_entry * sample )
{
if ( likely ( sfr - > format & PERF_CPUM_SF_BASIC_MODE ) )
sfr - > basic = sample - > basic ;
if ( sfr - > format & PERF_CPUM_SF_DIAG_MODE )
memcpy ( & sfr - > diag , & sample - > diag , sfr - > dsdes ) ;
}
static void debug_sample_entry ( struct hws_combined_entry * sample ,
struct hws_trailer_entry * te ,
unsigned long flags )
{
debug_sprintf_event ( sfdbg , 4 , " hw_collect_samples: Found unknown "
" sampling data entry: te->f=%i basic.def=%04x (%p) "
" diag.def=%04x (%p) \n " , te - > f ,
sample - > basic . def , & sample - > basic ,
( flags & PERF_CPUM_SF_DIAG_MODE )
? sample - > diag . def : 0xFFFF ,
( flags & PERF_CPUM_SF_DIAG_MODE )
? & sample - > diag : NULL ) ;
}
2013-12-12 16:32:47 +01:00
/* hw_collect_samples() - Walk through a sample-data-block and collect samples
* @ event : The perf event
* @ sdbt : Sample - data - block table
* @ overflow : Event overflow counter
*
2013-12-13 11:42:44 +01:00
* Walks through a sample - data - block and collects sampling data entries that are
* then pushed to the perf event subsystem . Depending on the sampling function ,
* there can be either basic - sampling or combined - sampling data entries . A
* combined - sampling data entry consists of a basic - and a diagnostic - sampling
* data entry . The sampling function is determined by the flags in the perf
* event hardware structure . The function always works with a combined - sampling
* data entry but ignores the the diagnostic portion if it is not available .
*
* Note that the implementation focuses on basic - sampling data entries and , if
* such an entry is not valid , the entire combined - sampling data entry is
* ignored .
*
* The overflow variables counts the number of samples that has been discarded
* due to a perf event overflow .
2013-12-12 16:32:47 +01:00
*/
static void hw_collect_samples ( struct perf_event * event , unsigned long * sdbt ,
unsigned long long * overflow )
{
2013-12-13 11:42:44 +01:00
unsigned long flags = SAMPL_FLAGS ( & event - > hw ) ;
struct hws_combined_entry * sample ;
struct hws_trailer_entry * te ;
struct sf_raw_sample * sfr ;
size_t sample_size ;
/* Prepare and initialize raw sample data */
sfr = ( struct sf_raw_sample * ) RAWSAMPLE_REG ( & event - > hw ) ;
sfr - > format = flags & PERF_CPUM_SF_MODE_MASK ;
2013-12-12 16:32:47 +01:00
2013-12-13 11:42:44 +01:00
sample_size = event_sample_size ( & event - > hw ) ;
te = ( struct hws_trailer_entry * ) trailer_entry_ptr ( * sdbt ) ;
sample = ( struct hws_combined_entry * ) * sdbt ;
while ( ( unsigned long * ) sample < ( unsigned long * ) te ) {
2013-12-12 16:32:47 +01:00
/* Check for an empty sample */
2013-12-13 11:42:44 +01:00
if ( ! sample - > basic . def )
2013-12-12 16:32:47 +01:00
break ;
/* Update perf event period */
perf_event_count_update ( event , SAMPL_RATE ( & event - > hw ) ) ;
2013-12-13 11:42:44 +01:00
/* Check sampling data entry */
if ( sample_format_is_valid ( sample , flags ) ) {
2013-12-12 16:32:47 +01:00
/* If an event overflow occurred, the PMU is stopped to
* throttle event delivery . Remaining sample data is
* discarded .
*/
2013-12-13 11:42:44 +01:00
if ( ! * overflow ) {
if ( sample_is_consistent ( sample , flags ) ) {
/* Deliver sample data to perf */
sfr_store_sample ( sfr , sample ) ;
* overflow = perf_push_sample ( event , sfr ) ;
}
} else
2013-12-12 16:32:47 +01:00
/* Count discarded samples */
* overflow + = 1 ;
2013-12-13 11:42:44 +01:00
} else {
debug_sample_entry ( sample , te , flags ) ;
/* Sample slot is not yet written or other record.
*
* This condition can occur if the buffer was reused
* from a combined basic - and diagnostic - sampling .
* If only basic - sampling is then active , entries are
* written into the larger diagnostic entries .
* This is typically the case for sample - data - blocks
* that are not full . Stop processing if the first
* invalid format was detected .
*/
if ( ! te - > f )
break ;
}
2013-12-12 16:32:47 +01:00
/* Reset sample slot and advance to next sample */
2013-12-13 11:42:44 +01:00
reset_sample_slot ( sample , flags ) ;
sample + = sample_size ;
2013-12-12 16:32:47 +01:00
}
}
/* hw_perf_event_update() - Process sampling buffer
* @ event : The perf event
* @ flush_all : Flag to also flush partially filled sample - data - blocks
*
* Processes the sampling buffer and create perf event samples .
* The sampling buffer position are retrieved and saved in the TEAR_REG
* register of the specified perf event .
*
* Only full sample - data - blocks are processed . Specify the flash_all flag
2013-12-13 12:45:01 +01:00
* to also walk through partially filled sample - data - blocks . It is ignored
* if PERF_CPUM_SF_FULL_BLOCKS is set . The PERF_CPUM_SF_FULL_BLOCKS flag
* enforces the processing of full sample - data - blocks only ( trailer entries
* with the block - full - indicator bit set ) .
2013-12-12 16:32:47 +01:00
*/
static void hw_perf_event_update ( struct perf_event * event , int flush_all )
{
struct hw_perf_event * hwc = & event - > hw ;
struct hws_trailer_entry * te ;
unsigned long * sdbt ;
2013-12-12 17:26:51 +01:00
unsigned long long event_overflow , sampl_overflow , num_sdb , te_flags ;
2013-12-12 16:32:47 +01:00
int done ;
2013-12-13 12:45:01 +01:00
if ( flush_all & & SDB_FULL_BLOCKS ( hwc ) )
flush_all = 0 ;
2013-12-12 16:32:47 +01:00
sdbt = ( unsigned long * ) TEAR_REG ( hwc ) ;
2013-12-12 17:03:48 +01:00
done = event_overflow = sampl_overflow = num_sdb = 0 ;
2013-12-12 16:32:47 +01:00
while ( ! done ) {
/* Get the trailer entry of the sample-data-block */
te = ( struct hws_trailer_entry * ) trailer_entry_ptr ( * sdbt ) ;
/* Leave loop if no more work to do (block full indicator) */
if ( ! te - > f ) {
done = 1 ;
if ( ! flush_all )
break ;
}
2013-12-12 17:03:48 +01:00
/* Check the sample overflow count */
if ( te - > overflow )
/* Account sample overflows and, if a particular limit
* is reached , extend the sampling buffer .
* For details , see sfb_account_overflows ( ) .
2013-12-12 16:32:47 +01:00
*/
2013-12-12 17:03:48 +01:00
sampl_overflow + = te - > overflow ;
2013-12-12 16:32:47 +01:00
/* Timestamps are valid for full sample-data-blocks only */
debug_sprintf_event ( sfdbg , 6 , " hw_perf_event_update: sdbt=%p "
" overflow=%llu timestamp=0x%llx \n " ,
sdbt , te - > overflow ,
2013-12-12 17:38:50 +01:00
( te - > f ) ? trailer_timestamp ( te ) : 0ULL ) ;
2013-12-12 16:32:47 +01:00
/* Collect all samples from a single sample-data-block and
* flag if an ( perf ) event overflow happened . If so , the PMU
* is stopped and remaining samples will be discarded .
*/
hw_collect_samples ( event , sdbt , & event_overflow ) ;
2013-12-12 17:03:48 +01:00
num_sdb + + ;
2013-12-12 16:32:47 +01:00
2013-12-12 17:26:51 +01:00
/* Reset trailer (using compare-double-and-swap) */
do {
te_flags = te - > flags & ~ SDB_TE_BUFFER_FULL_MASK ;
te_flags | = SDB_TE_ALERT_REQ_MASK ;
} while ( ! cmpxchg_double ( & te - > flags , & te - > overflow ,
te - > flags , te - > overflow ,
te_flags , 0ULL ) ) ;
2013-12-12 16:32:47 +01:00
/* Advance to next sample-data-block */
sdbt + + ;
if ( is_link_entry ( sdbt ) )
sdbt = get_next_sdbt ( sdbt ) ;
/* Update event hardware registers */
TEAR_REG ( hwc ) = ( unsigned long ) sdbt ;
/* Stop processing sample-data if all samples of the current
* sample - data - block were flushed even if it was not full .
*/
if ( flush_all & & done )
break ;
/* If an event overflow happened, discard samples by
* processing any remaining sample - data - blocks .
*/
if ( event_overflow )
flush_all = 1 ;
}
2013-12-12 17:03:48 +01:00
/* Account sample overflows in the event hardware structure */
if ( sampl_overflow )
OVERFLOW_REG ( hwc ) = DIV_ROUND_UP ( OVERFLOW_REG ( hwc ) +
sampl_overflow , 1 + num_sdb ) ;
2013-12-12 16:32:47 +01:00
if ( sampl_overflow | | event_overflow )
debug_sprintf_event ( sfdbg , 4 , " hw_perf_event_update: "
" overflow stats: sample=%llu event=%llu \n " ,
sampl_overflow , event_overflow ) ;
}
static void cpumsf_pmu_read ( struct perf_event * event )
{
/* Nothing to do ... updates are interrupt-driven */
}
/* Activate sampling control.
* Next call of pmu_enable ( ) starts sampling .
*/
static void cpumsf_pmu_start ( struct perf_event * event , int flags )
{
s390: Replace __get_cpu_var uses
__get_cpu_var() is used for multiple purposes in the kernel source. One of
them is address calculation via the form &__get_cpu_var(x). This calculates
the address for the instance of the percpu variable of the current processor
based on an offset.
Other use cases are for storing and retrieving data from the current
processors percpu area. __get_cpu_var() can be used as an lvalue when
writing data or on the right side of an assignment.
__get_cpu_var() is defined as :
#define __get_cpu_var(var) (*this_cpu_ptr(&(var)))
__get_cpu_var() always only does an address determination. However, store
and retrieve operations could use a segment prefix (or global register on
other platforms) to avoid the address calculation.
this_cpu_write() and this_cpu_read() can directly take an offset into a
percpu area and use optimized assembly code to read and write per cpu
variables.
This patch converts __get_cpu_var into either an explicit address
calculation using this_cpu_ptr() or into a use of this_cpu operations that
use the offset. Thereby address calculations are avoided and less registers
are used when code is generated.
At the end of the patch set all uses of __get_cpu_var have been removed so
the macro is removed too.
The patch set includes passes over all arches as well. Once these operations
are used throughout then specialized macros can be defined in non -x86
arches as well in order to optimize per cpu access by f.e. using a global
register that may be set to the per cpu base.
Transformations done to __get_cpu_var()
1. Determine the address of the percpu instance of the current processor.
DEFINE_PER_CPU(int, y);
int *x = &__get_cpu_var(y);
Converts to
int *x = this_cpu_ptr(&y);
2. Same as #1 but this time an array structure is involved.
DEFINE_PER_CPU(int, y[20]);
int *x = __get_cpu_var(y);
Converts to
int *x = this_cpu_ptr(y);
3. Retrieve the content of the current processors instance of a per cpu
variable.
DEFINE_PER_CPU(int, y);
int x = __get_cpu_var(y)
Converts to
int x = __this_cpu_read(y);
4. Retrieve the content of a percpu struct
DEFINE_PER_CPU(struct mystruct, y);
struct mystruct x = __get_cpu_var(y);
Converts to
memcpy(&x, this_cpu_ptr(&y), sizeof(x));
5. Assignment to a per cpu variable
DEFINE_PER_CPU(int, y)
__get_cpu_var(y) = x;
Converts to
this_cpu_write(y, x);
6. Increment/Decrement etc of a per cpu variable
DEFINE_PER_CPU(int, y);
__get_cpu_var(y)++
Converts to
this_cpu_inc(y)
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
CC: linux390@de.ibm.com
Acked-by: Heiko Carstens <heiko.carstens@de.ibm.com>
Signed-off-by: Christoph Lameter <cl@linux.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
2014-08-17 12:30:45 -05:00
struct cpu_hw_sf * cpuhw = this_cpu_ptr ( & cpu_hw_sf ) ;
2013-12-12 16:32:47 +01:00
if ( WARN_ON_ONCE ( ! ( event - > hw . state & PERF_HES_STOPPED ) ) )
return ;
if ( flags & PERF_EF_RELOAD )
WARN_ON_ONCE ( ! ( event - > hw . state & PERF_HES_UPTODATE ) ) ;
perf_pmu_disable ( event - > pmu ) ;
event - > hw . state = 0 ;
cpuhw - > lsctl . cs = 1 ;
2013-12-13 11:42:44 +01:00
if ( SAMPL_DIAG_MODE ( & event - > hw ) )
cpuhw - > lsctl . cd = 1 ;
2013-12-12 16:32:47 +01:00
perf_pmu_enable ( event - > pmu ) ;
}
/* Deactivate sampling control.
* Next call of pmu_enable ( ) stops sampling .
*/
static void cpumsf_pmu_stop ( struct perf_event * event , int flags )
{
s390: Replace __get_cpu_var uses
__get_cpu_var() is used for multiple purposes in the kernel source. One of
them is address calculation via the form &__get_cpu_var(x). This calculates
the address for the instance of the percpu variable of the current processor
based on an offset.
Other use cases are for storing and retrieving data from the current
processors percpu area. __get_cpu_var() can be used as an lvalue when
writing data or on the right side of an assignment.
__get_cpu_var() is defined as :
#define __get_cpu_var(var) (*this_cpu_ptr(&(var)))
__get_cpu_var() always only does an address determination. However, store
and retrieve operations could use a segment prefix (or global register on
other platforms) to avoid the address calculation.
this_cpu_write() and this_cpu_read() can directly take an offset into a
percpu area and use optimized assembly code to read and write per cpu
variables.
This patch converts __get_cpu_var into either an explicit address
calculation using this_cpu_ptr() or into a use of this_cpu operations that
use the offset. Thereby address calculations are avoided and less registers
are used when code is generated.
At the end of the patch set all uses of __get_cpu_var have been removed so
the macro is removed too.
The patch set includes passes over all arches as well. Once these operations
are used throughout then specialized macros can be defined in non -x86
arches as well in order to optimize per cpu access by f.e. using a global
register that may be set to the per cpu base.
Transformations done to __get_cpu_var()
1. Determine the address of the percpu instance of the current processor.
DEFINE_PER_CPU(int, y);
int *x = &__get_cpu_var(y);
Converts to
int *x = this_cpu_ptr(&y);
2. Same as #1 but this time an array structure is involved.
DEFINE_PER_CPU(int, y[20]);
int *x = __get_cpu_var(y);
Converts to
int *x = this_cpu_ptr(y);
3. Retrieve the content of the current processors instance of a per cpu
variable.
DEFINE_PER_CPU(int, y);
int x = __get_cpu_var(y)
Converts to
int x = __this_cpu_read(y);
4. Retrieve the content of a percpu struct
DEFINE_PER_CPU(struct mystruct, y);
struct mystruct x = __get_cpu_var(y);
Converts to
memcpy(&x, this_cpu_ptr(&y), sizeof(x));
5. Assignment to a per cpu variable
DEFINE_PER_CPU(int, y)
__get_cpu_var(y) = x;
Converts to
this_cpu_write(y, x);
6. Increment/Decrement etc of a per cpu variable
DEFINE_PER_CPU(int, y);
__get_cpu_var(y)++
Converts to
this_cpu_inc(y)
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
CC: linux390@de.ibm.com
Acked-by: Heiko Carstens <heiko.carstens@de.ibm.com>
Signed-off-by: Christoph Lameter <cl@linux.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
2014-08-17 12:30:45 -05:00
struct cpu_hw_sf * cpuhw = this_cpu_ptr ( & cpu_hw_sf ) ;
2013-12-12 16:32:47 +01:00
if ( event - > hw . state & PERF_HES_STOPPED )
return ;
perf_pmu_disable ( event - > pmu ) ;
cpuhw - > lsctl . cs = 0 ;
2013-12-13 11:42:44 +01:00
cpuhw - > lsctl . cd = 0 ;
2013-12-12 16:32:47 +01:00
event - > hw . state | = PERF_HES_STOPPED ;
if ( ( flags & PERF_EF_UPDATE ) & & ! ( event - > hw . state & PERF_HES_UPTODATE ) ) {
hw_perf_event_update ( event , 1 ) ;
event - > hw . state | = PERF_HES_UPTODATE ;
}
perf_pmu_enable ( event - > pmu ) ;
}
static int cpumsf_pmu_add ( struct perf_event * event , int flags )
{
s390: Replace __get_cpu_var uses
__get_cpu_var() is used for multiple purposes in the kernel source. One of
them is address calculation via the form &__get_cpu_var(x). This calculates
the address for the instance of the percpu variable of the current processor
based on an offset.
Other use cases are for storing and retrieving data from the current
processors percpu area. __get_cpu_var() can be used as an lvalue when
writing data or on the right side of an assignment.
__get_cpu_var() is defined as :
#define __get_cpu_var(var) (*this_cpu_ptr(&(var)))
__get_cpu_var() always only does an address determination. However, store
and retrieve operations could use a segment prefix (or global register on
other platforms) to avoid the address calculation.
this_cpu_write() and this_cpu_read() can directly take an offset into a
percpu area and use optimized assembly code to read and write per cpu
variables.
This patch converts __get_cpu_var into either an explicit address
calculation using this_cpu_ptr() or into a use of this_cpu operations that
use the offset. Thereby address calculations are avoided and less registers
are used when code is generated.
At the end of the patch set all uses of __get_cpu_var have been removed so
the macro is removed too.
The patch set includes passes over all arches as well. Once these operations
are used throughout then specialized macros can be defined in non -x86
arches as well in order to optimize per cpu access by f.e. using a global
register that may be set to the per cpu base.
Transformations done to __get_cpu_var()
1. Determine the address of the percpu instance of the current processor.
DEFINE_PER_CPU(int, y);
int *x = &__get_cpu_var(y);
Converts to
int *x = this_cpu_ptr(&y);
2. Same as #1 but this time an array structure is involved.
DEFINE_PER_CPU(int, y[20]);
int *x = __get_cpu_var(y);
Converts to
int *x = this_cpu_ptr(y);
3. Retrieve the content of the current processors instance of a per cpu
variable.
DEFINE_PER_CPU(int, y);
int x = __get_cpu_var(y)
Converts to
int x = __this_cpu_read(y);
4. Retrieve the content of a percpu struct
DEFINE_PER_CPU(struct mystruct, y);
struct mystruct x = __get_cpu_var(y);
Converts to
memcpy(&x, this_cpu_ptr(&y), sizeof(x));
5. Assignment to a per cpu variable
DEFINE_PER_CPU(int, y)
__get_cpu_var(y) = x;
Converts to
this_cpu_write(y, x);
6. Increment/Decrement etc of a per cpu variable
DEFINE_PER_CPU(int, y);
__get_cpu_var(y)++
Converts to
this_cpu_inc(y)
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
CC: linux390@de.ibm.com
Acked-by: Heiko Carstens <heiko.carstens@de.ibm.com>
Signed-off-by: Christoph Lameter <cl@linux.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
2014-08-17 12:30:45 -05:00
struct cpu_hw_sf * cpuhw = this_cpu_ptr ( & cpu_hw_sf ) ;
2013-12-12 16:32:47 +01:00
int err ;
if ( cpuhw - > flags & PMU_F_IN_USE )
return - EAGAIN ;
if ( ! cpuhw - > sfb . sdbt )
return - EINVAL ;
err = 0 ;
perf_pmu_disable ( event - > pmu ) ;
event - > hw . state = PERF_HES_UPTODATE | PERF_HES_STOPPED ;
/* Set up sampling controls. Always program the sampling register
* using the SDB - table start . Reset TEAR_REG event hardware register
* that is used by hw_perf_event_update ( ) to store the sampling buffer
* position after samples have been flushed .
*/
cpuhw - > lsctl . s = 0 ;
cpuhw - > lsctl . h = 1 ;
2013-12-12 17:03:48 +01:00
cpuhw - > lsctl . tear = ( unsigned long ) cpuhw - > sfb . sdbt ;
2013-12-12 16:32:47 +01:00
cpuhw - > lsctl . dear = * ( unsigned long * ) cpuhw - > sfb . sdbt ;
cpuhw - > lsctl . interval = SAMPL_RATE ( & event - > hw ) ;
hw_reset_registers ( & event - > hw , cpuhw - > sfb . sdbt ) ;
/* Ensure sampling functions are in the disabled state. If disabled,
* switch on sampling enable control . */
2013-12-13 11:42:44 +01:00
if ( WARN_ON_ONCE ( cpuhw - > lsctl . es = = 1 | | cpuhw - > lsctl . ed = = 1 ) ) {
2013-12-12 16:32:47 +01:00
err = - EAGAIN ;
goto out ;
}
cpuhw - > lsctl . es = 1 ;
2013-12-13 11:42:44 +01:00
if ( SAMPL_DIAG_MODE ( & event - > hw ) )
cpuhw - > lsctl . ed = 1 ;
2013-12-12 16:32:47 +01:00
/* Set in_use flag and store event */
cpuhw - > event = event ;
cpuhw - > flags | = PMU_F_IN_USE ;
if ( flags & PERF_EF_START )
cpumsf_pmu_start ( event , PERF_EF_RELOAD ) ;
out :
perf_event_update_userpage ( event ) ;
perf_pmu_enable ( event - > pmu ) ;
return err ;
}
static void cpumsf_pmu_del ( struct perf_event * event , int flags )
{
s390: Replace __get_cpu_var uses
__get_cpu_var() is used for multiple purposes in the kernel source. One of
them is address calculation via the form &__get_cpu_var(x). This calculates
the address for the instance of the percpu variable of the current processor
based on an offset.
Other use cases are for storing and retrieving data from the current
processors percpu area. __get_cpu_var() can be used as an lvalue when
writing data or on the right side of an assignment.
__get_cpu_var() is defined as :
#define __get_cpu_var(var) (*this_cpu_ptr(&(var)))
__get_cpu_var() always only does an address determination. However, store
and retrieve operations could use a segment prefix (or global register on
other platforms) to avoid the address calculation.
this_cpu_write() and this_cpu_read() can directly take an offset into a
percpu area and use optimized assembly code to read and write per cpu
variables.
This patch converts __get_cpu_var into either an explicit address
calculation using this_cpu_ptr() or into a use of this_cpu operations that
use the offset. Thereby address calculations are avoided and less registers
are used when code is generated.
At the end of the patch set all uses of __get_cpu_var have been removed so
the macro is removed too.
The patch set includes passes over all arches as well. Once these operations
are used throughout then specialized macros can be defined in non -x86
arches as well in order to optimize per cpu access by f.e. using a global
register that may be set to the per cpu base.
Transformations done to __get_cpu_var()
1. Determine the address of the percpu instance of the current processor.
DEFINE_PER_CPU(int, y);
int *x = &__get_cpu_var(y);
Converts to
int *x = this_cpu_ptr(&y);
2. Same as #1 but this time an array structure is involved.
DEFINE_PER_CPU(int, y[20]);
int *x = __get_cpu_var(y);
Converts to
int *x = this_cpu_ptr(y);
3. Retrieve the content of the current processors instance of a per cpu
variable.
DEFINE_PER_CPU(int, y);
int x = __get_cpu_var(y)
Converts to
int x = __this_cpu_read(y);
4. Retrieve the content of a percpu struct
DEFINE_PER_CPU(struct mystruct, y);
struct mystruct x = __get_cpu_var(y);
Converts to
memcpy(&x, this_cpu_ptr(&y), sizeof(x));
5. Assignment to a per cpu variable
DEFINE_PER_CPU(int, y)
__get_cpu_var(y) = x;
Converts to
this_cpu_write(y, x);
6. Increment/Decrement etc of a per cpu variable
DEFINE_PER_CPU(int, y);
__get_cpu_var(y)++
Converts to
this_cpu_inc(y)
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
CC: linux390@de.ibm.com
Acked-by: Heiko Carstens <heiko.carstens@de.ibm.com>
Signed-off-by: Christoph Lameter <cl@linux.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
2014-08-17 12:30:45 -05:00
struct cpu_hw_sf * cpuhw = this_cpu_ptr ( & cpu_hw_sf ) ;
2013-12-12 16:32:47 +01:00
perf_pmu_disable ( event - > pmu ) ;
cpumsf_pmu_stop ( event , PERF_EF_UPDATE ) ;
cpuhw - > lsctl . es = 0 ;
2013-12-13 11:42:44 +01:00
cpuhw - > lsctl . ed = 0 ;
2013-12-12 16:32:47 +01:00
cpuhw - > flags & = ~ PMU_F_IN_USE ;
cpuhw - > event = NULL ;
perf_event_update_userpage ( event ) ;
perf_pmu_enable ( event - > pmu ) ;
}
CPUMF_EVENT_ATTR ( SF , SF_CYCLES_BASIC , PERF_EVENT_CPUM_SF ) ;
2013-12-13 11:42:44 +01:00
CPUMF_EVENT_ATTR ( SF , SF_CYCLES_BASIC_DIAG , PERF_EVENT_CPUM_SF_DIAG ) ;
2013-12-12 16:32:47 +01:00
static struct attribute * cpumsf_pmu_events_attr [ ] = {
CPUMF_EVENT_PTR ( SF , SF_CYCLES_BASIC ) ,
2015-03-09 17:34:18 +01:00
NULL ,
2013-12-12 16:32:47 +01:00
NULL ,
} ;
PMU_FORMAT_ATTR ( event , " config:0-63 " ) ;
static struct attribute * cpumsf_pmu_format_attr [ ] = {
& format_attr_event . attr ,
NULL ,
} ;
static struct attribute_group cpumsf_pmu_events_group = {
. name = " events " ,
. attrs = cpumsf_pmu_events_attr ,
} ;
static struct attribute_group cpumsf_pmu_format_group = {
. name = " format " ,
. attrs = cpumsf_pmu_format_attr ,
} ;
static const struct attribute_group * cpumsf_pmu_attr_groups [ ] = {
& cpumsf_pmu_events_group ,
& cpumsf_pmu_format_group ,
NULL ,
} ;
static struct pmu cpumf_sampling = {
. pmu_enable = cpumsf_pmu_enable ,
. pmu_disable = cpumsf_pmu_disable ,
. event_init = cpumsf_pmu_event_init ,
. add = cpumsf_pmu_add ,
. del = cpumsf_pmu_del ,
. start = cpumsf_pmu_start ,
. stop = cpumsf_pmu_stop ,
. read = cpumsf_pmu_read ,
. attr_groups = cpumsf_pmu_attr_groups ,
} ;
static void cpumf_measurement_alert ( struct ext_code ext_code ,
unsigned int alert , unsigned long unused )
{
struct cpu_hw_sf * cpuhw ;
if ( ! ( alert & CPU_MF_INT_SF_MASK ) )
return ;
inc_irq_stat ( IRQEXT_CMS ) ;
s390: Replace __get_cpu_var uses
__get_cpu_var() is used for multiple purposes in the kernel source. One of
them is address calculation via the form &__get_cpu_var(x). This calculates
the address for the instance of the percpu variable of the current processor
based on an offset.
Other use cases are for storing and retrieving data from the current
processors percpu area. __get_cpu_var() can be used as an lvalue when
writing data or on the right side of an assignment.
__get_cpu_var() is defined as :
#define __get_cpu_var(var) (*this_cpu_ptr(&(var)))
__get_cpu_var() always only does an address determination. However, store
and retrieve operations could use a segment prefix (or global register on
other platforms) to avoid the address calculation.
this_cpu_write() and this_cpu_read() can directly take an offset into a
percpu area and use optimized assembly code to read and write per cpu
variables.
This patch converts __get_cpu_var into either an explicit address
calculation using this_cpu_ptr() or into a use of this_cpu operations that
use the offset. Thereby address calculations are avoided and less registers
are used when code is generated.
At the end of the patch set all uses of __get_cpu_var have been removed so
the macro is removed too.
The patch set includes passes over all arches as well. Once these operations
are used throughout then specialized macros can be defined in non -x86
arches as well in order to optimize per cpu access by f.e. using a global
register that may be set to the per cpu base.
Transformations done to __get_cpu_var()
1. Determine the address of the percpu instance of the current processor.
DEFINE_PER_CPU(int, y);
int *x = &__get_cpu_var(y);
Converts to
int *x = this_cpu_ptr(&y);
2. Same as #1 but this time an array structure is involved.
DEFINE_PER_CPU(int, y[20]);
int *x = __get_cpu_var(y);
Converts to
int *x = this_cpu_ptr(y);
3. Retrieve the content of the current processors instance of a per cpu
variable.
DEFINE_PER_CPU(int, y);
int x = __get_cpu_var(y)
Converts to
int x = __this_cpu_read(y);
4. Retrieve the content of a percpu struct
DEFINE_PER_CPU(struct mystruct, y);
struct mystruct x = __get_cpu_var(y);
Converts to
memcpy(&x, this_cpu_ptr(&y), sizeof(x));
5. Assignment to a per cpu variable
DEFINE_PER_CPU(int, y)
__get_cpu_var(y) = x;
Converts to
this_cpu_write(y, x);
6. Increment/Decrement etc of a per cpu variable
DEFINE_PER_CPU(int, y);
__get_cpu_var(y)++
Converts to
this_cpu_inc(y)
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
CC: linux390@de.ibm.com
Acked-by: Heiko Carstens <heiko.carstens@de.ibm.com>
Signed-off-by: Christoph Lameter <cl@linux.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
2014-08-17 12:30:45 -05:00
cpuhw = this_cpu_ptr ( & cpu_hw_sf ) ;
2013-12-12 16:32:47 +01:00
/* Measurement alerts are shared and might happen when the PMU
* is not reserved . Ignore these alerts in this case . */
if ( ! ( cpuhw - > flags & PMU_F_RESERVED ) )
return ;
/* The processing below must take care of multiple alert events that
* might be indicated concurrently . */
/* Program alert request */
if ( alert & CPU_MF_INT_SF_PRA ) {
if ( cpuhw - > flags & PMU_F_IN_USE )
hw_perf_event_update ( cpuhw - > event , 0 ) ;
else
WARN_ON_ONCE ( ! ( cpuhw - > flags & PMU_F_IN_USE ) ) ;
}
/* Report measurement alerts only for non-PRA codes */
if ( alert ! = CPU_MF_INT_SF_PRA )
debug_sprintf_event ( sfdbg , 6 , " measurement alert: 0x%x \n " , alert ) ;
/* Sampling authorization change request */
if ( alert & CPU_MF_INT_SF_SACA )
qsi ( & cpuhw - > qsi ) ;
/* Loss of sample data due to high-priority machine activities */
if ( alert & CPU_MF_INT_SF_LSDA ) {
pr_err ( " Sample data was lost \n " ) ;
cpuhw - > flags | = PMU_F_ERR_LSDA ;
sf_disable ( ) ;
}
/* Invalid sampling buffer entry */
if ( alert & ( CPU_MF_INT_SF_IAE | CPU_MF_INT_SF_ISE ) ) {
pr_err ( " A sampling buffer entry is incorrect (alert=0x%x) \n " ,
alert ) ;
cpuhw - > flags | = PMU_F_ERR_IBE ;
sf_disable ( ) ;
}
}
2014-01-13 16:02:28 +01:00
static int cpumf_pmu_notifier ( struct notifier_block * self ,
unsigned long action , void * hcpu )
2013-12-12 16:32:47 +01:00
{
unsigned int cpu = ( long ) hcpu ;
int flags ;
/* Ignore the notification if no events are scheduled on the PMU.
* This might be racy . . .
*/
if ( ! atomic_read ( & num_events ) )
return NOTIFY_OK ;
switch ( action & ~ CPU_TASKS_FROZEN ) {
case CPU_ONLINE :
case CPU_ONLINE_FROZEN :
flags = PMC_INIT ;
smp_call_function_single ( cpu , setup_pmc_cpu , & flags , 1 ) ;
break ;
case CPU_DOWN_PREPARE :
flags = PMC_RELEASE ;
smp_call_function_single ( cpu , setup_pmc_cpu , & flags , 1 ) ;
break ;
default :
break ;
}
return NOTIFY_OK ;
}
2013-12-12 17:03:48 +01:00
static int param_get_sfb_size ( char * buffer , const struct kernel_param * kp )
{
if ( ! cpum_sf_avail ( ) )
return - ENODEV ;
return sprintf ( buffer , " %lu,%lu " , CPUM_SF_MIN_SDB , CPUM_SF_MAX_SDB ) ;
}
static int param_set_sfb_size ( const char * val , const struct kernel_param * kp )
{
int rc ;
unsigned long min , max ;
if ( ! cpum_sf_avail ( ) )
return - ENODEV ;
if ( ! val | | ! strlen ( val ) )
return - EINVAL ;
/* Valid parameter values: "min,max" or "max" */
min = CPUM_SF_MIN_SDB ;
max = CPUM_SF_MAX_SDB ;
if ( strchr ( val , ' , ' ) )
rc = ( sscanf ( val , " %lu,%lu " , & min , & max ) = = 2 ) ? 0 : - EINVAL ;
else
rc = kstrtoul ( val , 10 , & max ) ;
if ( min < 2 | | min > = max | | max > get_num_physpages ( ) )
rc = - EINVAL ;
if ( rc )
return rc ;
sfb_set_limits ( min , max ) ;
2013-12-13 11:42:44 +01:00
pr_info ( " The sampling buffer limits have changed to: "
" min=%lu max=%lu (diag=x%lu) \n " ,
CPUM_SF_MIN_SDB , CPUM_SF_MAX_SDB , CPUM_SF_SDB_DIAG_FACTOR ) ;
2013-12-12 17:03:48 +01:00
return 0 ;
}
# define param_check_sfb_size(name, p) __param_check(name, p, void)
2015-05-27 11:09:38 +09:30
static const struct kernel_param_ops param_ops_sfb_size = {
2013-12-12 17:03:48 +01:00
. set = param_set_sfb_size ,
. get = param_get_sfb_size ,
} ;
2013-12-13 11:42:44 +01:00
# define RS_INIT_FAILURE_QSI 0x0001
# define RS_INIT_FAILURE_BSDES 0x0002
# define RS_INIT_FAILURE_ALRT 0x0003
# define RS_INIT_FAILURE_PERF 0x0004
static void __init pr_cpumsf_err ( unsigned int reason )
{
pr_err ( " Sampling facility support for perf is not available: "
" reason=%04x \n " , reason ) ;
}
2013-12-12 16:32:47 +01:00
static int __init init_cpum_sampling_pmu ( void )
{
2013-12-13 11:42:44 +01:00
struct hws_qsi_info_block si ;
2013-12-12 16:32:47 +01:00
int err ;
if ( ! cpum_sf_avail ( ) )
return - ENODEV ;
2013-12-13 11:42:44 +01:00
memset ( & si , 0 , sizeof ( si ) ) ;
if ( qsi ( & si ) ) {
pr_cpumsf_err ( RS_INIT_FAILURE_QSI ) ;
return - ENODEV ;
}
if ( si . bsdes ! = sizeof ( struct hws_basic_entry ) ) {
pr_cpumsf_err ( RS_INIT_FAILURE_BSDES ) ;
return - EINVAL ;
}
2015-03-09 17:34:18 +01:00
if ( si . ad ) {
2013-12-13 11:42:44 +01:00
sfb_set_limits ( CPUM_SF_MIN_SDB , CPUM_SF_MAX_SDB ) ;
2015-03-09 17:34:18 +01:00
cpumsf_pmu_events_attr [ 1 ] =
CPUMF_EVENT_PTR ( SF , SF_CYCLES_BASIC_DIAG ) ;
}
2013-12-13 11:42:44 +01:00
2013-12-12 16:32:47 +01:00
sfdbg = debug_register ( KMSG_COMPONENT , 2 , 1 , 80 ) ;
if ( ! sfdbg )
pr_err ( " Registering for s390dbf failed \n " ) ;
debug_register_view ( sfdbg , & debug_sprintf_view ) ;
2014-03-31 15:24:08 +02:00
err = register_external_irq ( EXT_IRQ_MEASURE_ALERT ,
cpumf_measurement_alert ) ;
2013-12-12 16:32:47 +01:00
if ( err ) {
2013-12-13 11:42:44 +01:00
pr_cpumsf_err ( RS_INIT_FAILURE_ALRT ) ;
2013-12-12 16:32:47 +01:00
goto out ;
}
err = perf_pmu_register ( & cpumf_sampling , " cpum_sf " , PERF_TYPE_RAW ) ;
if ( err ) {
2013-12-13 11:42:44 +01:00
pr_cpumsf_err ( RS_INIT_FAILURE_PERF ) ;
2014-03-31 15:24:08 +02:00
unregister_external_irq ( EXT_IRQ_MEASURE_ALERT ,
cpumf_measurement_alert ) ;
2013-12-12 16:32:47 +01:00
goto out ;
}
perf_cpu_notifier ( cpumf_pmu_notifier ) ;
out :
return err ;
}
arch_initcall ( init_cpum_sampling_pmu ) ;
2013-12-12 17:03:48 +01:00
core_param ( cpum_sfb_size , CPUM_SF_MAX_SDB , sfb_size , 0640 ) ;