linux/net/ipv4/tcp_input.c

7155 lines
206 KiB
C
Raw Normal View History

License cleanup: add SPDX GPL-2.0 license identifier to files with no license Many source files in the tree are missing licensing information, which makes it harder for compliance tools to determine the correct license. By default all files without license information are under the default license of the kernel, which is GPL version 2. Update the files which contain no license information with the 'GPL-2.0' SPDX license identifier. The SPDX identifier is a legally binding shorthand, which can be used instead of the full boiler plate text. This patch is based on work done by Thomas Gleixner and Kate Stewart and Philippe Ombredanne. How this work was done: Patches were generated and checked against linux-4.14-rc6 for a subset of the use cases: - file had no licensing information it it. - file was a */uapi/* one with no licensing information in it, - file was a */uapi/* one with existing licensing information, Further patches will be generated in subsequent months to fix up cases where non-standard license headers were used, and references to license had to be inferred by heuristics based on keywords. The analysis to determine which SPDX License Identifier to be applied to a file was done in a spreadsheet of side by side results from of the output of two independent scanners (ScanCode & Windriver) producing SPDX tag:value files created by Philippe Ombredanne. Philippe prepared the base worksheet, and did an initial spot review of a few 1000 files. The 4.13 kernel was the starting point of the analysis with 60,537 files assessed. Kate Stewart did a file by file comparison of the scanner results in the spreadsheet to determine which SPDX license identifier(s) to be applied to the file. She confirmed any determination that was not immediately clear with lawyers working with the Linux Foundation. Criteria used to select files for SPDX license identifier tagging was: - Files considered eligible had to be source code files. - Make and config files were included as candidates if they contained >5 lines of source - File already had some variant of a license header in it (even if <5 lines). All documentation files were explicitly excluded. The following heuristics were used to determine which SPDX license identifiers to apply. - when both scanners couldn't find any license traces, file was considered to have no license information in it, and the top level COPYING file license applied. For non */uapi/* files that summary was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 11139 and resulted in the first patch in this series. If that file was a */uapi/* path one, it was "GPL-2.0 WITH Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 WITH Linux-syscall-note 930 and resulted in the second patch in this series. - if a file had some form of licensing information in it, and was one of the */uapi/* ones, it was denoted with the Linux-syscall-note if any GPL family license was found in the file or had no licensing in it (per prior point). Results summary: SPDX license identifier # files ---------------------------------------------------|------ GPL-2.0 WITH Linux-syscall-note 270 GPL-2.0+ WITH Linux-syscall-note 169 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17 LGPL-2.1+ WITH Linux-syscall-note 15 GPL-1.0+ WITH Linux-syscall-note 14 ((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5 LGPL-2.0+ WITH Linux-syscall-note 4 LGPL-2.1 WITH Linux-syscall-note 3 ((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3 ((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1 and that resulted in the third patch in this series. - when the two scanners agreed on the detected license(s), that became the concluded license(s). - when there was disagreement between the two scanners (one detected a license but the other didn't, or they both detected different licenses) a manual inspection of the file occurred. - In most cases a manual inspection of the information in the file resulted in a clear resolution of the license that should apply (and which scanner probably needed to revisit its heuristics). - When it was not immediately clear, the license identifier was confirmed with lawyers working with the Linux Foundation. - If there was any question as to the appropriate license identifier, the file was flagged for further research and to be revisited later in time. In total, over 70 hours of logged manual review was done on the spreadsheet to determine the SPDX license identifiers to apply to the source files by Kate, Philippe, Thomas and, in some cases, confirmation by lawyers working with the Linux Foundation. Kate also obtained a third independent scan of the 4.13 code base from FOSSology, and compared selected files where the other two scanners disagreed against that SPDX file, to see if there was new insights. The Windriver scanner is based on an older version of FOSSology in part, so they are related. Thomas did random spot checks in about 500 files from the spreadsheets for the uapi headers and agreed with SPDX license identifier in the files he inspected. For the non-uapi files Thomas did random spot checks in about 15000 files. In initial set of patches against 4.14-rc6, 3 files were found to have copy/paste license identifier errors, and have been fixed to reflect the correct identifier. Additionally Philippe spent 10 hours this week doing a detailed manual inspection and review of the 12,461 patched files from the initial patch version early this week with: - a full scancode scan run, collecting the matched texts, detected license ids and scores - reviewing anything where there was a license detected (about 500+ files) to ensure that the applied SPDX license was correct - reviewing anything where there was no detection but the patch license was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied SPDX license was correct This produced a worksheet with 20 files needing minor correction. This worksheet was then exported into 3 different .csv files for the different types of files to be modified. These .csv files were then reviewed by Greg. Thomas wrote a script to parse the csv files and add the proper SPDX tag to the file, in the format that the file expected. This script was further refined by Greg based on the output to detect more types of files automatically and to distinguish between header and source .c files (which need different comment types.) Finally Greg ran the script using the .csv files to generate the patches. Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org> Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-11-01 15:07:57 +01:00
// SPDX-License-Identifier: GPL-2.0
/*
* INET An implementation of the TCP/IP protocol suite for the LINUX
* operating system. INET is implemented using the BSD Socket
* interface as the means of communication with the user level.
*
* Implementation of the Transmission Control Protocol(TCP).
*
* Authors: Ross Biro
* Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
* Mark Evans, <evansmp@uhura.aston.ac.uk>
* Corey Minyard <wf-rch!minyard@relay.EU.net>
* Florian La Roche, <flla@stud.uni-sb.de>
* Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
* Linus Torvalds, <torvalds@cs.helsinki.fi>
* Alan Cox, <gw4pts@gw4pts.ampr.org>
* Matthew Dillon, <dillon@apollo.west.oic.com>
* Arnt Gulbrandsen, <agulbra@nvg.unit.no>
* Jorge Cwik, <jorge@laser.satlink.net>
*/
/*
* Changes:
* Pedro Roque : Fast Retransmit/Recovery.
* Two receive queues.
* Retransmit queue handled by TCP.
* Better retransmit timer handling.
* New congestion avoidance.
* Header prediction.
* Variable renaming.
*
* Eric : Fast Retransmit.
* Randy Scott : MSS option defines.
* Eric Schenk : Fixes to slow start algorithm.
* Eric Schenk : Yet another double ACK bug.
* Eric Schenk : Delayed ACK bug fixes.
* Eric Schenk : Floyd style fast retrans war avoidance.
* David S. Miller : Don't allow zero congestion window.
* Eric Schenk : Fix retransmitter so that it sends
* next packet on ack of previous packet.
* Andi Kleen : Moved open_request checking here
* and process RSTs for open_requests.
* Andi Kleen : Better prune_queue, and other fixes.
* Andrey Savochkin: Fix RTT measurements in the presence of
* timestamps.
* Andrey Savochkin: Check sequence numbers correctly when
* removing SACKs due to in sequence incoming
* data segments.
* Andi Kleen: Make sure we never ack data there is not
* enough room for. Also make this condition
* a fatal error if it might still happen.
* Andi Kleen: Add tcp_measure_rcv_mss to make
* connections with MSS<min(MTU,ann. MSS)
* work without delayed acks.
* Andi Kleen: Process packets with PSH set in the
* fast path.
* J Hadi Salim: ECN support
* Andrei Gurtov,
* Pasi Sarolahti,
* Panu Kuhlberg: Experimental audit of TCP (re)transmission
* engine. Lots of bugs are found.
* Pasi Sarolahti: F-RTO for dealing with spurious RTOs
*/
#define pr_fmt(fmt) "TCP: " fmt
#include <linux/mm.h>
include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit slab.h inclusion from percpu.h percpu.h is included by sched.h and module.h and thus ends up being included when building most .c files. percpu.h includes slab.h which in turn includes gfp.h making everything defined by the two files universally available and complicating inclusion dependencies. percpu.h -> slab.h dependency is about to be removed. Prepare for this change by updating users of gfp and slab facilities include those headers directly instead of assuming availability. As this conversion needs to touch large number of source files, the following script is used as the basis of conversion. http://userweb.kernel.org/~tj/misc/slabh-sweep.py The script does the followings. * Scan files for gfp and slab usages and update includes such that only the necessary includes are there. ie. if only gfp is used, gfp.h, if slab is used, slab.h. * When the script inserts a new include, it looks at the include blocks and try to put the new include such that its order conforms to its surrounding. It's put in the include block which contains core kernel includes, in the same order that the rest are ordered - alphabetical, Christmas tree, rev-Xmas-tree or at the end if there doesn't seem to be any matching order. * If the script can't find a place to put a new include (mostly because the file doesn't have fitting include block), it prints out an error message indicating which .h file needs to be added to the file. The conversion was done in the following steps. 1. The initial automatic conversion of all .c files updated slightly over 4000 files, deleting around 700 includes and adding ~480 gfp.h and ~3000 slab.h inclusions. The script emitted errors for ~400 files. 2. Each error was manually checked. Some didn't need the inclusion, some needed manual addition while adding it to implementation .h or embedding .c file was more appropriate for others. This step added inclusions to around 150 files. 3. The script was run again and the output was compared to the edits from #2 to make sure no file was left behind. 4. Several build tests were done and a couple of problems were fixed. e.g. lib/decompress_*.c used malloc/free() wrappers around slab APIs requiring slab.h to be added manually. 5. The script was run on all .h files but without automatically editing them as sprinkling gfp.h and slab.h inclusions around .h files could easily lead to inclusion dependency hell. Most gfp.h inclusion directives were ignored as stuff from gfp.h was usually wildly available and often used in preprocessor macros. Each slab.h inclusion directive was examined and added manually as necessary. 6. percpu.h was updated not to include slab.h. 7. Build test were done on the following configurations and failures were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my distributed build env didn't work with gcov compiles) and a few more options had to be turned off depending on archs to make things build (like ipr on powerpc/64 which failed due to missing writeq). * x86 and x86_64 UP and SMP allmodconfig and a custom test config. * powerpc and powerpc64 SMP allmodconfig * sparc and sparc64 SMP allmodconfig * ia64 SMP allmodconfig * s390 SMP allmodconfig * alpha SMP allmodconfig * um on x86_64 SMP allmodconfig 8. percpu.h modifications were reverted so that it could be applied as a separate patch and serve as bisection point. Given the fact that I had only a couple of failures from tests on step 6, I'm fairly confident about the coverage of this conversion patch. If there is a breakage, it's likely to be something in one of the arch headers which should be easily discoverable easily on most builds of the specific arch. Signed-off-by: Tejun Heo <tj@kernel.org> Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
2010-03-24 17:04:11 +09:00
#include <linux/slab.h>
#include <linux/module.h>
#include <linux/sysctl.h>
#include <linux/kernel.h>
#include <linux/prefetch.h>
#include <net/dst.h>
#include <net/tcp.h>
#include <net/inet_common.h>
#include <linux/ipsec.h>
#include <asm/unaligned.h>
#include <linux/errqueue.h>
#include <trace/events/tcp.h>
#include <linux/jump_label_ratelimit.h>
#include <net/busy_poll.h>
#include <net/mptcp.h>
int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
#define FLAG_DATA 0x01 /* Incoming frame contained data. */
#define FLAG_WIN_UPDATE 0x02 /* Incoming ACK was a window update. */
#define FLAG_DATA_ACKED 0x04 /* This ACK acknowledged new data. */
#define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted. */
#define FLAG_SYN_ACKED 0x10 /* This ACK acknowledged SYN. */
#define FLAG_DATA_SACKED 0x20 /* New SACK. */
#define FLAG_ECE 0x40 /* ECE in this ACK */
#define FLAG_LOST_RETRANS 0x80 /* This ACK marks some retransmission lost */
#define FLAG_SLOWPATH 0x100 /* Do not skip RFC checks for window update.*/
tcp: implement RFC5682 F-RTO This patch implements F-RTO (foward RTO recovery): When the first retransmission after timeout is acknowledged, F-RTO sends new data instead of old data. If the next ACK acknowledges some never-retransmitted data, then the timeout was spurious and the congestion state is reverted. Otherwise if the next ACK selectively acknowledges the new data, then the timeout was genuine and the loss recovery continues. This idea applies to recurring timeouts as well. While F-RTO sends different data during timeout recovery, it does not (and should not) change the congestion control. The implementaion follows the three steps of SACK enhanced algorithm (section 3) in RFC5682. Step 1 is in tcp_enter_loss(). Step 2 and 3 are in tcp_process_loss(). The basic version is not supported because SACK enhanced version also works for non-SACK connections. The new implementation is functionally in parity with the old F-RTO implementation except the one case where it increases undo events: In addition to the RFC algorithm, a spurious timeout may be detected without sending data in step 2, as long as the SACK confirms not all the original data are dropped. When this happens, the sender will undo the cwnd and perhaps enter fast recovery instead. This additional check increases the F-RTO undo events by 5x compared to the prior implementation on Google Web servers, since the sender often does not have new data to send for HTTP. Note F-RTO may detect spurious timeout before Eifel with timestamps does so. Signed-off-by: Yuchung Cheng <ycheng@google.com> Acked-by: Eric Dumazet <edumazet@google.com> Acked-by: Neal Cardwell <ncardwell@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2013-03-20 13:33:00 +00:00
#define FLAG_ORIG_SACK_ACKED 0x200 /* Never retransmitted data are (s)acked */
#define FLAG_SND_UNA_ADVANCED 0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
#define FLAG_DSACKING_ACK 0x800 /* SACK blocks contained D-SACK info */
tcp: fix xmit timer to only be reset if data ACKed/SACKed Fix a TCP loss recovery performance bug raised recently on the netdev list, in two threads: (i) July 26, 2017: netdev thread "TCP fast retransmit issues" (ii) July 26, 2017: netdev thread: "[PATCH V2 net-next] TLP: Don't reschedule PTO when there's one outstanding TLP retransmission" The basic problem is that incoming TCP packets that did not indicate forward progress could cause the xmit timer (TLP or RTO) to be rearmed and pushed back in time. In certain corner cases this could result in the following problems noted in these threads: - Repeated ACKs coming in with bogus SACKs corrupted by middleboxes could cause TCP to repeatedly schedule TLPs forever. We kept sending TLPs after every ~200ms, which elicited bogus SACKs, which caused more TLPs, ad infinitum; we never fired an RTO to fill in the holes. - Incoming data segments could, in some cases, cause us to reschedule our RTO or TLP timer further out in time, for no good reason. This could cause repeated inbound data to result in stalls in outbound data, in the presence of packet loss. This commit fixes these bugs by changing the TLP and RTO ACK processing to: (a) Only reschedule the xmit timer once per ACK. (b) Only reschedule the xmit timer if tcp_clean_rtx_queue() deems the ACK indicates sufficient forward progress (a packet was cumulatively ACKed, or we got a SACK for a packet that was sent before the most recent retransmit of the write queue head). This brings us back into closer compliance with the RFCs, since, as the comment for tcp_rearm_rto() notes, we should only restart the RTO timer after forward progress on the connection. Previously we were restarting the xmit timer even in these cases where there was no forward progress. As a side benefit, this commit simplifies and speeds up the TCP timer arming logic. We had been calling inet_csk_reset_xmit_timer() three times on normal ACKs that cumulatively acknowledged some data: 1) Once near the top of tcp_ack() to switch from TLP timer to RTO: if (icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) tcp_rearm_rto(sk); 2) Once in tcp_clean_rtx_queue(), to update the RTO: if (flag & FLAG_ACKED) { tcp_rearm_rto(sk); 3) Once in tcp_ack() after tcp_fastretrans_alert() to switch from RTO to TLP: if (icsk->icsk_pending == ICSK_TIME_RETRANS) tcp_schedule_loss_probe(sk); This commit, by only rescheduling the xmit timer once per ACK, simplifies the code and reduces CPU overhead. This commit was tested in an A/B test with Google web server traffic. SNMP stats and request latency metrics were within noise levels, substantiating that for normal web traffic patterns this is a rare issue. This commit was also tested with packetdrill tests to verify that it fixes the timer behavior in the corner cases discussed in the netdev threads mentioned above. This patch is a bug fix patch intended to be queued for -stable relases. Fixes: 6ba8a3b19e76 ("tcp: Tail loss probe (TLP)") Reported-by: Klavs Klavsen <kl@vsen.dk> Reported-by: Mao Wenan <maowenan@huawei.com> Signed-off-by: Neal Cardwell <ncardwell@google.com> Signed-off-by: Yuchung Cheng <ycheng@google.com> Signed-off-by: Nandita Dukkipati <nanditad@google.com> Acked-by: Eric Dumazet <edumazet@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-08-03 09:19:54 -04:00
#define FLAG_SET_XMIT_TIMER 0x1000 /* Set TLP or RTO timer */
#define FLAG_SACK_RENEGING 0x2000 /* snd_una advanced to a sacked seq */
#define FLAG_UPDATE_TS_RECENT 0x4000 /* tcp_replace_ts_recent() */
tcp: better validation of received ack sequences Paul Fiterau Brostean reported : <quote> Linux TCP stack we analyze exhibits behavior that seems odd to me. The scenario is as follows (all packets have empty payloads, no window scaling, rcv/snd window size should not be a factor): TEST HARNESS (CLIENT) LINUX SERVER 1. - LISTEN (server listen, then accepts) 2. - --> <SEQ=100><CTL=SYN> --> SYN-RECEIVED 3. - <-- <SEQ=300><ACK=101><CTL=SYN,ACK> <-- SYN-RECEIVED 4. - --> <SEQ=101><ACK=301><CTL=ACK> --> ESTABLISHED 5. - <-- <SEQ=301><ACK=101><CTL=FIN,ACK> <-- FIN WAIT-1 (server opts to close the data connection calling "close" on the connection socket) 6. - --> <SEQ=101><ACK=99999><CTL=FIN,ACK> --> CLOSING (client sends FIN,ACK with not yet sent acknowledgement number) 7. - <-- <SEQ=302><ACK=102><CTL=ACK> <-- CLOSING (ACK is 102 instead of 101, why?) ... (silence from CLIENT) 8. - <-- <SEQ=301><ACK=102><CTL=FIN,ACK> <-- CLOSING (retransmission, again ACK is 102) Now, note that packet 6 while having the expected sequence number, acknowledges something that wasn't sent by the server. So I would expect the packet to maybe prompt an ACK response from the server, and then be ignored. Yet it is not ignored and actually leads to an increase of the acknowledgement number in the server's retransmission of the FIN,ACK packet. The explanation I found is that the FIN in packet 6 was processed, despite the acknowledgement number being unacceptable. Further experiments indeed show that the server processes this FIN, transitioning to CLOSING, then on receiving an ACK for the FIN it had send in packet 5, the server (or better said connection) transitions from CLOSING to TIME_WAIT (as signaled by netstat). </quote> Indeed, tcp_rcv_state_process() calls tcp_ack() but does not exploit the @acceptable status but for TCP_SYN_RECV state. What we want here is to send a challenge ACK, if not in TCP_SYN_RECV state. TCP_FIN_WAIT1 state is not the only state we should fix. Add a FLAG_NO_CHALLENGE_ACK so that tcp_rcv_state_process() can choose to send a challenge ACK and discard the packet instead of wrongly change socket state. With help from Neal Cardwell. Signed-off-by: Eric Dumazet <edumazet@google.com> Reported-by: Paul Fiterau Brostean <p.fiterau-brostean@science.ru.nl> Cc: Neal Cardwell <ncardwell@google.com> Cc: Yuchung Cheng <ycheng@google.com> Cc: Soheil Hassas Yeganeh <soheil@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-05-23 15:24:46 -07:00
#define FLAG_NO_CHALLENGE_ACK 0x8000 /* do not call tcp_send_challenge_ack() */
#define FLAG_ACK_MAYBE_DELAYED 0x10000 /* Likely a delayed ACK */
#define FLAG_DSACK_TLP 0x20000 /* DSACK for tail loss probe */
#define FLAG_ACKED (FLAG_DATA_ACKED|FLAG_SYN_ACKED)
#define FLAG_NOT_DUP (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
#define FLAG_CA_ALERT (FLAG_DATA_SACKED|FLAG_ECE|FLAG_DSACKING_ACK)
#define FLAG_FORWARD_PROGRESS (FLAG_ACKED|FLAG_DATA_SACKED)
#define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
#define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
#define REXMIT_NONE 0 /* no loss recovery to do */
#define REXMIT_LOST 1 /* retransmit packets marked lost */
#define REXMIT_NEW 2 /* FRTO-style transmit of unsent/new packets */
#if IS_ENABLED(CONFIG_TLS_DEVICE)
static DEFINE_STATIC_KEY_DEFERRED_FALSE(clean_acked_data_enabled, HZ);
void clean_acked_data_enable(struct inet_connection_sock *icsk,
void (*cad)(struct sock *sk, u32 ack_seq))
{
icsk->icsk_clean_acked = cad;
static_branch_deferred_inc(&clean_acked_data_enabled);
}
EXPORT_SYMBOL_GPL(clean_acked_data_enable);
void clean_acked_data_disable(struct inet_connection_sock *icsk)
{
static_branch_slow_dec_deferred(&clean_acked_data_enabled);
icsk->icsk_clean_acked = NULL;
}
EXPORT_SYMBOL_GPL(clean_acked_data_disable);
void clean_acked_data_flush(void)
{
static_key_deferred_flush(&clean_acked_data_enabled);
}
EXPORT_SYMBOL_GPL(clean_acked_data_flush);
#endif
#ifdef CONFIG_CGROUP_BPF
static void bpf_skops_parse_hdr(struct sock *sk, struct sk_buff *skb)
{
bool unknown_opt = tcp_sk(sk)->rx_opt.saw_unknown &&
BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk),
BPF_SOCK_OPS_PARSE_UNKNOWN_HDR_OPT_CB_FLAG);
bool parse_all_opt = BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk),
BPF_SOCK_OPS_PARSE_ALL_HDR_OPT_CB_FLAG);
bpf: tcp: Allow bpf prog to write and parse TCP header option [ Note: The TCP changes here is mainly to implement the bpf pieces into the bpf_skops_*() functions introduced in the earlier patches. ] The earlier effort in BPF-TCP-CC allows the TCP Congestion Control algorithm to be written in BPF. It opens up opportunities to allow a faster turnaround time in testing/releasing new congestion control ideas to production environment. The same flexibility can be extended to writing TCP header option. It is not uncommon that people want to test new TCP header option to improve the TCP performance. Another use case is for data-center that has a more controlled environment and has more flexibility in putting header options for internal only use. For example, we want to test the idea in putting maximum delay ACK in TCP header option which is similar to a draft RFC proposal [1]. This patch introduces the necessary BPF API and use them in the TCP stack to allow BPF_PROG_TYPE_SOCK_OPS program to parse and write TCP header options. It currently supports most of the TCP packet except RST. Supported TCP header option: ─────────────────────────── This patch allows the bpf-prog to write any option kind. Different bpf-progs can write its own option by calling the new helper bpf_store_hdr_opt(). The helper will ensure there is no duplicated option in the header. By allowing bpf-prog to write any option kind, this gives a lot of flexibility to the bpf-prog. Different bpf-prog can write its own option kind. It could also allow the bpf-prog to support a recently standardized option on an older kernel. Sockops Callback Flags: ────────────────────── The bpf program will only be called to parse/write tcp header option if the following newly added callback flags are enabled in tp->bpf_sock_ops_cb_flags: BPF_SOCK_OPS_PARSE_UNKNOWN_HDR_OPT_CB_FLAG BPF_SOCK_OPS_PARSE_ALL_HDR_OPT_CB_FLAG BPF_SOCK_OPS_WRITE_HDR_OPT_CB_FLAG A few words on the PARSE CB flags. When the above PARSE CB flags are turned on, the bpf-prog will be called on packets received at a sk that has at least reached the ESTABLISHED state. The parsing of the SYN-SYNACK-ACK will be discussed in the "3 Way HandShake" section. The default is off for all of the above new CB flags, i.e. the bpf prog will not be called to parse or write bpf hdr option. There are details comment on these new cb flags in the UAPI bpf.h. sock_ops->skb_data and bpf_load_hdr_opt() ───────────────────────────────────────── sock_ops->skb_data and sock_ops->skb_data_end covers the whole TCP header and its options. They are read only. The new bpf_load_hdr_opt() helps to read a particular option "kind" from the skb_data. Please refer to the comment in UAPI bpf.h. It has details on what skb_data contains under different sock_ops->op. 3 Way HandShake ─────────────── The bpf-prog can learn if it is sending SYN or SYNACK by reading the sock_ops->skb_tcp_flags. * Passive side When writing SYNACK (i.e. sock_ops->op == BPF_SOCK_OPS_WRITE_HDR_OPT_CB), the received SYN skb will be available to the bpf prog. The bpf prog can use the SYN skb (which may carry the header option sent from the remote bpf prog) to decide what bpf header option should be written to the outgoing SYNACK skb. The SYN packet can be obtained by getsockopt(TCP_BPF_SYN*). More on this later. Also, the bpf prog can learn if it is in syncookie mode (by checking sock_ops->args[0] == BPF_WRITE_HDR_TCP_SYNACK_COOKIE). The bpf prog can store the received SYN pkt by using the existing bpf_setsockopt(TCP_SAVE_SYN). The example in a later patch does it. [ Note that the fullsock here is a listen sk, bpf_sk_storage is not very useful here since the listen sk will be shared by many concurrent connection requests. Extending bpf_sk_storage support to request_sock will add weight to the minisock and it is not necessary better than storing the whole ~100 bytes SYN pkt. ] When the connection is established, the bpf prog will be called in the existing PASSIVE_ESTABLISHED_CB callback. At that time, the bpf prog can get the header option from the saved syn and then apply the needed operation to the newly established socket. The later patch will use the max delay ack specified in the SYN header and set the RTO of this newly established connection as an example. The received ACK (that concludes the 3WHS) will also be available to the bpf prog during PASSIVE_ESTABLISHED_CB through the sock_ops->skb_data. It could be useful in syncookie scenario. More on this later. There is an existing getsockopt "TCP_SAVED_SYN" to return the whole saved syn pkt which includes the IP[46] header and the TCP header. A few "TCP_BPF_SYN*" getsockopt has been added to allow specifying where to start getting from, e.g. starting from TCP header, or from IP[46] header. The new getsockopt(TCP_BPF_SYN*) will also know where it can get the SYN's packet from: - (a) the just received syn (available when the bpf prog is writing SYNACK) and it is the only way to get SYN during syncookie mode. or - (b) the saved syn (available in PASSIVE_ESTABLISHED_CB and also other existing CB). The bpf prog does not need to know where the SYN pkt is coming from. The getsockopt(TCP_BPF_SYN*) will hide this details. Similarly, a flags "BPF_LOAD_HDR_OPT_TCP_SYN" is also added to bpf_load_hdr_opt() to read a particular header option from the SYN packet. * Fastopen Fastopen should work the same as the regular non fastopen case. This is a test in a later patch. * Syncookie For syncookie, the later example patch asks the active side's bpf prog to resend the header options in ACK. The server can use bpf_load_hdr_opt() to look at the options in this received ACK during PASSIVE_ESTABLISHED_CB. * Active side The bpf prog will get a chance to write the bpf header option in the SYN packet during WRITE_HDR_OPT_CB. The received SYNACK pkt will also be available to the bpf prog during the existing ACTIVE_ESTABLISHED_CB callback through the sock_ops->skb_data and bpf_load_hdr_opt(). * Turn off header CB flags after 3WHS If the bpf prog does not need to write/parse header options beyond the 3WHS, the bpf prog can clear the bpf_sock_ops_cb_flags to avoid being called for header options. Or the bpf-prog can select to leave the UNKNOWN_HDR_OPT_CB_FLAG on so that the kernel will only call it when there is option that the kernel cannot handle. [1]: draft-wang-tcpm-low-latency-opt-00 https://tools.ietf.org/html/draft-wang-tcpm-low-latency-opt-00 Signed-off-by: Martin KaFai Lau <kafai@fb.com> Signed-off-by: Alexei Starovoitov <ast@kernel.org> Link: https://lore.kernel.org/bpf/20200820190104.2885895-1-kafai@fb.com
2020-08-20 12:01:04 -07:00
struct bpf_sock_ops_kern sock_ops;
if (likely(!unknown_opt && !parse_all_opt))
return;
/* The skb will be handled in the
* bpf_skops_established() or
* bpf_skops_write_hdr_opt().
*/
switch (sk->sk_state) {
case TCP_SYN_RECV:
case TCP_SYN_SENT:
case TCP_LISTEN:
return;
}
bpf: tcp: Allow bpf prog to write and parse TCP header option [ Note: The TCP changes here is mainly to implement the bpf pieces into the bpf_skops_*() functions introduced in the earlier patches. ] The earlier effort in BPF-TCP-CC allows the TCP Congestion Control algorithm to be written in BPF. It opens up opportunities to allow a faster turnaround time in testing/releasing new congestion control ideas to production environment. The same flexibility can be extended to writing TCP header option. It is not uncommon that people want to test new TCP header option to improve the TCP performance. Another use case is for data-center that has a more controlled environment and has more flexibility in putting header options for internal only use. For example, we want to test the idea in putting maximum delay ACK in TCP header option which is similar to a draft RFC proposal [1]. This patch introduces the necessary BPF API and use them in the TCP stack to allow BPF_PROG_TYPE_SOCK_OPS program to parse and write TCP header options. It currently supports most of the TCP packet except RST. Supported TCP header option: ─────────────────────────── This patch allows the bpf-prog to write any option kind. Different bpf-progs can write its own option by calling the new helper bpf_store_hdr_opt(). The helper will ensure there is no duplicated option in the header. By allowing bpf-prog to write any option kind, this gives a lot of flexibility to the bpf-prog. Different bpf-prog can write its own option kind. It could also allow the bpf-prog to support a recently standardized option on an older kernel. Sockops Callback Flags: ────────────────────── The bpf program will only be called to parse/write tcp header option if the following newly added callback flags are enabled in tp->bpf_sock_ops_cb_flags: BPF_SOCK_OPS_PARSE_UNKNOWN_HDR_OPT_CB_FLAG BPF_SOCK_OPS_PARSE_ALL_HDR_OPT_CB_FLAG BPF_SOCK_OPS_WRITE_HDR_OPT_CB_FLAG A few words on the PARSE CB flags. When the above PARSE CB flags are turned on, the bpf-prog will be called on packets received at a sk that has at least reached the ESTABLISHED state. The parsing of the SYN-SYNACK-ACK will be discussed in the "3 Way HandShake" section. The default is off for all of the above new CB flags, i.e. the bpf prog will not be called to parse or write bpf hdr option. There are details comment on these new cb flags in the UAPI bpf.h. sock_ops->skb_data and bpf_load_hdr_opt() ───────────────────────────────────────── sock_ops->skb_data and sock_ops->skb_data_end covers the whole TCP header and its options. They are read only. The new bpf_load_hdr_opt() helps to read a particular option "kind" from the skb_data. Please refer to the comment in UAPI bpf.h. It has details on what skb_data contains under different sock_ops->op. 3 Way HandShake ─────────────── The bpf-prog can learn if it is sending SYN or SYNACK by reading the sock_ops->skb_tcp_flags. * Passive side When writing SYNACK (i.e. sock_ops->op == BPF_SOCK_OPS_WRITE_HDR_OPT_CB), the received SYN skb will be available to the bpf prog. The bpf prog can use the SYN skb (which may carry the header option sent from the remote bpf prog) to decide what bpf header option should be written to the outgoing SYNACK skb. The SYN packet can be obtained by getsockopt(TCP_BPF_SYN*). More on this later. Also, the bpf prog can learn if it is in syncookie mode (by checking sock_ops->args[0] == BPF_WRITE_HDR_TCP_SYNACK_COOKIE). The bpf prog can store the received SYN pkt by using the existing bpf_setsockopt(TCP_SAVE_SYN). The example in a later patch does it. [ Note that the fullsock here is a listen sk, bpf_sk_storage is not very useful here since the listen sk will be shared by many concurrent connection requests. Extending bpf_sk_storage support to request_sock will add weight to the minisock and it is not necessary better than storing the whole ~100 bytes SYN pkt. ] When the connection is established, the bpf prog will be called in the existing PASSIVE_ESTABLISHED_CB callback. At that time, the bpf prog can get the header option from the saved syn and then apply the needed operation to the newly established socket. The later patch will use the max delay ack specified in the SYN header and set the RTO of this newly established connection as an example. The received ACK (that concludes the 3WHS) will also be available to the bpf prog during PASSIVE_ESTABLISHED_CB through the sock_ops->skb_data. It could be useful in syncookie scenario. More on this later. There is an existing getsockopt "TCP_SAVED_SYN" to return the whole saved syn pkt which includes the IP[46] header and the TCP header. A few "TCP_BPF_SYN*" getsockopt has been added to allow specifying where to start getting from, e.g. starting from TCP header, or from IP[46] header. The new getsockopt(TCP_BPF_SYN*) will also know where it can get the SYN's packet from: - (a) the just received syn (available when the bpf prog is writing SYNACK) and it is the only way to get SYN during syncookie mode. or - (b) the saved syn (available in PASSIVE_ESTABLISHED_CB and also other existing CB). The bpf prog does not need to know where the SYN pkt is coming from. The getsockopt(TCP_BPF_SYN*) will hide this details. Similarly, a flags "BPF_LOAD_HDR_OPT_TCP_SYN" is also added to bpf_load_hdr_opt() to read a particular header option from the SYN packet. * Fastopen Fastopen should work the same as the regular non fastopen case. This is a test in a later patch. * Syncookie For syncookie, the later example patch asks the active side's bpf prog to resend the header options in ACK. The server can use bpf_load_hdr_opt() to look at the options in this received ACK during PASSIVE_ESTABLISHED_CB. * Active side The bpf prog will get a chance to write the bpf header option in the SYN packet during WRITE_HDR_OPT_CB. The received SYNACK pkt will also be available to the bpf prog during the existing ACTIVE_ESTABLISHED_CB callback through the sock_ops->skb_data and bpf_load_hdr_opt(). * Turn off header CB flags after 3WHS If the bpf prog does not need to write/parse header options beyond the 3WHS, the bpf prog can clear the bpf_sock_ops_cb_flags to avoid being called for header options. Or the bpf-prog can select to leave the UNKNOWN_HDR_OPT_CB_FLAG on so that the kernel will only call it when there is option that the kernel cannot handle. [1]: draft-wang-tcpm-low-latency-opt-00 https://tools.ietf.org/html/draft-wang-tcpm-low-latency-opt-00 Signed-off-by: Martin KaFai Lau <kafai@fb.com> Signed-off-by: Alexei Starovoitov <ast@kernel.org> Link: https://lore.kernel.org/bpf/20200820190104.2885895-1-kafai@fb.com
2020-08-20 12:01:04 -07:00
sock_owned_by_me(sk);
memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp));
sock_ops.op = BPF_SOCK_OPS_PARSE_HDR_OPT_CB;
sock_ops.is_fullsock = 1;
sock_ops.sk = sk;
bpf_skops_init_skb(&sock_ops, skb, tcp_hdrlen(skb));
BPF_CGROUP_RUN_PROG_SOCK_OPS(&sock_ops);
}
static void bpf_skops_established(struct sock *sk, int bpf_op,
struct sk_buff *skb)
{
struct bpf_sock_ops_kern sock_ops;
sock_owned_by_me(sk);
memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp));
sock_ops.op = bpf_op;
sock_ops.is_fullsock = 1;
sock_ops.sk = sk;
bpf: tcp: Allow bpf prog to write and parse TCP header option [ Note: The TCP changes here is mainly to implement the bpf pieces into the bpf_skops_*() functions introduced in the earlier patches. ] The earlier effort in BPF-TCP-CC allows the TCP Congestion Control algorithm to be written in BPF. It opens up opportunities to allow a faster turnaround time in testing/releasing new congestion control ideas to production environment. The same flexibility can be extended to writing TCP header option. It is not uncommon that people want to test new TCP header option to improve the TCP performance. Another use case is for data-center that has a more controlled environment and has more flexibility in putting header options for internal only use. For example, we want to test the idea in putting maximum delay ACK in TCP header option which is similar to a draft RFC proposal [1]. This patch introduces the necessary BPF API and use them in the TCP stack to allow BPF_PROG_TYPE_SOCK_OPS program to parse and write TCP header options. It currently supports most of the TCP packet except RST. Supported TCP header option: ─────────────────────────── This patch allows the bpf-prog to write any option kind. Different bpf-progs can write its own option by calling the new helper bpf_store_hdr_opt(). The helper will ensure there is no duplicated option in the header. By allowing bpf-prog to write any option kind, this gives a lot of flexibility to the bpf-prog. Different bpf-prog can write its own option kind. It could also allow the bpf-prog to support a recently standardized option on an older kernel. Sockops Callback Flags: ────────────────────── The bpf program will only be called to parse/write tcp header option if the following newly added callback flags are enabled in tp->bpf_sock_ops_cb_flags: BPF_SOCK_OPS_PARSE_UNKNOWN_HDR_OPT_CB_FLAG BPF_SOCK_OPS_PARSE_ALL_HDR_OPT_CB_FLAG BPF_SOCK_OPS_WRITE_HDR_OPT_CB_FLAG A few words on the PARSE CB flags. When the above PARSE CB flags are turned on, the bpf-prog will be called on packets received at a sk that has at least reached the ESTABLISHED state. The parsing of the SYN-SYNACK-ACK will be discussed in the "3 Way HandShake" section. The default is off for all of the above new CB flags, i.e. the bpf prog will not be called to parse or write bpf hdr option. There are details comment on these new cb flags in the UAPI bpf.h. sock_ops->skb_data and bpf_load_hdr_opt() ───────────────────────────────────────── sock_ops->skb_data and sock_ops->skb_data_end covers the whole TCP header and its options. They are read only. The new bpf_load_hdr_opt() helps to read a particular option "kind" from the skb_data. Please refer to the comment in UAPI bpf.h. It has details on what skb_data contains under different sock_ops->op. 3 Way HandShake ─────────────── The bpf-prog can learn if it is sending SYN or SYNACK by reading the sock_ops->skb_tcp_flags. * Passive side When writing SYNACK (i.e. sock_ops->op == BPF_SOCK_OPS_WRITE_HDR_OPT_CB), the received SYN skb will be available to the bpf prog. The bpf prog can use the SYN skb (which may carry the header option sent from the remote bpf prog) to decide what bpf header option should be written to the outgoing SYNACK skb. The SYN packet can be obtained by getsockopt(TCP_BPF_SYN*). More on this later. Also, the bpf prog can learn if it is in syncookie mode (by checking sock_ops->args[0] == BPF_WRITE_HDR_TCP_SYNACK_COOKIE). The bpf prog can store the received SYN pkt by using the existing bpf_setsockopt(TCP_SAVE_SYN). The example in a later patch does it. [ Note that the fullsock here is a listen sk, bpf_sk_storage is not very useful here since the listen sk will be shared by many concurrent connection requests. Extending bpf_sk_storage support to request_sock will add weight to the minisock and it is not necessary better than storing the whole ~100 bytes SYN pkt. ] When the connection is established, the bpf prog will be called in the existing PASSIVE_ESTABLISHED_CB callback. At that time, the bpf prog can get the header option from the saved syn and then apply the needed operation to the newly established socket. The later patch will use the max delay ack specified in the SYN header and set the RTO of this newly established connection as an example. The received ACK (that concludes the 3WHS) will also be available to the bpf prog during PASSIVE_ESTABLISHED_CB through the sock_ops->skb_data. It could be useful in syncookie scenario. More on this later. There is an existing getsockopt "TCP_SAVED_SYN" to return the whole saved syn pkt which includes the IP[46] header and the TCP header. A few "TCP_BPF_SYN*" getsockopt has been added to allow specifying where to start getting from, e.g. starting from TCP header, or from IP[46] header. The new getsockopt(TCP_BPF_SYN*) will also know where it can get the SYN's packet from: - (a) the just received syn (available when the bpf prog is writing SYNACK) and it is the only way to get SYN during syncookie mode. or - (b) the saved syn (available in PASSIVE_ESTABLISHED_CB and also other existing CB). The bpf prog does not need to know where the SYN pkt is coming from. The getsockopt(TCP_BPF_SYN*) will hide this details. Similarly, a flags "BPF_LOAD_HDR_OPT_TCP_SYN" is also added to bpf_load_hdr_opt() to read a particular header option from the SYN packet. * Fastopen Fastopen should work the same as the regular non fastopen case. This is a test in a later patch. * Syncookie For syncookie, the later example patch asks the active side's bpf prog to resend the header options in ACK. The server can use bpf_load_hdr_opt() to look at the options in this received ACK during PASSIVE_ESTABLISHED_CB. * Active side The bpf prog will get a chance to write the bpf header option in the SYN packet during WRITE_HDR_OPT_CB. The received SYNACK pkt will also be available to the bpf prog during the existing ACTIVE_ESTABLISHED_CB callback through the sock_ops->skb_data and bpf_load_hdr_opt(). * Turn off header CB flags after 3WHS If the bpf prog does not need to write/parse header options beyond the 3WHS, the bpf prog can clear the bpf_sock_ops_cb_flags to avoid being called for header options. Or the bpf-prog can select to leave the UNKNOWN_HDR_OPT_CB_FLAG on so that the kernel will only call it when there is option that the kernel cannot handle. [1]: draft-wang-tcpm-low-latency-opt-00 https://tools.ietf.org/html/draft-wang-tcpm-low-latency-opt-00 Signed-off-by: Martin KaFai Lau <kafai@fb.com> Signed-off-by: Alexei Starovoitov <ast@kernel.org> Link: https://lore.kernel.org/bpf/20200820190104.2885895-1-kafai@fb.com
2020-08-20 12:01:04 -07:00
/* sk with TCP_REPAIR_ON does not have skb in tcp_finish_connect */
if (skb)
bpf_skops_init_skb(&sock_ops, skb, tcp_hdrlen(skb));
BPF_CGROUP_RUN_PROG_SOCK_OPS(&sock_ops);
}
#else
static void bpf_skops_parse_hdr(struct sock *sk, struct sk_buff *skb)
{
}
static void bpf_skops_established(struct sock *sk, int bpf_op,
struct sk_buff *skb)
{
}
#endif
static void tcp_gro_dev_warn(struct sock *sk, const struct sk_buff *skb,
unsigned int len)
{
static bool __once __read_mostly;
if (!__once) {
struct net_device *dev;
__once = true;
rcu_read_lock();
dev = dev_get_by_index_rcu(sock_net(sk), skb->skb_iif);
if (!dev || len >= dev->mtu)
pr_warn("%s: Driver has suspect GRO implementation, TCP performance may be compromised.\n",
dev ? dev->name : "Unknown driver");
rcu_read_unlock();
}
}
/* Adapt the MSS value used to make delayed ack decision to the
* real world.
*/
static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb)
{
struct inet_connection_sock *icsk = inet_csk(sk);
const unsigned int lss = icsk->icsk_ack.last_seg_size;
unsigned int len;
icsk->icsk_ack.last_seg_size = 0;
/* skb->len may jitter because of SACKs, even if peer
* sends good full-sized frames.
*/
len = skb_shinfo(skb)->gso_size ? : skb->len;
if (len >= icsk->icsk_ack.rcv_mss) {
/* Note: divides are still a bit expensive.
* For the moment, only adjust scaling_ratio
* when we update icsk_ack.rcv_mss.
*/
if (unlikely(len != icsk->icsk_ack.rcv_mss)) {
u64 val = (u64)skb->len << TCP_RMEM_TO_WIN_SCALE;
do_div(val, skb->truesize);
tcp_sk(sk)->scaling_ratio = val ? val : 1;
}
icsk->icsk_ack.rcv_mss = min_t(unsigned int, len,
tcp_sk(sk)->advmss);
/* Account for possibly-removed options */
if (unlikely(len > icsk->icsk_ack.rcv_mss +
MAX_TCP_OPTION_SPACE))
tcp_gro_dev_warn(sk, skb, len);
tcp: fix delayed ACKs for MSS boundary condition This commit fixes poor delayed ACK behavior that can cause poor TCP latency in a particular boundary condition: when an application makes a TCP socket write that is an exact multiple of the MSS size. The problem is that there is painful boundary discontinuity in the current delayed ACK behavior. With the current delayed ACK behavior, we have: (1) If an app reads data when > 1*MSS is unacknowledged, then tcp_cleanup_rbuf() ACKs immediately because of: tp->rcv_nxt - tp->rcv_wup > icsk->icsk_ack.rcv_mss || (2) If an app reads all received data, and the packets were < 1*MSS, and either (a) the app is not ping-pong or (b) we received two packets < 1*MSS, then tcp_cleanup_rbuf() ACKs immediately beecause of: ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED2) || ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED) && !inet_csk_in_pingpong_mode(sk))) && (3) *However*: if an app reads exactly 1*MSS of data, tcp_cleanup_rbuf() does not send an immediate ACK. This is true even if the app is not ping-pong and the 1*MSS of data had the PSH bit set, suggesting the sending application completed an application write. Thus if the app is not ping-pong, we have this painful case where >1*MSS gets an immediate ACK, and <1*MSS gets an immediate ACK, but a write whose last skb is an exact multiple of 1*MSS can get a 40ms delayed ACK. This means that any app that transfers data in one direction and takes care to align write size or packet size with MSS can suffer this problem. With receive zero copy making 4KB MSS values more common, it is becoming more common to have application writes naturally align with MSS, and more applications are likely to encounter this delayed ACK problem. The fix in this commit is to refine the delayed ACK heuristics with a simple check: immediately ACK a received 1*MSS skb with PSH bit set if the app reads all data. Why? If an skb has a len of exactly 1*MSS and has the PSH bit set then it is likely the end of an application write. So more data may not be arriving soon, and yet the data sender may be waiting for an ACK if cwnd-bound or using TX zero copy. Thus we set ICSK_ACK_PUSHED in this case so that tcp_cleanup_rbuf() will send an ACK immediately if the app reads all of the data and is not ping-pong. Note that this logic is also executed for the case where len > MSS, but in that case this logic does not matter (and does not hurt) because tcp_cleanup_rbuf() will always ACK immediately if the app reads data and there is more than an MSS of unACKed data. Fixes: 1da177e4c3f4 ("Linux-2.6.12-rc2") Signed-off-by: Neal Cardwell <ncardwell@google.com> Reviewed-by: Yuchung Cheng <ycheng@google.com> Reviewed-by: Eric Dumazet <edumazet@google.com> Cc: Xin Guo <guoxin0309@gmail.com> Link: https://lore.kernel.org/r/20231001151239.1866845-2-ncardwell.sw@gmail.com Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2023-10-01 11:12:39 -04:00
/* If the skb has a len of exactly 1*MSS and has the PSH bit
* set then it is likely the end of an application write. So
* more data may not be arriving soon, and yet the data sender
* may be waiting for an ACK if cwnd-bound or using TX zero
* copy. So we set ICSK_ACK_PUSHED here so that
* tcp_cleanup_rbuf() will send an ACK immediately if the app
* reads all of the data and is not ping-pong. If len > MSS
* then this logic does not matter (and does not hurt) because
* tcp_cleanup_rbuf() will always ACK immediately if the app
* reads data and there is more than an MSS of unACKed data.
*/
if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_PSH)
icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
} else {
/* Otherwise, we make more careful check taking into account,
* that SACKs block is variable.
*
* "len" is invariant segment length, including TCP header.
*/
len += skb->data - skb_transport_header(skb);
if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) ||
/* If PSH is not set, packet should be
* full sized, provided peer TCP is not badly broken.
* This observation (if it is correct 8)) allows
* to handle super-low mtu links fairly.
*/
(len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
!(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
/* Subtract also invariant (if peer is RFC compliant),
* tcp header plus fixed timestamp option length.
* Resulting "len" is MSS free of SACK jitter.
*/
len -= tcp_sk(sk)->tcp_header_len;
icsk->icsk_ack.last_seg_size = len;
if (len == lss) {
icsk->icsk_ack.rcv_mss = len;
return;
}
}
if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
}
}
static void tcp_incr_quickack(struct sock *sk, unsigned int max_quickacks)
{
struct inet_connection_sock *icsk = inet_csk(sk);
unsigned int quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
if (quickacks == 0)
quickacks = 2;
quickacks = min(quickacks, max_quickacks);
if (quickacks > icsk->icsk_ack.quick)
icsk->icsk_ack.quick = quickacks;
}
static void tcp_enter_quickack_mode(struct sock *sk, unsigned int max_quickacks)
{
struct inet_connection_sock *icsk = inet_csk(sk);
tcp_incr_quickack(sk, max_quickacks);
inet_csk_exit_pingpong_mode(sk);
icsk->icsk_ack.ato = TCP_ATO_MIN;
}
/* Send ACKs quickly, if "quick" count is not exhausted
* and the session is not interactive.
*/
tcp: v1 always send a quick ack when quickacks are enabled V1 of this patch contains Eric Dumazet's suggestion to move the per dst RTAX_QUICKACK check into tcp_in_quickack_mode(). Thanks Eric. I ran some tests and after setting the "ip route change quickack 1" knob there were still many delayed ACKs sent. This occured because when icsk_ack.quick=0 the !icsk_ack.pingpong value is subsequently ignored as tcp_in_quickack_mode() checks both these values. The condition for a quick ack to trigger requires that both icsk_ack.quick != 0 and icsk_ack.pingpong=0. Currently only icsk_ack.pingpong is controlled by the knob. But the icsk_ack.quick value changes dynamically depending on heuristics. The crux of the matter is that delayed acks still cannot be entirely disabled even with the RTAX_QUICKACK per dst knob enabled. This patch ensures that a quick ack is always sent when the RTAX_QUICKACK per dst knob is turned on. The "ip route change quickack 1" knob was recently added to enable quickacks. It was modeled around the TCP_QUICKACK setsockopt() option. This issue is that even with "ip route change quickack 1" enabled we still see delayed ACKs under some conditions. It would be nice to be able to completely disable delayed ACKs. Here is an example: # netstat -s|grep dela 3 delayed acks sent For all routes enable the knob # ip route change quickack 1 Generate some traffic across a slow link and we still see the delayed acks. # netstat -s|grep dela 106 delayed acks sent 1 delayed acks further delayed because of locked socket The issue is that both the "ip route change quickack 1" knob and the TCP_QUICKACK option set the icsk_ack.pingpong variable to 0. However at the business end in the __tcp_ack_snd_check() routine, tcp_in_quickack_mode() checks that both icsk_ack.quick != 0 and icsk_ack.pingpong=0 in order to trigger a quickack. As icsk_ack.quick is determined by heuristics it can be 0. When that occurs the icsk_ack.pingpong value is ignored and a delayed ACK is sent regardless. This patch moves the RTAX_QUICKACK per dst check into the tcp_in_quickack_mode() routine which ensures that a quickack is always sent when the quickack knob is enabled for that dst. Signed-off-by: Jon Maxwell <jmaxwell37@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2015-07-08 10:12:28 +10:00
static bool tcp_in_quickack_mode(struct sock *sk)
{
const struct inet_connection_sock *icsk = inet_csk(sk);
tcp: v1 always send a quick ack when quickacks are enabled V1 of this patch contains Eric Dumazet's suggestion to move the per dst RTAX_QUICKACK check into tcp_in_quickack_mode(). Thanks Eric. I ran some tests and after setting the "ip route change quickack 1" knob there were still many delayed ACKs sent. This occured because when icsk_ack.quick=0 the !icsk_ack.pingpong value is subsequently ignored as tcp_in_quickack_mode() checks both these values. The condition for a quick ack to trigger requires that both icsk_ack.quick != 0 and icsk_ack.pingpong=0. Currently only icsk_ack.pingpong is controlled by the knob. But the icsk_ack.quick value changes dynamically depending on heuristics. The crux of the matter is that delayed acks still cannot be entirely disabled even with the RTAX_QUICKACK per dst knob enabled. This patch ensures that a quick ack is always sent when the RTAX_QUICKACK per dst knob is turned on. The "ip route change quickack 1" knob was recently added to enable quickacks. It was modeled around the TCP_QUICKACK setsockopt() option. This issue is that even with "ip route change quickack 1" enabled we still see delayed ACKs under some conditions. It would be nice to be able to completely disable delayed ACKs. Here is an example: # netstat -s|grep dela 3 delayed acks sent For all routes enable the knob # ip route change quickack 1 Generate some traffic across a slow link and we still see the delayed acks. # netstat -s|grep dela 106 delayed acks sent 1 delayed acks further delayed because of locked socket The issue is that both the "ip route change quickack 1" knob and the TCP_QUICKACK option set the icsk_ack.pingpong variable to 0. However at the business end in the __tcp_ack_snd_check() routine, tcp_in_quickack_mode() checks that both icsk_ack.quick != 0 and icsk_ack.pingpong=0 in order to trigger a quickack. As icsk_ack.quick is determined by heuristics it can be 0. When that occurs the icsk_ack.pingpong value is ignored and a delayed ACK is sent regardless. This patch moves the RTAX_QUICKACK per dst check into the tcp_in_quickack_mode() routine which ensures that a quickack is always sent when the quickack knob is enabled for that dst. Signed-off-by: Jon Maxwell <jmaxwell37@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2015-07-08 10:12:28 +10:00
const struct dst_entry *dst = __sk_dst_get(sk);
tcp: v1 always send a quick ack when quickacks are enabled V1 of this patch contains Eric Dumazet's suggestion to move the per dst RTAX_QUICKACK check into tcp_in_quickack_mode(). Thanks Eric. I ran some tests and after setting the "ip route change quickack 1" knob there were still many delayed ACKs sent. This occured because when icsk_ack.quick=0 the !icsk_ack.pingpong value is subsequently ignored as tcp_in_quickack_mode() checks both these values. The condition for a quick ack to trigger requires that both icsk_ack.quick != 0 and icsk_ack.pingpong=0. Currently only icsk_ack.pingpong is controlled by the knob. But the icsk_ack.quick value changes dynamically depending on heuristics. The crux of the matter is that delayed acks still cannot be entirely disabled even with the RTAX_QUICKACK per dst knob enabled. This patch ensures that a quick ack is always sent when the RTAX_QUICKACK per dst knob is turned on. The "ip route change quickack 1" knob was recently added to enable quickacks. It was modeled around the TCP_QUICKACK setsockopt() option. This issue is that even with "ip route change quickack 1" enabled we still see delayed ACKs under some conditions. It would be nice to be able to completely disable delayed ACKs. Here is an example: # netstat -s|grep dela 3 delayed acks sent For all routes enable the knob # ip route change quickack 1 Generate some traffic across a slow link and we still see the delayed acks. # netstat -s|grep dela 106 delayed acks sent 1 delayed acks further delayed because of locked socket The issue is that both the "ip route change quickack 1" knob and the TCP_QUICKACK option set the icsk_ack.pingpong variable to 0. However at the business end in the __tcp_ack_snd_check() routine, tcp_in_quickack_mode() checks that both icsk_ack.quick != 0 and icsk_ack.pingpong=0 in order to trigger a quickack. As icsk_ack.quick is determined by heuristics it can be 0. When that occurs the icsk_ack.pingpong value is ignored and a delayed ACK is sent regardless. This patch moves the RTAX_QUICKACK per dst check into the tcp_in_quickack_mode() routine which ensures that a quickack is always sent when the quickack knob is enabled for that dst. Signed-off-by: Jon Maxwell <jmaxwell37@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2015-07-08 10:12:28 +10:00
return (dst && dst_metric(dst, RTAX_QUICKACK)) ||
(icsk->icsk_ack.quick && !inet_csk_in_pingpong_mode(sk));
}
static void tcp_ecn_queue_cwr(struct tcp_sock *tp)
{
if (tp->ecn_flags & TCP_ECN_OK)
tp->ecn_flags |= TCP_ECN_QUEUE_CWR;
}
tcp: avoid resetting ACK timer upon receiving packet with ECN CWR flag Previously commit 9aee40006190 ("tcp: ack immediately when a cwr packet arrives") calls tcp_enter_quickack_mode to force sending two immediate ACKs upon receiving a packet w/ CWR flag. The side effect is it'll also reset the delayed ACK timer and interactive session tracking. This patch removes that side effect by using the new ACK_NOW flag to force an immmediate ACK. Packetdrill to demonstrate: 0 socket(..., SOCK_STREAM, IPPROTO_TCP) = 3 +0 setsockopt(3, SOL_SOCKET, SO_REUSEADDR, [1], 4) = 0 +0 setsockopt(3, SOL_TCP, TCP_CONGESTION, "dctcp", 5) = 0 +0 bind(3, ..., ...) = 0 +0 listen(3, 1) = 0 +0 < [ect0] SEW 0:0(0) win 32792 <mss 1000,sackOK,nop,nop,nop,wscale 7> +0 > SE. 0:0(0) ack 1 <mss 1460,nop,nop,sackOK,nop,wscale 8> +.1 < [ect0] . 1:1(0) ack 1 win 257 +0 accept(3, ..., ...) = 4 +0 < [ect0] . 1:1001(1000) ack 1 win 257 +0 > [ect01] . 1:1(0) ack 1001 +0 write(4, ..., 1) = 1 +0 > [ect01] P. 1:2(1) ack 1001 +0 < [ect0] . 1001:2001(1000) ack 2 win 257 +0 write(4, ..., 1) = 1 +0 > [ect01] P. 2:3(1) ack 2001 +0 < [ect0] . 2001:3001(1000) ack 3 win 257 +0 < [ect0] . 3001:4001(1000) ack 3 win 257 // Ack delayed ... +.01 < [ce] P. 4001:4501(500) ack 3 win 257 +0 > [ect01] . 3:3(0) ack 4001 +0 > [ect01] E. 3:3(0) ack 4501 +.001 read(4, ..., 4500) = 4500 +0 write(4, ..., 1) = 1 +0 > [ect01] PE. 3:4(1) ack 4501 win 100 +.01 < [ect0] W. 4501:5501(1000) ack 4 win 257 // No delayed ACK on CWR flag +0 > [ect01] . 4:4(0) ack 5501 +.31 < [ect0] . 5501:6501(1000) ack 4 win 257 +0 > [ect01] . 4:4(0) ack 6501 Fixes: 9aee40006190 ("tcp: ack immediately when a cwr packet arrives") Signed-off-by: Yuchung Cheng <ycheng@google.com> Signed-off-by: Neal Cardwell <ncardwell@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2018-08-09 09:38:12 -07:00
static void tcp_ecn_accept_cwr(struct sock *sk, const struct sk_buff *skb)
{
tcp: ack immediately when a cwr packet arrives We observed high 99 and 99.9% latencies when doing RPCs with DCTCP. The problem is triggered when the last packet of a request arrives CE marked. The reply will carry the ECE mark causing TCP to shrink its cwnd to 1 (because there are no packets in flight). When the 1st packet of the next request arrives, the ACK was sometimes delayed even though it is CWR marked, adding up to 40ms to the RPC latency. This patch insures that CWR marked data packets arriving will be acked immediately. Packetdrill script to reproduce the problem: 0.000 socket(..., SOCK_STREAM, IPPROTO_TCP) = 3 0.000 setsockopt(3, SOL_SOCKET, SO_REUSEADDR, [1], 4) = 0 0.000 setsockopt(3, SOL_TCP, TCP_CONGESTION, "dctcp", 5) = 0 0.000 bind(3, ..., ...) = 0 0.000 listen(3, 1) = 0 0.100 < [ect0] SEW 0:0(0) win 32792 <mss 1000,sackOK,nop,nop,nop,wscale 7> 0.100 > SE. 0:0(0) ack 1 <mss 1460,nop,nop,sackOK,nop,wscale 8> 0.110 < [ect0] . 1:1(0) ack 1 win 257 0.200 accept(3, ..., ...) = 4 0.200 < [ect0] . 1:1001(1000) ack 1 win 257 0.200 > [ect01] . 1:1(0) ack 1001 0.200 write(4, ..., 1) = 1 0.200 > [ect01] P. 1:2(1) ack 1001 0.200 < [ect0] . 1001:2001(1000) ack 2 win 257 0.200 write(4, ..., 1) = 1 0.200 > [ect01] P. 2:3(1) ack 2001 0.200 < [ect0] . 2001:3001(1000) ack 3 win 257 0.200 < [ect0] . 3001:4001(1000) ack 3 win 257 0.200 > [ect01] . 3:3(0) ack 4001 0.210 < [ce] P. 4001:4501(500) ack 3 win 257 +0.001 read(4, ..., 4500) = 4500 +0 write(4, ..., 1) = 1 +0 > [ect01] PE. 3:4(1) ack 4501 +0.010 < [ect0] W. 4501:5501(1000) ack 4 win 257 // Previously the ACK sequence below would be 4501, causing a long RTO +0.040~+0.045 > [ect01] . 4:4(0) ack 5501 // delayed ack +0.311 < [ect0] . 5501:6501(1000) ack 4 win 257 // More data +0 > [ect01] . 4:4(0) ack 6501 // now acks everything +0.500 < F. 9501:9501(0) ack 4 win 257 Modified based on comments by Neal Cardwell <ncardwell@google.com> Signed-off-by: Lawrence Brakmo <brakmo@fb.com> Acked-by: Neal Cardwell <ncardwell@google.com> Acked-by: Yuchung Cheng <ycheng@google.com> Signed-off-by: Eric Dumazet <edumazet@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2018-07-23 17:49:39 -07:00
if (tcp_hdr(skb)->cwr) {
tcp: avoid resetting ACK timer upon receiving packet with ECN CWR flag Previously commit 9aee40006190 ("tcp: ack immediately when a cwr packet arrives") calls tcp_enter_quickack_mode to force sending two immediate ACKs upon receiving a packet w/ CWR flag. The side effect is it'll also reset the delayed ACK timer and interactive session tracking. This patch removes that side effect by using the new ACK_NOW flag to force an immmediate ACK. Packetdrill to demonstrate: 0 socket(..., SOCK_STREAM, IPPROTO_TCP) = 3 +0 setsockopt(3, SOL_SOCKET, SO_REUSEADDR, [1], 4) = 0 +0 setsockopt(3, SOL_TCP, TCP_CONGESTION, "dctcp", 5) = 0 +0 bind(3, ..., ...) = 0 +0 listen(3, 1) = 0 +0 < [ect0] SEW 0:0(0) win 32792 <mss 1000,sackOK,nop,nop,nop,wscale 7> +0 > SE. 0:0(0) ack 1 <mss 1460,nop,nop,sackOK,nop,wscale 8> +.1 < [ect0] . 1:1(0) ack 1 win 257 +0 accept(3, ..., ...) = 4 +0 < [ect0] . 1:1001(1000) ack 1 win 257 +0 > [ect01] . 1:1(0) ack 1001 +0 write(4, ..., 1) = 1 +0 > [ect01] P. 1:2(1) ack 1001 +0 < [ect0] . 1001:2001(1000) ack 2 win 257 +0 write(4, ..., 1) = 1 +0 > [ect01] P. 2:3(1) ack 2001 +0 < [ect0] . 2001:3001(1000) ack 3 win 257 +0 < [ect0] . 3001:4001(1000) ack 3 win 257 // Ack delayed ... +.01 < [ce] P. 4001:4501(500) ack 3 win 257 +0 > [ect01] . 3:3(0) ack 4001 +0 > [ect01] E. 3:3(0) ack 4501 +.001 read(4, ..., 4500) = 4500 +0 write(4, ..., 1) = 1 +0 > [ect01] PE. 3:4(1) ack 4501 win 100 +.01 < [ect0] W. 4501:5501(1000) ack 4 win 257 // No delayed ACK on CWR flag +0 > [ect01] . 4:4(0) ack 5501 +.31 < [ect0] . 5501:6501(1000) ack 4 win 257 +0 > [ect01] . 4:4(0) ack 6501 Fixes: 9aee40006190 ("tcp: ack immediately when a cwr packet arrives") Signed-off-by: Yuchung Cheng <ycheng@google.com> Signed-off-by: Neal Cardwell <ncardwell@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2018-08-09 09:38:12 -07:00
tcp_sk(sk)->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
tcp: ack immediately when a cwr packet arrives We observed high 99 and 99.9% latencies when doing RPCs with DCTCP. The problem is triggered when the last packet of a request arrives CE marked. The reply will carry the ECE mark causing TCP to shrink its cwnd to 1 (because there are no packets in flight). When the 1st packet of the next request arrives, the ACK was sometimes delayed even though it is CWR marked, adding up to 40ms to the RPC latency. This patch insures that CWR marked data packets arriving will be acked immediately. Packetdrill script to reproduce the problem: 0.000 socket(..., SOCK_STREAM, IPPROTO_TCP) = 3 0.000 setsockopt(3, SOL_SOCKET, SO_REUSEADDR, [1], 4) = 0 0.000 setsockopt(3, SOL_TCP, TCP_CONGESTION, "dctcp", 5) = 0 0.000 bind(3, ..., ...) = 0 0.000 listen(3, 1) = 0 0.100 < [ect0] SEW 0:0(0) win 32792 <mss 1000,sackOK,nop,nop,nop,wscale 7> 0.100 > SE. 0:0(0) ack 1 <mss 1460,nop,nop,sackOK,nop,wscale 8> 0.110 < [ect0] . 1:1(0) ack 1 win 257 0.200 accept(3, ..., ...) = 4 0.200 < [ect0] . 1:1001(1000) ack 1 win 257 0.200 > [ect01] . 1:1(0) ack 1001 0.200 write(4, ..., 1) = 1 0.200 > [ect01] P. 1:2(1) ack 1001 0.200 < [ect0] . 1001:2001(1000) ack 2 win 257 0.200 write(4, ..., 1) = 1 0.200 > [ect01] P. 2:3(1) ack 2001 0.200 < [ect0] . 2001:3001(1000) ack 3 win 257 0.200 < [ect0] . 3001:4001(1000) ack 3 win 257 0.200 > [ect01] . 3:3(0) ack 4001 0.210 < [ce] P. 4001:4501(500) ack 3 win 257 +0.001 read(4, ..., 4500) = 4500 +0 write(4, ..., 1) = 1 +0 > [ect01] PE. 3:4(1) ack 4501 +0.010 < [ect0] W. 4501:5501(1000) ack 4 win 257 // Previously the ACK sequence below would be 4501, causing a long RTO +0.040~+0.045 > [ect01] . 4:4(0) ack 5501 // delayed ack +0.311 < [ect0] . 5501:6501(1000) ack 4 win 257 // More data +0 > [ect01] . 4:4(0) ack 6501 // now acks everything +0.500 < F. 9501:9501(0) ack 4 win 257 Modified based on comments by Neal Cardwell <ncardwell@google.com> Signed-off-by: Lawrence Brakmo <brakmo@fb.com> Acked-by: Neal Cardwell <ncardwell@google.com> Acked-by: Yuchung Cheng <ycheng@google.com> Signed-off-by: Eric Dumazet <edumazet@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2018-07-23 17:49:39 -07:00
/* If the sender is telling us it has entered CWR, then its
* cwnd may be very low (even just 1 packet), so we should ACK
* immediately.
*/
tcp: don't ignore ECN CWR on pure ACK there is a problem with the CWR flag set in an incoming ACK segment and it leads to the situation when the ECE flag is latched forever the following packetdrill script shows what happens: // Stack receives incoming segments with CE set +0.1 <[ect0] . 11001:12001(1000) ack 1001 win 65535 +0.0 <[ce] . 12001:13001(1000) ack 1001 win 65535 +0.0 <[ect0] P. 13001:14001(1000) ack 1001 win 65535 // Stack repsonds with ECN ECHO +0.0 >[noecn] . 1001:1001(0) ack 12001 +0.0 >[noecn] E. 1001:1001(0) ack 13001 +0.0 >[noecn] E. 1001:1001(0) ack 14001 // Write a packet +0.1 write(3, ..., 1000) = 1000 +0.0 >[ect0] PE. 1001:2001(1000) ack 14001 // Pure ACK received +0.01 <[noecn] W. 14001:14001(0) ack 2001 win 65535 // Since CWR was sent, this packet should NOT have ECE set +0.1 write(3, ..., 1000) = 1000 +0.0 >[ect0] P. 2001:3001(1000) ack 14001 // but Linux will still keep ECE latched here, with packetdrill // flagging a missing ECE flag, expecting // >[ect0] PE. 2001:3001(1000) ack 14001 // in the script In the situation above we will continue to send ECN ECHO packets and trigger the peer to reduce the congestion window. To avoid that we can check CWR on pure ACKs received. v3: - Add a sequence check to avoid sending an ACK to an ACK v2: - Adjusted the comment - move CWR check before checking for unacknowledged packets Signed-off-by: Denis Kirjanov <denis.kirjanov@suse.com> Acked-by: Neal Cardwell <ncardwell@google.com> Signed-off-by: Eric Dumazet <edumazet@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2020-06-25 14:51:06 +03:00
if (TCP_SKB_CB(skb)->seq != TCP_SKB_CB(skb)->end_seq)
inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_NOW;
tcp: ack immediately when a cwr packet arrives We observed high 99 and 99.9% latencies when doing RPCs with DCTCP. The problem is triggered when the last packet of a request arrives CE marked. The reply will carry the ECE mark causing TCP to shrink its cwnd to 1 (because there are no packets in flight). When the 1st packet of the next request arrives, the ACK was sometimes delayed even though it is CWR marked, adding up to 40ms to the RPC latency. This patch insures that CWR marked data packets arriving will be acked immediately. Packetdrill script to reproduce the problem: 0.000 socket(..., SOCK_STREAM, IPPROTO_TCP) = 3 0.000 setsockopt(3, SOL_SOCKET, SO_REUSEADDR, [1], 4) = 0 0.000 setsockopt(3, SOL_TCP, TCP_CONGESTION, "dctcp", 5) = 0 0.000 bind(3, ..., ...) = 0 0.000 listen(3, 1) = 0 0.100 < [ect0] SEW 0:0(0) win 32792 <mss 1000,sackOK,nop,nop,nop,wscale 7> 0.100 > SE. 0:0(0) ack 1 <mss 1460,nop,nop,sackOK,nop,wscale 8> 0.110 < [ect0] . 1:1(0) ack 1 win 257 0.200 accept(3, ..., ...) = 4 0.200 < [ect0] . 1:1001(1000) ack 1 win 257 0.200 > [ect01] . 1:1(0) ack 1001 0.200 write(4, ..., 1) = 1 0.200 > [ect01] P. 1:2(1) ack 1001 0.200 < [ect0] . 1001:2001(1000) ack 2 win 257 0.200 write(4, ..., 1) = 1 0.200 > [ect01] P. 2:3(1) ack 2001 0.200 < [ect0] . 2001:3001(1000) ack 3 win 257 0.200 < [ect0] . 3001:4001(1000) ack 3 win 257 0.200 > [ect01] . 3:3(0) ack 4001 0.210 < [ce] P. 4001:4501(500) ack 3 win 257 +0.001 read(4, ..., 4500) = 4500 +0 write(4, ..., 1) = 1 +0 > [ect01] PE. 3:4(1) ack 4501 +0.010 < [ect0] W. 4501:5501(1000) ack 4 win 257 // Previously the ACK sequence below would be 4501, causing a long RTO +0.040~+0.045 > [ect01] . 4:4(0) ack 5501 // delayed ack +0.311 < [ect0] . 5501:6501(1000) ack 4 win 257 // More data +0 > [ect01] . 4:4(0) ack 6501 // now acks everything +0.500 < F. 9501:9501(0) ack 4 win 257 Modified based on comments by Neal Cardwell <ncardwell@google.com> Signed-off-by: Lawrence Brakmo <brakmo@fb.com> Acked-by: Neal Cardwell <ncardwell@google.com> Acked-by: Yuchung Cheng <ycheng@google.com> Signed-off-by: Eric Dumazet <edumazet@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2018-07-23 17:49:39 -07:00
}
}
static void tcp_ecn_withdraw_cwr(struct tcp_sock *tp)
{
tcp: fix tcp_ecn_withdraw_cwr() to clear TCP_ECN_QUEUE_CWR Fix tcp_ecn_withdraw_cwr() to clear the correct bit: TCP_ECN_QUEUE_CWR. Rationale: basically, TCP_ECN_DEMAND_CWR is a bit that is purely about the behavior of data receivers, and deciding whether to reflect incoming IP ECN CE marks as outgoing TCP th->ece marks. The TCP_ECN_QUEUE_CWR bit is purely about the behavior of data senders, and deciding whether to send CWR. The tcp_ecn_withdraw_cwr() function is only called from tcp_undo_cwnd_reduction() by data senders during an undo, so it should zero the sender-side state, TCP_ECN_QUEUE_CWR. It does not make sense to stop the reflection of incoming CE bits on incoming data packets just because outgoing packets were spuriously retransmitted. The bug has been reproduced with packetdrill to manifest in a scenario with RFC3168 ECN, with an incoming data packet with CE bit set and carrying a TCP timestamp value that causes cwnd undo. Before this fix, the IP CE bit was ignored and not reflected in the TCP ECE header bit, and sender sent a TCP CWR ('W') bit on the next outgoing data packet, even though the cwnd reduction had been undone. After this fix, the sender properly reflects the CE bit and does not set the W bit. Note: the bug actually predates 2005 git history; this Fixes footer is chosen to be the oldest SHA1 I have tested (from Sep 2007) for which the patch applies cleanly (since before this commit the code was in a .h file). Fixes: bdf1ee5d3bd3 ("[TCP]: Move code from tcp_ecn.h to tcp*.c and tcp.h & remove it") Signed-off-by: Neal Cardwell <ncardwell@google.com> Acked-by: Yuchung Cheng <ycheng@google.com> Acked-by: Soheil Hassas Yeganeh <soheil@google.com> Cc: Eric Dumazet <edumazet@google.com> Signed-off-by: Eric Dumazet <edumazet@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-09-09 16:56:02 -04:00
tp->ecn_flags &= ~TCP_ECN_QUEUE_CWR;
}
static void __tcp_ecn_check_ce(struct sock *sk, const struct sk_buff *skb)
{
struct tcp_sock *tp = tcp_sk(sk);
switch (TCP_SKB_CB(skb)->ip_dsfield & INET_ECN_MASK) {
case INET_ECN_NOT_ECT:
/* Funny extension: if ECT is not set on a segment,
* and we already seen ECT on a previous segment,
* it is probably a retransmit.
*/
if (tp->ecn_flags & TCP_ECN_SEEN)
tcp_enter_quickack_mode(sk, 2);
break;
case INET_ECN_CE:
if (tcp_ca_needs_ecn(sk))
tcp_ca_event(sk, CA_EVENT_ECN_IS_CE);
if (!(tp->ecn_flags & TCP_ECN_DEMAND_CWR)) {
/* Better not delay acks, sender can have a very low cwnd */
tcp_enter_quickack_mode(sk, 2);
tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
}
tp->ecn_flags |= TCP_ECN_SEEN;
break;
default:
if (tcp_ca_needs_ecn(sk))
tcp_ca_event(sk, CA_EVENT_ECN_NO_CE);
tp->ecn_flags |= TCP_ECN_SEEN;
break;
}
}
static void tcp_ecn_check_ce(struct sock *sk, const struct sk_buff *skb)
{
if (tcp_sk(sk)->ecn_flags & TCP_ECN_OK)
__tcp_ecn_check_ce(sk, skb);
}
static void tcp_ecn_rcv_synack(struct tcp_sock *tp, const struct tcphdr *th)
{
if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr))
tp->ecn_flags &= ~TCP_ECN_OK;
}
static void tcp_ecn_rcv_syn(struct tcp_sock *tp, const struct tcphdr *th)
{
if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr))
tp->ecn_flags &= ~TCP_ECN_OK;
}
static bool tcp_ecn_rcv_ecn_echo(const struct tcp_sock *tp, const struct tcphdr *th)
{
if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK))
return true;
return false;
}
/* Buffer size and advertised window tuning.
*
* 1. Tuning sk->sk_sndbuf, when connection enters established state.
*/
static void tcp_sndbuf_expand(struct sock *sk)
{
const struct tcp_sock *tp = tcp_sk(sk);
const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
int sndmem, per_mss;
u32 nr_segs;
/* Worst case is non GSO/TSO : each frame consumes one skb
* and skb->head is kmalloced using power of two area of memory
*/
per_mss = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) +
MAX_TCP_HEADER +
SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
per_mss = roundup_pow_of_two(per_mss) +
SKB_DATA_ALIGN(sizeof(struct sk_buff));
nr_segs = max_t(u32, TCP_INIT_CWND, tcp_snd_cwnd(tp));
nr_segs = max_t(u32, nr_segs, tp->reordering + 1);
/* Fast Recovery (RFC 5681 3.2) :
* Cubic needs 1.7 factor, rounded to 2 to include
* extra cushion (application might react slowly to EPOLLOUT)
*/
sndmem = ca_ops->sndbuf_expand ? ca_ops->sndbuf_expand(sk) : 2;
sndmem *= nr_segs * per_mss;
if (sk->sk_sndbuf < sndmem)
WRITE_ONCE(sk->sk_sndbuf,
min(sndmem, READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_wmem[2])));
}
/* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
*
* All tcp_full_space() is split to two parts: "network" buffer, allocated
* forward and advertised in receiver window (tp->rcv_wnd) and
* "application buffer", required to isolate scheduling/application
* latencies from network.
* window_clamp is maximal advertised window. It can be less than
* tcp_full_space(), in this case tcp_full_space() - window_clamp
* is reserved for "application" buffer. The less window_clamp is
* the smoother our behaviour from viewpoint of network, but the lower
* throughput and the higher sensitivity of the connection to losses. 8)
*
* rcv_ssthresh is more strict window_clamp used at "slow start"
* phase to predict further behaviour of this connection.
* It is used for two goals:
* - to enforce header prediction at sender, even when application
* requires some significant "application buffer". It is check #1.
* - to prevent pruning of receive queue because of misprediction
* of receiver window. Check #2.
*
* The scheme does not work when sender sends good segments opening
* window and then starts to feed us spaghetti. But it should work
* in common situations. Otherwise, we have to rely on queue collapsing.
*/
/* Slow part of check#2. */
2021-07-21 03:15:28 -07:00
static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb,
unsigned int skbtruesize)
{
const struct tcp_sock *tp = tcp_sk(sk);
/* Optimize this! */
2021-07-21 03:15:28 -07:00
int truesize = tcp_win_from_space(sk, skbtruesize) >> 1;
int window = tcp_win_from_space(sk, READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[2])) >> 1;
while (tp->rcv_ssthresh <= window) {
if (truesize <= skb->len)
return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
truesize >>= 1;
window >>= 1;
}
return 0;
}
2021-07-21 03:15:28 -07:00
/* Even if skb appears to have a bad len/truesize ratio, TCP coalescing
* can play nice with us, as sk_buff and skb->head might be either
* freed or shared with up to MAX_SKB_FRAGS segments.
* Only give a boost to drivers using page frag(s) to hold the frame(s),
* and if no payload was pulled in skb->head before reaching us.
*/
static u32 truesize_adjust(bool adjust, const struct sk_buff *skb)
{
u32 truesize = skb->truesize;
if (adjust && !skb_headlen(skb)) {
truesize -= SKB_TRUESIZE(skb_end_offset(skb));
/* paranoid check, some drivers might be buggy */
if (unlikely((int)truesize < (int)skb->len))
truesize = skb->truesize;
}
return truesize;
}
static void tcp_grow_window(struct sock *sk, const struct sk_buff *skb,
bool adjust)
{
[TCP]: Sed magic converts func(sk, tp, ...) -> func(sk, ...) This is (mostly) automated change using magic: sed -e '/struct sock \*sk/ N' -e '/struct sock \*sk/ N' -e '/struct sock \*sk/ N' -e '/struct sock \*sk/ N' -e 's|struct sock \*sk,[\n\t ]*struct tcp_sock \*tp\([^{]*\n{\n\)| struct sock \*sk\1\tstruct tcp_sock *tp = tcp_sk(sk);\n|g' -e 's|struct sock \*sk, struct tcp_sock \*tp| struct sock \*sk|g' -e 's|sk, tp\([^-]\)|sk\1|g' Fixed four unused variable (tp) warnings that were introduced. In addition, manually added newlines after local variables and tweaked function arguments positioning. $ gcc --version gcc (GCC) 4.1.1 20060525 (Red Hat 4.1.1-1) ... $ codiff -fV built-in.o.old built-in.o.new net/ipv4/route.c: rt_cache_flush | +14 1 function changed, 14 bytes added net/ipv4/tcp.c: tcp_setsockopt | -5 tcp_sendpage | -25 tcp_sendmsg | -16 3 functions changed, 46 bytes removed net/ipv4/tcp_input.c: tcp_try_undo_recovery | +3 tcp_try_undo_dsack | +2 tcp_mark_head_lost | -12 tcp_ack | -15 tcp_event_data_recv | -32 tcp_rcv_state_process | -10 tcp_rcv_established | +1 7 functions changed, 6 bytes added, 69 bytes removed, diff: -63 net/ipv4/tcp_output.c: update_send_head | -9 tcp_transmit_skb | +19 tcp_cwnd_validate | +1 tcp_write_wakeup | -17 __tcp_push_pending_frames | -25 tcp_push_one | -8 tcp_send_fin | -4 7 functions changed, 20 bytes added, 63 bytes removed, diff: -43 built-in.o.new: 18 functions changed, 40 bytes added, 178 bytes removed, diff: -138 Signed-off-by: Ilpo Järvinen <ilpo.jarvinen@helsinki.fi> Signed-off-by: David S. Miller <davem@davemloft.net>
2007-04-20 22:18:02 -07:00
struct tcp_sock *tp = tcp_sk(sk);
int room;
room = min_t(int, tp->window_clamp, tcp_space(sk)) - tp->rcv_ssthresh;
[TCP]: Sed magic converts func(sk, tp, ...) -> func(sk, ...) This is (mostly) automated change using magic: sed -e '/struct sock \*sk/ N' -e '/struct sock \*sk/ N' -e '/struct sock \*sk/ N' -e '/struct sock \*sk/ N' -e 's|struct sock \*sk,[\n\t ]*struct tcp_sock \*tp\([^{]*\n{\n\)| struct sock \*sk\1\tstruct tcp_sock *tp = tcp_sk(sk);\n|g' -e 's|struct sock \*sk, struct tcp_sock \*tp| struct sock \*sk|g' -e 's|sk, tp\([^-]\)|sk\1|g' Fixed four unused variable (tp) warnings that were introduced. In addition, manually added newlines after local variables and tweaked function arguments positioning. $ gcc --version gcc (GCC) 4.1.1 20060525 (Red Hat 4.1.1-1) ... $ codiff -fV built-in.o.old built-in.o.new net/ipv4/route.c: rt_cache_flush | +14 1 function changed, 14 bytes added net/ipv4/tcp.c: tcp_setsockopt | -5 tcp_sendpage | -25 tcp_sendmsg | -16 3 functions changed, 46 bytes removed net/ipv4/tcp_input.c: tcp_try_undo_recovery | +3 tcp_try_undo_dsack | +2 tcp_mark_head_lost | -12 tcp_ack | -15 tcp_event_data_recv | -32 tcp_rcv_state_process | -10 tcp_rcv_established | +1 7 functions changed, 6 bytes added, 69 bytes removed, diff: -63 net/ipv4/tcp_output.c: update_send_head | -9 tcp_transmit_skb | +19 tcp_cwnd_validate | +1 tcp_write_wakeup | -17 __tcp_push_pending_frames | -25 tcp_push_one | -8 tcp_send_fin | -4 7 functions changed, 20 bytes added, 63 bytes removed, diff: -43 built-in.o.new: 18 functions changed, 40 bytes added, 178 bytes removed, diff: -138 Signed-off-by: Ilpo Järvinen <ilpo.jarvinen@helsinki.fi> Signed-off-by: David S. Miller <davem@davemloft.net>
2007-04-20 22:18:02 -07:00
if (room <= 0)
return;
/* Check #1 */
if (!tcp_under_memory_pressure(sk)) {
2021-07-21 03:15:28 -07:00
unsigned int truesize = truesize_adjust(adjust, skb);
int incr;
/* Check #2. Increase window, if skb with such overhead
* will fit to rcvbuf in future.
*/
2021-07-21 03:15:28 -07:00
if (tcp_win_from_space(sk, truesize) <= skb->len)
incr = 2 * tp->advmss;
else
2021-07-21 03:15:28 -07:00
incr = __tcp_grow_window(sk, skb, truesize);
if (incr) {
incr = max_t(int, incr, 2 * skb->len);
tp->rcv_ssthresh += min(room, incr);
inet_csk(sk)->icsk_ack.quick |= 1;
}
} else {
/* Under pressure:
* Adjust rcv_ssthresh according to reserved mem
*/
tcp_adjust_rcv_ssthresh(sk);
}
}
tcp: up initial rmem to 128KB and SYN rwin to around 64KB Previously TCP initial receive buffer is ~87KB by default and the initial receive window is ~29KB (20 MSS). This patch changes the two numbers to 128KB and ~64KB (rounding down to the multiples of MSS) respectively. The patch also simplifies the calculations s.t. the two numbers are directly controlled by sysctl tcp_rmem[1]: 1) Initial receiver buffer budget (sk_rcvbuf): while this should be configured via sysctl tcp_rmem[1], previously tcp_fixup_rcvbuf() always override and set a larger size when a new connection establishes. 2) Initial receive window in SYN: previously it is set to 20 packets if MSS <= 1460. The number 20 was based on the initial congestion window of 10: the receiver needs twice amount to avoid being limited by the receive window upon out-of-order delivery in the first window burst. But since this only applies if the receiving MSS <= 1460, connection using large MTU (e.g. to utilize receiver zero-copy) may be limited by the receive window. With this patch TCP memory configuration is more straight-forward and more properly sized to modern high-speed networks by default. Several popular stacks have been announcing 64KB rwin in SYNs as well. Signed-off-by: Yuchung Cheng <ycheng@google.com> Signed-off-by: Wei Wang <weiwan@google.com> Signed-off-by: Neal Cardwell <ncardwell@google.com> Signed-off-by: Eric Dumazet <edumazet@google.com> Reviewed-by: Soheil Hassas Yeganeh <soheil@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2018-09-27 11:21:19 -07:00
/* 3. Try to fixup all. It is made immediately after connection enters
* established state.
*/
static void tcp_init_buffer_space(struct sock *sk)
{
int tcp_app_win = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_app_win);
struct tcp_sock *tp = tcp_sk(sk);
int maxwin;
if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
tcp_sndbuf_expand(sk);
tcp_mstamp_refresh(tp);
tp->rcvq_space.time = tp->tcp_mstamp;
tp->rcvq_space.seq = tp->copied_seq;
maxwin = tcp_full_space(sk);
if (tp->window_clamp >= maxwin) {
tp->window_clamp = maxwin;
if (tcp_app_win && maxwin > 4 * tp->advmss)
tp->window_clamp = max(maxwin -
(maxwin >> tcp_app_win),
4 * tp->advmss);
}
/* Force reservation of one segment. */
if (tcp_app_win &&
tp->window_clamp > 2 * tp->advmss &&
tp->window_clamp + tp->advmss > maxwin)
tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
tp->snd_cwnd_stamp = tcp_jiffies32;
tcp: select sane initial rcvq_space.space for big MSS Before commit a337531b942b ("tcp: up initial rmem to 128KB and SYN rwin to around 64KB") small tcp_rmem[1] values were overridden by tcp_fixup_rcvbuf() to accommodate various MSS. This is no longer the case, and Hazem Mohamed Abuelfotoh reported that DRS would not work for MTU 9000 endpoints receiving regular (1500 bytes) frames. Root cause is that tcp_init_buffer_space() uses tp->rcv_wnd for upper limit of rcvq_space.space computation, while it can select later a smaller value for tp->rcv_ssthresh and tp->window_clamp. ss -temoi on receiver would show : skmem:(r0,rb131072,t0,tb46080,f0,w0,o0,bl0,d0) rcv_space:62496 rcv_ssthresh:56596 This means that TCP can not increase its window in tcp_grow_window(), and that DRS can never kick. Fix this by making sure that rcvq_space.space is not bigger than number of bytes that can be held in TCP receive queue. People unable/unwilling to change their kernel can work around this issue by selecting a bigger tcp_rmem[1] value as in : echo "4096 196608 6291456" >/proc/sys/net/ipv4/tcp_rmem Based on an initial report and patch from Hazem Mohamed Abuelfotoh https://lore.kernel.org/netdev/20201204180622.14285-1-abuehaze@amazon.com/ Fixes: a337531b942b ("tcp: up initial rmem to 128KB and SYN rwin to around 64KB") Fixes: 041a14d26715 ("tcp: start receiver buffer autotuning sooner") Reported-by: Hazem Mohamed Abuelfotoh <abuehaze@amazon.com> Signed-off-by: Eric Dumazet <edumazet@google.com> Acked-by: Soheil Hassas Yeganeh <soheil@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2020-12-08 08:21:31 -08:00
tp->rcvq_space.space = min3(tp->rcv_ssthresh, tp->rcv_wnd,
(u32)TCP_INIT_CWND * tp->advmss);
}
tcp: up initial rmem to 128KB and SYN rwin to around 64KB Previously TCP initial receive buffer is ~87KB by default and the initial receive window is ~29KB (20 MSS). This patch changes the two numbers to 128KB and ~64KB (rounding down to the multiples of MSS) respectively. The patch also simplifies the calculations s.t. the two numbers are directly controlled by sysctl tcp_rmem[1]: 1) Initial receiver buffer budget (sk_rcvbuf): while this should be configured via sysctl tcp_rmem[1], previously tcp_fixup_rcvbuf() always override and set a larger size when a new connection establishes. 2) Initial receive window in SYN: previously it is set to 20 packets if MSS <= 1460. The number 20 was based on the initial congestion window of 10: the receiver needs twice amount to avoid being limited by the receive window upon out-of-order delivery in the first window burst. But since this only applies if the receiving MSS <= 1460, connection using large MTU (e.g. to utilize receiver zero-copy) may be limited by the receive window. With this patch TCP memory configuration is more straight-forward and more properly sized to modern high-speed networks by default. Several popular stacks have been announcing 64KB rwin in SYNs as well. Signed-off-by: Yuchung Cheng <ycheng@google.com> Signed-off-by: Wei Wang <weiwan@google.com> Signed-off-by: Neal Cardwell <ncardwell@google.com> Signed-off-by: Eric Dumazet <edumazet@google.com> Reviewed-by: Soheil Hassas Yeganeh <soheil@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2018-09-27 11:21:19 -07:00
/* 4. Recalculate window clamp after socket hit its memory bounds. */
[TCP]: Sed magic converts func(sk, tp, ...) -> func(sk, ...) This is (mostly) automated change using magic: sed -e '/struct sock \*sk/ N' -e '/struct sock \*sk/ N' -e '/struct sock \*sk/ N' -e '/struct sock \*sk/ N' -e 's|struct sock \*sk,[\n\t ]*struct tcp_sock \*tp\([^{]*\n{\n\)| struct sock \*sk\1\tstruct tcp_sock *tp = tcp_sk(sk);\n|g' -e 's|struct sock \*sk, struct tcp_sock \*tp| struct sock \*sk|g' -e 's|sk, tp\([^-]\)|sk\1|g' Fixed four unused variable (tp) warnings that were introduced. In addition, manually added newlines after local variables and tweaked function arguments positioning. $ gcc --version gcc (GCC) 4.1.1 20060525 (Red Hat 4.1.1-1) ... $ codiff -fV built-in.o.old built-in.o.new net/ipv4/route.c: rt_cache_flush | +14 1 function changed, 14 bytes added net/ipv4/tcp.c: tcp_setsockopt | -5 tcp_sendpage | -25 tcp_sendmsg | -16 3 functions changed, 46 bytes removed net/ipv4/tcp_input.c: tcp_try_undo_recovery | +3 tcp_try_undo_dsack | +2 tcp_mark_head_lost | -12 tcp_ack | -15 tcp_event_data_recv | -32 tcp_rcv_state_process | -10 tcp_rcv_established | +1 7 functions changed, 6 bytes added, 69 bytes removed, diff: -63 net/ipv4/tcp_output.c: update_send_head | -9 tcp_transmit_skb | +19 tcp_cwnd_validate | +1 tcp_write_wakeup | -17 __tcp_push_pending_frames | -25 tcp_push_one | -8 tcp_send_fin | -4 7 functions changed, 20 bytes added, 63 bytes removed, diff: -43 built-in.o.new: 18 functions changed, 40 bytes added, 178 bytes removed, diff: -138 Signed-off-by: Ilpo Järvinen <ilpo.jarvinen@helsinki.fi> Signed-off-by: David S. Miller <davem@davemloft.net>
2007-04-20 22:18:02 -07:00
static void tcp_clamp_window(struct sock *sk)
{
[TCP]: Sed magic converts func(sk, tp, ...) -> func(sk, ...) This is (mostly) automated change using magic: sed -e '/struct sock \*sk/ N' -e '/struct sock \*sk/ N' -e '/struct sock \*sk/ N' -e '/struct sock \*sk/ N' -e 's|struct sock \*sk,[\n\t ]*struct tcp_sock \*tp\([^{]*\n{\n\)| struct sock \*sk\1\tstruct tcp_sock *tp = tcp_sk(sk);\n|g' -e 's|struct sock \*sk, struct tcp_sock \*tp| struct sock \*sk|g' -e 's|sk, tp\([^-]\)|sk\1|g' Fixed four unused variable (tp) warnings that were introduced. In addition, manually added newlines after local variables and tweaked function arguments positioning. $ gcc --version gcc (GCC) 4.1.1 20060525 (Red Hat 4.1.1-1) ... $ codiff -fV built-in.o.old built-in.o.new net/ipv4/route.c: rt_cache_flush | +14 1 function changed, 14 bytes added net/ipv4/tcp.c: tcp_setsockopt | -5 tcp_sendpage | -25 tcp_sendmsg | -16 3 functions changed, 46 bytes removed net/ipv4/tcp_input.c: tcp_try_undo_recovery | +3 tcp_try_undo_dsack | +2 tcp_mark_head_lost | -12 tcp_ack | -15 tcp_event_data_recv | -32 tcp_rcv_state_process | -10 tcp_rcv_established | +1 7 functions changed, 6 bytes added, 69 bytes removed, diff: -63 net/ipv4/tcp_output.c: update_send_head | -9 tcp_transmit_skb | +19 tcp_cwnd_validate | +1 tcp_write_wakeup | -17 __tcp_push_pending_frames | -25 tcp_push_one | -8 tcp_send_fin | -4 7 functions changed, 20 bytes added, 63 bytes removed, diff: -43 built-in.o.new: 18 functions changed, 40 bytes added, 178 bytes removed, diff: -138 Signed-off-by: Ilpo Järvinen <ilpo.jarvinen@helsinki.fi> Signed-off-by: David S. Miller <davem@davemloft.net>
2007-04-20 22:18:02 -07:00
struct tcp_sock *tp = tcp_sk(sk);
struct inet_connection_sock *icsk = inet_csk(sk);
struct net *net = sock_net(sk);
int rmem2;
icsk->icsk_ack.quick = 0;
rmem2 = READ_ONCE(net->ipv4.sysctl_tcp_rmem[2]);
if (sk->sk_rcvbuf < rmem2 &&
!(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
!tcp_under_memory_pressure(sk) &&
sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)) {
WRITE_ONCE(sk->sk_rcvbuf,
min(atomic_read(&sk->sk_rmem_alloc), rmem2));
}
if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss);
}
/* Initialize RCV_MSS value.
* RCV_MSS is an our guess about MSS used by the peer.
* We haven't any direct information about the MSS.
* It's better to underestimate the RCV_MSS rather than overestimate.
* Overestimations make us ACKing less frequently than needed.
* Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
*/
void tcp_initialize_rcv_mss(struct sock *sk)
{
const struct tcp_sock *tp = tcp_sk(sk);
unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
hint = min(hint, tp->rcv_wnd / 2);
hint = min(hint, TCP_MSS_DEFAULT);
hint = max(hint, TCP_MIN_MSS);
inet_csk(sk)->icsk_ack.rcv_mss = hint;
}
EXPORT_SYMBOL(tcp_initialize_rcv_mss);
/* Receiver "autotuning" code.
*
* The algorithm for RTT estimation w/o timestamps is based on
* Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
* <https://public.lanl.gov/radiant/pubs.html#DRS>
*
* More detail on this code can be found at
* <http://staff.psc.edu/jheffner/>,
* though this reference is out of date. A new paper
* is pending.
*/
static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
{
u32 new_sample = tp->rcv_rtt_est.rtt_us;
long m = sample;
if (new_sample != 0) {
/* If we sample in larger samples in the non-timestamp
* case, we could grossly overestimate the RTT especially
* with chatty applications or bulk transfer apps which
* are stalled on filesystem I/O.
*
* Also, since we are only going for a minimum in the
* non-timestamp case, we do not smooth things out
* else with timestamps disabled convergence takes too
* long.
*/
if (!win_dep) {
m -= (new_sample >> 3);
new_sample += m;
} else {
m <<= 3;
if (m < new_sample)
new_sample = m;
}
} else {
/* No previous measure. */
new_sample = m << 3;
}
tp->rcv_rtt_est.rtt_us = new_sample;
}
static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
{
u32 delta_us;
if (tp->rcv_rtt_est.time == 0)
goto new_measure;
if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
return;
delta_us = tcp_stamp_us_delta(tp->tcp_mstamp, tp->rcv_rtt_est.time);
if (!delta_us)
delta_us = 1;
tcp_rcv_rtt_update(tp, delta_us, 1);
new_measure:
tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
tp->rcv_rtt_est.time = tp->tcp_mstamp;
}
static inline void tcp_rcv_rtt_measure_ts(struct sock *sk,
const struct sk_buff *skb)
{
struct tcp_sock *tp = tcp_sk(sk);
if (tp->rx_opt.rcv_tsecr == tp->rcv_rtt_last_tsecr)
return;
tp->rcv_rtt_last_tsecr = tp->rx_opt.rcv_tsecr;
if (TCP_SKB_CB(skb)->end_seq -
TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss) {
u32 delta = tcp_time_stamp(tp) - tp->rx_opt.rcv_tsecr;
u32 delta_us;
if (likely(delta < INT_MAX / (USEC_PER_SEC / TCP_TS_HZ))) {
if (!delta)
delta = 1;
delta_us = delta * (USEC_PER_SEC / TCP_TS_HZ);
tcp_rcv_rtt_update(tp, delta_us, 0);
}
}
}
/*
* This function should be called every time data is copied to user space.
* It calculates the appropriate TCP receive buffer space.
*/
void tcp_rcv_space_adjust(struct sock *sk)
{
struct tcp_sock *tp = tcp_sk(sk);
u32 copied;
int time;
trace_tcp_rcv_space_adjust(sk);
tcp_mstamp_refresh(tp);
time = tcp_stamp_us_delta(tp->tcp_mstamp, tp->rcvq_space.time);
if (time < (tp->rcv_rtt_est.rtt_us >> 3) || tp->rcv_rtt_est.rtt_us == 0)
return;
/* Number of bytes copied to user in last RTT */
copied = tp->copied_seq - tp->rcvq_space.seq;
if (copied <= tp->rcvq_space.space)
goto new_measure;
/* A bit of theory :
* copied = bytes received in previous RTT, our base window
* To cope with packet losses, we need a 2x factor
* To cope with slow start, and sender growing its cwin by 100 %
* every RTT, we need a 4x factor, because the ACK we are sending
* now is for the next RTT, not the current one :
* <prev RTT . ><current RTT .. ><next RTT .... >
*/
if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_moderate_rcvbuf) &&
!(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
u64 rcvwin, grow;
int rcvbuf;
/* minimal window to cope with packet losses, assuming
* steady state. Add some cushion because of small variations.
*/
rcvwin = ((u64)copied << 1) + 16 * tp->advmss;
/* Accommodate for sender rate increase (eg. slow start) */
grow = rcvwin * (copied - tp->rcvq_space.space);
do_div(grow, tp->rcvq_space.space);
rcvwin += (grow << 1);
rcvbuf = min_t(u64, tcp_space_from_win(sk, rcvwin),
READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[2]));
if (rcvbuf > sk->sk_rcvbuf) {
WRITE_ONCE(sk->sk_rcvbuf, rcvbuf);
/* Make the window clamp follow along. */
tp->window_clamp = tcp_win_from_space(sk, rcvbuf);
}
}
tp->rcvq_space.space = copied;
new_measure:
tp->rcvq_space.seq = tp->copied_seq;
tp->rcvq_space.time = tp->tcp_mstamp;
}
static void tcp_save_lrcv_flowlabel(struct sock *sk, const struct sk_buff *skb)
{
#if IS_ENABLED(CONFIG_IPV6)
struct inet_connection_sock *icsk = inet_csk(sk);
if (skb->protocol == htons(ETH_P_IPV6))
icsk->icsk_ack.lrcv_flowlabel = ntohl(ip6_flowlabel(ipv6_hdr(skb)));
#endif
}
/* There is something which you must keep in mind when you analyze the
* behavior of the tp->ato delayed ack timeout interval. When a
* connection starts up, we want to ack as quickly as possible. The
* problem is that "good" TCP's do slow start at the beginning of data
* transmission. The means that until we send the first few ACK's the
* sender will sit on his end and only queue most of his data, because
* he can only send snd_cwnd unacked packets at any given time. For
* each ACK we send, he increments snd_cwnd and transmits more of his
* queue. -DaveM
*/
[TCP]: Sed magic converts func(sk, tp, ...) -> func(sk, ...) This is (mostly) automated change using magic: sed -e '/struct sock \*sk/ N' -e '/struct sock \*sk/ N' -e '/struct sock \*sk/ N' -e '/struct sock \*sk/ N' -e 's|struct sock \*sk,[\n\t ]*struct tcp_sock \*tp\([^{]*\n{\n\)| struct sock \*sk\1\tstruct tcp_sock *tp = tcp_sk(sk);\n|g' -e 's|struct sock \*sk, struct tcp_sock \*tp| struct sock \*sk|g' -e 's|sk, tp\([^-]\)|sk\1|g' Fixed four unused variable (tp) warnings that were introduced. In addition, manually added newlines after local variables and tweaked function arguments positioning. $ gcc --version gcc (GCC) 4.1.1 20060525 (Red Hat 4.1.1-1) ... $ codiff -fV built-in.o.old built-in.o.new net/ipv4/route.c: rt_cache_flush | +14 1 function changed, 14 bytes added net/ipv4/tcp.c: tcp_setsockopt | -5 tcp_sendpage | -25 tcp_sendmsg | -16 3 functions changed, 46 bytes removed net/ipv4/tcp_input.c: tcp_try_undo_recovery | +3 tcp_try_undo_dsack | +2 tcp_mark_head_lost | -12 tcp_ack | -15 tcp_event_data_recv | -32 tcp_rcv_state_process | -10 tcp_rcv_established | +1 7 functions changed, 6 bytes added, 69 bytes removed, diff: -63 net/ipv4/tcp_output.c: update_send_head | -9 tcp_transmit_skb | +19 tcp_cwnd_validate | +1 tcp_write_wakeup | -17 __tcp_push_pending_frames | -25 tcp_push_one | -8 tcp_send_fin | -4 7 functions changed, 20 bytes added, 63 bytes removed, diff: -43 built-in.o.new: 18 functions changed, 40 bytes added, 178 bytes removed, diff: -138 Signed-off-by: Ilpo Järvinen <ilpo.jarvinen@helsinki.fi> Signed-off-by: David S. Miller <davem@davemloft.net>
2007-04-20 22:18:02 -07:00
static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
{
[TCP]: Sed magic converts func(sk, tp, ...) -> func(sk, ...) This is (mostly) automated change using magic: sed -e '/struct sock \*sk/ N' -e '/struct sock \*sk/ N' -e '/struct sock \*sk/ N' -e '/struct sock \*sk/ N' -e 's|struct sock \*sk,[\n\t ]*struct tcp_sock \*tp\([^{]*\n{\n\)| struct sock \*sk\1\tstruct tcp_sock *tp = tcp_sk(sk);\n|g' -e 's|struct sock \*sk, struct tcp_sock \*tp| struct sock \*sk|g' -e 's|sk, tp\([^-]\)|sk\1|g' Fixed four unused variable (tp) warnings that were introduced. In addition, manually added newlines after local variables and tweaked function arguments positioning. $ gcc --version gcc (GCC) 4.1.1 20060525 (Red Hat 4.1.1-1) ... $ codiff -fV built-in.o.old built-in.o.new net/ipv4/route.c: rt_cache_flush | +14 1 function changed, 14 bytes added net/ipv4/tcp.c: tcp_setsockopt | -5 tcp_sendpage | -25 tcp_sendmsg | -16 3 functions changed, 46 bytes removed net/ipv4/tcp_input.c: tcp_try_undo_recovery | +3 tcp_try_undo_dsack | +2 tcp_mark_head_lost | -12 tcp_ack | -15 tcp_event_data_recv | -32 tcp_rcv_state_process | -10 tcp_rcv_established | +1 7 functions changed, 6 bytes added, 69 bytes removed, diff: -63 net/ipv4/tcp_output.c: update_send_head | -9 tcp_transmit_skb | +19 tcp_cwnd_validate | +1 tcp_write_wakeup | -17 __tcp_push_pending_frames | -25 tcp_push_one | -8 tcp_send_fin | -4 7 functions changed, 20 bytes added, 63 bytes removed, diff: -43 built-in.o.new: 18 functions changed, 40 bytes added, 178 bytes removed, diff: -138 Signed-off-by: Ilpo Järvinen <ilpo.jarvinen@helsinki.fi> Signed-off-by: David S. Miller <davem@davemloft.net>
2007-04-20 22:18:02 -07:00
struct tcp_sock *tp = tcp_sk(sk);
struct inet_connection_sock *icsk = inet_csk(sk);
u32 now;
inet_csk_schedule_ack(sk);
tcp_measure_rcv_mss(sk, skb);
tcp_rcv_rtt_measure(tp);
now = tcp_jiffies32;
if (!icsk->icsk_ack.ato) {
/* The _first_ data packet received, initialize
* delayed ACK engine.
*/
tcp_incr_quickack(sk, TCP_MAX_QUICKACKS);
icsk->icsk_ack.ato = TCP_ATO_MIN;
} else {
int m = now - icsk->icsk_ack.lrcvtime;
if (m <= TCP_ATO_MIN / 2) {
/* The fastest case is the first. */
icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
} else if (m < icsk->icsk_ack.ato) {
icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
if (icsk->icsk_ack.ato > icsk->icsk_rto)
icsk->icsk_ack.ato = icsk->icsk_rto;
} else if (m > icsk->icsk_rto) {
/* Too long gap. Apparently sender failed to
* restart window, so that we send ACKs quickly.
*/
tcp_incr_quickack(sk, TCP_MAX_QUICKACKS);
}
}
icsk->icsk_ack.lrcvtime = now;
tcp_save_lrcv_flowlabel(sk, skb);
tcp_ecn_check_ce(sk, skb);
if (skb->len >= 128)
2021-07-21 03:15:28 -07:00
tcp_grow_window(sk, skb, true);
}
/* Called to compute a smoothed rtt estimate. The data fed to this
* routine either comes from timestamps, or from segments that were
* known _not_ to have been retransmitted [see Karn/Partridge
* Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
* piece by Van Jacobson.
* NOTE: the next three routines used to be one big routine.
* To save cycles in the RFC 1323 implementation it was better to break
* it up into three procedures. -- erics
*/
tcp: switch rtt estimations to usec resolution Upcoming congestion controls for TCP require usec resolution for RTT estimations. Millisecond resolution is simply not enough these days. FQ/pacing in DC environments also require this change for finer control and removal of bimodal behavior due to the current hack in tcp_update_pacing_rate() for 'small rtt' TCP_CONG_RTT_STAMP is no longer needed. As Julian Anastasov pointed out, we need to keep user compatibility : tcp_metrics used to export RTT and RTTVAR in msec resolution, so we added RTT_US and RTTVAR_US. An iproute2 patch is needed to use the new attributes if provided by the kernel. In this example ss command displays a srtt of 32 usecs (10Gbit link) lpk51:~# ./ss -i dst lpk52 Netid State Recv-Q Send-Q Local Address:Port Peer Address:Port tcp ESTAB 0 1 10.246.11.51:42959 10.246.11.52:64614 cubic wscale:6,6 rto:201 rtt:0.032/0.001 ato:40 mss:1448 cwnd:10 send 3620.0Mbps pacing_rate 7240.0Mbps unacked:1 rcv_rtt:993 rcv_space:29559 Updated iproute2 ip command displays : lpk51:~# ./ip tcp_metrics | grep 10.246.11.52 10.246.11.52 age 561.914sec cwnd 10 rtt 274us rttvar 213us source 10.246.11.51 Old binary displays : lpk51:~# ip tcp_metrics | grep 10.246.11.52 10.246.11.52 age 561.914sec cwnd 10 rtt 250us rttvar 125us source 10.246.11.51 With help from Julian Anastasov, Stephen Hemminger and Yuchung Cheng Signed-off-by: Eric Dumazet <edumazet@google.com> Acked-by: Neal Cardwell <ncardwell@google.com> Cc: Stephen Hemminger <stephen@networkplumber.org> Cc: Yuchung Cheng <ycheng@google.com> Cc: Larry Brakmo <brakmo@google.com> Cc: Julian Anastasov <ja@ssi.bg> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-02-26 14:02:48 -08:00
static void tcp_rtt_estimator(struct sock *sk, long mrtt_us)
{
struct tcp_sock *tp = tcp_sk(sk);
tcp: switch rtt estimations to usec resolution Upcoming congestion controls for TCP require usec resolution for RTT estimations. Millisecond resolution is simply not enough these days. FQ/pacing in DC environments also require this change for finer control and removal of bimodal behavior due to the current hack in tcp_update_pacing_rate() for 'small rtt' TCP_CONG_RTT_STAMP is no longer needed. As Julian Anastasov pointed out, we need to keep user compatibility : tcp_metrics used to export RTT and RTTVAR in msec resolution, so we added RTT_US and RTTVAR_US. An iproute2 patch is needed to use the new attributes if provided by the kernel. In this example ss command displays a srtt of 32 usecs (10Gbit link) lpk51:~# ./ss -i dst lpk52 Netid State Recv-Q Send-Q Local Address:Port Peer Address:Port tcp ESTAB 0 1 10.246.11.51:42959 10.246.11.52:64614 cubic wscale:6,6 rto:201 rtt:0.032/0.001 ato:40 mss:1448 cwnd:10 send 3620.0Mbps pacing_rate 7240.0Mbps unacked:1 rcv_rtt:993 rcv_space:29559 Updated iproute2 ip command displays : lpk51:~# ./ip tcp_metrics | grep 10.246.11.52 10.246.11.52 age 561.914sec cwnd 10 rtt 274us rttvar 213us source 10.246.11.51 Old binary displays : lpk51:~# ip tcp_metrics | grep 10.246.11.52 10.246.11.52 age 561.914sec cwnd 10 rtt 250us rttvar 125us source 10.246.11.51 With help from Julian Anastasov, Stephen Hemminger and Yuchung Cheng Signed-off-by: Eric Dumazet <edumazet@google.com> Acked-by: Neal Cardwell <ncardwell@google.com> Cc: Stephen Hemminger <stephen@networkplumber.org> Cc: Yuchung Cheng <ycheng@google.com> Cc: Larry Brakmo <brakmo@google.com> Cc: Julian Anastasov <ja@ssi.bg> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-02-26 14:02:48 -08:00
long m = mrtt_us; /* RTT */
u32 srtt = tp->srtt_us;
/* The following amusing code comes from Jacobson's
* article in SIGCOMM '88. Note that rtt and mdev
* are scaled versions of rtt and mean deviation.
* This is designed to be as fast as possible
* m stands for "measurement".
*
* On a 1990 paper the rto value is changed to:
* RTO = rtt + 4 * mdev
*
* Funny. This algorithm seems to be very broken.
* These formulae increase RTO, when it should be decreased, increase
* too slowly, when it should be increased quickly, decrease too quickly
* etc. I guess in BSD RTO takes ONE value, so that it is absolutely
* does not matter how to _calculate_ it. Seems, it was trap
* that VJ failed to avoid. 8)
*/
2014-02-06 15:57:10 -08:00
if (srtt != 0) {
m -= (srtt >> 3); /* m is now error in rtt est */
srtt += m; /* rtt = 7/8 rtt + 1/8 new */
if (m < 0) {
m = -m; /* m is now abs(error) */
tcp: switch rtt estimations to usec resolution Upcoming congestion controls for TCP require usec resolution for RTT estimations. Millisecond resolution is simply not enough these days. FQ/pacing in DC environments also require this change for finer control and removal of bimodal behavior due to the current hack in tcp_update_pacing_rate() for 'small rtt' TCP_CONG_RTT_STAMP is no longer needed. As Julian Anastasov pointed out, we need to keep user compatibility : tcp_metrics used to export RTT and RTTVAR in msec resolution, so we added RTT_US and RTTVAR_US. An iproute2 patch is needed to use the new attributes if provided by the kernel. In this example ss command displays a srtt of 32 usecs (10Gbit link) lpk51:~# ./ss -i dst lpk52 Netid State Recv-Q Send-Q Local Address:Port Peer Address:Port tcp ESTAB 0 1 10.246.11.51:42959 10.246.11.52:64614 cubic wscale:6,6 rto:201 rtt:0.032/0.001 ato:40 mss:1448 cwnd:10 send 3620.0Mbps pacing_rate 7240.0Mbps unacked:1 rcv_rtt:993 rcv_space:29559 Updated iproute2 ip command displays : lpk51:~# ./ip tcp_metrics | grep 10.246.11.52 10.246.11.52 age 561.914sec cwnd 10 rtt 274us rttvar 213us source 10.246.11.51 Old binary displays : lpk51:~# ip tcp_metrics | grep 10.246.11.52 10.246.11.52 age 561.914sec cwnd 10 rtt 250us rttvar 125us source 10.246.11.51 With help from Julian Anastasov, Stephen Hemminger and Yuchung Cheng Signed-off-by: Eric Dumazet <edumazet@google.com> Acked-by: Neal Cardwell <ncardwell@google.com> Cc: Stephen Hemminger <stephen@networkplumber.org> Cc: Yuchung Cheng <ycheng@google.com> Cc: Larry Brakmo <brakmo@google.com> Cc: Julian Anastasov <ja@ssi.bg> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-02-26 14:02:48 -08:00
m -= (tp->mdev_us >> 2); /* similar update on mdev */
/* This is similar to one of Eifel findings.
* Eifel blocks mdev updates when rtt decreases.
* This solution is a bit different: we use finer gain
* for mdev in this case (alpha*beta).
* Like Eifel it also prevents growth of rto,
* but also it limits too fast rto decreases,
* happening in pure Eifel.
*/
if (m > 0)
m >>= 3;
} else {
tcp: switch rtt estimations to usec resolution Upcoming congestion controls for TCP require usec resolution for RTT estimations. Millisecond resolution is simply not enough these days. FQ/pacing in DC environments also require this change for finer control and removal of bimodal behavior due to the current hack in tcp_update_pacing_rate() for 'small rtt' TCP_CONG_RTT_STAMP is no longer needed. As Julian Anastasov pointed out, we need to keep user compatibility : tcp_metrics used to export RTT and RTTVAR in msec resolution, so we added RTT_US and RTTVAR_US. An iproute2 patch is needed to use the new attributes if provided by the kernel. In this example ss command displays a srtt of 32 usecs (10Gbit link) lpk51:~# ./ss -i dst lpk52 Netid State Recv-Q Send-Q Local Address:Port Peer Address:Port tcp ESTAB 0 1 10.246.11.51:42959 10.246.11.52:64614 cubic wscale:6,6 rto:201 rtt:0.032/0.001 ato:40 mss:1448 cwnd:10 send 3620.0Mbps pacing_rate 7240.0Mbps unacked:1 rcv_rtt:993 rcv_space:29559 Updated iproute2 ip command displays : lpk51:~# ./ip tcp_metrics | grep 10.246.11.52 10.246.11.52 age 561.914sec cwnd 10 rtt 274us rttvar 213us source 10.246.11.51 Old binary displays : lpk51:~# ip tcp_metrics | grep 10.246.11.52 10.246.11.52 age 561.914sec cwnd 10 rtt 250us rttvar 125us source 10.246.11.51 With help from Julian Anastasov, Stephen Hemminger and Yuchung Cheng Signed-off-by: Eric Dumazet <edumazet@google.com> Acked-by: Neal Cardwell <ncardwell@google.com> Cc: Stephen Hemminger <stephen@networkplumber.org> Cc: Yuchung Cheng <ycheng@google.com> Cc: Larry Brakmo <brakmo@google.com> Cc: Julian Anastasov <ja@ssi.bg> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-02-26 14:02:48 -08:00
m -= (tp->mdev_us >> 2); /* similar update on mdev */
}
tcp: switch rtt estimations to usec resolution Upcoming congestion controls for TCP require usec resolution for RTT estimations. Millisecond resolution is simply not enough these days. FQ/pacing in DC environments also require this change for finer control and removal of bimodal behavior due to the current hack in tcp_update_pacing_rate() for 'small rtt' TCP_CONG_RTT_STAMP is no longer needed. As Julian Anastasov pointed out, we need to keep user compatibility : tcp_metrics used to export RTT and RTTVAR in msec resolution, so we added RTT_US and RTTVAR_US. An iproute2 patch is needed to use the new attributes if provided by the kernel. In this example ss command displays a srtt of 32 usecs (10Gbit link) lpk51:~# ./ss -i dst lpk52 Netid State Recv-Q Send-Q Local Address:Port Peer Address:Port tcp ESTAB 0 1 10.246.11.51:42959 10.246.11.52:64614 cubic wscale:6,6 rto:201 rtt:0.032/0.001 ato:40 mss:1448 cwnd:10 send 3620.0Mbps pacing_rate 7240.0Mbps unacked:1 rcv_rtt:993 rcv_space:29559 Updated iproute2 ip command displays : lpk51:~# ./ip tcp_metrics | grep 10.246.11.52 10.246.11.52 age 561.914sec cwnd 10 rtt 274us rttvar 213us source 10.246.11.51 Old binary displays : lpk51:~# ip tcp_metrics | grep 10.246.11.52 10.246.11.52 age 561.914sec cwnd 10 rtt 250us rttvar 125us source 10.246.11.51 With help from Julian Anastasov, Stephen Hemminger and Yuchung Cheng Signed-off-by: Eric Dumazet <edumazet@google.com> Acked-by: Neal Cardwell <ncardwell@google.com> Cc: Stephen Hemminger <stephen@networkplumber.org> Cc: Yuchung Cheng <ycheng@google.com> Cc: Larry Brakmo <brakmo@google.com> Cc: Julian Anastasov <ja@ssi.bg> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-02-26 14:02:48 -08:00
tp->mdev_us += m; /* mdev = 3/4 mdev + 1/4 new */
if (tp->mdev_us > tp->mdev_max_us) {
tp->mdev_max_us = tp->mdev_us;
if (tp->mdev_max_us > tp->rttvar_us)
tp->rttvar_us = tp->mdev_max_us;
}
if (after(tp->snd_una, tp->rtt_seq)) {
tcp: switch rtt estimations to usec resolution Upcoming congestion controls for TCP require usec resolution for RTT estimations. Millisecond resolution is simply not enough these days. FQ/pacing in DC environments also require this change for finer control and removal of bimodal behavior due to the current hack in tcp_update_pacing_rate() for 'small rtt' TCP_CONG_RTT_STAMP is no longer needed. As Julian Anastasov pointed out, we need to keep user compatibility : tcp_metrics used to export RTT and RTTVAR in msec resolution, so we added RTT_US and RTTVAR_US. An iproute2 patch is needed to use the new attributes if provided by the kernel. In this example ss command displays a srtt of 32 usecs (10Gbit link) lpk51:~# ./ss -i dst lpk52 Netid State Recv-Q Send-Q Local Address:Port Peer Address:Port tcp ESTAB 0 1 10.246.11.51:42959 10.246.11.52:64614 cubic wscale:6,6 rto:201 rtt:0.032/0.001 ato:40 mss:1448 cwnd:10 send 3620.0Mbps pacing_rate 7240.0Mbps unacked:1 rcv_rtt:993 rcv_space:29559 Updated iproute2 ip command displays : lpk51:~# ./ip tcp_metrics | grep 10.246.11.52 10.246.11.52 age 561.914sec cwnd 10 rtt 274us rttvar 213us source 10.246.11.51 Old binary displays : lpk51:~# ip tcp_metrics | grep 10.246.11.52 10.246.11.52 age 561.914sec cwnd 10 rtt 250us rttvar 125us source 10.246.11.51 With help from Julian Anastasov, Stephen Hemminger and Yuchung Cheng Signed-off-by: Eric Dumazet <edumazet@google.com> Acked-by: Neal Cardwell <ncardwell@google.com> Cc: Stephen Hemminger <stephen@networkplumber.org> Cc: Yuchung Cheng <ycheng@google.com> Cc: Larry Brakmo <brakmo@google.com> Cc: Julian Anastasov <ja@ssi.bg> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-02-26 14:02:48 -08:00
if (tp->mdev_max_us < tp->rttvar_us)
tp->rttvar_us -= (tp->rttvar_us - tp->mdev_max_us) >> 2;
tp->rtt_seq = tp->snd_nxt;
tcp: switch rtt estimations to usec resolution Upcoming congestion controls for TCP require usec resolution for RTT estimations. Millisecond resolution is simply not enough these days. FQ/pacing in DC environments also require this change for finer control and removal of bimodal behavior due to the current hack in tcp_update_pacing_rate() for 'small rtt' TCP_CONG_RTT_STAMP is no longer needed. As Julian Anastasov pointed out, we need to keep user compatibility : tcp_metrics used to export RTT and RTTVAR in msec resolution, so we added RTT_US and RTTVAR_US. An iproute2 patch is needed to use the new attributes if provided by the kernel. In this example ss command displays a srtt of 32 usecs (10Gbit link) lpk51:~# ./ss -i dst lpk52 Netid State Recv-Q Send-Q Local Address:Port Peer Address:Port tcp ESTAB 0 1 10.246.11.51:42959 10.246.11.52:64614 cubic wscale:6,6 rto:201 rtt:0.032/0.001 ato:40 mss:1448 cwnd:10 send 3620.0Mbps pacing_rate 7240.0Mbps unacked:1 rcv_rtt:993 rcv_space:29559 Updated iproute2 ip command displays : lpk51:~# ./ip tcp_metrics | grep 10.246.11.52 10.246.11.52 age 561.914sec cwnd 10 rtt 274us rttvar 213us source 10.246.11.51 Old binary displays : lpk51:~# ip tcp_metrics | grep 10.246.11.52 10.246.11.52 age 561.914sec cwnd 10 rtt 250us rttvar 125us source 10.246.11.51 With help from Julian Anastasov, Stephen Hemminger and Yuchung Cheng Signed-off-by: Eric Dumazet <edumazet@google.com> Acked-by: Neal Cardwell <ncardwell@google.com> Cc: Stephen Hemminger <stephen@networkplumber.org> Cc: Yuchung Cheng <ycheng@google.com> Cc: Larry Brakmo <brakmo@google.com> Cc: Julian Anastasov <ja@ssi.bg> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-02-26 14:02:48 -08:00
tp->mdev_max_us = tcp_rto_min_us(sk);
tcp_bpf_rtt(sk);
}
} else {
/* no previous measure. */
2014-02-06 15:57:10 -08:00
srtt = m << 3; /* take the measured time to be rtt */
tcp: switch rtt estimations to usec resolution Upcoming congestion controls for TCP require usec resolution for RTT estimations. Millisecond resolution is simply not enough these days. FQ/pacing in DC environments also require this change for finer control and removal of bimodal behavior due to the current hack in tcp_update_pacing_rate() for 'small rtt' TCP_CONG_RTT_STAMP is no longer needed. As Julian Anastasov pointed out, we need to keep user compatibility : tcp_metrics used to export RTT and RTTVAR in msec resolution, so we added RTT_US and RTTVAR_US. An iproute2 patch is needed to use the new attributes if provided by the kernel. In this example ss command displays a srtt of 32 usecs (10Gbit link) lpk51:~# ./ss -i dst lpk52 Netid State Recv-Q Send-Q Local Address:Port Peer Address:Port tcp ESTAB 0 1 10.246.11.51:42959 10.246.11.52:64614 cubic wscale:6,6 rto:201 rtt:0.032/0.001 ato:40 mss:1448 cwnd:10 send 3620.0Mbps pacing_rate 7240.0Mbps unacked:1 rcv_rtt:993 rcv_space:29559 Updated iproute2 ip command displays : lpk51:~# ./ip tcp_metrics | grep 10.246.11.52 10.246.11.52 age 561.914sec cwnd 10 rtt 274us rttvar 213us source 10.246.11.51 Old binary displays : lpk51:~# ip tcp_metrics | grep 10.246.11.52 10.246.11.52 age 561.914sec cwnd 10 rtt 250us rttvar 125us source 10.246.11.51 With help from Julian Anastasov, Stephen Hemminger and Yuchung Cheng Signed-off-by: Eric Dumazet <edumazet@google.com> Acked-by: Neal Cardwell <ncardwell@google.com> Cc: Stephen Hemminger <stephen@networkplumber.org> Cc: Yuchung Cheng <ycheng@google.com> Cc: Larry Brakmo <brakmo@google.com> Cc: Julian Anastasov <ja@ssi.bg> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-02-26 14:02:48 -08:00
tp->mdev_us = m << 1; /* make sure rto = 3*rtt */
tp->rttvar_us = max(tp->mdev_us, tcp_rto_min_us(sk));
tp->mdev_max_us = tp->rttvar_us;
tp->rtt_seq = tp->snd_nxt;
tcp_bpf_rtt(sk);
}
tcp: switch rtt estimations to usec resolution Upcoming congestion controls for TCP require usec resolution for RTT estimations. Millisecond resolution is simply not enough these days. FQ/pacing in DC environments also require this change for finer control and removal of bimodal behavior due to the current hack in tcp_update_pacing_rate() for 'small rtt' TCP_CONG_RTT_STAMP is no longer needed. As Julian Anastasov pointed out, we need to keep user compatibility : tcp_metrics used to export RTT and RTTVAR in msec resolution, so we added RTT_US and RTTVAR_US. An iproute2 patch is needed to use the new attributes if provided by the kernel. In this example ss command displays a srtt of 32 usecs (10Gbit link) lpk51:~# ./ss -i dst lpk52 Netid State Recv-Q Send-Q Local Address:Port Peer Address:Port tcp ESTAB 0 1 10.246.11.51:42959 10.246.11.52:64614 cubic wscale:6,6 rto:201 rtt:0.032/0.001 ato:40 mss:1448 cwnd:10 send 3620.0Mbps pacing_rate 7240.0Mbps unacked:1 rcv_rtt:993 rcv_space:29559 Updated iproute2 ip command displays : lpk51:~# ./ip tcp_metrics | grep 10.246.11.52 10.246.11.52 age 561.914sec cwnd 10 rtt 274us rttvar 213us source 10.246.11.51 Old binary displays : lpk51:~# ip tcp_metrics | grep 10.246.11.52 10.246.11.52 age 561.914sec cwnd 10 rtt 250us rttvar 125us source 10.246.11.51 With help from Julian Anastasov, Stephen Hemminger and Yuchung Cheng Signed-off-by: Eric Dumazet <edumazet@google.com> Acked-by: Neal Cardwell <ncardwell@google.com> Cc: Stephen Hemminger <stephen@networkplumber.org> Cc: Yuchung Cheng <ycheng@google.com> Cc: Larry Brakmo <brakmo@google.com> Cc: Julian Anastasov <ja@ssi.bg> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-02-26 14:02:48 -08:00
tp->srtt_us = max(1U, srtt);
}
tcp: TSO packets automatic sizing After hearing many people over past years complaining against TSO being bursty or even buggy, we are proud to present automatic sizing of TSO packets. One part of the problem is that tcp_tso_should_defer() uses an heuristic relying on upcoming ACKS instead of a timer, but more generally, having big TSO packets makes little sense for low rates, as it tends to create micro bursts on the network, and general consensus is to reduce the buffering amount. This patch introduces a per socket sk_pacing_rate, that approximates the current sending rate, and allows us to size the TSO packets so that we try to send one packet every ms. This field could be set by other transports. Patch has no impact for high speed flows, where having large TSO packets makes sense to reach line rate. For other flows, this helps better packet scheduling and ACK clocking. This patch increases performance of TCP flows in lossy environments. A new sysctl (tcp_min_tso_segs) is added, to specify the minimal size of a TSO packet (default being 2). A follow-up patch will provide a new packet scheduler (FQ), using sk_pacing_rate as an input to perform optional per flow pacing. This explains why we chose to set sk_pacing_rate to twice the current rate, allowing 'slow start' ramp up. sk_pacing_rate = 2 * cwnd * mss / srtt v2: Neal Cardwell reported a suspect deferring of last two segments on initial write of 10 MSS, I had to change tcp_tso_should_defer() to take into account tp->xmit_size_goal_segs Signed-off-by: Eric Dumazet <edumazet@google.com> Cc: Neal Cardwell <ncardwell@google.com> Cc: Yuchung Cheng <ycheng@google.com> Cc: Van Jacobson <vanj@google.com> Cc: Tom Herbert <therbert@google.com> Acked-by: Yuchung Cheng <ycheng@google.com> Acked-by: Neal Cardwell <ncardwell@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2013-08-27 05:46:32 -07:00
static void tcp_update_pacing_rate(struct sock *sk)
{
const struct tcp_sock *tp = tcp_sk(sk);
u64 rate;
/* set sk_pacing_rate to 200 % of current rate (mss * cwnd / srtt) */
rate = (u64)tp->mss_cache * ((USEC_PER_SEC / 100) << 3);
/* current rate is (cwnd * mss) / srtt
* In Slow Start [1], set sk_pacing_rate to 200 % the current rate.
* In Congestion Avoidance phase, set it to 120 % the current rate.
*
* [1] : Normal Slow Start condition is (tp->snd_cwnd < tp->snd_ssthresh)
* If snd_cwnd >= (tp->snd_ssthresh / 2), we are approaching
* end of slow start and should slow down.
*/
if (tcp_snd_cwnd(tp) < tp->snd_ssthresh / 2)
rate *= READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_pacing_ss_ratio);
else
rate *= READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_pacing_ca_ratio);
tcp: TSO packets automatic sizing After hearing many people over past years complaining against TSO being bursty or even buggy, we are proud to present automatic sizing of TSO packets. One part of the problem is that tcp_tso_should_defer() uses an heuristic relying on upcoming ACKS instead of a timer, but more generally, having big TSO packets makes little sense for low rates, as it tends to create micro bursts on the network, and general consensus is to reduce the buffering amount. This patch introduces a per socket sk_pacing_rate, that approximates the current sending rate, and allows us to size the TSO packets so that we try to send one packet every ms. This field could be set by other transports. Patch has no impact for high speed flows, where having large TSO packets makes sense to reach line rate. For other flows, this helps better packet scheduling and ACK clocking. This patch increases performance of TCP flows in lossy environments. A new sysctl (tcp_min_tso_segs) is added, to specify the minimal size of a TSO packet (default being 2). A follow-up patch will provide a new packet scheduler (FQ), using sk_pacing_rate as an input to perform optional per flow pacing. This explains why we chose to set sk_pacing_rate to twice the current rate, allowing 'slow start' ramp up. sk_pacing_rate = 2 * cwnd * mss / srtt v2: Neal Cardwell reported a suspect deferring of last two segments on initial write of 10 MSS, I had to change tcp_tso_should_defer() to take into account tp->xmit_size_goal_segs Signed-off-by: Eric Dumazet <edumazet@google.com> Cc: Neal Cardwell <ncardwell@google.com> Cc: Yuchung Cheng <ycheng@google.com> Cc: Van Jacobson <vanj@google.com> Cc: Tom Herbert <therbert@google.com> Acked-by: Yuchung Cheng <ycheng@google.com> Acked-by: Neal Cardwell <ncardwell@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2013-08-27 05:46:32 -07:00
rate *= max(tcp_snd_cwnd(tp), tp->packets_out);
tcp: TSO packets automatic sizing After hearing many people over past years complaining against TSO being bursty or even buggy, we are proud to present automatic sizing of TSO packets. One part of the problem is that tcp_tso_should_defer() uses an heuristic relying on upcoming ACKS instead of a timer, but more generally, having big TSO packets makes little sense for low rates, as it tends to create micro bursts on the network, and general consensus is to reduce the buffering amount. This patch introduces a per socket sk_pacing_rate, that approximates the current sending rate, and allows us to size the TSO packets so that we try to send one packet every ms. This field could be set by other transports. Patch has no impact for high speed flows, where having large TSO packets makes sense to reach line rate. For other flows, this helps better packet scheduling and ACK clocking. This patch increases performance of TCP flows in lossy environments. A new sysctl (tcp_min_tso_segs) is added, to specify the minimal size of a TSO packet (default being 2). A follow-up patch will provide a new packet scheduler (FQ), using sk_pacing_rate as an input to perform optional per flow pacing. This explains why we chose to set sk_pacing_rate to twice the current rate, allowing 'slow start' ramp up. sk_pacing_rate = 2 * cwnd * mss / srtt v2: Neal Cardwell reported a suspect deferring of last two segments on initial write of 10 MSS, I had to change tcp_tso_should_defer() to take into account tp->xmit_size_goal_segs Signed-off-by: Eric Dumazet <edumazet@google.com> Cc: Neal Cardwell <ncardwell@google.com> Cc: Yuchung Cheng <ycheng@google.com> Cc: Van Jacobson <vanj@google.com> Cc: Tom Herbert <therbert@google.com> Acked-by: Yuchung Cheng <ycheng@google.com> Acked-by: Neal Cardwell <ncardwell@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2013-08-27 05:46:32 -07:00
tcp: switch rtt estimations to usec resolution Upcoming congestion controls for TCP require usec resolution for RTT estimations. Millisecond resolution is simply not enough these days. FQ/pacing in DC environments also require this change for finer control and removal of bimodal behavior due to the current hack in tcp_update_pacing_rate() for 'small rtt' TCP_CONG_RTT_STAMP is no longer needed. As Julian Anastasov pointed out, we need to keep user compatibility : tcp_metrics used to export RTT and RTTVAR in msec resolution, so we added RTT_US and RTTVAR_US. An iproute2 patch is needed to use the new attributes if provided by the kernel. In this example ss command displays a srtt of 32 usecs (10Gbit link) lpk51:~# ./ss -i dst lpk52 Netid State Recv-Q Send-Q Local Address:Port Peer Address:Port tcp ESTAB 0 1 10.246.11.51:42959 10.246.11.52:64614 cubic wscale:6,6 rto:201 rtt:0.032/0.001 ato:40 mss:1448 cwnd:10 send 3620.0Mbps pacing_rate 7240.0Mbps unacked:1 rcv_rtt:993 rcv_space:29559 Updated iproute2 ip command displays : lpk51:~# ./ip tcp_metrics | grep 10.246.11.52 10.246.11.52 age 561.914sec cwnd 10 rtt 274us rttvar 213us source 10.246.11.51 Old binary displays : lpk51:~# ip tcp_metrics | grep 10.246.11.52 10.246.11.52 age 561.914sec cwnd 10 rtt 250us rttvar 125us source 10.246.11.51 With help from Julian Anastasov, Stephen Hemminger and Yuchung Cheng Signed-off-by: Eric Dumazet <edumazet@google.com> Acked-by: Neal Cardwell <ncardwell@google.com> Cc: Stephen Hemminger <stephen@networkplumber.org> Cc: Yuchung Cheng <ycheng@google.com> Cc: Larry Brakmo <brakmo@google.com> Cc: Julian Anastasov <ja@ssi.bg> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-02-26 14:02:48 -08:00
if (likely(tp->srtt_us))
do_div(rate, tp->srtt_us);
tcp: TSO packets automatic sizing After hearing many people over past years complaining against TSO being bursty or even buggy, we are proud to present automatic sizing of TSO packets. One part of the problem is that tcp_tso_should_defer() uses an heuristic relying on upcoming ACKS instead of a timer, but more generally, having big TSO packets makes little sense for low rates, as it tends to create micro bursts on the network, and general consensus is to reduce the buffering amount. This patch introduces a per socket sk_pacing_rate, that approximates the current sending rate, and allows us to size the TSO packets so that we try to send one packet every ms. This field could be set by other transports. Patch has no impact for high speed flows, where having large TSO packets makes sense to reach line rate. For other flows, this helps better packet scheduling and ACK clocking. This patch increases performance of TCP flows in lossy environments. A new sysctl (tcp_min_tso_segs) is added, to specify the minimal size of a TSO packet (default being 2). A follow-up patch will provide a new packet scheduler (FQ), using sk_pacing_rate as an input to perform optional per flow pacing. This explains why we chose to set sk_pacing_rate to twice the current rate, allowing 'slow start' ramp up. sk_pacing_rate = 2 * cwnd * mss / srtt v2: Neal Cardwell reported a suspect deferring of last two segments on initial write of 10 MSS, I had to change tcp_tso_should_defer() to take into account tp->xmit_size_goal_segs Signed-off-by: Eric Dumazet <edumazet@google.com> Cc: Neal Cardwell <ncardwell@google.com> Cc: Yuchung Cheng <ycheng@google.com> Cc: Van Jacobson <vanj@google.com> Cc: Tom Herbert <therbert@google.com> Acked-by: Yuchung Cheng <ycheng@google.com> Acked-by: Neal Cardwell <ncardwell@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2013-08-27 05:46:32 -07:00
locking/atomics, net/ipv4/tcp_input.c: Convert ACCESS_ONCE() to READ_ONCE()/WRITE_ONCE() For several reasons, it is desirable to use {READ,WRITE}_ONCE() in preference to ACCESS_ONCE(), and new code is expected to use one of the former. So far, there's been no reason to change most existing uses of ACCESS_ONCE(), as these aren't currently harmful. However, for some features it is necessary to instrument reads and writes separately, which is not possible with ACCESS_ONCE(). This distinction is critical to correct operation. It's possible to transform the bulk of kernel code using the Coccinelle script below. However, this doesn't handle comments, leaving references to ACCESS_ONCE() instances which have been removed. As a preparatory step, this patch converts the IPv4 TCP input code and comments to use {READ,WRITE}_ONCE() consistently. ---- virtual patch @ depends on patch @ expression E1, E2; @@ - ACCESS_ONCE(E1) = E2 + WRITE_ONCE(E1, E2) @ depends on patch @ expression E; @@ - ACCESS_ONCE(E) + READ_ONCE(E) ---- Signed-off-by: Mark Rutland <mark.rutland@arm.com> Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Cc: David S. Miller <davem@davemloft.net> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: linux-arch@vger.kernel.org Cc: mpe@ellerman.id.au Cc: shuah@kernel.org Cc: snitzer@redhat.com Cc: thor.thayer@linux.intel.com Cc: tj@kernel.org Cc: viro@zeniv.linux.org.uk Cc: will.deacon@arm.com Link: http://lkml.kernel.org/r/1508792849-3115-8-git-send-email-paulmck@linux.vnet.ibm.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2017-10-23 14:07:18 -07:00
/* WRITE_ONCE() is needed because sch_fq fetches sk_pacing_rate
* without any lock. We want to make sure compiler wont store
* intermediate values in this location.
*/
WRITE_ONCE(sk->sk_pacing_rate,
min_t(u64, rate, READ_ONCE(sk->sk_max_pacing_rate)));
tcp: TSO packets automatic sizing After hearing many people over past years complaining against TSO being bursty or even buggy, we are proud to present automatic sizing of TSO packets. One part of the problem is that tcp_tso_should_defer() uses an heuristic relying on upcoming ACKS instead of a timer, but more generally, having big TSO packets makes little sense for low rates, as it tends to create micro bursts on the network, and general consensus is to reduce the buffering amount. This patch introduces a per socket sk_pacing_rate, that approximates the current sending rate, and allows us to size the TSO packets so that we try to send one packet every ms. This field could be set by other transports. Patch has no impact for high speed flows, where having large TSO packets makes sense to reach line rate. For other flows, this helps better packet scheduling and ACK clocking. This patch increases performance of TCP flows in lossy environments. A new sysctl (tcp_min_tso_segs) is added, to specify the minimal size of a TSO packet (default being 2). A follow-up patch will provide a new packet scheduler (FQ), using sk_pacing_rate as an input to perform optional per flow pacing. This explains why we chose to set sk_pacing_rate to twice the current rate, allowing 'slow start' ramp up. sk_pacing_rate = 2 * cwnd * mss / srtt v2: Neal Cardwell reported a suspect deferring of last two segments on initial write of 10 MSS, I had to change tcp_tso_should_defer() to take into account tp->xmit_size_goal_segs Signed-off-by: Eric Dumazet <edumazet@google.com> Cc: Neal Cardwell <ncardwell@google.com> Cc: Yuchung Cheng <ycheng@google.com> Cc: Van Jacobson <vanj@google.com> Cc: Tom Herbert <therbert@google.com> Acked-by: Yuchung Cheng <ycheng@google.com> Acked-by: Neal Cardwell <ncardwell@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2013-08-27 05:46:32 -07:00
}
/* Calculate rto without backoff. This is the second half of Van Jacobson's
* routine referred to above.
*/
static void tcp_set_rto(struct sock *sk)
{
const struct tcp_sock *tp = tcp_sk(sk);
/* Old crap is replaced with new one. 8)
*
* More seriously:
* 1. If rtt variance happened to be less 50msec, it is hallucination.
* It cannot be less due to utterly erratic ACK generation made
* at least by solaris and freebsd. "Erratic ACKs" has _nothing_
* to do with delayed acks, because at cwnd>2 true delack timeout
* is invisible. Actually, Linux-2.4 also generates erratic
* ACKs in some circumstances.
*/
inet_csk(sk)->icsk_rto = __tcp_set_rto(tp);
/* 2. Fixups made earlier cannot be right.
* If we do not estimate RTO correctly without them,
* all the algo is pure shit and should be replaced
* with correct one. It is exactly, which we pretend to do.
*/
/* NOTE: clamping at TCP_RTO_MIN is not required, current algo
* guarantees that rto is higher.
*/
tcp_bound_rto(sk);
}
__u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst)
{
__u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
if (!cwnd)
cwnd = TCP_INIT_CWND;
return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
}
struct tcp_sacktag_state {
/* Timestamps for earliest and latest never-retransmitted segment
* that was SACKed. RTO needs the earliest RTT to stay conservative,
* but congestion control should still get an accurate delay signal.
*/
u64 first_sackt;
u64 last_sackt;
u32 reord;
u32 sack_delivered;
int flag;
unsigned int mss_now;
struct rate_sample *rate;
};
/* Take a notice that peer is sending D-SACKs. Skip update of data delivery
* and spurious retransmission information if this DSACK is unlikely caused by
* sender's action:
* - DSACKed sequence range is larger than maximum receiver's window.
* - Total no. of DSACKed segments exceed the total no. of retransmitted segs.
*/
static u32 tcp_dsack_seen(struct tcp_sock *tp, u32 start_seq,
u32 end_seq, struct tcp_sacktag_state *state)
{
u32 seq_len, dup_segs = 1;
if (!before(start_seq, end_seq))
return 0;
seq_len = end_seq - start_seq;
/* Dubious DSACK: DSACKed range greater than maximum advertised rwnd */
if (seq_len > tp->max_window)
return 0;
if (seq_len > tp->mss_cache)
dup_segs = DIV_ROUND_UP(seq_len, tp->mss_cache);
else if (tp->tlp_high_seq && tp->tlp_high_seq == end_seq)
state->flag |= FLAG_DSACK_TLP;
tp->dsack_dups += dup_segs;
/* Skip the DSACK if dup segs weren't retransmitted by sender */
if (tp->dsack_dups > tp->total_retrans)
return 0;
tp->rx_opt.sack_ok |= TCP_DSACK_SEEN;
/* We increase the RACK ordering window in rounds where we receive
* DSACKs that may have been due to reordering causing RACK to trigger
* a spurious fast recovery. Thus RACK ignores DSACKs that happen
* without having seen reordering, or that match TLP probes (TLP
* is timer-driven, not triggered by RACK).
*/
if (tp->reord_seen && !(state->flag & FLAG_DSACK_TLP))
tp->rack.dsack_seen = 1;
state->flag |= FLAG_DSACKING_ACK;
/* A spurious retransmission is delivered */
state->sack_delivered += dup_segs;
return dup_segs;
}
/* It's reordering when higher sequence was delivered (i.e. sacked) before
* some lower never-retransmitted sequence ("low_seq"). The maximum reordering
* distance is approximated in full-mss packet distance ("reordering").
*/
static void tcp_check_sack_reordering(struct sock *sk, const u32 low_seq,
const int ts)
{
struct tcp_sock *tp = tcp_sk(sk);
const u32 mss = tp->mss_cache;
u32 fack, metric;
fack = tcp_highest_sack_seq(tp);
if (!before(low_seq, fack))
return;
metric = fack - low_seq;
if ((metric > tp->reordering * mss) && mss) {
#if FASTRETRANS_DEBUG > 1
pr_debug("Disorder%d %d %u f%u s%u rr%d\n",
tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
tp->reordering,
0,
tp->sacked_out,
tp->undo_marker ? tp->undo_retrans : 0);
#endif
tp->reordering = min_t(u32, (metric + mss - 1) / mss,
READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_max_reordering));
}
tcp: early retransmit This patch implements RFC 5827 early retransmit (ER) for TCP. It reduces DUPACK threshold (dupthresh) if outstanding packets are less than 4 to recover losses by fast recovery instead of timeout. While the algorithm is simple, small but frequent network reordering makes this feature dangerous: the connection repeatedly enter false recovery and degrade performance. Therefore we implement a mitigation suggested in the appendix of the RFC that delays entering fast recovery by a small interval, i.e., RTT/4. Currently ER is conservative and is disabled for the rest of the connection after the first reordering event. A large scale web server experiment on the performance impact of ER is summarized in section 6 of the paper "Proportional Rate Reduction for TCP”, IMC 2011. http://conferences.sigcomm.org/imc/2011/docs/p155.pdf Note that Linux has a similar feature called THIN_DUPACK. The differences are THIN_DUPACK do not mitigate reorderings and is only used after slow start. Currently ER is disabled if THIN_DUPACK is enabled. I would be happy to merge THIN_DUPACK feature with ER if people think it's a good idea. ER is enabled by sysctl_tcp_early_retrans: 0: Disables ER 1: Reduce dupthresh to packets_out - 1 when outstanding packets < 4. 2: (Default) reduce dupthresh like mode 1. In addition, delay entering fast recovery by RTT/4. Note: mode 2 is implemented in the third part of this patch series. Signed-off-by: Yuchung Cheng <ycheng@google.com> Acked-by: Neal Cardwell <ncardwell@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2012-05-02 13:30:03 +00:00
/* This exciting event is worth to be remembered. 8) */
tp->reord_seen++;
NET_INC_STATS(sock_net(sk),
ts ? LINUX_MIB_TCPTSREORDER : LINUX_MIB_TCPSACKREORDER);
}
/* This must be called before lost_out or retrans_out are updated
* on a new loss, because we want to know if all skbs previously
* known to be lost have already been retransmitted, indicating
* that this newly lost skb is our next skb to retransmit.
*/
static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb)
{
tcp: fix marked lost packets not being retransmitted When the packet pointed to by retransmit_skb_hint is unlinked by ACK, retransmit_skb_hint will be set to NULL in tcp_clean_rtx_queue(). If packet loss is detected at this time, retransmit_skb_hint will be set to point to the current packet loss in tcp_verify_retransmit_hint(), then the packets that were previously marked lost but not retransmitted due to the restriction of cwnd will be skipped and cannot be retransmitted. To fix this, when retransmit_skb_hint is NULL, retransmit_skb_hint can be reset only after all marked lost packets are retransmitted (retrans_out >= lost_out), otherwise we need to traverse from tcp_rtx_queue_head in tcp_xmit_retransmit_queue(). Packetdrill to demonstrate: // Disable RACK and set max_reordering to keep things simple 0 `sysctl -q net.ipv4.tcp_recovery=0` +0 `sysctl -q net.ipv4.tcp_max_reordering=3` // Establish a connection +0 socket(..., SOCK_STREAM, IPPROTO_TCP) = 3 +0 setsockopt(3, SOL_SOCKET, SO_REUSEADDR, [1], 4) = 0 +0 bind(3, ..., ...) = 0 +0 listen(3, 1) = 0 +.1 < S 0:0(0) win 32792 <mss 1000,sackOK,nop,nop,nop,wscale 7> +0 > S. 0:0(0) ack 1 <...> +.01 < . 1:1(0) ack 1 win 257 +0 accept(3, ..., ...) = 4 // Send 8 data segments +0 write(4, ..., 8000) = 8000 +0 > P. 1:8001(8000) ack 1 // Enter recovery and 1:3001 is marked lost +.01 < . 1:1(0) ack 1 win 257 <sack 3001:4001,nop,nop> +0 < . 1:1(0) ack 1 win 257 <sack 5001:6001 3001:4001,nop,nop> +0 < . 1:1(0) ack 1 win 257 <sack 5001:7001 3001:4001,nop,nop> // Retransmit 1:1001, now retransmit_skb_hint points to 1001:2001 +0 > . 1:1001(1000) ack 1 // 1001:2001 was ACKed causing retransmit_skb_hint to be set to NULL +.01 < . 1:1(0) ack 2001 win 257 <sack 5001:8001 3001:4001,nop,nop> // Now retransmit_skb_hint points to 4001:5001 which is now marked lost // BUG: 2001:3001 was not retransmitted +0 > . 2001:3001(1000) ack 1 Signed-off-by: Pengcheng Yang <yangpc@wangsu.com> Acked-by: Neal Cardwell <ncardwell@google.com> Tested-by: Neal Cardwell <ncardwell@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2020-01-14 17:23:40 +08:00
if ((!tp->retransmit_skb_hint && tp->retrans_out >= tp->lost_out) ||
(tp->retransmit_skb_hint &&
before(TCP_SKB_CB(skb)->seq,
TCP_SKB_CB(tp->retransmit_skb_hint)->seq)))
tp->retransmit_skb_hint = skb;
}
/* Sum the number of packets on the wire we have marked as lost, and
* notify the congestion control module that the given skb was marked lost.
*/
static void tcp_notify_skb_loss_event(struct tcp_sock *tp, const struct sk_buff *skb)
{
tp->lost += tcp_skb_pcount(skb);
}
void tcp_mark_skb_lost(struct sock *sk, struct sk_buff *skb)
{
__u8 sacked = TCP_SKB_CB(skb)->sacked;
struct tcp_sock *tp = tcp_sk(sk);
if (sacked & TCPCB_SACKED_ACKED)
return;
tcp_verify_retransmit_hint(tp, skb);
if (sacked & TCPCB_LOST) {
if (sacked & TCPCB_SACKED_RETRANS) {
/* Account for retransmits that are lost again */
TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
tp->retrans_out -= tcp_skb_pcount(skb);
NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPLOSTRETRANSMIT,
tcp_skb_pcount(skb));
tcp_notify_skb_loss_event(tp, skb);
}
} else {
tp->lost_out += tcp_skb_pcount(skb);
TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
tcp_notify_skb_loss_event(tp, skb);
}
}
/* Updates the delivered and delivered_ce counts */
static void tcp_count_delivered(struct tcp_sock *tp, u32 delivered,
bool ece_ack)
{
tp->delivered += delivered;
if (ece_ack)
tp->delivered_ce += delivered;
}
/* This procedure tags the retransmission queue when SACKs arrive.
*
* We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
* Packets in queue with these bits set are counted in variables
* sacked_out, retrans_out and lost_out, correspondingly.
*
* Valid combinations are:
* Tag InFlight Description
* 0 1 - orig segment is in flight.
* S 0 - nothing flies, orig reached receiver.
* L 0 - nothing flies, orig lost by net.
* R 2 - both orig and retransmit are in flight.
* L|R 1 - orig is lost, retransmit is in flight.
* S|R 1 - orig reached receiver, retrans is still in flight.
* (L|S|R is logically valid, it could occur when L|R is sacked,
* but it is equivalent to plain S and code short-curcuits it to S.
* L|S is logically invalid, it would mean -1 packet in flight 8))
*
* These 6 states form finite state machine, controlled by the following events:
* 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
* 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
* 3. Loss detection event of two flavors:
* A. Scoreboard estimator decided the packet is lost.
* A'. Reno "three dupacks" marks head of queue lost.
* B. SACK arrives sacking SND.NXT at the moment, when the
* segment was retransmitted.
* 4. D-SACK added new rule: D-SACK changes any tag to S.
*
* It is pleasant to note, that state diagram turns out to be commutative,
* so that we are allowed not to be bothered by order of our actions,
* when multiple events arrive simultaneously. (see the function below).
*
* Reordering detection.
* --------------------
* Reordering metric is maximal distance, which a packet can be displaced
* in packet stream. With SACKs we can estimate it:
*
* 1. SACK fills old hole and the corresponding segment was not
* ever retransmitted -> reordering. Alas, we cannot use it
* when segment was retransmitted.
* 2. The last flaw is solved with D-SACK. D-SACK arrives
* for retransmitted and already SACKed segment -> reordering..
* Both of these heuristics are not used in Loss state, when we cannot
* account for retransmits accurately.
*
* SACK block validation.
* ----------------------
*
* SACK block range validation checks that the received SACK block fits to
* the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
* Note that SND.UNA is not included to the range though being valid because
* it means that the receiver is rather inconsistent with itself reporting
* SACK reneging when it should advance SND.UNA. Such SACK block this is
* perfectly valid, however, in light of RFC2018 which explicitly states
* that "SACK block MUST reflect the newest segment. Even if the newest
* segment is going to be discarded ...", not that it looks very clever
* in case of head skb. Due to potentional receiver driven attacks, we
* choose to avoid immediate execution of a walk in write queue due to
* reneging and defer head skb's loss recovery to standard loss recovery
* procedure that will eventually trigger (nothing forbids us doing this).
*
* Implements also blockage to start_seq wrap-around. Problem lies in the
* fact that though start_seq (s) is before end_seq (i.e., not reversed),
* there's no guarantee that it will be before snd_nxt (n). The problem
* happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
* wrap (s_w):
*
* <- outs wnd -> <- wrapzone ->
* u e n u_w e_w s n_w
* | | | | | | |
* |<------------+------+----- TCP seqno space --------------+---------->|
* ...-- <2^31 ->| |<--------...
* ...---- >2^31 ------>| |<--------...
*
* Current code wouldn't be vulnerable but it's better still to discard such
* crazy SACK blocks. Doing this check for start_seq alone closes somewhat
* similar case (end_seq after snd_nxt wrap) as earlier reversed check in
* snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
* equal to the ideal case (infinite seqno space without wrap caused issues).
*
* With D-SACK the lower bound is extended to cover sequence space below
* SND.UNA down to undo_marker, which is the last point of interest. Yet
* again, D-SACK block must not to go across snd_una (for the same reason as
* for the normal SACK blocks, explained above). But there all simplicity
* ends, TCP might receive valid D-SACKs below that. As long as they reside
* fully below undo_marker they do not affect behavior in anyway and can
* therefore be safely ignored. In rare cases (which are more or less
* theoretical ones), the D-SACK will nicely cross that boundary due to skb
* fragmentation and packet reordering past skb's retransmission. To consider
* them correctly, the acceptable range must be extended even more though
* the exact amount is rather hard to quantify. However, tp->max_window can
* be used as an exaggerated estimate.
*/
static bool tcp_is_sackblock_valid(struct tcp_sock *tp, bool is_dsack,
u32 start_seq, u32 end_seq)
{
/* Too far in future, or reversed (interpretation is ambiguous) */
if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq))
return false;
/* Nasty start_seq wrap-around check (see comments above) */
if (!before(start_seq, tp->snd_nxt))
return false;
/* In outstanding window? ...This is valid exit for D-SACKs too.
* start_seq == snd_una is non-sensical (see comments above)
*/
if (after(start_seq, tp->snd_una))
return true;
if (!is_dsack || !tp->undo_marker)
return false;
/* ...Then it's D-SACK, and must reside below snd_una completely */
if (after(end_seq, tp->snd_una))
return false;
if (!before(start_seq, tp->undo_marker))
return true;
/* Too old */
if (!after(end_seq, tp->undo_marker))
return false;
/* Undo_marker boundary crossing (overestimates a lot). Known already:
* start_seq < undo_marker and end_seq >= undo_marker.
*/
return !before(start_seq, end_seq - tp->max_window);
}
static bool tcp_check_dsack(struct sock *sk, const struct sk_buff *ack_skb,
struct tcp_sack_block_wire *sp, int num_sacks,
u32 prior_snd_una, struct tcp_sacktag_state *state)
{
struct tcp_sock *tp = tcp_sk(sk);
u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq);
u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq);
u32 dup_segs;
if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) {
NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKRECV);
} else if (num_sacks > 1) {
u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq);
u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq);
if (after(end_seq_0, end_seq_1) || before(start_seq_0, start_seq_1))
return false;
NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKOFORECV);
} else {
return false;
}
dup_segs = tcp_dsack_seen(tp, start_seq_0, end_seq_0, state);
if (!dup_segs) { /* Skip dubious DSACK */
NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKIGNOREDDUBIOUS);
return false;
}
NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPDSACKRECVSEGS, dup_segs);
/* D-SACK for already forgotten data... Do dumb counting. */
if (tp->undo_marker && tp->undo_retrans > 0 &&
!after(end_seq_0, prior_snd_una) &&
after(end_seq_0, tp->undo_marker))
tp->undo_retrans = max_t(int, 0, tp->undo_retrans - dup_segs);
return true;
}
/* Check if skb is fully within the SACK block. In presence of GSO skbs,
* the incoming SACK may not exactly match but we can find smaller MSS
* aligned portion of it that matches. Therefore we might need to fragment
* which may fail and creates some hassle (caller must handle error case
* returns).
tcp: Try to restore large SKBs while SACK processing During SACK processing, most of the benefits of TSO are eaten by the SACK blocks that one-by-one fragment SKBs to MSS sized chunks. Then we're in problems when cleanup work for them has to be done when a large cumulative ACK comes. Try to return back to pre-split state already while more and more SACK info gets discovered by combining newly discovered SACK areas with the previous skb if that's SACKed as well. This approach has a number of benefits: 1) The processing overhead is spread more equally over the RTT 2) Write queue has less skbs to process (affect everything which has to walk in the queue past the sacked areas) 3) Write queue is consistent whole the time, so no other parts of TCP has to be aware of this (this was not the case with some other approach that was, well, quite intrusive all around). 4) Clean_rtx_queue can release most of the pages using single put_page instead of previous PAGE_SIZE/mss+1 calls In case a hole is fully filled by the new SACK block, we attempt to combine the next skb too which allows construction of skbs that are even larger than what tso split them to and it handles hole per on every nth patterns that often occur during slow start overshoot pretty nicely. Though this to be really useful also a retransmission would have to get lost since cumulative ACKs advance one hole at a time in the most typical case. TODO: handle upwards only merging. That should be rather easy when segment is fully sacked but I'm leaving that as future work item (it won't make very large difference anyway since this current approach already covers quite a lot of normal cases). I was earlier thinking of some sophisticated way of tracking timestamps of the first and the last segment but later on realized that it won't be that necessary at all to store the timestamp of the last segment. The cases that can occur are basically either: 1) ambiguous => no sensible measurement can be taken anyway 2) non-ambiguous is due to reordering => having the timestamp of the last segment there is just skewing things more off than does some good since the ack got triggered by one of the holes (besides some substle issues that would make determining right hole/skb even harder problem). Anyway, it has nothing to do with this change then. I choose to route some abnormal looking cases with goto noop, some could be handled differently (eg., by stopping the walking at that skb but again). In general, they either shouldn't happen at all or are rare enough to make no difference in practice. In theory this change (as whole) could cause some macroscale regression (global) because of cache misses that are taken over the round-trip time but it gets very likely better because of much less (local) cache misses per other write queue walkers and the big recovery clearing cumulative ack. Worth to note that these benefits would be very easy to get also without TSO/GSO being on as long as the data is in pages so that we can merge them. Currently I won't let that happen because DSACK splitting at fragment that would mess up pcounts due to sk_can_gso in tcp_set_skb_tso_segs. Once DSACKs fragments gets avoided, we have some conditions that can be made less strict. TODO: I will probably have to convert the excessive pointer passing to struct sacktag_state... :-) My testing revealed that considerable amount of skbs couldn't be shifted because they were cloned (most likely still awaiting tx reclaim)... [The rest is considering future work instead since I got repeatably EFAULT to tcpdump's recvfrom when I added pskb_expand_head to deal with clones, so I separated that into another, later patch] ...To counter that, I gave up on the fifth advantage: 5) When growing previous SACK block, less allocs for new skbs are done, basically a new alloc is needed only when new hole is detected and when the previous skb runs out of frags space ...which now only happens of if reclaim is fast enough to dispose the clone before the SACK block comes in (the window is RTT long), otherwise we'll have to alloc some. With clones being handled I got these numbers (will be somewhat worse without that), taken with fine-grained mibs: TCPSackShifted 398 TCPSackMerged 877 TCPSackShiftFallback 320 TCPSACKCOLLAPSEFALLBACKGSO 0 TCPSACKCOLLAPSEFALLBACKSKBBITS 0 TCPSACKCOLLAPSEFALLBACKSKBDATA 0 TCPSACKCOLLAPSEFALLBACKBELOW 0 TCPSACKCOLLAPSEFALLBACKFIRST 1 TCPSACKCOLLAPSEFALLBACKPREVBITS 318 TCPSACKCOLLAPSEFALLBACKMSS 1 TCPSACKCOLLAPSEFALLBACKNOHEAD 0 TCPSACKCOLLAPSEFALLBACKSHIFT 0 TCPSACKCOLLAPSENOOPSEQ 0 TCPSACKCOLLAPSENOOPSMALLPCOUNT 0 TCPSACKCOLLAPSENOOPSMALLLEN 0 TCPSACKCOLLAPSEHOLE 12 Signed-off-by: Ilpo Järvinen <ilpo.jarvinen@helsinki.fi> Signed-off-by: David S. Miller <davem@davemloft.net>
2008-11-24 21:20:15 -08:00
*
* FIXME: this could be merged to shift decision code
*/
static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb,
u32 start_seq, u32 end_seq)
{
int err;
bool in_sack;
unsigned int pkt_len;
unsigned int mss;
in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
!before(end_seq, TCP_SKB_CB(skb)->end_seq);
if (tcp_skb_pcount(skb) > 1 && !in_sack &&
after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
mss = tcp_skb_mss(skb);
in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
if (!in_sack) {
pkt_len = start_seq - TCP_SKB_CB(skb)->seq;
if (pkt_len < mss)
pkt_len = mss;
} else {
pkt_len = end_seq - TCP_SKB_CB(skb)->seq;
if (pkt_len < mss)
return -EINVAL;
}
/* Round if necessary so that SACKs cover only full MSSes
* and/or the remaining small portion (if present)
*/
if (pkt_len > mss) {
unsigned int new_len = (pkt_len / mss) * mss;
if (!in_sack && new_len < pkt_len)
new_len += mss;
pkt_len = new_len;
}
if (pkt_len >= skb->len && !in_sack)
return 0;
tcp: implement rb-tree based retransmit queue Using a linear list to store all skbs in write queue has been okay for quite a while : O(N) is not too bad when N < 500. Things get messy when N is the order of 100,000 : Modern TCP stacks want 10Gbit+ of throughput even with 200 ms RTT flows. 40 ns per cache line miss means a full scan can use 4 ms, blowing away CPU caches. SACK processing often can use various hints to avoid parsing whole retransmit queue. But with high packet losses and/or high reordering, hints no longer work. Sender has to process thousands of unfriendly SACK, accumulating a huge socket backlog, burning a cpu and massively dropping packets. Using an rb-tree for retransmit queue has been avoided for years because it added complexity and overhead, but now is the time to be more resistant and say no to quadratic behavior. 1) RTX queue is no longer part of the write queue : already sent skbs are stored in one rb-tree. 2) Since reaching the head of write queue no longer needs sk->sk_send_head, we added an union of sk_send_head and tcp_rtx_queue Tested: On receiver : netem on ingress : delay 150ms 200us loss 1 GRO disabled to force stress and SACK storms. for f in `seq 1 10` do ./netperf -H lpaa6 -l30 -- -K bbr -o THROUGHPUT|tail -1 done | awk '{print $0} {sum += $0} END {printf "%7u\n",sum}' Before patch : 323.87 351.48 339.59 338.62 306.72 204.07 304.93 291.88 202.47 176.88 2840 After patch: 1700.83 2207.98 2070.17 1544.26 2114.76 2124.89 1693.14 1080.91 2216.82 1299.94 18053 Signed-off-by: Eric Dumazet <edumazet@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-10-05 22:21:27 -07:00
err = tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb,
pkt_len, mss, GFP_ATOMIC);
if (err < 0)
return err;
}
return in_sack;
}
/* Mark the given newly-SACKed range as such, adjusting counters and hints. */
static u8 tcp_sacktag_one(struct sock *sk,
struct tcp_sacktag_state *state, u8 sacked,
u32 start_seq, u32 end_seq,
tcp: switch rtt estimations to usec resolution Upcoming congestion controls for TCP require usec resolution for RTT estimations. Millisecond resolution is simply not enough these days. FQ/pacing in DC environments also require this change for finer control and removal of bimodal behavior due to the current hack in tcp_update_pacing_rate() for 'small rtt' TCP_CONG_RTT_STAMP is no longer needed. As Julian Anastasov pointed out, we need to keep user compatibility : tcp_metrics used to export RTT and RTTVAR in msec resolution, so we added RTT_US and RTTVAR_US. An iproute2 patch is needed to use the new attributes if provided by the kernel. In this example ss command displays a srtt of 32 usecs (10Gbit link) lpk51:~# ./ss -i dst lpk52 Netid State Recv-Q Send-Q Local Address:Port Peer Address:Port tcp ESTAB 0 1 10.246.11.51:42959 10.246.11.52:64614 cubic wscale:6,6 rto:201 rtt:0.032/0.001 ato:40 mss:1448 cwnd:10 send 3620.0Mbps pacing_rate 7240.0Mbps unacked:1 rcv_rtt:993 rcv_space:29559 Updated iproute2 ip command displays : lpk51:~# ./ip tcp_metrics | grep 10.246.11.52 10.246.11.52 age 561.914sec cwnd 10 rtt 274us rttvar 213us source 10.246.11.51 Old binary displays : lpk51:~# ip tcp_metrics | grep 10.246.11.52 10.246.11.52 age 561.914sec cwnd 10 rtt 250us rttvar 125us source 10.246.11.51 With help from Julian Anastasov, Stephen Hemminger and Yuchung Cheng Signed-off-by: Eric Dumazet <edumazet@google.com> Acked-by: Neal Cardwell <ncardwell@google.com> Cc: Stephen Hemminger <stephen@networkplumber.org> Cc: Yuchung Cheng <ycheng@google.com> Cc: Larry Brakmo <brakmo@google.com> Cc: Julian Anastasov <ja@ssi.bg> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-02-26 14:02:48 -08:00
int dup_sack, int pcount,
u64 xmit_time)
{
struct tcp_sock *tp = tcp_sk(sk);
/* Account D-SACK for retransmitted packet. */
if (dup_sack && (sacked & TCPCB_RETRANS)) {
if (tp->undo_marker && tp->undo_retrans > 0 &&
after(end_seq, tp->undo_marker))
tp->undo_retrans = max_t(int, 0, tp->undo_retrans - pcount);
if ((sacked & TCPCB_SACKED_ACKED) &&
before(start_seq, state->reord))
state->reord = start_seq;
}
/* Nothing to do; acked frame is about to be dropped (was ACKed). */
if (!after(end_seq, tp->snd_una))
return sacked;
if (!(sacked & TCPCB_SACKED_ACKED)) {
tcp_rack_advance(tp, sacked, end_seq, xmit_time);
tcp: track the packet timings in RACK This patch is the first half of the RACK loss recovery. RACK loss recovery uses the notion of time instead of packet sequence (FACK) or counts (dupthresh). It's inspired by the previous FACK heuristic in tcp_mark_lost_retrans(): when a limited transmit (new data packet) is sacked, then current retransmitted sequence below the newly sacked sequence must been lost, since at least one round trip time has elapsed. But it has several limitations: 1) can't detect tail drops since it depends on limited transmit 2) is disabled upon reordering (assumes no reordering) 3) only enabled in fast recovery ut not timeout recovery RACK (Recently ACK) addresses these limitations with the notion of time instead: a packet P1 is lost if a later packet P2 is s/acked, as at least one round trip has passed. Since RACK cares about the time sequence instead of the data sequence of packets, it can detect tail drops when later retransmission is s/acked while FACK or dupthresh can't. For reordering RACK uses a dynamically adjusted reordering window ("reo_wnd") to reduce false positives on ever (small) degree of reordering. This patch implements tcp_advanced_rack() which tracks the most recent transmission time among the packets that have been delivered (ACKed or SACKed) in tp->rack.mstamp. This timestamp is the key to determine which packet has been lost. Consider an example that the sender sends six packets: T1: P1 (lost) T2: P2 T3: P3 T4: P4 T100: sack of P2. rack.mstamp = T2 T101: retransmit P1 T102: sack of P2,P3,P4. rack.mstamp = T4 T205: ACK of P4 since the hole is repaired. rack.mstamp = T101 We need to be careful about spurious retransmission because it may falsely advance tp->rack.mstamp by an RTT or an RTO, causing RACK to falsely mark all packets lost, just like a spurious timeout. We identify spurious retransmission by the ACK's TS echo value. If TS option is not applicable but the retransmission is acknowledged less than min-RTT ago, it is likely to be spurious. We refrain from using the transmission time of these spurious retransmissions. The second half is implemented in the next patch that marks packet lost using RACK timestamp. Signed-off-by: Yuchung Cheng <ycheng@google.com> Signed-off-by: Neal Cardwell <ncardwell@google.com> Signed-off-by: Eric Dumazet <edumazet@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2015-10-16 21:57:46 -07:00
if (sacked & TCPCB_SACKED_RETRANS) {
/* If the segment is not tagged as lost,
* we do not clear RETRANS, believing
* that retransmission is still in flight.
*/
if (sacked & TCPCB_LOST) {
sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
tp->lost_out -= pcount;
tp->retrans_out -= pcount;
}
} else {
if (!(sacked & TCPCB_RETRANS)) {
/* New sack for not retransmitted frame,
* which was in hole. It is reordering.
*/
if (before(start_seq,
tcp_highest_sack_seq(tp)) &&
before(start_seq, state->reord))
state->reord = start_seq;
tcp: implement RFC5682 F-RTO This patch implements F-RTO (foward RTO recovery): When the first retransmission after timeout is acknowledged, F-RTO sends new data instead of old data. If the next ACK acknowledges some never-retransmitted data, then the timeout was spurious and the congestion state is reverted. Otherwise if the next ACK selectively acknowledges the new data, then the timeout was genuine and the loss recovery continues. This idea applies to recurring timeouts as well. While F-RTO sends different data during timeout recovery, it does not (and should not) change the congestion control. The implementaion follows the three steps of SACK enhanced algorithm (section 3) in RFC5682. Step 1 is in tcp_enter_loss(). Step 2 and 3 are in tcp_process_loss(). The basic version is not supported because SACK enhanced version also works for non-SACK connections. The new implementation is functionally in parity with the old F-RTO implementation except the one case where it increases undo events: In addition to the RFC algorithm, a spurious timeout may be detected without sending data in step 2, as long as the SACK confirms not all the original data are dropped. When this happens, the sender will undo the cwnd and perhaps enter fast recovery instead. This additional check increases the F-RTO undo events by 5x compared to the prior implementation on Google Web servers, since the sender often does not have new data to send for HTTP. Note F-RTO may detect spurious timeout before Eifel with timestamps does so. Signed-off-by: Yuchung Cheng <ycheng@google.com> Acked-by: Eric Dumazet <edumazet@google.com> Acked-by: Neal Cardwell <ncardwell@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2013-03-20 13:33:00 +00:00
if (!after(end_seq, tp->high_seq))
state->flag |= FLAG_ORIG_SACK_ACKED;
if (state->first_sackt == 0)
state->first_sackt = xmit_time;
state->last_sackt = xmit_time;
}
if (sacked & TCPCB_LOST) {
sacked &= ~TCPCB_LOST;
tp->lost_out -= pcount;
}
}
sacked |= TCPCB_SACKED_ACKED;
state->flag |= FLAG_DATA_SACKED;
tp->sacked_out += pcount;
/* Out-of-order packets delivered */
state->sack_delivered += pcount;
/* Lost marker hint past SACKed? Tweak RFC3517 cnt */
if (tp->lost_skb_hint &&
before(start_seq, TCP_SKB_CB(tp->lost_skb_hint)->seq))
tp->lost_cnt_hint += pcount;
}
/* D-SACK. We can detect redundant retransmission in S|R and plain R
* frames and clear it. undo_retrans is decreased above, L|R frames
* are accounted above as well.
*/
if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) {
sacked &= ~TCPCB_SACKED_RETRANS;
tp->retrans_out -= pcount;
}
return sacked;
}
/* Shift newly-SACKed bytes from this skb to the immediately previous
* already-SACKed sk_buff. Mark the newly-SACKed bytes as such.
*/
static bool tcp_shifted_skb(struct sock *sk, struct sk_buff *prev,
struct sk_buff *skb,
struct tcp_sacktag_state *state,
unsigned int pcount, int shifted, int mss,
bool dup_sack)
tcp: Try to restore large SKBs while SACK processing During SACK processing, most of the benefits of TSO are eaten by the SACK blocks that one-by-one fragment SKBs to MSS sized chunks. Then we're in problems when cleanup work for them has to be done when a large cumulative ACK comes. Try to return back to pre-split state already while more and more SACK info gets discovered by combining newly discovered SACK areas with the previous skb if that's SACKed as well. This approach has a number of benefits: 1) The processing overhead is spread more equally over the RTT 2) Write queue has less skbs to process (affect everything which has to walk in the queue past the sacked areas) 3) Write queue is consistent whole the time, so no other parts of TCP has to be aware of this (this was not the case with some other approach that was, well, quite intrusive all around). 4) Clean_rtx_queue can release most of the pages using single put_page instead of previous PAGE_SIZE/mss+1 calls In case a hole is fully filled by the new SACK block, we attempt to combine the next skb too which allows construction of skbs that are even larger than what tso split them to and it handles hole per on every nth patterns that often occur during slow start overshoot pretty nicely. Though this to be really useful also a retransmission would have to get lost since cumulative ACKs advance one hole at a time in the most typical case. TODO: handle upwards only merging. That should be rather easy when segment is fully sacked but I'm leaving that as future work item (it won't make very large difference anyway since this current approach already covers quite a lot of normal cases). I was earlier thinking of some sophisticated way of tracking timestamps of the first and the last segment but later on realized that it won't be that necessary at all to store the timestamp of the last segment. The cases that can occur are basically either: 1) ambiguous => no sensible measurement can be taken anyway 2) non-ambiguous is due to reordering => having the timestamp of the last segment there is just skewing things more off than does some good since the ack got triggered by one of the holes (besides some substle issues that would make determining right hole/skb even harder problem). Anyway, it has nothing to do with this change then. I choose to route some abnormal looking cases with goto noop, some could be handled differently (eg., by stopping the walking at that skb but again). In general, they either shouldn't happen at all or are rare enough to make no difference in practice. In theory this change (as whole) could cause some macroscale regression (global) because of cache misses that are taken over the round-trip time but it gets very likely better because of much less (local) cache misses per other write queue walkers and the big recovery clearing cumulative ack. Worth to note that these benefits would be very easy to get also without TSO/GSO being on as long as the data is in pages so that we can merge them. Currently I won't let that happen because DSACK splitting at fragment that would mess up pcounts due to sk_can_gso in tcp_set_skb_tso_segs. Once DSACKs fragments gets avoided, we have some conditions that can be made less strict. TODO: I will probably have to convert the excessive pointer passing to struct sacktag_state... :-) My testing revealed that considerable amount of skbs couldn't be shifted because they were cloned (most likely still awaiting tx reclaim)... [The rest is considering future work instead since I got repeatably EFAULT to tcpdump's recvfrom when I added pskb_expand_head to deal with clones, so I separated that into another, later patch] ...To counter that, I gave up on the fifth advantage: 5) When growing previous SACK block, less allocs for new skbs are done, basically a new alloc is needed only when new hole is detected and when the previous skb runs out of frags space ...which now only happens of if reclaim is fast enough to dispose the clone before the SACK block comes in (the window is RTT long), otherwise we'll have to alloc some. With clones being handled I got these numbers (will be somewhat worse without that), taken with fine-grained mibs: TCPSackShifted 398 TCPSackMerged 877 TCPSackShiftFallback 320 TCPSACKCOLLAPSEFALLBACKGSO 0 TCPSACKCOLLAPSEFALLBACKSKBBITS 0 TCPSACKCOLLAPSEFALLBACKSKBDATA 0 TCPSACKCOLLAPSEFALLBACKBELOW 0 TCPSACKCOLLAPSEFALLBACKFIRST 1 TCPSACKCOLLAPSEFALLBACKPREVBITS 318 TCPSACKCOLLAPSEFALLBACKMSS 1 TCPSACKCOLLAPSEFALLBACKNOHEAD 0 TCPSACKCOLLAPSEFALLBACKSHIFT 0 TCPSACKCOLLAPSENOOPSEQ 0 TCPSACKCOLLAPSENOOPSMALLPCOUNT 0 TCPSACKCOLLAPSENOOPSMALLLEN 0 TCPSACKCOLLAPSEHOLE 12 Signed-off-by: Ilpo Järvinen <ilpo.jarvinen@helsinki.fi> Signed-off-by: David S. Miller <davem@davemloft.net>
2008-11-24 21:20:15 -08:00
{
struct tcp_sock *tp = tcp_sk(sk);
u32 start_seq = TCP_SKB_CB(skb)->seq; /* start of newly-SACKed */
u32 end_seq = start_seq + shifted; /* end of newly-SACKed */
tcp: Try to restore large SKBs while SACK processing During SACK processing, most of the benefits of TSO are eaten by the SACK blocks that one-by-one fragment SKBs to MSS sized chunks. Then we're in problems when cleanup work for them has to be done when a large cumulative ACK comes. Try to return back to pre-split state already while more and more SACK info gets discovered by combining newly discovered SACK areas with the previous skb if that's SACKed as well. This approach has a number of benefits: 1) The processing overhead is spread more equally over the RTT 2) Write queue has less skbs to process (affect everything which has to walk in the queue past the sacked areas) 3) Write queue is consistent whole the time, so no other parts of TCP has to be aware of this (this was not the case with some other approach that was, well, quite intrusive all around). 4) Clean_rtx_queue can release most of the pages using single put_page instead of previous PAGE_SIZE/mss+1 calls In case a hole is fully filled by the new SACK block, we attempt to combine the next skb too which allows construction of skbs that are even larger than what tso split them to and it handles hole per on every nth patterns that often occur during slow start overshoot pretty nicely. Though this to be really useful also a retransmission would have to get lost since cumulative ACKs advance one hole at a time in the most typical case. TODO: handle upwards only merging. That should be rather easy when segment is fully sacked but I'm leaving that as future work item (it won't make very large difference anyway since this current approach already covers quite a lot of normal cases). I was earlier thinking of some sophisticated way of tracking timestamps of the first and the last segment but later on realized that it won't be that necessary at all to store the timestamp of the last segment. The cases that can occur are basically either: 1) ambiguous => no sensible measurement can be taken anyway 2) non-ambiguous is due to reordering => having the timestamp of the last segment there is just skewing things more off than does some good since the ack got triggered by one of the holes (besides some substle issues that would make determining right hole/skb even harder problem). Anyway, it has nothing to do with this change then. I choose to route some abnormal looking cases with goto noop, some could be handled differently (eg., by stopping the walking at that skb but again). In general, they either shouldn't happen at all or are rare enough to make no difference in practice. In theory this change (as whole) could cause some macroscale regression (global) because of cache misses that are taken over the round-trip time but it gets very likely better because of much less (local) cache misses per other write queue walkers and the big recovery clearing cumulative ack. Worth to note that these benefits would be very easy to get also without TSO/GSO being on as long as the data is in pages so that we can merge them. Currently I won't let that happen because DSACK splitting at fragment that would mess up pcounts due to sk_can_gso in tcp_set_skb_tso_segs. Once DSACKs fragments gets avoided, we have some conditions that can be made less strict. TODO: I will probably have to convert the excessive pointer passing to struct sacktag_state... :-) My testing revealed that considerable amount of skbs couldn't be shifted because they were cloned (most likely still awaiting tx reclaim)... [The rest is considering future work instead since I got repeatably EFAULT to tcpdump's recvfrom when I added pskb_expand_head to deal with clones, so I separated that into another, later patch] ...To counter that, I gave up on the fifth advantage: 5) When growing previous SACK block, less allocs for new skbs are done, basically a new alloc is needed only when new hole is detected and when the previous skb runs out of frags space ...which now only happens of if reclaim is fast enough to dispose the clone before the SACK block comes in (the window is RTT long), otherwise we'll have to alloc some. With clones being handled I got these numbers (will be somewhat worse without that), taken with fine-grained mibs: TCPSackShifted 398 TCPSackMerged 877 TCPSackShiftFallback 320 TCPSACKCOLLAPSEFALLBACKGSO 0 TCPSACKCOLLAPSEFALLBACKSKBBITS 0 TCPSACKCOLLAPSEFALLBACKSKBDATA 0 TCPSACKCOLLAPSEFALLBACKBELOW 0 TCPSACKCOLLAPSEFALLBACKFIRST 1 TCPSACKCOLLAPSEFALLBACKPREVBITS 318 TCPSACKCOLLAPSEFALLBACKMSS 1 TCPSACKCOLLAPSEFALLBACKNOHEAD 0 TCPSACKCOLLAPSEFALLBACKSHIFT 0 TCPSACKCOLLAPSENOOPSEQ 0 TCPSACKCOLLAPSENOOPSMALLPCOUNT 0 TCPSACKCOLLAPSENOOPSMALLLEN 0 TCPSACKCOLLAPSEHOLE 12 Signed-off-by: Ilpo Järvinen <ilpo.jarvinen@helsinki.fi> Signed-off-by: David S. Miller <davem@davemloft.net>
2008-11-24 21:20:15 -08:00
BUG_ON(!pcount);
/* Adjust counters and hints for the newly sacked sequence
* range but discard the return value since prev is already
* marked. We must tag the range first because the seq
* advancement below implicitly advances
* tcp_highest_sack_seq() when skb is highest_sack.
*/
tcp_sacktag_one(sk, state, TCP_SKB_CB(skb)->sacked,
start_seq, end_seq, dup_sack, pcount,
tcp_skb_timestamp_us(skb));
tcp: track data delivery rate for a TCP connection This patch generates data delivery rate (throughput) samples on a per-ACK basis. These rate samples can be used by congestion control modules, and specifically will be used by TCP BBR in later patches in this series. Key state: tp->delivered: Tracks the total number of data packets (original or not) delivered so far. This is an already-existing field. tp->delivered_mstamp: the last time tp->delivered was updated. Algorithm: A rate sample is calculated as (d1 - d0)/(t1 - t0) on a per-ACK basis: d1: the current tp->delivered after processing the ACK t1: the current time after processing the ACK d0: the prior tp->delivered when the acked skb was transmitted t0: the prior tp->delivered_mstamp when the acked skb was transmitted When an skb is transmitted, we snapshot d0 and t0 in its control block in tcp_rate_skb_sent(). When an ACK arrives, it may SACK and ACK some skbs. For each SACKed or ACKed skb, tcp_rate_skb_delivered() updates the rate_sample struct to reflect the latest (d0, t0). Finally, tcp_rate_gen() generates a rate sample by storing (d1 - d0) in rs->delivered and (t1 - t0) in rs->interval_us. One caveat: if an skb was sent with no packets in flight, then tp->delivered_mstamp may be either invalid (if the connection is starting) or outdated (if the connection was idle). In that case, we'll re-stamp tp->delivered_mstamp. At first glance it seems t0 should always be the time when an skb was transmitted, but actually this could over-estimate the rate due to phase mismatch between transmit and ACK events. To track the delivery rate, we ensure that if packets are in flight then t0 and and t1 are times at which packets were marked delivered. If the initial and final RTTs are different then one may be corrupted by some sort of noise. The noise we see most often is sending gaps caused by delayed, compressed, or stretched acks. This either affects both RTTs equally or artificially reduces the final RTT. We approach this by recording the info we need to compute the initial RTT (duration of the "send phase" of the window) when we recorded the associated inflight. Then, for a filter to avoid bandwidth overestimates, we generalize the per-sample bandwidth computation from: bw = delivered / ack_phase_rtt to the following: bw = delivered / max(send_phase_rtt, ack_phase_rtt) In large-scale experiments, this filtering approach incorporating send_phase_rtt is effective at avoiding bandwidth overestimates due to ACK compression or stretched ACKs. Signed-off-by: Van Jacobson <vanj@google.com> Signed-off-by: Neal Cardwell <ncardwell@google.com> Signed-off-by: Yuchung Cheng <ycheng@google.com> Signed-off-by: Nandita Dukkipati <nanditad@google.com> Signed-off-by: Eric Dumazet <edumazet@google.com> Signed-off-by: Soheil Hassas Yeganeh <soheil@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-09-19 23:39:14 -04:00
tcp_rate_skb_delivered(sk, skb, state->rate);
if (skb == tp->lost_skb_hint)
tp->lost_cnt_hint += pcount;
tcp: Try to restore large SKBs while SACK processing During SACK processing, most of the benefits of TSO are eaten by the SACK blocks that one-by-one fragment SKBs to MSS sized chunks. Then we're in problems when cleanup work for them has to be done when a large cumulative ACK comes. Try to return back to pre-split state already while more and more SACK info gets discovered by combining newly discovered SACK areas with the previous skb if that's SACKed as well. This approach has a number of benefits: 1) The processing overhead is spread more equally over the RTT 2) Write queue has less skbs to process (affect everything which has to walk in the queue past the sacked areas) 3) Write queue is consistent whole the time, so no other parts of TCP has to be aware of this (this was not the case with some other approach that was, well, quite intrusive all around). 4) Clean_rtx_queue can release most of the pages using single put_page instead of previous PAGE_SIZE/mss+1 calls In case a hole is fully filled by the new SACK block, we attempt to combine the next skb too which allows construction of skbs that are even larger than what tso split them to and it handles hole per on every nth patterns that often occur during slow start overshoot pretty nicely. Though this to be really useful also a retransmission would have to get lost since cumulative ACKs advance one hole at a time in the most typical case. TODO: handle upwards only merging. That should be rather easy when segment is fully sacked but I'm leaving that as future work item (it won't make very large difference anyway since this current approach already covers quite a lot of normal cases). I was earlier thinking of some sophisticated way of tracking timestamps of the first and the last segment but later on realized that it won't be that necessary at all to store the timestamp of the last segment. The cases that can occur are basically either: 1) ambiguous => no sensible measurement can be taken anyway 2) non-ambiguous is due to reordering => having the timestamp of the last segment there is just skewing things more off than does some good since the ack got triggered by one of the holes (besides some substle issues that would make determining right hole/skb even harder problem). Anyway, it has nothing to do with this change then. I choose to route some abnormal looking cases with goto noop, some could be handled differently (eg., by stopping the walking at that skb but again). In general, they either shouldn't happen at all or are rare enough to make no difference in practice. In theory this change (as whole) could cause some macroscale regression (global) because of cache misses that are taken over the round-trip time but it gets very likely better because of much less (local) cache misses per other write queue walkers and the big recovery clearing cumulative ack. Worth to note that these benefits would be very easy to get also without TSO/GSO being on as long as the data is in pages so that we can merge them. Currently I won't let that happen because DSACK splitting at fragment that would mess up pcounts due to sk_can_gso in tcp_set_skb_tso_segs. Once DSACKs fragments gets avoided, we have some conditions that can be made less strict. TODO: I will probably have to convert the excessive pointer passing to struct sacktag_state... :-) My testing revealed that considerable amount of skbs couldn't be shifted because they were cloned (most likely still awaiting tx reclaim)... [The rest is considering future work instead since I got repeatably EFAULT to tcpdump's recvfrom when I added pskb_expand_head to deal with clones, so I separated that into another, later patch] ...To counter that, I gave up on the fifth advantage: 5) When growing previous SACK block, less allocs for new skbs are done, basically a new alloc is needed only when new hole is detected and when the previous skb runs out of frags space ...which now only happens of if reclaim is fast enough to dispose the clone before the SACK block comes in (the window is RTT long), otherwise we'll have to alloc some. With clones being handled I got these numbers (will be somewhat worse without that), taken with fine-grained mibs: TCPSackShifted 398 TCPSackMerged 877 TCPSackShiftFallback 320 TCPSACKCOLLAPSEFALLBACKGSO 0 TCPSACKCOLLAPSEFALLBACKSKBBITS 0 TCPSACKCOLLAPSEFALLBACKSKBDATA 0 TCPSACKCOLLAPSEFALLBACKBELOW 0 TCPSACKCOLLAPSEFALLBACKFIRST 1 TCPSACKCOLLAPSEFALLBACKPREVBITS 318 TCPSACKCOLLAPSEFALLBACKMSS 1 TCPSACKCOLLAPSEFALLBACKNOHEAD 0 TCPSACKCOLLAPSEFALLBACKSHIFT 0 TCPSACKCOLLAPSENOOPSEQ 0 TCPSACKCOLLAPSENOOPSMALLPCOUNT 0 TCPSACKCOLLAPSENOOPSMALLLEN 0 TCPSACKCOLLAPSEHOLE 12 Signed-off-by: Ilpo Järvinen <ilpo.jarvinen@helsinki.fi> Signed-off-by: David S. Miller <davem@davemloft.net>
2008-11-24 21:20:15 -08:00
TCP_SKB_CB(prev)->end_seq += shifted;
TCP_SKB_CB(skb)->seq += shifted;
tcp_skb_pcount_add(prev, pcount);
WARN_ON_ONCE(tcp_skb_pcount(skb) < pcount);
tcp_skb_pcount_add(skb, -pcount);
tcp: Try to restore large SKBs while SACK processing During SACK processing, most of the benefits of TSO are eaten by the SACK blocks that one-by-one fragment SKBs to MSS sized chunks. Then we're in problems when cleanup work for them has to be done when a large cumulative ACK comes. Try to return back to pre-split state already while more and more SACK info gets discovered by combining newly discovered SACK areas with the previous skb if that's SACKed as well. This approach has a number of benefits: 1) The processing overhead is spread more equally over the RTT 2) Write queue has less skbs to process (affect everything which has to walk in the queue past the sacked areas) 3) Write queue is consistent whole the time, so no other parts of TCP has to be aware of this (this was not the case with some other approach that was, well, quite intrusive all around). 4) Clean_rtx_queue can release most of the pages using single put_page instead of previous PAGE_SIZE/mss+1 calls In case a hole is fully filled by the new SACK block, we attempt to combine the next skb too which allows construction of skbs that are even larger than what tso split them to and it handles hole per on every nth patterns that often occur during slow start overshoot pretty nicely. Though this to be really useful also a retransmission would have to get lost since cumulative ACKs advance one hole at a time in the most typical case. TODO: handle upwards only merging. That should be rather easy when segment is fully sacked but I'm leaving that as future work item (it won't make very large difference anyway since this current approach already covers quite a lot of normal cases). I was earlier thinking of some sophisticated way of tracking timestamps of the first and the last segment but later on realized that it won't be that necessary at all to store the timestamp of the last segment. The cases that can occur are basically either: 1) ambiguous => no sensible measurement can be taken anyway 2) non-ambiguous is due to reordering => having the timestamp of the last segment there is just skewing things more off than does some good since the ack got triggered by one of the holes (besides some substle issues that would make determining right hole/skb even harder problem). Anyway, it has nothing to do with this change then. I choose to route some abnormal looking cases with goto noop, some could be handled differently (eg., by stopping the walking at that skb but again). In general, they either shouldn't happen at all or are rare enough to make no difference in practice. In theory this change (as whole) could cause some macroscale regression (global) because of cache misses that are taken over the round-trip time but it gets very likely better because of much less (local) cache misses per other write queue walkers and the big recovery clearing cumulative ack. Worth to note that these benefits would be very easy to get also without TSO/GSO being on as long as the data is in pages so that we can merge them. Currently I won't let that happen because DSACK splitting at fragment that would mess up pcounts due to sk_can_gso in tcp_set_skb_tso_segs. Once DSACKs fragments gets avoided, we have some conditions that can be made less strict. TODO: I will probably have to convert the excessive pointer passing to struct sacktag_state... :-) My testing revealed that considerable amount of skbs couldn't be shifted because they were cloned (most likely still awaiting tx reclaim)... [The rest is considering future work instead since I got repeatably EFAULT to tcpdump's recvfrom when I added pskb_expand_head to deal with clones, so I separated that into another, later patch] ...To counter that, I gave up on the fifth advantage: 5) When growing previous SACK block, less allocs for new skbs are done, basically a new alloc is needed only when new hole is detected and when the previous skb runs out of frags space ...which now only happens of if reclaim is fast enough to dispose the clone before the SACK block comes in (the window is RTT long), otherwise we'll have to alloc some. With clones being handled I got these numbers (will be somewhat worse without that), taken with fine-grained mibs: TCPSackShifted 398 TCPSackMerged 877 TCPSackShiftFallback 320 TCPSACKCOLLAPSEFALLBACKGSO 0 TCPSACKCOLLAPSEFALLBACKSKBBITS 0 TCPSACKCOLLAPSEFALLBACKSKBDATA 0 TCPSACKCOLLAPSEFALLBACKBELOW 0 TCPSACKCOLLAPSEFALLBACKFIRST 1 TCPSACKCOLLAPSEFALLBACKPREVBITS 318 TCPSACKCOLLAPSEFALLBACKMSS 1 TCPSACKCOLLAPSEFALLBACKNOHEAD 0 TCPSACKCOLLAPSEFALLBACKSHIFT 0 TCPSACKCOLLAPSENOOPSEQ 0 TCPSACKCOLLAPSENOOPSMALLPCOUNT 0 TCPSACKCOLLAPSENOOPSMALLLEN 0 TCPSACKCOLLAPSEHOLE 12 Signed-off-by: Ilpo Järvinen <ilpo.jarvinen@helsinki.fi> Signed-off-by: David S. Miller <davem@davemloft.net>
2008-11-24 21:20:15 -08:00
/* When we're adding to gso_segs == 1, gso_size will be zero,
* in theory this shouldn't be necessary but as long as DSACK
* code can come after this skb later on it's better to keep
* setting gso_size to something.
*/
if (!TCP_SKB_CB(prev)->tcp_gso_size)
TCP_SKB_CB(prev)->tcp_gso_size = mss;
tcp: Try to restore large SKBs while SACK processing During SACK processing, most of the benefits of TSO are eaten by the SACK blocks that one-by-one fragment SKBs to MSS sized chunks. Then we're in problems when cleanup work for them has to be done when a large cumulative ACK comes. Try to return back to pre-split state already while more and more SACK info gets discovered by combining newly discovered SACK areas with the previous skb if that's SACKed as well. This approach has a number of benefits: 1) The processing overhead is spread more equally over the RTT 2) Write queue has less skbs to process (affect everything which has to walk in the queue past the sacked areas) 3) Write queue is consistent whole the time, so no other parts of TCP has to be aware of this (this was not the case with some other approach that was, well, quite intrusive all around). 4) Clean_rtx_queue can release most of the pages using single put_page instead of previous PAGE_SIZE/mss+1 calls In case a hole is fully filled by the new SACK block, we attempt to combine the next skb too which allows construction of skbs that are even larger than what tso split them to and it handles hole per on every nth patterns that often occur during slow start overshoot pretty nicely. Though this to be really useful also a retransmission would have to get lost since cumulative ACKs advance one hole at a time in the most typical case. TODO: handle upwards only merging. That should be rather easy when segment is fully sacked but I'm leaving that as future work item (it won't make very large difference anyway since this current approach already covers quite a lot of normal cases). I was earlier thinking of some sophisticated way of tracking timestamps of the first and the last segment but later on realized that it won't be that necessary at all to store the timestamp of the last segment. The cases that can occur are basically either: 1) ambiguous => no sensible measurement can be taken anyway 2) non-ambiguous is due to reordering => having the timestamp of the last segment there is just skewing things more off than does some good since the ack got triggered by one of the holes (besides some substle issues that would make determining right hole/skb even harder problem). Anyway, it has nothing to do with this change then. I choose to route some abnormal looking cases with goto noop, some could be handled differently (eg., by stopping the walking at that skb but again). In general, they either shouldn't happen at all or are rare enough to make no difference in practice. In theory this change (as whole) could cause some macroscale regression (global) because of cache misses that are taken over the round-trip time but it gets very likely better because of much less (local) cache misses per other write queue walkers and the big recovery clearing cumulative ack. Worth to note that these benefits would be very easy to get also without TSO/GSO being on as long as the data is in pages so that we can merge them. Currently I won't let that happen because DSACK splitting at fragment that would mess up pcounts due to sk_can_gso in tcp_set_skb_tso_segs. Once DSACKs fragments gets avoided, we have some conditions that can be made less strict. TODO: I will probably have to convert the excessive pointer passing to struct sacktag_state... :-) My testing revealed that considerable amount of skbs couldn't be shifted because they were cloned (most likely still awaiting tx reclaim)... [The rest is considering future work instead since I got repeatably EFAULT to tcpdump's recvfrom when I added pskb_expand_head to deal with clones, so I separated that into another, later patch] ...To counter that, I gave up on the fifth advantage: 5) When growing previous SACK block, less allocs for new skbs are done, basically a new alloc is needed only when new hole is detected and when the previous skb runs out of frags space ...which now only happens of if reclaim is fast enough to dispose the clone before the SACK block comes in (the window is RTT long), otherwise we'll have to alloc some. With clones being handled I got these numbers (will be somewhat worse without that), taken with fine-grained mibs: TCPSackShifted 398 TCPSackMerged 877 TCPSackShiftFallback 320 TCPSACKCOLLAPSEFALLBACKGSO 0 TCPSACKCOLLAPSEFALLBACKSKBBITS 0 TCPSACKCOLLAPSEFALLBACKSKBDATA 0 TCPSACKCOLLAPSEFALLBACKBELOW 0 TCPSACKCOLLAPSEFALLBACKFIRST 1 TCPSACKCOLLAPSEFALLBACKPREVBITS 318 TCPSACKCOLLAPSEFALLBACKMSS 1 TCPSACKCOLLAPSEFALLBACKNOHEAD 0 TCPSACKCOLLAPSEFALLBACKSHIFT 0 TCPSACKCOLLAPSENOOPSEQ 0 TCPSACKCOLLAPSENOOPSMALLPCOUNT 0 TCPSACKCOLLAPSENOOPSMALLLEN 0 TCPSACKCOLLAPSEHOLE 12 Signed-off-by: Ilpo Järvinen <ilpo.jarvinen@helsinki.fi> Signed-off-by: David S. Miller <davem@davemloft.net>
2008-11-24 21:20:15 -08:00
/* CHECKME: To clear or not to clear? Mimics normal skb currently */
if (tcp_skb_pcount(skb) <= 1)
TCP_SKB_CB(skb)->tcp_gso_size = 0;
tcp: Try to restore large SKBs while SACK processing During SACK processing, most of the benefits of TSO are eaten by the SACK blocks that one-by-one fragment SKBs to MSS sized chunks. Then we're in problems when cleanup work for them has to be done when a large cumulative ACK comes. Try to return back to pre-split state already while more and more SACK info gets discovered by combining newly discovered SACK areas with the previous skb if that's SACKed as well. This approach has a number of benefits: 1) The processing overhead is spread more equally over the RTT 2) Write queue has less skbs to process (affect everything which has to walk in the queue past the sacked areas) 3) Write queue is consistent whole the time, so no other parts of TCP has to be aware of this (this was not the case with some other approach that was, well, quite intrusive all around). 4) Clean_rtx_queue can release most of the pages using single put_page instead of previous PAGE_SIZE/mss+1 calls In case a hole is fully filled by the new SACK block, we attempt to combine the next skb too which allows construction of skbs that are even larger than what tso split them to and it handles hole per on every nth patterns that often occur during slow start overshoot pretty nicely. Though this to be really useful also a retransmission would have to get lost since cumulative ACKs advance one hole at a time in the most typical case. TODO: handle upwards only merging. That should be rather easy when segment is fully sacked but I'm leaving that as future work item (it won't make very large difference anyway since this current approach already covers quite a lot of normal cases). I was earlier thinking of some sophisticated way of tracking timestamps of the first and the last segment but later on realized that it won't be that necessary at all to store the timestamp of the last segment. The cases that can occur are basically either: 1) ambiguous => no sensible measurement can be taken anyway 2) non-ambiguous is due to reordering => having the timestamp of the last segment there is just skewing things more off than does some good since the ack got triggered by one of the holes (besides some substle issues that would make determining right hole/skb even harder problem). Anyway, it has nothing to do with this change then. I choose to route some abnormal looking cases with goto noop, some could be handled differently (eg., by stopping the walking at that skb but again). In general, they either shouldn't happen at all or are rare enough to make no difference in practice. In theory this change (as whole) could cause some macroscale regression (global) because of cache misses that are taken over the round-trip time but it gets very likely better because of much less (local) cache misses per other write queue walkers and the big recovery clearing cumulative ack. Worth to note that these benefits would be very easy to get also without TSO/GSO being on as long as the data is in pages so that we can merge them. Currently I won't let that happen because DSACK splitting at fragment that would mess up pcounts due to sk_can_gso in tcp_set_skb_tso_segs. Once DSACKs fragments gets avoided, we have some conditions that can be made less strict. TODO: I will probably have to convert the excessive pointer passing to struct sacktag_state... :-) My testing revealed that considerable amount of skbs couldn't be shifted because they were cloned (most likely still awaiting tx reclaim)... [The rest is considering future work instead since I got repeatably EFAULT to tcpdump's recvfrom when I added pskb_expand_head to deal with clones, so I separated that into another, later patch] ...To counter that, I gave up on the fifth advantage: 5) When growing previous SACK block, less allocs for new skbs are done, basically a new alloc is needed only when new hole is detected and when the previous skb runs out of frags space ...which now only happens of if reclaim is fast enough to dispose the clone before the SACK block comes in (the window is RTT long), otherwise we'll have to alloc some. With clones being handled I got these numbers (will be somewhat worse without that), taken with fine-grained mibs: TCPSackShifted 398 TCPSackMerged 877 TCPSackShiftFallback 320 TCPSACKCOLLAPSEFALLBACKGSO 0 TCPSACKCOLLAPSEFALLBACKSKBBITS 0 TCPSACKCOLLAPSEFALLBACKSKBDATA 0 TCPSACKCOLLAPSEFALLBACKBELOW 0 TCPSACKCOLLAPSEFALLBACKFIRST 1 TCPSACKCOLLAPSEFALLBACKPREVBITS 318 TCPSACKCOLLAPSEFALLBACKMSS 1 TCPSACKCOLLAPSEFALLBACKNOHEAD 0 TCPSACKCOLLAPSEFALLBACKSHIFT 0 TCPSACKCOLLAPSENOOPSEQ 0 TCPSACKCOLLAPSENOOPSMALLPCOUNT 0 TCPSACKCOLLAPSENOOPSMALLLEN 0 TCPSACKCOLLAPSEHOLE 12 Signed-off-by: Ilpo Järvinen <ilpo.jarvinen@helsinki.fi> Signed-off-by: David S. Miller <davem@davemloft.net>
2008-11-24 21:20:15 -08:00
/* Difference in this won't matter, both ACKed by the same cumul. ACK */
TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS);
if (skb->len > 0) {
BUG_ON(!tcp_skb_pcount(skb));
NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTED);
return false;
tcp: Try to restore large SKBs while SACK processing During SACK processing, most of the benefits of TSO are eaten by the SACK blocks that one-by-one fragment SKBs to MSS sized chunks. Then we're in problems when cleanup work for them has to be done when a large cumulative ACK comes. Try to return back to pre-split state already while more and more SACK info gets discovered by combining newly discovered SACK areas with the previous skb if that's SACKed as well. This approach has a number of benefits: 1) The processing overhead is spread more equally over the RTT 2) Write queue has less skbs to process (affect everything which has to walk in the queue past the sacked areas) 3) Write queue is consistent whole the time, so no other parts of TCP has to be aware of this (this was not the case with some other approach that was, well, quite intrusive all around). 4) Clean_rtx_queue can release most of the pages using single put_page instead of previous PAGE_SIZE/mss+1 calls In case a hole is fully filled by the new SACK block, we attempt to combine the next skb too which allows construction of skbs that are even larger than what tso split them to and it handles hole per on every nth patterns that often occur during slow start overshoot pretty nicely. Though this to be really useful also a retransmission would have to get lost since cumulative ACKs advance one hole at a time in the most typical case. TODO: handle upwards only merging. That should be rather easy when segment is fully sacked but I'm leaving that as future work item (it won't make very large difference anyway since this current approach already covers quite a lot of normal cases). I was earlier thinking of some sophisticated way of tracking timestamps of the first and the last segment but later on realized that it won't be that necessary at all to store the timestamp of the last segment. The cases that can occur are basically either: 1) ambiguous => no sensible measurement can be taken anyway 2) non-ambiguous is due to reordering => having the timestamp of the last segment there is just skewing things more off than does some good since the ack got triggered by one of the holes (besides some substle issues that would make determining right hole/skb even harder problem). Anyway, it has nothing to do with this change then. I choose to route some abnormal looking cases with goto noop, some could be handled differently (eg., by stopping the walking at that skb but again). In general, they either shouldn't happen at all or are rare enough to make no difference in practice. In theory this change (as whole) could cause some macroscale regression (global) because of cache misses that are taken over the round-trip time but it gets very likely better because of much less (local) cache misses per other write queue walkers and the big recovery clearing cumulative ack. Worth to note that these benefits would be very easy to get also without TSO/GSO being on as long as the data is in pages so that we can merge them. Currently I won't let that happen because DSACK splitting at fragment that would mess up pcounts due to sk_can_gso in tcp_set_skb_tso_segs. Once DSACKs fragments gets avoided, we have some conditions that can be made less strict. TODO: I will probably have to convert the excessive pointer passing to struct sacktag_state... :-) My testing revealed that considerable amount of skbs couldn't be shifted because they were cloned (most likely still awaiting tx reclaim)... [The rest is considering future work instead since I got repeatably EFAULT to tcpdump's recvfrom when I added pskb_expand_head to deal with clones, so I separated that into another, later patch] ...To counter that, I gave up on the fifth advantage: 5) When growing previous SACK block, less allocs for new skbs are done, basically a new alloc is needed only when new hole is detected and when the previous skb runs out of frags space ...which now only happens of if reclaim is fast enough to dispose the clone before the SACK block comes in (the window is RTT long), otherwise we'll have to alloc some. With clones being handled I got these numbers (will be somewhat worse without that), taken with fine-grained mibs: TCPSackShifted 398 TCPSackMerged 877 TCPSackShiftFallback 320 TCPSACKCOLLAPSEFALLBACKGSO 0 TCPSACKCOLLAPSEFALLBACKSKBBITS 0 TCPSACKCOLLAPSEFALLBACKSKBDATA 0 TCPSACKCOLLAPSEFALLBACKBELOW 0 TCPSACKCOLLAPSEFALLBACKFIRST 1 TCPSACKCOLLAPSEFALLBACKPREVBITS 318 TCPSACKCOLLAPSEFALLBACKMSS 1 TCPSACKCOLLAPSEFALLBACKNOHEAD 0 TCPSACKCOLLAPSEFALLBACKSHIFT 0 TCPSACKCOLLAPSENOOPSEQ 0 TCPSACKCOLLAPSENOOPSMALLPCOUNT 0 TCPSACKCOLLAPSENOOPSMALLLEN 0 TCPSACKCOLLAPSEHOLE 12 Signed-off-by: Ilpo Järvinen <ilpo.jarvinen@helsinki.fi> Signed-off-by: David S. Miller <davem@davemloft.net>
2008-11-24 21:20:15 -08:00
}
/* Whole SKB was eaten :-) */
if (skb == tp->retransmit_skb_hint)
tp->retransmit_skb_hint = prev;
if (skb == tp->lost_skb_hint) {
tp->lost_skb_hint = prev;
tp->lost_cnt_hint -= tcp_skb_pcount(prev);
}
tcp: do not forget FIN in tcp_shifted_skb() Yuchung found following problem : There are bugs in the SACK processing code, merging part in tcp_shift_skb_data(), that incorrectly resets or ignores the sacked skbs FIN flag. When a receiver first SACK the FIN sequence, and later throw away ofo queue (e.g., sack-reneging), the sender will stop retransmitting the FIN flag, and hangs forever. Following packetdrill test can be used to reproduce the bug. $ cat sack-merge-bug.pkt `sysctl -q net.ipv4.tcp_fack=0` // Establish a connection and send 10 MSS. 0.000 socket(..., SOCK_STREAM, IPPROTO_TCP) = 3 +.000 setsockopt(3, SOL_SOCKET, SO_REUSEADDR, [1], 4) = 0 +.000 bind(3, ..., ...) = 0 +.000 listen(3, 1) = 0 +.050 < S 0:0(0) win 32792 <mss 1000,sackOK,nop,nop,nop,wscale 7> +.000 > S. 0:0(0) ack 1 <mss 1460,nop,nop,sackOK,nop,wscale 6> +.001 < . 1:1(0) ack 1 win 1024 +.000 accept(3, ..., ...) = 4 +.100 write(4, ..., 12000) = 12000 +.000 shutdown(4, SHUT_WR) = 0 +.000 > . 1:10001(10000) ack 1 +.050 < . 1:1(0) ack 2001 win 257 +.000 > FP. 10001:12001(2000) ack 1 +.050 < . 1:1(0) ack 2001 win 257 <sack 10001:11001,nop,nop> +.050 < . 1:1(0) ack 2001 win 257 <sack 10001:12002,nop,nop> // SACK reneg +.050 < . 1:1(0) ack 12001 win 257 +0 %{ print "unacked: ",tcpi_unacked }% +5 %{ print "" }% First, a typo inverted left/right of one OR operation, then code forgot to advance end_seq if the merged skb carried FIN. Bug was added in 2.6.29 by commit 832d11c5cd076ab ("tcp: Try to restore large SKBs while SACK processing") Signed-off-by: Eric Dumazet <edumazet@google.com> Signed-off-by: Yuchung Cheng <ycheng@google.com> Acked-by: Neal Cardwell <ncardwell@google.com> Cc: Ilpo Järvinen <ilpo.jarvinen@helsinki.fi> Acked-by: Ilpo Järvinen <ilpo.jarvinen@helsinki.fi> Signed-off-by: David S. Miller <davem@davemloft.net>
2013-10-04 10:31:41 -07:00
TCP_SKB_CB(prev)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags;
tcp: Handle eor bit when coalescing skb This patch: 1. Prevent next_skb from coalescing to the prev_skb if TCP_SKB_CB(prev_skb)->eor is set 2. Update the TCP_SKB_CB(prev_skb)->eor if coalescing is allowed Packetdrill script for testing: ~~~~~~ +0 `sysctl -q -w net.ipv4.tcp_min_tso_segs=10` +0 `sysctl -q -w net.ipv4.tcp_no_metrics_save=1` +0 socket(..., SOCK_STREAM, IPPROTO_TCP) = 3 +0 setsockopt(3, SOL_SOCKET, SO_REUSEADDR, [1], 4) = 0 +0 bind(3, ..., ...) = 0 +0 listen(3, 1) = 0 0.100 < S 0:0(0) win 32792 <mss 1460,sackOK,nop,nop,nop,wscale 7> 0.100 > S. 0:0(0) ack 1 <mss 1460,nop,nop,sackOK,nop,wscale 7> 0.200 < . 1:1(0) ack 1 win 257 0.200 accept(3, ..., ...) = 4 +0 setsockopt(4, SOL_TCP, TCP_NODELAY, [1], 4) = 0 0.200 sendto(4, ..., 730, MSG_EOR, ..., ...) = 730 0.200 sendto(4, ..., 730, MSG_EOR, ..., ...) = 730 0.200 write(4, ..., 11680) = 11680 0.200 > P. 1:731(730) ack 1 0.200 > P. 731:1461(730) ack 1 0.200 > . 1461:8761(7300) ack 1 0.200 > P. 8761:13141(4380) ack 1 0.300 < . 1:1(0) ack 1 win 257 <sack 1461:13141,nop,nop> 0.300 > P. 1:731(730) ack 1 0.300 > P. 731:1461(730) ack 1 0.400 < . 1:1(0) ack 13141 win 257 0.400 close(4) = 0 0.400 > F. 13141:13141(0) ack 1 0.500 < F. 1:1(0) ack 13142 win 257 0.500 > . 13142:13142(0) ack 2 Signed-off-by: Martin KaFai Lau <kafai@fb.com> Cc: Eric Dumazet <edumazet@google.com> Cc: Neal Cardwell <ncardwell@google.com> Cc: Soheil Hassas Yeganeh <soheil@google.com> Cc: Willem de Bruijn <willemb@google.com> Cc: Yuchung Cheng <ycheng@google.com> Acked-by: Eric Dumazet <edumazet@google.com> Acked-by: Soheil Hassas Yeganeh <soheil@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-04-25 14:44:49 -07:00
TCP_SKB_CB(prev)->eor = TCP_SKB_CB(skb)->eor;
tcp: do not forget FIN in tcp_shifted_skb() Yuchung found following problem : There are bugs in the SACK processing code, merging part in tcp_shift_skb_data(), that incorrectly resets or ignores the sacked skbs FIN flag. When a receiver first SACK the FIN sequence, and later throw away ofo queue (e.g., sack-reneging), the sender will stop retransmitting the FIN flag, and hangs forever. Following packetdrill test can be used to reproduce the bug. $ cat sack-merge-bug.pkt `sysctl -q net.ipv4.tcp_fack=0` // Establish a connection and send 10 MSS. 0.000 socket(..., SOCK_STREAM, IPPROTO_TCP) = 3 +.000 setsockopt(3, SOL_SOCKET, SO_REUSEADDR, [1], 4) = 0 +.000 bind(3, ..., ...) = 0 +.000 listen(3, 1) = 0 +.050 < S 0:0(0) win 32792 <mss 1000,sackOK,nop,nop,nop,wscale 7> +.000 > S. 0:0(0) ack 1 <mss 1460,nop,nop,sackOK,nop,wscale 6> +.001 < . 1:1(0) ack 1 win 1024 +.000 accept(3, ..., ...) = 4 +.100 write(4, ..., 12000) = 12000 +.000 shutdown(4, SHUT_WR) = 0 +.000 > . 1:10001(10000) ack 1 +.050 < . 1:1(0) ack 2001 win 257 +.000 > FP. 10001:12001(2000) ack 1 +.050 < . 1:1(0) ack 2001 win 257 <sack 10001:11001,nop,nop> +.050 < . 1:1(0) ack 2001 win 257 <sack 10001:12002,nop,nop> // SACK reneg +.050 < . 1:1(0) ack 12001 win 257 +0 %{ print "unacked: ",tcpi_unacked }% +5 %{ print "" }% First, a typo inverted left/right of one OR operation, then code forgot to advance end_seq if the merged skb carried FIN. Bug was added in 2.6.29 by commit 832d11c5cd076ab ("tcp: Try to restore large SKBs while SACK processing") Signed-off-by: Eric Dumazet <edumazet@google.com> Signed-off-by: Yuchung Cheng <ycheng@google.com> Acked-by: Neal Cardwell <ncardwell@google.com> Cc: Ilpo Järvinen <ilpo.jarvinen@helsinki.fi> Acked-by: Ilpo Järvinen <ilpo.jarvinen@helsinki.fi> Signed-off-by: David S. Miller <davem@davemloft.net>
2013-10-04 10:31:41 -07:00
if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
TCP_SKB_CB(prev)->end_seq++;
tcp: Try to restore large SKBs while SACK processing During SACK processing, most of the benefits of TSO are eaten by the SACK blocks that one-by-one fragment SKBs to MSS sized chunks. Then we're in problems when cleanup work for them has to be done when a large cumulative ACK comes. Try to return back to pre-split state already while more and more SACK info gets discovered by combining newly discovered SACK areas with the previous skb if that's SACKed as well. This approach has a number of benefits: 1) The processing overhead is spread more equally over the RTT 2) Write queue has less skbs to process (affect everything which has to walk in the queue past the sacked areas) 3) Write queue is consistent whole the time, so no other parts of TCP has to be aware of this (this was not the case with some other approach that was, well, quite intrusive all around). 4) Clean_rtx_queue can release most of the pages using single put_page instead of previous PAGE_SIZE/mss+1 calls In case a hole is fully filled by the new SACK block, we attempt to combine the next skb too which allows construction of skbs that are even larger than what tso split them to and it handles hole per on every nth patterns that often occur during slow start overshoot pretty nicely. Though this to be really useful also a retransmission would have to get lost since cumulative ACKs advance one hole at a time in the most typical case. TODO: handle upwards only merging. That should be rather easy when segment is fully sacked but I'm leaving that as future work item (it won't make very large difference anyway since this current approach already covers quite a lot of normal cases). I was earlier thinking of some sophisticated way of tracking timestamps of the first and the last segment but later on realized that it won't be that necessary at all to store the timestamp of the last segment. The cases that can occur are basically either: 1) ambiguous => no sensible measurement can be taken anyway 2) non-ambiguous is due to reordering => having the timestamp of the last segment there is just skewing things more off than does some good since the ack got triggered by one of the holes (besides some substle issues that would make determining right hole/skb even harder problem). Anyway, it has nothing to do with this change then. I choose to route some abnormal looking cases with goto noop, some could be handled differently (eg., by stopping the walking at that skb but again). In general, they either shouldn't happen at all or are rare enough to make no difference in practice. In theory this change (as whole) could cause some macroscale regression (global) because of cache misses that are taken over the round-trip time but it gets very likely better because of much less (local) cache misses per other write queue walkers and the big recovery clearing cumulative ack. Worth to note that these benefits would be very easy to get also without TSO/GSO being on as long as the data is in pages so that we can merge them. Currently I won't let that happen because DSACK splitting at fragment that would mess up pcounts due to sk_can_gso in tcp_set_skb_tso_segs. Once DSACKs fragments gets avoided, we have some conditions that can be made less strict. TODO: I will probably have to convert the excessive pointer passing to struct sacktag_state... :-) My testing revealed that considerable amount of skbs couldn't be shifted because they were cloned (most likely still awaiting tx reclaim)... [The rest is considering future work instead since I got repeatably EFAULT to tcpdump's recvfrom when I added pskb_expand_head to deal with clones, so I separated that into another, later patch] ...To counter that, I gave up on the fifth advantage: 5) When growing previous SACK block, less allocs for new skbs are done, basically a new alloc is needed only when new hole is detected and when the previous skb runs out of frags space ...which now only happens of if reclaim is fast enough to dispose the clone before the SACK block comes in (the window is RTT long), otherwise we'll have to alloc some. With clones being handled I got these numbers (will be somewhat worse without that), taken with fine-grained mibs: TCPSackShifted 398 TCPSackMerged 877 TCPSackShiftFallback 320 TCPSACKCOLLAPSEFALLBACKGSO 0 TCPSACKCOLLAPSEFALLBACKSKBBITS 0 TCPSACKCOLLAPSEFALLBACKSKBDATA 0 TCPSACKCOLLAPSEFALLBACKBELOW 0 TCPSACKCOLLAPSEFALLBACKFIRST 1 TCPSACKCOLLAPSEFALLBACKPREVBITS 318 TCPSACKCOLLAPSEFALLBACKMSS 1 TCPSACKCOLLAPSEFALLBACKNOHEAD 0 TCPSACKCOLLAPSEFALLBACKSHIFT 0 TCPSACKCOLLAPSENOOPSEQ 0 TCPSACKCOLLAPSENOOPSMALLPCOUNT 0 TCPSACKCOLLAPSENOOPSMALLLEN 0 TCPSACKCOLLAPSEHOLE 12 Signed-off-by: Ilpo Järvinen <ilpo.jarvinen@helsinki.fi> Signed-off-by: David S. Miller <davem@davemloft.net>
2008-11-24 21:20:15 -08:00
if (skb == tcp_highest_sack(sk))
tcp_advance_highest_sack(sk, skb);
tcp: Merge tx_flags and tskey in tcp_shifted_skb After receiving sacks, tcp_shifted_skb() will collapse skbs if possible. tx_flags and tskey also have to be merged. This patch reuses the tcp_skb_collapse_tstamp() to handle them. BPF Output Before: ~~~~~ <no-output-due-to-missing-tstamp-event> BPF Output After: ~~~~~ <...>-2024 [007] d.s. 88.644374: : ee_data:14599 Packetdrill Script: ~~~~~ +0 `sysctl -q -w net.ipv4.tcp_min_tso_segs=10` +0 `sysctl -q -w net.ipv4.tcp_no_metrics_save=1` +0 socket(..., SOCK_STREAM, IPPROTO_TCP) = 3 +0 setsockopt(3, SOL_SOCKET, SO_REUSEADDR, [1], 4) = 0 +0 bind(3, ..., ...) = 0 +0 listen(3, 1) = 0 0.100 < S 0:0(0) win 32792 <mss 1460,sackOK,nop,nop,nop,wscale 7> 0.100 > S. 0:0(0) ack 1 <mss 1460,nop,nop,sackOK,nop,wscale 7> 0.200 < . 1:1(0) ack 1 win 257 0.200 accept(3, ..., ...) = 4 +0 setsockopt(4, SOL_TCP, TCP_NODELAY, [1], 4) = 0 0.200 write(4, ..., 1460) = 1460 +0 setsockopt(4, SOL_SOCKET, 37, [2688], 4) = 0 0.200 write(4, ..., 13140) = 13140 0.200 > P. 1:1461(1460) ack 1 0.200 > . 1461:8761(7300) ack 1 0.200 > P. 8761:14601(5840) ack 1 0.300 < . 1:1(0) ack 1 win 257 <sack 1461:14601,nop,nop> 0.300 > P. 1:1461(1460) ack 1 0.400 < . 1:1(0) ack 14601 win 257 0.400 close(4) = 0 0.400 > F. 14601:14601(0) ack 1 0.500 < F. 1:1(0) ack 14602 win 257 0.500 > . 14602:14602(0) ack 2 Signed-off-by: Martin KaFai Lau <kafai@fb.com> Cc: Eric Dumazet <edumazet@google.com> Cc: Neal Cardwell <ncardwell@google.com> Cc: Soheil Hassas Yeganeh <soheil@google.com> Cc: Willem de Bruijn <willemb@google.com> Cc: Yuchung Cheng <ycheng@google.com> Acked-by: Soheil Hassas Yeganeh <soheil@google.com> Tested-by: Soheil Hassas Yeganeh <soheil@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-04-19 22:39:29 -07:00
tcp_skb_collapse_tstamp(prev, skb);
if (unlikely(TCP_SKB_CB(prev)->tx.delivered_mstamp))
TCP_SKB_CB(prev)->tx.delivered_mstamp = 0;
tcp: track data delivery rate for a TCP connection This patch generates data delivery rate (throughput) samples on a per-ACK basis. These rate samples can be used by congestion control modules, and specifically will be used by TCP BBR in later patches in this series. Key state: tp->delivered: Tracks the total number of data packets (original or not) delivered so far. This is an already-existing field. tp->delivered_mstamp: the last time tp->delivered was updated. Algorithm: A rate sample is calculated as (d1 - d0)/(t1 - t0) on a per-ACK basis: d1: the current tp->delivered after processing the ACK t1: the current time after processing the ACK d0: the prior tp->delivered when the acked skb was transmitted t0: the prior tp->delivered_mstamp when the acked skb was transmitted When an skb is transmitted, we snapshot d0 and t0 in its control block in tcp_rate_skb_sent(). When an ACK arrives, it may SACK and ACK some skbs. For each SACKed or ACKed skb, tcp_rate_skb_delivered() updates the rate_sample struct to reflect the latest (d0, t0). Finally, tcp_rate_gen() generates a rate sample by storing (d1 - d0) in rs->delivered and (t1 - t0) in rs->interval_us. One caveat: if an skb was sent with no packets in flight, then tp->delivered_mstamp may be either invalid (if the connection is starting) or outdated (if the connection was idle). In that case, we'll re-stamp tp->delivered_mstamp. At first glance it seems t0 should always be the time when an skb was transmitted, but actually this could over-estimate the rate due to phase mismatch between transmit and ACK events. To track the delivery rate, we ensure that if packets are in flight then t0 and and t1 are times at which packets were marked delivered. If the initial and final RTTs are different then one may be corrupted by some sort of noise. The noise we see most often is sending gaps caused by delayed, compressed, or stretched acks. This either affects both RTTs equally or artificially reduces the final RTT. We approach this by recording the info we need to compute the initial RTT (duration of the "send phase" of the window) when we recorded the associated inflight. Then, for a filter to avoid bandwidth overestimates, we generalize the per-sample bandwidth computation from: bw = delivered / ack_phase_rtt to the following: bw = delivered / max(send_phase_rtt, ack_phase_rtt) In large-scale experiments, this filtering approach incorporating send_phase_rtt is effective at avoiding bandwidth overestimates due to ACK compression or stretched ACKs. Signed-off-by: Van Jacobson <vanj@google.com> Signed-off-by: Neal Cardwell <ncardwell@google.com> Signed-off-by: Yuchung Cheng <ycheng@google.com> Signed-off-by: Nandita Dukkipati <nanditad@google.com> Signed-off-by: Eric Dumazet <edumazet@google.com> Signed-off-by: Soheil Hassas Yeganeh <soheil@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-09-19 23:39:14 -04:00
tcp: implement rb-tree based retransmit queue Using a linear list to store all skbs in write queue has been okay for quite a while : O(N) is not too bad when N < 500. Things get messy when N is the order of 100,000 : Modern TCP stacks want 10Gbit+ of throughput even with 200 ms RTT flows. 40 ns per cache line miss means a full scan can use 4 ms, blowing away CPU caches. SACK processing often can use various hints to avoid parsing whole retransmit queue. But with high packet losses and/or high reordering, hints no longer work. Sender has to process thousands of unfriendly SACK, accumulating a huge socket backlog, burning a cpu and massively dropping packets. Using an rb-tree for retransmit queue has been avoided for years because it added complexity and overhead, but now is the time to be more resistant and say no to quadratic behavior. 1) RTX queue is no longer part of the write queue : already sent skbs are stored in one rb-tree. 2) Since reaching the head of write queue no longer needs sk->sk_send_head, we added an union of sk_send_head and tcp_rtx_queue Tested: On receiver : netem on ingress : delay 150ms 200us loss 1 GRO disabled to force stress and SACK storms. for f in `seq 1 10` do ./netperf -H lpaa6 -l30 -- -K bbr -o THROUGHPUT|tail -1 done | awk '{print $0} {sum += $0} END {printf "%7u\n",sum}' Before patch : 323.87 351.48 339.59 338.62 306.72 204.07 304.93 291.88 202.47 176.88 2840 After patch: 1700.83 2207.98 2070.17 1544.26 2114.76 2124.89 1693.14 1080.91 2216.82 1299.94 18053 Signed-off-by: Eric Dumazet <edumazet@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-10-05 22:21:27 -07:00
tcp_rtx_queue_unlink_and_free(skb, sk);
tcp: Try to restore large SKBs while SACK processing During SACK processing, most of the benefits of TSO are eaten by the SACK blocks that one-by-one fragment SKBs to MSS sized chunks. Then we're in problems when cleanup work for them has to be done when a large cumulative ACK comes. Try to return back to pre-split state already while more and more SACK info gets discovered by combining newly discovered SACK areas with the previous skb if that's SACKed as well. This approach has a number of benefits: 1) The processing overhead is spread more equally over the RTT 2) Write queue has less skbs to process (affect everything which has to walk in the queue past the sacked areas) 3) Write queue is consistent whole the time, so no other parts of TCP has to be aware of this (this was not the case with some other approach that was, well, quite intrusive all around). 4) Clean_rtx_queue can release most of the pages using single put_page instead of previous PAGE_SIZE/mss+1 calls In case a hole is fully filled by the new SACK block, we attempt to combine the next skb too which allows construction of skbs that are even larger than what tso split them to and it handles hole per on every nth patterns that often occur during slow start overshoot pretty nicely. Though this to be really useful also a retransmission would have to get lost since cumulative ACKs advance one hole at a time in the most typical case. TODO: handle upwards only merging. That should be rather easy when segment is fully sacked but I'm leaving that as future work item (it won't make very large difference anyway since this current approach already covers quite a lot of normal cases). I was earlier thinking of some sophisticated way of tracking timestamps of the first and the last segment but later on realized that it won't be that necessary at all to store the timestamp of the last segment. The cases that can occur are basically either: 1) ambiguous => no sensible measurement can be taken anyway 2) non-ambiguous is due to reordering => having the timestamp of the last segment there is just skewing things more off than does some good since the ack got triggered by one of the holes (besides some substle issues that would make determining right hole/skb even harder problem). Anyway, it has nothing to do with this change then. I choose to route some abnormal looking cases with goto noop, some could be handled differently (eg., by stopping the walking at that skb but again). In general, they either shouldn't happen at all or are rare enough to make no difference in practice. In theory this change (as whole) could cause some macroscale regression (global) because of cache misses that are taken over the round-trip time but it gets very likely better because of much less (local) cache misses per other write queue walkers and the big recovery clearing cumulative ack. Worth to note that these benefits would be very easy to get also without TSO/GSO being on as long as the data is in pages so that we can merge them. Currently I won't let that happen because DSACK splitting at fragment that would mess up pcounts due to sk_can_gso in tcp_set_skb_tso_segs. Once DSACKs fragments gets avoided, we have some conditions that can be made less strict. TODO: I will probably have to convert the excessive pointer passing to struct sacktag_state... :-) My testing revealed that considerable amount of skbs couldn't be shifted because they were cloned (most likely still awaiting tx reclaim)... [The rest is considering future work instead since I got repeatably EFAULT to tcpdump's recvfrom when I added pskb_expand_head to deal with clones, so I separated that into another, later patch] ...To counter that, I gave up on the fifth advantage: 5) When growing previous SACK block, less allocs for new skbs are done, basically a new alloc is needed only when new hole is detected and when the previous skb runs out of frags space ...which now only happens of if reclaim is fast enough to dispose the clone before the SACK block comes in (the window is RTT long), otherwise we'll have to alloc some. With clones being handled I got these numbers (will be somewhat worse without that), taken with fine-grained mibs: TCPSackShifted 398 TCPSackMerged 877 TCPSackShiftFallback 320 TCPSACKCOLLAPSEFALLBACKGSO 0 TCPSACKCOLLAPSEFALLBACKSKBBITS 0 TCPSACKCOLLAPSEFALLBACKSKBDATA 0 TCPSACKCOLLAPSEFALLBACKBELOW 0 TCPSACKCOLLAPSEFALLBACKFIRST 1 TCPSACKCOLLAPSEFALLBACKPREVBITS 318 TCPSACKCOLLAPSEFALLBACKMSS 1 TCPSACKCOLLAPSEFALLBACKNOHEAD 0 TCPSACKCOLLAPSEFALLBACKSHIFT 0 TCPSACKCOLLAPSENOOPSEQ 0 TCPSACKCOLLAPSENOOPSMALLPCOUNT 0 TCPSACKCOLLAPSENOOPSMALLLEN 0 TCPSACKCOLLAPSEHOLE 12 Signed-off-by: Ilpo Järvinen <ilpo.jarvinen@helsinki.fi> Signed-off-by: David S. Miller <davem@davemloft.net>
2008-11-24 21:20:15 -08:00
NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKMERGED);
return true;
tcp: Try to restore large SKBs while SACK processing During SACK processing, most of the benefits of TSO are eaten by the SACK blocks that one-by-one fragment SKBs to MSS sized chunks. Then we're in problems when cleanup work for them has to be done when a large cumulative ACK comes. Try to return back to pre-split state already while more and more SACK info gets discovered by combining newly discovered SACK areas with the previous skb if that's SACKed as well. This approach has a number of benefits: 1) The processing overhead is spread more equally over the RTT 2) Write queue has less skbs to process (affect everything which has to walk in the queue past the sacked areas) 3) Write queue is consistent whole the time, so no other parts of TCP has to be aware of this (this was not the case with some other approach that was, well, quite intrusive all around). 4) Clean_rtx_queue can release most of the pages using single put_page instead of previous PAGE_SIZE/mss+1 calls In case a hole is fully filled by the new SACK block, we attempt to combine the next skb too which allows construction of skbs that are even larger than what tso split them to and it handles hole per on every nth patterns that often occur during slow start overshoot pretty nicely. Though this to be really useful also a retransmission would have to get lost since cumulative ACKs advance one hole at a time in the most typical case. TODO: handle upwards only merging. That should be rather easy when segment is fully sacked but I'm leaving that as future work item (it won't make very large difference anyway since this current approach already covers quite a lot of normal cases). I was earlier thinking of some sophisticated way of tracking timestamps of the first and the last segment but later on realized that it won't be that necessary at all to store the timestamp of the last segment. The cases that can occur are basically either: 1) ambiguous => no sensible measurement can be taken anyway 2) non-ambiguous is due to reordering => having the timestamp of the last segment there is just skewing things more off than does some good since the ack got triggered by one of the holes (besides some substle issues that would make determining right hole/skb even harder problem). Anyway, it has nothing to do with this change then. I choose to route some abnormal looking cases with goto noop, some could be handled differently (eg., by stopping the walking at that skb but again). In general, they either shouldn't happen at all or are rare enough to make no difference in practice. In theory this change (as whole) could cause some macroscale regression (global) because of cache misses that are taken over the round-trip time but it gets very likely better because of much less (local) cache misses per other write queue walkers and the big recovery clearing cumulative ack. Worth to note that these benefits would be very easy to get also without TSO/GSO being on as long as the data is in pages so that we can merge them. Currently I won't let that happen because DSACK splitting at fragment that would mess up pcounts due to sk_can_gso in tcp_set_skb_tso_segs. Once DSACKs fragments gets avoided, we have some conditions that can be made less strict. TODO: I will probably have to convert the excessive pointer passing to struct sacktag_state... :-) My testing revealed that considerable amount of skbs couldn't be shifted because they were cloned (most likely still awaiting tx reclaim)... [The rest is considering future work instead since I got repeatably EFAULT to tcpdump's recvfrom when I added pskb_expand_head to deal with clones, so I separated that into another, later patch] ...To counter that, I gave up on the fifth advantage: 5) When growing previous SACK block, less allocs for new skbs are done, basically a new alloc is needed only when new hole is detected and when the previous skb runs out of frags space ...which now only happens of if reclaim is fast enough to dispose the clone before the SACK block comes in (the window is RTT long), otherwise we'll have to alloc some. With clones being handled I got these numbers (will be somewhat worse without that), taken with fine-grained mibs: TCPSackShifted 398 TCPSackMerged 877 TCPSackShiftFallback 320 TCPSACKCOLLAPSEFALLBACKGSO 0 TCPSACKCOLLAPSEFALLBACKSKBBITS 0 TCPSACKCOLLAPSEFALLBACKSKBDATA 0 TCPSACKCOLLAPSEFALLBACKBELOW 0 TCPSACKCOLLAPSEFALLBACKFIRST 1 TCPSACKCOLLAPSEFALLBACKPREVBITS 318 TCPSACKCOLLAPSEFALLBACKMSS 1 TCPSACKCOLLAPSEFALLBACKNOHEAD 0 TCPSACKCOLLAPSEFALLBACKSHIFT 0 TCPSACKCOLLAPSENOOPSEQ 0 TCPSACKCOLLAPSENOOPSMALLPCOUNT 0 TCPSACKCOLLAPSENOOPSMALLLEN 0 TCPSACKCOLLAPSEHOLE 12 Signed-off-by: Ilpo Järvinen <ilpo.jarvinen@helsinki.fi> Signed-off-by: David S. Miller <davem@davemloft.net>
2008-11-24 21:20:15 -08:00
}
/* I wish gso_size would have a bit more sane initialization than
* something-or-zero which complicates things
*/
static int tcp_skb_seglen(const struct sk_buff *skb)
tcp: Try to restore large SKBs while SACK processing During SACK processing, most of the benefits of TSO are eaten by the SACK blocks that one-by-one fragment SKBs to MSS sized chunks. Then we're in problems when cleanup work for them has to be done when a large cumulative ACK comes. Try to return back to pre-split state already while more and more SACK info gets discovered by combining newly discovered SACK areas with the previous skb if that's SACKed as well. This approach has a number of benefits: 1) The processing overhead is spread more equally over the RTT 2) Write queue has less skbs to process (affect everything which has to walk in the queue past the sacked areas) 3) Write queue is consistent whole the time, so no other parts of TCP has to be aware of this (this was not the case with some other approach that was, well, quite intrusive all around). 4) Clean_rtx_queue can release most of the pages using single put_page instead of previous PAGE_SIZE/mss+1 calls In case a hole is fully filled by the new SACK block, we attempt to combine the next skb too which allows construction of skbs that are even larger than what tso split them to and it handles hole per on every nth patterns that often occur during slow start overshoot pretty nicely. Though this to be really useful also a retransmission would have to get lost since cumulative ACKs advance one hole at a time in the most typical case. TODO: handle upwards only merging. That should be rather easy when segment is fully sacked but I'm leaving that as future work item (it won't make very large difference anyway since this current approach already covers quite a lot of normal cases). I was earlier thinking of some sophisticated way of tracking timestamps of the first and the last segment but later on realized that it won't be that necessary at all to store the timestamp of the last segment. The cases that can occur are basically either: 1) ambiguous => no sensible measurement can be taken anyway 2) non-ambiguous is due to reordering => having the timestamp of the last segment there is just skewing things more off than does some good since the ack got triggered by one of the holes (besides some substle issues that would make determining right hole/skb even harder problem). Anyway, it has nothing to do with this change then. I choose to route some abnormal looking cases with goto noop, some could be handled differently (eg., by stopping the walking at that skb but again). In general, they either shouldn't happen at all or are rare enough to make no difference in practice. In theory this change (as whole) could cause some macroscale regression (global) because of cache misses that are taken over the round-trip time but it gets very likely better because of much less (local) cache misses per other write queue walkers and the big recovery clearing cumulative ack. Worth to note that these benefits would be very easy to get also without TSO/GSO being on as long as the data is in pages so that we can merge them. Currently I won't let that happen because DSACK splitting at fragment that would mess up pcounts due to sk_can_gso in tcp_set_skb_tso_segs. Once DSACKs fragments gets avoided, we have some conditions that can be made less strict. TODO: I will probably have to convert the excessive pointer passing to struct sacktag_state... :-) My testing revealed that considerable amount of skbs couldn't be shifted because they were cloned (most likely still awaiting tx reclaim)... [The rest is considering future work instead since I got repeatably EFAULT to tcpdump's recvfrom when I added pskb_expand_head to deal with clones, so I separated that into another, later patch] ...To counter that, I gave up on the fifth advantage: 5) When growing previous SACK block, less allocs for new skbs are done, basically a new alloc is needed only when new hole is detected and when the previous skb runs out of frags space ...which now only happens of if reclaim is fast enough to dispose the clone before the SACK block comes in (the window is RTT long), otherwise we'll have to alloc some. With clones being handled I got these numbers (will be somewhat worse without that), taken with fine-grained mibs: TCPSackShifted 398 TCPSackMerged 877 TCPSackShiftFallback 320 TCPSACKCOLLAPSEFALLBACKGSO 0 TCPSACKCOLLAPSEFALLBACKSKBBITS 0 TCPSACKCOLLAPSEFALLBACKSKBDATA 0 TCPSACKCOLLAPSEFALLBACKBELOW 0 TCPSACKCOLLAPSEFALLBACKFIRST 1 TCPSACKCOLLAPSEFALLBACKPREVBITS 318 TCPSACKCOLLAPSEFALLBACKMSS 1 TCPSACKCOLLAPSEFALLBACKNOHEAD 0 TCPSACKCOLLAPSEFALLBACKSHIFT 0 TCPSACKCOLLAPSENOOPSEQ 0 TCPSACKCOLLAPSENOOPSMALLPCOUNT 0 TCPSACKCOLLAPSENOOPSMALLLEN 0 TCPSACKCOLLAPSEHOLE 12 Signed-off-by: Ilpo Järvinen <ilpo.jarvinen@helsinki.fi> Signed-off-by: David S. Miller <davem@davemloft.net>
2008-11-24 21:20:15 -08:00
{
return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb);
tcp: Try to restore large SKBs while SACK processing During SACK processing, most of the benefits of TSO are eaten by the SACK blocks that one-by-one fragment SKBs to MSS sized chunks. Then we're in problems when cleanup work for them has to be done when a large cumulative ACK comes. Try to return back to pre-split state already while more and more SACK info gets discovered by combining newly discovered SACK areas with the previous skb if that's SACKed as well. This approach has a number of benefits: 1) The processing overhead is spread more equally over the RTT 2) Write queue has less skbs to process (affect everything which has to walk in the queue past the sacked areas) 3) Write queue is consistent whole the time, so no other parts of TCP has to be aware of this (this was not the case with some other approach that was, well, quite intrusive all around). 4) Clean_rtx_queue can release most of the pages using single put_page instead of previous PAGE_SIZE/mss+1 calls In case a hole is fully filled by the new SACK block, we attempt to combine the next skb too which allows construction of skbs that are even larger than what tso split them to and it handles hole per on every nth patterns that often occur during slow start overshoot pretty nicely. Though this to be really useful also a retransmission would have to get lost since cumulative ACKs advance one hole at a time in the most typical case. TODO: handle upwards only merging. That should be rather easy when segment is fully sacked but I'm leaving that as future work item (it won't make very large difference anyway since this current approach already covers quite a lot of normal cases). I was earlier thinking of some sophisticated way of tracking timestamps of the first and the last segment but later on realized that it won't be that necessary at all to store the timestamp of the last segment. The cases that can occur are basically either: 1) ambiguous => no sensible measurement can be taken anyway 2) non-ambiguous is due to reordering => having the timestamp of the last segment there is just skewing things more off than does some good since the ack got triggered by one of the holes (besides some substle issues that would make determining right hole/skb even harder problem). Anyway, it has nothing to do with this change then. I choose to route some abnormal looking cases with goto noop, some could be handled differently (eg., by stopping the walking at that skb but again). In general, they either shouldn't happen at all or are rare enough to make no difference in practice. In theory this change (as whole) could cause some macroscale regression (global) because of cache misses that are taken over the round-trip time but it gets very likely better because of much less (local) cache misses per other write queue walkers and the big recovery clearing cumulative ack. Worth to note that these benefits would be very easy to get also without TSO/GSO being on as long as the data is in pages so that we can merge them. Currently I won't let that happen because DSACK splitting at fragment that would mess up pcounts due to sk_can_gso in tcp_set_skb_tso_segs. Once DSACKs fragments gets avoided, we have some conditions that can be made less strict. TODO: I will probably have to convert the excessive pointer passing to struct sacktag_state... :-) My testing revealed that considerable amount of skbs couldn't be shifted because they were cloned (most likely still awaiting tx reclaim)... [The rest is considering future work instead since I got repeatably EFAULT to tcpdump's recvfrom when I added pskb_expand_head to deal with clones, so I separated that into another, later patch] ...To counter that, I gave up on the fifth advantage: 5) When growing previous SACK block, less allocs for new skbs are done, basically a new alloc is needed only when new hole is detected and when the previous skb runs out of frags space ...which now only happens of if reclaim is fast enough to dispose the clone before the SACK block comes in (the window is RTT long), otherwise we'll have to alloc some. With clones being handled I got these numbers (will be somewhat worse without that), taken with fine-grained mibs: TCPSackShifted 398 TCPSackMerged 877 TCPSackShiftFallback 320 TCPSACKCOLLAPSEFALLBACKGSO 0 TCPSACKCOLLAPSEFALLBACKSKBBITS 0 TCPSACKCOLLAPSEFALLBACKSKBDATA 0 TCPSACKCOLLAPSEFALLBACKBELOW 0 TCPSACKCOLLAPSEFALLBACKFIRST 1 TCPSACKCOLLAPSEFALLBACKPREVBITS 318 TCPSACKCOLLAPSEFALLBACKMSS 1 TCPSACKCOLLAPSEFALLBACKNOHEAD 0 TCPSACKCOLLAPSEFALLBACKSHIFT 0 TCPSACKCOLLAPSENOOPSEQ 0 TCPSACKCOLLAPSENOOPSMALLPCOUNT 0 TCPSACKCOLLAPSENOOPSMALLLEN 0 TCPSACKCOLLAPSEHOLE 12 Signed-off-by: Ilpo Järvinen <ilpo.jarvinen@helsinki.fi> Signed-off-by: David S. Miller <davem@davemloft.net>
2008-11-24 21:20:15 -08:00
}
/* Shifting pages past head area doesn't work */
static int skb_can_shift(const struct sk_buff *skb)
tcp: Try to restore large SKBs while SACK processing During SACK processing, most of the benefits of TSO are eaten by the SACK blocks that one-by-one fragment SKBs to MSS sized chunks. Then we're in problems when cleanup work for them has to be done when a large cumulative ACK comes. Try to return back to pre-split state already while more and more SACK info gets discovered by combining newly discovered SACK areas with the previous skb if that's SACKed as well. This approach has a number of benefits: 1) The processing overhead is spread more equally over the RTT 2) Write queue has less skbs to process (affect everything which has to walk in the queue past the sacked areas) 3) Write queue is consistent whole the time, so no other parts of TCP has to be aware of this (this was not the case with some other approach that was, well, quite intrusive all around). 4) Clean_rtx_queue can release most of the pages using single put_page instead of previous PAGE_SIZE/mss+1 calls In case a hole is fully filled by the new SACK block, we attempt to combine the next skb too which allows construction of skbs that are even larger than what tso split them to and it handles hole per on every nth patterns that often occur during slow start overshoot pretty nicely. Though this to be really useful also a retransmission would have to get lost since cumulative ACKs advance one hole at a time in the most typical case. TODO: handle upwards only merging. That should be rather easy when segment is fully sacked but I'm leaving that as future work item (it won't make very large difference anyway since this current approach already covers quite a lot of normal cases). I was earlier thinking of some sophisticated way of tracking timestamps of the first and the last segment but later on realized that it won't be that necessary at all to store the timestamp of the last segment. The cases that can occur are basically either: 1) ambiguous => no sensible measurement can be taken anyway 2) non-ambiguous is due to reordering => having the timestamp of the last segment there is just skewing things more off than does some good since the ack got triggered by one of the holes (besides some substle issues that would make determining right hole/skb even harder problem). Anyway, it has nothing to do with this change then. I choose to route some abnormal looking cases with goto noop, some could be handled differently (eg., by stopping the walking at that skb but again). In general, they either shouldn't happen at all or are rare enough to make no difference in practice. In theory this change (as whole) could cause some macroscale regression (global) because of cache misses that are taken over the round-trip time but it gets very likely better because of much less (local) cache misses per other write queue walkers and the big recovery clearing cumulative ack. Worth to note that these benefits would be very easy to get also without TSO/GSO being on as long as the data is in pages so that we can merge them. Currently I won't let that happen because DSACK splitting at fragment that would mess up pcounts due to sk_can_gso in tcp_set_skb_tso_segs. Once DSACKs fragments gets avoided, we have some conditions that can be made less strict. TODO: I will probably have to convert the excessive pointer passing to struct sacktag_state... :-) My testing revealed that considerable amount of skbs couldn't be shifted because they were cloned (most likely still awaiting tx reclaim)... [The rest is considering future work instead since I got repeatably EFAULT to tcpdump's recvfrom when I added pskb_expand_head to deal with clones, so I separated that into another, later patch] ...To counter that, I gave up on the fifth advantage: 5) When growing previous SACK block, less allocs for new skbs are done, basically a new alloc is needed only when new hole is detected and when the previous skb runs out of frags space ...which now only happens of if reclaim is fast enough to dispose the clone before the SACK block comes in (the window is RTT long), otherwise we'll have to alloc some. With clones being handled I got these numbers (will be somewhat worse without that), taken with fine-grained mibs: TCPSackShifted 398 TCPSackMerged 877 TCPSackShiftFallback 320 TCPSACKCOLLAPSEFALLBACKGSO 0 TCPSACKCOLLAPSEFALLBACKSKBBITS 0 TCPSACKCOLLAPSEFALLBACKSKBDATA 0 TCPSACKCOLLAPSEFALLBACKBELOW 0 TCPSACKCOLLAPSEFALLBACKFIRST 1 TCPSACKCOLLAPSEFALLBACKPREVBITS 318 TCPSACKCOLLAPSEFALLBACKMSS 1 TCPSACKCOLLAPSEFALLBACKNOHEAD 0 TCPSACKCOLLAPSEFALLBACKSHIFT 0 TCPSACKCOLLAPSENOOPSEQ 0 TCPSACKCOLLAPSENOOPSMALLPCOUNT 0 TCPSACKCOLLAPSENOOPSMALLLEN 0 TCPSACKCOLLAPSEHOLE 12 Signed-off-by: Ilpo Järvinen <ilpo.jarvinen@helsinki.fi> Signed-off-by: David S. Miller <davem@davemloft.net>
2008-11-24 21:20:15 -08:00
{
return !skb_headlen(skb) && skb_is_nonlinear(skb);
}
int tcp_skb_shift(struct sk_buff *to, struct sk_buff *from,
int pcount, int shiftlen)
{
/* TCP min gso_size is 8 bytes (TCP_MIN_GSO_SIZE)
* Since TCP_SKB_CB(skb)->tcp_gso_segs is 16 bits, we need
* to make sure not storing more than 65535 * 8 bytes per skb,
* even if current MSS is bigger.
*/
if (unlikely(to->len + shiftlen >= 65535 * TCP_MIN_GSO_SIZE))
return 0;
if (unlikely(tcp_skb_pcount(to) + pcount > 65535))
return 0;
return skb_shift(to, from, shiftlen);
}
tcp: Try to restore large SKBs while SACK processing During SACK processing, most of the benefits of TSO are eaten by the SACK blocks that one-by-one fragment SKBs to MSS sized chunks. Then we're in problems when cleanup work for them has to be done when a large cumulative ACK comes. Try to return back to pre-split state already while more and more SACK info gets discovered by combining newly discovered SACK areas with the previous skb if that's SACKed as well. This approach has a number of benefits: 1) The processing overhead is spread more equally over the RTT 2) Write queue has less skbs to process (affect everything which has to walk in the queue past the sacked areas) 3) Write queue is consistent whole the time, so no other parts of TCP has to be aware of this (this was not the case with some other approach that was, well, quite intrusive all around). 4) Clean_rtx_queue can release most of the pages using single put_page instead of previous PAGE_SIZE/mss+1 calls In case a hole is fully filled by the new SACK block, we attempt to combine the next skb too which allows construction of skbs that are even larger than what tso split them to and it handles hole per on every nth patterns that often occur during slow start overshoot pretty nicely. Though this to be really useful also a retransmission would have to get lost since cumulative ACKs advance one hole at a time in the most typical case. TODO: handle upwards only merging. That should be rather easy when segment is fully sacked but I'm leaving that as future work item (it won't make very large difference anyway since this current approach already covers quite a lot of normal cases). I was earlier thinking of some sophisticated way of tracking timestamps of the first and the last segment but later on realized that it won't be that necessary at all to store the timestamp of the last segment. The cases that can occur are basically either: 1) ambiguous => no sensible measurement can be taken anyway 2) non-ambiguous is due to reordering => having the timestamp of the last segment there is just skewing things more off than does some good since the ack got triggered by one of the holes (besides some substle issues that would make determining right hole/skb even harder problem). Anyway, it has nothing to do with this change then. I choose to route some abnormal looking cases with goto noop, some could be handled differently (eg., by stopping the walking at that skb but again). In general, they either shouldn't happen at all or are rare enough to make no difference in practice. In theory this change (as whole) could cause some macroscale regression (global) because of cache misses that are taken over the round-trip time but it gets very likely better because of much less (local) cache misses per other write queue walkers and the big recovery clearing cumulative ack. Worth to note that these benefits would be very easy to get also without TSO/GSO being on as long as the data is in pages so that we can merge them. Currently I won't let that happen because DSACK splitting at fragment that would mess up pcounts due to sk_can_gso in tcp_set_skb_tso_segs. Once DSACKs fragments gets avoided, we have some conditions that can be made less strict. TODO: I will probably have to convert the excessive pointer passing to struct sacktag_state... :-) My testing revealed that considerable amount of skbs couldn't be shifted because they were cloned (most likely still awaiting tx reclaim)... [The rest is considering future work instead since I got repeatably EFAULT to tcpdump's recvfrom when I added pskb_expand_head to deal with clones, so I separated that into another, later patch] ...To counter that, I gave up on the fifth advantage: 5) When growing previous SACK block, less allocs for new skbs are done, basically a new alloc is needed only when new hole is detected and when the previous skb runs out of frags space ...which now only happens of if reclaim is fast enough to dispose the clone before the SACK block comes in (the window is RTT long), otherwise we'll have to alloc some. With clones being handled I got these numbers (will be somewhat worse without that), taken with fine-grained mibs: TCPSackShifted 398 TCPSackMerged 877 TCPSackShiftFallback 320 TCPSACKCOLLAPSEFALLBACKGSO 0 TCPSACKCOLLAPSEFALLBACKSKBBITS 0 TCPSACKCOLLAPSEFALLBACKSKBDATA 0 TCPSACKCOLLAPSEFALLBACKBELOW 0 TCPSACKCOLLAPSEFALLBACKFIRST 1 TCPSACKCOLLAPSEFALLBACKPREVBITS 318 TCPSACKCOLLAPSEFALLBACKMSS 1 TCPSACKCOLLAPSEFALLBACKNOHEAD 0 TCPSACKCOLLAPSEFALLBACKSHIFT 0 TCPSACKCOLLAPSENOOPSEQ 0 TCPSACKCOLLAPSENOOPSMALLPCOUNT 0 TCPSACKCOLLAPSENOOPSMALLLEN 0 TCPSACKCOLLAPSEHOLE 12 Signed-off-by: Ilpo Järvinen <ilpo.jarvinen@helsinki.fi> Signed-off-by: David S. Miller <davem@davemloft.net>
2008-11-24 21:20:15 -08:00
/* Try collapsing SACK blocks spanning across multiple skbs to a single
* skb.
*/
static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb,
struct tcp_sacktag_state *state,
tcp: Try to restore large SKBs while SACK processing During SACK processing, most of the benefits of TSO are eaten by the SACK blocks that one-by-one fragment SKBs to MSS sized chunks. Then we're in problems when cleanup work for them has to be done when a large cumulative ACK comes. Try to return back to pre-split state already while more and more SACK info gets discovered by combining newly discovered SACK areas with the previous skb if that's SACKed as well. This approach has a number of benefits: 1) The processing overhead is spread more equally over the RTT 2) Write queue has less skbs to process (affect everything which has to walk in the queue past the sacked areas) 3) Write queue is consistent whole the time, so no other parts of TCP has to be aware of this (this was not the case with some other approach that was, well, quite intrusive all around). 4) Clean_rtx_queue can release most of the pages using single put_page instead of previous PAGE_SIZE/mss+1 calls In case a hole is fully filled by the new SACK block, we attempt to combine the next skb too which allows construction of skbs that are even larger than what tso split them to and it handles hole per on every nth patterns that often occur during slow start overshoot pretty nicely. Though this to be really useful also a retransmission would have to get lost since cumulative ACKs advance one hole at a time in the most typical case. TODO: handle upwards only merging. That should be rather easy when segment is fully sacked but I'm leaving that as future work item (it won't make very large difference anyway since this current approach already covers quite a lot of normal cases). I was earlier thinking of some sophisticated way of tracking timestamps of the first and the last segment but later on realized that it won't be that necessary at all to store the timestamp of the last segment. The cases that can occur are basically either: 1) ambiguous => no sensible measurement can be taken anyway 2) non-ambiguous is due to reordering => having the timestamp of the last segment there is just skewing things more off than does some good since the ack got triggered by one of the holes (besides some substle issues that would make determining right hole/skb even harder problem). Anyway, it has nothing to do with this change then. I choose to route some abnormal looking cases with goto noop, some could be handled differently (eg., by stopping the walking at that skb but again). In general, they either shouldn't happen at all or are rare enough to make no difference in practice. In theory this change (as whole) could cause some macroscale regression (global) because of cache misses that are taken over the round-trip time but it gets very likely better because of much less (local) cache misses per other write queue walkers and the big recovery clearing cumulative ack. Worth to note that these benefits would be very easy to get also without TSO/GSO being on as long as the data is in pages so that we can merge them. Currently I won't let that happen because DSACK splitting at fragment that would mess up pcounts due to sk_can_gso in tcp_set_skb_tso_segs. Once DSACKs fragments gets avoided, we have some conditions that can be made less strict. TODO: I will probably have to convert the excessive pointer passing to struct sacktag_state... :-) My testing revealed that considerable amount of skbs couldn't be shifted because they were cloned (most likely still awaiting tx reclaim)... [The rest is considering future work instead since I got repeatably EFAULT to tcpdump's recvfrom when I added pskb_expand_head to deal with clones, so I separated that into another, later patch] ...To counter that, I gave up on the fifth advantage: 5) When growing previous SACK block, less allocs for new skbs are done, basically a new alloc is needed only when new hole is detected and when the previous skb runs out of frags space ...which now only happens of if reclaim is fast enough to dispose the clone before the SACK block comes in (the window is RTT long), otherwise we'll have to alloc some. With clones being handled I got these numbers (will be somewhat worse without that), taken with fine-grained mibs: TCPSackShifted 398 TCPSackMerged 877 TCPSackShiftFallback 320 TCPSACKCOLLAPSEFALLBACKGSO 0 TCPSACKCOLLAPSEFALLBACKSKBBITS 0 TCPSACKCOLLAPSEFALLBACKSKBDATA 0 TCPSACKCOLLAPSEFALLBACKBELOW 0 TCPSACKCOLLAPSEFALLBACKFIRST 1 TCPSACKCOLLAPSEFALLBACKPREVBITS 318 TCPSACKCOLLAPSEFALLBACKMSS 1 TCPSACKCOLLAPSEFALLBACKNOHEAD 0 TCPSACKCOLLAPSEFALLBACKSHIFT 0 TCPSACKCOLLAPSENOOPSEQ 0 TCPSACKCOLLAPSENOOPSMALLPCOUNT 0 TCPSACKCOLLAPSENOOPSMALLLEN 0 TCPSACKCOLLAPSEHOLE 12 Signed-off-by: Ilpo Järvinen <ilpo.jarvinen@helsinki.fi> Signed-off-by: David S. Miller <davem@davemloft.net>
2008-11-24 21:20:15 -08:00
u32 start_seq, u32 end_seq,
bool dup_sack)
tcp: Try to restore large SKBs while SACK processing During SACK processing, most of the benefits of TSO are eaten by the SACK blocks that one-by-one fragment SKBs to MSS sized chunks. Then we're in problems when cleanup work for them has to be done when a large cumulative ACK comes. Try to return back to pre-split state already while more and more SACK info gets discovered by combining newly discovered SACK areas with the previous skb if that's SACKed as well. This approach has a number of benefits: 1) The processing overhead is spread more equally over the RTT 2) Write queue has less skbs to process (affect everything which has to walk in the queue past the sacked areas) 3) Write queue is consistent whole the time, so no other parts of TCP has to be aware of this (this was not the case with some other approach that was, well, quite intrusive all around). 4) Clean_rtx_queue can release most of the pages using single put_page instead of previous PAGE_SIZE/mss+1 calls In case a hole is fully filled by the new SACK block, we attempt to combine the next skb too which allows construction of skbs that are even larger than what tso split them to and it handles hole per on every nth patterns that often occur during slow start overshoot pretty nicely. Though this to be really useful also a retransmission would have to get lost since cumulative ACKs advance one hole at a time in the most typical case. TODO: handle upwards only merging. That should be rather easy when segment is fully sacked but I'm leaving that as future work item (it won't make very large difference anyway since this current approach already covers quite a lot of normal cases). I was earlier thinking of some sophisticated way of tracking timestamps of the first and the last segment but later on realized that it won't be that necessary at all to store the timestamp of the last segment. The cases that can occur are basically either: 1) ambiguous => no sensible measurement can be taken anyway 2) non-ambiguous is due to reordering => having the timestamp of the last segment there is just skewing things more off than does some good since the ack got triggered by one of the holes (besides some substle issues that would make determining right hole/skb even harder problem). Anyway, it has nothing to do with this change then. I choose to route some abnormal looking cases with goto noop, some could be handled differently (eg., by stopping the walking at that skb but again). In general, they either shouldn't happen at all or are rare enough to make no difference in practice. In theory this change (as whole) could cause some macroscale regression (global) because of cache misses that are taken over the round-trip time but it gets very likely better because of much less (local) cache misses per other write queue walkers and the big recovery clearing cumulative ack. Worth to note that these benefits would be very easy to get also without TSO/GSO being on as long as the data is in pages so that we can merge them. Currently I won't let that happen because DSACK splitting at fragment that would mess up pcounts due to sk_can_gso in tcp_set_skb_tso_segs. Once DSACKs fragments gets avoided, we have some conditions that can be made less strict. TODO: I will probably have to convert the excessive pointer passing to struct sacktag_state... :-) My testing revealed that considerable amount of skbs couldn't be shifted because they were cloned (most likely still awaiting tx reclaim)... [The rest is considering future work instead since I got repeatably EFAULT to tcpdump's recvfrom when I added pskb_expand_head to deal with clones, so I separated that into another, later patch] ...To counter that, I gave up on the fifth advantage: 5) When growing previous SACK block, less allocs for new skbs are done, basically a new alloc is needed only when new hole is detected and when the previous skb runs out of frags space ...which now only happens of if reclaim is fast enough to dispose the clone before the SACK block comes in (the window is RTT long), otherwise we'll have to alloc some. With clones being handled I got these numbers (will be somewhat worse without that), taken with fine-grained mibs: TCPSackShifted 398 TCPSackMerged 877 TCPSackShiftFallback 320 TCPSACKCOLLAPSEFALLBACKGSO 0 TCPSACKCOLLAPSEFALLBACKSKBBITS 0 TCPSACKCOLLAPSEFALLBACKSKBDATA 0 TCPSACKCOLLAPSEFALLBACKBELOW 0 TCPSACKCOLLAPSEFALLBACKFIRST 1 TCPSACKCOLLAPSEFALLBACKPREVBITS 318 TCPSACKCOLLAPSEFALLBACKMSS 1 TCPSACKCOLLAPSEFALLBACKNOHEAD 0 TCPSACKCOLLAPSEFALLBACKSHIFT 0 TCPSACKCOLLAPSENOOPSEQ 0 TCPSACKCOLLAPSENOOPSMALLPCOUNT 0 TCPSACKCOLLAPSENOOPSMALLLEN 0 TCPSACKCOLLAPSEHOLE 12 Signed-off-by: Ilpo Järvinen <ilpo.jarvinen@helsinki.fi> Signed-off-by: David S. Miller <davem@davemloft.net>
2008-11-24 21:20:15 -08:00
{
struct tcp_sock *tp = tcp_sk(sk);
struct sk_buff *prev;
int mss;
int pcount = 0;
int len;
int in_sack;
/* Normally R but no L won't result in plain S */
if (!dup_sack &&
(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS)
tcp: Try to restore large SKBs while SACK processing During SACK processing, most of the benefits of TSO are eaten by the SACK blocks that one-by-one fragment SKBs to MSS sized chunks. Then we're in problems when cleanup work for them has to be done when a large cumulative ACK comes. Try to return back to pre-split state already while more and more SACK info gets discovered by combining newly discovered SACK areas with the previous skb if that's SACKed as well. This approach has a number of benefits: 1) The processing overhead is spread more equally over the RTT 2) Write queue has less skbs to process (affect everything which has to walk in the queue past the sacked areas) 3) Write queue is consistent whole the time, so no other parts of TCP has to be aware of this (this was not the case with some other approach that was, well, quite intrusive all around). 4) Clean_rtx_queue can release most of the pages using single put_page instead of previous PAGE_SIZE/mss+1 calls In case a hole is fully filled by the new SACK block, we attempt to combine the next skb too which allows construction of skbs that are even larger than what tso split them to and it handles hole per on every nth patterns that often occur during slow start overshoot pretty nicely. Though this to be really useful also a retransmission would have to get lost since cumulative ACKs advance one hole at a time in the most typical case. TODO: handle upwards only merging. That should be rather easy when segment is fully sacked but I'm leaving that as future work item (it won't make very large difference anyway since this current approach already covers quite a lot of normal cases). I was earlier thinking of some sophisticated way of tracking timestamps of the first and the last segment but later on realized that it won't be that necessary at all to store the timestamp of the last segment. The cases that can occur are basically either: 1) ambiguous => no sensible measurement can be taken anyway 2) non-ambiguous is due to reordering => having the timestamp of the last segment there is just skewing things more off than does some good since the ack got triggered by one of the holes (besides some substle issues that would make determining right hole/skb even harder problem). Anyway, it has nothing to do with this change then. I choose to route some abnormal looking cases with goto noop, some could be handled differently (eg., by stopping the walking at that skb but again). In general, they either shouldn't happen at all or are rare enough to make no difference in practice. In theory this change (as whole) could cause some macroscale regression (global) because of cache misses that are taken over the round-trip time but it gets very likely better because of much less (local) cache misses per other write queue walkers and the big recovery clearing cumulative ack. Worth to note that these benefits would be very easy to get also without TSO/GSO being on as long as the data is in pages so that we can merge them. Currently I won't let that happen because DSACK splitting at fragment that would mess up pcounts due to sk_can_gso in tcp_set_skb_tso_segs. Once DSACKs fragments gets avoided, we have some conditions that can be made less strict. TODO: I will probably have to convert the excessive pointer passing to struct sacktag_state... :-) My testing revealed that considerable amount of skbs couldn't be shifted because they were cloned (most likely still awaiting tx reclaim)... [The rest is considering future work instead since I got repeatably EFAULT to tcpdump's recvfrom when I added pskb_expand_head to deal with clones, so I separated that into another, later patch] ...To counter that, I gave up on the fifth advantage: 5) When growing previous SACK block, less allocs for new skbs are done, basically a new alloc is needed only when new hole is detected and when the previous skb runs out of frags space ...which now only happens of if reclaim is fast enough to dispose the clone before the SACK block comes in (the window is RTT long), otherwise we'll have to alloc some. With clones being handled I got these numbers (will be somewhat worse without that), taken with fine-grained mibs: TCPSackShifted 398 TCPSackMerged 877 TCPSackShiftFallback 320 TCPSACKCOLLAPSEFALLBACKGSO 0 TCPSACKCOLLAPSEFALLBACKSKBBITS 0 TCPSACKCOLLAPSEFALLBACKSKBDATA 0 TCPSACKCOLLAPSEFALLBACKBELOW 0 TCPSACKCOLLAPSEFALLBACKFIRST 1 TCPSACKCOLLAPSEFALLBACKPREVBITS 318 TCPSACKCOLLAPSEFALLBACKMSS 1 TCPSACKCOLLAPSEFALLBACKNOHEAD 0 TCPSACKCOLLAPSEFALLBACKSHIFT 0 TCPSACKCOLLAPSENOOPSEQ 0 TCPSACKCOLLAPSENOOPSMALLPCOUNT 0 TCPSACKCOLLAPSENOOPSMALLLEN 0 TCPSACKCOLLAPSEHOLE 12 Signed-off-by: Ilpo Järvinen <ilpo.jarvinen@helsinki.fi> Signed-off-by: David S. Miller <davem@davemloft.net>
2008-11-24 21:20:15 -08:00
goto fallback;
if (!skb_can_shift(skb))
goto fallback;
/* This frame is about to be dropped (was ACKed). */
if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
goto fallback;
/* Can only happen with delayed DSACK + discard craziness */
tcp: implement rb-tree based retransmit queue Using a linear list to store all skbs in write queue has been okay for quite a while : O(N) is not too bad when N < 500. Things get messy when N is the order of 100,000 : Modern TCP stacks want 10Gbit+ of throughput even with 200 ms RTT flows. 40 ns per cache line miss means a full scan can use 4 ms, blowing away CPU caches. SACK processing often can use various hints to avoid parsing whole retransmit queue. But with high packet losses and/or high reordering, hints no longer work. Sender has to process thousands of unfriendly SACK, accumulating a huge socket backlog, burning a cpu and massively dropping packets. Using an rb-tree for retransmit queue has been avoided for years because it added complexity and overhead, but now is the time to be more resistant and say no to quadratic behavior. 1) RTX queue is no longer part of the write queue : already sent skbs are stored in one rb-tree. 2) Since reaching the head of write queue no longer needs sk->sk_send_head, we added an union of sk_send_head and tcp_rtx_queue Tested: On receiver : netem on ingress : delay 150ms 200us loss 1 GRO disabled to force stress and SACK storms. for f in `seq 1 10` do ./netperf -H lpaa6 -l30 -- -K bbr -o THROUGHPUT|tail -1 done | awk '{print $0} {sum += $0} END {printf "%7u\n",sum}' Before patch : 323.87 351.48 339.59 338.62 306.72 204.07 304.93 291.88 202.47 176.88 2840 After patch: 1700.83 2207.98 2070.17 1544.26 2114.76 2124.89 1693.14 1080.91 2216.82 1299.94 18053 Signed-off-by: Eric Dumazet <edumazet@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-10-05 22:21:27 -07:00
prev = skb_rb_prev(skb);
if (!prev)
tcp: Try to restore large SKBs while SACK processing During SACK processing, most of the benefits of TSO are eaten by the SACK blocks that one-by-one fragment SKBs to MSS sized chunks. Then we're in problems when cleanup work for them has to be done when a large cumulative ACK comes. Try to return back to pre-split state already while more and more SACK info gets discovered by combining newly discovered SACK areas with the previous skb if that's SACKed as well. This approach has a number of benefits: 1) The processing overhead is spread more equally over the RTT 2) Write queue has less skbs to process (affect everything which has to walk in the queue past the sacked areas) 3) Write queue is consistent whole the time, so no other parts of TCP has to be aware of this (this was not the case with some other approach that was, well, quite intrusive all around). 4) Clean_rtx_queue can release most of the pages using single put_page instead of previous PAGE_SIZE/mss+1 calls In case a hole is fully filled by the new SACK block, we attempt to combine the next skb too which allows construction of skbs that are even larger than what tso split them to and it handles hole per on every nth patterns that often occur during slow start overshoot pretty nicely. Though this to be really useful also a retransmission would have to get lost since cumulative ACKs advance one hole at a time in the most typical case. TODO: handle upwards only merging. That should be rather easy when segment is fully sacked but I'm leaving that as future work item (it won't make very large difference anyway since this current approach already covers quite a lot of normal cases). I was earlier thinking of some sophisticated way of tracking timestamps of the first and the last segment but later on realized that it won't be that necessary at all to store the timestamp of the last segment. The cases that can occur are basically either: 1) ambiguous => no sensible measurement can be taken anyway 2) non-ambiguous is due to reordering => having the timestamp of the last segment there is just skewing things more off than does some good since the ack got triggered by one of the holes (besides some substle issues that would make determining right hole/skb even harder problem). Anyway, it has nothing to do with this change then. I choose to route some abnormal looking cases with goto noop, some could be handled differently (eg., by stopping the walking at that skb but again). In general, they either shouldn't happen at all or are rare enough to make no difference in practice. In theory this change (as whole) could cause some macroscale regression (global) because of cache misses that are taken over the round-trip time but it gets very likely better because of much less (local) cache misses per other write queue walkers and the big recovery clearing cumulative ack. Worth to note that these benefits would be very easy to get also without TSO/GSO being on as long as the data is in pages so that we can merge them. Currently I won't let that happen because DSACK splitting at fragment that would mess up pcounts due to sk_can_gso in tcp_set_skb_tso_segs. Once DSACKs fragments gets avoided, we have some conditions that can be made less strict. TODO: I will probably have to convert the excessive pointer passing to struct sacktag_state... :-) My testing revealed that considerable amount of skbs couldn't be shifted because they were cloned (most likely still awaiting tx reclaim)... [The rest is considering future work instead since I got repeatably EFAULT to tcpdump's recvfrom when I added pskb_expand_head to deal with clones, so I separated that into another, later patch] ...To counter that, I gave up on the fifth advantage: 5) When growing previous SACK block, less allocs for new skbs are done, basically a new alloc is needed only when new hole is detected and when the previous skb runs out of frags space ...which now only happens of if reclaim is fast enough to dispose the clone before the SACK block comes in (the window is RTT long), otherwise we'll have to alloc some. With clones being handled I got these numbers (will be somewhat worse without that), taken with fine-grained mibs: TCPSackShifted 398 TCPSackMerged 877 TCPSackShiftFallback 320 TCPSACKCOLLAPSEFALLBACKGSO 0 TCPSACKCOLLAPSEFALLBACKSKBBITS 0 TCPSACKCOLLAPSEFALLBACKSKBDATA 0 TCPSACKCOLLAPSEFALLBACKBELOW 0 TCPSACKCOLLAPSEFALLBACKFIRST 1 TCPSACKCOLLAPSEFALLBACKPREVBITS 318 TCPSACKCOLLAPSEFALLBACKMSS 1 TCPSACKCOLLAPSEFALLBACKNOHEAD 0 TCPSACKCOLLAPSEFALLBACKSHIFT 0 TCPSACKCOLLAPSENOOPSEQ 0 TCPSACKCOLLAPSENOOPSMALLPCOUNT 0 TCPSACKCOLLAPSENOOPSMALLLEN 0 TCPSACKCOLLAPSEHOLE 12 Signed-off-by: Ilpo Järvinen <ilpo.jarvinen@helsinki.fi> Signed-off-by: David S. Miller <davem@davemloft.net>
2008-11-24 21:20:15 -08:00
goto fallback;
if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED)
goto fallback;
if (!tcp_skb_can_collapse(prev, skb))
tcp: Handle eor bit when coalescing skb This patch: 1. Prevent next_skb from coalescing to the prev_skb if TCP_SKB_CB(prev_skb)->eor is set 2. Update the TCP_SKB_CB(prev_skb)->eor if coalescing is allowed Packetdrill script for testing: ~~~~~~ +0 `sysctl -q -w net.ipv4.tcp_min_tso_segs=10` +0 `sysctl -q -w net.ipv4.tcp_no_metrics_save=1` +0 socket(..., SOCK_STREAM, IPPROTO_TCP) = 3 +0 setsockopt(3, SOL_SOCKET, SO_REUSEADDR, [1], 4) = 0 +0 bind(3, ..., ...) = 0 +0 listen(3, 1) = 0 0.100 < S 0:0(0) win 32792 <mss 1460,sackOK,nop,nop,nop,wscale 7> 0.100 > S. 0:0(0) ack 1 <mss 1460,nop,nop,sackOK,nop,wscale 7> 0.200 < . 1:1(0) ack 1 win 257 0.200 accept(3, ..., ...) = 4 +0 setsockopt(4, SOL_TCP, TCP_NODELAY, [1], 4) = 0 0.200 sendto(4, ..., 730, MSG_EOR, ..., ...) = 730 0.200 sendto(4, ..., 730, MSG_EOR, ..., ...) = 730 0.200 write(4, ..., 11680) = 11680 0.200 > P. 1:731(730) ack 1 0.200 > P. 731:1461(730) ack 1 0.200 > . 1461:8761(7300) ack 1 0.200 > P. 8761:13141(4380) ack 1 0.300 < . 1:1(0) ack 1 win 257 <sack 1461:13141,nop,nop> 0.300 > P. 1:731(730) ack 1 0.300 > P. 731:1461(730) ack 1 0.400 < . 1:1(0) ack 13141 win 257 0.400 close(4) = 0 0.400 > F. 13141:13141(0) ack 1 0.500 < F. 1:1(0) ack 13142 win 257 0.500 > . 13142:13142(0) ack 2 Signed-off-by: Martin KaFai Lau <kafai@fb.com> Cc: Eric Dumazet <edumazet@google.com> Cc: Neal Cardwell <ncardwell@google.com> Cc: Soheil Hassas Yeganeh <soheil@google.com> Cc: Willem de Bruijn <willemb@google.com> Cc: Yuchung Cheng <ycheng@google.com> Acked-by: Eric Dumazet <edumazet@google.com> Acked-by: Soheil Hassas Yeganeh <soheil@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-04-25 14:44:49 -07:00
goto fallback;
tcp: Try to restore large SKBs while SACK processing During SACK processing, most of the benefits of TSO are eaten by the SACK blocks that one-by-one fragment SKBs to MSS sized chunks. Then we're in problems when cleanup work for them has to be done when a large cumulative ACK comes. Try to return back to pre-split state already while more and more SACK info gets discovered by combining newly discovered SACK areas with the previous skb if that's SACKed as well. This approach has a number of benefits: 1) The processing overhead is spread more equally over the RTT 2) Write queue has less skbs to process (affect everything which has to walk in the queue past the sacked areas) 3) Write queue is consistent whole the time, so no other parts of TCP has to be aware of this (this was not the case with some other approach that was, well, quite intrusive all around). 4) Clean_rtx_queue can release most of the pages using single put_page instead of previous PAGE_SIZE/mss+1 calls In case a hole is fully filled by the new SACK block, we attempt to combine the next skb too which allows construction of skbs that are even larger than what tso split them to and it handles hole per on every nth patterns that often occur during slow start overshoot pretty nicely. Though this to be really useful also a retransmission would have to get lost since cumulative ACKs advance one hole at a time in the most typical case. TODO: handle upwards only merging. That should be rather easy when segment is fully sacked but I'm leaving that as future work item (it won't make very large difference anyway since this current approach already covers quite a lot of normal cases). I was earlier thinking of some sophisticated way of tracking timestamps of the first and the last segment but later on realized that it won't be that necessary at all to store the timestamp of the last segment. The cases that can occur are basically either: 1) ambiguous => no sensible measurement can be taken anyway 2) non-ambiguous is due to reordering => having the timestamp of the last segment there is just skewing things more off than does some good since the ack got triggered by one of the holes (besides some substle issues that would make determining right hole/skb even harder problem). Anyway, it has nothing to do with this change then. I choose to route some abnormal looking cases with goto noop, some could be handled differently (eg., by stopping the walking at that skb but again). In general, they either shouldn't happen at all or are rare enough to make no difference in practice. In theory this change (as whole) could cause some macroscale regression (global) because of cache misses that are taken over the round-trip time but it gets very likely better because of much less (local) cache misses per other write queue walkers and the big recovery clearing cumulative ack. Worth to note that these benefits would be very easy to get also without TSO/GSO being on as long as the data is in pages so that we can merge them. Currently I won't let that happen because DSACK splitting at fragment that would mess up pcounts due to sk_can_gso in tcp_set_skb_tso_segs. Once DSACKs fragments gets avoided, we have some conditions that can be made less strict. TODO: I will probably have to convert the excessive pointer passing to struct sacktag_state... :-) My testing revealed that considerable amount of skbs couldn't be shifted because they were cloned (most likely still awaiting tx reclaim)... [The rest is considering future work instead since I got repeatably EFAULT to tcpdump's recvfrom when I added pskb_expand_head to deal with clones, so I separated that into another, later patch] ...To counter that, I gave up on the fifth advantage: 5) When growing previous SACK block, less allocs for new skbs are done, basically a new alloc is needed only when new hole is detected and when the previous skb runs out of frags space ...which now only happens of if reclaim is fast enough to dispose the clone before the SACK block comes in (the window is RTT long), otherwise we'll have to alloc some. With clones being handled I got these numbers (will be somewhat worse without that), taken with fine-grained mibs: TCPSackShifted 398 TCPSackMerged 877 TCPSackShiftFallback 320 TCPSACKCOLLAPSEFALLBACKGSO 0 TCPSACKCOLLAPSEFALLBACKSKBBITS 0 TCPSACKCOLLAPSEFALLBACKSKBDATA 0 TCPSACKCOLLAPSEFALLBACKBELOW 0 TCPSACKCOLLAPSEFALLBACKFIRST 1 TCPSACKCOLLAPSEFALLBACKPREVBITS 318 TCPSACKCOLLAPSEFALLBACKMSS 1 TCPSACKCOLLAPSEFALLBACKNOHEAD 0 TCPSACKCOLLAPSEFALLBACKSHIFT 0 TCPSACKCOLLAPSENOOPSEQ 0 TCPSACKCOLLAPSENOOPSMALLPCOUNT 0 TCPSACKCOLLAPSENOOPSMALLLEN 0 TCPSACKCOLLAPSEHOLE 12 Signed-off-by: Ilpo Järvinen <ilpo.jarvinen@helsinki.fi> Signed-off-by: David S. Miller <davem@davemloft.net>
2008-11-24 21:20:15 -08:00
in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
!before(end_seq, TCP_SKB_CB(skb)->end_seq);
if (in_sack) {
len = skb->len;
pcount = tcp_skb_pcount(skb);
mss = tcp_skb_seglen(skb);
tcp: Try to restore large SKBs while SACK processing During SACK processing, most of the benefits of TSO are eaten by the SACK blocks that one-by-one fragment SKBs to MSS sized chunks. Then we're in problems when cleanup work for them has to be done when a large cumulative ACK comes. Try to return back to pre-split state already while more and more SACK info gets discovered by combining newly discovered SACK areas with the previous skb if that's SACKed as well. This approach has a number of benefits: 1) The processing overhead is spread more equally over the RTT 2) Write queue has less skbs to process (affect everything which has to walk in the queue past the sacked areas) 3) Write queue is consistent whole the time, so no other parts of TCP has to be aware of this (this was not the case with some other approach that was, well, quite intrusive all around). 4) Clean_rtx_queue can release most of the pages using single put_page instead of previous PAGE_SIZE/mss+1 calls In case a hole is fully filled by the new SACK block, we attempt to combine the next skb too which allows construction of skbs that are even larger than what tso split them to and it handles hole per on every nth patterns that often occur during slow start overshoot pretty nicely. Though this to be really useful also a retransmission would have to get lost since cumulative ACKs advance one hole at a time in the most typical case. TODO: handle upwards only merging. That should be rather easy when segment is fully sacked but I'm leaving that as future work item (it won't make very large difference anyway since this current approach already covers quite a lot of normal cases). I was earlier thinking of some sophisticated way of tracking timestamps of the first and the last segment but later on realized that it won't be that necessary at all to store the timestamp of the last segment. The cases that can occur are basically either: 1) ambiguous => no sensible measurement can be taken anyway 2) non-ambiguous is due to reordering => having the timestamp of the last segment there is just skewing things more off than does some good since the ack got triggered by one of the holes (besides some substle issues that would make determining right hole/skb even harder problem). Anyway, it has nothing to do with this change then. I choose to route some abnormal looking cases with goto noop, some could be handled differently (eg., by stopping the walking at that skb but again). In general, they either shouldn't happen at all or are rare enough to make no difference in practice. In theory this change (as whole) could cause some macroscale regression (global) because of cache misses that are taken over the round-trip time but it gets very likely better because of much less (local) cache misses per other write queue walkers and the big recovery clearing cumulative ack. Worth to note that these benefits would be very easy to get also without TSO/GSO being on as long as the data is in pages so that we can merge them. Currently I won't let that happen because DSACK splitting at fragment that would mess up pcounts due to sk_can_gso in tcp_set_skb_tso_segs. Once DSACKs fragments gets avoided, we have some conditions that can be made less strict. TODO: I will probably have to convert the excessive pointer passing to struct sacktag_state... :-) My testing revealed that considerable amount of skbs couldn't be shifted because they were cloned (most likely still awaiting tx reclaim)... [The rest is considering future work instead since I got repeatably EFAULT to tcpdump's recvfrom when I added pskb_expand_head to deal with clones, so I separated that into another, later patch] ...To counter that, I gave up on the fifth advantage: 5) When growing previous SACK block, less allocs for new skbs are done, basically a new alloc is needed only when new hole is detected and when the previous skb runs out of frags space ...which now only happens of if reclaim is fast enough to dispose the clone before the SACK block comes in (the window is RTT long), otherwise we'll have to alloc some. With clones being handled I got these numbers (will be somewhat worse without that), taken with fine-grained mibs: TCPSackShifted 398 TCPSackMerged 877 TCPSackShiftFallback 320 TCPSACKCOLLAPSEFALLBACKGSO 0 TCPSACKCOLLAPSEFALLBACKSKBBITS 0 TCPSACKCOLLAPSEFALLBACKSKBDATA 0 TCPSACKCOLLAPSEFALLBACKBELOW 0 TCPSACKCOLLAPSEFALLBACKFIRST 1 TCPSACKCOLLAPSEFALLBACKPREVBITS 318 TCPSACKCOLLAPSEFALLBACKMSS 1 TCPSACKCOLLAPSEFALLBACKNOHEAD 0 TCPSACKCOLLAPSEFALLBACKSHIFT 0 TCPSACKCOLLAPSENOOPSEQ 0 TCPSACKCOLLAPSENOOPSMALLPCOUNT 0 TCPSACKCOLLAPSENOOPSMALLLEN 0 TCPSACKCOLLAPSEHOLE 12 Signed-off-by: Ilpo Järvinen <ilpo.jarvinen@helsinki.fi> Signed-off-by: David S. Miller <davem@davemloft.net>
2008-11-24 21:20:15 -08:00
/* TODO: Fix DSACKs to not fragment already SACKed and we can
* drop this restriction as unnecessary
*/
if (mss != tcp_skb_seglen(prev))
tcp: Try to restore large SKBs while SACK processing During SACK processing, most of the benefits of TSO are eaten by the SACK blocks that one-by-one fragment SKBs to MSS sized chunks. Then we're in problems when cleanup work for them has to be done when a large cumulative ACK comes. Try to return back to pre-split state already while more and more SACK info gets discovered by combining newly discovered SACK areas with the previous skb if that's SACKed as well. This approach has a number of benefits: 1) The processing overhead is spread more equally over the RTT 2) Write queue has less skbs to process (affect everything which has to walk in the queue past the sacked areas) 3) Write queue is consistent whole the time, so no other parts of TCP has to be aware of this (this was not the case with some other approach that was, well, quite intrusive all around). 4) Clean_rtx_queue can release most of the pages using single put_page instead of previous PAGE_SIZE/mss+1 calls In case a hole is fully filled by the new SACK block, we attempt to combine the next skb too which allows construction of skbs that are even larger than what tso split them to and it handles hole per on every nth patterns that often occur during slow start overshoot pretty nicely. Though this to be really useful also a retransmission would have to get lost since cumulative ACKs advance one hole at a time in the most typical case. TODO: handle upwards only merging. That should be rather easy when segment is fully sacked but I'm leaving that as future work item (it won't make very large difference anyway since this current approach already covers quite a lot of normal cases). I was earlier thinking of some sophisticated way of tracking timestamps of the first and the last segment but later on realized that it won't be that necessary at all to store the timestamp of the last segment. The cases that can occur are basically either: 1) ambiguous => no sensible measurement can be taken anyway 2) non-ambiguous is due to reordering => having the timestamp of the last segment there is just skewing things more off than does some good since the ack got triggered by one of the holes (besides some substle issues that would make determining right hole/skb even harder problem). Anyway, it has nothing to do with this change then. I choose to route some abnormal looking cases with goto noop, some could be handled differently (eg., by stopping the walking at that skb but again). In general, they either shouldn't happen at all or are rare enough to make no difference in practice. In theory this change (as whole) could cause some macroscale regression (global) because of cache misses that are taken over the round-trip time but it gets very likely better because of much less (local) cache misses per other write queue walkers and the big recovery clearing cumulative ack. Worth to note that these benefits would be very easy to get also without TSO/GSO being on as long as the data is in pages so that we can merge them. Currently I won't let that happen because DSACK splitting at fragment that would mess up pcounts due to sk_can_gso in tcp_set_skb_tso_segs. Once DSACKs fragments gets avoided, we have some conditions that can be made less strict. TODO: I will probably have to convert the excessive pointer passing to struct sacktag_state... :-) My testing revealed that considerable amount of skbs couldn't be shifted because they were cloned (most likely still awaiting tx reclaim)... [The rest is considering future work instead since I got repeatably EFAULT to tcpdump's recvfrom when I added pskb_expand_head to deal with clones, so I separated that into another, later patch] ...To counter that, I gave up on the fifth advantage: 5) When growing previous SACK block, less allocs for new skbs are done, basically a new alloc is needed only when new hole is detected and when the previous skb runs out of frags space ...which now only happens of if reclaim is fast enough to dispose the clone before the SACK block comes in (the window is RTT long), otherwise we'll have to alloc some. With clones being handled I got these numbers (will be somewhat worse without that), taken with fine-grained mibs: TCPSackShifted 398 TCPSackMerged 877 TCPSackShiftFallback 320 TCPSACKCOLLAPSEFALLBACKGSO 0 TCPSACKCOLLAPSEFALLBACKSKBBITS 0 TCPSACKCOLLAPSEFALLBACKSKBDATA 0 TCPSACKCOLLAPSEFALLBACKBELOW 0 TCPSACKCOLLAPSEFALLBACKFIRST 1 TCPSACKCOLLAPSEFALLBACKPREVBITS 318 TCPSACKCOLLAPSEFALLBACKMSS 1 TCPSACKCOLLAPSEFALLBACKNOHEAD 0 TCPSACKCOLLAPSEFALLBACKSHIFT 0 TCPSACKCOLLAPSENOOPSEQ 0 TCPSACKCOLLAPSENOOPSMALLPCOUNT 0 TCPSACKCOLLAPSENOOPSMALLLEN 0 TCPSACKCOLLAPSEHOLE 12 Signed-off-by: Ilpo Järvinen <ilpo.jarvinen@helsinki.fi> Signed-off-by: David S. Miller <davem@davemloft.net>
2008-11-24 21:20:15 -08:00
goto fallback;
} else {
if (!after(TCP_SKB_CB(skb)->end_seq, start_seq))
goto noop;
/* CHECKME: This is non-MSS split case only?, this will
* cause skipped skbs due to advancing loop btw, original
* has that feature too
*/
if (tcp_skb_pcount(skb) <= 1)
goto noop;
in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
if (!in_sack) {
/* TODO: head merge to next could be attempted here
* if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)),
* though it might not be worth of the additional hassle
*
* ...we can probably just fallback to what was done
* previously. We could try merging non-SACKed ones
* as well but it probably isn't going to buy off
* because later SACKs might again split them, and
* it would make skb timestamp tracking considerably
* harder problem.
*/
goto fallback;
}
len = end_seq - TCP_SKB_CB(skb)->seq;
BUG_ON(len < 0);
BUG_ON(len > skb->len);
/* MSS boundaries should be honoured or else pcount will
* severely break even though it makes things bit trickier.
* Optimize common case to avoid most of the divides
*/
mss = tcp_skb_mss(skb);
/* TODO: Fix DSACKs to not fragment already SACKed and we can
* drop this restriction as unnecessary
*/
if (mss != tcp_skb_seglen(prev))
tcp: Try to restore large SKBs while SACK processing During SACK processing, most of the benefits of TSO are eaten by the SACK blocks that one-by-one fragment SKBs to MSS sized chunks. Then we're in problems when cleanup work for them has to be done when a large cumulative ACK comes. Try to return back to pre-split state already while more and more SACK info gets discovered by combining newly discovered SACK areas with the previous skb if that's SACKed as well. This approach has a number of benefits: 1) The processing overhead is spread more equally over the RTT 2) Write queue has less skbs to process (affect everything which has to walk in the queue past the sacked areas) 3) Write queue is consistent whole the time, so no other parts of TCP has to be aware of this (this was not the case with some other approach that was, well, quite intrusive all around). 4) Clean_rtx_queue can release most of the pages using single put_page instead of previous PAGE_SIZE/mss+1 calls In case a hole is fully filled by the new SACK block, we attempt to combine the next skb too which allows construction of skbs that are even larger than what tso split them to and it handles hole per on every nth patterns that often occur during slow start overshoot pretty nicely. Though this to be really useful also a retransmission would have to get lost since cumulative ACKs advance one hole at a time in the most typical case. TODO: handle upwards only merging. That should be rather easy when segment is fully sacked but I'm leaving that as future work item (it won't make very large difference anyway since this current approach already covers quite a lot of normal cases). I was earlier thinking of some sophisticated way of tracking timestamps of the first and the last segment but later on realized that it won't be that necessary at all to store the timestamp of the last segment. The cases that can occur are basically either: 1) ambiguous => no sensible measurement can be taken anyway 2) non-ambiguous is due to reordering => having the timestamp of the last segment there is just skewing things more off than does some good since the ack got triggered by one of the holes (besides some substle issues that would make determining right hole/skb even harder problem). Anyway, it has nothing to do with this change then. I choose to route some abnormal looking cases with goto noop, some could be handled differently (eg., by stopping the walking at that skb but again). In general, they either shouldn't happen at all or are rare enough to make no difference in practice. In theory this change (as whole) could cause some macroscale regression (global) because of cache misses that are taken over the round-trip time but it gets very likely better because of much less (local) cache misses per other write queue walkers and the big recovery clearing cumulative ack. Worth to note that these benefits would be very easy to get also without TSO/GSO being on as long as the data is in pages so that we can merge them. Currently I won't let that happen because DSACK splitting at fragment that would mess up pcounts due to sk_can_gso in tcp_set_skb_tso_segs. Once DSACKs fragments gets avoided, we have some conditions that can be made less strict. TODO: I will probably have to convert the excessive pointer passing to struct sacktag_state... :-) My testing revealed that considerable amount of skbs couldn't be shifted because they were cloned (most likely still awaiting tx reclaim)... [The rest is considering future work instead since I got repeatably EFAULT to tcpdump's recvfrom when I added pskb_expand_head to deal with clones, so I separated that into another, later patch] ...To counter that, I gave up on the fifth advantage: 5) When growing previous SACK block, less allocs for new skbs are done, basically a new alloc is needed only when new hole is detected and when the previous skb runs out of frags space ...which now only happens of if reclaim is fast enough to dispose the clone before the SACK block comes in (the window is RTT long), otherwise we'll have to alloc some. With clones being handled I got these numbers (will be somewhat worse without that), taken with fine-grained mibs: TCPSackShifted 398 TCPSackMerged 877 TCPSackShiftFallback 320 TCPSACKCOLLAPSEFALLBACKGSO 0 TCPSACKCOLLAPSEFALLBACKSKBBITS 0 TCPSACKCOLLAPSEFALLBACKSKBDATA 0 TCPSACKCOLLAPSEFALLBACKBELOW 0 TCPSACKCOLLAPSEFALLBACKFIRST 1 TCPSACKCOLLAPSEFALLBACKPREVBITS 318 TCPSACKCOLLAPSEFALLBACKMSS 1 TCPSACKCOLLAPSEFALLBACKNOHEAD 0 TCPSACKCOLLAPSEFALLBACKSHIFT 0 TCPSACKCOLLAPSENOOPSEQ 0 TCPSACKCOLLAPSENOOPSMALLPCOUNT 0 TCPSACKCOLLAPSENOOPSMALLLEN 0 TCPSACKCOLLAPSEHOLE 12 Signed-off-by: Ilpo Järvinen <ilpo.jarvinen@helsinki.fi> Signed-off-by: David S. Miller <davem@davemloft.net>
2008-11-24 21:20:15 -08:00
goto fallback;
if (len == mss) {
pcount = 1;
} else if (len < mss) {
goto noop;
} else {
pcount = len / mss;
len = pcount * mss;
}
}
tcp: fix tcp_shift_skb_data() to not shift SACKed data below snd_una This commit fixes tcp_shift_skb_data() so that it does not shift SACKed data below snd_una. This fixes an issue whose symptoms exactly match reports showing tp->sacked_out going negative since 3.3.0-rc4 (see "WARNING: at net/ipv4/tcp_input.c:3418" thread on netdev). Since 2008 (832d11c5cd076abc0aa1eaf7be96c81d1a59ce41) tcp_shift_skb_data() had been shifting SACKed ranges that were below snd_una. It checked that the *end* of the skb it was about to shift from was above snd_una, but did not check that the end of the actual shifted range was above snd_una; this commit adds that check. Shifting SACKed ranges below snd_una is problematic because for such ranges tcp_sacktag_one() short-circuits: it does not declare anything as SACKed and does not increase sacked_out. Before the fixes in commits cc9a672ee522d4805495b98680f4a3db5d0a0af9 and daef52bab1fd26e24e8e9578f8fb33ba1d0cb412, shifting SACKed ranges below snd_una happened to work because tcp_shifted_skb() was always (incorrectly) passing in to tcp_sacktag_one() an skb whose end_seq tcp_shift_skb_data() had already guaranteed was beyond snd_una. Hence tcp_sacktag_one() never short-circuited and always increased tp->sacked_out in this case. After those two fixes, my testing has verified that shifting SACKed ranges below snd_una could cause tp->sacked_out to go negative with the following sequence of events: (1) tcp_shift_skb_data() sees an skb whose end_seq is beyond snd_una, then shifts a prefix of that skb that is below snd_una (2) tcp_shifted_skb() increments the packet count of the already-SACKed prev sk_buff (3) tcp_sacktag_one() sees the end of the new SACKed range is below snd_una, so it short-circuits and doesn't increase tp->sacked_out (5) tcp_clean_rtx_queue() sees the SACKed skb has been ACKed, decrements tp->sacked_out by this "inflated" pcount that was missing a matching increase in tp->sacked_out, and hence tp->sacked_out underflows to a u32 like 0xFFFFFFFF, which casted to s32 is negative. (6) this leads to the warnings seen in the recent "WARNING: at net/ipv4/tcp_input.c:3418" thread on the netdev list; e.g.: tcp_input.c:3418 WARN_ON((int)tp->sacked_out < 0); More generally, I think this bug can be tickled in some cases where two or more ACKs from the receiver are lost and then a DSACK arrives that is immediately above an existing SACKed skb in the write queue. This fix changes tcp_shift_skb_data() to abort this sequence at step (1) in the scenario above by noticing that the bytes are below snd_una and not shifting them. Signed-off-by: Neal Cardwell <ncardwell@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2012-03-05 19:35:04 +00:00
/* tcp_sacktag_one() won't SACK-tag ranges below snd_una */
if (!after(TCP_SKB_CB(skb)->seq + len, tp->snd_una))
goto fallback;
if (!tcp_skb_shift(prev, skb, pcount, len))
tcp: Try to restore large SKBs while SACK processing During SACK processing, most of the benefits of TSO are eaten by the SACK blocks that one-by-one fragment SKBs to MSS sized chunks. Then we're in problems when cleanup work for them has to be done when a large cumulative ACK comes. Try to return back to pre-split state already while more and more SACK info gets discovered by combining newly discovered SACK areas with the previous skb if that's SACKed as well. This approach has a number of benefits: 1) The processing overhead is spread more equally over the RTT 2) Write queue has less skbs to process (affect everything which has to walk in the queue past the sacked areas) 3) Write queue is consistent whole the time, so no other parts of TCP has to be aware of this (this was not the case with some other approach that was, well, quite intrusive all around). 4) Clean_rtx_queue can release most of the pages using single put_page instead of previous PAGE_SIZE/mss+1 calls In case a hole is fully filled by the new SACK block, we attempt to combine the next skb too which allows construction of skbs that are even larger than what tso split them to and it handles hole per on every nth patterns that often occur during slow start overshoot pretty nicely. Though this to be really useful also a retransmission would have to get lost since cumulative ACKs advance one hole at a time in the most typical case. TODO: handle upwards only merging. That should be rather easy when segment is fully sacked but I'm leaving that as future work item (it won't make very large difference anyway since this current approach already covers quite a lot of normal cases). I was earlier thinking of some sophisticated way of tracking timestamps of the first and the last segment but later on realized that it won't be that necessary at all to store the timestamp of the last segment. The cases that can occur are basically either: 1) ambiguous => no sensible measurement can be taken anyway 2) non-ambiguous is due to reordering => having the timestamp of the last segment there is just skewing things more off than does some good since the ack got triggered by one of the holes (besides some substle issues that would make determining right hole/skb even harder problem). Anyway, it has nothing to do with this change then. I choose to route some abnormal looking cases with goto noop, some could be handled differently (eg., by stopping the walking at that skb but again). In general, they either shouldn't happen at all or are rare enough to make no difference in practice. In theory this change (as whole) could cause some macroscale regression (global) because of cache misses that are taken over the round-trip time but it gets very likely better because of much less (local) cache misses per other write queue walkers and the big recovery clearing cumulative ack. Worth to note that these benefits would be very easy to get also without TSO/GSO being on as long as the data is in pages so that we can merge them. Currently I won't let that happen because DSACK splitting at fragment that would mess up pcounts due to sk_can_gso in tcp_set_skb_tso_segs. Once DSACKs fragments gets avoided, we have some conditions that can be made less strict. TODO: I will probably have to convert the excessive pointer passing to struct sacktag_state... :-) My testing revealed that considerable amount of skbs couldn't be shifted because they were cloned (most likely still awaiting tx reclaim)... [The rest is considering future work instead since I got repeatably EFAULT to tcpdump's recvfrom when I added pskb_expand_head to deal with clones, so I separated that into another, later patch] ...To counter that, I gave up on the fifth advantage: 5) When growing previous SACK block, less allocs for new skbs are done, basically a new alloc is needed only when new hole is detected and when the previous skb runs out of frags space ...which now only happens of if reclaim is fast enough to dispose the clone before the SACK block comes in (the window is RTT long), otherwise we'll have to alloc some. With clones being handled I got these numbers (will be somewhat worse without that), taken with fine-grained mibs: TCPSackShifted 398 TCPSackMerged 877 TCPSackShiftFallback 320 TCPSACKCOLLAPSEFALLBACKGSO 0 TCPSACKCOLLAPSEFALLBACKSKBBITS 0 TCPSACKCOLLAPSEFALLBACKSKBDATA 0 TCPSACKCOLLAPSEFALLBACKBELOW 0 TCPSACKCOLLAPSEFALLBACKFIRST 1 TCPSACKCOLLAPSEFALLBACKPREVBITS 318 TCPSACKCOLLAPSEFALLBACKMSS 1 TCPSACKCOLLAPSEFALLBACKNOHEAD 0 TCPSACKCOLLAPSEFALLBACKSHIFT 0 TCPSACKCOLLAPSENOOPSEQ 0 TCPSACKCOLLAPSENOOPSMALLPCOUNT 0 TCPSACKCOLLAPSENOOPSMALLLEN 0 TCPSACKCOLLAPSEHOLE 12 Signed-off-by: Ilpo Järvinen <ilpo.jarvinen@helsinki.fi> Signed-off-by: David S. Miller <davem@davemloft.net>
2008-11-24 21:20:15 -08:00
goto fallback;
if (!tcp_shifted_skb(sk, prev, skb, state, pcount, len, mss, dup_sack))
tcp: Try to restore large SKBs while SACK processing During SACK processing, most of the benefits of TSO are eaten by the SACK blocks that one-by-one fragment SKBs to MSS sized chunks. Then we're in problems when cleanup work for them has to be done when a large cumulative ACK comes. Try to return back to pre-split state already while more and more SACK info gets discovered by combining newly discovered SACK areas with the previous skb if that's SACKed as well. This approach has a number of benefits: 1) The processing overhead is spread more equally over the RTT 2) Write queue has less skbs to process (affect everything which has to walk in the queue past the sacked areas) 3) Write queue is consistent whole the time, so no other parts of TCP has to be aware of this (this was not the case with some other approach that was, well, quite intrusive all around). 4) Clean_rtx_queue can release most of the pages using single put_page instead of previous PAGE_SIZE/mss+1 calls In case a hole is fully filled by the new SACK block, we attempt to combine the next skb too which allows construction of skbs that are even larger than what tso split them to and it handles hole per on every nth patterns that often occur during slow start overshoot pretty nicely. Though this to be really useful also a retransmission would have to get lost since cumulative ACKs advance one hole at a time in the most typical case. TODO: handle upwards only merging. That should be rather easy when segment is fully sacked but I'm leaving that as future work item (it won't make very large difference anyway since this current approach already covers quite a lot of normal cases). I was earlier thinking of some sophisticated way of tracking timestamps of the first and the last segment but later on realized that it won't be that necessary at all to store the timestamp of the last segment. The cases that can occur are basically either: 1) ambiguous => no sensible measurement can be taken anyway 2) non-ambiguous is due to reordering => having the timestamp of the last segment there is just skewing things more off than does some good since the ack got triggered by one of the holes (besides some substle issues that would make determining right hole/skb even harder problem). Anyway, it has nothing to do with this change then. I choose to route some abnormal looking cases with goto noop, some could be handled differently (eg., by stopping the walking at that skb but again). In general, they either shouldn't happen at all or are rare enough to make no difference in practice. In theory this change (as whole) could cause some macroscale regression (global) because of cache misses that are taken over the round-trip time but it gets very likely better because of much less (local) cache misses per other write queue walkers and the big recovery clearing cumulative ack. Worth to note that these benefits would be very easy to get also without TSO/GSO being on as long as the data is in pages so that we can merge them. Currently I won't let that happen because DSACK splitting at fragment that would mess up pcounts due to sk_can_gso in tcp_set_skb_tso_segs. Once DSACKs fragments gets avoided, we have some conditions that can be made less strict. TODO: I will probably have to convert the excessive pointer passing to struct sacktag_state... :-) My testing revealed that considerable amount of skbs couldn't be shifted because they were cloned (most likely still awaiting tx reclaim)... [The rest is considering future work instead since I got repeatably EFAULT to tcpdump's recvfrom when I added pskb_expand_head to deal with clones, so I separated that into another, later patch] ...To counter that, I gave up on the fifth advantage: 5) When growing previous SACK block, less allocs for new skbs are done, basically a new alloc is needed only when new hole is detected and when the previous skb runs out of frags space ...which now only happens of if reclaim is fast enough to dispose the clone before the SACK block comes in (the window is RTT long), otherwise we'll have to alloc some. With clones being handled I got these numbers (will be somewhat worse without that), taken with fine-grained mibs: TCPSackShifted 398 TCPSackMerged 877 TCPSackShiftFallback 320 TCPSACKCOLLAPSEFALLBACKGSO 0 TCPSACKCOLLAPSEFALLBACKSKBBITS 0 TCPSACKCOLLAPSEFALLBACKSKBDATA 0 TCPSACKCOLLAPSEFALLBACKBELOW 0 TCPSACKCOLLAPSEFALLBACKFIRST 1 TCPSACKCOLLAPSEFALLBACKPREVBITS 318 TCPSACKCOLLAPSEFALLBACKMSS 1 TCPSACKCOLLAPSEFALLBACKNOHEAD 0 TCPSACKCOLLAPSEFALLBACKSHIFT 0 TCPSACKCOLLAPSENOOPSEQ 0 TCPSACKCOLLAPSENOOPSMALLPCOUNT 0 TCPSACKCOLLAPSENOOPSMALLLEN 0 TCPSACKCOLLAPSEHOLE 12 Signed-off-by: Ilpo Järvinen <ilpo.jarvinen@helsinki.fi> Signed-off-by: David S. Miller <davem@davemloft.net>
2008-11-24 21:20:15 -08:00
goto out;
/* Hole filled allows collapsing with the next as well, this is very
* useful when hole on every nth skb pattern happens
*/
tcp: implement rb-tree based retransmit queue Using a linear list to store all skbs in write queue has been okay for quite a while : O(N) is not too bad when N < 500. Things get messy when N is the order of 100,000 : Modern TCP stacks want 10Gbit+ of throughput even with 200 ms RTT flows. 40 ns per cache line miss means a full scan can use 4 ms, blowing away CPU caches. SACK processing often can use various hints to avoid parsing whole retransmit queue. But with high packet losses and/or high reordering, hints no longer work. Sender has to process thousands of unfriendly SACK, accumulating a huge socket backlog, burning a cpu and massively dropping packets. Using an rb-tree for retransmit queue has been avoided for years because it added complexity and overhead, but now is the time to be more resistant and say no to quadratic behavior. 1) RTX queue is no longer part of the write queue : already sent skbs are stored in one rb-tree. 2) Since reaching the head of write queue no longer needs sk->sk_send_head, we added an union of sk_send_head and tcp_rtx_queue Tested: On receiver : netem on ingress : delay 150ms 200us loss 1 GRO disabled to force stress and SACK storms. for f in `seq 1 10` do ./netperf -H lpaa6 -l30 -- -K bbr -o THROUGHPUT|tail -1 done | awk '{print $0} {sum += $0} END {printf "%7u\n",sum}' Before patch : 323.87 351.48 339.59 338.62 306.72 204.07 304.93 291.88 202.47 176.88 2840 After patch: 1700.83 2207.98 2070.17 1544.26 2114.76 2124.89 1693.14 1080.91 2216.82 1299.94 18053 Signed-off-by: Eric Dumazet <edumazet@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-10-05 22:21:27 -07:00
skb = skb_rb_next(prev);
if (!skb)
tcp: Try to restore large SKBs while SACK processing During SACK processing, most of the benefits of TSO are eaten by the SACK blocks that one-by-one fragment SKBs to MSS sized chunks. Then we're in problems when cleanup work for them has to be done when a large cumulative ACK comes. Try to return back to pre-split state already while more and more SACK info gets discovered by combining newly discovered SACK areas with the previous skb if that's SACKed as well. This approach has a number of benefits: 1) The processing overhead is spread more equally over the RTT 2) Write queue has less skbs to process (affect everything which has to walk in the queue past the sacked areas) 3) Write queue is consistent whole the time, so no other parts of TCP has to be aware of this (this was not the case with some other approach that was, well, quite intrusive all around). 4) Clean_rtx_queue can release most of the pages using single put_page instead of previous PAGE_SIZE/mss+1 calls In case a hole is fully filled by the new SACK block, we attempt to combine the next skb too which allows construction of skbs that are even larger than what tso split them to and it handles hole per on every nth patterns that often occur during slow start overshoot pretty nicely. Though this to be really useful also a retransmission would have to get lost since cumulative ACKs advance one hole at a time in the most typical case. TODO: handle upwards only merging. That should be rather easy when segment is fully sacked but I'm leaving that as future work item (it won't make very large difference anyway since this current approach already covers quite a lot of normal cases). I was earlier thinking of some sophisticated way of tracking timestamps of the first and the last segment but later on realized that it won't be that necessary at all to store the timestamp of the last segment. The cases that can occur are basically either: 1) ambiguous => no sensible measurement can be taken anyway 2) non-ambiguous is due to reordering => having the timestamp of the last segment there is just skewing things more off than does some good since the ack got triggered by one of the holes (besides some substle issues that would make determining right hole/skb even harder problem). Anyway, it has nothing to do with this change then. I choose to route some abnormal looking cases with goto noop, some could be handled differently (eg., by stopping the walking at that skb but again). In general, they either shouldn't happen at all or are rare enough to make no difference in practice. In theory this change (as whole) could cause some macroscale regression (global) because of cache misses that are taken over the round-trip time but it gets very likely better because of much less (local) cache misses per other write queue walkers and the big recovery clearing cumulative ack. Worth to note that these benefits would be very easy to get also without TSO/GSO being on as long as the data is in pages so that we can merge them. Currently I won't let that happen because DSACK splitting at fragment that would mess up pcounts due to sk_can_gso in tcp_set_skb_tso_segs. Once DSACKs fragments gets avoided, we have some conditions that can be made less strict. TODO: I will probably have to convert the excessive pointer passing to struct sacktag_state... :-) My testing revealed that considerable amount of skbs couldn't be shifted because they were cloned (most likely still awaiting tx reclaim)... [The rest is considering future work instead since I got repeatably EFAULT to tcpdump's recvfrom when I added pskb_expand_head to deal with clones, so I separated that into another, later patch] ...To counter that, I gave up on the fifth advantage: 5) When growing previous SACK block, less allocs for new skbs are done, basically a new alloc is needed only when new hole is detected and when the previous skb runs out of frags space ...which now only happens of if reclaim is fast enough to dispose the clone before the SACK block comes in (the window is RTT long), otherwise we'll have to alloc some. With clones being handled I got these numbers (will be somewhat worse without that), taken with fine-grained mibs: TCPSackShifted 398 TCPSackMerged 877 TCPSackShiftFallback 320 TCPSACKCOLLAPSEFALLBACKGSO 0 TCPSACKCOLLAPSEFALLBACKSKBBITS 0 TCPSACKCOLLAPSEFALLBACKSKBDATA 0 TCPSACKCOLLAPSEFALLBACKBELOW 0 TCPSACKCOLLAPSEFALLBACKFIRST 1 TCPSACKCOLLAPSEFALLBACKPREVBITS 318 TCPSACKCOLLAPSEFALLBACKMSS 1 TCPSACKCOLLAPSEFALLBACKNOHEAD 0 TCPSACKCOLLAPSEFALLBACKSHIFT 0 TCPSACKCOLLAPSENOOPSEQ 0 TCPSACKCOLLAPSENOOPSMALLPCOUNT 0 TCPSACKCOLLAPSENOOPSMALLLEN 0 TCPSACKCOLLAPSEHOLE 12 Signed-off-by: Ilpo Järvinen <ilpo.jarvinen@helsinki.fi> Signed-off-by: David S. Miller <davem@davemloft.net>
2008-11-24 21:20:15 -08:00
goto out;
if (!skb_can_shift(skb) ||
((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) ||
(mss != tcp_skb_seglen(skb)))
tcp: Try to restore large SKBs while SACK processing During SACK processing, most of the benefits of TSO are eaten by the SACK blocks that one-by-one fragment SKBs to MSS sized chunks. Then we're in problems when cleanup work for them has to be done when a large cumulative ACK comes. Try to return back to pre-split state already while more and more SACK info gets discovered by combining newly discovered SACK areas with the previous skb if that's SACKed as well. This approach has a number of benefits: 1) The processing overhead is spread more equally over the RTT 2) Write queue has less skbs to process (affect everything which has to walk in the queue past the sacked areas) 3) Write queue is consistent whole the time, so no other parts of TCP has to be aware of this (this was not the case with some other approach that was, well, quite intrusive all around). 4) Clean_rtx_queue can release most of the pages using single put_page instead of previous PAGE_SIZE/mss+1 calls In case a hole is fully filled by the new SACK block, we attempt to combine the next skb too which allows construction of skbs that are even larger than what tso split them to and it handles hole per on every nth patterns that often occur during slow start overshoot pretty nicely. Though this to be really useful also a retransmission would have to get lost since cumulative ACKs advance one hole at a time in the most typical case. TODO: handle upwards only merging. That should be rather easy when segment is fully sacked but I'm leaving that as future work item (it won't make very large difference anyway since this current approach already covers quite a lot of normal cases). I was earlier thinking of some sophisticated way of tracking timestamps of the first and the last segment but later on realized that it won't be that necessary at all to store the timestamp of the last segment. The cases that can occur are basically either: 1) ambiguous => no sensible measurement can be taken anyway 2) non-ambiguous is due to reordering => having the timestamp of the last segment there is just skewing things more off than does some good since the ack got triggered by one of the holes (besides some substle issues that would make determining right hole/skb even harder problem). Anyway, it has nothing to do with this change then. I choose to route some abnormal looking cases with goto noop, some could be handled differently (eg., by stopping the walking at that skb but again). In general, they either shouldn't happen at all or are rare enough to make no difference in practice. In theory this change (as whole) could cause some macroscale regression (global) because of cache misses that are taken over the round-trip time but it gets very likely better because of much less (local) cache misses per other write queue walkers and the big recovery clearing cumulative ack. Worth to note that these benefits would be very easy to get also without TSO/GSO being on as long as the data is in pages so that we can merge them. Currently I won't let that happen because DSACK splitting at fragment that would mess up pcounts due to sk_can_gso in tcp_set_skb_tso_segs. Once DSACKs fragments gets avoided, we have some conditions that can be made less strict. TODO: I will probably have to convert the excessive pointer passing to struct sacktag_state... :-) My testing revealed that considerable amount of skbs couldn't be shifted because they were cloned (most likely still awaiting tx reclaim)... [The rest is considering future work instead since I got repeatably EFAULT to tcpdump's recvfrom when I added pskb_expand_head to deal with clones, so I separated that into another, later patch] ...To counter that, I gave up on the fifth advantage: 5) When growing previous SACK block, less allocs for new skbs are done, basically a new alloc is needed only when new hole is detected and when the previous skb runs out of frags space ...which now only happens of if reclaim is fast enough to dispose the clone before the SACK block comes in (the window is RTT long), otherwise we'll have to alloc some. With clones being handled I got these numbers (will be somewhat worse without that), taken with fine-grained mibs: TCPSackShifted 398 TCPSackMerged 877 TCPSackShiftFallback 320 TCPSACKCOLLAPSEFALLBACKGSO 0 TCPSACKCOLLAPSEFALLBACKSKBBITS 0 TCPSACKCOLLAPSEFALLBACKSKBDATA 0 TCPSACKCOLLAPSEFALLBACKBELOW 0 TCPSACKCOLLAPSEFALLBACKFIRST 1 TCPSACKCOLLAPSEFALLBACKPREVBITS 318 TCPSACKCOLLAPSEFALLBACKMSS 1 TCPSACKCOLLAPSEFALLBACKNOHEAD 0 TCPSACKCOLLAPSEFALLBACKSHIFT 0 TCPSACKCOLLAPSENOOPSEQ 0 TCPSACKCOLLAPSENOOPSMALLPCOUNT 0 TCPSACKCOLLAPSENOOPSMALLLEN 0 TCPSACKCOLLAPSEHOLE 12 Signed-off-by: Ilpo Järvinen <ilpo.jarvinen@helsinki.fi> Signed-off-by: David S. Miller <davem@davemloft.net>
2008-11-24 21:20:15 -08:00
goto out;
if (!tcp_skb_can_collapse(prev, skb))
goto out;
tcp: Try to restore large SKBs while SACK processing During SACK processing, most of the benefits of TSO are eaten by the SACK blocks that one-by-one fragment SKBs to MSS sized chunks. Then we're in problems when cleanup work for them has to be done when a large cumulative ACK comes. Try to return back to pre-split state already while more and more SACK info gets discovered by combining newly discovered SACK areas with the previous skb if that's SACKed as well. This approach has a number of benefits: 1) The processing overhead is spread more equally over the RTT 2) Write queue has less skbs to process (affect everything which has to walk in the queue past the sacked areas) 3) Write queue is consistent whole the time, so no other parts of TCP has to be aware of this (this was not the case with some other approach that was, well, quite intrusive all around). 4) Clean_rtx_queue can release most of the pages using single put_page instead of previous PAGE_SIZE/mss+1 calls In case a hole is fully filled by the new SACK block, we attempt to combine the next skb too which allows construction of skbs that are even larger than what tso split them to and it handles hole per on every nth patterns that often occur during slow start overshoot pretty nicely. Though this to be really useful also a retransmission would have to get lost since cumulative ACKs advance one hole at a time in the most typical case. TODO: handle upwards only merging. That should be rather easy when segment is fully sacked but I'm leaving that as future work item (it won't make very large difference anyway since this current approach already covers quite a lot of normal cases). I was earlier thinking of some sophisticated way of tracking timestamps of the first and the last segment but later on realized that it won't be that necessary at all to store the timestamp of the last segment. The cases that can occur are basically either: 1) ambiguous => no sensible measurement can be taken anyway 2) non-ambiguous is due to reordering => having the timestamp of the last segment there is just skewing things more off than does some good since the ack got triggered by one of the holes (besides some substle issues that would make determining right hole/skb even harder problem). Anyway, it has nothing to do with this change then. I choose to route some abnormal looking cases with goto noop, some could be handled differently (eg., by stopping the walking at that skb but again). In general, they either shouldn't happen at all or are rare enough to make no difference in practice. In theory this change (as whole) could cause some macroscale regression (global) because of cache misses that are taken over the round-trip time but it gets very likely better because of much less (local) cache misses per other write queue walkers and the big recovery clearing cumulative ack. Worth to note that these benefits would be very easy to get also without TSO/GSO being on as long as the data is in pages so that we can merge them. Currently I won't let that happen because DSACK splitting at fragment that would mess up pcounts due to sk_can_gso in tcp_set_skb_tso_segs. Once DSACKs fragments gets avoided, we have some conditions that can be made less strict. TODO: I will probably have to convert the excessive pointer passing to struct sacktag_state... :-) My testing revealed that considerable amount of skbs couldn't be shifted because they were cloned (most likely still awaiting tx reclaim)... [The rest is considering future work instead since I got repeatably EFAULT to tcpdump's recvfrom when I added pskb_expand_head to deal with clones, so I separated that into another, later patch] ...To counter that, I gave up on the fifth advantage: 5) When growing previous SACK block, less allocs for new skbs are done, basically a new alloc is needed only when new hole is detected and when the previous skb runs out of frags space ...which now only happens of if reclaim is fast enough to dispose the clone before the SACK block comes in (the window is RTT long), otherwise we'll have to alloc some. With clones being handled I got these numbers (will be somewhat worse without that), taken with fine-grained mibs: TCPSackShifted 398 TCPSackMerged 877 TCPSackShiftFallback 320 TCPSACKCOLLAPSEFALLBACKGSO 0 TCPSACKCOLLAPSEFALLBACKSKBBITS 0 TCPSACKCOLLAPSEFALLBACKSKBDATA 0 TCPSACKCOLLAPSEFALLBACKBELOW 0 TCPSACKCOLLAPSEFALLBACKFIRST 1 TCPSACKCOLLAPSEFALLBACKPREVBITS 318 TCPSACKCOLLAPSEFALLBACKMSS 1 TCPSACKCOLLAPSEFALLBACKNOHEAD 0 TCPSACKCOLLAPSEFALLBACKSHIFT 0 TCPSACKCOLLAPSENOOPSEQ 0 TCPSACKCOLLAPSENOOPSMALLPCOUNT 0 TCPSACKCOLLAPSENOOPSMALLLEN 0 TCPSACKCOLLAPSEHOLE 12 Signed-off-by: Ilpo Järvinen <ilpo.jarvinen@helsinki.fi> Signed-off-by: David S. Miller <davem@davemloft.net>
2008-11-24 21:20:15 -08:00
len = skb->len;
pcount = tcp_skb_pcount(skb);
if (tcp_skb_shift(prev, skb, pcount, len))
tcp_shifted_skb(sk, prev, skb, state, pcount,
len, mss, 0);
tcp: Try to restore large SKBs while SACK processing During SACK processing, most of the benefits of TSO are eaten by the SACK blocks that one-by-one fragment SKBs to MSS sized chunks. Then we're in problems when cleanup work for them has to be done when a large cumulative ACK comes. Try to return back to pre-split state already while more and more SACK info gets discovered by combining newly discovered SACK areas with the previous skb if that's SACKed as well. This approach has a number of benefits: 1) The processing overhead is spread more equally over the RTT 2) Write queue has less skbs to process (affect everything which has to walk in the queue past the sacked areas) 3) Write queue is consistent whole the time, so no other parts of TCP has to be aware of this (this was not the case with some other approach that was, well, quite intrusive all around). 4) Clean_rtx_queue can release most of the pages using single put_page instead of previous PAGE_SIZE/mss+1 calls In case a hole is fully filled by the new SACK block, we attempt to combine the next skb too which allows construction of skbs that are even larger than what tso split them to and it handles hole per on every nth patterns that often occur during slow start overshoot pretty nicely. Though this to be really useful also a retransmission would have to get lost since cumulative ACKs advance one hole at a time in the most typical case. TODO: handle upwards only merging. That should be rather easy when segment is fully sacked but I'm leaving that as future work item (it won't make very large difference anyway since this current approach already covers quite a lot of normal cases). I was earlier thinking of some sophisticated way of tracking timestamps of the first and the last segment but later on realized that it won't be that necessary at all to store the timestamp of the last segment. The cases that can occur are basically either: 1) ambiguous => no sensible measurement can be taken anyway 2) non-ambiguous is due to reordering => having the timestamp of the last segment there is just skewing things more off than does some good since the ack got triggered by one of the holes (besides some substle issues that would make determining right hole/skb even harder problem). Anyway, it has nothing to do with this change then. I choose to route some abnormal looking cases with goto noop, some could be handled differently (eg., by stopping the walking at that skb but again). In general, they either shouldn't happen at all or are rare enough to make no difference in practice. In theory this change (as whole) could cause some macroscale regression (global) because of cache misses that are taken over the round-trip time but it gets very likely better because of much less (local) cache misses per other write queue walkers and the big recovery clearing cumulative ack. Worth to note that these benefits would be very easy to get also without TSO/GSO being on as long as the data is in pages so that we can merge them. Currently I won't let that happen because DSACK splitting at fragment that would mess up pcounts due to sk_can_gso in tcp_set_skb_tso_segs. Once DSACKs fragments gets avoided, we have some conditions that can be made less strict. TODO: I will probably have to convert the excessive pointer passing to struct sacktag_state... :-) My testing revealed that considerable amount of skbs couldn't be shifted because they were cloned (most likely still awaiting tx reclaim)... [The rest is considering future work instead since I got repeatably EFAULT to tcpdump's recvfrom when I added pskb_expand_head to deal with clones, so I separated that into another, later patch] ...To counter that, I gave up on the fifth advantage: 5) When growing previous SACK block, less allocs for new skbs are done, basically a new alloc is needed only when new hole is detected and when the previous skb runs out of frags space ...which now only happens of if reclaim is fast enough to dispose the clone before the SACK block comes in (the window is RTT long), otherwise we'll have to alloc some. With clones being handled I got these numbers (will be somewhat worse without that), taken with fine-grained mibs: TCPSackShifted 398 TCPSackMerged 877 TCPSackShiftFallback 320 TCPSACKCOLLAPSEFALLBACKGSO 0 TCPSACKCOLLAPSEFALLBACKSKBBITS 0 TCPSACKCOLLAPSEFALLBACKSKBDATA 0 TCPSACKCOLLAPSEFALLBACKBELOW 0 TCPSACKCOLLAPSEFALLBACKFIRST 1 TCPSACKCOLLAPSEFALLBACKPREVBITS 318 TCPSACKCOLLAPSEFALLBACKMSS 1 TCPSACKCOLLAPSEFALLBACKNOHEAD 0 TCPSACKCOLLAPSEFALLBACKSHIFT 0 TCPSACKCOLLAPSENOOPSEQ 0 TCPSACKCOLLAPSENOOPSMALLPCOUNT 0 TCPSACKCOLLAPSENOOPSMALLLEN 0 TCPSACKCOLLAPSEHOLE 12 Signed-off-by: Ilpo Järvinen <ilpo.jarvinen@helsinki.fi> Signed-off-by: David S. Miller <davem@davemloft.net>
2008-11-24 21:20:15 -08:00
out:
return prev;
noop:
return skb;
fallback:
NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK);
tcp: Try to restore large SKBs while SACK processing During SACK processing, most of the benefits of TSO are eaten by the SACK blocks that one-by-one fragment SKBs to MSS sized chunks. Then we're in problems when cleanup work for them has to be done when a large cumulative ACK comes. Try to return back to pre-split state already while more and more SACK info gets discovered by combining newly discovered SACK areas with the previous skb if that's SACKed as well. This approach has a number of benefits: 1) The processing overhead is spread more equally over the RTT 2) Write queue has less skbs to process (affect everything which has to walk in the queue past the sacked areas) 3) Write queue is consistent whole the time, so no other parts of TCP has to be aware of this (this was not the case with some other approach that was, well, quite intrusive all around). 4) Clean_rtx_queue can release most of the pages using single put_page instead of previous PAGE_SIZE/mss+1 calls In case a hole is fully filled by the new SACK block, we attempt to combine the next skb too which allows construction of skbs that are even larger than what tso split them to and it handles hole per on every nth patterns that often occur during slow start overshoot pretty nicely. Though this to be really useful also a retransmission would have to get lost since cumulative ACKs advance one hole at a time in the most typical case. TODO: handle upwards only merging. That should be rather easy when segment is fully sacked but I'm leaving that as future work item (it won't make very large difference anyway since this current approach already covers quite a lot of normal cases). I was earlier thinking of some sophisticated way of tracking timestamps of the first and the last segment but later on realized that it won't be that necessary at all to store the timestamp of the last segment. The cases that can occur are basically either: 1) ambiguous => no sensible measurement can be taken anyway 2) non-ambiguous is due to reordering => having the timestamp of the last segment there is just skewing things more off than does some good since the ack got triggered by one of the holes (besides some substle issues that would make determining right hole/skb even harder problem). Anyway, it has nothing to do with this change then. I choose to route some abnormal looking cases with goto noop, some could be handled differently (eg., by stopping the walking at that skb but again). In general, they either shouldn't happen at all or are rare enough to make no difference in practice. In theory this change (as whole) could cause some macroscale regression (global) because of cache misses that are taken over the round-trip time but it gets very likely better because of much less (local) cache misses per other write queue walkers and the big recovery clearing cumulative ack. Worth to note that these benefits would be very easy to get also without TSO/GSO being on as long as the data is in pages so that we can merge them. Currently I won't let that happen because DSACK splitting at fragment that would mess up pcounts due to sk_can_gso in tcp_set_skb_tso_segs. Once DSACKs fragments gets avoided, we have some conditions that can be made less strict. TODO: I will probably have to convert the excessive pointer passing to struct sacktag_state... :-) My testing revealed that considerable amount of skbs couldn't be shifted because they were cloned (most likely still awaiting tx reclaim)... [The rest is considering future work instead since I got repeatably EFAULT to tcpdump's recvfrom when I added pskb_expand_head to deal with clones, so I separated that into another, later patch] ...To counter that, I gave up on the fifth advantage: 5) When growing previous SACK block, less allocs for new skbs are done, basically a new alloc is needed only when new hole is detected and when the previous skb runs out of frags space ...which now only happens of if reclaim is fast enough to dispose the clone before the SACK block comes in (the window is RTT long), otherwise we'll have to alloc some. With clones being handled I got these numbers (will be somewhat worse without that), taken with fine-grained mibs: TCPSackShifted 398 TCPSackMerged 877 TCPSackShiftFallback 320 TCPSACKCOLLAPSEFALLBACKGSO 0 TCPSACKCOLLAPSEFALLBACKSKBBITS 0 TCPSACKCOLLAPSEFALLBACKSKBDATA 0 TCPSACKCOLLAPSEFALLBACKBELOW 0 TCPSACKCOLLAPSEFALLBACKFIRST 1 TCPSACKCOLLAPSEFALLBACKPREVBITS 318 TCPSACKCOLLAPSEFALLBACKMSS 1 TCPSACKCOLLAPSEFALLBACKNOHEAD 0 TCPSACKCOLLAPSEFALLBACKSHIFT 0 TCPSACKCOLLAPSENOOPSEQ 0 TCPSACKCOLLAPSENOOPSMALLPCOUNT 0 TCPSACKCOLLAPSENOOPSMALLLEN 0 TCPSACKCOLLAPSEHOLE 12 Signed-off-by: Ilpo Järvinen <ilpo.jarvinen@helsinki.fi> Signed-off-by: David S. Miller <davem@davemloft.net>
2008-11-24 21:20:15 -08:00
return NULL;
}
[TCP]: Rewrite SACK block processing & sack_recv_cache use Key points of this patch are: - In case new SACK information is advance only type, no skb processing below previously discovered highest point is done - Optimize cases below highest point too since there's no need to always go up to highest point (which is very likely still present in that SACK), this is not entirely true though because I'm dropping the fastpath_skb_hint which could previously optimize those cases even better. Whether that's significant, I'm not too sure. Currently it will provide skipping by walking. Combined with RB-tree, all skipping would become fast too regardless of window size (can be done incrementally later). Previously a number of cases in TCP SACK processing fails to take advantage of costly stored information in sack_recv_cache, most importantly, expected events such as cumulative ACK and new hole ACKs. Processing on such ACKs result in rather long walks building up latencies (which easily gets nasty when window is huge). Those latencies are often completely unnecessary compared with the amount of _new_ information received, usually for cumulative ACK there's no new information at all, yet TCP walks whole queue unnecessary potentially taking a number of costly cache misses on the way, etc.! Since the inclusion of highest_sack, there's a lot information that is very likely redundant (SACK fastpath hint stuff, fackets_out, highest_sack), though there's no ultimate guarantee that they'll remain the same whole the time (in all unearthly scenarios). Take advantage of this knowledge here and drop fastpath hint and use direct access to highest SACKed skb as a replacement. Effectively "special cased" fastpath is dropped. This change adds some complexity to introduce better coveraged "fastpath", though the added complexity should make TCP behave more cache friendly. The current ACK's SACK blocks are compared against each cached block individially and only ranges that are new are then scanned by the high constant walk. For other parts of write queue, even when in previously known part of the SACK blocks, a faster skip function is used (if necessary at all). In addition, whenever possible, TCP fast-forwards to highest_sack skb that was made available by an earlier patch. In typical case, no other things but this fast-forward and mandatory markings after that occur making the access pattern quite similar to the former fastpath "special case". DSACKs are special case that must always be walked. The local to recv_sack_cache copying could be more intelligent w.r.t DSACKs which are likely to be there only once but that is left to a separate patch. Signed-off-by: Ilpo Järvinen <ilpo.jarvinen@helsinki.fi> Signed-off-by: David S. Miller <davem@davemloft.net>
2007-11-15 19:50:37 -08:00
static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk,
struct tcp_sack_block *next_dup,
struct tcp_sacktag_state *state,
[TCP]: Rewrite SACK block processing & sack_recv_cache use Key points of this patch are: - In case new SACK information is advance only type, no skb processing below previously discovered highest point is done - Optimize cases below highest point too since there's no need to always go up to highest point (which is very likely still present in that SACK), this is not entirely true though because I'm dropping the fastpath_skb_hint which could previously optimize those cases even better. Whether that's significant, I'm not too sure. Currently it will provide skipping by walking. Combined with RB-tree, all skipping would become fast too regardless of window size (can be done incrementally later). Previously a number of cases in TCP SACK processing fails to take advantage of costly stored information in sack_recv_cache, most importantly, expected events such as cumulative ACK and new hole ACKs. Processing on such ACKs result in rather long walks building up latencies (which easily gets nasty when window is huge). Those latencies are often completely unnecessary compared with the amount of _new_ information received, usually for cumulative ACK there's no new information at all, yet TCP walks whole queue unnecessary potentially taking a number of costly cache misses on the way, etc.! Since the inclusion of highest_sack, there's a lot information that is very likely redundant (SACK fastpath hint stuff, fackets_out, highest_sack), though there's no ultimate guarantee that they'll remain the same whole the time (in all unearthly scenarios). Take advantage of this knowledge here and drop fastpath hint and use direct access to highest SACKed skb as a replacement. Effectively "special cased" fastpath is dropped. This change adds some complexity to introduce better coveraged "fastpath", though the added complexity should make TCP behave more cache friendly. The current ACK's SACK blocks are compared against each cached block individially and only ranges that are new are then scanned by the high constant walk. For other parts of write queue, even when in previously known part of the SACK blocks, a faster skip function is used (if necessary at all). In addition, whenever possible, TCP fast-forwards to highest_sack skb that was made available by an earlier patch. In typical case, no other things but this fast-forward and mandatory markings after that occur making the access pattern quite similar to the former fastpath "special case". DSACKs are special case that must always be walked. The local to recv_sack_cache copying could be more intelligent w.r.t DSACKs which are likely to be there only once but that is left to a separate patch. Signed-off-by: Ilpo Järvinen <ilpo.jarvinen@helsinki.fi> Signed-off-by: David S. Miller <davem@davemloft.net>
2007-11-15 19:50:37 -08:00
u32 start_seq, u32 end_seq,
bool dup_sack_in)
[TCP]: Rewrite SACK block processing & sack_recv_cache use Key points of this patch are: - In case new SACK information is advance only type, no skb processing below previously discovered highest point is done - Optimize cases below highest point too since there's no need to always go up to highest point (which is very likely still present in that SACK), this is not entirely true though because I'm dropping the fastpath_skb_hint which could previously optimize those cases even better. Whether that's significant, I'm not too sure. Currently it will provide skipping by walking. Combined with RB-tree, all skipping would become fast too regardless of window size (can be done incrementally later). Previously a number of cases in TCP SACK processing fails to take advantage of costly stored information in sack_recv_cache, most importantly, expected events such as cumulative ACK and new hole ACKs. Processing on such ACKs result in rather long walks building up latencies (which easily gets nasty when window is huge). Those latencies are often completely unnecessary compared with the amount of _new_ information received, usually for cumulative ACK there's no new information at all, yet TCP walks whole queue unnecessary potentially taking a number of costly cache misses on the way, etc.! Since the inclusion of highest_sack, there's a lot information that is very likely redundant (SACK fastpath hint stuff, fackets_out, highest_sack), though there's no ultimate guarantee that they'll remain the same whole the time (in all unearthly scenarios). Take advantage of this knowledge here and drop fastpath hint and use direct access to highest SACKed skb as a replacement. Effectively "special cased" fastpath is dropped. This change adds some complexity to introduce better coveraged "fastpath", though the added complexity should make TCP behave more cache friendly. The current ACK's SACK blocks are compared against each cached block individially and only ranges that are new are then scanned by the high constant walk. For other parts of write queue, even when in previously known part of the SACK blocks, a faster skip function is used (if necessary at all). In addition, whenever possible, TCP fast-forwards to highest_sack skb that was made available by an earlier patch. In typical case, no other things but this fast-forward and mandatory markings after that occur making the access pattern quite similar to the former fastpath "special case". DSACKs are special case that must always be walked. The local to recv_sack_cache copying could be more intelligent w.r.t DSACKs which are likely to be there only once but that is left to a separate patch. Signed-off-by: Ilpo Järvinen <ilpo.jarvinen@helsinki.fi> Signed-off-by: David S. Miller <davem@davemloft.net>
2007-11-15 19:50:37 -08:00
{
tcp: Try to restore large SKBs while SACK processing During SACK processing, most of the benefits of TSO are eaten by the SACK blocks that one-by-one fragment SKBs to MSS sized chunks. Then we're in problems when cleanup work for them has to be done when a large cumulative ACK comes. Try to return back to pre-split state already while more and more SACK info gets discovered by combining newly discovered SACK areas with the previous skb if that's SACKed as well. This approach has a number of benefits: 1) The processing overhead is spread more equally over the RTT 2) Write queue has less skbs to process (affect everything which has to walk in the queue past the sacked areas) 3) Write queue is consistent whole the time, so no other parts of TCP has to be aware of this (this was not the case with some other approach that was, well, quite intrusive all around). 4) Clean_rtx_queue can release most of the pages using single put_page instead of previous PAGE_SIZE/mss+1 calls In case a hole is fully filled by the new SACK block, we attempt to combine the next skb too which allows construction of skbs that are even larger than what tso split them to and it handles hole per on every nth patterns that often occur during slow start overshoot pretty nicely. Though this to be really useful also a retransmission would have to get lost since cumulative ACKs advance one hole at a time in the most typical case. TODO: handle upwards only merging. That should be rather easy when segment is fully sacked but I'm leaving that as future work item (it won't make very large difference anyway since this current approach already covers quite a lot of normal cases). I was earlier thinking of some sophisticated way of tracking timestamps of the first and the last segment but later on realized that it won't be that necessary at all to store the timestamp of the last segment. The cases that can occur are basically either: 1) ambiguous => no sensible measurement can be taken anyway 2) non-ambiguous is due to reordering => having the timestamp of the last segment there is just skewing things more off than does some good since the ack got triggered by one of the holes (besides some substle issues that would make determining right hole/skb even harder problem). Anyway, it has nothing to do with this change then. I choose to route some abnormal looking cases with goto noop, some could be handled differently (eg., by stopping the walking at that skb but again). In general, they either shouldn't happen at all or are rare enough to make no difference in practice. In theory this change (as whole) could cause some macroscale regression (global) because of cache misses that are taken over the round-trip time but it gets very likely better because of much less (local) cache misses per other write queue walkers and the big recovery clearing cumulative ack. Worth to note that these benefits would be very easy to get also without TSO/GSO being on as long as the data is in pages so that we can merge them. Currently I won't let that happen because DSACK splitting at fragment that would mess up pcounts due to sk_can_gso in tcp_set_skb_tso_segs. Once DSACKs fragments gets avoided, we have some conditions that can be made less strict. TODO: I will probably have to convert the excessive pointer passing to struct sacktag_state... :-) My testing revealed that considerable amount of skbs couldn't be shifted because they were cloned (most likely still awaiting tx reclaim)... [The rest is considering future work instead since I got repeatably EFAULT to tcpdump's recvfrom when I added pskb_expand_head to deal with clones, so I separated that into another, later patch] ...To counter that, I gave up on the fifth advantage: 5) When growing previous SACK block, less allocs for new skbs are done, basically a new alloc is needed only when new hole is detected and when the previous skb runs out of frags space ...which now only happens of if reclaim is fast enough to dispose the clone before the SACK block comes in (the window is RTT long), otherwise we'll have to alloc some. With clones being handled I got these numbers (will be somewhat worse without that), taken with fine-grained mibs: TCPSackShifted 398 TCPSackMerged 877 TCPSackShiftFallback 320 TCPSACKCOLLAPSEFALLBACKGSO 0 TCPSACKCOLLAPSEFALLBACKSKBBITS 0 TCPSACKCOLLAPSEFALLBACKSKBDATA 0 TCPSACKCOLLAPSEFALLBACKBELOW 0 TCPSACKCOLLAPSEFALLBACKFIRST 1 TCPSACKCOLLAPSEFALLBACKPREVBITS 318 TCPSACKCOLLAPSEFALLBACKMSS 1 TCPSACKCOLLAPSEFALLBACKNOHEAD 0 TCPSACKCOLLAPSEFALLBACKSHIFT 0 TCPSACKCOLLAPSENOOPSEQ 0 TCPSACKCOLLAPSENOOPSMALLPCOUNT 0 TCPSACKCOLLAPSENOOPSMALLLEN 0 TCPSACKCOLLAPSEHOLE 12 Signed-off-by: Ilpo Järvinen <ilpo.jarvinen@helsinki.fi> Signed-off-by: David S. Miller <davem@davemloft.net>
2008-11-24 21:20:15 -08:00
struct tcp_sock *tp = tcp_sk(sk);
struct sk_buff *tmp;
tcp: implement rb-tree based retransmit queue Using a linear list to store all skbs in write queue has been okay for quite a while : O(N) is not too bad when N < 500. Things get messy when N is the order of 100,000 : Modern TCP stacks want 10Gbit+ of throughput even with 200 ms RTT flows. 40 ns per cache line miss means a full scan can use 4 ms, blowing away CPU caches. SACK processing often can use various hints to avoid parsing whole retransmit queue. But with high packet losses and/or high reordering, hints no longer work. Sender has to process thousands of unfriendly SACK, accumulating a huge socket backlog, burning a cpu and massively dropping packets. Using an rb-tree for retransmit queue has been avoided for years because it added complexity and overhead, but now is the time to be more resistant and say no to quadratic behavior. 1) RTX queue is no longer part of the write queue : already sent skbs are stored in one rb-tree. 2) Since reaching the head of write queue no longer needs sk->sk_send_head, we added an union of sk_send_head and tcp_rtx_queue Tested: On receiver : netem on ingress : delay 150ms 200us loss 1 GRO disabled to force stress and SACK storms. for f in `seq 1 10` do ./netperf -H lpaa6 -l30 -- -K bbr -o THROUGHPUT|tail -1 done | awk '{print $0} {sum += $0} END {printf "%7u\n",sum}' Before patch : 323.87 351.48 339.59 338.62 306.72 204.07 304.93 291.88 202.47 176.88 2840 After patch: 1700.83 2207.98 2070.17 1544.26 2114.76 2124.89 1693.14 1080.91 2216.82 1299.94 18053 Signed-off-by: Eric Dumazet <edumazet@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-10-05 22:21:27 -07:00
skb_rbtree_walk_from(skb) {
[TCP]: Rewrite SACK block processing & sack_recv_cache use Key points of this patch are: - In case new SACK information is advance only type, no skb processing below previously discovered highest point is done - Optimize cases below highest point too since there's no need to always go up to highest point (which is very likely still present in that SACK), this is not entirely true though because I'm dropping the fastpath_skb_hint which could previously optimize those cases even better. Whether that's significant, I'm not too sure. Currently it will provide skipping by walking. Combined with RB-tree, all skipping would become fast too regardless of window size (can be done incrementally later). Previously a number of cases in TCP SACK processing fails to take advantage of costly stored information in sack_recv_cache, most importantly, expected events such as cumulative ACK and new hole ACKs. Processing on such ACKs result in rather long walks building up latencies (which easily gets nasty when window is huge). Those latencies are often completely unnecessary compared with the amount of _new_ information received, usually for cumulative ACK there's no new information at all, yet TCP walks whole queue unnecessary potentially taking a number of costly cache misses on the way, etc.! Since the inclusion of highest_sack, there's a lot information that is very likely redundant (SACK fastpath hint stuff, fackets_out, highest_sack), though there's no ultimate guarantee that they'll remain the same whole the time (in all unearthly scenarios). Take advantage of this knowledge here and drop fastpath hint and use direct access to highest SACKed skb as a replacement. Effectively "special cased" fastpath is dropped. This change adds some complexity to introduce better coveraged "fastpath", though the added complexity should make TCP behave more cache friendly. The current ACK's SACK blocks are compared against each cached block individially and only ranges that are new are then scanned by the high constant walk. For other parts of write queue, even when in previously known part of the SACK blocks, a faster skip function is used (if necessary at all). In addition, whenever possible, TCP fast-forwards to highest_sack skb that was made available by an earlier patch. In typical case, no other things but this fast-forward and mandatory markings after that occur making the access pattern quite similar to the former fastpath "special case". DSACKs are special case that must always be walked. The local to recv_sack_cache copying could be more intelligent w.r.t DSACKs which are likely to be there only once but that is left to a separate patch. Signed-off-by: Ilpo Järvinen <ilpo.jarvinen@helsinki.fi> Signed-off-by: David S. Miller <davem@davemloft.net>
2007-11-15 19:50:37 -08:00
int in_sack = 0;
bool dup_sack = dup_sack_in;
[TCP]: Rewrite SACK block processing & sack_recv_cache use Key points of this patch are: - In case new SACK information is advance only type, no skb processing below previously discovered highest point is done - Optimize cases below highest point too since there's no need to always go up to highest point (which is very likely still present in that SACK), this is not entirely true though because I'm dropping the fastpath_skb_hint which could previously optimize those cases even better. Whether that's significant, I'm not too sure. Currently it will provide skipping by walking. Combined with RB-tree, all skipping would become fast too regardless of window size (can be done incrementally later). Previously a number of cases in TCP SACK processing fails to take advantage of costly stored information in sack_recv_cache, most importantly, expected events such as cumulative ACK and new hole ACKs. Processing on such ACKs result in rather long walks building up latencies (which easily gets nasty when window is huge). Those latencies are often completely unnecessary compared with the amount of _new_ information received, usually for cumulative ACK there's no new information at all, yet TCP walks whole queue unnecessary potentially taking a number of costly cache misses on the way, etc.! Since the inclusion of highest_sack, there's a lot information that is very likely redundant (SACK fastpath hint stuff, fackets_out, highest_sack), though there's no ultimate guarantee that they'll remain the same whole the time (in all unearthly scenarios). Take advantage of this knowledge here and drop fastpath hint and use direct access to highest SACKed skb as a replacement. Effectively "special cased" fastpath is dropped. This change adds some complexity to introduce better coveraged "fastpath", though the added complexity should make TCP behave more cache friendly. The current ACK's SACK blocks are compared against each cached block individially and only ranges that are new are then scanned by the high constant walk. For other parts of write queue, even when in previously known part of the SACK blocks, a faster skip function is used (if necessary at all). In addition, whenever possible, TCP fast-forwards to highest_sack skb that was made available by an earlier patch. In typical case, no other things but this fast-forward and mandatory markings after that occur making the access pattern quite similar to the former fastpath "special case". DSACKs are special case that must always be walked. The local to recv_sack_cache copying could be more intelligent w.r.t DSACKs which are likely to be there only once but that is left to a separate patch. Signed-off-by: Ilpo Järvinen <ilpo.jarvinen@helsinki.fi> Signed-off-by: David S. Miller <davem@davemloft.net>
2007-11-15 19:50:37 -08:00
/* queue is in-order => we can short-circuit the walk early */
if (!before(TCP_SKB_CB(skb)->seq, end_seq))
break;
if (next_dup &&
[TCP]: Rewrite SACK block processing & sack_recv_cache use Key points of this patch are: - In case new SACK information is advance only type, no skb processing below previously discovered highest point is done - Optimize cases below highest point too since there's no need to always go up to highest point (which is very likely still present in that SACK), this is not entirely true though because I'm dropping the fastpath_skb_hint which could previously optimize those cases even better. Whether that's significant, I'm not too sure. Currently it will provide skipping by walking. Combined with RB-tree, all skipping would become fast too regardless of window size (can be done incrementally later). Previously a number of cases in TCP SACK processing fails to take advantage of costly stored information in sack_recv_cache, most importantly, expected events such as cumulative ACK and new hole ACKs. Processing on such ACKs result in rather long walks building up latencies (which easily gets nasty when window is huge). Those latencies are often completely unnecessary compared with the amount of _new_ information received, usually for cumulative ACK there's no new information at all, yet TCP walks whole queue unnecessary potentially taking a number of costly cache misses on the way, etc.! Since the inclusion of highest_sack, there's a lot information that is very likely redundant (SACK fastpath hint stuff, fackets_out, highest_sack), though there's no ultimate guarantee that they'll remain the same whole the time (in all unearthly scenarios). Take advantage of this knowledge here and drop fastpath hint and use direct access to highest SACKed skb as a replacement. Effectively "special cased" fastpath is dropped. This change adds some complexity to introduce better coveraged "fastpath", though the added complexity should make TCP behave more cache friendly. The current ACK's SACK blocks are compared against each cached block individially and only ranges that are new are then scanned by the high constant walk. For other parts of write queue, even when in previously known part of the SACK blocks, a faster skip function is used (if necessary at all). In addition, whenever possible, TCP fast-forwards to highest_sack skb that was made available by an earlier patch. In typical case, no other things but this fast-forward and mandatory markings after that occur making the access pattern quite similar to the former fastpath "special case". DSACKs are special case that must always be walked. The local to recv_sack_cache copying could be more intelligent w.r.t DSACKs which are likely to be there only once but that is left to a separate patch. Signed-off-by: Ilpo Järvinen <ilpo.jarvinen@helsinki.fi> Signed-off-by: David S. Miller <davem@davemloft.net>
2007-11-15 19:50:37 -08:00
before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) {
in_sack = tcp_match_skb_to_sack(sk, skb,
next_dup->start_seq,
next_dup->end_seq);
if (in_sack > 0)
dup_sack = true;
[TCP]: Rewrite SACK block processing & sack_recv_cache use Key points of this patch are: - In case new SACK information is advance only type, no skb processing below previously discovered highest point is done - Optimize cases below highest point too since there's no need to always go up to highest point (which is very likely still present in that SACK), this is not entirely true though because I'm dropping the fastpath_skb_hint which could previously optimize those cases even better. Whether that's significant, I'm not too sure. Currently it will provide skipping by walking. Combined with RB-tree, all skipping would become fast too regardless of window size (can be done incrementally later). Previously a number of cases in TCP SACK processing fails to take advantage of costly stored information in sack_recv_cache, most importantly, expected events such as cumulative ACK and new hole ACKs. Processing on such ACKs result in rather long walks building up latencies (which easily gets nasty when window is huge). Those latencies are often completely unnecessary compared with the amount of _new_ information received, usually for cumulative ACK there's no new information at all, yet TCP walks whole queue unnecessary potentially taking a number of costly cache misses on the way, etc.! Since the inclusion of highest_sack, there's a lot information that is very likely redundant (SACK fastpath hint stuff, fackets_out, highest_sack), though there's no ultimate guarantee that they'll remain the same whole the time (in all unearthly scenarios). Take advantage of this knowledge here and drop fastpath hint and use direct access to highest SACKed skb as a replacement. Effectively "special cased" fastpath is dropped. This change adds some complexity to introduce better coveraged "fastpath", though the added complexity should make TCP behave more cache friendly. The current ACK's SACK blocks are compared against each cached block individially and only ranges that are new are then scanned by the high constant walk. For other parts of write queue, even when in previously known part of the SACK blocks, a faster skip function is used (if necessary at all). In addition, whenever possible, TCP fast-forwards to highest_sack skb that was made available by an earlier patch. In typical case, no other things but this fast-forward and mandatory markings after that occur making the access pattern quite similar to the former fastpath "special case". DSACKs are special case that must always be walked. The local to recv_sack_cache copying could be more intelligent w.r.t DSACKs which are likely to be there only once but that is left to a separate patch. Signed-off-by: Ilpo Järvinen <ilpo.jarvinen@helsinki.fi> Signed-off-by: David S. Miller <davem@davemloft.net>
2007-11-15 19:50:37 -08:00
}
tcp: Try to restore large SKBs while SACK processing During SACK processing, most of the benefits of TSO are eaten by the SACK blocks that one-by-one fragment SKBs to MSS sized chunks. Then we're in problems when cleanup work for them has to be done when a large cumulative ACK comes. Try to return back to pre-split state already while more and more SACK info gets discovered by combining newly discovered SACK areas with the previous skb if that's SACKed as well. This approach has a number of benefits: 1) The processing overhead is spread more equally over the RTT 2) Write queue has less skbs to process (affect everything which has to walk in the queue past the sacked areas) 3) Write queue is consistent whole the time, so no other parts of TCP has to be aware of this (this was not the case with some other approach that was, well, quite intrusive all around). 4) Clean_rtx_queue can release most of the pages using single put_page instead of previous PAGE_SIZE/mss+1 calls In case a hole is fully filled by the new SACK block, we attempt to combine the next skb too which allows construction of skbs that are even larger than what tso split them to and it handles hole per on every nth patterns that often occur during slow start overshoot pretty nicely. Though this to be really useful also a retransmission would have to get lost since cumulative ACKs advance one hole at a time in the most typical case. TODO: handle upwards only merging. That should be rather easy when segment is fully sacked but I'm leaving that as future work item (it won't make very large difference anyway since this current approach already covers quite a lot of normal cases). I was earlier thinking of some sophisticated way of tracking timestamps of the first and the last segment but later on realized that it won't be that necessary at all to store the timestamp of the last segment. The cases that can occur are basically either: 1) ambiguous => no sensible measurement can be taken anyway 2) non-ambiguous is due to reordering => having the timestamp of the last segment there is just skewing things more off than does some good since the ack got triggered by one of the holes (besides some substle issues that would make determining right hole/skb even harder problem). Anyway, it has nothing to do with this change then. I choose to route some abnormal looking cases with goto noop, some could be handled differently (eg., by stopping the walking at that skb but again). In general, they either shouldn't happen at all or are rare enough to make no difference in practice. In theory this change (as whole) could cause some macroscale regression (global) because of cache misses that are taken over the round-trip time but it gets very likely better because of much less (local) cache misses per other write queue walkers and the big recovery clearing cumulative ack. Worth to note that these benefits would be very easy to get also without TSO/GSO being on as long as the data is in pages so that we can merge them. Currently I won't let that happen because DSACK splitting at fragment that would mess up pcounts due to sk_can_gso in tcp_set_skb_tso_segs. Once DSACKs fragments gets avoided, we have some conditions that can be made less strict. TODO: I will probably have to convert the excessive pointer passing to struct sacktag_state... :-) My testing revealed that considerable amount of skbs couldn't be shifted because they were cloned (most likely still awaiting tx reclaim)... [The rest is considering future work instead since I got repeatably EFAULT to tcpdump's recvfrom when I added pskb_expand_head to deal with clones, so I separated that into another, later patch] ...To counter that, I gave up on the fifth advantage: 5) When growing previous SACK block, less allocs for new skbs are done, basically a new alloc is needed only when new hole is detected and when the previous skb runs out of frags space ...which now only happens of if reclaim is fast enough to dispose the clone before the SACK block comes in (the window is RTT long), otherwise we'll have to alloc some. With clones being handled I got these numbers (will be somewhat worse without that), taken with fine-grained mibs: TCPSackShifted 398 TCPSackMerged 877 TCPSackShiftFallback 320 TCPSACKCOLLAPSEFALLBACKGSO 0 TCPSACKCOLLAPSEFALLBACKSKBBITS 0 TCPSACKCOLLAPSEFALLBACKSKBDATA 0 TCPSACKCOLLAPSEFALLBACKBELOW 0 TCPSACKCOLLAPSEFALLBACKFIRST 1 TCPSACKCOLLAPSEFALLBACKPREVBITS 318 TCPSACKCOLLAPSEFALLBACKMSS 1 TCPSACKCOLLAPSEFALLBACKNOHEAD 0 TCPSACKCOLLAPSEFALLBACKSHIFT 0 TCPSACKCOLLAPSENOOPSEQ 0 TCPSACKCOLLAPSENOOPSMALLPCOUNT 0 TCPSACKCOLLAPSENOOPSMALLLEN 0 TCPSACKCOLLAPSEHOLE 12 Signed-off-by: Ilpo Järvinen <ilpo.jarvinen@helsinki.fi> Signed-off-by: David S. Miller <davem@davemloft.net>
2008-11-24 21:20:15 -08:00
/* skb reference here is a bit tricky to get right, since
* shifting can eat and free both this skb and the next,
* so not even _safe variant of the loop is enough.
*/
if (in_sack <= 0) {
tmp = tcp_shift_skb_data(sk, skb, state,
start_seq, end_seq, dup_sack);
if (tmp) {
tcp: Try to restore large SKBs while SACK processing During SACK processing, most of the benefits of TSO are eaten by the SACK blocks that one-by-one fragment SKBs to MSS sized chunks. Then we're in problems when cleanup work for them has to be done when a large cumulative ACK comes. Try to return back to pre-split state already while more and more SACK info gets discovered by combining newly discovered SACK areas with the previous skb if that's SACKed as well. This approach has a number of benefits: 1) The processing overhead is spread more equally over the RTT 2) Write queue has less skbs to process (affect everything which has to walk in the queue past the sacked areas) 3) Write queue is consistent whole the time, so no other parts of TCP has to be aware of this (this was not the case with some other approach that was, well, quite intrusive all around). 4) Clean_rtx_queue can release most of the pages using single put_page instead of previous PAGE_SIZE/mss+1 calls In case a hole is fully filled by the new SACK block, we attempt to combine the next skb too which allows construction of skbs that are even larger than what tso split them to and it handles hole per on every nth patterns that often occur during slow start overshoot pretty nicely. Though this to be really useful also a retransmission would have to get lost since cumulative ACKs advance one hole at a time in the most typical case. TODO: handle upwards only merging. That should be rather easy when segment is fully sacked but I'm leaving that as future work item (it won't make very large difference anyway since this current approach already covers quite a lot of normal cases). I was earlier thinking of some sophisticated way of tracking timestamps of the first and the last segment but later on realized that it won't be that necessary at all to store the timestamp of the last segment. The cases that can occur are basically either: 1) ambiguous => no sensible measurement can be taken anyway 2) non-ambiguous is due to reordering => having the timestamp of the last segment there is just skewing things more off than does some good since the ack got triggered by one of the holes (besides some substle issues that would make determining right hole/skb even harder problem). Anyway, it has nothing to do with this change then. I choose to route some abnormal looking cases with goto noop, some could be handled differently (eg., by stopping the walking at that skb but again). In general, they either shouldn't happen at all or are rare enough to make no difference in practice. In theory this change (as whole) could cause some macroscale regression (global) because of cache misses that are taken over the round-trip time but it gets very likely better because of much less (local) cache misses per other write queue walkers and the big recovery clearing cumulative ack. Worth to note that these benefits would be very easy to get also without TSO/GSO being on as long as the data is in pages so that we can merge them. Currently I won't let that happen because DSACK splitting at fragment that would mess up pcounts due to sk_can_gso in tcp_set_skb_tso_segs. Once DSACKs fragments gets avoided, we have some conditions that can be made less strict. TODO: I will probably have to convert the excessive pointer passing to struct sacktag_state... :-) My testing revealed that considerable amount of skbs couldn't be shifted because they were cloned (most likely still awaiting tx reclaim)... [The rest is considering future work instead since I got repeatably EFAULT to tcpdump's recvfrom when I added pskb_expand_head to deal with clones, so I separated that into another, later patch] ...To counter that, I gave up on the fifth advantage: 5) When growing previous SACK block, less allocs for new skbs are done, basically a new alloc is needed only when new hole is detected and when the previous skb runs out of frags space ...which now only happens of if reclaim is fast enough to dispose the clone before the SACK block comes in (the window is RTT long), otherwise we'll have to alloc some. With clones being handled I got these numbers (will be somewhat worse without that), taken with fine-grained mibs: TCPSackShifted 398 TCPSackMerged 877 TCPSackShiftFallback 320 TCPSACKCOLLAPSEFALLBACKGSO 0 TCPSACKCOLLAPSEFALLBACKSKBBITS 0 TCPSACKCOLLAPSEFALLBACKSKBDATA 0 TCPSACKCOLLAPSEFALLBACKBELOW 0 TCPSACKCOLLAPSEFALLBACKFIRST 1 TCPSACKCOLLAPSEFALLBACKPREVBITS 318 TCPSACKCOLLAPSEFALLBACKMSS 1 TCPSACKCOLLAPSEFALLBACKNOHEAD 0 TCPSACKCOLLAPSEFALLBACKSHIFT 0 TCPSACKCOLLAPSENOOPSEQ 0 TCPSACKCOLLAPSENOOPSMALLPCOUNT 0 TCPSACKCOLLAPSENOOPSMALLLEN 0 TCPSACKCOLLAPSEHOLE 12 Signed-off-by: Ilpo Järvinen <ilpo.jarvinen@helsinki.fi> Signed-off-by: David S. Miller <davem@davemloft.net>
2008-11-24 21:20:15 -08:00
if (tmp != skb) {
skb = tmp;
continue;
}
in_sack = 0;
} else {
in_sack = tcp_match_skb_to_sack(sk, skb,
start_seq,
end_seq);
}
}
[TCP]: Rewrite SACK block processing & sack_recv_cache use Key points of this patch are: - In case new SACK information is advance only type, no skb processing below previously discovered highest point is done - Optimize cases below highest point too since there's no need to always go up to highest point (which is very likely still present in that SACK), this is not entirely true though because I'm dropping the fastpath_skb_hint which could previously optimize those cases even better. Whether that's significant, I'm not too sure. Currently it will provide skipping by walking. Combined with RB-tree, all skipping would become fast too regardless of window size (can be done incrementally later). Previously a number of cases in TCP SACK processing fails to take advantage of costly stored information in sack_recv_cache, most importantly, expected events such as cumulative ACK and new hole ACKs. Processing on such ACKs result in rather long walks building up latencies (which easily gets nasty when window is huge). Those latencies are often completely unnecessary compared with the amount of _new_ information received, usually for cumulative ACK there's no new information at all, yet TCP walks whole queue unnecessary potentially taking a number of costly cache misses on the way, etc.! Since the inclusion of highest_sack, there's a lot information that is very likely redundant (SACK fastpath hint stuff, fackets_out, highest_sack), though there's no ultimate guarantee that they'll remain the same whole the time (in all unearthly scenarios). Take advantage of this knowledge here and drop fastpath hint and use direct access to highest SACKed skb as a replacement. Effectively "special cased" fastpath is dropped. This change adds some complexity to introduce better coveraged "fastpath", though the added complexity should make TCP behave more cache friendly. The current ACK's SACK blocks are compared against each cached block individially and only ranges that are new are then scanned by the high constant walk. For other parts of write queue, even when in previously known part of the SACK blocks, a faster skip function is used (if necessary at all). In addition, whenever possible, TCP fast-forwards to highest_sack skb that was made available by an earlier patch. In typical case, no other things but this fast-forward and mandatory markings after that occur making the access pattern quite similar to the former fastpath "special case". DSACKs are special case that must always be walked. The local to recv_sack_cache copying could be more intelligent w.r.t DSACKs which are likely to be there only once but that is left to a separate patch. Signed-off-by: Ilpo Järvinen <ilpo.jarvinen@helsinki.fi> Signed-off-by: David S. Miller <davem@davemloft.net>
2007-11-15 19:50:37 -08:00
if (unlikely(in_sack < 0))
break;
tcp: Try to restore large SKBs while SACK processing During SACK processing, most of the benefits of TSO are eaten by the SACK blocks that one-by-one fragment SKBs to MSS sized chunks. Then we're in problems when cleanup work for them has to be done when a large cumulative ACK comes. Try to return back to pre-split state already while more and more SACK info gets discovered by combining newly discovered SACK areas with the previous skb if that's SACKed as well. This approach has a number of benefits: 1) The processing overhead is spread more equally over the RTT 2) Write queue has less skbs to process (affect everything which has to walk in the queue past the sacked areas) 3) Write queue is consistent whole the time, so no other parts of TCP has to be aware of this (this was not the case with some other approach that was, well, quite intrusive all around). 4) Clean_rtx_queue can release most of the pages using single put_page instead of previous PAGE_SIZE/mss+1 calls In case a hole is fully filled by the new SACK block, we attempt to combine the next skb too which allows construction of skbs that are even larger than what tso split them to and it handles hole per on every nth patterns that often occur during slow start overshoot pretty nicely. Though this to be really useful also a retransmission would have to get lost since cumulative ACKs advance one hole at a time in the most typical case. TODO: handle upwards only merging. That should be rather easy when segment is fully sacked but I'm leaving that as future work item (it won't make very large difference anyway since this current approach already covers quite a lot of normal cases). I was earlier thinking of some sophisticated way of tracking timestamps of the first and the last segment but later on realized that it won't be that necessary at all to store the timestamp of the last segment. The cases that can occur are basically either: 1) ambiguous => no sensible measurement can be taken anyway 2) non-ambiguous is due to reordering => having the timestamp of the last segment there is just skewing things more off than does some good since the ack got triggered by one of the holes (besides some substle issues that would make determining right hole/skb even harder problem). Anyway, it has nothing to do with this change then. I choose to route some abnormal looking cases with goto noop, some could be handled differently (eg., by stopping the walking at that skb but again). In general, they either shouldn't happen at all or are rare enough to make no difference in practice. In theory this change (as whole) could cause some macroscale regression (global) because of cache misses that are taken over the round-trip time but it gets very likely better because of much less (local) cache misses per other write queue walkers and the big recovery clearing cumulative ack. Worth to note that these benefits would be very easy to get also without TSO/GSO being on as long as the data is in pages so that we can merge them. Currently I won't let that happen because DSACK splitting at fragment that would mess up pcounts due to sk_can_gso in tcp_set_skb_tso_segs. Once DSACKs fragments gets avoided, we have some conditions that can be made less strict. TODO: I will probably have to convert the excessive pointer passing to struct sacktag_state... :-) My testing revealed that considerable amount of skbs couldn't be shifted because they were cloned (most likely still awaiting tx reclaim)... [The rest is considering future work instead since I got repeatably EFAULT to tcpdump's recvfrom when I added pskb_expand_head to deal with clones, so I separated that into another, later patch] ...To counter that, I gave up on the fifth advantage: 5) When growing previous SACK block, less allocs for new skbs are done, basically a new alloc is needed only when new hole is detected and when the previous skb runs out of frags space ...which now only happens of if reclaim is fast enough to dispose the clone before the SACK block comes in (the window is RTT long), otherwise we'll have to alloc some. With clones being handled I got these numbers (will be somewhat worse without that), taken with fine-grained mibs: TCPSackShifted 398 TCPSackMerged 877 TCPSackShiftFallback 320 TCPSACKCOLLAPSEFALLBACKGSO 0 TCPSACKCOLLAPSEFALLBACKSKBBITS 0 TCPSACKCOLLAPSEFALLBACKSKBDATA 0 TCPSACKCOLLAPSEFALLBACKBELOW 0 TCPSACKCOLLAPSEFALLBACKFIRST 1 TCPSACKCOLLAPSEFALLBACKPREVBITS 318 TCPSACKCOLLAPSEFALLBACKMSS 1 TCPSACKCOLLAPSEFALLBACKNOHEAD 0 TCPSACKCOLLAPSEFALLBACKSHIFT 0 TCPSACKCOLLAPSENOOPSEQ 0 TCPSACKCOLLAPSENOOPSMALLPCOUNT 0 TCPSACKCOLLAPSENOOPSMALLLEN 0 TCPSACKCOLLAPSEHOLE 12 Signed-off-by: Ilpo Järvinen <ilpo.jarvinen@helsinki.fi> Signed-off-by: David S. Miller <davem@davemloft.net>
2008-11-24 21:20:15 -08:00
if (in_sack) {
TCP_SKB_CB(skb)->sacked =
tcp_sacktag_one(sk,
state,
TCP_SKB_CB(skb)->sacked,
TCP_SKB_CB(skb)->seq,
TCP_SKB_CB(skb)->end_seq,
dup_sack,
tcp_skb_pcount(skb),
tcp_skb_timestamp_us(skb));
tcp: track data delivery rate for a TCP connection This patch generates data delivery rate (throughput) samples on a per-ACK basis. These rate samples can be used by congestion control modules, and specifically will be used by TCP BBR in later patches in this series. Key state: tp->delivered: Tracks the total number of data packets (original or not) delivered so far. This is an already-existing field. tp->delivered_mstamp: the last time tp->delivered was updated. Algorithm: A rate sample is calculated as (d1 - d0)/(t1 - t0) on a per-ACK basis: d1: the current tp->delivered after processing the ACK t1: the current time after processing the ACK d0: the prior tp->delivered when the acked skb was transmitted t0: the prior tp->delivered_mstamp when the acked skb was transmitted When an skb is transmitted, we snapshot d0 and t0 in its control block in tcp_rate_skb_sent(). When an ACK arrives, it may SACK and ACK some skbs. For each SACKed or ACKed skb, tcp_rate_skb_delivered() updates the rate_sample struct to reflect the latest (d0, t0). Finally, tcp_rate_gen() generates a rate sample by storing (d1 - d0) in rs->delivered and (t1 - t0) in rs->interval_us. One caveat: if an skb was sent with no packets in flight, then tp->delivered_mstamp may be either invalid (if the connection is starting) or outdated (if the connection was idle). In that case, we'll re-stamp tp->delivered_mstamp. At first glance it seems t0 should always be the time when an skb was transmitted, but actually this could over-estimate the rate due to phase mismatch between transmit and ACK events. To track the delivery rate, we ensure that if packets are in flight then t0 and and t1 are times at which packets were marked delivered. If the initial and final RTTs are different then one may be corrupted by some sort of noise. The noise we see most often is sending gaps caused by delayed, compressed, or stretched acks. This either affects both RTTs equally or artificially reduces the final RTT. We approach this by recording the info we need to compute the initial RTT (duration of the "send phase" of the window) when we recorded the associated inflight. Then, for a filter to avoid bandwidth overestimates, we generalize the per-sample bandwidth computation from: bw = delivered / ack_phase_rtt to the following: bw = delivered / max(send_phase_rtt, ack_phase_rtt) In large-scale experiments, this filtering approach incorporating send_phase_rtt is effective at avoiding bandwidth overestimates due to ACK compression or stretched ACKs. Signed-off-by: Van Jacobson <vanj@google.com> Signed-off-by: Neal Cardwell <ncardwell@google.com> Signed-off-by: Yuchung Cheng <ycheng@google.com> Signed-off-by: Nandita Dukkipati <nanditad@google.com> Signed-off-by: Eric Dumazet <edumazet@google.com> Signed-off-by: Soheil Hassas Yeganeh <soheil@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-09-19 23:39:14 -04:00
tcp_rate_skb_delivered(sk, skb, state->rate);
tcp: new list for sent but unacked skbs for RACK recovery This patch adds a new queue (list) that tracks the sent but not yet acked or SACKed skbs for a TCP connection. The list is chronologically ordered by skb->skb_mstamp (the head is the oldest sent skb). This list will be used to optimize TCP Rack recovery, which checks an skb's timestamp to judge if it has been lost and needs to be retransmitted. Since TCP write queue is ordered by sequence instead of sent time, RACK has to scan over the write queue to catch all eligible packets to detect lost retransmission, and iterates through SACKed skbs repeatedly. Special cares for rare events: 1. TCP repair fakes skb transmission so the send queue needs adjusted 2. SACK reneging would require re-inserting SACKed skbs into the send queue. For now I believe it's not worth the complexity to make RACK work perfectly on SACK reneging, so we do nothing here. 3. Fast Open: currently for non-TFO, send-queue correctly queues the pure SYN packet. For TFO which queues a pure SYN and then a data packet, send-queue only queues the data packet but not the pure SYN due to the structure of TFO code. This is okay because the SYN receiver would never respond with a SACK on a missing SYN (i.e. SYN is never fast-retransmitted by SACK/RACK). In order to not grow sk_buff, we use an union for the new list and _skb_refdst/destructor fields. This is a bit complicated because we need to make sure _skb_refdst and destructor are properly zeroed before skb is cloned/copied at transmit, and before being freed. Signed-off-by: Eric Dumazet <edumazet@google.com> Signed-off-by: Yuchung Cheng <ycheng@google.com> Signed-off-by: Neal Cardwell <ncardwell@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-10-04 12:59:58 -07:00
if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
list_del_init(&skb->tcp_tsorted_anchor);
[TCP]: Rewrite SACK block processing & sack_recv_cache use Key points of this patch are: - In case new SACK information is advance only type, no skb processing below previously discovered highest point is done - Optimize cases below highest point too since there's no need to always go up to highest point (which is very likely still present in that SACK), this is not entirely true though because I'm dropping the fastpath_skb_hint which could previously optimize those cases even better. Whether that's significant, I'm not too sure. Currently it will provide skipping by walking. Combined with RB-tree, all skipping would become fast too regardless of window size (can be done incrementally later). Previously a number of cases in TCP SACK processing fails to take advantage of costly stored information in sack_recv_cache, most importantly, expected events such as cumulative ACK and new hole ACKs. Processing on such ACKs result in rather long walks building up latencies (which easily gets nasty when window is huge). Those latencies are often completely unnecessary compared with the amount of _new_ information received, usually for cumulative ACK there's no new information at all, yet TCP walks whole queue unnecessary potentially taking a number of costly cache misses on the way, etc.! Since the inclusion of highest_sack, there's a lot information that is very likely redundant (SACK fastpath hint stuff, fackets_out, highest_sack), though there's no ultimate guarantee that they'll remain the same whole the time (in all unearthly scenarios). Take advantage of this knowledge here and drop fastpath hint and use direct access to highest SACKed skb as a replacement. Effectively "special cased" fastpath is dropped. This change adds some complexity to introduce better coveraged "fastpath", though the added complexity should make TCP behave more cache friendly. The current ACK's SACK blocks are compared against each cached block individially and only ranges that are new are then scanned by the high constant walk. For other parts of write queue, even when in previously known part of the SACK blocks, a faster skip function is used (if necessary at all). In addition, whenever possible, TCP fast-forwards to highest_sack skb that was made available by an earlier patch. In typical case, no other things but this fast-forward and mandatory markings after that occur making the access pattern quite similar to the former fastpath "special case". DSACKs are special case that must always be walked. The local to recv_sack_cache copying could be more intelligent w.r.t DSACKs which are likely to be there only once but that is left to a separate patch. Signed-off-by: Ilpo Järvinen <ilpo.jarvinen@helsinki.fi> Signed-off-by: David S. Miller <davem@davemloft.net>
2007-11-15 19:50:37 -08:00
tcp: Try to restore large SKBs while SACK processing During SACK processing, most of the benefits of TSO are eaten by the SACK blocks that one-by-one fragment SKBs to MSS sized chunks. Then we're in problems when cleanup work for them has to be done when a large cumulative ACK comes. Try to return back to pre-split state already while more and more SACK info gets discovered by combining newly discovered SACK areas with the previous skb if that's SACKed as well. This approach has a number of benefits: 1) The processing overhead is spread more equally over the RTT 2) Write queue has less skbs to process (affect everything which has to walk in the queue past the sacked areas) 3) Write queue is consistent whole the time, so no other parts of TCP has to be aware of this (this was not the case with some other approach that was, well, quite intrusive all around). 4) Clean_rtx_queue can release most of the pages using single put_page instead of previous PAGE_SIZE/mss+1 calls In case a hole is fully filled by the new SACK block, we attempt to combine the next skb too which allows construction of skbs that are even larger than what tso split them to and it handles hole per on every nth patterns that often occur during slow start overshoot pretty nicely. Though this to be really useful also a retransmission would have to get lost since cumulative ACKs advance one hole at a time in the most typical case. TODO: handle upwards only merging. That should be rather easy when segment is fully sacked but I'm leaving that as future work item (it won't make very large difference anyway since this current approach already covers quite a lot of normal cases). I was earlier thinking of some sophisticated way of tracking timestamps of the first and the last segment but later on realized that it won't be that necessary at all to store the timestamp of the last segment. The cases that can occur are basically either: 1) ambiguous => no sensible measurement can be taken anyway 2) non-ambiguous is due to reordering => having the timestamp of the last segment there is just skewing things more off than does some good since the ack got triggered by one of the holes (besides some substle issues that would make determining right hole/skb even harder problem). Anyway, it has nothing to do with this change then. I choose to route some abnormal looking cases with goto noop, some could be handled differently (eg., by stopping the walking at that skb but again). In general, they either shouldn't happen at all or are rare enough to make no difference in practice. In theory this change (as whole) could cause some macroscale regression (global) because of cache misses that are taken over the round-trip time but it gets very likely better because of much less (local) cache misses per other write queue walkers and the big recovery clearing cumulative ack. Worth to note that these benefits would be very easy to get also without TSO/GSO being on as long as the data is in pages so that we can merge them. Currently I won't let that happen because DSACK splitting at fragment that would mess up pcounts due to sk_can_gso in tcp_set_skb_tso_segs. Once DSACKs fragments gets avoided, we have some conditions that can be made less strict. TODO: I will probably have to convert the excessive pointer passing to struct sacktag_state... :-) My testing revealed that considerable amount of skbs couldn't be shifted because they were cloned (most likely still awaiting tx reclaim)... [The rest is considering future work instead since I got repeatably EFAULT to tcpdump's recvfrom when I added pskb_expand_head to deal with clones, so I separated that into another, later patch] ...To counter that, I gave up on the fifth advantage: 5) When growing previous SACK block, less allocs for new skbs are done, basically a new alloc is needed only when new hole is detected and when the previous skb runs out of frags space ...which now only happens of if reclaim is fast enough to dispose the clone before the SACK block comes in (the window is RTT long), otherwise we'll have to alloc some. With clones being handled I got these numbers (will be somewhat worse without that), taken with fine-grained mibs: TCPSackShifted 398 TCPSackMerged 877 TCPSackShiftFallback 320 TCPSACKCOLLAPSEFALLBACKGSO 0 TCPSACKCOLLAPSEFALLBACKSKBBITS 0 TCPSACKCOLLAPSEFALLBACKSKBDATA 0 TCPSACKCOLLAPSEFALLBACKBELOW 0 TCPSACKCOLLAPSEFALLBACKFIRST 1 TCPSACKCOLLAPSEFALLBACKPREVBITS 318 TCPSACKCOLLAPSEFALLBACKMSS 1 TCPSACKCOLLAPSEFALLBACKNOHEAD 0 TCPSACKCOLLAPSEFALLBACKSHIFT 0 TCPSACKCOLLAPSENOOPSEQ 0 TCPSACKCOLLAPSENOOPSMALLPCOUNT 0 TCPSACKCOLLAPSENOOPSMALLLEN 0 TCPSACKCOLLAPSEHOLE 12 Signed-off-by: Ilpo Järvinen <ilpo.jarvinen@helsinki.fi> Signed-off-by: David S. Miller <davem@davemloft.net>
2008-11-24 21:20:15 -08:00
if (!before(TCP_SKB_CB(skb)->seq,
tcp_highest_sack_seq(tp)))
tcp_advance_highest_sack(sk, skb);
}
[TCP]: Rewrite SACK block processing & sack_recv_cache use Key points of this patch are: - In case new SACK information is advance only type, no skb processing below previously discovered highest point is done - Optimize cases below highest point too since there's no need to always go up to highest point (which is very likely still present in that SACK), this is not entirely true though because I'm dropping the fastpath_skb_hint which could previously optimize those cases even better. Whether that's significant, I'm not too sure. Currently it will provide skipping by walking. Combined with RB-tree, all skipping would become fast too regardless of window size (can be done incrementally later). Previously a number of cases in TCP SACK processing fails to take advantage of costly stored information in sack_recv_cache, most importantly, expected events such as cumulative ACK and new hole ACKs. Processing on such ACKs result in rather long walks building up latencies (which easily gets nasty when window is huge). Those latencies are often completely unnecessary compared with the amount of _new_ information received, usually for cumulative ACK there's no new information at all, yet TCP walks whole queue unnecessary potentially taking a number of costly cache misses on the way, etc.! Since the inclusion of highest_sack, there's a lot information that is very likely redundant (SACK fastpath hint stuff, fackets_out, highest_sack), though there's no ultimate guarantee that they'll remain the same whole the time (in all unearthly scenarios). Take advantage of this knowledge here and drop fastpath hint and use direct access to highest SACKed skb as a replacement. Effectively "special cased" fastpath is dropped. This change adds some complexity to introduce better coveraged "fastpath", though the added complexity should make TCP behave more cache friendly. The current ACK's SACK blocks are compared against each cached block individially and only ranges that are new are then scanned by the high constant walk. For other parts of write queue, even when in previously known part of the SACK blocks, a faster skip function is used (if necessary at all). In addition, whenever possible, TCP fast-forwards to highest_sack skb that was made available by an earlier patch. In typical case, no other things but this fast-forward and mandatory markings after that occur making the access pattern quite similar to the former fastpath "special case". DSACKs are special case that must always be walked. The local to recv_sack_cache copying could be more intelligent w.r.t DSACKs which are likely to be there only once but that is left to a separate patch. Signed-off-by: Ilpo Järvinen <ilpo.jarvinen@helsinki.fi> Signed-off-by: David S. Miller <davem@davemloft.net>
2007-11-15 19:50:37 -08:00
}
return skb;
}
static struct sk_buff *tcp_sacktag_bsearch(struct sock *sk, u32 seq)
tcp: implement rb-tree based retransmit queue Using a linear list to store all skbs in write queue has been okay for quite a while : O(N) is not too bad when N < 500. Things get messy when N is the order of 100,000 : Modern TCP stacks want 10Gbit+ of throughput even with 200 ms RTT flows. 40 ns per cache line miss means a full scan can use 4 ms, blowing away CPU caches. SACK processing often can use various hints to avoid parsing whole retransmit queue. But with high packet losses and/or high reordering, hints no longer work. Sender has to process thousands of unfriendly SACK, accumulating a huge socket backlog, burning a cpu and massively dropping packets. Using an rb-tree for retransmit queue has been avoided for years because it added complexity and overhead, but now is the time to be more resistant and say no to quadratic behavior. 1) RTX queue is no longer part of the write queue : already sent skbs are stored in one rb-tree. 2) Since reaching the head of write queue no longer needs sk->sk_send_head, we added an union of sk_send_head and tcp_rtx_queue Tested: On receiver : netem on ingress : delay 150ms 200us loss 1 GRO disabled to force stress and SACK storms. for f in `seq 1 10` do ./netperf -H lpaa6 -l30 -- -K bbr -o THROUGHPUT|tail -1 done | awk '{print $0} {sum += $0} END {printf "%7u\n",sum}' Before patch : 323.87 351.48 339.59 338.62 306.72 204.07 304.93 291.88 202.47 176.88 2840 After patch: 1700.83 2207.98 2070.17 1544.26 2114.76 2124.89 1693.14 1080.91 2216.82 1299.94 18053 Signed-off-by: Eric Dumazet <edumazet@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-10-05 22:21:27 -07:00
{
struct rb_node *parent, **p = &sk->tcp_rtx_queue.rb_node;
struct sk_buff *skb;
while (*p) {
parent = *p;
skb = rb_to_skb(parent);
if (before(seq, TCP_SKB_CB(skb)->seq)) {
p = &parent->rb_left;
continue;
}
if (!before(seq, TCP_SKB_CB(skb)->end_seq)) {
p = &parent->rb_right;
continue;
}
return skb;
}
return NULL;
}
[TCP]: Rewrite SACK block processing & sack_recv_cache use Key points of this patch are: - In case new SACK information is advance only type, no skb processing below previously discovered highest point is done - Optimize cases below highest point too since there's no need to always go up to highest point (which is very likely still present in that SACK), this is not entirely true though because I'm dropping the fastpath_skb_hint which could previously optimize those cases even better. Whether that's significant, I'm not too sure. Currently it will provide skipping by walking. Combined with RB-tree, all skipping would become fast too regardless of window size (can be done incrementally later). Previously a number of cases in TCP SACK processing fails to take advantage of costly stored information in sack_recv_cache, most importantly, expected events such as cumulative ACK and new hole ACKs. Processing on such ACKs result in rather long walks building up latencies (which easily gets nasty when window is huge). Those latencies are often completely unnecessary compared with the amount of _new_ information received, usually for cumulative ACK there's no new information at all, yet TCP walks whole queue unnecessary potentially taking a number of costly cache misses on the way, etc.! Since the inclusion of highest_sack, there's a lot information that is very likely redundant (SACK fastpath hint stuff, fackets_out, highest_sack), though there's no ultimate guarantee that they'll remain the same whole the time (in all unearthly scenarios). Take advantage of this knowledge here and drop fastpath hint and use direct access to highest SACKed skb as a replacement. Effectively "special cased" fastpath is dropped. This change adds some complexity to introduce better coveraged "fastpath", though the added complexity should make TCP behave more cache friendly. The current ACK's SACK blocks are compared against each cached block individially and only ranges that are new are then scanned by the high constant walk. For other parts of write queue, even when in previously known part of the SACK blocks, a faster skip function is used (if necessary at all). In addition, whenever possible, TCP fast-forwards to highest_sack skb that was made available by an earlier patch. In typical case, no other things but this fast-forward and mandatory markings after that occur making the access pattern quite similar to the former fastpath "special case". DSACKs are special case that must always be walked. The local to recv_sack_cache copying could be more intelligent w.r.t DSACKs which are likely to be there only once but that is left to a separate patch. Signed-off-by: Ilpo Järvinen <ilpo.jarvinen@helsinki.fi> Signed-off-by: David S. Miller <davem@davemloft.net>
2007-11-15 19:50:37 -08:00
static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk,
u32 skip_to_seq)
[TCP]: Rewrite SACK block processing & sack_recv_cache use Key points of this patch are: - In case new SACK information is advance only type, no skb processing below previously discovered highest point is done - Optimize cases below highest point too since there's no need to always go up to highest point (which is very likely still present in that SACK), this is not entirely true though because I'm dropping the fastpath_skb_hint which could previously optimize those cases even better. Whether that's significant, I'm not too sure. Currently it will provide skipping by walking. Combined with RB-tree, all skipping would become fast too regardless of window size (can be done incrementally later). Previously a number of cases in TCP SACK processing fails to take advantage of costly stored information in sack_recv_cache, most importantly, expected events such as cumulative ACK and new hole ACKs. Processing on such ACKs result in rather long walks building up latencies (which easily gets nasty when window is huge). Those latencies are often completely unnecessary compared with the amount of _new_ information received, usually for cumulative ACK there's no new information at all, yet TCP walks whole queue unnecessary potentially taking a number of costly cache misses on the way, etc.! Since the inclusion of highest_sack, there's a lot information that is very likely redundant (SACK fastpath hint stuff, fackets_out, highest_sack), though there's no ultimate guarantee that they'll remain the same whole the time (in all unearthly scenarios). Take advantage of this knowledge here and drop fastpath hint and use direct access to highest SACKed skb as a replacement. Effectively "special cased" fastpath is dropped. This change adds some complexity to introduce better coveraged "fastpath", though the added complexity should make TCP behave more cache friendly. The current ACK's SACK blocks are compared against each cached block individially and only ranges that are new are then scanned by the high constant walk. For other parts of write queue, even when in previously known part of the SACK blocks, a faster skip function is used (if necessary at all). In addition, whenever possible, TCP fast-forwards to highest_sack skb that was made available by an earlier patch. In typical case, no other things but this fast-forward and mandatory markings after that occur making the access pattern quite similar to the former fastpath "special case". DSACKs are special case that must always be walked. The local to recv_sack_cache copying could be more intelligent w.r.t DSACKs which are likely to be there only once but that is left to a separate patch. Signed-off-by: Ilpo Järvinen <ilpo.jarvinen@helsinki.fi> Signed-off-by: David S. Miller <davem@davemloft.net>
2007-11-15 19:50:37 -08:00
{
tcp: implement rb-tree based retransmit queue Using a linear list to store all skbs in write queue has been okay for quite a while : O(N) is not too bad when N < 500. Things get messy when N is the order of 100,000 : Modern TCP stacks want 10Gbit+ of throughput even with 200 ms RTT flows. 40 ns per cache line miss means a full scan can use 4 ms, blowing away CPU caches. SACK processing often can use various hints to avoid parsing whole retransmit queue. But with high packet losses and/or high reordering, hints no longer work. Sender has to process thousands of unfriendly SACK, accumulating a huge socket backlog, burning a cpu and massively dropping packets. Using an rb-tree for retransmit queue has been avoided for years because it added complexity and overhead, but now is the time to be more resistant and say no to quadratic behavior. 1) RTX queue is no longer part of the write queue : already sent skbs are stored in one rb-tree. 2) Since reaching the head of write queue no longer needs sk->sk_send_head, we added an union of sk_send_head and tcp_rtx_queue Tested: On receiver : netem on ingress : delay 150ms 200us loss 1 GRO disabled to force stress and SACK storms. for f in `seq 1 10` do ./netperf -H lpaa6 -l30 -- -K bbr -o THROUGHPUT|tail -1 done | awk '{print $0} {sum += $0} END {printf "%7u\n",sum}' Before patch : 323.87 351.48 339.59 338.62 306.72 204.07 304.93 291.88 202.47 176.88 2840 After patch: 1700.83 2207.98 2070.17 1544.26 2114.76 2124.89 1693.14 1080.91 2216.82 1299.94 18053 Signed-off-by: Eric Dumazet <edumazet@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-10-05 22:21:27 -07:00
if (skb && after(TCP_SKB_CB(skb)->seq, skip_to_seq))
return skb;
return tcp_sacktag_bsearch(sk, skip_to_seq);
[TCP]: Rewrite SACK block processing & sack_recv_cache use Key points of this patch are: - In case new SACK information is advance only type, no skb processing below previously discovered highest point is done - Optimize cases below highest point too since there's no need to always go up to highest point (which is very likely still present in that SACK), this is not entirely true though because I'm dropping the fastpath_skb_hint which could previously optimize those cases even better. Whether that's significant, I'm not too sure. Currently it will provide skipping by walking. Combined with RB-tree, all skipping would become fast too regardless of window size (can be done incrementally later). Previously a number of cases in TCP SACK processing fails to take advantage of costly stored information in sack_recv_cache, most importantly, expected events such as cumulative ACK and new hole ACKs. Processing on such ACKs result in rather long walks building up latencies (which easily gets nasty when window is huge). Those latencies are often completely unnecessary compared with the amount of _new_ information received, usually for cumulative ACK there's no new information at all, yet TCP walks whole queue unnecessary potentially taking a number of costly cache misses on the way, etc.! Since the inclusion of highest_sack, there's a lot information that is very likely redundant (SACK fastpath hint stuff, fackets_out, highest_sack), though there's no ultimate guarantee that they'll remain the same whole the time (in all unearthly scenarios). Take advantage of this knowledge here and drop fastpath hint and use direct access to highest SACKed skb as a replacement. Effectively "special cased" fastpath is dropped. This change adds some complexity to introduce better coveraged "fastpath", though the added complexity should make TCP behave more cache friendly. The current ACK's SACK blocks are compared against each cached block individially and only ranges that are new are then scanned by the high constant walk. For other parts of write queue, even when in previously known part of the SACK blocks, a faster skip function is used (if necessary at all). In addition, whenever possible, TCP fast-forwards to highest_sack skb that was made available by an earlier patch. In typical case, no other things but this fast-forward and mandatory markings after that occur making the access pattern quite similar to the former fastpath "special case". DSACKs are special case that must always be walked. The local to recv_sack_cache copying could be more intelligent w.r.t DSACKs which are likely to be there only once but that is left to a separate patch. Signed-off-by: Ilpo Järvinen <ilpo.jarvinen@helsinki.fi> Signed-off-by: David S. Miller <davem@davemloft.net>
2007-11-15 19:50:37 -08:00
}
static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb,
struct sock *sk,
struct tcp_sack_block *next_dup,
struct tcp_sacktag_state *state,
u32 skip_to_seq)
[TCP]: Rewrite SACK block processing & sack_recv_cache use Key points of this patch are: - In case new SACK information is advance only type, no skb processing below previously discovered highest point is done - Optimize cases below highest point too since there's no need to always go up to highest point (which is very likely still present in that SACK), this is not entirely true though because I'm dropping the fastpath_skb_hint which could previously optimize those cases even better. Whether that's significant, I'm not too sure. Currently it will provide skipping by walking. Combined with RB-tree, all skipping would become fast too regardless of window size (can be done incrementally later). Previously a number of cases in TCP SACK processing fails to take advantage of costly stored information in sack_recv_cache, most importantly, expected events such as cumulative ACK and new hole ACKs. Processing on such ACKs result in rather long walks building up latencies (which easily gets nasty when window is huge). Those latencies are often completely unnecessary compared with the amount of _new_ information received, usually for cumulative ACK there's no new information at all, yet TCP walks whole queue unnecessary potentially taking a number of costly cache misses on the way, etc.! Since the inclusion of highest_sack, there's a lot information that is very likely redundant (SACK fastpath hint stuff, fackets_out, highest_sack), though there's no ultimate guarantee that they'll remain the same whole the time (in all unearthly scenarios). Take advantage of this knowledge here and drop fastpath hint and use direct access to highest SACKed skb as a replacement. Effectively "special cased" fastpath is dropped. This change adds some complexity to introduce better coveraged "fastpath", though the added complexity should make TCP behave more cache friendly. The current ACK's SACK blocks are compared against each cached block individially and only ranges that are new are then scanned by the high constant walk. For other parts of write queue, even when in previously known part of the SACK blocks, a faster skip function is used (if necessary at all). In addition, whenever possible, TCP fast-forwards to highest_sack skb that was made available by an earlier patch. In typical case, no other things but this fast-forward and mandatory markings after that occur making the access pattern quite similar to the former fastpath "special case". DSACKs are special case that must always be walked. The local to recv_sack_cache copying could be more intelligent w.r.t DSACKs which are likely to be there only once but that is left to a separate patch. Signed-off-by: Ilpo Järvinen <ilpo.jarvinen@helsinki.fi> Signed-off-by: David S. Miller <davem@davemloft.net>
2007-11-15 19:50:37 -08:00
{
if (!next_dup)
[TCP]: Rewrite SACK block processing & sack_recv_cache use Key points of this patch are: - In case new SACK information is advance only type, no skb processing below previously discovered highest point is done - Optimize cases below highest point too since there's no need to always go up to highest point (which is very likely still present in that SACK), this is not entirely true though because I'm dropping the fastpath_skb_hint which could previously optimize those cases even better. Whether that's significant, I'm not too sure. Currently it will provide skipping by walking. Combined with RB-tree, all skipping would become fast too regardless of window size (can be done incrementally later). Previously a number of cases in TCP SACK processing fails to take advantage of costly stored information in sack_recv_cache, most importantly, expected events such as cumulative ACK and new hole ACKs. Processing on such ACKs result in rather long walks building up latencies (which easily gets nasty when window is huge). Those latencies are often completely unnecessary compared with the amount of _new_ information received, usually for cumulative ACK there's no new information at all, yet TCP walks whole queue unnecessary potentially taking a number of costly cache misses on the way, etc.! Since the inclusion of highest_sack, there's a lot information that is very likely redundant (SACK fastpath hint stuff, fackets_out, highest_sack), though there's no ultimate guarantee that they'll remain the same whole the time (in all unearthly scenarios). Take advantage of this knowledge here and drop fastpath hint and use direct access to highest SACKed skb as a replacement. Effectively "special cased" fastpath is dropped. This change adds some complexity to introduce better coveraged "fastpath", though the added complexity should make TCP behave more cache friendly. The current ACK's SACK blocks are compared against each cached block individially and only ranges that are new are then scanned by the high constant walk. For other parts of write queue, even when in previously known part of the SACK blocks, a faster skip function is used (if necessary at all). In addition, whenever possible, TCP fast-forwards to highest_sack skb that was made available by an earlier patch. In typical case, no other things but this fast-forward and mandatory markings after that occur making the access pattern quite similar to the former fastpath "special case". DSACKs are special case that must always be walked. The local to recv_sack_cache copying could be more intelligent w.r.t DSACKs which are likely to be there only once but that is left to a separate patch. Signed-off-by: Ilpo Järvinen <ilpo.jarvinen@helsinki.fi> Signed-off-by: David S. Miller <davem@davemloft.net>
2007-11-15 19:50:37 -08:00
return skb;
if (before(next_dup->start_seq, skip_to_seq)) {
skb = tcp_sacktag_skip(skb, sk, next_dup->start_seq);
skb = tcp_sacktag_walk(skb, sk, NULL, state,
next_dup->start_seq, next_dup->end_seq,
1);
[TCP]: Rewrite SACK block processing & sack_recv_cache use Key points of this patch are: - In case new SACK information is advance only type, no skb processing below previously discovered highest point is done - Optimize cases below highest point too since there's no need to always go up to highest point (which is very likely still present in that SACK), this is not entirely true though because I'm dropping the fastpath_skb_hint which could previously optimize those cases even better. Whether that's significant, I'm not too sure. Currently it will provide skipping by walking. Combined with RB-tree, all skipping would become fast too regardless of window size (can be done incrementally later). Previously a number of cases in TCP SACK processing fails to take advantage of costly stored information in sack_recv_cache, most importantly, expected events such as cumulative ACK and new hole ACKs. Processing on such ACKs result in rather long walks building up latencies (which easily gets nasty when window is huge). Those latencies are often completely unnecessary compared with the amount of _new_ information received, usually for cumulative ACK there's no new information at all, yet TCP walks whole queue unnecessary potentially taking a number of costly cache misses on the way, etc.! Since the inclusion of highest_sack, there's a lot information that is very likely redundant (SACK fastpath hint stuff, fackets_out, highest_sack), though there's no ultimate guarantee that they'll remain the same whole the time (in all unearthly scenarios). Take advantage of this knowledge here and drop fastpath hint and use direct access to highest SACKed skb as a replacement. Effectively "special cased" fastpath is dropped. This change adds some complexity to introduce better coveraged "fastpath", though the added complexity should make TCP behave more cache friendly. The current ACK's SACK blocks are compared against each cached block individially and only ranges that are new are then scanned by the high constant walk. For other parts of write queue, even when in previously known part of the SACK blocks, a faster skip function is used (if necessary at all). In addition, whenever possible, TCP fast-forwards to highest_sack skb that was made available by an earlier patch. In typical case, no other things but this fast-forward and mandatory markings after that occur making the access pattern quite similar to the former fastpath "special case". DSACKs are special case that must always be walked. The local to recv_sack_cache copying could be more intelligent w.r.t DSACKs which are likely to be there only once but that is left to a separate patch. Signed-off-by: Ilpo Järvinen <ilpo.jarvinen@helsinki.fi> Signed-off-by: David S. Miller <davem@davemloft.net>
2007-11-15 19:50:37 -08:00
}
return skb;
}
static int tcp_sack_cache_ok(const struct tcp_sock *tp, const struct tcp_sack_block *cache)
[TCP]: Rewrite SACK block processing & sack_recv_cache use Key points of this patch are: - In case new SACK information is advance only type, no skb processing below previously discovered highest point is done - Optimize cases below highest point too since there's no need to always go up to highest point (which is very likely still present in that SACK), this is not entirely true though because I'm dropping the fastpath_skb_hint which could previously optimize those cases even better. Whether that's significant, I'm not too sure. Currently it will provide skipping by walking. Combined with RB-tree, all skipping would become fast too regardless of window size (can be done incrementally later). Previously a number of cases in TCP SACK processing fails to take advantage of costly stored information in sack_recv_cache, most importantly, expected events such as cumulative ACK and new hole ACKs. Processing on such ACKs result in rather long walks building up latencies (which easily gets nasty when window is huge). Those latencies are often completely unnecessary compared with the amount of _new_ information received, usually for cumulative ACK there's no new information at all, yet TCP walks whole queue unnecessary potentially taking a number of costly cache misses on the way, etc.! Since the inclusion of highest_sack, there's a lot information that is very likely redundant (SACK fastpath hint stuff, fackets_out, highest_sack), though there's no ultimate guarantee that they'll remain the same whole the time (in all unearthly scenarios). Take advantage of this knowledge here and drop fastpath hint and use direct access to highest SACKed skb as a replacement. Effectively "special cased" fastpath is dropped. This change adds some complexity to introduce better coveraged "fastpath", though the added complexity should make TCP behave more cache friendly. The current ACK's SACK blocks are compared against each cached block individially and only ranges that are new are then scanned by the high constant walk. For other parts of write queue, even when in previously known part of the SACK blocks, a faster skip function is used (if necessary at all). In addition, whenever possible, TCP fast-forwards to highest_sack skb that was made available by an earlier patch. In typical case, no other things but this fast-forward and mandatory markings after that occur making the access pattern quite similar to the former fastpath "special case". DSACKs are special case that must always be walked. The local to recv_sack_cache copying could be more intelligent w.r.t DSACKs which are likely to be there only once but that is left to a separate patch. Signed-off-by: Ilpo Järvinen <ilpo.jarvinen@helsinki.fi> Signed-off-by: David S. Miller <davem@davemloft.net>
2007-11-15 19:50:37 -08:00
{
return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
}
static int
tcp_sacktag_write_queue(struct sock *sk, const struct sk_buff *ack_skb,
u32 prior_snd_una, struct tcp_sacktag_state *state)
{
struct tcp_sock *tp = tcp_sk(sk);
const unsigned char *ptr = (skb_transport_header(ack_skb) +
TCP_SKB_CB(ack_skb)->sacked);
struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2);
struct tcp_sack_block sp[TCP_NUM_SACKS];
[TCP]: Rewrite SACK block processing & sack_recv_cache use Key points of this patch are: - In case new SACK information is advance only type, no skb processing below previously discovered highest point is done - Optimize cases below highest point too since there's no need to always go up to highest point (which is very likely still present in that SACK), this is not entirely true though because I'm dropping the fastpath_skb_hint which could previously optimize those cases even better. Whether that's significant, I'm not too sure. Currently it will provide skipping by walking. Combined with RB-tree, all skipping would become fast too regardless of window size (can be done incrementally later). Previously a number of cases in TCP SACK processing fails to take advantage of costly stored information in sack_recv_cache, most importantly, expected events such as cumulative ACK and new hole ACKs. Processing on such ACKs result in rather long walks building up latencies (which easily gets nasty when window is huge). Those latencies are often completely unnecessary compared with the amount of _new_ information received, usually for cumulative ACK there's no new information at all, yet TCP walks whole queue unnecessary potentially taking a number of costly cache misses on the way, etc.! Since the inclusion of highest_sack, there's a lot information that is very likely redundant (SACK fastpath hint stuff, fackets_out, highest_sack), though there's no ultimate guarantee that they'll remain the same whole the time (in all unearthly scenarios). Take advantage of this knowledge here and drop fastpath hint and use direct access to highest SACKed skb as a replacement. Effectively "special cased" fastpath is dropped. This change adds some complexity to introduce better coveraged "fastpath", though the added complexity should make TCP behave more cache friendly. The current ACK's SACK blocks are compared against each cached block individially and only ranges that are new are then scanned by the high constant walk. For other parts of write queue, even when in previously known part of the SACK blocks, a faster skip function is used (if necessary at all). In addition, whenever possible, TCP fast-forwards to highest_sack skb that was made available by an earlier patch. In typical case, no other things but this fast-forward and mandatory markings after that occur making the access pattern quite similar to the former fastpath "special case". DSACKs are special case that must always be walked. The local to recv_sack_cache copying could be more intelligent w.r.t DSACKs which are likely to be there only once but that is left to a separate patch. Signed-off-by: Ilpo Järvinen <ilpo.jarvinen@helsinki.fi> Signed-off-by: David S. Miller <davem@davemloft.net>
2007-11-15 19:50:37 -08:00
struct tcp_sack_block *cache;
struct sk_buff *skb;
int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3);
int used_sacks;
bool found_dup_sack = false;
[TCP]: Rewrite SACK block processing & sack_recv_cache use Key points of this patch are: - In case new SACK information is advance only type, no skb processing below previously discovered highest point is done - Optimize cases below highest point too since there's no need to always go up to highest point (which is very likely still present in that SACK), this is not entirely true though because I'm dropping the fastpath_skb_hint which could previously optimize those cases even better. Whether that's significant, I'm not too sure. Currently it will provide skipping by walking. Combined with RB-tree, all skipping would become fast too regardless of window size (can be done incrementally later). Previously a number of cases in TCP SACK processing fails to take advantage of costly stored information in sack_recv_cache, most importantly, expected events such as cumulative ACK and new hole ACKs. Processing on such ACKs result in rather long walks building up latencies (which easily gets nasty when window is huge). Those latencies are often completely unnecessary compared with the amount of _new_ information received, usually for cumulative ACK there's no new information at all, yet TCP walks whole queue unnecessary potentially taking a number of costly cache misses on the way, etc.! Since the inclusion of highest_sack, there's a lot information that is very likely redundant (SACK fastpath hint stuff, fackets_out, highest_sack), though there's no ultimate guarantee that they'll remain the same whole the time (in all unearthly scenarios). Take advantage of this knowledge here and drop fastpath hint and use direct access to highest SACKed skb as a replacement. Effectively "special cased" fastpath is dropped. This change adds some complexity to introduce better coveraged "fastpath", though the added complexity should make TCP behave more cache friendly. The current ACK's SACK blocks are compared against each cached block individially and only ranges that are new are then scanned by the high constant walk. For other parts of write queue, even when in previously known part of the SACK blocks, a faster skip function is used (if necessary at all). In addition, whenever possible, TCP fast-forwards to highest_sack skb that was made available by an earlier patch. In typical case, no other things but this fast-forward and mandatory markings after that occur making the access pattern quite similar to the former fastpath "special case". DSACKs are special case that must always be walked. The local to recv_sack_cache copying could be more intelligent w.r.t DSACKs which are likely to be there only once but that is left to a separate patch. Signed-off-by: Ilpo Järvinen <ilpo.jarvinen@helsinki.fi> Signed-off-by: David S. Miller <davem@davemloft.net>
2007-11-15 19:50:37 -08:00
int i, j;
int first_sack_index;
state->flag = 0;
state->reord = tp->snd_nxt;
if (!tp->sacked_out)
tcp_highest_sack_reset(sk);
found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire,
num_sacks, prior_snd_una, state);
/* Eliminate too old ACKs, but take into
* account more or less fresh ones, they can
* contain valid SACK info.
*/
if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
return 0;
if (!tp->packets_out)
goto out;
used_sacks = 0;
first_sack_index = 0;
for (i = 0; i < num_sacks; i++) {
bool dup_sack = !i && found_dup_sack;
sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq);
sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq);
if (!tcp_is_sackblock_valid(tp, dup_sack,
sp[used_sacks].start_seq,
sp[used_sacks].end_seq)) {
int mib_idx;
if (dup_sack) {
if (!tp->undo_marker)
mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO;
else
mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD;
} else {
/* Don't count olds caused by ACK reordering */
if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) &&
!after(sp[used_sacks].end_seq, tp->snd_una))
continue;
mib_idx = LINUX_MIB_TCPSACKDISCARD;
}
NET_INC_STATS(sock_net(sk), mib_idx);
if (i == 0)
first_sack_index = -1;
continue;
}
/* Ignore very old stuff early */
if (!after(sp[used_sacks].end_seq, prior_snd_una)) {
if (i == 0)
first_sack_index = -1;
continue;
}
used_sacks++;
}
[TCP]: Rewrite SACK block processing & sack_recv_cache use Key points of this patch are: - In case new SACK information is advance only type, no skb processing below previously discovered highest point is done - Optimize cases below highest point too since there's no need to always go up to highest point (which is very likely still present in that SACK), this is not entirely true though because I'm dropping the fastpath_skb_hint which could previously optimize those cases even better. Whether that's significant, I'm not too sure. Currently it will provide skipping by walking. Combined with RB-tree, all skipping would become fast too regardless of window size (can be done incrementally later). Previously a number of cases in TCP SACK processing fails to take advantage of costly stored information in sack_recv_cache, most importantly, expected events such as cumulative ACK and new hole ACKs. Processing on such ACKs result in rather long walks building up latencies (which easily gets nasty when window is huge). Those latencies are often completely unnecessary compared with the amount of _new_ information received, usually for cumulative ACK there's no new information at all, yet TCP walks whole queue unnecessary potentially taking a number of costly cache misses on the way, etc.! Since the inclusion of highest_sack, there's a lot information that is very likely redundant (SACK fastpath hint stuff, fackets_out, highest_sack), though there's no ultimate guarantee that they'll remain the same whole the time (in all unearthly scenarios). Take advantage of this knowledge here and drop fastpath hint and use direct access to highest SACKed skb as a replacement. Effectively "special cased" fastpath is dropped. This change adds some complexity to introduce better coveraged "fastpath", though the added complexity should make TCP behave more cache friendly. The current ACK's SACK blocks are compared against each cached block individially and only ranges that are new are then scanned by the high constant walk. For other parts of write queue, even when in previously known part of the SACK blocks, a faster skip function is used (if necessary at all). In addition, whenever possible, TCP fast-forwards to highest_sack skb that was made available by an earlier patch. In typical case, no other things but this fast-forward and mandatory markings after that occur making the access pattern quite similar to the former fastpath "special case". DSACKs are special case that must always be walked. The local to recv_sack_cache copying could be more intelligent w.r.t DSACKs which are likely to be there only once but that is left to a separate patch. Signed-off-by: Ilpo Järvinen <ilpo.jarvinen@helsinki.fi> Signed-off-by: David S. Miller <davem@davemloft.net>
2007-11-15 19:50:37 -08:00
/* order SACK blocks to allow in order walk of the retrans queue */
for (i = used_sacks - 1; i > 0; i--) {
for (j = 0; j < i; j++) {
if (after(sp[j].start_seq, sp[j + 1].start_seq)) {
swap(sp[j], sp[j + 1]);
[TCP]: Rewrite SACK block processing & sack_recv_cache use Key points of this patch are: - In case new SACK information is advance only type, no skb processing below previously discovered highest point is done - Optimize cases below highest point too since there's no need to always go up to highest point (which is very likely still present in that SACK), this is not entirely true though because I'm dropping the fastpath_skb_hint which could previously optimize those cases even better. Whether that's significant, I'm not too sure. Currently it will provide skipping by walking. Combined with RB-tree, all skipping would become fast too regardless of window size (can be done incrementally later). Previously a number of cases in TCP SACK processing fails to take advantage of costly stored information in sack_recv_cache, most importantly, expected events such as cumulative ACK and new hole ACKs. Processing on such ACKs result in rather long walks building up latencies (which easily gets nasty when window is huge). Those latencies are often completely unnecessary compared with the amount of _new_ information received, usually for cumulative ACK there's no new information at all, yet TCP walks whole queue unnecessary potentially taking a number of costly cache misses on the way, etc.! Since the inclusion of highest_sack, there's a lot information that is very likely redundant (SACK fastpath hint stuff, fackets_out, highest_sack), though there's no ultimate guarantee that they'll remain the same whole the time (in all unearthly scenarios). Take advantage of this knowledge here and drop fastpath hint and use direct access to highest SACKed skb as a replacement. Effectively "special cased" fastpath is dropped. This change adds some complexity to introduce better coveraged "fastpath", though the added complexity should make TCP behave more cache friendly. The current ACK's SACK blocks are compared against each cached block individially and only ranges that are new are then scanned by the high constant walk. For other parts of write queue, even when in previously known part of the SACK blocks, a faster skip function is used (if necessary at all). In addition, whenever possible, TCP fast-forwards to highest_sack skb that was made available by an earlier patch. In typical case, no other things but this fast-forward and mandatory markings after that occur making the access pattern quite similar to the former fastpath "special case". DSACKs are special case that must always be walked. The local to recv_sack_cache copying could be more intelligent w.r.t DSACKs which are likely to be there only once but that is left to a separate patch. Signed-off-by: Ilpo Järvinen <ilpo.jarvinen@helsinki.fi> Signed-off-by: David S. Miller <davem@davemloft.net>
2007-11-15 19:50:37 -08:00
/* Track where the first SACK block goes to */
if (j == first_sack_index)
first_sack_index = j + 1;
}
}
}
tcp: implement rb-tree based retransmit queue Using a linear list to store all skbs in write queue has been okay for quite a while : O(N) is not too bad when N < 500. Things get messy when N is the order of 100,000 : Modern TCP stacks want 10Gbit+ of throughput even with 200 ms RTT flows. 40 ns per cache line miss means a full scan can use 4 ms, blowing away CPU caches. SACK processing often can use various hints to avoid parsing whole retransmit queue. But with high packet losses and/or high reordering, hints no longer work. Sender has to process thousands of unfriendly SACK, accumulating a huge socket backlog, burning a cpu and massively dropping packets. Using an rb-tree for retransmit queue has been avoided for years because it added complexity and overhead, but now is the time to be more resistant and say no to quadratic behavior. 1) RTX queue is no longer part of the write queue : already sent skbs are stored in one rb-tree. 2) Since reaching the head of write queue no longer needs sk->sk_send_head, we added an union of sk_send_head and tcp_rtx_queue Tested: On receiver : netem on ingress : delay 150ms 200us loss 1 GRO disabled to force stress and SACK storms. for f in `seq 1 10` do ./netperf -H lpaa6 -l30 -- -K bbr -o THROUGHPUT|tail -1 done | awk '{print $0} {sum += $0} END {printf "%7u\n",sum}' Before patch : 323.87 351.48 339.59 338.62 306.72 204.07 304.93 291.88 202.47 176.88 2840 After patch: 1700.83 2207.98 2070.17 1544.26 2114.76 2124.89 1693.14 1080.91 2216.82 1299.94 18053 Signed-off-by: Eric Dumazet <edumazet@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-10-05 22:21:27 -07:00
state->mss_now = tcp_current_mss(sk);
skb = NULL;
[TCP]: Rewrite SACK block processing & sack_recv_cache use Key points of this patch are: - In case new SACK information is advance only type, no skb processing below previously discovered highest point is done - Optimize cases below highest point too since there's no need to always go up to highest point (which is very likely still present in that SACK), this is not entirely true though because I'm dropping the fastpath_skb_hint which could previously optimize those cases even better. Whether that's significant, I'm not too sure. Currently it will provide skipping by walking. Combined with RB-tree, all skipping would become fast too regardless of window size (can be done incrementally later). Previously a number of cases in TCP SACK processing fails to take advantage of costly stored information in sack_recv_cache, most importantly, expected events such as cumulative ACK and new hole ACKs. Processing on such ACKs result in rather long walks building up latencies (which easily gets nasty when window is huge). Those latencies are often completely unnecessary compared with the amount of _new_ information received, usually for cumulative ACK there's no new information at all, yet TCP walks whole queue unnecessary potentially taking a number of costly cache misses on the way, etc.! Since the inclusion of highest_sack, there's a lot information that is very likely redundant (SACK fastpath hint stuff, fackets_out, highest_sack), though there's no ultimate guarantee that they'll remain the same whole the time (in all unearthly scenarios). Take advantage of this knowledge here and drop fastpath hint and use direct access to highest SACKed skb as a replacement. Effectively "special cased" fastpath is dropped. This change adds some complexity to introduce better coveraged "fastpath", though the added complexity should make TCP behave more cache friendly. The current ACK's SACK blocks are compared against each cached block individially and only ranges that are new are then scanned by the high constant walk. For other parts of write queue, even when in previously known part of the SACK blocks, a faster skip function is used (if necessary at all). In addition, whenever possible, TCP fast-forwards to highest_sack skb that was made available by an earlier patch. In typical case, no other things but this fast-forward and mandatory markings after that occur making the access pattern quite similar to the former fastpath "special case". DSACKs are special case that must always be walked. The local to recv_sack_cache copying could be more intelligent w.r.t DSACKs which are likely to be there only once but that is left to a separate patch. Signed-off-by: Ilpo Järvinen <ilpo.jarvinen@helsinki.fi> Signed-off-by: David S. Miller <davem@davemloft.net>
2007-11-15 19:50:37 -08:00
i = 0;
if (!tp->sacked_out) {
/* It's already past, so skip checking against it */
cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
} else {
cache = tp->recv_sack_cache;
/* Skip empty blocks in at head of the cache */
while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq &&
!cache->end_seq)
cache++;
}
[TCP]: Rewrite SACK block processing & sack_recv_cache use Key points of this patch are: - In case new SACK information is advance only type, no skb processing below previously discovered highest point is done - Optimize cases below highest point too since there's no need to always go up to highest point (which is very likely still present in that SACK), this is not entirely true though because I'm dropping the fastpath_skb_hint which could previously optimize those cases even better. Whether that's significant, I'm not too sure. Currently it will provide skipping by walking. Combined with RB-tree, all skipping would become fast too regardless of window size (can be done incrementally later). Previously a number of cases in TCP SACK processing fails to take advantage of costly stored information in sack_recv_cache, most importantly, expected events such as cumulative ACK and new hole ACKs. Processing on such ACKs result in rather long walks building up latencies (which easily gets nasty when window is huge). Those latencies are often completely unnecessary compared with the amount of _new_ information received, usually for cumulative ACK there's no new information at all, yet TCP walks whole queue unnecessary potentially taking a number of costly cache misses on the way, etc.! Since the inclusion of highest_sack, there's a lot information that is very likely redundant (SACK fastpath hint stuff, fackets_out, highest_sack), though there's no ultimate guarantee that they'll remain the same whole the time (in all unearthly scenarios). Take advantage of this knowledge here and drop fastpath hint and use direct access to highest SACKed skb as a replacement. Effectively "special cased" fastpath is dropped. This change adds some complexity to introduce better coveraged "fastpath", though the added complexity should make TCP behave more cache friendly. The current ACK's SACK blocks are compared against each cached block individially and only ranges that are new are then scanned by the high constant walk. For other parts of write queue, even when in previously known part of the SACK blocks, a faster skip function is used (if necessary at all). In addition, whenever possible, TCP fast-forwards to highest_sack skb that was made available by an earlier patch. In typical case, no other things but this fast-forward and mandatory markings after that occur making the access pattern quite similar to the former fastpath "special case". DSACKs are special case that must always be walked. The local to recv_sack_cache copying could be more intelligent w.r.t DSACKs which are likely to be there only once but that is left to a separate patch. Signed-off-by: Ilpo Järvinen <ilpo.jarvinen@helsinki.fi> Signed-off-by: David S. Miller <davem@davemloft.net>
2007-11-15 19:50:37 -08:00
while (i < used_sacks) {
u32 start_seq = sp[i].start_seq;
u32 end_seq = sp[i].end_seq;
bool dup_sack = (found_dup_sack && (i == first_sack_index));
[TCP]: Rewrite SACK block processing & sack_recv_cache use Key points of this patch are: - In case new SACK information is advance only type, no skb processing below previously discovered highest point is done - Optimize cases below highest point too since there's no need to always go up to highest point (which is very likely still present in that SACK), this is not entirely true though because I'm dropping the fastpath_skb_hint which could previously optimize those cases even better. Whether that's significant, I'm not too sure. Currently it will provide skipping by walking. Combined with RB-tree, all skipping would become fast too regardless of window size (can be done incrementally later). Previously a number of cases in TCP SACK processing fails to take advantage of costly stored information in sack_recv_cache, most importantly, expected events such as cumulative ACK and new hole ACKs. Processing on such ACKs result in rather long walks building up latencies (which easily gets nasty when window is huge). Those latencies are often completely unnecessary compared with the amount of _new_ information received, usually for cumulative ACK there's no new information at all, yet TCP walks whole queue unnecessary potentially taking a number of costly cache misses on the way, etc.! Since the inclusion of highest_sack, there's a lot information that is very likely redundant (SACK fastpath hint stuff, fackets_out, highest_sack), though there's no ultimate guarantee that they'll remain the same whole the time (in all unearthly scenarios). Take advantage of this knowledge here and drop fastpath hint and use direct access to highest SACKed skb as a replacement. Effectively "special cased" fastpath is dropped. This change adds some complexity to introduce better coveraged "fastpath", though the added complexity should make TCP behave more cache friendly. The current ACK's SACK blocks are compared against each cached block individially and only ranges that are new are then scanned by the high constant walk. For other parts of write queue, even when in previously known part of the SACK blocks, a faster skip function is used (if necessary at all). In addition, whenever possible, TCP fast-forwards to highest_sack skb that was made available by an earlier patch. In typical case, no other things but this fast-forward and mandatory markings after that occur making the access pattern quite similar to the former fastpath "special case". DSACKs are special case that must always be walked. The local to recv_sack_cache copying could be more intelligent w.r.t DSACKs which are likely to be there only once but that is left to a separate patch. Signed-off-by: Ilpo Järvinen <ilpo.jarvinen@helsinki.fi> Signed-off-by: David S. Miller <davem@davemloft.net>
2007-11-15 19:50:37 -08:00
struct tcp_sack_block *next_dup = NULL;
[TCP]: Process DSACKs that reside within a SACK block DSACK inside another SACK block were missed if start_seq of DSACK was larger than SACK block's because sorting prioritizes full processing of the SACK block before DSACK. After SACK block sorting situation is like this: SSSSSSSSS D SSSSSS SSSSSSS Because write_queue is walked in-order, when the first SACK block has been processed, TCP is already past the skb for which the DSACK arrived and we haven't taught it to backtrack (nor should we), so TCP just continues processing by going to the next SACK block after the DSACK (if any). Whenever such DSACK is present, do an embedded checking during the previous SACK block. If the DSACK is below snd_una, there won't be overlapping SACK block, and thus no problem in that case. Also if start_seq of the DSACK is equal to the actual block, it will be processed first. Tested this by using netem to duplicate 15% of packets, and by printing SACK block when found_dup_sack is true and the selected skb in the dup_sack = 1 branch (if taken): SACK block 0: 4344-5792 (relative to snd_una 2019137317) SACK block 1: 4344-5792 (relative to snd_una 2019137317) equal start seqnos => next_dup = 0, dup_sack = 1 won't occur... SACK block 0: 5792-7240 (relative to snd_una 2019214061) SACK block 1: 2896-7240 (relative to snd_una 2019214061) DSACK skb match 5792-7240 (relative to snd_una) ...and next_dup = 1 case (after the not shown start_seq sort), went to dup_sack = 1 branch. Signed-off-by: Ilpo Jrvinen <ilpo.jarvinen@helsinki.fi> Signed-off-by: David S. Miller <davem@davemloft.net>
2007-11-01 00:09:37 -07:00
[TCP]: Rewrite SACK block processing & sack_recv_cache use Key points of this patch are: - In case new SACK information is advance only type, no skb processing below previously discovered highest point is done - Optimize cases below highest point too since there's no need to always go up to highest point (which is very likely still present in that SACK), this is not entirely true though because I'm dropping the fastpath_skb_hint which could previously optimize those cases even better. Whether that's significant, I'm not too sure. Currently it will provide skipping by walking. Combined with RB-tree, all skipping would become fast too regardless of window size (can be done incrementally later). Previously a number of cases in TCP SACK processing fails to take advantage of costly stored information in sack_recv_cache, most importantly, expected events such as cumulative ACK and new hole ACKs. Processing on such ACKs result in rather long walks building up latencies (which easily gets nasty when window is huge). Those latencies are often completely unnecessary compared with the amount of _new_ information received, usually for cumulative ACK there's no new information at all, yet TCP walks whole queue unnecessary potentially taking a number of costly cache misses on the way, etc.! Since the inclusion of highest_sack, there's a lot information that is very likely redundant (SACK fastpath hint stuff, fackets_out, highest_sack), though there's no ultimate guarantee that they'll remain the same whole the time (in all unearthly scenarios). Take advantage of this knowledge here and drop fastpath hint and use direct access to highest SACKed skb as a replacement. Effectively "special cased" fastpath is dropped. This change adds some complexity to introduce better coveraged "fastpath", though the added complexity should make TCP behave more cache friendly. The current ACK's SACK blocks are compared against each cached block individially and only ranges that are new are then scanned by the high constant walk. For other parts of write queue, even when in previously known part of the SACK blocks, a faster skip function is used (if necessary at all). In addition, whenever possible, TCP fast-forwards to highest_sack skb that was made available by an earlier patch. In typical case, no other things but this fast-forward and mandatory markings after that occur making the access pattern quite similar to the former fastpath "special case". DSACKs are special case that must always be walked. The local to recv_sack_cache copying could be more intelligent w.r.t DSACKs which are likely to be there only once but that is left to a separate patch. Signed-off-by: Ilpo Järvinen <ilpo.jarvinen@helsinki.fi> Signed-off-by: David S. Miller <davem@davemloft.net>
2007-11-15 19:50:37 -08:00
if (found_dup_sack && ((i + 1) == first_sack_index))
next_dup = &sp[i + 1];
[TCP]: Rewrite SACK block processing & sack_recv_cache use Key points of this patch are: - In case new SACK information is advance only type, no skb processing below previously discovered highest point is done - Optimize cases below highest point too since there's no need to always go up to highest point (which is very likely still present in that SACK), this is not entirely true though because I'm dropping the fastpath_skb_hint which could previously optimize those cases even better. Whether that's significant, I'm not too sure. Currently it will provide skipping by walking. Combined with RB-tree, all skipping would become fast too regardless of window size (can be done incrementally later). Previously a number of cases in TCP SACK processing fails to take advantage of costly stored information in sack_recv_cache, most importantly, expected events such as cumulative ACK and new hole ACKs. Processing on such ACKs result in rather long walks building up latencies (which easily gets nasty when window is huge). Those latencies are often completely unnecessary compared with the amount of _new_ information received, usually for cumulative ACK there's no new information at all, yet TCP walks whole queue unnecessary potentially taking a number of costly cache misses on the way, etc.! Since the inclusion of highest_sack, there's a lot information that is very likely redundant (SACK fastpath hint stuff, fackets_out, highest_sack), though there's no ultimate guarantee that they'll remain the same whole the time (in all unearthly scenarios). Take advantage of this knowledge here and drop fastpath hint and use direct access to highest SACKed skb as a replacement. Effectively "special cased" fastpath is dropped. This change adds some complexity to introduce better coveraged "fastpath", though the added complexity should make TCP behave more cache friendly. The current ACK's SACK blocks are compared against each cached block individially and only ranges that are new are then scanned by the high constant walk. For other parts of write queue, even when in previously known part of the SACK blocks, a faster skip function is used (if necessary at all). In addition, whenever possible, TCP fast-forwards to highest_sack skb that was made available by an earlier patch. In typical case, no other things but this fast-forward and mandatory markings after that occur making the access pattern quite similar to the former fastpath "special case". DSACKs are special case that must always be walked. The local to recv_sack_cache copying could be more intelligent w.r.t DSACKs which are likely to be there only once but that is left to a separate patch. Signed-off-by: Ilpo Järvinen <ilpo.jarvinen@helsinki.fi> Signed-off-by: David S. Miller <davem@davemloft.net>
2007-11-15 19:50:37 -08:00
/* Skip too early cached blocks */
while (tcp_sack_cache_ok(tp, cache) &&
!before(start_seq, cache->end_seq))
cache++;
/* Can skip some work by looking recv_sack_cache? */
if (tcp_sack_cache_ok(tp, cache) && !dup_sack &&
after(end_seq, cache->start_seq)) {
/* Head todo? */
if (before(start_seq, cache->start_seq)) {
skb = tcp_sacktag_skip(skb, sk, start_seq);
skb = tcp_sacktag_walk(skb, sk, next_dup,
state,
start_seq,
cache->start_seq,
dup_sack);
}
[TCP]: Rewrite SACK block processing & sack_recv_cache use Key points of this patch are: - In case new SACK information is advance only type, no skb processing below previously discovered highest point is done - Optimize cases below highest point too since there's no need to always go up to highest point (which is very likely still present in that SACK), this is not entirely true though because I'm dropping the fastpath_skb_hint which could previously optimize those cases even better. Whether that's significant, I'm not too sure. Currently it will provide skipping by walking. Combined with RB-tree, all skipping would become fast too regardless of window size (can be done incrementally later). Previously a number of cases in TCP SACK processing fails to take advantage of costly stored information in sack_recv_cache, most importantly, expected events such as cumulative ACK and new hole ACKs. Processing on such ACKs result in rather long walks building up latencies (which easily gets nasty when window is huge). Those latencies are often completely unnecessary compared with the amount of _new_ information received, usually for cumulative ACK there's no new information at all, yet TCP walks whole queue unnecessary potentially taking a number of costly cache misses on the way, etc.! Since the inclusion of highest_sack, there's a lot information that is very likely redundant (SACK fastpath hint stuff, fackets_out, highest_sack), though there's no ultimate guarantee that they'll remain the same whole the time (in all unearthly scenarios). Take advantage of this knowledge here and drop fastpath hint and use direct access to highest SACKed skb as a replacement. Effectively "special cased" fastpath is dropped. This change adds some complexity to introduce better coveraged "fastpath", though the added complexity should make TCP behave more cache friendly. The current ACK's SACK blocks are compared against each cached block individially and only ranges that are new are then scanned by the high constant walk. For other parts of write queue, even when in previously known part of the SACK blocks, a faster skip function is used (if necessary at all). In addition, whenever possible, TCP fast-forwards to highest_sack skb that was made available by an earlier patch. In typical case, no other things but this fast-forward and mandatory markings after that occur making the access pattern quite similar to the former fastpath "special case". DSACKs are special case that must always be walked. The local to recv_sack_cache copying could be more intelligent w.r.t DSACKs which are likely to be there only once but that is left to a separate patch. Signed-off-by: Ilpo Järvinen <ilpo.jarvinen@helsinki.fi> Signed-off-by: David S. Miller <davem@davemloft.net>
2007-11-15 19:50:37 -08:00
/* Rest of the block already fully processed? */
if (!after(end_seq, cache->end_seq))
[TCP]: Rewrite SACK block processing & sack_recv_cache use Key points of this patch are: - In case new SACK information is advance only type, no skb processing below previously discovered highest point is done - Optimize cases below highest point too since there's no need to always go up to highest point (which is very likely still present in that SACK), this is not entirely true though because I'm dropping the fastpath_skb_hint which could previously optimize those cases even better. Whether that's significant, I'm not too sure. Currently it will provide skipping by walking. Combined with RB-tree, all skipping would become fast too regardless of window size (can be done incrementally later). Previously a number of cases in TCP SACK processing fails to take advantage of costly stored information in sack_recv_cache, most importantly, expected events such as cumulative ACK and new hole ACKs. Processing on such ACKs result in rather long walks building up latencies (which easily gets nasty when window is huge). Those latencies are often completely unnecessary compared with the amount of _new_ information received, usually for cumulative ACK there's no new information at all, yet TCP walks whole queue unnecessary potentially taking a number of costly cache misses on the way, etc.! Since the inclusion of highest_sack, there's a lot information that is very likely redundant (SACK fastpath hint stuff, fackets_out, highest_sack), though there's no ultimate guarantee that they'll remain the same whole the time (in all unearthly scenarios). Take advantage of this knowledge here and drop fastpath hint and use direct access to highest SACKed skb as a replacement. Effectively "special cased" fastpath is dropped. This change adds some complexity to introduce better coveraged "fastpath", though the added complexity should make TCP behave more cache friendly. The current ACK's SACK blocks are compared against each cached block individially and only ranges that are new are then scanned by the high constant walk. For other parts of write queue, even when in previously known part of the SACK blocks, a faster skip function is used (if necessary at all). In addition, whenever possible, TCP fast-forwards to highest_sack skb that was made available by an earlier patch. In typical case, no other things but this fast-forward and mandatory markings after that occur making the access pattern quite similar to the former fastpath "special case". DSACKs are special case that must always be walked. The local to recv_sack_cache copying could be more intelligent w.r.t DSACKs which are likely to be there only once but that is left to a separate patch. Signed-off-by: Ilpo Järvinen <ilpo.jarvinen@helsinki.fi> Signed-off-by: David S. Miller <davem@davemloft.net>
2007-11-15 19:50:37 -08:00
goto advance_sp;
skb = tcp_maybe_skipping_dsack(skb, sk, next_dup,
state,
cache->end_seq);
[TCP]: Process DSACKs that reside within a SACK block DSACK inside another SACK block were missed if start_seq of DSACK was larger than SACK block's because sorting prioritizes full processing of the SACK block before DSACK. After SACK block sorting situation is like this: SSSSSSSSS D SSSSSS SSSSSSS Because write_queue is walked in-order, when the first SACK block has been processed, TCP is already past the skb for which the DSACK arrived and we haven't taught it to backtrack (nor should we), so TCP just continues processing by going to the next SACK block after the DSACK (if any). Whenever such DSACK is present, do an embedded checking during the previous SACK block. If the DSACK is below snd_una, there won't be overlapping SACK block, and thus no problem in that case. Also if start_seq of the DSACK is equal to the actual block, it will be processed first. Tested this by using netem to duplicate 15% of packets, and by printing SACK block when found_dup_sack is true and the selected skb in the dup_sack = 1 branch (if taken): SACK block 0: 4344-5792 (relative to snd_una 2019137317) SACK block 1: 4344-5792 (relative to snd_una 2019137317) equal start seqnos => next_dup = 0, dup_sack = 1 won't occur... SACK block 0: 5792-7240 (relative to snd_una 2019214061) SACK block 1: 2896-7240 (relative to snd_una 2019214061) DSACK skb match 5792-7240 (relative to snd_una) ...and next_dup = 1 case (after the not shown start_seq sort), went to dup_sack = 1 branch. Signed-off-by: Ilpo Jrvinen <ilpo.jarvinen@helsinki.fi> Signed-off-by: David S. Miller <davem@davemloft.net>
2007-11-01 00:09:37 -07:00
[TCP]: Rewrite SACK block processing & sack_recv_cache use Key points of this patch are: - In case new SACK information is advance only type, no skb processing below previously discovered highest point is done - Optimize cases below highest point too since there's no need to always go up to highest point (which is very likely still present in that SACK), this is not entirely true though because I'm dropping the fastpath_skb_hint which could previously optimize those cases even better. Whether that's significant, I'm not too sure. Currently it will provide skipping by walking. Combined with RB-tree, all skipping would become fast too regardless of window size (can be done incrementally later). Previously a number of cases in TCP SACK processing fails to take advantage of costly stored information in sack_recv_cache, most importantly, expected events such as cumulative ACK and new hole ACKs. Processing on such ACKs result in rather long walks building up latencies (which easily gets nasty when window is huge). Those latencies are often completely unnecessary compared with the amount of _new_ information received, usually for cumulative ACK there's no new information at all, yet TCP walks whole queue unnecessary potentially taking a number of costly cache misses on the way, etc.! Since the inclusion of highest_sack, there's a lot information that is very likely redundant (SACK fastpath hint stuff, fackets_out, highest_sack), though there's no ultimate guarantee that they'll remain the same whole the time (in all unearthly scenarios). Take advantage of this knowledge here and drop fastpath hint and use direct access to highest SACKed skb as a replacement. Effectively "special cased" fastpath is dropped. This change adds some complexity to introduce better coveraged "fastpath", though the added complexity should make TCP behave more cache friendly. The current ACK's SACK blocks are compared against each cached block individially and only ranges that are new are then scanned by the high constant walk. For other parts of write queue, even when in previously known part of the SACK blocks, a faster skip function is used (if necessary at all). In addition, whenever possible, TCP fast-forwards to highest_sack skb that was made available by an earlier patch. In typical case, no other things but this fast-forward and mandatory markings after that occur making the access pattern quite similar to the former fastpath "special case". DSACKs are special case that must always be walked. The local to recv_sack_cache copying could be more intelligent w.r.t DSACKs which are likely to be there only once but that is left to a separate patch. Signed-off-by: Ilpo Järvinen <ilpo.jarvinen@helsinki.fi> Signed-off-by: David S. Miller <davem@davemloft.net>
2007-11-15 19:50:37 -08:00
/* ...tail remains todo... */
if (tcp_highest_sack_seq(tp) == cache->end_seq) {
/* ...but better entrypoint exists! */
skb = tcp_highest_sack(sk);
if (!skb)
break;
[TCP]: Rewrite SACK block processing & sack_recv_cache use Key points of this patch are: - In case new SACK information is advance only type, no skb processing below previously discovered highest point is done - Optimize cases below highest point too since there's no need to always go up to highest point (which is very likely still present in that SACK), this is not entirely true though because I'm dropping the fastpath_skb_hint which could previously optimize those cases even better. Whether that's significant, I'm not too sure. Currently it will provide skipping by walking. Combined with RB-tree, all skipping would become fast too regardless of window size (can be done incrementally later). Previously a number of cases in TCP SACK processing fails to take advantage of costly stored information in sack_recv_cache, most importantly, expected events such as cumulative ACK and new hole ACKs. Processing on such ACKs result in rather long walks building up latencies (which easily gets nasty when window is huge). Those latencies are often completely unnecessary compared with the amount of _new_ information received, usually for cumulative ACK there's no new information at all, yet TCP walks whole queue unnecessary potentially taking a number of costly cache misses on the way, etc.! Since the inclusion of highest_sack, there's a lot information that is very likely redundant (SACK fastpath hint stuff, fackets_out, highest_sack), though there's no ultimate guarantee that they'll remain the same whole the time (in all unearthly scenarios). Take advantage of this knowledge here and drop fastpath hint and use direct access to highest SACKed skb as a replacement. Effectively "special cased" fastpath is dropped. This change adds some complexity to introduce better coveraged "fastpath", though the added complexity should make TCP behave more cache friendly. The current ACK's SACK blocks are compared against each cached block individially and only ranges that are new are then scanned by the high constant walk. For other parts of write queue, even when in previously known part of the SACK blocks, a faster skip function is used (if necessary at all). In addition, whenever possible, TCP fast-forwards to highest_sack skb that was made available by an earlier patch. In typical case, no other things but this fast-forward and mandatory markings after that occur making the access pattern quite similar to the former fastpath "special case". DSACKs are special case that must always be walked. The local to recv_sack_cache copying could be more intelligent w.r.t DSACKs which are likely to be there only once but that is left to a separate patch. Signed-off-by: Ilpo Järvinen <ilpo.jarvinen@helsinki.fi> Signed-off-by: David S. Miller <davem@davemloft.net>
2007-11-15 19:50:37 -08:00
cache++;
goto walk;
[TCP]: Process DSACKs that reside within a SACK block DSACK inside another SACK block were missed if start_seq of DSACK was larger than SACK block's because sorting prioritizes full processing of the SACK block before DSACK. After SACK block sorting situation is like this: SSSSSSSSS D SSSSSS SSSSSSS Because write_queue is walked in-order, when the first SACK block has been processed, TCP is already past the skb for which the DSACK arrived and we haven't taught it to backtrack (nor should we), so TCP just continues processing by going to the next SACK block after the DSACK (if any). Whenever such DSACK is present, do an embedded checking during the previous SACK block. If the DSACK is below snd_una, there won't be overlapping SACK block, and thus no problem in that case. Also if start_seq of the DSACK is equal to the actual block, it will be processed first. Tested this by using netem to duplicate 15% of packets, and by printing SACK block when found_dup_sack is true and the selected skb in the dup_sack = 1 branch (if taken): SACK block 0: 4344-5792 (relative to snd_una 2019137317) SACK block 1: 4344-5792 (relative to snd_una 2019137317) equal start seqnos => next_dup = 0, dup_sack = 1 won't occur... SACK block 0: 5792-7240 (relative to snd_una 2019214061) SACK block 1: 2896-7240 (relative to snd_una 2019214061) DSACK skb match 5792-7240 (relative to snd_una) ...and next_dup = 1 case (after the not shown start_seq sort), went to dup_sack = 1 branch. Signed-off-by: Ilpo Jrvinen <ilpo.jarvinen@helsinki.fi> Signed-off-by: David S. Miller <davem@davemloft.net>
2007-11-01 00:09:37 -07:00
}
skb = tcp_sacktag_skip(skb, sk, cache->end_seq);
[TCP]: Rewrite SACK block processing & sack_recv_cache use Key points of this patch are: - In case new SACK information is advance only type, no skb processing below previously discovered highest point is done - Optimize cases below highest point too since there's no need to always go up to highest point (which is very likely still present in that SACK), this is not entirely true though because I'm dropping the fastpath_skb_hint which could previously optimize those cases even better. Whether that's significant, I'm not too sure. Currently it will provide skipping by walking. Combined with RB-tree, all skipping would become fast too regardless of window size (can be done incrementally later). Previously a number of cases in TCP SACK processing fails to take advantage of costly stored information in sack_recv_cache, most importantly, expected events such as cumulative ACK and new hole ACKs. Processing on such ACKs result in rather long walks building up latencies (which easily gets nasty when window is huge). Those latencies are often completely unnecessary compared with the amount of _new_ information received, usually for cumulative ACK there's no new information at all, yet TCP walks whole queue unnecessary potentially taking a number of costly cache misses on the way, etc.! Since the inclusion of highest_sack, there's a lot information that is very likely redundant (SACK fastpath hint stuff, fackets_out, highest_sack), though there's no ultimate guarantee that they'll remain the same whole the time (in all unearthly scenarios). Take advantage of this knowledge here and drop fastpath hint and use direct access to highest SACKed skb as a replacement. Effectively "special cased" fastpath is dropped. This change adds some complexity to introduce better coveraged "fastpath", though the added complexity should make TCP behave more cache friendly. The current ACK's SACK blocks are compared against each cached block individially and only ranges that are new are then scanned by the high constant walk. For other parts of write queue, even when in previously known part of the SACK blocks, a faster skip function is used (if necessary at all). In addition, whenever possible, TCP fast-forwards to highest_sack skb that was made available by an earlier patch. In typical case, no other things but this fast-forward and mandatory markings after that occur making the access pattern quite similar to the former fastpath "special case". DSACKs are special case that must always be walked. The local to recv_sack_cache copying could be more intelligent w.r.t DSACKs which are likely to be there only once but that is left to a separate patch. Signed-off-by: Ilpo Järvinen <ilpo.jarvinen@helsinki.fi> Signed-off-by: David S. Miller <davem@davemloft.net>
2007-11-15 19:50:37 -08:00
/* Check overlap against next cached too (past this one already) */
cache++;
continue;
}
if (!before(start_seq, tcp_highest_sack_seq(tp))) {
skb = tcp_highest_sack(sk);
if (!skb)
break;
}
skb = tcp_sacktag_skip(skb, sk, start_seq);
[TCP]: Rewrite SACK block processing & sack_recv_cache use Key points of this patch are: - In case new SACK information is advance only type, no skb processing below previously discovered highest point is done - Optimize cases below highest point too since there's no need to always go up to highest point (which is very likely still present in that SACK), this is not entirely true though because I'm dropping the fastpath_skb_hint which could previously optimize those cases even better. Whether that's significant, I'm not too sure. Currently it will provide skipping by walking. Combined with RB-tree, all skipping would become fast too regardless of window size (can be done incrementally later). Previously a number of cases in TCP SACK processing fails to take advantage of costly stored information in sack_recv_cache, most importantly, expected events such as cumulative ACK and new hole ACKs. Processing on such ACKs result in rather long walks building up latencies (which easily gets nasty when window is huge). Those latencies are often completely unnecessary compared with the amount of _new_ information received, usually for cumulative ACK there's no new information at all, yet TCP walks whole queue unnecessary potentially taking a number of costly cache misses on the way, etc.! Since the inclusion of highest_sack, there's a lot information that is very likely redundant (SACK fastpath hint stuff, fackets_out, highest_sack), though there's no ultimate guarantee that they'll remain the same whole the time (in all unearthly scenarios). Take advantage of this knowledge here and drop fastpath hint and use direct access to highest SACKed skb as a replacement. Effectively "special cased" fastpath is dropped. This change adds some complexity to introduce better coveraged "fastpath", though the added complexity should make TCP behave more cache friendly. The current ACK's SACK blocks are compared against each cached block individially and only ranges that are new are then scanned by the high constant walk. For other parts of write queue, even when in previously known part of the SACK blocks, a faster skip function is used (if necessary at all). In addition, whenever possible, TCP fast-forwards to highest_sack skb that was made available by an earlier patch. In typical case, no other things but this fast-forward and mandatory markings after that occur making the access pattern quite similar to the former fastpath "special case". DSACKs are special case that must always be walked. The local to recv_sack_cache copying could be more intelligent w.r.t DSACKs which are likely to be there only once but that is left to a separate patch. Signed-off-by: Ilpo Järvinen <ilpo.jarvinen@helsinki.fi> Signed-off-by: David S. Miller <davem@davemloft.net>
2007-11-15 19:50:37 -08:00
walk:
skb = tcp_sacktag_walk(skb, sk, next_dup, state,
start_seq, end_seq, dup_sack);
[TCP]: Rewrite SACK block processing & sack_recv_cache use Key points of this patch are: - In case new SACK information is advance only type, no skb processing below previously discovered highest point is done - Optimize cases below highest point too since there's no need to always go up to highest point (which is very likely still present in that SACK), this is not entirely true though because I'm dropping the fastpath_skb_hint which could previously optimize those cases even better. Whether that's significant, I'm not too sure. Currently it will provide skipping by walking. Combined with RB-tree, all skipping would become fast too regardless of window size (can be done incrementally later). Previously a number of cases in TCP SACK processing fails to take advantage of costly stored information in sack_recv_cache, most importantly, expected events such as cumulative ACK and new hole ACKs. Processing on such ACKs result in rather long walks building up latencies (which easily gets nasty when window is huge). Those latencies are often completely unnecessary compared with the amount of _new_ information received, usually for cumulative ACK there's no new information at all, yet TCP walks whole queue unnecessary potentially taking a number of costly cache misses on the way, etc.! Since the inclusion of highest_sack, there's a lot information that is very likely redundant (SACK fastpath hint stuff, fackets_out, highest_sack), though there's no ultimate guarantee that they'll remain the same whole the time (in all unearthly scenarios). Take advantage of this knowledge here and drop fastpath hint and use direct access to highest SACKed skb as a replacement. Effectively "special cased" fastpath is dropped. This change adds some complexity to introduce better coveraged "fastpath", though the added complexity should make TCP behave more cache friendly. The current ACK's SACK blocks are compared against each cached block individially and only ranges that are new are then scanned by the high constant walk. For other parts of write queue, even when in previously known part of the SACK blocks, a faster skip function is used (if necessary at all). In addition, whenever possible, TCP fast-forwards to highest_sack skb that was made available by an earlier patch. In typical case, no other things but this fast-forward and mandatory markings after that occur making the access pattern quite similar to the former fastpath "special case". DSACKs are special case that must always be walked. The local to recv_sack_cache copying could be more intelligent w.r.t DSACKs which are likely to be there only once but that is left to a separate patch. Signed-off-by: Ilpo Järvinen <ilpo.jarvinen@helsinki.fi> Signed-off-by: David S. Miller <davem@davemloft.net>
2007-11-15 19:50:37 -08:00
advance_sp:
i++;
}
[TCP]: Rewrite SACK block processing & sack_recv_cache use Key points of this patch are: - In case new SACK information is advance only type, no skb processing below previously discovered highest point is done - Optimize cases below highest point too since there's no need to always go up to highest point (which is very likely still present in that SACK), this is not entirely true though because I'm dropping the fastpath_skb_hint which could previously optimize those cases even better. Whether that's significant, I'm not too sure. Currently it will provide skipping by walking. Combined with RB-tree, all skipping would become fast too regardless of window size (can be done incrementally later). Previously a number of cases in TCP SACK processing fails to take advantage of costly stored information in sack_recv_cache, most importantly, expected events such as cumulative ACK and new hole ACKs. Processing on such ACKs result in rather long walks building up latencies (which easily gets nasty when window is huge). Those latencies are often completely unnecessary compared with the amount of _new_ information received, usually for cumulative ACK there's no new information at all, yet TCP walks whole queue unnecessary potentially taking a number of costly cache misses on the way, etc.! Since the inclusion of highest_sack, there's a lot information that is very likely redundant (SACK fastpath hint stuff, fackets_out, highest_sack), though there's no ultimate guarantee that they'll remain the same whole the time (in all unearthly scenarios). Take advantage of this knowledge here and drop fastpath hint and use direct access to highest SACKed skb as a replacement. Effectively "special cased" fastpath is dropped. This change adds some complexity to introduce better coveraged "fastpath", though the added complexity should make TCP behave more cache friendly. The current ACK's SACK blocks are compared against each cached block individially and only ranges that are new are then scanned by the high constant walk. For other parts of write queue, even when in previously known part of the SACK blocks, a faster skip function is used (if necessary at all). In addition, whenever possible, TCP fast-forwards to highest_sack skb that was made available by an earlier patch. In typical case, no other things but this fast-forward and mandatory markings after that occur making the access pattern quite similar to the former fastpath "special case". DSACKs are special case that must always be walked. The local to recv_sack_cache copying could be more intelligent w.r.t DSACKs which are likely to be there only once but that is left to a separate patch. Signed-off-by: Ilpo Järvinen <ilpo.jarvinen@helsinki.fi> Signed-off-by: David S. Miller <davem@davemloft.net>
2007-11-15 19:50:37 -08:00
/* Clear the head of the cache sack blocks so we can skip it next time */
for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) {
tp->recv_sack_cache[i].start_seq = 0;
tp->recv_sack_cache[i].end_seq = 0;
}
for (j = 0; j < used_sacks; j++)
tp->recv_sack_cache[i++] = sp[j];
if (inet_csk(sk)->icsk_ca_state != TCP_CA_Loss || tp->undo_marker)
tcp_check_sack_reordering(sk, state->reord, 0);
tcp_verify_left_out(tp);
out:
#if FASTRETRANS_DEBUG > 0
WARN_ON((int)tp->sacked_out < 0);
WARN_ON((int)tp->lost_out < 0);
WARN_ON((int)tp->retrans_out < 0);
WARN_ON((int)tcp_packets_in_flight(tp) < 0);
#endif
return state->flag;
}
[TCP]: tcp_simple_retransmit can cause S+L This fixes Bugzilla #10384 tcp_simple_retransmit does L increment without any checking whatsoever for overflowing S+L when Reno is in use. The simplest scenario I can currently think of is rather complex in practice (there might be some more straightforward cases though). Ie., if mss is reduced during mtu probing, it may end up marking everything lost and if some duplicate ACKs arrived prior to that sacked_out will be non-zero as well, leading to S+L > packets_out, tcp_clean_rtx_queue on the next cumulative ACK or tcp_fastretrans_alert on the next duplicate ACK will fix the S counter. More straightforward (but questionable) solution would be to just call tcp_reset_reno_sack() in tcp_simple_retransmit but it would negatively impact the probe's retransmission, ie., the retransmissions would not occur if some duplicate ACKs had arrived. So I had to add reno sacked_out reseting to CA_Loss state when the first cumulative ACK arrives (this stale sacked_out might actually be the explanation for the reports of left_out overflows in kernel prior to 2.6.23 and S+L overflow reports of 2.6.24). However, this alone won't be enough to fix kernel before 2.6.24 because it is building on top of the commit 1b6d427bb7e ([TCP]: Reduce sacked_out with reno when purging write_queue) to keep the sacked_out from overflowing. Signed-off-by: Ilpo Järvinen <ilpo.jarvinen@helsinki.fi> Reported-by: Alessandro Suardi <alessandro.suardi@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2008-04-07 22:33:07 -07:00
/* Limits sacked_out so that sum with lost_out isn't ever larger than
* packets_out. Returns false if sacked_out adjustement wasn't necessary.
*/
static bool tcp_limit_reno_sacked(struct tcp_sock *tp)
{
u32 holes;
holes = max(tp->lost_out, 1U);
holes = min(holes, tp->packets_out);
if ((tp->sacked_out + holes) > tp->packets_out) {
tp->sacked_out = tp->packets_out - holes;
return true;
}
return false;
[TCP]: tcp_simple_retransmit can cause S+L This fixes Bugzilla #10384 tcp_simple_retransmit does L increment without any checking whatsoever for overflowing S+L when Reno is in use. The simplest scenario I can currently think of is rather complex in practice (there might be some more straightforward cases though). Ie., if mss is reduced during mtu probing, it may end up marking everything lost and if some duplicate ACKs arrived prior to that sacked_out will be non-zero as well, leading to S+L > packets_out, tcp_clean_rtx_queue on the next cumulative ACK or tcp_fastretrans_alert on the next duplicate ACK will fix the S counter. More straightforward (but questionable) solution would be to just call tcp_reset_reno_sack() in tcp_simple_retransmit but it would negatively impact the probe's retransmission, ie., the retransmissions would not occur if some duplicate ACKs had arrived. So I had to add reno sacked_out reseting to CA_Loss state when the first cumulative ACK arrives (this stale sacked_out might actually be the explanation for the reports of left_out overflows in kernel prior to 2.6.23 and S+L overflow reports of 2.6.24). However, this alone won't be enough to fix kernel before 2.6.24 because it is building on top of the commit 1b6d427bb7e ([TCP]: Reduce sacked_out with reno when purging write_queue) to keep the sacked_out from overflowing. Signed-off-by: Ilpo Järvinen <ilpo.jarvinen@helsinki.fi> Reported-by: Alessandro Suardi <alessandro.suardi@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2008-04-07 22:33:07 -07:00
}
/* If we receive more dupacks than we expected counting segments
* in assumption of absent reordering, interpret this as reordering.
* The only another reason could be bug in receiver TCP.
*/
static void tcp_check_reno_reordering(struct sock *sk, const int addend)
{
struct tcp_sock *tp = tcp_sk(sk);
if (!tcp_limit_reno_sacked(tp))
return;
tp->reordering = min_t(u32, tp->packets_out + addend,
READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_max_reordering));
tp->reord_seen++;
NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRENOREORDER);
}
/* Emulate SACKs for SACKless connection: account for a new dupack. */
static void tcp_add_reno_sack(struct sock *sk, int num_dupack, bool ece_ack)
{
if (num_dupack) {
struct tcp_sock *tp = tcp_sk(sk);
u32 prior_sacked = tp->sacked_out;
s32 delivered;
tcp: new delivery accounting This patch changes the accounting of how many packets are newly acked or sacked when the sender receives an ACK. The current approach basically computes newly_acked_sacked = (prior_packets - prior_sacked) - (tp->packets_out - tp->sacked_out) where prior_packets and prior_sacked out are snapshot at the beginning of the ACK processing. The new approach tracks the delivery information via a new TCP state variable "delivered" which monotically increases as new packets are delivered in order or out-of-order. The reason for this change is that the current approach is brittle that produces negative or inaccurate estimate. 1) For non-SACK connections, an ACK that advances the SND.UNA could reset the DUPACK counters (tp->sacked_out) in tcp_process_loss() or tcp_fastretrans_alert(). This inflates the inflight suddenly and causes under-estimate or even negative estimate. Here is a real example: before after (processing ACK) packets_out 75 73 sacked_out 23 0 ca state Loss Open The old approach computes (75-23) - (73 - 0) = -21 delivered while the new approach computes 1 delivered since it considers the 2nd-24th packets are delivered OOO. 2) MSS change would re-count packets_out and sacked_out so the estimate is in-accurate and can even become negative. E.g., the inflight is doubled when MSS is halved. 3) Spurious retransmission signaled by DSACK is not accounted The new approach is simpler and more robust. For SACK connections, tp->delivered increments as packets are being acked or sacked in SACK and ACK processing. For non-sack connections, it's done in tcp_remove_reno_sacks() and tcp_add_reno_sack(). When an ACK advances the SND.UNA, tp->delivered is incremented by the number of packets ACKed (less the current number of DUPACKs received plus one packet hole). Upon receiving a DUPACK, tp->delivered is incremented assuming one out-of-order packet is delivered. Upon receiving a DSACK, tp->delivered is incremtened assuming one retransmission is delivered in tcp_sacktag_write_queue(). Signed-off-by: Yuchung Cheng <ycheng@google.com> Signed-off-by: Neal Cardwell <ncardwell@google.com> Signed-off-by: Eric Dumazet <ncardwell@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-02-02 10:33:06 -08:00
tp->sacked_out += num_dupack;
tcp_check_reno_reordering(sk, 0);
delivered = tp->sacked_out - prior_sacked;
if (delivered > 0)
tcp_count_delivered(tp, delivered, ece_ack);
tcp_verify_left_out(tp);
}
}
/* Account for ACK, ACKing some data in Reno Recovery phase. */
static void tcp_remove_reno_sacks(struct sock *sk, int acked, bool ece_ack)
{
struct tcp_sock *tp = tcp_sk(sk);
if (acked > 0) {
/* One ACK acked hole. The rest eat duplicate ACKs. */
tcp_count_delivered(tp, max_t(int, acked - tp->sacked_out, 1),
ece_ack);
if (acked - 1 >= tp->sacked_out)
tp->sacked_out = 0;
else
tp->sacked_out -= acked - 1;
}
tcp_check_reno_reordering(sk, acked);
tcp_verify_left_out(tp);
}
static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
{
tp->sacked_out = 0;
}
void tcp_clear_retrans(struct tcp_sock *tp)
{
tp->retrans_out = 0;
tp->lost_out = 0;
tp->undo_marker = 0;
tp->undo_retrans = -1;
tp->sacked_out = 0;
tp->rto_stamp = 0;
tp->total_rto = 0;
tp->total_rto_recoveries = 0;
tp->total_rto_time = 0;
}
static inline void tcp_init_undo(struct tcp_sock *tp)
{
tp->undo_marker = tp->snd_una;
/* Retransmission still in flight may cause DSACKs later. */
tp->undo_retrans = tp->retrans_out ? : -1;
}
static bool tcp_is_rack(const struct sock *sk)
{
return READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_recovery) &
TCP_RACK_LOSS_DETECTION;
}
/* If we detect SACK reneging, forget all SACK information
* and reset tags completely, otherwise preserve SACKs. If receiver
* dropped its ofo queue, we will know this due to reneging detection.
*/
static void tcp_timeout_mark_lost(struct sock *sk)
{
struct tcp_sock *tp = tcp_sk(sk);
tcp: don't mark recently sent packets lost on RTO An RTO event indicates the head has not been acked for a long time after its last (re)transmission. But the other packets are not necessarily lost if they have been only sent recently (for example due to application limit). This patch would prohibit marking packets sent within an RTT to be lost on RTO event, using similar logic in TCP RACK detection. Normally the head (SND.UNA) would be marked lost since RTO should fire strictly after the head was sent. An exception is when the most recent RACK RTT measurement is larger than the (previous) RTO. To address this exception the head is always marked lost. Congestion control interaction: since we may not mark every packet lost, the congestion window may be more than 1 (inflight plus 1). But only one packet will be retransmitted after RTO, since tcp_retransmit_timer() calls tcp_retransmit_skb(...,segs=1). The connection still performs slow start from one packet (with Cubic congestion control). This commit was tested in an A/B test with Google web servers, and showed a reduction of 2% in (spurious) retransmits post timeout (SlowStartRetrans), and correspondingly reduced DSACKs (DSACKIgnoredOld) by 7%. Signed-off-by: Yuchung Cheng <ycheng@google.com> Signed-off-by: Neal Cardwell <ncardwell@google.com> Reviewed-by: Eric Dumazet <edumazet@google.com> Reviewed-by: Soheil Hassas Yeganeh <soheil@google.com> Reviewed-by: Priyaranjan Jha <priyarjha@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2018-05-16 16:40:17 -07:00
struct sk_buff *skb, *head;
bool is_reneg; /* is receiver reneging on SACKs? */
tcp: don't mark recently sent packets lost on RTO An RTO event indicates the head has not been acked for a long time after its last (re)transmission. But the other packets are not necessarily lost if they have been only sent recently (for example due to application limit). This patch would prohibit marking packets sent within an RTT to be lost on RTO event, using similar logic in TCP RACK detection. Normally the head (SND.UNA) would be marked lost since RTO should fire strictly after the head was sent. An exception is when the most recent RACK RTT measurement is larger than the (previous) RTO. To address this exception the head is always marked lost. Congestion control interaction: since we may not mark every packet lost, the congestion window may be more than 1 (inflight plus 1). But only one packet will be retransmitted after RTO, since tcp_retransmit_timer() calls tcp_retransmit_skb(...,segs=1). The connection still performs slow start from one packet (with Cubic congestion control). This commit was tested in an A/B test with Google web servers, and showed a reduction of 2% in (spurious) retransmits post timeout (SlowStartRetrans), and correspondingly reduced DSACKs (DSACKIgnoredOld) by 7%. Signed-off-by: Yuchung Cheng <ycheng@google.com> Signed-off-by: Neal Cardwell <ncardwell@google.com> Reviewed-by: Eric Dumazet <edumazet@google.com> Reviewed-by: Soheil Hassas Yeganeh <soheil@google.com> Reviewed-by: Priyaranjan Jha <priyarjha@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2018-05-16 16:40:17 -07:00
head = tcp_rtx_queue_head(sk);
is_reneg = head && (TCP_SKB_CB(head)->sacked & TCPCB_SACKED_ACKED);
if (is_reneg) {
NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSACKRENEGING);
tp->sacked_out = 0;
/* Mark SACK reneging until we recover from this loss event. */
tp->is_sack_reneg = 1;
} else if (tcp_is_reno(tp)) {
tcp_reset_reno_sack(tp);
}
tcp: don't mark recently sent packets lost on RTO An RTO event indicates the head has not been acked for a long time after its last (re)transmission. But the other packets are not necessarily lost if they have been only sent recently (for example due to application limit). This patch would prohibit marking packets sent within an RTT to be lost on RTO event, using similar logic in TCP RACK detection. Normally the head (SND.UNA) would be marked lost since RTO should fire strictly after the head was sent. An exception is when the most recent RACK RTT measurement is larger than the (previous) RTO. To address this exception the head is always marked lost. Congestion control interaction: since we may not mark every packet lost, the congestion window may be more than 1 (inflight plus 1). But only one packet will be retransmitted after RTO, since tcp_retransmit_timer() calls tcp_retransmit_skb(...,segs=1). The connection still performs slow start from one packet (with Cubic congestion control). This commit was tested in an A/B test with Google web servers, and showed a reduction of 2% in (spurious) retransmits post timeout (SlowStartRetrans), and correspondingly reduced DSACKs (DSACKIgnoredOld) by 7%. Signed-off-by: Yuchung Cheng <ycheng@google.com> Signed-off-by: Neal Cardwell <ncardwell@google.com> Reviewed-by: Eric Dumazet <edumazet@google.com> Reviewed-by: Soheil Hassas Yeganeh <soheil@google.com> Reviewed-by: Priyaranjan Jha <priyarjha@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2018-05-16 16:40:17 -07:00
skb = head;
skb_rbtree_walk_from(skb) {
if (is_reneg)
TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
tcp: don't mark recently sent packets lost on RTO An RTO event indicates the head has not been acked for a long time after its last (re)transmission. But the other packets are not necessarily lost if they have been only sent recently (for example due to application limit). This patch would prohibit marking packets sent within an RTT to be lost on RTO event, using similar logic in TCP RACK detection. Normally the head (SND.UNA) would be marked lost since RTO should fire strictly after the head was sent. An exception is when the most recent RACK RTT measurement is larger than the (previous) RTO. To address this exception the head is always marked lost. Congestion control interaction: since we may not mark every packet lost, the congestion window may be more than 1 (inflight plus 1). But only one packet will be retransmitted after RTO, since tcp_retransmit_timer() calls tcp_retransmit_skb(...,segs=1). The connection still performs slow start from one packet (with Cubic congestion control). This commit was tested in an A/B test with Google web servers, and showed a reduction of 2% in (spurious) retransmits post timeout (SlowStartRetrans), and correspondingly reduced DSACKs (DSACKIgnoredOld) by 7%. Signed-off-by: Yuchung Cheng <ycheng@google.com> Signed-off-by: Neal Cardwell <ncardwell@google.com> Reviewed-by: Eric Dumazet <edumazet@google.com> Reviewed-by: Soheil Hassas Yeganeh <soheil@google.com> Reviewed-by: Priyaranjan Jha <priyarjha@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2018-05-16 16:40:17 -07:00
else if (tcp_is_rack(sk) && skb != head &&
tcp_rack_skb_timeout(tp, skb, 0) > 0)
continue; /* Don't mark recently sent ones lost yet */
tcp_mark_skb_lost(sk, skb);
}
tcp_verify_left_out(tp);
tcp_clear_all_retrans_hints(tp);
}
/* Enter Loss state. */
tcp: reduce spurious retransmits due to transient SACK reneging This commit reduces spurious retransmits due to apparent SACK reneging by only reacting to SACK reneging that persists for a short delay. When a sequence space hole at snd_una is filled, some TCP receivers send a series of ACKs as they apparently scan their out-of-order queue and cumulatively ACK all the packets that have now been consecutiveyly received. This is essentially misbehavior B in "Misbehaviors in TCP SACK generation" ACM SIGCOMM Computer Communication Review, April 2011, so we suspect that this is from several common OSes (Windows 2000, Windows Server 2003, Windows XP). However, this issue has also been seen in other cases, e.g. the netdev thread "TCP being hoodwinked into spurious retransmissions by lack of timestamps?" from March 2014, where the receiver was thought to be a BSD box. Since snd_una would temporarily be adjacent to a previously SACKed range in these scenarios, this receiver behavior triggered the Linux SACK reneging code path in the sender. This led the sender to clear the SACK scoreboard, enter CA_Loss, and spuriously retransmit (potentially) every packet from the entire write queue at line rate just a few milliseconds before the ACK for each packet arrives at the sender. To avoid such situations, now when a sender sees apparent reneging it does not yet retransmit, but rather adjusts the RTO timer to give the receiver a little time (max(RTT/2, 10ms)) to send us some more ACKs that will restore sanity to the SACK scoreboard. If the reneging persists until this RTO then, as before, we clear the SACK scoreboard and enter CA_Loss. A 10ms delay tolerates a receiver sending such a stream of ACKs at 56Kbit/sec. And to allow for receivers with slower or more congested paths, we wait for at least RTT/2. We validated the resulting max(RTT/2, 10ms) delay formula with a mix of North American and South American Google web server traffic, and found that for ACKs displaying transient reneging: (1) 90% of inter-ACK delays were less than 10ms (2) 99% of inter-ACK delays were less than RTT/2 In tests on Google web servers this commit reduced reneging events by 75%-90% (as measured by the TcpExtTCPSACKReneging counter), without any measurable impact on latency for user HTTP and SPDY requests. Signed-off-by: Neal Cardwell <ncardwell@google.com> Signed-off-by: Yuchung Cheng <ycheng@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-08-04 19:12:29 -04:00
void tcp_enter_loss(struct sock *sk)
{
const struct inet_connection_sock *icsk = inet_csk(sk);
struct tcp_sock *tp = tcp_sk(sk);
struct net *net = sock_net(sk);
bool new_recovery = icsk->icsk_ca_state < TCP_CA_Recovery;
u8 reordering;
tcp_timeout_mark_lost(sk);
/* Reduce ssthresh if it has not yet been made inside this window. */
tcp: implement RFC5682 F-RTO This patch implements F-RTO (foward RTO recovery): When the first retransmission after timeout is acknowledged, F-RTO sends new data instead of old data. If the next ACK acknowledges some never-retransmitted data, then the timeout was spurious and the congestion state is reverted. Otherwise if the next ACK selectively acknowledges the new data, then the timeout was genuine and the loss recovery continues. This idea applies to recurring timeouts as well. While F-RTO sends different data during timeout recovery, it does not (and should not) change the congestion control. The implementaion follows the three steps of SACK enhanced algorithm (section 3) in RFC5682. Step 1 is in tcp_enter_loss(). Step 2 and 3 are in tcp_process_loss(). The basic version is not supported because SACK enhanced version also works for non-SACK connections. The new implementation is functionally in parity with the old F-RTO implementation except the one case where it increases undo events: In addition to the RFC algorithm, a spurious timeout may be detected without sending data in step 2, as long as the SACK confirms not all the original data are dropped. When this happens, the sender will undo the cwnd and perhaps enter fast recovery instead. This additional check increases the F-RTO undo events by 5x compared to the prior implementation on Google Web servers, since the sender often does not have new data to send for HTTP. Note F-RTO may detect spurious timeout before Eifel with timestamps does so. Signed-off-by: Yuchung Cheng <ycheng@google.com> Acked-by: Eric Dumazet <edumazet@google.com> Acked-by: Neal Cardwell <ncardwell@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2013-03-20 13:33:00 +00:00
if (icsk->icsk_ca_state <= TCP_CA_Disorder ||
!after(tp->high_seq, tp->snd_una) ||
(icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
tp->prior_ssthresh = tcp_current_ssthresh(sk);
tp->prior_cwnd = tcp_snd_cwnd(tp);
tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
tcp_ca_event(sk, CA_EVENT_LOSS);
tcp_init_undo(tp);
}
tcp_snd_cwnd_set(tp, tcp_packets_in_flight(tp) + 1);
tp->snd_cwnd_cnt = 0;
tp->snd_cwnd_stamp = tcp_jiffies32;
/* Timeout in disordered state after receiving substantial DUPACKs
* suggests that the degree of reordering is over-estimated.
*/
reordering = READ_ONCE(net->ipv4.sysctl_tcp_reordering);
if (icsk->icsk_ca_state <= TCP_CA_Disorder &&
tp->sacked_out >= reordering)
tp->reordering = min_t(unsigned int, tp->reordering,
reordering);
tcp_set_ca_state(sk, TCP_CA_Loss);
tp->high_seq = tp->snd_nxt;
tcp_ecn_queue_cwr(tp);
tcp: implement RFC5682 F-RTO This patch implements F-RTO (foward RTO recovery): When the first retransmission after timeout is acknowledged, F-RTO sends new data instead of old data. If the next ACK acknowledges some never-retransmitted data, then the timeout was spurious and the congestion state is reverted. Otherwise if the next ACK selectively acknowledges the new data, then the timeout was genuine and the loss recovery continues. This idea applies to recurring timeouts as well. While F-RTO sends different data during timeout recovery, it does not (and should not) change the congestion control. The implementaion follows the three steps of SACK enhanced algorithm (section 3) in RFC5682. Step 1 is in tcp_enter_loss(). Step 2 and 3 are in tcp_process_loss(). The basic version is not supported because SACK enhanced version also works for non-SACK connections. The new implementation is functionally in parity with the old F-RTO implementation except the one case where it increases undo events: In addition to the RFC algorithm, a spurious timeout may be detected without sending data in step 2, as long as the SACK confirms not all the original data are dropped. When this happens, the sender will undo the cwnd and perhaps enter fast recovery instead. This additional check increases the F-RTO undo events by 5x compared to the prior implementation on Google Web servers, since the sender often does not have new data to send for HTTP. Note F-RTO may detect spurious timeout before Eifel with timestamps does so. Signed-off-by: Yuchung Cheng <ycheng@google.com> Acked-by: Eric Dumazet <edumazet@google.com> Acked-by: Neal Cardwell <ncardwell@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2013-03-20 13:33:00 +00:00
/* F-RTO RFC5682 sec 3.1 step 1: retransmit SND.UNA if no previous
* loss recovery is underway except recurring timeout(s) on
* the same SND.UNA (sec 3.2). Disable F-RTO on path MTU probing
tcp: implement RFC5682 F-RTO This patch implements F-RTO (foward RTO recovery): When the first retransmission after timeout is acknowledged, F-RTO sends new data instead of old data. If the next ACK acknowledges some never-retransmitted data, then the timeout was spurious and the congestion state is reverted. Otherwise if the next ACK selectively acknowledges the new data, then the timeout was genuine and the loss recovery continues. This idea applies to recurring timeouts as well. While F-RTO sends different data during timeout recovery, it does not (and should not) change the congestion control. The implementaion follows the three steps of SACK enhanced algorithm (section 3) in RFC5682. Step 1 is in tcp_enter_loss(). Step 2 and 3 are in tcp_process_loss(). The basic version is not supported because SACK enhanced version also works for non-SACK connections. The new implementation is functionally in parity with the old F-RTO implementation except the one case where it increases undo events: In addition to the RFC algorithm, a spurious timeout may be detected without sending data in step 2, as long as the SACK confirms not all the original data are dropped. When this happens, the sender will undo the cwnd and perhaps enter fast recovery instead. This additional check increases the F-RTO undo events by 5x compared to the prior implementation on Google Web servers, since the sender often does not have new data to send for HTTP. Note F-RTO may detect spurious timeout before Eifel with timestamps does so. Signed-off-by: Yuchung Cheng <ycheng@google.com> Acked-by: Eric Dumazet <edumazet@google.com> Acked-by: Neal Cardwell <ncardwell@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2013-03-20 13:33:00 +00:00
*/
tp->frto = READ_ONCE(net->ipv4.sysctl_tcp_frto) &&
(new_recovery || icsk->icsk_retransmits) &&
!inet_csk(sk)->icsk_mtup.probe_size;
}
/* If ACK arrived pointing to a remembered SACK, it means that our
* remembered SACKs do not reflect real state of receiver i.e.
* receiver _host_ is heavily congested (or buggy).
*
tcp: reduce spurious retransmits due to transient SACK reneging This commit reduces spurious retransmits due to apparent SACK reneging by only reacting to SACK reneging that persists for a short delay. When a sequence space hole at snd_una is filled, some TCP receivers send a series of ACKs as they apparently scan their out-of-order queue and cumulatively ACK all the packets that have now been consecutiveyly received. This is essentially misbehavior B in "Misbehaviors in TCP SACK generation" ACM SIGCOMM Computer Communication Review, April 2011, so we suspect that this is from several common OSes (Windows 2000, Windows Server 2003, Windows XP). However, this issue has also been seen in other cases, e.g. the netdev thread "TCP being hoodwinked into spurious retransmissions by lack of timestamps?" from March 2014, where the receiver was thought to be a BSD box. Since snd_una would temporarily be adjacent to a previously SACKed range in these scenarios, this receiver behavior triggered the Linux SACK reneging code path in the sender. This led the sender to clear the SACK scoreboard, enter CA_Loss, and spuriously retransmit (potentially) every packet from the entire write queue at line rate just a few milliseconds before the ACK for each packet arrives at the sender. To avoid such situations, now when a sender sees apparent reneging it does not yet retransmit, but rather adjusts the RTO timer to give the receiver a little time (max(RTT/2, 10ms)) to send us some more ACKs that will restore sanity to the SACK scoreboard. If the reneging persists until this RTO then, as before, we clear the SACK scoreboard and enter CA_Loss. A 10ms delay tolerates a receiver sending such a stream of ACKs at 56Kbit/sec. And to allow for receivers with slower or more congested paths, we wait for at least RTT/2. We validated the resulting max(RTT/2, 10ms) delay formula with a mix of North American and South American Google web server traffic, and found that for ACKs displaying transient reneging: (1) 90% of inter-ACK delays were less than 10ms (2) 99% of inter-ACK delays were less than RTT/2 In tests on Google web servers this commit reduced reneging events by 75%-90% (as measured by the TcpExtTCPSACKReneging counter), without any measurable impact on latency for user HTTP and SPDY requests. Signed-off-by: Neal Cardwell <ncardwell@google.com> Signed-off-by: Yuchung Cheng <ycheng@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-08-04 19:12:29 -04:00
* To avoid big spurious retransmission bursts due to transient SACK
* scoreboard oddities that look like reneging, we give the receiver a
* little time (max(RTT/2, 10ms)) to send us some more ACKs that will
* restore sanity to the SACK scoreboard. If the apparent reneging
* persists until this RTO then we'll clear the SACK scoreboard.
*/
static bool tcp_check_sack_reneging(struct sock *sk, int flag)
{
tcp: fix indefinite deferral of RTO with SACK reneging This commit fixes a bug that can cause a TCP data sender to repeatedly defer RTOs when encountering SACK reneging. The bug is that when we're in fast recovery in a scenario with SACK reneging, every time we get an ACK we call tcp_check_sack_reneging() and it can note the apparent SACK reneging and rearm the RTO timer for srtt/2 into the future. In some SACK reneging scenarios that can happen repeatedly until the receive window fills up, at which point the sender can't send any more, the ACKs stop arriving, and the RTO fires at srtt/2 after the last ACK. But that can take far too long (O(10 secs)), since the connection is stuck in fast recovery with a low cwnd that cannot grow beyond ssthresh, even if more bandwidth is available. This fix changes the logic in tcp_check_sack_reneging() to only rearm the RTO timer if data is cumulatively ACKed, indicating forward progress. This avoids this kind of nearly infinite loop of RTO timer re-arming. In addition, this meets the goals of tcp_check_sack_reneging() in handling Windows TCP behavior that looks temporarily like SACK reneging but is not really. Many thanks to Jakub Kicinski and Neil Spring, who reported this issue and provided critical packet traces that enabled root-causing this issue. Also, many thanks to Jakub Kicinski for testing this fix. Fixes: 5ae344c949e7 ("tcp: reduce spurious retransmits due to transient SACK reneging") Reported-by: Jakub Kicinski <kuba@kernel.org> Reported-by: Neil Spring <ntspring@fb.com> Signed-off-by: Neal Cardwell <ncardwell@google.com> Reviewed-by: Eric Dumazet <edumazet@google.com> Cc: Yuchung Cheng <ycheng@google.com> Tested-by: Jakub Kicinski <kuba@kernel.org> Link: https://lore.kernel.org/r/20221021170821.1093930-1-ncardwell.kernel@gmail.com Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2022-10-21 17:08:21 +00:00
if (flag & FLAG_SACK_RENEGING &&
flag & FLAG_SND_UNA_ADVANCED) {
tcp: reduce spurious retransmits due to transient SACK reneging This commit reduces spurious retransmits due to apparent SACK reneging by only reacting to SACK reneging that persists for a short delay. When a sequence space hole at snd_una is filled, some TCP receivers send a series of ACKs as they apparently scan their out-of-order queue and cumulatively ACK all the packets that have now been consecutiveyly received. This is essentially misbehavior B in "Misbehaviors in TCP SACK generation" ACM SIGCOMM Computer Communication Review, April 2011, so we suspect that this is from several common OSes (Windows 2000, Windows Server 2003, Windows XP). However, this issue has also been seen in other cases, e.g. the netdev thread "TCP being hoodwinked into spurious retransmissions by lack of timestamps?" from March 2014, where the receiver was thought to be a BSD box. Since snd_una would temporarily be adjacent to a previously SACKed range in these scenarios, this receiver behavior triggered the Linux SACK reneging code path in the sender. This led the sender to clear the SACK scoreboard, enter CA_Loss, and spuriously retransmit (potentially) every packet from the entire write queue at line rate just a few milliseconds before the ACK for each packet arrives at the sender. To avoid such situations, now when a sender sees apparent reneging it does not yet retransmit, but rather adjusts the RTO timer to give the receiver a little time (max(RTT/2, 10ms)) to send us some more ACKs that will restore sanity to the SACK scoreboard. If the reneging persists until this RTO then, as before, we clear the SACK scoreboard and enter CA_Loss. A 10ms delay tolerates a receiver sending such a stream of ACKs at 56Kbit/sec. And to allow for receivers with slower or more congested paths, we wait for at least RTT/2. We validated the resulting max(RTT/2, 10ms) delay formula with a mix of North American and South American Google web server traffic, and found that for ACKs displaying transient reneging: (1) 90% of inter-ACK delays were less than 10ms (2) 99% of inter-ACK delays were less than RTT/2 In tests on Google web servers this commit reduced reneging events by 75%-90% (as measured by the TcpExtTCPSACKReneging counter), without any measurable impact on latency for user HTTP and SPDY requests. Signed-off-by: Neal Cardwell <ncardwell@google.com> Signed-off-by: Yuchung Cheng <ycheng@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-08-04 19:12:29 -04:00
struct tcp_sock *tp = tcp_sk(sk);
unsigned long delay = max(usecs_to_jiffies(tp->srtt_us >> 4),
msecs_to_jiffies(10));
inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
tcp: reduce spurious retransmits due to transient SACK reneging This commit reduces spurious retransmits due to apparent SACK reneging by only reacting to SACK reneging that persists for a short delay. When a sequence space hole at snd_una is filled, some TCP receivers send a series of ACKs as they apparently scan their out-of-order queue and cumulatively ACK all the packets that have now been consecutiveyly received. This is essentially misbehavior B in "Misbehaviors in TCP SACK generation" ACM SIGCOMM Computer Communication Review, April 2011, so we suspect that this is from several common OSes (Windows 2000, Windows Server 2003, Windows XP). However, this issue has also been seen in other cases, e.g. the netdev thread "TCP being hoodwinked into spurious retransmissions by lack of timestamps?" from March 2014, where the receiver was thought to be a BSD box. Since snd_una would temporarily be adjacent to a previously SACKed range in these scenarios, this receiver behavior triggered the Linux SACK reneging code path in the sender. This led the sender to clear the SACK scoreboard, enter CA_Loss, and spuriously retransmit (potentially) every packet from the entire write queue at line rate just a few milliseconds before the ACK for each packet arrives at the sender. To avoid such situations, now when a sender sees apparent reneging it does not yet retransmit, but rather adjusts the RTO timer to give the receiver a little time (max(RTT/2, 10ms)) to send us some more ACKs that will restore sanity to the SACK scoreboard. If the reneging persists until this RTO then, as before, we clear the SACK scoreboard and enter CA_Loss. A 10ms delay tolerates a receiver sending such a stream of ACKs at 56Kbit/sec. And to allow for receivers with slower or more congested paths, we wait for at least RTT/2. We validated the resulting max(RTT/2, 10ms) delay formula with a mix of North American and South American Google web server traffic, and found that for ACKs displaying transient reneging: (1) 90% of inter-ACK delays were less than 10ms (2) 99% of inter-ACK delays were less than RTT/2 In tests on Google web servers this commit reduced reneging events by 75%-90% (as measured by the TcpExtTCPSACKReneging counter), without any measurable impact on latency for user HTTP and SPDY requests. Signed-off-by: Neal Cardwell <ncardwell@google.com> Signed-off-by: Yuchung Cheng <ycheng@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-08-04 19:12:29 -04:00
delay, TCP_RTO_MAX);
return true;
}
return false;
}
[TCP]: non-FACK SACK follows conservative SACK loss recovery Many assumptions that are true when no reordering or other strange events happen are not a part of the RFC3517. FACK implementation is based on such assumptions. Previously (before the rewrite) the non-FACK SACK was basically doing fast rexmit and then it times out all skbs when first cumulative ACK arrives, which cannot really be called SACK based recovery :-). RFC3517 SACK disables these things: - Per SKB timeouts & head timeout entry to recovery - Marking at least one skb while in recovery (RFC3517 does this only for the fast retransmission but not for the other skbs when cumulative ACKs arrive in the recovery) - Sacktag's loss detection flavors B and C (see comment before tcp_sacktag_write_queue) This does not implement the "last resort" rule 3 of NextSeg, which allows retransmissions also when not enough SACK blocks have yet arrived above a segment for IsLost to return true [RFC3517]. The implementation differs from RFC3517 in these points: - Rate-halving is used instead of FlightSize / 2 - Instead of using dupACKs to trigger the recovery, the number of SACK blocks is used as FACK does with SACK blocks+holes (which provides more accurate number). It seems that the difference can affect negatively only if the receiver does not generate SACK blocks at all even though it claimed to be SACK-capable. - Dupthresh is not a constant one. Dynamical adjustments include both holes and sacked segments (equal to what FACK has) due to complexity involved in determining the number sacked blocks between highest_sack and the reordered segment. Thus it's will be an over-estimate. Implementation note: tcp_clean_rtx_queue doesn't need a lost_cnt tweak because head skb at that point cannot be SACKED_ACKED (nor would such situation last for long enough to cause problems). Signed-off-by: Ilpo Järvinen <ilpo.jarvinen@helsinki.fi> Signed-off-by: David S. Miller <davem@davemloft.net>
2007-11-15 19:39:31 -08:00
/* Heurestics to calculate number of duplicate ACKs. There's no dupACKs
* counter when SACK is enabled (without SACK, sacked_out is used for
* that purpose).
*
* With reordering, holes may still be in flight, so RFC3517 recovery
* uses pure sacked_out (total number of SACKed segments) even though
* it violates the RFC that uses duplicate ACKs, often these are equal
* but when e.g. out-of-window ACKs or packet duplication occurs,
* they differ. Since neither occurs due to loss, TCP should really
* ignore them.
*/
static inline int tcp_dupack_heuristics(const struct tcp_sock *tp)
[TCP]: non-FACK SACK follows conservative SACK loss recovery Many assumptions that are true when no reordering or other strange events happen are not a part of the RFC3517. FACK implementation is based on such assumptions. Previously (before the rewrite) the non-FACK SACK was basically doing fast rexmit and then it times out all skbs when first cumulative ACK arrives, which cannot really be called SACK based recovery :-). RFC3517 SACK disables these things: - Per SKB timeouts & head timeout entry to recovery - Marking at least one skb while in recovery (RFC3517 does this only for the fast retransmission but not for the other skbs when cumulative ACKs arrive in the recovery) - Sacktag's loss detection flavors B and C (see comment before tcp_sacktag_write_queue) This does not implement the "last resort" rule 3 of NextSeg, which allows retransmissions also when not enough SACK blocks have yet arrived above a segment for IsLost to return true [RFC3517]. The implementation differs from RFC3517 in these points: - Rate-halving is used instead of FlightSize / 2 - Instead of using dupACKs to trigger the recovery, the number of SACK blocks is used as FACK does with SACK blocks+holes (which provides more accurate number). It seems that the difference can affect negatively only if the receiver does not generate SACK blocks at all even though it claimed to be SACK-capable. - Dupthresh is not a constant one. Dynamical adjustments include both holes and sacked segments (equal to what FACK has) due to complexity involved in determining the number sacked blocks between highest_sack and the reordered segment. Thus it's will be an over-estimate. Implementation note: tcp_clean_rtx_queue doesn't need a lost_cnt tweak because head skb at that point cannot be SACKED_ACKED (nor would such situation last for long enough to cause problems). Signed-off-by: Ilpo Järvinen <ilpo.jarvinen@helsinki.fi> Signed-off-by: David S. Miller <davem@davemloft.net>
2007-11-15 19:39:31 -08:00
{
return tp->sacked_out + 1;
[TCP]: non-FACK SACK follows conservative SACK loss recovery Many assumptions that are true when no reordering or other strange events happen are not a part of the RFC3517. FACK implementation is based on such assumptions. Previously (before the rewrite) the non-FACK SACK was basically doing fast rexmit and then it times out all skbs when first cumulative ACK arrives, which cannot really be called SACK based recovery :-). RFC3517 SACK disables these things: - Per SKB timeouts & head timeout entry to recovery - Marking at least one skb while in recovery (RFC3517 does this only for the fast retransmission but not for the other skbs when cumulative ACKs arrive in the recovery) - Sacktag's loss detection flavors B and C (see comment before tcp_sacktag_write_queue) This does not implement the "last resort" rule 3 of NextSeg, which allows retransmissions also when not enough SACK blocks have yet arrived above a segment for IsLost to return true [RFC3517]. The implementation differs from RFC3517 in these points: - Rate-halving is used instead of FlightSize / 2 - Instead of using dupACKs to trigger the recovery, the number of SACK blocks is used as FACK does with SACK blocks+holes (which provides more accurate number). It seems that the difference can affect negatively only if the receiver does not generate SACK blocks at all even though it claimed to be SACK-capable. - Dupthresh is not a constant one. Dynamical adjustments include both holes and sacked segments (equal to what FACK has) due to complexity involved in determining the number sacked blocks between highest_sack and the reordered segment. Thus it's will be an over-estimate. Implementation note: tcp_clean_rtx_queue doesn't need a lost_cnt tweak because head skb at that point cannot be SACKED_ACKED (nor would such situation last for long enough to cause problems). Signed-off-by: Ilpo Järvinen <ilpo.jarvinen@helsinki.fi> Signed-off-by: David S. Miller <davem@davemloft.net>
2007-11-15 19:39:31 -08:00
}
/* Linux NewReno/SACK/ECN state machine.
* --------------------------------------
*
* "Open" Normal state, no dubious events, fast path.
* "Disorder" In all the respects it is "Open",
* but requires a bit more attention. It is entered when
* we see some SACKs or dupacks. It is split of "Open"
* mainly to move some processing from fast path to slow one.
* "CWR" CWND was reduced due to some Congestion Notification event.
* It can be ECN, ICMP source quench, local device congestion.
* "Recovery" CWND was reduced, we are fast-retransmitting.
* "Loss" CWND was reduced due to RTO timeout or SACK reneging.
*
* tcp_fastretrans_alert() is entered:
* - each incoming ACK, if state is not "Open"
* - when arrived ACK is unusual, namely:
* * SACK
* * Duplicate ACK.
* * ECN ECE.
*
* Counting packets in flight is pretty simple.
*
* in_flight = packets_out - left_out + retrans_out
*
* packets_out is SND.NXT-SND.UNA counted in packets.
*
* retrans_out is number of retransmitted segments.
*
* left_out is number of segments left network, but not ACKed yet.
*
* left_out = sacked_out + lost_out
*
* sacked_out: Packets, which arrived to receiver out of order
* and hence not ACKed. With SACKs this number is simply
* amount of SACKed data. Even without SACKs
* it is easy to give pretty reliable estimate of this number,
* counting duplicate ACKs.
*
* lost_out: Packets lost by network. TCP has no explicit
* "loss notification" feedback from network (for now).
* It means that this number can be only _guessed_.
* Actually, it is the heuristics to predict lossage that
* distinguishes different algorithms.
*
* F.e. after RTO, when all the queue is considered as lost,
* lost_out = packets_out and in_flight = retrans_out.
*
* Essentially, we have now a few algorithms detecting
* lost packets.
*
* If the receiver supports SACK:
*
* RFC6675/3517: It is the conventional algorithm. A packet is
* considered lost if the number of higher sequence packets
* SACKed is greater than or equal the DUPACK thoreshold
* (reordering). This is implemented in tcp_mark_head_lost and
* tcp_update_scoreboard.
*
* RACK (draft-ietf-tcpm-rack-01): it is a newer algorithm
* (2017-) that checks timing instead of counting DUPACKs.
* Essentially a packet is considered lost if it's not S/ACKed
* after RTT + reordering_window, where both metrics are
* dynamically measured and adjusted. This is implemented in
* tcp_rack_mark_lost.
*
* If the receiver does not support SACK:
*
* NewReno (RFC6582): in Recovery we assume that one segment
* is lost (classic Reno). While we are in Recovery and
* a partial ACK arrives, we assume that one more packet
* is lost (NewReno). This heuristics are the same in NewReno
* and SACK.
*
* Really tricky (and requiring careful tuning) part of algorithm
* is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
* The first determines the moment _when_ we should reduce CWND and,
* hence, slow down forward transmission. In fact, it determines the moment
* when we decide that hole is caused by loss, rather than by a reorder.
*
* tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
* holes, caused by lost packets.
*
* And the most logically complicated part of algorithm is undo
* heuristics. We detect false retransmits due to both too early
* fast retransmit (reordering) and underestimated RTO, analyzing
* timestamps and D-SACKs. When we detect that some segments were
* retransmitted by mistake and CWND reduction was wrong, we undo
* window reduction and abort recovery phase. This logic is hidden
* inside several functions named tcp_try_undo_<something>.
*/
/* This function decides, when we should leave Disordered state
* and enter Recovery phase, reducing congestion window.
*
* Main question: may we further continue forward transmission
* with the same cwnd?
*/
static bool tcp_time_to_recover(struct sock *sk, int flag)
{
[TCP]: Sed magic converts func(sk, tp, ...) -> func(sk, ...) This is (mostly) automated change using magic: sed -e '/struct sock \*sk/ N' -e '/struct sock \*sk/ N' -e '/struct sock \*sk/ N' -e '/struct sock \*sk/ N' -e 's|struct sock \*sk,[\n\t ]*struct tcp_sock \*tp\([^{]*\n{\n\)| struct sock \*sk\1\tstruct tcp_sock *tp = tcp_sk(sk);\n|g' -e 's|struct sock \*sk, struct tcp_sock \*tp| struct sock \*sk|g' -e 's|sk, tp\([^-]\)|sk\1|g' Fixed four unused variable (tp) warnings that were introduced. In addition, manually added newlines after local variables and tweaked function arguments positioning. $ gcc --version gcc (GCC) 4.1.1 20060525 (Red Hat 4.1.1-1) ... $ codiff -fV built-in.o.old built-in.o.new net/ipv4/route.c: rt_cache_flush | +14 1 function changed, 14 bytes added net/ipv4/tcp.c: tcp_setsockopt | -5 tcp_sendpage | -25 tcp_sendmsg | -16 3 functions changed, 46 bytes removed net/ipv4/tcp_input.c: tcp_try_undo_recovery | +3 tcp_try_undo_dsack | +2 tcp_mark_head_lost | -12 tcp_ack | -15 tcp_event_data_recv | -32 tcp_rcv_state_process | -10 tcp_rcv_established | +1 7 functions changed, 6 bytes added, 69 bytes removed, diff: -63 net/ipv4/tcp_output.c: update_send_head | -9 tcp_transmit_skb | +19 tcp_cwnd_validate | +1 tcp_write_wakeup | -17 __tcp_push_pending_frames | -25 tcp_push_one | -8 tcp_send_fin | -4 7 functions changed, 20 bytes added, 63 bytes removed, diff: -43 built-in.o.new: 18 functions changed, 40 bytes added, 178 bytes removed, diff: -138 Signed-off-by: Ilpo Järvinen <ilpo.jarvinen@helsinki.fi> Signed-off-by: David S. Miller <davem@davemloft.net>
2007-04-20 22:18:02 -07:00
struct tcp_sock *tp = tcp_sk(sk);
/* Trick#1: The loss is proven. */
if (tp->lost_out)
return true;
/* Not-A-Trick#2 : Classic rule... */
if (!tcp_is_rack(sk) && tcp_dupack_heuristics(tp) > tp->reordering)
return true;
return false;
}
/* Detect loss in event "A" above by marking head of queue up as lost.
* For RFC3517 SACK, a segment is considered lost if it
* has at least tp->reordering SACKed seqments above it; "packets" refers to
* the maximum SACKed segments to pass before reaching this limit.
[TCP]: non-FACK SACK follows conservative SACK loss recovery Many assumptions that are true when no reordering or other strange events happen are not a part of the RFC3517. FACK implementation is based on such assumptions. Previously (before the rewrite) the non-FACK SACK was basically doing fast rexmit and then it times out all skbs when first cumulative ACK arrives, which cannot really be called SACK based recovery :-). RFC3517 SACK disables these things: - Per SKB timeouts & head timeout entry to recovery - Marking at least one skb while in recovery (RFC3517 does this only for the fast retransmission but not for the other skbs when cumulative ACKs arrive in the recovery) - Sacktag's loss detection flavors B and C (see comment before tcp_sacktag_write_queue) This does not implement the "last resort" rule 3 of NextSeg, which allows retransmissions also when not enough SACK blocks have yet arrived above a segment for IsLost to return true [RFC3517]. The implementation differs from RFC3517 in these points: - Rate-halving is used instead of FlightSize / 2 - Instead of using dupACKs to trigger the recovery, the number of SACK blocks is used as FACK does with SACK blocks+holes (which provides more accurate number). It seems that the difference can affect negatively only if the receiver does not generate SACK blocks at all even though it claimed to be SACK-capable. - Dupthresh is not a constant one. Dynamical adjustments include both holes and sacked segments (equal to what FACK has) due to complexity involved in determining the number sacked blocks between highest_sack and the reordered segment. Thus it's will be an over-estimate. Implementation note: tcp_clean_rtx_queue doesn't need a lost_cnt tweak because head skb at that point cannot be SACKED_ACKED (nor would such situation last for long enough to cause problems). Signed-off-by: Ilpo Järvinen <ilpo.jarvinen@helsinki.fi> Signed-off-by: David S. Miller <davem@davemloft.net>
2007-11-15 19:39:31 -08:00
*/
static void tcp_mark_head_lost(struct sock *sk, int packets, int mark_head)
{
[TCP]: Sed magic converts func(sk, tp, ...) -> func(sk, ...) This is (mostly) automated change using magic: sed -e '/struct sock \*sk/ N' -e '/struct sock \*sk/ N' -e '/struct sock \*sk/ N' -e '/struct sock \*sk/ N' -e 's|struct sock \*sk,[\n\t ]*struct tcp_sock \*tp\([^{]*\n{\n\)| struct sock \*sk\1\tstruct tcp_sock *tp = tcp_sk(sk);\n|g' -e 's|struct sock \*sk, struct tcp_sock \*tp| struct sock \*sk|g' -e 's|sk, tp\([^-]\)|sk\1|g' Fixed four unused variable (tp) warnings that were introduced. In addition, manually added newlines after local variables and tweaked function arguments positioning. $ gcc --version gcc (GCC) 4.1.1 20060525 (Red Hat 4.1.1-1) ... $ codiff -fV built-in.o.old built-in.o.new net/ipv4/route.c: rt_cache_flush | +14 1 function changed, 14 bytes added net/ipv4/tcp.c: tcp_setsockopt | -5 tcp_sendpage | -25 tcp_sendmsg | -16 3 functions changed, 46 bytes removed net/ipv4/tcp_input.c: tcp_try_undo_recovery | +3 tcp_try_undo_dsack | +2 tcp_mark_head_lost | -12 tcp_ack | -15 tcp_event_data_recv | -32 tcp_rcv_state_process | -10 tcp_rcv_established | +1 7 functions changed, 6 bytes added, 69 bytes removed, diff: -63 net/ipv4/tcp_output.c: update_send_head | -9 tcp_transmit_skb | +19 tcp_cwnd_validate | +1 tcp_write_wakeup | -17 __tcp_push_pending_frames | -25 tcp_push_one | -8 tcp_send_fin | -4 7 functions changed, 20 bytes added, 63 bytes removed, diff: -43 built-in.o.new: 18 functions changed, 40 bytes added, 178 bytes removed, diff: -138 Signed-off-by: Ilpo Järvinen <ilpo.jarvinen@helsinki.fi> Signed-off-by: David S. Miller <davem@davemloft.net>
2007-04-20 22:18:02 -07:00
struct tcp_sock *tp = tcp_sk(sk);
struct sk_buff *skb;
int cnt;
/* Use SACK to deduce losses of new sequences sent during recovery */
const u32 loss_high = tp->snd_nxt;
WARN_ON(packets > tp->packets_out);
skb = tp->lost_skb_hint;
if (skb) {
/* Head already handled? */
if (mark_head && after(TCP_SKB_CB(skb)->seq, tp->snd_una))
return;
cnt = tp->lost_cnt_hint;
} else {
tcp: implement rb-tree based retransmit queue Using a linear list to store all skbs in write queue has been okay for quite a while : O(N) is not too bad when N < 500. Things get messy when N is the order of 100,000 : Modern TCP stacks want 10Gbit+ of throughput even with 200 ms RTT flows. 40 ns per cache line miss means a full scan can use 4 ms, blowing away CPU caches. SACK processing often can use various hints to avoid parsing whole retransmit queue. But with high packet losses and/or high reordering, hints no longer work. Sender has to process thousands of unfriendly SACK, accumulating a huge socket backlog, burning a cpu and massively dropping packets. Using an rb-tree for retransmit queue has been avoided for years because it added complexity and overhead, but now is the time to be more resistant and say no to quadratic behavior. 1) RTX queue is no longer part of the write queue : already sent skbs are stored in one rb-tree. 2) Since reaching the head of write queue no longer needs sk->sk_send_head, we added an union of sk_send_head and tcp_rtx_queue Tested: On receiver : netem on ingress : delay 150ms 200us loss 1 GRO disabled to force stress and SACK storms. for f in `seq 1 10` do ./netperf -H lpaa6 -l30 -- -K bbr -o THROUGHPUT|tail -1 done | awk '{print $0} {sum += $0} END {printf "%7u\n",sum}' Before patch : 323.87 351.48 339.59 338.62 306.72 204.07 304.93 291.88 202.47 176.88 2840 After patch: 1700.83 2207.98 2070.17 1544.26 2114.76 2124.89 1693.14 1080.91 2216.82 1299.94 18053 Signed-off-by: Eric Dumazet <edumazet@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-10-05 22:21:27 -07:00
skb = tcp_rtx_queue_head(sk);
cnt = 0;
}
tcp: implement rb-tree based retransmit queue Using a linear list to store all skbs in write queue has been okay for quite a while : O(N) is not too bad when N < 500. Things get messy when N is the order of 100,000 : Modern TCP stacks want 10Gbit+ of throughput even with 200 ms RTT flows. 40 ns per cache line miss means a full scan can use 4 ms, blowing away CPU caches. SACK processing often can use various hints to avoid parsing whole retransmit queue. But with high packet losses and/or high reordering, hints no longer work. Sender has to process thousands of unfriendly SACK, accumulating a huge socket backlog, burning a cpu and massively dropping packets. Using an rb-tree for retransmit queue has been avoided for years because it added complexity and overhead, but now is the time to be more resistant and say no to quadratic behavior. 1) RTX queue is no longer part of the write queue : already sent skbs are stored in one rb-tree. 2) Since reaching the head of write queue no longer needs sk->sk_send_head, we added an union of sk_send_head and tcp_rtx_queue Tested: On receiver : netem on ingress : delay 150ms 200us loss 1 GRO disabled to force stress and SACK storms. for f in `seq 1 10` do ./netperf -H lpaa6 -l30 -- -K bbr -o THROUGHPUT|tail -1 done | awk '{print $0} {sum += $0} END {printf "%7u\n",sum}' Before patch : 323.87 351.48 339.59 338.62 306.72 204.07 304.93 291.88 202.47 176.88 2840 After patch: 1700.83 2207.98 2070.17 1544.26 2114.76 2124.89 1693.14 1080.91 2216.82 1299.94 18053 Signed-off-by: Eric Dumazet <edumazet@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-10-05 22:21:27 -07:00
skb_rbtree_walk_from(skb) {
/* TODO: do this better */
/* this is not the most efficient way to do this... */
tp->lost_skb_hint = skb;
tp->lost_cnt_hint = cnt;
[TCP]: non-FACK SACK follows conservative SACK loss recovery Many assumptions that are true when no reordering or other strange events happen are not a part of the RFC3517. FACK implementation is based on such assumptions. Previously (before the rewrite) the non-FACK SACK was basically doing fast rexmit and then it times out all skbs when first cumulative ACK arrives, which cannot really be called SACK based recovery :-). RFC3517 SACK disables these things: - Per SKB timeouts & head timeout entry to recovery - Marking at least one skb while in recovery (RFC3517 does this only for the fast retransmission but not for the other skbs when cumulative ACKs arrive in the recovery) - Sacktag's loss detection flavors B and C (see comment before tcp_sacktag_write_queue) This does not implement the "last resort" rule 3 of NextSeg, which allows retransmissions also when not enough SACK blocks have yet arrived above a segment for IsLost to return true [RFC3517]. The implementation differs from RFC3517 in these points: - Rate-halving is used instead of FlightSize / 2 - Instead of using dupACKs to trigger the recovery, the number of SACK blocks is used as FACK does with SACK blocks+holes (which provides more accurate number). It seems that the difference can affect negatively only if the receiver does not generate SACK blocks at all even though it claimed to be SACK-capable. - Dupthresh is not a constant one. Dynamical adjustments include both holes and sacked segments (equal to what FACK has) due to complexity involved in determining the number sacked blocks between highest_sack and the reordered segment. Thus it's will be an over-estimate. Implementation note: tcp_clean_rtx_queue doesn't need a lost_cnt tweak because head skb at that point cannot be SACKED_ACKED (nor would such situation last for long enough to cause problems). Signed-off-by: Ilpo Järvinen <ilpo.jarvinen@helsinki.fi> Signed-off-by: David S. Miller <davem@davemloft.net>
2007-11-15 19:39:31 -08:00
if (after(TCP_SKB_CB(skb)->end_seq, loss_high))
[TCP]: Fix NewReno's fast rexmit/recovery problems with GSOed skb Fixes a long-standing bug which makes NewReno recovery crippled. With GSO the whole head skb was marked as LOST which is in violation of NewReno procedure that only wants to mark one packet and ended up breaking our TCP code by causing counter overflow because our code was built on top of assumption about valid NewReno procedure. This manifested as triggering a WARN_ON for the overflow in a number of places. It seems relatively safe alternative to just do nothing if tcp_fragment fails due to oom because another duplicate ACK is likely to be received soon and the fragmentation will be retried. Special thanks goes to Soeren Sonnenburg <kernel@nn7.de> who was lucky enough to be able to reproduce this so that the warning for the overflow was hit. It's not as easy task as it seems even if this bug happens quite often because the amount of outstanding data is pretty significant for the mismarkings to lead to an overflow. Because it's very late in 2.6.25-rc cycle (if this even makes in time), I didn't want to touch anything with SACK enabled here. Fragmenting might be useful for it as well but it's more or less a policy decision rather than mandatory fix. Thus there's no need to rush and we can postpone considering tcp_fragment with SACK for 2.6.26. In 2.6.24 and earlier, this very same bug existed but the effect is slightly different because of a small changes in the if conditions that fit to the patch's context. With them nothing got lost marker and thus no retransmissions happened. Signed-off-by: Ilpo Järvinen <ilpo.jarvinen@helsinki.fi> Signed-off-by: David S. Miller <davem@davemloft.net>
2008-04-07 22:32:38 -07:00
break;
if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
[TCP]: non-FACK SACK follows conservative SACK loss recovery Many assumptions that are true when no reordering or other strange events happen are not a part of the RFC3517. FACK implementation is based on such assumptions. Previously (before the rewrite) the non-FACK SACK was basically doing fast rexmit and then it times out all skbs when first cumulative ACK arrives, which cannot really be called SACK based recovery :-). RFC3517 SACK disables these things: - Per SKB timeouts & head timeout entry to recovery - Marking at least one skb while in recovery (RFC3517 does this only for the fast retransmission but not for the other skbs when cumulative ACKs arrive in the recovery) - Sacktag's loss detection flavors B and C (see comment before tcp_sacktag_write_queue) This does not implement the "last resort" rule 3 of NextSeg, which allows retransmissions also when not enough SACK blocks have yet arrived above a segment for IsLost to return true [RFC3517]. The implementation differs from RFC3517 in these points: - Rate-halving is used instead of FlightSize / 2 - Instead of using dupACKs to trigger the recovery, the number of SACK blocks is used as FACK does with SACK blocks+holes (which provides more accurate number). It seems that the difference can affect negatively only if the receiver does not generate SACK blocks at all even though it claimed to be SACK-capable. - Dupthresh is not a constant one. Dynamical adjustments include both holes and sacked segments (equal to what FACK has) due to complexity involved in determining the number sacked blocks between highest_sack and the reordered segment. Thus it's will be an over-estimate. Implementation note: tcp_clean_rtx_queue doesn't need a lost_cnt tweak because head skb at that point cannot be SACKED_ACKED (nor would such situation last for long enough to cause problems). Signed-off-by: Ilpo Järvinen <ilpo.jarvinen@helsinki.fi> Signed-off-by: David S. Miller <davem@davemloft.net>
2007-11-15 19:39:31 -08:00
cnt += tcp_skb_pcount(skb);
if (cnt > packets)
break;
[TCP]: Fix NewReno's fast rexmit/recovery problems with GSOed skb Fixes a long-standing bug which makes NewReno recovery crippled. With GSO the whole head skb was marked as LOST which is in violation of NewReno procedure that only wants to mark one packet and ended up breaking our TCP code by causing counter overflow because our code was built on top of assumption about valid NewReno procedure. This manifested as triggering a WARN_ON for the overflow in a number of places. It seems relatively safe alternative to just do nothing if tcp_fragment fails due to oom because another duplicate ACK is likely to be received soon and the fragmentation will be retried. Special thanks goes to Soeren Sonnenburg <kernel@nn7.de> who was lucky enough to be able to reproduce this so that the warning for the overflow was hit. It's not as easy task as it seems even if this bug happens quite often because the amount of outstanding data is pretty significant for the mismarkings to lead to an overflow. Because it's very late in 2.6.25-rc cycle (if this even makes in time), I didn't want to touch anything with SACK enabled here. Fragmenting might be useful for it as well but it's more or less a policy decision rather than mandatory fix. Thus there's no need to rush and we can postpone considering tcp_fragment with SACK for 2.6.26. In 2.6.24 and earlier, this very same bug existed but the effect is slightly different because of a small changes in the if conditions that fit to the patch's context. With them nothing got lost marker and thus no retransmissions happened. Signed-off-by: Ilpo Järvinen <ilpo.jarvinen@helsinki.fi> Signed-off-by: David S. Miller <davem@davemloft.net>
2008-04-07 22:32:38 -07:00
if (!(TCP_SKB_CB(skb)->sacked & TCPCB_LOST))
tcp_mark_skb_lost(sk, skb);
if (mark_head)
break;
}
tcp_verify_left_out(tp);
}
/* Account newly detected lost packet(s) */
[TCP]: non-FACK SACK follows conservative SACK loss recovery Many assumptions that are true when no reordering or other strange events happen are not a part of the RFC3517. FACK implementation is based on such assumptions. Previously (before the rewrite) the non-FACK SACK was basically doing fast rexmit and then it times out all skbs when first cumulative ACK arrives, which cannot really be called SACK based recovery :-). RFC3517 SACK disables these things: - Per SKB timeouts & head timeout entry to recovery - Marking at least one skb while in recovery (RFC3517 does this only for the fast retransmission but not for the other skbs when cumulative ACKs arrive in the recovery) - Sacktag's loss detection flavors B and C (see comment before tcp_sacktag_write_queue) This does not implement the "last resort" rule 3 of NextSeg, which allows retransmissions also when not enough SACK blocks have yet arrived above a segment for IsLost to return true [RFC3517]. The implementation differs from RFC3517 in these points: - Rate-halving is used instead of FlightSize / 2 - Instead of using dupACKs to trigger the recovery, the number of SACK blocks is used as FACK does with SACK blocks+holes (which provides more accurate number). It seems that the difference can affect negatively only if the receiver does not generate SACK blocks at all even though it claimed to be SACK-capable. - Dupthresh is not a constant one. Dynamical adjustments include both holes and sacked segments (equal to what FACK has) due to complexity involved in determining the number sacked blocks between highest_sack and the reordered segment. Thus it's will be an over-estimate. Implementation note: tcp_clean_rtx_queue doesn't need a lost_cnt tweak because head skb at that point cannot be SACKED_ACKED (nor would such situation last for long enough to cause problems). Signed-off-by: Ilpo Järvinen <ilpo.jarvinen@helsinki.fi> Signed-off-by: David S. Miller <davem@davemloft.net>
2007-11-15 19:39:31 -08:00
static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit)
{
[TCP]: Sed magic converts func(sk, tp, ...) -> func(sk, ...) This is (mostly) automated change using magic: sed -e '/struct sock \*sk/ N' -e '/struct sock \*sk/ N' -e '/struct sock \*sk/ N' -e '/struct sock \*sk/ N' -e 's|struct sock \*sk,[\n\t ]*struct tcp_sock \*tp\([^{]*\n{\n\)| struct sock \*sk\1\tstruct tcp_sock *tp = tcp_sk(sk);\n|g' -e 's|struct sock \*sk, struct tcp_sock \*tp| struct sock \*sk|g' -e 's|sk, tp\([^-]\)|sk\1|g' Fixed four unused variable (tp) warnings that were introduced. In addition, manually added newlines after local variables and tweaked function arguments positioning. $ gcc --version gcc (GCC) 4.1.1 20060525 (Red Hat 4.1.1-1) ... $ codiff -fV built-in.o.old built-in.o.new net/ipv4/route.c: rt_cache_flush | +14 1 function changed, 14 bytes added net/ipv4/tcp.c: tcp_setsockopt | -5 tcp_sendpage | -25 tcp_sendmsg | -16 3 functions changed, 46 bytes removed net/ipv4/tcp_input.c: tcp_try_undo_recovery | +3 tcp_try_undo_dsack | +2 tcp_mark_head_lost | -12 tcp_ack | -15 tcp_event_data_recv | -32 tcp_rcv_state_process | -10 tcp_rcv_established | +1 7 functions changed, 6 bytes added, 69 bytes removed, diff: -63 net/ipv4/tcp_output.c: update_send_head | -9 tcp_transmit_skb | +19 tcp_cwnd_validate | +1 tcp_write_wakeup | -17 __tcp_push_pending_frames | -25 tcp_push_one | -8 tcp_send_fin | -4 7 functions changed, 20 bytes added, 63 bytes removed, diff: -43 built-in.o.new: 18 functions changed, 40 bytes added, 178 bytes removed, diff: -138 Signed-off-by: Ilpo Järvinen <ilpo.jarvinen@helsinki.fi> Signed-off-by: David S. Miller <davem@davemloft.net>
2007-04-20 22:18:02 -07:00
struct tcp_sock *tp = tcp_sk(sk);
if (tcp_is_sack(tp)) {
[TCP]: non-FACK SACK follows conservative SACK loss recovery Many assumptions that are true when no reordering or other strange events happen are not a part of the RFC3517. FACK implementation is based on such assumptions. Previously (before the rewrite) the non-FACK SACK was basically doing fast rexmit and then it times out all skbs when first cumulative ACK arrives, which cannot really be called SACK based recovery :-). RFC3517 SACK disables these things: - Per SKB timeouts & head timeout entry to recovery - Marking at least one skb while in recovery (RFC3517 does this only for the fast retransmission but not for the other skbs when cumulative ACKs arrive in the recovery) - Sacktag's loss detection flavors B and C (see comment before tcp_sacktag_write_queue) This does not implement the "last resort" rule 3 of NextSeg, which allows retransmissions also when not enough SACK blocks have yet arrived above a segment for IsLost to return true [RFC3517]. The implementation differs from RFC3517 in these points: - Rate-halving is used instead of FlightSize / 2 - Instead of using dupACKs to trigger the recovery, the number of SACK blocks is used as FACK does with SACK blocks+holes (which provides more accurate number). It seems that the difference can affect negatively only if the receiver does not generate SACK blocks at all even though it claimed to be SACK-capable. - Dupthresh is not a constant one. Dynamical adjustments include both holes and sacked segments (equal to what FACK has) due to complexity involved in determining the number sacked blocks between highest_sack and the reordered segment. Thus it's will be an over-estimate. Implementation note: tcp_clean_rtx_queue doesn't need a lost_cnt tweak because head skb at that point cannot be SACKED_ACKED (nor would such situation last for long enough to cause problems). Signed-off-by: Ilpo Järvinen <ilpo.jarvinen@helsinki.fi> Signed-off-by: David S. Miller <davem@davemloft.net>
2007-11-15 19:39:31 -08:00
int sacked_upto = tp->sacked_out - tp->reordering;
if (sacked_upto >= 0)
tcp_mark_head_lost(sk, sacked_upto, 0);
else if (fast_rexmit)
tcp_mark_head_lost(sk, 1, 1);
}
}
static bool tcp_tsopt_ecr_before(const struct tcp_sock *tp, u32 when)
{
return tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
before(tp->rx_opt.rcv_tsecr, when);
}
tcp: track the packet timings in RACK This patch is the first half of the RACK loss recovery. RACK loss recovery uses the notion of time instead of packet sequence (FACK) or counts (dupthresh). It's inspired by the previous FACK heuristic in tcp_mark_lost_retrans(): when a limited transmit (new data packet) is sacked, then current retransmitted sequence below the newly sacked sequence must been lost, since at least one round trip time has elapsed. But it has several limitations: 1) can't detect tail drops since it depends on limited transmit 2) is disabled upon reordering (assumes no reordering) 3) only enabled in fast recovery ut not timeout recovery RACK (Recently ACK) addresses these limitations with the notion of time instead: a packet P1 is lost if a later packet P2 is s/acked, as at least one round trip has passed. Since RACK cares about the time sequence instead of the data sequence of packets, it can detect tail drops when later retransmission is s/acked while FACK or dupthresh can't. For reordering RACK uses a dynamically adjusted reordering window ("reo_wnd") to reduce false positives on ever (small) degree of reordering. This patch implements tcp_advanced_rack() which tracks the most recent transmission time among the packets that have been delivered (ACKed or SACKed) in tp->rack.mstamp. This timestamp is the key to determine which packet has been lost. Consider an example that the sender sends six packets: T1: P1 (lost) T2: P2 T3: P3 T4: P4 T100: sack of P2. rack.mstamp = T2 T101: retransmit P1 T102: sack of P2,P3,P4. rack.mstamp = T4 T205: ACK of P4 since the hole is repaired. rack.mstamp = T101 We need to be careful about spurious retransmission because it may falsely advance tp->rack.mstamp by an RTT or an RTO, causing RACK to falsely mark all packets lost, just like a spurious timeout. We identify spurious retransmission by the ACK's TS echo value. If TS option is not applicable but the retransmission is acknowledged less than min-RTT ago, it is likely to be spurious. We refrain from using the transmission time of these spurious retransmissions. The second half is implemented in the next patch that marks packet lost using RACK timestamp. Signed-off-by: Yuchung Cheng <ycheng@google.com> Signed-off-by: Neal Cardwell <ncardwell@google.com> Signed-off-by: Eric Dumazet <edumazet@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2015-10-16 21:57:46 -07:00
/* skb is spurious retransmitted if the returned timestamp echo
* reply is prior to the skb transmission time
*/
static bool tcp_skb_spurious_retrans(const struct tcp_sock *tp,
const struct sk_buff *skb)
{
return (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS) &&
tcp_tsopt_ecr_before(tp, tcp_skb_timestamp(skb));
}
/* Nothing was retransmitted or returned timestamp is less
* than timestamp of the first retransmission.
*/
static inline bool tcp_packet_delayed(const struct tcp_sock *tp)
{
return tp->retrans_stamp &&
tcp_tsopt_ecr_before(tp, tp->retrans_stamp);
}
/* Undo procedures. */
tcp: zero retrans_stamp if all retrans were acked Ueki Kohei reported that when we are using NewReno with connections that have a very low traffic, we may timeout the connection too early if a second loss occurs after the first one was successfully acked but no data was transfered later. Below is his description of it: When SACK is disabled, and a socket suffers multiple separate TCP retransmissions, that socket's ETIMEDOUT value is calculated from the time of the *first* retransmission instead of the *latest* retransmission. This happens because the tcp_sock's retrans_stamp is set once then never cleared. Take the following connection: Linux remote-machine | | send#1---->(*1)|--------> data#1 --------->| | | | RTO : : | | | ---(*2)|----> data#1(retrans) ---->| | (*3)|<---------- ACK <----------| | | | | : : | : : | : : 16 minutes (or more) : | : : | : : | : : | | | send#2---->(*4)|--------> data#2 --------->| | | | RTO : : | | | ---(*5)|----> data#2(retrans) ---->| | | | | | | RTO*2 : : | | | | | | ETIMEDOUT<----(*6)| | (*1) One data packet sent. (*2) Because no ACK packet is received, the packet is retransmitted. (*3) The ACK packet is received. The transmitted packet is acknowledged. At this point the first "retransmission event" has passed and been recovered from. Any future retransmission is a completely new "event". (*4) After 16 minutes (to correspond with retries2=15), a new data packet is sent. Note: No data is transmitted between (*3) and (*4). The socket's timeout SHOULD be calculated from this point in time, but instead it's calculated from the prior "event" 16 minutes ago. (*5) Because no ACK packet is received, the packet is retransmitted. (*6) At the time of the 2nd retransmission, the socket returns ETIMEDOUT. Therefore, now we clear retrans_stamp as soon as all data during the loss window is fully acked. Reported-by: Ueki Kohei Cc: Neal Cardwell <ncardwell@google.com> Cc: Yuchung Cheng <ycheng@google.com> Signed-off-by: Marcelo Ricardo Leitner <mleitner@redhat.com> Acked-by: Neal Cardwell <ncardwell@google.com> Tested-by: Neal Cardwell <ncardwell@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-11-04 17:15:08 -02:00
/* We can clear retrans_stamp when there are no retransmissions in the
* window. It would seem that it is trivially available for us in
* tp->retrans_out, however, that kind of assumptions doesn't consider
* what will happen if errors occur when sending retransmission for the
* second time. ...It could the that such segment has only
* TCPCB_EVER_RETRANS set at the present time. It seems that checking
* the head skb is enough except for some reneging corner cases that
* are not worth the effort.
*
* Main reason for all this complexity is the fact that connection dying
* time now depends on the validity of the retrans_stamp, in particular,
* that successive retransmissions of a segment must not advance
* retrans_stamp under any conditions.
*/
static bool tcp_any_retrans_done(const struct sock *sk)
{
const struct tcp_sock *tp = tcp_sk(sk);
struct sk_buff *skb;
if (tp->retrans_out)
return true;
tcp: implement rb-tree based retransmit queue Using a linear list to store all skbs in write queue has been okay for quite a while : O(N) is not too bad when N < 500. Things get messy when N is the order of 100,000 : Modern TCP stacks want 10Gbit+ of throughput even with 200 ms RTT flows. 40 ns per cache line miss means a full scan can use 4 ms, blowing away CPU caches. SACK processing often can use various hints to avoid parsing whole retransmit queue. But with high packet losses and/or high reordering, hints no longer work. Sender has to process thousands of unfriendly SACK, accumulating a huge socket backlog, burning a cpu and massively dropping packets. Using an rb-tree for retransmit queue has been avoided for years because it added complexity and overhead, but now is the time to be more resistant and say no to quadratic behavior. 1) RTX queue is no longer part of the write queue : already sent skbs are stored in one rb-tree. 2) Since reaching the head of write queue no longer needs sk->sk_send_head, we added an union of sk_send_head and tcp_rtx_queue Tested: On receiver : netem on ingress : delay 150ms 200us loss 1 GRO disabled to force stress and SACK storms. for f in `seq 1 10` do ./netperf -H lpaa6 -l30 -- -K bbr -o THROUGHPUT|tail -1 done | awk '{print $0} {sum += $0} END {printf "%7u\n",sum}' Before patch : 323.87 351.48 339.59 338.62 306.72 204.07 304.93 291.88 202.47 176.88 2840 After patch: 1700.83 2207.98 2070.17 1544.26 2114.76 2124.89 1693.14 1080.91 2216.82 1299.94 18053 Signed-off-by: Eric Dumazet <edumazet@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-10-05 22:21:27 -07:00
skb = tcp_rtx_queue_head(sk);
tcp: zero retrans_stamp if all retrans were acked Ueki Kohei reported that when we are using NewReno with connections that have a very low traffic, we may timeout the connection too early if a second loss occurs after the first one was successfully acked but no data was transfered later. Below is his description of it: When SACK is disabled, and a socket suffers multiple separate TCP retransmissions, that socket's ETIMEDOUT value is calculated from the time of the *first* retransmission instead of the *latest* retransmission. This happens because the tcp_sock's retrans_stamp is set once then never cleared. Take the following connection: Linux remote-machine | | send#1---->(*1)|--------> data#1 --------->| | | | RTO : : | | | ---(*2)|----> data#1(retrans) ---->| | (*3)|<---------- ACK <----------| | | | | : : | : : | : : 16 minutes (or more) : | : : | : : | : : | | | send#2---->(*4)|--------> data#2 --------->| | | | RTO : : | | | ---(*5)|----> data#2(retrans) ---->| | | | | | | RTO*2 : : | | | | | | ETIMEDOUT<----(*6)| | (*1) One data packet sent. (*2) Because no ACK packet is received, the packet is retransmitted. (*3) The ACK packet is received. The transmitted packet is acknowledged. At this point the first "retransmission event" has passed and been recovered from. Any future retransmission is a completely new "event". (*4) After 16 minutes (to correspond with retries2=15), a new data packet is sent. Note: No data is transmitted between (*3) and (*4). The socket's timeout SHOULD be calculated from this point in time, but instead it's calculated from the prior "event" 16 minutes ago. (*5) Because no ACK packet is received, the packet is retransmitted. (*6) At the time of the 2nd retransmission, the socket returns ETIMEDOUT. Therefore, now we clear retrans_stamp as soon as all data during the loss window is fully acked. Reported-by: Ueki Kohei Cc: Neal Cardwell <ncardwell@google.com> Cc: Yuchung Cheng <ycheng@google.com> Signed-off-by: Marcelo Ricardo Leitner <mleitner@redhat.com> Acked-by: Neal Cardwell <ncardwell@google.com> Tested-by: Neal Cardwell <ncardwell@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-11-04 17:15:08 -02:00
if (unlikely(skb && TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS))
return true;
return false;
}
[TCP]: Sed magic converts func(sk, tp, ...) -> func(sk, ...) This is (mostly) automated change using magic: sed -e '/struct sock \*sk/ N' -e '/struct sock \*sk/ N' -e '/struct sock \*sk/ N' -e '/struct sock \*sk/ N' -e 's|struct sock \*sk,[\n\t ]*struct tcp_sock \*tp\([^{]*\n{\n\)| struct sock \*sk\1\tstruct tcp_sock *tp = tcp_sk(sk);\n|g' -e 's|struct sock \*sk, struct tcp_sock \*tp| struct sock \*sk|g' -e 's|sk, tp\([^-]\)|sk\1|g' Fixed four unused variable (tp) warnings that were introduced. In addition, manually added newlines after local variables and tweaked function arguments positioning. $ gcc --version gcc (GCC) 4.1.1 20060525 (Red Hat 4.1.1-1) ... $ codiff -fV built-in.o.old built-in.o.new net/ipv4/route.c: rt_cache_flush | +14 1 function changed, 14 bytes added net/ipv4/tcp.c: tcp_setsockopt | -5 tcp_sendpage | -25 tcp_sendmsg | -16 3 functions changed, 46 bytes removed net/ipv4/tcp_input.c: tcp_try_undo_recovery | +3 tcp_try_undo_dsack | +2 tcp_mark_head_lost | -12 tcp_ack | -15 tcp_event_data_recv | -32 tcp_rcv_state_process | -10 tcp_rcv_established | +1 7 functions changed, 6 bytes added, 69 bytes removed, diff: -63 net/ipv4/tcp_output.c: update_send_head | -9 tcp_transmit_skb | +19 tcp_cwnd_validate | +1 tcp_write_wakeup | -17 __tcp_push_pending_frames | -25 tcp_push_one | -8 tcp_send_fin | -4 7 functions changed, 20 bytes added, 63 bytes removed, diff: -43 built-in.o.new: 18 functions changed, 40 bytes added, 178 bytes removed, diff: -138 Signed-off-by: Ilpo Järvinen <ilpo.jarvinen@helsinki.fi> Signed-off-by: David S. Miller <davem@davemloft.net>
2007-04-20 22:18:02 -07:00
static void DBGUNDO(struct sock *sk, const char *msg)
{
#if FASTRETRANS_DEBUG > 1
[TCP]: Sed magic converts func(sk, tp, ...) -> func(sk, ...) This is (mostly) automated change using magic: sed -e '/struct sock \*sk/ N' -e '/struct sock \*sk/ N' -e '/struct sock \*sk/ N' -e '/struct sock \*sk/ N' -e 's|struct sock \*sk,[\n\t ]*struct tcp_sock \*tp\([^{]*\n{\n\)| struct sock \*sk\1\tstruct tcp_sock *tp = tcp_sk(sk);\n|g' -e 's|struct sock \*sk, struct tcp_sock \*tp| struct sock \*sk|g' -e 's|sk, tp\([^-]\)|sk\1|g' Fixed four unused variable (tp) warnings that were introduced. In addition, manually added newlines after local variables and tweaked function arguments positioning. $ gcc --version gcc (GCC) 4.1.1 20060525 (Red Hat 4.1.1-1) ... $ codiff -fV built-in.o.old built-in.o.new net/ipv4/route.c: rt_cache_flush | +14 1 function changed, 14 bytes added net/ipv4/tcp.c: tcp_setsockopt | -5 tcp_sendpage | -25 tcp_sendmsg | -16 3 functions changed, 46 bytes removed net/ipv4/tcp_input.c: tcp_try_undo_recovery | +3 tcp_try_undo_dsack | +2 tcp_mark_head_lost | -12 tcp_ack | -15 tcp_event_data_recv | -32 tcp_rcv_state_process | -10 tcp_rcv_established | +1 7 functions changed, 6 bytes added, 69 bytes removed, diff: -63 net/ipv4/tcp_output.c: update_send_head | -9 tcp_transmit_skb | +19 tcp_cwnd_validate | +1 tcp_write_wakeup | -17 __tcp_push_pending_frames | -25 tcp_push_one | -8 tcp_send_fin | -4 7 functions changed, 20 bytes added, 63 bytes removed, diff: -43 built-in.o.new: 18 functions changed, 40 bytes added, 178 bytes removed, diff: -138 Signed-off-by: Ilpo Järvinen <ilpo.jarvinen@helsinki.fi> Signed-off-by: David S. Miller <davem@davemloft.net>
2007-04-20 22:18:02 -07:00
struct tcp_sock *tp = tcp_sk(sk);
struct inet_sock *inet = inet_sk(sk);
[TCP]: Sed magic converts func(sk, tp, ...) -> func(sk, ...) This is (mostly) automated change using magic: sed -e '/struct sock \*sk/ N' -e '/struct sock \*sk/ N' -e '/struct sock \*sk/ N' -e '/struct sock \*sk/ N' -e 's|struct sock \*sk,[\n\t ]*struct tcp_sock \*tp\([^{]*\n{\n\)| struct sock \*sk\1\tstruct tcp_sock *tp = tcp_sk(sk);\n|g' -e 's|struct sock \*sk, struct tcp_sock \*tp| struct sock \*sk|g' -e 's|sk, tp\([^-]\)|sk\1|g' Fixed four unused variable (tp) warnings that were introduced. In addition, manually added newlines after local variables and tweaked function arguments positioning. $ gcc --version gcc (GCC) 4.1.1 20060525 (Red Hat 4.1.1-1) ... $ codiff -fV built-in.o.old built-in.o.new net/ipv4/route.c: rt_cache_flush | +14 1 function changed, 14 bytes added net/ipv4/tcp.c: tcp_setsockopt | -5 tcp_sendpage | -25 tcp_sendmsg | -16 3 functions changed, 46 bytes removed net/ipv4/tcp_input.c: tcp_try_undo_recovery | +3 tcp_try_undo_dsack | +2 tcp_mark_head_lost | -12 tcp_ack | -15 tcp_event_data_recv | -32 tcp_rcv_state_process | -10 tcp_rcv_established | +1 7 functions changed, 6 bytes added, 69 bytes removed, diff: -63 net/ipv4/tcp_output.c: update_send_head | -9 tcp_transmit_skb | +19 tcp_cwnd_validate | +1 tcp_write_wakeup | -17 __tcp_push_pending_frames | -25 tcp_push_one | -8 tcp_send_fin | -4 7 functions changed, 20 bytes added, 63 bytes removed, diff: -43 built-in.o.new: 18 functions changed, 40 bytes added, 178 bytes removed, diff: -138 Signed-off-by: Ilpo Järvinen <ilpo.jarvinen@helsinki.fi> Signed-off-by: David S. Miller <davem@davemloft.net>
2007-04-20 22:18:02 -07:00
if (sk->sk_family == AF_INET) {
pr_debug("Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n",
msg,
&inet->inet_daddr, ntohs(inet->inet_dport),
tcp_snd_cwnd(tp), tcp_left_out(tp),
tp->snd_ssthresh, tp->prior_ssthresh,
tp->packets_out);
}
#if IS_ENABLED(CONFIG_IPV6)
else if (sk->sk_family == AF_INET6) {
pr_debug("Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n",
msg,
&sk->sk_v6_daddr, ntohs(inet->inet_dport),
tcp_snd_cwnd(tp), tcp_left_out(tp),
tp->snd_ssthresh, tp->prior_ssthresh,
tp->packets_out);
}
#endif
#endif
}
static void tcp_undo_cwnd_reduction(struct sock *sk, bool unmark_loss)
{
struct tcp_sock *tp = tcp_sk(sk);
if (unmark_loss) {
struct sk_buff *skb;
tcp: implement rb-tree based retransmit queue Using a linear list to store all skbs in write queue has been okay for quite a while : O(N) is not too bad when N < 500. Things get messy when N is the order of 100,000 : Modern TCP stacks want 10Gbit+ of throughput even with 200 ms RTT flows. 40 ns per cache line miss means a full scan can use 4 ms, blowing away CPU caches. SACK processing often can use various hints to avoid parsing whole retransmit queue. But with high packet losses and/or high reordering, hints no longer work. Sender has to process thousands of unfriendly SACK, accumulating a huge socket backlog, burning a cpu and massively dropping packets. Using an rb-tree for retransmit queue has been avoided for years because it added complexity and overhead, but now is the time to be more resistant and say no to quadratic behavior. 1) RTX queue is no longer part of the write queue : already sent skbs are stored in one rb-tree. 2) Since reaching the head of write queue no longer needs sk->sk_send_head, we added an union of sk_send_head and tcp_rtx_queue Tested: On receiver : netem on ingress : delay 150ms 200us loss 1 GRO disabled to force stress and SACK storms. for f in `seq 1 10` do ./netperf -H lpaa6 -l30 -- -K bbr -o THROUGHPUT|tail -1 done | awk '{print $0} {sum += $0} END {printf "%7u\n",sum}' Before patch : 323.87 351.48 339.59 338.62 306.72 204.07 304.93 291.88 202.47 176.88 2840 After patch: 1700.83 2207.98 2070.17 1544.26 2114.76 2124.89 1693.14 1080.91 2216.82 1299.94 18053 Signed-off-by: Eric Dumazet <edumazet@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-10-05 22:21:27 -07:00
skb_rbtree_walk(skb, &sk->tcp_rtx_queue) {
TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
}
tp->lost_out = 0;
tcp_clear_all_retrans_hints(tp);
}
if (tp->prior_ssthresh) {
const struct inet_connection_sock *icsk = inet_csk(sk);
tcp_snd_cwnd_set(tp, icsk->icsk_ca_ops->undo_cwnd(sk));
if (tp->prior_ssthresh > tp->snd_ssthresh) {
tp->snd_ssthresh = tp->prior_ssthresh;
tcp_ecn_withdraw_cwr(tp);
}
}
tp->snd_cwnd_stamp = tcp_jiffies32;
tp->undo_marker = 0;
tp->rack.advanced = 1; /* Force RACK to re-exam losses */
}
static inline bool tcp_may_undo(const struct tcp_sock *tp)
{
return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp));
}
tcp: fix early ETIMEDOUT after spurious non-SACK RTO Fix a bug reported and analyzed by Nagaraj Arankal, where the handling of a spurious non-SACK RTO could cause a connection to fail to clear retrans_stamp, causing a later RTO to very prematurely time out the connection with ETIMEDOUT. Here is the buggy scenario, expanding upon Nagaraj Arankal's excellent report: (*1) Send one data packet on a non-SACK connection (*2) Because no ACK packet is received, the packet is retransmitted and we enter CA_Loss; but this retransmission is spurious. (*3) The ACK for the original data is received. The transmitted packet is acknowledged. The TCP timestamp is before the retrans_stamp, so tcp_may_undo() returns true, and tcp_try_undo_loss() returns true without changing state to Open (because tcp_is_sack() is false), and tcp_process_loss() returns without calling tcp_try_undo_recovery(). Normally after undoing a CA_Loss episode, tcp_fastretrans_alert() would see that the connection has returned to CA_Open and fall through and call tcp_try_to_open(), which would set retrans_stamp to 0. However, for non-SACK connections we hold the connection in CA_Loss, so do not fall through to call tcp_try_to_open() and do not set retrans_stamp to 0. So retrans_stamp is (erroneously) still non-zero. At this point the first "retransmission event" has passed and been recovered from. Any future retransmission is a completely new "event". However, retrans_stamp is erroneously still set. (And we are still in CA_Loss, which is correct.) (*4) After 16 minutes (to correspond with tcp_retries2=15), a new data packet is sent. Note: No data is transmitted between (*3) and (*4) and we disabled keep alives. The socket's timeout SHOULD be calculated from this point in time, but instead it's calculated from the prior "event" 16 minutes ago (step (*2)). (*5) Because no ACK packet is received, the packet is retransmitted. (*6) At the time of the 2nd retransmission, the socket returns ETIMEDOUT, prematurely, because retrans_stamp is (erroneously) too far in the past (set at the time of (*2)). This commit fixes this bug by ensuring that we reuse in tcp_try_undo_loss() the same careful logic for non-SACK connections that we have in tcp_try_undo_recovery(). To avoid duplicating logic, we factor out that logic into a new tcp_is_non_sack_preventing_reopen() helper and call that helper from both undo functions. Fixes: da34ac7626b5 ("tcp: only undo on partial ACKs in CA_Loss") Reported-by: Nagaraj Arankal <nagaraj.p.arankal@hpe.com> Link: https://lore.kernel.org/all/SJ0PR84MB1847BE6C24D274C46A1B9B0EB27A9@SJ0PR84MB1847.NAMPRD84.PROD.OUTLOOK.COM/ Signed-off-by: Neal Cardwell <ncardwell@google.com> Signed-off-by: Yuchung Cheng <ycheng@google.com> Reviewed-by: Eric Dumazet <edumazet@google.com> Link: https://lore.kernel.org/r/20220903121023.866900-1-ncardwell.kernel@gmail.com Signed-off-by: Paolo Abeni <pabeni@redhat.com>
2022-09-03 08:10:23 -04:00
static bool tcp_is_non_sack_preventing_reopen(struct sock *sk)
{
struct tcp_sock *tp = tcp_sk(sk);
if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) {
/* Hold old state until something *above* high_seq
* is ACKed. For Reno it is MUST to prevent false
* fast retransmits (RFC2582). SACK TCP is safe. */
if (!tcp_any_retrans_done(sk))
tp->retrans_stamp = 0;
return true;
}
return false;
}
/* People celebrate: "We love our President!" */
static bool tcp_try_undo_recovery(struct sock *sk)
{
[TCP]: Sed magic converts func(sk, tp, ...) -> func(sk, ...) This is (mostly) automated change using magic: sed -e '/struct sock \*sk/ N' -e '/struct sock \*sk/ N' -e '/struct sock \*sk/ N' -e '/struct sock \*sk/ N' -e 's|struct sock \*sk,[\n\t ]*struct tcp_sock \*tp\([^{]*\n{\n\)| struct sock \*sk\1\tstruct tcp_sock *tp = tcp_sk(sk);\n|g' -e 's|struct sock \*sk, struct tcp_sock \*tp| struct sock \*sk|g' -e 's|sk, tp\([^-]\)|sk\1|g' Fixed four unused variable (tp) warnings that were introduced. In addition, manually added newlines after local variables and tweaked function arguments positioning. $ gcc --version gcc (GCC) 4.1.1 20060525 (Red Hat 4.1.1-1) ... $ codiff -fV built-in.o.old built-in.o.new net/ipv4/route.c: rt_cache_flush | +14 1 function changed, 14 bytes added net/ipv4/tcp.c: tcp_setsockopt | -5 tcp_sendpage | -25 tcp_sendmsg | -16 3 functions changed, 46 bytes removed net/ipv4/tcp_input.c: tcp_try_undo_recovery | +3 tcp_try_undo_dsack | +2 tcp_mark_head_lost | -12 tcp_ack | -15 tcp_event_data_recv | -32 tcp_rcv_state_process | -10 tcp_rcv_established | +1 7 functions changed, 6 bytes added, 69 bytes removed, diff: -63 net/ipv4/tcp_output.c: update_send_head | -9 tcp_transmit_skb | +19 tcp_cwnd_validate | +1 tcp_write_wakeup | -17 __tcp_push_pending_frames | -25 tcp_push_one | -8 tcp_send_fin | -4 7 functions changed, 20 bytes added, 63 bytes removed, diff: -43 built-in.o.new: 18 functions changed, 40 bytes added, 178 bytes removed, diff: -138 Signed-off-by: Ilpo Järvinen <ilpo.jarvinen@helsinki.fi> Signed-off-by: David S. Miller <davem@davemloft.net>
2007-04-20 22:18:02 -07:00
struct tcp_sock *tp = tcp_sk(sk);
if (tcp_may_undo(tp)) {
int mib_idx;
/* Happy end! We did not retransmit anything
* or our original transmission succeeded.
*/
[TCP]: Sed magic converts func(sk, tp, ...) -> func(sk, ...) This is (mostly) automated change using magic: sed -e '/struct sock \*sk/ N' -e '/struct sock \*sk/ N' -e '/struct sock \*sk/ N' -e '/struct sock \*sk/ N' -e 's|struct sock \*sk,[\n\t ]*struct tcp_sock \*tp\([^{]*\n{\n\)| struct sock \*sk\1\tstruct tcp_sock *tp = tcp_sk(sk);\n|g' -e 's|struct sock \*sk, struct tcp_sock \*tp| struct sock \*sk|g' -e 's|sk, tp\([^-]\)|sk\1|g' Fixed four unused variable (tp) warnings that were introduced. In addition, manually added newlines after local variables and tweaked function arguments positioning. $ gcc --version gcc (GCC) 4.1.1 20060525 (Red Hat 4.1.1-1) ... $ codiff -fV built-in.o.old built-in.o.new net/ipv4/route.c: rt_cache_flush | +14 1 function changed, 14 bytes added net/ipv4/tcp.c: tcp_setsockopt | -5 tcp_sendpage | -25 tcp_sendmsg | -16 3 functions changed, 46 bytes removed net/ipv4/tcp_input.c: tcp_try_undo_recovery | +3 tcp_try_undo_dsack | +2 tcp_mark_head_lost | -12 tcp_ack | -15 tcp_event_data_recv | -32 tcp_rcv_state_process | -10 tcp_rcv_established | +1 7 functions changed, 6 bytes added, 69 bytes removed, diff: -63 net/ipv4/tcp_output.c: update_send_head | -9 tcp_transmit_skb | +19 tcp_cwnd_validate | +1 tcp_write_wakeup | -17 __tcp_push_pending_frames | -25 tcp_push_one | -8 tcp_send_fin | -4 7 functions changed, 20 bytes added, 63 bytes removed, diff: -43 built-in.o.new: 18 functions changed, 40 bytes added, 178 bytes removed, diff: -138 Signed-off-by: Ilpo Järvinen <ilpo.jarvinen@helsinki.fi> Signed-off-by: David S. Miller <davem@davemloft.net>
2007-04-20 22:18:02 -07:00
DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
tcp_undo_cwnd_reduction(sk, false);
if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
mib_idx = LINUX_MIB_TCPLOSSUNDO;
else
mib_idx = LINUX_MIB_TCPFULLUNDO;
NET_INC_STATS(sock_net(sk), mib_idx);
tcp: higher throughput under reordering with adaptive RACK reordering wnd Currently TCP RACK loss detection does not work well if packets are being reordered beyond its static reordering window (min_rtt/4).Under such reordering it may falsely trigger loss recoveries and reduce TCP throughput significantly. This patch improves that by increasing and reducing the reordering window based on DSACK, which is now supported in major TCP implementations. It makes RACK's reo_wnd adaptive based on DSACK and no. of recoveries. - If DSACK is received, increment reo_wnd by min_rtt/4 (upper bounded by srtt), since there is possibility that spurious retransmission was due to reordering delay longer than reo_wnd. - Persist the current reo_wnd value for TCP_RACK_RECOVERY_THRESH (16) no. of successful recoveries (accounts for full DSACK-based loss recovery undo). After that, reset it to default (min_rtt/4). - At max, reo_wnd is incremented only once per rtt. So that the new DSACK on which we are reacting, is due to the spurious retx (approx) after the reo_wnd has been updated last time. - reo_wnd is tracked in terms of steps (of min_rtt/4), rather than absolute value to account for change in rtt. In our internal testing, we observed significant increase in throughput, in scenarios where reordering exceeds min_rtt/4 (previous static value). Signed-off-by: Priyaranjan Jha <priyarjha@google.com> Signed-off-by: Yuchung Cheng <ycheng@google.com> Signed-off-by: Neal Cardwell <ncardwell@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-11-03 16:38:48 -07:00
} else if (tp->rack.reo_wnd_persist) {
tp->rack.reo_wnd_persist--;
}
tcp: fix early ETIMEDOUT after spurious non-SACK RTO Fix a bug reported and analyzed by Nagaraj Arankal, where the handling of a spurious non-SACK RTO could cause a connection to fail to clear retrans_stamp, causing a later RTO to very prematurely time out the connection with ETIMEDOUT. Here is the buggy scenario, expanding upon Nagaraj Arankal's excellent report: (*1) Send one data packet on a non-SACK connection (*2) Because no ACK packet is received, the packet is retransmitted and we enter CA_Loss; but this retransmission is spurious. (*3) The ACK for the original data is received. The transmitted packet is acknowledged. The TCP timestamp is before the retrans_stamp, so tcp_may_undo() returns true, and tcp_try_undo_loss() returns true without changing state to Open (because tcp_is_sack() is false), and tcp_process_loss() returns without calling tcp_try_undo_recovery(). Normally after undoing a CA_Loss episode, tcp_fastretrans_alert() would see that the connection has returned to CA_Open and fall through and call tcp_try_to_open(), which would set retrans_stamp to 0. However, for non-SACK connections we hold the connection in CA_Loss, so do not fall through to call tcp_try_to_open() and do not set retrans_stamp to 0. So retrans_stamp is (erroneously) still non-zero. At this point the first "retransmission event" has passed and been recovered from. Any future retransmission is a completely new "event". However, retrans_stamp is erroneously still set. (And we are still in CA_Loss, which is correct.) (*4) After 16 minutes (to correspond with tcp_retries2=15), a new data packet is sent. Note: No data is transmitted between (*3) and (*4) and we disabled keep alives. The socket's timeout SHOULD be calculated from this point in time, but instead it's calculated from the prior "event" 16 minutes ago (step (*2)). (*5) Because no ACK packet is received, the packet is retransmitted. (*6) At the time of the 2nd retransmission, the socket returns ETIMEDOUT, prematurely, because retrans_stamp is (erroneously) too far in the past (set at the time of (*2)). This commit fixes this bug by ensuring that we reuse in tcp_try_undo_loss() the same careful logic for non-SACK connections that we have in tcp_try_undo_recovery(). To avoid duplicating logic, we factor out that logic into a new tcp_is_non_sack_preventing_reopen() helper and call that helper from both undo functions. Fixes: da34ac7626b5 ("tcp: only undo on partial ACKs in CA_Loss") Reported-by: Nagaraj Arankal <nagaraj.p.arankal@hpe.com> Link: https://lore.kernel.org/all/SJ0PR84MB1847BE6C24D274C46A1B9B0EB27A9@SJ0PR84MB1847.NAMPRD84.PROD.OUTLOOK.COM/ Signed-off-by: Neal Cardwell <ncardwell@google.com> Signed-off-by: Yuchung Cheng <ycheng@google.com> Reviewed-by: Eric Dumazet <edumazet@google.com> Link: https://lore.kernel.org/r/20220903121023.866900-1-ncardwell.kernel@gmail.com Signed-off-by: Paolo Abeni <pabeni@redhat.com>
2022-09-03 08:10:23 -04:00
if (tcp_is_non_sack_preventing_reopen(sk))
return true;
tcp_set_ca_state(sk, TCP_CA_Open);
tp->is_sack_reneg = 0;
return false;
}
/* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
static bool tcp_try_undo_dsack(struct sock *sk)
{
[TCP]: Sed magic converts func(sk, tp, ...) -> func(sk, ...) This is (mostly) automated change using magic: sed -e '/struct sock \*sk/ N' -e '/struct sock \*sk/ N' -e '/struct sock \*sk/ N' -e '/struct sock \*sk/ N' -e 's|struct sock \*sk,[\n\t ]*struct tcp_sock \*tp\([^{]*\n{\n\)| struct sock \*sk\1\tstruct tcp_sock *tp = tcp_sk(sk);\n|g' -e 's|struct sock \*sk, struct tcp_sock \*tp| struct sock \*sk|g' -e 's|sk, tp\([^-]\)|sk\1|g' Fixed four unused variable (tp) warnings that were introduced. In addition, manually added newlines after local variables and tweaked function arguments positioning. $ gcc --version gcc (GCC) 4.1.1 20060525 (Red Hat 4.1.1-1) ... $ codiff -fV built-in.o.old built-in.o.new net/ipv4/route.c: rt_cache_flush | +14 1 function changed, 14 bytes added net/ipv4/tcp.c: tcp_setsockopt | -5 tcp_sendpage | -25 tcp_sendmsg | -16 3 functions changed, 46 bytes removed net/ipv4/tcp_input.c: tcp_try_undo_recovery | +3 tcp_try_undo_dsack | +2 tcp_mark_head_lost | -12 tcp_ack | -15 tcp_event_data_recv | -32 tcp_rcv_state_process | -10 tcp_rcv_established | +1 7 functions changed, 6 bytes added, 69 bytes removed, diff: -63 net/ipv4/tcp_output.c: update_send_head | -9 tcp_transmit_skb | +19 tcp_cwnd_validate | +1 tcp_write_wakeup | -17 __tcp_push_pending_frames | -25 tcp_push_one | -8 tcp_send_fin | -4 7 functions changed, 20 bytes added, 63 bytes removed, diff: -43 built-in.o.new: 18 functions changed, 40 bytes added, 178 bytes removed, diff: -138 Signed-off-by: Ilpo Järvinen <ilpo.jarvinen@helsinki.fi> Signed-off-by: David S. Miller <davem@davemloft.net>
2007-04-20 22:18:02 -07:00
struct tcp_sock *tp = tcp_sk(sk);
if (tp->undo_marker && !tp->undo_retrans) {
tcp: higher throughput under reordering with adaptive RACK reordering wnd Currently TCP RACK loss detection does not work well if packets are being reordered beyond its static reordering window (min_rtt/4).Under such reordering it may falsely trigger loss recoveries and reduce TCP throughput significantly. This patch improves that by increasing and reducing the reordering window based on DSACK, which is now supported in major TCP implementations. It makes RACK's reo_wnd adaptive based on DSACK and no. of recoveries. - If DSACK is received, increment reo_wnd by min_rtt/4 (upper bounded by srtt), since there is possibility that spurious retransmission was due to reordering delay longer than reo_wnd. - Persist the current reo_wnd value for TCP_RACK_RECOVERY_THRESH (16) no. of successful recoveries (accounts for full DSACK-based loss recovery undo). After that, reset it to default (min_rtt/4). - At max, reo_wnd is incremented only once per rtt. So that the new DSACK on which we are reacting, is due to the spurious retx (approx) after the reo_wnd has been updated last time. - reo_wnd is tracked in terms of steps (of min_rtt/4), rather than absolute value to account for change in rtt. In our internal testing, we observed significant increase in throughput, in scenarios where reordering exceeds min_rtt/4 (previous static value). Signed-off-by: Priyaranjan Jha <priyarjha@google.com> Signed-off-by: Yuchung Cheng <ycheng@google.com> Signed-off-by: Neal Cardwell <ncardwell@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-11-03 16:38:48 -07:00
tp->rack.reo_wnd_persist = min(TCP_RACK_RECOVERY_THRESH,
tp->rack.reo_wnd_persist + 1);
[TCP]: Sed magic converts func(sk, tp, ...) -> func(sk, ...) This is (mostly) automated change using magic: sed -e '/struct sock \*sk/ N' -e '/struct sock \*sk/ N' -e '/struct sock \*sk/ N' -e '/struct sock \*sk/ N' -e 's|struct sock \*sk,[\n\t ]*struct tcp_sock \*tp\([^{]*\n{\n\)| struct sock \*sk\1\tstruct tcp_sock *tp = tcp_sk(sk);\n|g' -e 's|struct sock \*sk, struct tcp_sock \*tp| struct sock \*sk|g' -e 's|sk, tp\([^-]\)|sk\1|g' Fixed four unused variable (tp) warnings that were introduced. In addition, manually added newlines after local variables and tweaked function arguments positioning. $ gcc --version gcc (GCC) 4.1.1 20060525 (Red Hat 4.1.1-1) ... $ codiff -fV built-in.o.old built-in.o.new net/ipv4/route.c: rt_cache_flush | +14 1 function changed, 14 bytes added net/ipv4/tcp.c: tcp_setsockopt | -5 tcp_sendpage | -25 tcp_sendmsg | -16 3 functions changed, 46 bytes removed net/ipv4/tcp_input.c: tcp_try_undo_recovery | +3 tcp_try_undo_dsack | +2 tcp_mark_head_lost | -12 tcp_ack | -15 tcp_event_data_recv | -32 tcp_rcv_state_process | -10 tcp_rcv_established | +1 7 functions changed, 6 bytes added, 69 bytes removed, diff: -63 net/ipv4/tcp_output.c: update_send_head | -9 tcp_transmit_skb | +19 tcp_cwnd_validate | +1 tcp_write_wakeup | -17 __tcp_push_pending_frames | -25 tcp_push_one | -8 tcp_send_fin | -4 7 functions changed, 20 bytes added, 63 bytes removed, diff: -43 built-in.o.new: 18 functions changed, 40 bytes added, 178 bytes removed, diff: -138 Signed-off-by: Ilpo Järvinen <ilpo.jarvinen@helsinki.fi> Signed-off-by: David S. Miller <davem@davemloft.net>
2007-04-20 22:18:02 -07:00
DBGUNDO(sk, "D-SACK");
tcp_undo_cwnd_reduction(sk, false);
NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKUNDO);
return true;
}
return false;
}
tcp: implement RFC5682 F-RTO This patch implements F-RTO (foward RTO recovery): When the first retransmission after timeout is acknowledged, F-RTO sends new data instead of old data. If the next ACK acknowledges some never-retransmitted data, then the timeout was spurious and the congestion state is reverted. Otherwise if the next ACK selectively acknowledges the new data, then the timeout was genuine and the loss recovery continues. This idea applies to recurring timeouts as well. While F-RTO sends different data during timeout recovery, it does not (and should not) change the congestion control. The implementaion follows the three steps of SACK enhanced algorithm (section 3) in RFC5682. Step 1 is in tcp_enter_loss(). Step 2 and 3 are in tcp_process_loss(). The basic version is not supported because SACK enhanced version also works for non-SACK connections. The new implementation is functionally in parity with the old F-RTO implementation except the one case where it increases undo events: In addition to the RFC algorithm, a spurious timeout may be detected without sending data in step 2, as long as the SACK confirms not all the original data are dropped. When this happens, the sender will undo the cwnd and perhaps enter fast recovery instead. This additional check increases the F-RTO undo events by 5x compared to the prior implementation on Google Web servers, since the sender often does not have new data to send for HTTP. Note F-RTO may detect spurious timeout before Eifel with timestamps does so. Signed-off-by: Yuchung Cheng <ycheng@google.com> Acked-by: Eric Dumazet <edumazet@google.com> Acked-by: Neal Cardwell <ncardwell@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2013-03-20 13:33:00 +00:00
/* Undo during loss recovery after partial ACK or using F-RTO. */
static bool tcp_try_undo_loss(struct sock *sk, bool frto_undo)
{
[TCP]: Sed magic converts func(sk, tp, ...) -> func(sk, ...) This is (mostly) automated change using magic: sed -e '/struct sock \*sk/ N' -e '/struct sock \*sk/ N' -e '/struct sock \*sk/ N' -e '/struct sock \*sk/ N' -e 's|struct sock \*sk,[\n\t ]*struct tcp_sock \*tp\([^{]*\n{\n\)| struct sock \*sk\1\tstruct tcp_sock *tp = tcp_sk(sk);\n|g' -e 's|struct sock \*sk, struct tcp_sock \*tp| struct sock \*sk|g' -e 's|sk, tp\([^-]\)|sk\1|g' Fixed four unused variable (tp) warnings that were introduced. In addition, manually added newlines after local variables and tweaked function arguments positioning. $ gcc --version gcc (GCC) 4.1.1 20060525 (Red Hat 4.1.1-1) ... $ codiff -fV built-in.o.old built-in.o.new net/ipv4/route.c: rt_cache_flush | +14 1 function changed, 14 bytes added net/ipv4/tcp.c: tcp_setsockopt | -5 tcp_sendpage | -25 tcp_sendmsg | -16 3 functions changed, 46 bytes removed net/ipv4/tcp_input.c: tcp_try_undo_recovery | +3 tcp_try_undo_dsack | +2 tcp_mark_head_lost | -12 tcp_ack | -15 tcp_event_data_recv | -32 tcp_rcv_state_process | -10 tcp_rcv_established | +1 7 functions changed, 6 bytes added, 69 bytes removed, diff: -63 net/ipv4/tcp_output.c: update_send_head | -9 tcp_transmit_skb | +19 tcp_cwnd_validate | +1 tcp_write_wakeup | -17 __tcp_push_pending_frames | -25 tcp_push_one | -8 tcp_send_fin | -4 7 functions changed, 20 bytes added, 63 bytes removed, diff: -43 built-in.o.new: 18 functions changed, 40 bytes added, 178 bytes removed, diff: -138 Signed-off-by: Ilpo Järvinen <ilpo.jarvinen@helsinki.fi> Signed-off-by: David S. Miller <davem@davemloft.net>
2007-04-20 22:18:02 -07:00
struct tcp_sock *tp = tcp_sk(sk);
tcp: implement RFC5682 F-RTO This patch implements F-RTO (foward RTO recovery): When the first retransmission after timeout is acknowledged, F-RTO sends new data instead of old data. If the next ACK acknowledges some never-retransmitted data, then the timeout was spurious and the congestion state is reverted. Otherwise if the next ACK selectively acknowledges the new data, then the timeout was genuine and the loss recovery continues. This idea applies to recurring timeouts as well. While F-RTO sends different data during timeout recovery, it does not (and should not) change the congestion control. The implementaion follows the three steps of SACK enhanced algorithm (section 3) in RFC5682. Step 1 is in tcp_enter_loss(). Step 2 and 3 are in tcp_process_loss(). The basic version is not supported because SACK enhanced version also works for non-SACK connections. The new implementation is functionally in parity with the old F-RTO implementation except the one case where it increases undo events: In addition to the RFC algorithm, a spurious timeout may be detected without sending data in step 2, as long as the SACK confirms not all the original data are dropped. When this happens, the sender will undo the cwnd and perhaps enter fast recovery instead. This additional check increases the F-RTO undo events by 5x compared to the prior implementation on Google Web servers, since the sender often does not have new data to send for HTTP. Note F-RTO may detect spurious timeout before Eifel with timestamps does so. Signed-off-by: Yuchung Cheng <ycheng@google.com> Acked-by: Eric Dumazet <edumazet@google.com> Acked-by: Neal Cardwell <ncardwell@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2013-03-20 13:33:00 +00:00
if (frto_undo || tcp_may_undo(tp)) {
tcp_undo_cwnd_reduction(sk, true);
[TCP]: Sed magic converts func(sk, tp, ...) -> func(sk, ...) This is (mostly) automated change using magic: sed -e '/struct sock \*sk/ N' -e '/struct sock \*sk/ N' -e '/struct sock \*sk/ N' -e '/struct sock \*sk/ N' -e 's|struct sock \*sk,[\n\t ]*struct tcp_sock \*tp\([^{]*\n{\n\)| struct sock \*sk\1\tstruct tcp_sock *tp = tcp_sk(sk);\n|g' -e 's|struct sock \*sk, struct tcp_sock \*tp| struct sock \*sk|g' -e 's|sk, tp\([^-]\)|sk\1|g' Fixed four unused variable (tp) warnings that were introduced. In addition, manually added newlines after local variables and tweaked function arguments positioning. $ gcc --version gcc (GCC) 4.1.1 20060525 (Red Hat 4.1.1-1) ... $ codiff -fV built-in.o.old built-in.o.new net/ipv4/route.c: rt_cache_flush | +14 1 function changed, 14 bytes added net/ipv4/tcp.c: tcp_setsockopt | -5 tcp_sendpage | -25 tcp_sendmsg | -16 3 functions changed, 46 bytes removed net/ipv4/tcp_input.c: tcp_try_undo_recovery | +3 tcp_try_undo_dsack | +2 tcp_mark_head_lost | -12 tcp_ack | -15 tcp_event_data_recv | -32 tcp_rcv_state_process | -10 tcp_rcv_established | +1 7 functions changed, 6 bytes added, 69 bytes removed, diff: -63 net/ipv4/tcp_output.c: update_send_head | -9 tcp_transmit_skb | +19 tcp_cwnd_validate | +1 tcp_write_wakeup | -17 __tcp_push_pending_frames | -25 tcp_push_one | -8 tcp_send_fin | -4 7 functions changed, 20 bytes added, 63 bytes removed, diff: -43 built-in.o.new: 18 functions changed, 40 bytes added, 178 bytes removed, diff: -138 Signed-off-by: Ilpo Järvinen <ilpo.jarvinen@helsinki.fi> Signed-off-by: David S. Miller <davem@davemloft.net>
2007-04-20 22:18:02 -07:00
DBGUNDO(sk, "partial loss");
NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPLOSSUNDO);
tcp: implement RFC5682 F-RTO This patch implements F-RTO (foward RTO recovery): When the first retransmission after timeout is acknowledged, F-RTO sends new data instead of old data. If the next ACK acknowledges some never-retransmitted data, then the timeout was spurious and the congestion state is reverted. Otherwise if the next ACK selectively acknowledges the new data, then the timeout was genuine and the loss recovery continues. This idea applies to recurring timeouts as well. While F-RTO sends different data during timeout recovery, it does not (and should not) change the congestion control. The implementaion follows the three steps of SACK enhanced algorithm (section 3) in RFC5682. Step 1 is in tcp_enter_loss(). Step 2 and 3 are in tcp_process_loss(). The basic version is not supported because SACK enhanced version also works for non-SACK connections. The new implementation is functionally in parity with the old F-RTO implementation except the one case where it increases undo events: In addition to the RFC algorithm, a spurious timeout may be detected without sending data in step 2, as long as the SACK confirms not all the original data are dropped. When this happens, the sender will undo the cwnd and perhaps enter fast recovery instead. This additional check increases the F-RTO undo events by 5x compared to the prior implementation on Google Web servers, since the sender often does not have new data to send for HTTP. Note F-RTO may detect spurious timeout before Eifel with timestamps does so. Signed-off-by: Yuchung Cheng <ycheng@google.com> Acked-by: Eric Dumazet <edumazet@google.com> Acked-by: Neal Cardwell <ncardwell@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2013-03-20 13:33:00 +00:00
if (frto_undo)
NET_INC_STATS(sock_net(sk),
LINUX_MIB_TCPSPURIOUSRTOS);
inet_csk(sk)->icsk_retransmits = 0;
tcp: fix early ETIMEDOUT after spurious non-SACK RTO Fix a bug reported and analyzed by Nagaraj Arankal, where the handling of a spurious non-SACK RTO could cause a connection to fail to clear retrans_stamp, causing a later RTO to very prematurely time out the connection with ETIMEDOUT. Here is the buggy scenario, expanding upon Nagaraj Arankal's excellent report: (*1) Send one data packet on a non-SACK connection (*2) Because no ACK packet is received, the packet is retransmitted and we enter CA_Loss; but this retransmission is spurious. (*3) The ACK for the original data is received. The transmitted packet is acknowledged. The TCP timestamp is before the retrans_stamp, so tcp_may_undo() returns true, and tcp_try_undo_loss() returns true without changing state to Open (because tcp_is_sack() is false), and tcp_process_loss() returns without calling tcp_try_undo_recovery(). Normally after undoing a CA_Loss episode, tcp_fastretrans_alert() would see that the connection has returned to CA_Open and fall through and call tcp_try_to_open(), which would set retrans_stamp to 0. However, for non-SACK connections we hold the connection in CA_Loss, so do not fall through to call tcp_try_to_open() and do not set retrans_stamp to 0. So retrans_stamp is (erroneously) still non-zero. At this point the first "retransmission event" has passed and been recovered from. Any future retransmission is a completely new "event". However, retrans_stamp is erroneously still set. (And we are still in CA_Loss, which is correct.) (*4) After 16 minutes (to correspond with tcp_retries2=15), a new data packet is sent. Note: No data is transmitted between (*3) and (*4) and we disabled keep alives. The socket's timeout SHOULD be calculated from this point in time, but instead it's calculated from the prior "event" 16 minutes ago (step (*2)). (*5) Because no ACK packet is received, the packet is retransmitted. (*6) At the time of the 2nd retransmission, the socket returns ETIMEDOUT, prematurely, because retrans_stamp is (erroneously) too far in the past (set at the time of (*2)). This commit fixes this bug by ensuring that we reuse in tcp_try_undo_loss() the same careful logic for non-SACK connections that we have in tcp_try_undo_recovery(). To avoid duplicating logic, we factor out that logic into a new tcp_is_non_sack_preventing_reopen() helper and call that helper from both undo functions. Fixes: da34ac7626b5 ("tcp: only undo on partial ACKs in CA_Loss") Reported-by: Nagaraj Arankal <nagaraj.p.arankal@hpe.com> Link: https://lore.kernel.org/all/SJ0PR84MB1847BE6C24D274C46A1B9B0EB27A9@SJ0PR84MB1847.NAMPRD84.PROD.OUTLOOK.COM/ Signed-off-by: Neal Cardwell <ncardwell@google.com> Signed-off-by: Yuchung Cheng <ycheng@google.com> Reviewed-by: Eric Dumazet <edumazet@google.com> Link: https://lore.kernel.org/r/20220903121023.866900-1-ncardwell.kernel@gmail.com Signed-off-by: Paolo Abeni <pabeni@redhat.com>
2022-09-03 08:10:23 -04:00
if (tcp_is_non_sack_preventing_reopen(sk))
return true;
if (frto_undo || tcp_is_sack(tp)) {
tcp_set_ca_state(sk, TCP_CA_Open);
tp->is_sack_reneg = 0;
}
return true;
}
return false;
}
/* The cwnd reduction in CWR and Recovery uses the PRR algorithm in RFC 6937.
* It computes the number of packets to send (sndcnt) based on packets newly
* delivered:
* 1) If the packets in flight is larger than ssthresh, PRR spreads the
* cwnd reductions across a full RTT.
* 2) Otherwise PRR uses packet conservation to send as much as delivered.
* But when SND_UNA is acked without further losses,
* slow starts cwnd up to ssthresh to speed up the recovery.
*/
static void tcp_init_cwnd_reduction(struct sock *sk)
{
struct tcp_sock *tp = tcp_sk(sk);
tp->high_seq = tp->snd_nxt;
tp->tlp_high_seq = 0;
tp->snd_cwnd_cnt = 0;
tp->prior_cwnd = tcp_snd_cwnd(tp);
tp->prr_delivered = 0;
tp->prr_out = 0;
tp->snd_ssthresh = inet_csk(sk)->icsk_ca_ops->ssthresh(sk);
tcp_ecn_queue_cwr(tp);
}
void tcp_cwnd_reduction(struct sock *sk, int newly_acked_sacked, int newly_lost, int flag)
{
struct tcp_sock *tp = tcp_sk(sk);
int sndcnt = 0;
int delta = tp->snd_ssthresh - tcp_packets_in_flight(tp);
tcp: fix zero cwnd in tcp_cwnd_reduction Patch 3759824da87b ("tcp: PRR uses CRB mode by default and SS mode conditionally") introduced a bug that cwnd may become 0 when both inflight and sndcnt are 0 (cwnd = inflight + sndcnt). This may lead to a div-by-zero if the connection starts another cwnd reduction phase by setting tp->prior_cwnd to the current cwnd (0) in tcp_init_cwnd_reduction(). To prevent this we skip PRR operation when nothing is acked or sacked. Then cwnd must be positive in all cases as long as ssthresh is positive: 1) The proportional reduction mode inflight > ssthresh > 0 2) The reduction bound mode a) inflight == ssthresh > 0 b) inflight < ssthresh sndcnt > 0 since newly_acked_sacked > 0 and inflight < ssthresh Therefore in all cases inflight and sndcnt can not both be 0. We check invalid tp->prior_cwnd to avoid potential div0 bugs. In reality this bug is triggered only with a sequence of less common events. For example, the connection is terminating an ECN-triggered cwnd reduction with an inflight 0, then it receives reordered/old ACKs or DSACKs from prior transmission (which acks nothing). Or the connection is in fast recovery stage that marks everything lost, but fails to retransmit due to local issues, then receives data packets from other end which acks nothing. Fixes: 3759824da87b ("tcp: PRR uses CRB mode by default and SS mode conditionally") Reported-by: Oleksandr Natalenko <oleksandr@natalenko.name> Signed-off-by: Yuchung Cheng <ycheng@google.com> Signed-off-by: Neal Cardwell <ncardwell@google.com> Signed-off-by: Eric Dumazet <edumazet@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-01-06 12:42:38 -08:00
if (newly_acked_sacked <= 0 || WARN_ON_ONCE(!tp->prior_cwnd))
return;
tp->prr_delivered += newly_acked_sacked;
if (delta < 0) {
u64 dividend = (u64)tp->snd_ssthresh * tp->prr_delivered +
tp->prior_cwnd - 1;
sndcnt = div_u64(dividend, tp->prior_cwnd) - tp->prr_out;
} else {
sndcnt = max_t(int, tp->prr_delivered - tp->prr_out,
newly_acked_sacked);
if (flag & FLAG_SND_UNA_ADVANCED && !newly_lost)
sndcnt++;
sndcnt = min(delta, sndcnt);
}
/* Force a fast retransmit upon entering fast recovery */
sndcnt = max(sndcnt, (tp->prr_out ? 0 : 1));
tcp_snd_cwnd_set(tp, tcp_packets_in_flight(tp) + sndcnt);
}
static inline void tcp_end_cwnd_reduction(struct sock *sk)
{
struct tcp_sock *tp = tcp_sk(sk);
Proportional Rate Reduction for TCP. This patch implements Proportional Rate Reduction (PRR) for TCP. PRR is an algorithm that determines TCP's sending rate in fast recovery. PRR avoids excessive window reductions and aims for the actual congestion window size at the end of recovery to be as close as possible to the window determined by the congestion control algorithm. PRR also improves accuracy of the amount of data sent during loss recovery. The patch implements the recommended flavor of PRR called PRR-SSRB (Proportional rate reduction with slow start reduction bound) and replaces the existing rate halving algorithm. PRR improves upon the existing Linux fast recovery under a number of conditions including: 1) burst losses where the losses implicitly reduce the amount of outstanding data (pipe) below the ssthresh value selected by the congestion control algorithm and, 2) losses near the end of short flows where application runs out of data to send. As an example, with the existing rate halving implementation a single loss event can cause a connection carrying short Web transactions to go into the slow start mode after the recovery. This is because during recovery Linux pulls the congestion window down to packets_in_flight+1 on every ACK. A short Web response often runs out of new data to send and its pipe reduces to zero by the end of recovery when all its packets are drained from the network. Subsequent HTTP responses using the same connection will have to slow start to raise cwnd to ssthresh. PRR on the other hand aims for the cwnd to be as close as possible to ssthresh by the end of recovery. A description of PRR and a discussion of its performance can be found at the following links: - IETF Draft: http://tools.ietf.org/html/draft-mathis-tcpm-proportional-rate-reduction-01 - IETF Slides: http://www.ietf.org/proceedings/80/slides/tcpm-6.pdf http://tools.ietf.org/agenda/81/slides/tcpm-2.pdf - Paper to appear in Internet Measurements Conference (IMC) 2011: Improving TCP Loss Recovery Nandita Dukkipati, Matt Mathis, Yuchung Cheng Signed-off-by: Nandita Dukkipati <nanditad@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2011-08-21 20:21:57 +00:00
tcp: new CC hook to set sending rate with rate_sample in any CA state This commit introduces an optional new "omnipotent" hook, cong_control(), for congestion control modules. The cong_control() function is called at the end of processing an ACK (i.e., after updating sequence numbers, the SACK scoreboard, and loss detection). At that moment we have precise delivery rate information the congestion control module can use to control the sending behavior (using cwnd, TSO skb size, and pacing rate) in any CA state. This function can also be used by a congestion control that prefers not to use the default cwnd reduction approach (i.e., the PRR algorithm) during CA_Recovery to control the cwnd and sending rate during loss recovery. We take advantage of the fact that recent changes defer the retransmission or transmission of new data (e.g. by F-RTO) in recovery until the new tcp_cong_control() function is run. With this commit, we only run tcp_update_pacing_rate() if the congestion control is not using this new API. New congestion controls which use the new API do not want the TCP stack to run the default pacing rate calculation and overwrite whatever pacing rate they have chosen at initialization time. Signed-off-by: Van Jacobson <vanj@google.com> Signed-off-by: Neal Cardwell <ncardwell@google.com> Signed-off-by: Yuchung Cheng <ycheng@google.com> Signed-off-by: Nandita Dukkipati <nanditad@google.com> Signed-off-by: Eric Dumazet <edumazet@google.com> Signed-off-by: Soheil Hassas Yeganeh <soheil@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-09-19 23:39:21 -04:00
if (inet_csk(sk)->icsk_ca_ops->cong_control)
return;
/* Reset cwnd to ssthresh in CWR or Recovery (unless it's undone) */
if (tp->snd_ssthresh < TCP_INFINITE_SSTHRESH &&
(inet_csk(sk)->icsk_ca_state == TCP_CA_CWR || tp->undo_marker)) {
tcp_snd_cwnd_set(tp, tp->snd_ssthresh);
tp->snd_cwnd_stamp = tcp_jiffies32;
}
tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
}
/* Enter CWR state. Disable cwnd undo since congestion is proven with ECN */
void tcp_enter_cwr(struct sock *sk)
{
struct tcp_sock *tp = tcp_sk(sk);
tp->prior_ssthresh = 0;
if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) {
tp->undo_marker = 0;
tcp_init_cwnd_reduction(sk);
tcp_set_ca_state(sk, TCP_CA_CWR);
}
}
EXPORT_SYMBOL(tcp_enter_cwr);
tcp: Fix inconsistency source (CA_Open only when !tcp_left_out(tp)) It is possible that this skip path causes TCP to end up into an invalid state where ca_state was left to CA_Open while some segments already came into sacked_out. If next valid ACK doesn't contain new SACK information TCP fails to enter into tcp_fastretrans_alert(). Thus at least high_seq is set incorrectly to a too high seqno because some new data segments could be sent in between (and also, limited transmit is not being correctly invoked there). Reordering in both directions can easily cause this situation to occur. I guess we would want to use tcp_moderate_cwnd(tp) there as well as it may be possible to use this to trigger oversized burst to network by sending an old ACK with huge amount of SACK info, but I'm a bit unsure about its effects (mainly to FlightSize), so to be on the safe side I just currently fixed it minimally to keep TCP's state consistent (obviously, such nasty ACKs have been possible this far). Though it seems that FlightSize is already underestimated by some amount, so probably on the long term we might want to trigger recovery there too, if appropriate, to make FlightSize calculation to resemble reality at the time when the losses where discovered (but such change scares me too much now and requires some more thinking anyway how to do that as it likely involves some code shuffling). This bug was found by Brian Vowell while running my TCP debug patch to find cause of another TCP issue (fackets_out miscount). Signed-off-by: Ilpo Järvinen <ilpo.jarvinen@helsinki.fi> Signed-off-by: David S. Miller <davem@davemloft.net>
2008-06-04 11:34:22 -07:00
static void tcp_try_keep_open(struct sock *sk)
{
struct tcp_sock *tp = tcp_sk(sk);
int state = TCP_CA_Open;
if (tcp_left_out(tp) || tcp_any_retrans_done(sk))
tcp: Fix inconsistency source (CA_Open only when !tcp_left_out(tp)) It is possible that this skip path causes TCP to end up into an invalid state where ca_state was left to CA_Open while some segments already came into sacked_out. If next valid ACK doesn't contain new SACK information TCP fails to enter into tcp_fastretrans_alert(). Thus at least high_seq is set incorrectly to a too high seqno because some new data segments could be sent in between (and also, limited transmit is not being correctly invoked there). Reordering in both directions can easily cause this situation to occur. I guess we would want to use tcp_moderate_cwnd(tp) there as well as it may be possible to use this to trigger oversized burst to network by sending an old ACK with huge amount of SACK info, but I'm a bit unsure about its effects (mainly to FlightSize), so to be on the safe side I just currently fixed it minimally to keep TCP's state consistent (obviously, such nasty ACKs have been possible this far). Though it seems that FlightSize is already underestimated by some amount, so probably on the long term we might want to trigger recovery there too, if appropriate, to make FlightSize calculation to resemble reality at the time when the losses where discovered (but such change scares me too much now and requires some more thinking anyway how to do that as it likely involves some code shuffling). This bug was found by Brian Vowell while running my TCP debug patch to find cause of another TCP issue (fackets_out miscount). Signed-off-by: Ilpo Järvinen <ilpo.jarvinen@helsinki.fi> Signed-off-by: David S. Miller <davem@davemloft.net>
2008-06-04 11:34:22 -07:00
state = TCP_CA_Disorder;
if (inet_csk(sk)->icsk_ca_state != state) {
tcp_set_ca_state(sk, state);
tp->high_seq = tp->snd_nxt;
}
}
static void tcp_try_to_open(struct sock *sk, int flag)
{
[TCP]: Sed magic converts func(sk, tp, ...) -> func(sk, ...) This is (mostly) automated change using magic: sed -e '/struct sock \*sk/ N' -e '/struct sock \*sk/ N' -e '/struct sock \*sk/ N' -e '/struct sock \*sk/ N' -e 's|struct sock \*sk,[\n\t ]*struct tcp_sock \*tp\([^{]*\n{\n\)| struct sock \*sk\1\tstruct tcp_sock *tp = tcp_sk(sk);\n|g' -e 's|struct sock \*sk, struct tcp_sock \*tp| struct sock \*sk|g' -e 's|sk, tp\([^-]\)|sk\1|g' Fixed four unused variable (tp) warnings that were introduced. In addition, manually added newlines after local variables and tweaked function arguments positioning. $ gcc --version gcc (GCC) 4.1.1 20060525 (Red Hat 4.1.1-1) ... $ codiff -fV built-in.o.old built-in.o.new net/ipv4/route.c: rt_cache_flush | +14 1 function changed, 14 bytes added net/ipv4/tcp.c: tcp_setsockopt | -5 tcp_sendpage | -25 tcp_sendmsg | -16 3 functions changed, 46 bytes removed net/ipv4/tcp_input.c: tcp_try_undo_recovery | +3 tcp_try_undo_dsack | +2 tcp_mark_head_lost | -12 tcp_ack | -15 tcp_event_data_recv | -32 tcp_rcv_state_process | -10 tcp_rcv_established | +1 7 functions changed, 6 bytes added, 69 bytes removed, diff: -63 net/ipv4/tcp_output.c: update_send_head | -9 tcp_transmit_skb | +19 tcp_cwnd_validate | +1 tcp_write_wakeup | -17 __tcp_push_pending_frames | -25 tcp_push_one | -8 tcp_send_fin | -4 7 functions changed, 20 bytes added, 63 bytes removed, diff: -43 built-in.o.new: 18 functions changed, 40 bytes added, 178 bytes removed, diff: -138 Signed-off-by: Ilpo Järvinen <ilpo.jarvinen@helsinki.fi> Signed-off-by: David S. Miller <davem@davemloft.net>
2007-04-20 22:18:02 -07:00
struct tcp_sock *tp = tcp_sk(sk);
tcp_verify_left_out(tp);
tcp: refactor F-RTO The patch series refactor the F-RTO feature (RFC4138/5682). This is to simplify the loss recovery processing. Existing F-RTO was developed during the experimental stage (RFC4138) and has many experimental features. It takes a separate code path from the traditional timeout processing by overloading CA_Disorder instead of using CA_Loss state. This complicates CA_Disorder state handling because it's also used for handling dubious ACKs and undos. While the algorithm in the RFC does not change the congestion control, the implementation intercepts congestion control in various places (e.g., frto_cwnd in tcp_ack()). The new code implements newer F-RTO RFC5682 using CA_Loss processing path. F-RTO becomes a small extension in the timeout processing and interfaces with congestion control and Eifel undo modules. It lets congestion control (module) determines how many to send independently. F-RTO only chooses what to send in order to detect spurious retranmission. If timeout is found spurious it invokes existing Eifel undo algorithms like DSACK or TCP timestamp based detection. The first patch removes all F-RTO code except the sysctl_tcp_frto is left for the new implementation. Since CA_EVENT_FRTO is removed, TCP westwood now computes ssthresh on regular timeout CA_EVENT_LOSS event. Signed-off-by: Yuchung Cheng <ycheng@google.com> Acked-by: Neal Cardwell <ncardwell@google.com> Acked-by: Eric Dumazet <edumazet@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2013-03-20 13:32:58 +00:00
if (!tcp_any_retrans_done(sk))
tp->retrans_stamp = 0;
if (flag & FLAG_ECE)
tcp_enter_cwr(sk);
if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
tcp: Fix inconsistency source (CA_Open only when !tcp_left_out(tp)) It is possible that this skip path causes TCP to end up into an invalid state where ca_state was left to CA_Open while some segments already came into sacked_out. If next valid ACK doesn't contain new SACK information TCP fails to enter into tcp_fastretrans_alert(). Thus at least high_seq is set incorrectly to a too high seqno because some new data segments could be sent in between (and also, limited transmit is not being correctly invoked there). Reordering in both directions can easily cause this situation to occur. I guess we would want to use tcp_moderate_cwnd(tp) there as well as it may be possible to use this to trigger oversized burst to network by sending an old ACK with huge amount of SACK info, but I'm a bit unsure about its effects (mainly to FlightSize), so to be on the safe side I just currently fixed it minimally to keep TCP's state consistent (obviously, such nasty ACKs have been possible this far). Though it seems that FlightSize is already underestimated by some amount, so probably on the long term we might want to trigger recovery there too, if appropriate, to make FlightSize calculation to resemble reality at the time when the losses where discovered (but such change scares me too much now and requires some more thinking anyway how to do that as it likely involves some code shuffling). This bug was found by Brian Vowell while running my TCP debug patch to find cause of another TCP issue (fackets_out miscount). Signed-off-by: Ilpo Järvinen <ilpo.jarvinen@helsinki.fi> Signed-off-by: David S. Miller <davem@davemloft.net>
2008-06-04 11:34:22 -07:00
tcp_try_keep_open(sk);
}
}
static void tcp_mtup_probe_failed(struct sock *sk)
{
struct inet_connection_sock *icsk = inet_csk(sk);
icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1;
icsk->icsk_mtup.probe_size = 0;
NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPFAIL);
}
static void tcp_mtup_probe_success(struct sock *sk)
{
struct tcp_sock *tp = tcp_sk(sk);
struct inet_connection_sock *icsk = inet_csk(sk);
tcp: fix tcp_mtup_probe_success vs wrong snd_cwnd syzbot got a new report [1] finally pointing to a very old bug, added in initial support for MTU probing. tcp_mtu_probe() has checks about starting an MTU probe if tcp_snd_cwnd(tp) >= 11. But nothing prevents tcp_snd_cwnd(tp) to be reduced later and before the MTU probe succeeds. This bug would lead to potential zero-divides. Debugging added in commit 40570375356c ("tcp: add accessors to read/set tp->snd_cwnd") has paid off :) While we are at it, address potential overflows in this code. [1] WARNING: CPU: 1 PID: 14132 at include/net/tcp.h:1219 tcp_mtup_probe_success+0x366/0x570 net/ipv4/tcp_input.c:2712 Modules linked in: CPU: 1 PID: 14132 Comm: syz-executor.2 Not tainted 5.18.0-syzkaller-07857-gbabf0bb978e3 #0 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 01/01/2011 RIP: 0010:tcp_snd_cwnd_set include/net/tcp.h:1219 [inline] RIP: 0010:tcp_mtup_probe_success+0x366/0x570 net/ipv4/tcp_input.c:2712 Code: 74 08 48 89 ef e8 da 80 17 f9 48 8b 45 00 65 48 ff 80 80 03 00 00 48 83 c4 30 5b 41 5c 41 5d 41 5e 41 5f 5d c3 e8 aa b0 c5 f8 <0f> 0b e9 16 fe ff ff 48 8b 4c 24 08 80 e1 07 38 c1 0f 8c c7 fc ff RSP: 0018:ffffc900079e70f8 EFLAGS: 00010287 RAX: ffffffff88c0f7f6 RBX: ffff8880756e7a80 RCX: 0000000000040000 RDX: ffffc9000c6c4000 RSI: 0000000000031f9e RDI: 0000000000031f9f RBP: 0000000000000000 R08: ffffffff88c0f606 R09: ffffc900079e7520 R10: ffffed101011226d R11: 1ffff1101011226c R12: 1ffff1100eadcf50 R13: ffff8880756e72c0 R14: 1ffff1100eadcf89 R15: dffffc0000000000 FS: 00007f643236e700(0000) GS:ffff8880b9b00000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 00007f1ab3f1e2a0 CR3: 0000000064fe7000 CR4: 00000000003506e0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 Call Trace: <TASK> tcp_clean_rtx_queue+0x223a/0x2da0 net/ipv4/tcp_input.c:3356 tcp_ack+0x1962/0x3c90 net/ipv4/tcp_input.c:3861 tcp_rcv_established+0x7c8/0x1ac0 net/ipv4/tcp_input.c:5973 tcp_v6_do_rcv+0x57b/0x1210 net/ipv6/tcp_ipv6.c:1476 sk_backlog_rcv include/net/sock.h:1061 [inline] __release_sock+0x1d8/0x4c0 net/core/sock.c:2849 release_sock+0x5d/0x1c0 net/core/sock.c:3404 sk_stream_wait_memory+0x700/0xdc0 net/core/stream.c:145 tcp_sendmsg_locked+0x111d/0x3fc0 net/ipv4/tcp.c:1410 tcp_sendmsg+0x2c/0x40 net/ipv4/tcp.c:1448 sock_sendmsg_nosec net/socket.c:714 [inline] sock_sendmsg net/socket.c:734 [inline] __sys_sendto+0x439/0x5c0 net/socket.c:2119 __do_sys_sendto net/socket.c:2131 [inline] __se_sys_sendto net/socket.c:2127 [inline] __x64_sys_sendto+0xda/0xf0 net/socket.c:2127 do_syscall_x64 arch/x86/entry/common.c:50 [inline] do_syscall_64+0x2b/0x70 arch/x86/entry/common.c:80 entry_SYSCALL_64_after_hwframe+0x46/0xb0 RIP: 0033:0x7f6431289109 Code: ff ff c3 66 2e 0f 1f 84 00 00 00 00 00 0f 1f 40 00 48 89 f8 48 89 f7 48 89 d6 48 89 ca 4d 89 c2 4d 89 c8 4c 8b 4c 24 08 0f 05 <48> 3d 01 f0 ff ff 73 01 c3 48 c7 c1 b8 ff ff ff f7 d8 64 89 01 48 RSP: 002b:00007f643236e168 EFLAGS: 00000246 ORIG_RAX: 000000000000002c RAX: ffffffffffffffda RBX: 00007f643139c100 RCX: 00007f6431289109 RDX: 00000000d0d0c2ac RSI: 0000000020000080 RDI: 000000000000000a RBP: 00007f64312e308d R08: 0000000000000000 R09: 0000000000000000 R10: 0000000000000001 R11: 0000000000000246 R12: 0000000000000000 R13: 00007fff372533af R14: 00007f643236e300 R15: 0000000000022000 Fixes: 5d424d5a674f ("[TCP]: MTU probing") Signed-off-by: Eric Dumazet <edumazet@google.com> Reported-by: syzbot <syzkaller@googlegroups.com> Acked-by: Yuchung Cheng <ycheng@google.com> Acked-by: Neal Cardwell <ncardwell@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2022-05-27 14:28:29 -07:00
u64 val;
tp->prior_ssthresh = tcp_current_ssthresh(sk);
tcp: fix tcp_mtup_probe_success vs wrong snd_cwnd syzbot got a new report [1] finally pointing to a very old bug, added in initial support for MTU probing. tcp_mtu_probe() has checks about starting an MTU probe if tcp_snd_cwnd(tp) >= 11. But nothing prevents tcp_snd_cwnd(tp) to be reduced later and before the MTU probe succeeds. This bug would lead to potential zero-divides. Debugging added in commit 40570375356c ("tcp: add accessors to read/set tp->snd_cwnd") has paid off :) While we are at it, address potential overflows in this code. [1] WARNING: CPU: 1 PID: 14132 at include/net/tcp.h:1219 tcp_mtup_probe_success+0x366/0x570 net/ipv4/tcp_input.c:2712 Modules linked in: CPU: 1 PID: 14132 Comm: syz-executor.2 Not tainted 5.18.0-syzkaller-07857-gbabf0bb978e3 #0 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 01/01/2011 RIP: 0010:tcp_snd_cwnd_set include/net/tcp.h:1219 [inline] RIP: 0010:tcp_mtup_probe_success+0x366/0x570 net/ipv4/tcp_input.c:2712 Code: 74 08 48 89 ef e8 da 80 17 f9 48 8b 45 00 65 48 ff 80 80 03 00 00 48 83 c4 30 5b 41 5c 41 5d 41 5e 41 5f 5d c3 e8 aa b0 c5 f8 <0f> 0b e9 16 fe ff ff 48 8b 4c 24 08 80 e1 07 38 c1 0f 8c c7 fc ff RSP: 0018:ffffc900079e70f8 EFLAGS: 00010287 RAX: ffffffff88c0f7f6 RBX: ffff8880756e7a80 RCX: 0000000000040000 RDX: ffffc9000c6c4000 RSI: 0000000000031f9e RDI: 0000000000031f9f RBP: 0000000000000000 R08: ffffffff88c0f606 R09: ffffc900079e7520 R10: ffffed101011226d R11: 1ffff1101011226c R12: 1ffff1100eadcf50 R13: ffff8880756e72c0 R14: 1ffff1100eadcf89 R15: dffffc0000000000 FS: 00007f643236e700(0000) GS:ffff8880b9b00000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 00007f1ab3f1e2a0 CR3: 0000000064fe7000 CR4: 00000000003506e0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 Call Trace: <TASK> tcp_clean_rtx_queue+0x223a/0x2da0 net/ipv4/tcp_input.c:3356 tcp_ack+0x1962/0x3c90 net/ipv4/tcp_input.c:3861 tcp_rcv_established+0x7c8/0x1ac0 net/ipv4/tcp_input.c:5973 tcp_v6_do_rcv+0x57b/0x1210 net/ipv6/tcp_ipv6.c:1476 sk_backlog_rcv include/net/sock.h:1061 [inline] __release_sock+0x1d8/0x4c0 net/core/sock.c:2849 release_sock+0x5d/0x1c0 net/core/sock.c:3404 sk_stream_wait_memory+0x700/0xdc0 net/core/stream.c:145 tcp_sendmsg_locked+0x111d/0x3fc0 net/ipv4/tcp.c:1410 tcp_sendmsg+0x2c/0x40 net/ipv4/tcp.c:1448 sock_sendmsg_nosec net/socket.c:714 [inline] sock_sendmsg net/socket.c:734 [inline] __sys_sendto+0x439/0x5c0 net/socket.c:2119 __do_sys_sendto net/socket.c:2131 [inline] __se_sys_sendto net/socket.c:2127 [inline] __x64_sys_sendto+0xda/0xf0 net/socket.c:2127 do_syscall_x64 arch/x86/entry/common.c:50 [inline] do_syscall_64+0x2b/0x70 arch/x86/entry/common.c:80 entry_SYSCALL_64_after_hwframe+0x46/0xb0 RIP: 0033:0x7f6431289109 Code: ff ff c3 66 2e 0f 1f 84 00 00 00 00 00 0f 1f 40 00 48 89 f8 48 89 f7 48 89 d6 48 89 ca 4d 89 c2 4d 89 c8 4c 8b 4c 24 08 0f 05 <48> 3d 01 f0 ff ff 73 01 c3 48 c7 c1 b8 ff ff ff f7 d8 64 89 01 48 RSP: 002b:00007f643236e168 EFLAGS: 00000246 ORIG_RAX: 000000000000002c RAX: ffffffffffffffda RBX: 00007f643139c100 RCX: 00007f6431289109 RDX: 00000000d0d0c2ac RSI: 0000000020000080 RDI: 000000000000000a RBP: 00007f64312e308d R08: 0000000000000000 R09: 0000000000000000 R10: 0000000000000001 R11: 0000000000000246 R12: 0000000000000000 R13: 00007fff372533af R14: 00007f643236e300 R15: 0000000000022000 Fixes: 5d424d5a674f ("[TCP]: MTU probing") Signed-off-by: Eric Dumazet <edumazet@google.com> Reported-by: syzbot <syzkaller@googlegroups.com> Acked-by: Yuchung Cheng <ycheng@google.com> Acked-by: Neal Cardwell <ncardwell@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2022-05-27 14:28:29 -07:00
val = (u64)tcp_snd_cwnd(tp) * tcp_mss_to_mtu(sk, tp->mss_cache);
do_div(val, icsk->icsk_mtup.probe_size);
DEBUG_NET_WARN_ON_ONCE((u32)val != val);
tcp_snd_cwnd_set(tp, max_t(u32, 1U, val));
tp->snd_cwnd_cnt = 0;
tp->snd_cwnd_stamp = tcp_jiffies32;
tp->snd_ssthresh = tcp_current_ssthresh(sk);
icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size;
icsk->icsk_mtup.probe_size = 0;
tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPSUCCESS);
}
/* Do a simple retransmit without using the backoff mechanisms in
* tcp_timer. This is used for path mtu discovery.
* The socket is already locked here.
*/
void tcp_simple_retransmit(struct sock *sk)
{
const struct inet_connection_sock *icsk = inet_csk(sk);
struct tcp_sock *tp = tcp_sk(sk);
struct sk_buff *skb;
tcp: Add logic to check for SYN w/ data in tcp_simple_retransmit There are cases where a fastopen SYN may trigger either a ICMP_TOOBIG message in the case of IPv6 or a fragmentation request in the case of IPv4. This results in the socket stalling for a second or more as it does not respond to the message by retransmitting the SYN frame. Normally a SYN frame should not be able to trigger a ICMP_TOOBIG or ICMP_FRAG_NEEDED however in the case of fastopen we can have a frame that makes use of the entire MSS. In the case of fastopen it does, and an additional complication is that the retransmit queue doesn't contain the original frames. As a result when tcp_simple_retransmit is called and walks the list of frames in the queue it may not mark the frames as lost because both the SYN and the data packet each individually are smaller than the MSS size after the adjustment. This results in the socket being stalled until the retransmit timer kicks in and forces the SYN frame out again without the data attached. In order to resolve this we can reduce the MSS the packets are compared to in tcp_simple_retransmit to -1 for cases where we are still in the TCP_SYN_SENT state for a fastopen socket. Doing this we will mark all of the packets related to the fastopen SYN as lost. Signed-off-by: Alexander Duyck <alexanderduyck@fb.com> Signed-off-by: Eric Dumazet <edumazet@google.com> Signed-off-by: Yuchung Cheng <ycheng@google.com> Link: https://lore.kernel.org/r/160780498125.3272.15437756269539236825.stgit@localhost.localdomain Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2020-12-12 12:31:24 -08:00
int mss;
/* A fastopen SYN request is stored as two separate packets within
* the retransmit queue, this is done by tcp_send_syn_data().
* As a result simply checking the MSS of the frames in the queue
* will not work for the SYN packet.
*
* Us being here is an indication of a path MTU issue so we can
* assume that the fastopen SYN was lost and just mark all the
* frames in the retransmit queue as lost. We will use an MSS of
* -1 to mark all frames as lost, otherwise compute the current MSS.
*/
if (tp->syn_data && sk->sk_state == TCP_SYN_SENT)
mss = -1;
else
mss = tcp_current_mss(sk);
tcp: implement rb-tree based retransmit queue Using a linear list to store all skbs in write queue has been okay for quite a while : O(N) is not too bad when N < 500. Things get messy when N is the order of 100,000 : Modern TCP stacks want 10Gbit+ of throughput even with 200 ms RTT flows. 40 ns per cache line miss means a full scan can use 4 ms, blowing away CPU caches. SACK processing often can use various hints to avoid parsing whole retransmit queue. But with high packet losses and/or high reordering, hints no longer work. Sender has to process thousands of unfriendly SACK, accumulating a huge socket backlog, burning a cpu and massively dropping packets. Using an rb-tree for retransmit queue has been avoided for years because it added complexity and overhead, but now is the time to be more resistant and say no to quadratic behavior. 1) RTX queue is no longer part of the write queue : already sent skbs are stored in one rb-tree. 2) Since reaching the head of write queue no longer needs sk->sk_send_head, we added an union of sk_send_head and tcp_rtx_queue Tested: On receiver : netem on ingress : delay 150ms 200us loss 1 GRO disabled to force stress and SACK storms. for f in `seq 1 10` do ./netperf -H lpaa6 -l30 -- -K bbr -o THROUGHPUT|tail -1 done | awk '{print $0} {sum += $0} END {printf "%7u\n",sum}' Before patch : 323.87 351.48 339.59 338.62 306.72 204.07 304.93 291.88 202.47 176.88 2840 After patch: 1700.83 2207.98 2070.17 1544.26 2114.76 2124.89 1693.14 1080.91 2216.82 1299.94 18053 Signed-off-by: Eric Dumazet <edumazet@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-10-05 22:21:27 -07:00
skb_rbtree_walk(skb, &sk->tcp_rtx_queue) {
if (tcp_skb_seglen(skb) > mss)
tcp_mark_skb_lost(sk, skb);
}
tcp_clear_retrans_hints_partial(tp);
if (!tp->lost_out)
return;
if (tcp_is_reno(tp))
tcp_limit_reno_sacked(tp);
tcp_verify_left_out(tp);
/* Don't muck with the congestion window here.
* Reason is that we do not increase amount of _data_
* in network, but units changed and effective
* cwnd/ssthresh really reduced now.
*/
if (icsk->icsk_ca_state != TCP_CA_Loss) {
tp->high_seq = tp->snd_nxt;
tp->snd_ssthresh = tcp_current_ssthresh(sk);
tp->prior_ssthresh = 0;
tp->undo_marker = 0;
tcp_set_ca_state(sk, TCP_CA_Loss);
}
tcp_xmit_retransmit_queue(sk);
}
EXPORT_SYMBOL(tcp_simple_retransmit);
tcp: add reordering timer in RACK loss detection This patch makes RACK install a reordering timer when it suspects some packets might be lost, but wants to delay the decision a little bit to accomodate reordering. It does not create a new timer but instead repurposes the existing RTO timer, because both are meant to retransmit packets. Specifically it arms a timer ICSK_TIME_REO_TIMEOUT when the RACK timing check fails. The wait time is set to RACK.RTT + RACK.reo_wnd - (NOW - Packet.xmit_time) + fudge This translates to expecting a packet (Packet) should take (RACK.RTT + RACK.reo_wnd + fudge) to deliver after it was sent. When there are multiple packets that need a timer, we use one timer with the maximum timeout. Therefore the timer conservatively uses the maximum window to expire N packets by one timeout, instead of N timeouts to expire N packets sent at different times. The fudge factor is 2 jiffies to ensure when the timer fires, all the suspected packets would exceed the deadline and be marked lost by tcp_rack_detect_loss(). It has to be at least 1 jiffy because the clock may tick between calling icsk_reset_xmit_timer(timeout) and actually hang the timer. The next jiffy is to lower-bound the timeout to 2 jiffies when reo_wnd is < 1ms. When the reordering timer fires (tcp_rack_reo_timeout): If we aren't in Recovery we'll enter fast recovery and force fast retransmit. This is very similar to the early retransmit (RFC5827) except RACK is not constrained to only enter recovery for small outstanding flights. Signed-off-by: Yuchung Cheng <ycheng@google.com> Signed-off-by: Neal Cardwell <ncardwell@google.com> Acked-by: Eric Dumazet <edumazet@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-01-12 22:11:33 -08:00
void tcp_enter_recovery(struct sock *sk, bool ece_ack)
{
struct tcp_sock *tp = tcp_sk(sk);
int mib_idx;
if (tcp_is_reno(tp))
mib_idx = LINUX_MIB_TCPRENORECOVERY;
else
mib_idx = LINUX_MIB_TCPSACKRECOVERY;
NET_INC_STATS(sock_net(sk), mib_idx);
tp->prior_ssthresh = 0;
tcp_init_undo(tp);
if (!tcp_in_cwnd_reduction(sk)) {
if (!ece_ack)
tp->prior_ssthresh = tcp_current_ssthresh(sk);
tcp_init_cwnd_reduction(sk);
}
tcp_set_ca_state(sk, TCP_CA_Recovery);
}
static void tcp_update_rto_time(struct tcp_sock *tp)
{
if (tp->rto_stamp) {
tp->total_rto_time += tcp_time_stamp(tp) - tp->rto_stamp;
tp->rto_stamp = 0;
}
}
/* Process an ACK in CA_Loss state. Move to CA_Open if lost data are
* recovered or spurious. Otherwise retransmits more on partial ACKs.
*/
static void tcp_process_loss(struct sock *sk, int flag, int num_dupack,
int *rexmit)
{
struct tcp_sock *tp = tcp_sk(sk);
tcp: implement RFC5682 F-RTO This patch implements F-RTO (foward RTO recovery): When the first retransmission after timeout is acknowledged, F-RTO sends new data instead of old data. If the next ACK acknowledges some never-retransmitted data, then the timeout was spurious and the congestion state is reverted. Otherwise if the next ACK selectively acknowledges the new data, then the timeout was genuine and the loss recovery continues. This idea applies to recurring timeouts as well. While F-RTO sends different data during timeout recovery, it does not (and should not) change the congestion control. The implementaion follows the three steps of SACK enhanced algorithm (section 3) in RFC5682. Step 1 is in tcp_enter_loss(). Step 2 and 3 are in tcp_process_loss(). The basic version is not supported because SACK enhanced version also works for non-SACK connections. The new implementation is functionally in parity with the old F-RTO implementation except the one case where it increases undo events: In addition to the RFC algorithm, a spurious timeout may be detected without sending data in step 2, as long as the SACK confirms not all the original data are dropped. When this happens, the sender will undo the cwnd and perhaps enter fast recovery instead. This additional check increases the F-RTO undo events by 5x compared to the prior implementation on Google Web servers, since the sender often does not have new data to send for HTTP. Note F-RTO may detect spurious timeout before Eifel with timestamps does so. Signed-off-by: Yuchung Cheng <ycheng@google.com> Acked-by: Eric Dumazet <edumazet@google.com> Acked-by: Neal Cardwell <ncardwell@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2013-03-20 13:33:00 +00:00
bool recovered = !before(tp->snd_una, tp->high_seq);
if ((flag & FLAG_SND_UNA_ADVANCED || rcu_access_pointer(tp->fastopen_rsk)) &&
tcp_try_undo_loss(sk, false))
return;
if (tp->frto) { /* F-RTO RFC5682 sec 3.1 (sack enhanced version). */
/* Step 3.b. A timeout is spurious if not all data are
* lost, i.e., never-retransmitted data are (s)acked.
*/
if ((flag & FLAG_ORIG_SACK_ACKED) &&
tcp_try_undo_loss(sk, true))
return;
if (after(tp->snd_nxt, tp->high_seq)) {
if (flag & FLAG_DATA_SACKED || num_dupack)
tp->frto = 0; /* Step 3.a. loss was real */
tcp: implement RFC5682 F-RTO This patch implements F-RTO (foward RTO recovery): When the first retransmission after timeout is acknowledged, F-RTO sends new data instead of old data. If the next ACK acknowledges some never-retransmitted data, then the timeout was spurious and the congestion state is reverted. Otherwise if the next ACK selectively acknowledges the new data, then the timeout was genuine and the loss recovery continues. This idea applies to recurring timeouts as well. While F-RTO sends different data during timeout recovery, it does not (and should not) change the congestion control. The implementaion follows the three steps of SACK enhanced algorithm (section 3) in RFC5682. Step 1 is in tcp_enter_loss(). Step 2 and 3 are in tcp_process_loss(). The basic version is not supported because SACK enhanced version also works for non-SACK connections. The new implementation is functionally in parity with the old F-RTO implementation except the one case where it increases undo events: In addition to the RFC algorithm, a spurious timeout may be detected without sending data in step 2, as long as the SACK confirms not all the original data are dropped. When this happens, the sender will undo the cwnd and perhaps enter fast recovery instead. This additional check increases the F-RTO undo events by 5x compared to the prior implementation on Google Web servers, since the sender often does not have new data to send for HTTP. Note F-RTO may detect spurious timeout before Eifel with timestamps does so. Signed-off-by: Yuchung Cheng <ycheng@google.com> Acked-by: Eric Dumazet <edumazet@google.com> Acked-by: Neal Cardwell <ncardwell@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2013-03-20 13:33:00 +00:00
} else if (flag & FLAG_SND_UNA_ADVANCED && !recovered) {
tp->high_seq = tp->snd_nxt;
/* Step 2.b. Try send new data (but deferred until cwnd
* is updated in tcp_ack()). Otherwise fall back to
* the conventional recovery.
*/
tcp: implement rb-tree based retransmit queue Using a linear list to store all skbs in write queue has been okay for quite a while : O(N) is not too bad when N < 500. Things get messy when N is the order of 100,000 : Modern TCP stacks want 10Gbit+ of throughput even with 200 ms RTT flows. 40 ns per cache line miss means a full scan can use 4 ms, blowing away CPU caches. SACK processing often can use various hints to avoid parsing whole retransmit queue. But with high packet losses and/or high reordering, hints no longer work. Sender has to process thousands of unfriendly SACK, accumulating a huge socket backlog, burning a cpu and massively dropping packets. Using an rb-tree for retransmit queue has been avoided for years because it added complexity and overhead, but now is the time to be more resistant and say no to quadratic behavior. 1) RTX queue is no longer part of the write queue : already sent skbs are stored in one rb-tree. 2) Since reaching the head of write queue no longer needs sk->sk_send_head, we added an union of sk_send_head and tcp_rtx_queue Tested: On receiver : netem on ingress : delay 150ms 200us loss 1 GRO disabled to force stress and SACK storms. for f in `seq 1 10` do ./netperf -H lpaa6 -l30 -- -K bbr -o THROUGHPUT|tail -1 done | awk '{print $0} {sum += $0} END {printf "%7u\n",sum}' Before patch : 323.87 351.48 339.59 338.62 306.72 204.07 304.93 291.88 202.47 176.88 2840 After patch: 1700.83 2207.98 2070.17 1544.26 2114.76 2124.89 1693.14 1080.91 2216.82 1299.94 18053 Signed-off-by: Eric Dumazet <edumazet@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-10-05 22:21:27 -07:00
if (!tcp_write_queue_empty(sk) &&
after(tcp_wnd_end(tp), tp->snd_nxt)) {
*rexmit = REXMIT_NEW;
return;
}
tcp: implement RFC5682 F-RTO This patch implements F-RTO (foward RTO recovery): When the first retransmission after timeout is acknowledged, F-RTO sends new data instead of old data. If the next ACK acknowledges some never-retransmitted data, then the timeout was spurious and the congestion state is reverted. Otherwise if the next ACK selectively acknowledges the new data, then the timeout was genuine and the loss recovery continues. This idea applies to recurring timeouts as well. While F-RTO sends different data during timeout recovery, it does not (and should not) change the congestion control. The implementaion follows the three steps of SACK enhanced algorithm (section 3) in RFC5682. Step 1 is in tcp_enter_loss(). Step 2 and 3 are in tcp_process_loss(). The basic version is not supported because SACK enhanced version also works for non-SACK connections. The new implementation is functionally in parity with the old F-RTO implementation except the one case where it increases undo events: In addition to the RFC algorithm, a spurious timeout may be detected without sending data in step 2, as long as the SACK confirms not all the original data are dropped. When this happens, the sender will undo the cwnd and perhaps enter fast recovery instead. This additional check increases the F-RTO undo events by 5x compared to the prior implementation on Google Web servers, since the sender often does not have new data to send for HTTP. Note F-RTO may detect spurious timeout before Eifel with timestamps does so. Signed-off-by: Yuchung Cheng <ycheng@google.com> Acked-by: Eric Dumazet <edumazet@google.com> Acked-by: Neal Cardwell <ncardwell@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2013-03-20 13:33:00 +00:00
tp->frto = 0;
}
}
if (recovered) {
/* F-RTO RFC5682 sec 3.1 step 2.a and 1st part of step 3.a */
tcp_try_undo_recovery(sk);
return;
}
tcp: implement RFC5682 F-RTO This patch implements F-RTO (foward RTO recovery): When the first retransmission after timeout is acknowledged, F-RTO sends new data instead of old data. If the next ACK acknowledges some never-retransmitted data, then the timeout was spurious and the congestion state is reverted. Otherwise if the next ACK selectively acknowledges the new data, then the timeout was genuine and the loss recovery continues. This idea applies to recurring timeouts as well. While F-RTO sends different data during timeout recovery, it does not (and should not) change the congestion control. The implementaion follows the three steps of SACK enhanced algorithm (section 3) in RFC5682. Step 1 is in tcp_enter_loss(). Step 2 and 3 are in tcp_process_loss(). The basic version is not supported because SACK enhanced version also works for non-SACK connections. The new implementation is functionally in parity with the old F-RTO implementation except the one case where it increases undo events: In addition to the RFC algorithm, a spurious timeout may be detected without sending data in step 2, as long as the SACK confirms not all the original data are dropped. When this happens, the sender will undo the cwnd and perhaps enter fast recovery instead. This additional check increases the F-RTO undo events by 5x compared to the prior implementation on Google Web servers, since the sender often does not have new data to send for HTTP. Note F-RTO may detect spurious timeout before Eifel with timestamps does so. Signed-off-by: Yuchung Cheng <ycheng@google.com> Acked-by: Eric Dumazet <edumazet@google.com> Acked-by: Neal Cardwell <ncardwell@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2013-03-20 13:33:00 +00:00
if (tcp_is_reno(tp)) {
/* A Reno DUPACK means new data in F-RTO step 2.b above are
* delivered. Lower inflight to clock out (re)transmissions.
tcp: implement RFC5682 F-RTO This patch implements F-RTO (foward RTO recovery): When the first retransmission after timeout is acknowledged, F-RTO sends new data instead of old data. If the next ACK acknowledges some never-retransmitted data, then the timeout was spurious and the congestion state is reverted. Otherwise if the next ACK selectively acknowledges the new data, then the timeout was genuine and the loss recovery continues. This idea applies to recurring timeouts as well. While F-RTO sends different data during timeout recovery, it does not (and should not) change the congestion control. The implementaion follows the three steps of SACK enhanced algorithm (section 3) in RFC5682. Step 1 is in tcp_enter_loss(). Step 2 and 3 are in tcp_process_loss(). The basic version is not supported because SACK enhanced version also works for non-SACK connections. The new implementation is functionally in parity with the old F-RTO implementation except the one case where it increases undo events: In addition to the RFC algorithm, a spurious timeout may be detected without sending data in step 2, as long as the SACK confirms not all the original data are dropped. When this happens, the sender will undo the cwnd and perhaps enter fast recovery instead. This additional check increases the F-RTO undo events by 5x compared to the prior implementation on Google Web servers, since the sender often does not have new data to send for HTTP. Note F-RTO may detect spurious timeout before Eifel with timestamps does so. Signed-off-by: Yuchung Cheng <ycheng@google.com> Acked-by: Eric Dumazet <edumazet@google.com> Acked-by: Neal Cardwell <ncardwell@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2013-03-20 13:33:00 +00:00
*/
if (after(tp->snd_nxt, tp->high_seq) && num_dupack)
tcp_add_reno_sack(sk, num_dupack, flag & FLAG_ECE);
tcp: implement RFC5682 F-RTO This patch implements F-RTO (foward RTO recovery): When the first retransmission after timeout is acknowledged, F-RTO sends new data instead of old data. If the next ACK acknowledges some never-retransmitted data, then the timeout was spurious and the congestion state is reverted. Otherwise if the next ACK selectively acknowledges the new data, then the timeout was genuine and the loss recovery continues. This idea applies to recurring timeouts as well. While F-RTO sends different data during timeout recovery, it does not (and should not) change the congestion control. The implementaion follows the three steps of SACK enhanced algorithm (section 3) in RFC5682. Step 1 is in tcp_enter_loss(). Step 2 and 3 are in tcp_process_loss(). The basic version is not supported because SACK enhanced version also works for non-SACK connections. The new implementation is functionally in parity with the old F-RTO implementation except the one case where it increases undo events: In addition to the RFC algorithm, a spurious timeout may be detected without sending data in step 2, as long as the SACK confirms not all the original data are dropped. When this happens, the sender will undo the cwnd and perhaps enter fast recovery instead. This additional check increases the F-RTO undo events by 5x compared to the prior implementation on Google Web servers, since the sender often does not have new data to send for HTTP. Note F-RTO may detect spurious timeout before Eifel with timestamps does so. Signed-off-by: Yuchung Cheng <ycheng@google.com> Acked-by: Eric Dumazet <edumazet@google.com> Acked-by: Neal Cardwell <ncardwell@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2013-03-20 13:33:00 +00:00
else if (flag & FLAG_SND_UNA_ADVANCED)
tcp_reset_reno_sack(tp);
}
*rexmit = REXMIT_LOST;
}
static bool tcp_force_fast_retransmit(struct sock *sk)
{
struct tcp_sock *tp = tcp_sk(sk);
return after(tcp_highest_sack_seq(tp),
tp->snd_una + tp->reordering * tp->mss_cache);
}
/* Undo during fast recovery after partial ACK. */
static bool tcp_try_undo_partial(struct sock *sk, u32 prior_snd_una,
bool *do_lost)
{
struct tcp_sock *tp = tcp_sk(sk);
if (tp->undo_marker && tcp_packet_delayed(tp)) {
/* Plain luck! Hole if filled with delayed
* packet, rather than with a retransmit. Check reordering.
*/
tcp_check_sack_reordering(sk, prior_snd_una, 1);
/* We are getting evidence that the reordering degree is higher
* than we realized. If there are no retransmits out then we
* can undo. Otherwise we clock out new packets but do not
* mark more packets lost or retransmit more.
*/
if (tp->retrans_out)
return true;
if (!tcp_any_retrans_done(sk))
tp->retrans_stamp = 0;
DBGUNDO(sk, "partial recovery");
tcp_undo_cwnd_reduction(sk, true);
NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO);
tcp_try_keep_open(sk);
} else {
/* Partial ACK arrived. Force fast retransmit. */
*do_lost = tcp_force_fast_retransmit(sk);
}
return false;
}
static void tcp_identify_packet_loss(struct sock *sk, int *ack_flag)
{
struct tcp_sock *tp = tcp_sk(sk);
if (tcp_rtx_queue_empty(sk))
return;
if (unlikely(tcp_is_reno(tp))) {
tcp_newreno_mark_lost(sk, *ack_flag & FLAG_SND_UNA_ADVANCED);
} else if (tcp_is_rack(sk)) {
u32 prior_retrans = tp->retrans_out;
if (tcp_rack_mark_lost(sk))
*ack_flag &= ~FLAG_SET_XMIT_TIMER;
if (prior_retrans > tp->retrans_out)
*ack_flag |= FLAG_LOST_RETRANS;
}
}
/* Process an event, which can update packets-in-flight not trivially.
* Main goal of this function is to calculate new estimate for left_out,
* taking into account both packets sitting in receiver's buffer and
* packets lost by network.
*
* Besides that it updates the congestion state when packet loss or ECN
* is detected. But it does not reduce the cwnd, it is done by the
* congestion control later.
*
* It does _not_ decide what to send, it is made in function
* tcp_xmit_retransmit_queue().
*/
static void tcp_fastretrans_alert(struct sock *sk, const u32 prior_snd_una,
int num_dupack, int *ack_flag, int *rexmit)
{
struct inet_connection_sock *icsk = inet_csk(sk);
struct tcp_sock *tp = tcp_sk(sk);
int fast_rexmit = 0, flag = *ack_flag;
bool ece_ack = flag & FLAG_ECE;
bool do_lost = num_dupack || ((flag & FLAG_DATA_SACKED) &&
tcp_force_fast_retransmit(sk));
if (!tp->packets_out && tp->sacked_out)
tp->sacked_out = 0;
/* Now state machine starts.
* A. ECE, hence prohibit cwnd undoing, the reduction is required. */
if (ece_ack)
tp->prior_ssthresh = 0;
/* B. In all the states check for reneging SACKs. */
if (tcp_check_sack_reneging(sk, flag))
return;
/* C. Check consistency of the current state. */
tcp_verify_left_out(tp);
/* D. Check state exit conditions. State can be terminated
* when high_seq is ACKed. */
if (icsk->icsk_ca_state == TCP_CA_Open) {
WARN_ON(tp->retrans_out != 0 && !tp->syn_data);
tp->retrans_stamp = 0;
} else if (!before(tp->snd_una, tp->high_seq)) {
switch (icsk->icsk_ca_state) {
case TCP_CA_CWR:
/* CWR is to be held something *above* high_seq
* is ACKed for CWR bit to reach receiver. */
if (tp->snd_una != tp->high_seq) {
tcp_end_cwnd_reduction(sk);
tcp_set_ca_state(sk, TCP_CA_Open);
}
break;
case TCP_CA_Recovery:
if (tcp_is_reno(tp))
tcp_reset_reno_sack(tp);
[TCP]: Sed magic converts func(sk, tp, ...) -> func(sk, ...) This is (mostly) automated change using magic: sed -e '/struct sock \*sk/ N' -e '/struct sock \*sk/ N' -e '/struct sock \*sk/ N' -e '/struct sock \*sk/ N' -e 's|struct sock \*sk,[\n\t ]*struct tcp_sock \*tp\([^{]*\n{\n\)| struct sock \*sk\1\tstruct tcp_sock *tp = tcp_sk(sk);\n|g' -e 's|struct sock \*sk, struct tcp_sock \*tp| struct sock \*sk|g' -e 's|sk, tp\([^-]\)|sk\1|g' Fixed four unused variable (tp) warnings that were introduced. In addition, manually added newlines after local variables and tweaked function arguments positioning. $ gcc --version gcc (GCC) 4.1.1 20060525 (Red Hat 4.1.1-1) ... $ codiff -fV built-in.o.old built-in.o.new net/ipv4/route.c: rt_cache_flush | +14 1 function changed, 14 bytes added net/ipv4/tcp.c: tcp_setsockopt | -5 tcp_sendpage | -25 tcp_sendmsg | -16 3 functions changed, 46 bytes removed net/ipv4/tcp_input.c: tcp_try_undo_recovery | +3 tcp_try_undo_dsack | +2 tcp_mark_head_lost | -12 tcp_ack | -15 tcp_event_data_recv | -32 tcp_rcv_state_process | -10 tcp_rcv_established | +1 7 functions changed, 6 bytes added, 69 bytes removed, diff: -63 net/ipv4/tcp_output.c: update_send_head | -9 tcp_transmit_skb | +19 tcp_cwnd_validate | +1 tcp_write_wakeup | -17 __tcp_push_pending_frames | -25 tcp_push_one | -8 tcp_send_fin | -4 7 functions changed, 20 bytes added, 63 bytes removed, diff: -43 built-in.o.new: 18 functions changed, 40 bytes added, 178 bytes removed, diff: -138 Signed-off-by: Ilpo Järvinen <ilpo.jarvinen@helsinki.fi> Signed-off-by: David S. Miller <davem@davemloft.net>
2007-04-20 22:18:02 -07:00
if (tcp_try_undo_recovery(sk))
return;
tcp_end_cwnd_reduction(sk);
break;
}
}
/* E. Process state. */
switch (icsk->icsk_ca_state) {
case TCP_CA_Recovery:
if (!(flag & FLAG_SND_UNA_ADVANCED)) {
if (tcp_is_reno(tp))
tcp_add_reno_sack(sk, num_dupack, ece_ack);
} else if (tcp_try_undo_partial(sk, prior_snd_una, &do_lost))
return;
if (tcp_try_undo_dsack(sk))
tcp_try_keep_open(sk);
tcp_identify_packet_loss(sk, ack_flag);
if (icsk->icsk_ca_state != TCP_CA_Recovery) {
if (!tcp_time_to_recover(sk, flag))
return;
/* Undo reverts the recovery state. If loss is evident,
* starts a new recovery (e.g. reordering then loss);
*/
tcp_enter_recovery(sk, ece_ack);
}
break;
case TCP_CA_Loss:
tcp_process_loss(sk, flag, num_dupack, rexmit);
if (icsk->icsk_ca_state != TCP_CA_Loss)
tcp_update_rto_time(tp);
tcp_identify_packet_loss(sk, ack_flag);
if (!(icsk->icsk_ca_state == TCP_CA_Open ||
(*ack_flag & FLAG_LOST_RETRANS)))
return;
/* Change state if cwnd is undone or retransmits are lost */
fallthrough;
default:
if (tcp_is_reno(tp)) {
if (flag & FLAG_SND_UNA_ADVANCED)
tcp_reset_reno_sack(tp);
tcp_add_reno_sack(sk, num_dupack, ece_ack);
}
if (icsk->icsk_ca_state <= TCP_CA_Disorder)
[TCP]: Sed magic converts func(sk, tp, ...) -> func(sk, ...) This is (mostly) automated change using magic: sed -e '/struct sock \*sk/ N' -e '/struct sock \*sk/ N' -e '/struct sock \*sk/ N' -e '/struct sock \*sk/ N' -e 's|struct sock \*sk,[\n\t ]*struct tcp_sock \*tp\([^{]*\n{\n\)| struct sock \*sk\1\tstruct tcp_sock *tp = tcp_sk(sk);\n|g' -e 's|struct sock \*sk, struct tcp_sock \*tp| struct sock \*sk|g' -e 's|sk, tp\([^-]\)|sk\1|g' Fixed four unused variable (tp) warnings that were introduced. In addition, manually added newlines after local variables and tweaked function arguments positioning. $ gcc --version gcc (GCC) 4.1.1 20060525 (Red Hat 4.1.1-1) ... $ codiff -fV built-in.o.old built-in.o.new net/ipv4/route.c: rt_cache_flush | +14 1 function changed, 14 bytes added net/ipv4/tcp.c: tcp_setsockopt | -5 tcp_sendpage | -25 tcp_sendmsg | -16 3 functions changed, 46 bytes removed net/ipv4/tcp_input.c: tcp_try_undo_recovery | +3 tcp_try_undo_dsack | +2 tcp_mark_head_lost | -12 tcp_ack | -15 tcp_event_data_recv | -32 tcp_rcv_state_process | -10 tcp_rcv_established | +1 7 functions changed, 6 bytes added, 69 bytes removed, diff: -63 net/ipv4/tcp_output.c: update_send_head | -9 tcp_transmit_skb | +19 tcp_cwnd_validate | +1 tcp_write_wakeup | -17 __tcp_push_pending_frames | -25 tcp_push_one | -8 tcp_send_fin | -4 7 functions changed, 20 bytes added, 63 bytes removed, diff: -43 built-in.o.new: 18 functions changed, 40 bytes added, 178 bytes removed, diff: -138 Signed-off-by: Ilpo Järvinen <ilpo.jarvinen@helsinki.fi> Signed-off-by: David S. Miller <davem@davemloft.net>
2007-04-20 22:18:02 -07:00
tcp_try_undo_dsack(sk);
tcp_identify_packet_loss(sk, ack_flag);
if (!tcp_time_to_recover(sk, flag)) {
tcp_try_to_open(sk, flag);
return;
}
/* MTU probe failure: don't reduce cwnd */
if (icsk->icsk_ca_state < TCP_CA_CWR &&
icsk->icsk_mtup.probe_size &&
tp->snd_una == tp->mtu_probe.probe_seq_start) {
tcp_mtup_probe_failed(sk);
/* Restores the reduction we did in tcp_mtup_probe() */
tcp_snd_cwnd_set(tp, tcp_snd_cwnd(tp) + 1);
tcp_simple_retransmit(sk);
return;
}
/* Otherwise enter Recovery state */
tcp_enter_recovery(sk, ece_ack);
[TCP]: non-FACK SACK follows conservative SACK loss recovery Many assumptions that are true when no reordering or other strange events happen are not a part of the RFC3517. FACK implementation is based on such assumptions. Previously (before the rewrite) the non-FACK SACK was basically doing fast rexmit and then it times out all skbs when first cumulative ACK arrives, which cannot really be called SACK based recovery :-). RFC3517 SACK disables these things: - Per SKB timeouts & head timeout entry to recovery - Marking at least one skb while in recovery (RFC3517 does this only for the fast retransmission but not for the other skbs when cumulative ACKs arrive in the recovery) - Sacktag's loss detection flavors B and C (see comment before tcp_sacktag_write_queue) This does not implement the "last resort" rule 3 of NextSeg, which allows retransmissions also when not enough SACK blocks have yet arrived above a segment for IsLost to return true [RFC3517]. The implementation differs from RFC3517 in these points: - Rate-halving is used instead of FlightSize / 2 - Instead of using dupACKs to trigger the recovery, the number of SACK blocks is used as FACK does with SACK blocks+holes (which provides more accurate number). It seems that the difference can affect negatively only if the receiver does not generate SACK blocks at all even though it claimed to be SACK-capable. - Dupthresh is not a constant one. Dynamical adjustments include both holes and sacked segments (equal to what FACK has) due to complexity involved in determining the number sacked blocks between highest_sack and the reordered segment. Thus it's will be an over-estimate. Implementation note: tcp_clean_rtx_queue doesn't need a lost_cnt tweak because head skb at that point cannot be SACKED_ACKED (nor would such situation last for long enough to cause problems). Signed-off-by: Ilpo Järvinen <ilpo.jarvinen@helsinki.fi> Signed-off-by: David S. Miller <davem@davemloft.net>
2007-11-15 19:39:31 -08:00
fast_rexmit = 1;
}
if (!tcp_is_rack(sk) && do_lost)
[TCP]: non-FACK SACK follows conservative SACK loss recovery Many assumptions that are true when no reordering or other strange events happen are not a part of the RFC3517. FACK implementation is based on such assumptions. Previously (before the rewrite) the non-FACK SACK was basically doing fast rexmit and then it times out all skbs when first cumulative ACK arrives, which cannot really be called SACK based recovery :-). RFC3517 SACK disables these things: - Per SKB timeouts & head timeout entry to recovery - Marking at least one skb while in recovery (RFC3517 does this only for the fast retransmission but not for the other skbs when cumulative ACKs arrive in the recovery) - Sacktag's loss detection flavors B and C (see comment before tcp_sacktag_write_queue) This does not implement the "last resort" rule 3 of NextSeg, which allows retransmissions also when not enough SACK blocks have yet arrived above a segment for IsLost to return true [RFC3517]. The implementation differs from RFC3517 in these points: - Rate-halving is used instead of FlightSize / 2 - Instead of using dupACKs to trigger the recovery, the number of SACK blocks is used as FACK does with SACK blocks+holes (which provides more accurate number). It seems that the difference can affect negatively only if the receiver does not generate SACK blocks at all even though it claimed to be SACK-capable. - Dupthresh is not a constant one. Dynamical adjustments include both holes and sacked segments (equal to what FACK has) due to complexity involved in determining the number sacked blocks between highest_sack and the reordered segment. Thus it's will be an over-estimate. Implementation note: tcp_clean_rtx_queue doesn't need a lost_cnt tweak because head skb at that point cannot be SACKED_ACKED (nor would such situation last for long enough to cause problems). Signed-off-by: Ilpo Järvinen <ilpo.jarvinen@helsinki.fi> Signed-off-by: David S. Miller <davem@davemloft.net>
2007-11-15 19:39:31 -08:00
tcp_update_scoreboard(sk, fast_rexmit);
*rexmit = REXMIT_LOST;
}
static void tcp_update_rtt_min(struct sock *sk, u32 rtt_us, const int flag)
tcp: track min RTT using windowed min-filter Kathleen Nichols' algorithm for tracking the minimum RTT of a data stream over some measurement window. It uses constant space and constant time per update. Yet it almost always delivers the same minimum as an implementation that has to keep all the data in the window. The measurement window is tunable via sysctl.net.ipv4.tcp_min_rtt_wlen with a default value of 5 minutes. The algorithm keeps track of the best, 2nd best & 3rd best min values, maintaining an invariant that the measurement time of the n'th best >= n-1'th best. It also makes sure that the three values are widely separated in the time window since that bounds the worse case error when that data is monotonically increasing over the window. Upon getting a new min, we can forget everything earlier because it has no value - the new min is less than everything else in the window by definition and it's the most recent. So we restart fresh on every new min and overwrites the 2nd & 3rd choices. The same property holds for the 2nd & 3rd best. Therefore we have to maintain two invariants to maximize the information in the samples, one on values (1st.v <= 2nd.v <= 3rd.v) and the other on times (now-win <=1st.t <= 2nd.t <= 3rd.t <= now). These invariants determine the structure of the code The RTT input to the windowed filter is the minimum RTT measured from ACK or SACK, or as the last resort from TCP timestamps. The accessor tcp_min_rtt() returns the minimum RTT seen in the window. ~0U indicates it is not available. The minimum is 1usec even if the true RTT is below that. Signed-off-by: Yuchung Cheng <ycheng@google.com> Signed-off-by: Neal Cardwell <ncardwell@google.com> Signed-off-by: Eric Dumazet <edumazet@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2015-10-16 21:57:42 -07:00
{
u32 wlen = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_min_rtt_wlen) * HZ;
struct tcp_sock *tp = tcp_sk(sk);
if ((flag & FLAG_ACK_MAYBE_DELAYED) && rtt_us > tcp_min_rtt(tp)) {
/* If the remote keeps returning delayed ACKs, eventually
* the min filter would pick it up and overestimate the
* prop. delay when it expires. Skip suspected delayed ACKs.
*/
return;
}
minmax_running_min(&tp->rtt_min, wlen, tcp_jiffies32,
rtt_us ? : jiffies_to_usecs(1));
tcp: track min RTT using windowed min-filter Kathleen Nichols' algorithm for tracking the minimum RTT of a data stream over some measurement window. It uses constant space and constant time per update. Yet it almost always delivers the same minimum as an implementation that has to keep all the data in the window. The measurement window is tunable via sysctl.net.ipv4.tcp_min_rtt_wlen with a default value of 5 minutes. The algorithm keeps track of the best, 2nd best & 3rd best min values, maintaining an invariant that the measurement time of the n'th best >= n-1'th best. It also makes sure that the three values are widely separated in the time window since that bounds the worse case error when that data is monotonically increasing over the window. Upon getting a new min, we can forget everything earlier because it has no value - the new min is less than everything else in the window by definition and it's the most recent. So we restart fresh on every new min and overwrites the 2nd & 3rd choices. The same property holds for the 2nd & 3rd best. Therefore we have to maintain two invariants to maximize the information in the samples, one on values (1st.v <= 2nd.v <= 3rd.v) and the other on times (now-win <=1st.t <= 2nd.t <= 3rd.t <= now). These invariants determine the structure of the code The RTT input to the windowed filter is the minimum RTT measured from ACK or SACK, or as the last resort from TCP timestamps. The accessor tcp_min_rtt() returns the minimum RTT seen in the window. ~0U indicates it is not available. The minimum is 1usec even if the true RTT is below that. Signed-off-by: Yuchung Cheng <ycheng@google.com> Signed-off-by: Neal Cardwell <ncardwell@google.com> Signed-off-by: Eric Dumazet <edumazet@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2015-10-16 21:57:42 -07:00
}
static bool tcp_ack_update_rtt(struct sock *sk, const int flag,
long seq_rtt_us, long sack_rtt_us,
long ca_rtt_us, struct rate_sample *rs)
{
const struct tcp_sock *tp = tcp_sk(sk);
/* Prefer RTT measured from ACK's timing to TS-ECR. This is because
* broken middle-boxes or peers may corrupt TS-ECR fields. But
* Karn's algorithm forbids taking RTT if some retransmitted data
* is acked (RFC6298).
*/
tcp: switch rtt estimations to usec resolution Upcoming congestion controls for TCP require usec resolution for RTT estimations. Millisecond resolution is simply not enough these days. FQ/pacing in DC environments also require this change for finer control and removal of bimodal behavior due to the current hack in tcp_update_pacing_rate() for 'small rtt' TCP_CONG_RTT_STAMP is no longer needed. As Julian Anastasov pointed out, we need to keep user compatibility : tcp_metrics used to export RTT and RTTVAR in msec resolution, so we added RTT_US and RTTVAR_US. An iproute2 patch is needed to use the new attributes if provided by the kernel. In this example ss command displays a srtt of 32 usecs (10Gbit link) lpk51:~# ./ss -i dst lpk52 Netid State Recv-Q Send-Q Local Address:Port Peer Address:Port tcp ESTAB 0 1 10.246.11.51:42959 10.246.11.52:64614 cubic wscale:6,6 rto:201 rtt:0.032/0.001 ato:40 mss:1448 cwnd:10 send 3620.0Mbps pacing_rate 7240.0Mbps unacked:1 rcv_rtt:993 rcv_space:29559 Updated iproute2 ip command displays : lpk51:~# ./ip tcp_metrics | grep 10.246.11.52 10.246.11.52 age 561.914sec cwnd 10 rtt 274us rttvar 213us source 10.246.11.51 Old binary displays : lpk51:~# ip tcp_metrics | grep 10.246.11.52 10.246.11.52 age 561.914sec cwnd 10 rtt 250us rttvar 125us source 10.246.11.51 With help from Julian Anastasov, Stephen Hemminger and Yuchung Cheng Signed-off-by: Eric Dumazet <edumazet@google.com> Acked-by: Neal Cardwell <ncardwell@google.com> Cc: Stephen Hemminger <stephen@networkplumber.org> Cc: Yuchung Cheng <ycheng@google.com> Cc: Larry Brakmo <brakmo@google.com> Cc: Julian Anastasov <ja@ssi.bg> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-02-26 14:02:48 -08:00
if (seq_rtt_us < 0)
seq_rtt_us = sack_rtt_us;
/* RTTM Rule: A TSecr value received in a segment is used to
* update the averaged RTT measurement only if the segment
* acknowledges some new data, i.e., only if it advances the
* left edge of the send window.
* See draft-ietf-tcplw-high-performance-00, section 3.3.
*/
tcp: switch rtt estimations to usec resolution Upcoming congestion controls for TCP require usec resolution for RTT estimations. Millisecond resolution is simply not enough these days. FQ/pacing in DC environments also require this change for finer control and removal of bimodal behavior due to the current hack in tcp_update_pacing_rate() for 'small rtt' TCP_CONG_RTT_STAMP is no longer needed. As Julian Anastasov pointed out, we need to keep user compatibility : tcp_metrics used to export RTT and RTTVAR in msec resolution, so we added RTT_US and RTTVAR_US. An iproute2 patch is needed to use the new attributes if provided by the kernel. In this example ss command displays a srtt of 32 usecs (10Gbit link) lpk51:~# ./ss -i dst lpk52 Netid State Recv-Q Send-Q Local Address:Port Peer Address:Port tcp ESTAB 0 1 10.246.11.51:42959 10.246.11.52:64614 cubic wscale:6,6 rto:201 rtt:0.032/0.001 ato:40 mss:1448 cwnd:10 send 3620.0Mbps pacing_rate 7240.0Mbps unacked:1 rcv_rtt:993 rcv_space:29559 Updated iproute2 ip command displays : lpk51:~# ./ip tcp_metrics | grep 10.246.11.52 10.246.11.52 age 561.914sec cwnd 10 rtt 274us rttvar 213us source 10.246.11.51 Old binary displays : lpk51:~# ip tcp_metrics | grep 10.246.11.52 10.246.11.52 age 561.914sec cwnd 10 rtt 250us rttvar 125us source 10.246.11.51 With help from Julian Anastasov, Stephen Hemminger and Yuchung Cheng Signed-off-by: Eric Dumazet <edumazet@google.com> Acked-by: Neal Cardwell <ncardwell@google.com> Cc: Stephen Hemminger <stephen@networkplumber.org> Cc: Yuchung Cheng <ycheng@google.com> Cc: Larry Brakmo <brakmo@google.com> Cc: Julian Anastasov <ja@ssi.bg> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-02-26 14:02:48 -08:00
if (seq_rtt_us < 0 && tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
flag & FLAG_ACKED) {
u32 delta = tcp_time_stamp(tp) - tp->rx_opt.rcv_tsecr;
if (likely(delta < INT_MAX / (USEC_PER_SEC / TCP_TS_HZ))) {
tcp: apply a floor of 1 for RTT samples from TCP timestamps For retransmitted packets, TCP needs to resort to using TCP timestamps for computing RTT samples. In the common case where the data and ACK fall in the same 1-millisecond interval, TCP senders with millisecond- granularity TCP timestamps compute a ca_rtt_us of 0. This ca_rtt_us of 0 propagates to rs->rtt_us. This value of 0 can cause performance problems for congestion control modules. For example, in BBR, the zero min_rtt sample can bring the min_rtt and BDP estimate down to 0, reduce snd_cwnd and result in a low throughput. It would be hard to mitigate this with filtering in the congestion control module, because the proper floor to apply would depend on the method of RTT sampling (using timestamp options or internally-saved transmission timestamps). This fix applies a floor of 1 for the RTT sample delta from TCP timestamps, so that seq_rtt_us, ca_rtt_us, and rs->rtt_us will be at least 1 * (USEC_PER_SEC / TCP_TS_HZ). Note that the receiver RTT computation in tcp_rcv_rtt_measure() and min_rtt computation in tcp_update_rtt_min() both already apply a floor of 1 timestamp tick, so this commit makes the code more consistent in avoiding this edge case of a value of 0. Signed-off-by: Jianfeng Wang <jfwang@google.com> Signed-off-by: Neal Cardwell <ncardwell@google.com> Signed-off-by: Eric Dumazet <edumazet@google.com> Acked-by: Kevin Yang <yyd@google.com> Acked-by: Yuchung Cheng <ycheng@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2020-07-30 23:49:16 +00:00
if (!delta)
delta = 1;
seq_rtt_us = delta * (USEC_PER_SEC / TCP_TS_HZ);
ca_rtt_us = seq_rtt_us;
}
}
rs->rtt_us = ca_rtt_us; /* RTT of last (S)ACKed packet (or -1) */
tcp: switch rtt estimations to usec resolution Upcoming congestion controls for TCP require usec resolution for RTT estimations. Millisecond resolution is simply not enough these days. FQ/pacing in DC environments also require this change for finer control and removal of bimodal behavior due to the current hack in tcp_update_pacing_rate() for 'small rtt' TCP_CONG_RTT_STAMP is no longer needed. As Julian Anastasov pointed out, we need to keep user compatibility : tcp_metrics used to export RTT and RTTVAR in msec resolution, so we added RTT_US and RTTVAR_US. An iproute2 patch is needed to use the new attributes if provided by the kernel. In this example ss command displays a srtt of 32 usecs (10Gbit link) lpk51:~# ./ss -i dst lpk52 Netid State Recv-Q Send-Q Local Address:Port Peer Address:Port tcp ESTAB 0 1 10.246.11.51:42959 10.246.11.52:64614 cubic wscale:6,6 rto:201 rtt:0.032/0.001 ato:40 mss:1448 cwnd:10 send 3620.0Mbps pacing_rate 7240.0Mbps unacked:1 rcv_rtt:993 rcv_space:29559 Updated iproute2 ip command displays : lpk51:~# ./ip tcp_metrics | grep 10.246.11.52 10.246.11.52 age 561.914sec cwnd 10 rtt 274us rttvar 213us source 10.246.11.51 Old binary displays : lpk51:~# ip tcp_metrics | grep 10.246.11.52 10.246.11.52 age 561.914sec cwnd 10 rtt 250us rttvar 125us source 10.246.11.51 With help from Julian Anastasov, Stephen Hemminger and Yuchung Cheng Signed-off-by: Eric Dumazet <edumazet@google.com> Acked-by: Neal Cardwell <ncardwell@google.com> Cc: Stephen Hemminger <stephen@networkplumber.org> Cc: Yuchung Cheng <ycheng@google.com> Cc: Larry Brakmo <brakmo@google.com> Cc: Julian Anastasov <ja@ssi.bg> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-02-26 14:02:48 -08:00
if (seq_rtt_us < 0)
return false;
tcp: track min RTT using windowed min-filter Kathleen Nichols' algorithm for tracking the minimum RTT of a data stream over some measurement window. It uses constant space and constant time per update. Yet it almost always delivers the same minimum as an implementation that has to keep all the data in the window. The measurement window is tunable via sysctl.net.ipv4.tcp_min_rtt_wlen with a default value of 5 minutes. The algorithm keeps track of the best, 2nd best & 3rd best min values, maintaining an invariant that the measurement time of the n'th best >= n-1'th best. It also makes sure that the three values are widely separated in the time window since that bounds the worse case error when that data is monotonically increasing over the window. Upon getting a new min, we can forget everything earlier because it has no value - the new min is less than everything else in the window by definition and it's the most recent. So we restart fresh on every new min and overwrites the 2nd & 3rd choices. The same property holds for the 2nd & 3rd best. Therefore we have to maintain two invariants to maximize the information in the samples, one on values (1st.v <= 2nd.v <= 3rd.v) and the other on times (now-win <=1st.t <= 2nd.t <= 3rd.t <= now). These invariants determine the structure of the code The RTT input to the windowed filter is the minimum RTT measured from ACK or SACK, or as the last resort from TCP timestamps. The accessor tcp_min_rtt() returns the minimum RTT seen in the window. ~0U indicates it is not available. The minimum is 1usec even if the true RTT is below that. Signed-off-by: Yuchung Cheng <ycheng@google.com> Signed-off-by: Neal Cardwell <ncardwell@google.com> Signed-off-by: Eric Dumazet <edumazet@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2015-10-16 21:57:42 -07:00
/* ca_rtt_us >= 0 is counting on the invariant that ca_rtt_us is
* always taken together with ACK, SACK, or TS-opts. Any negative
* values will be skipped with the seq_rtt_us < 0 check above.
*/
tcp_update_rtt_min(sk, ca_rtt_us, flag);
tcp: switch rtt estimations to usec resolution Upcoming congestion controls for TCP require usec resolution for RTT estimations. Millisecond resolution is simply not enough these days. FQ/pacing in DC environments also require this change for finer control and removal of bimodal behavior due to the current hack in tcp_update_pacing_rate() for 'small rtt' TCP_CONG_RTT_STAMP is no longer needed. As Julian Anastasov pointed out, we need to keep user compatibility : tcp_metrics used to export RTT and RTTVAR in msec resolution, so we added RTT_US and RTTVAR_US. An iproute2 patch is needed to use the new attributes if provided by the kernel. In this example ss command displays a srtt of 32 usecs (10Gbit link) lpk51:~# ./ss -i dst lpk52 Netid State Recv-Q Send-Q Local Address:Port Peer Address:Port tcp ESTAB 0 1 10.246.11.51:42959 10.246.11.52:64614 cubic wscale:6,6 rto:201 rtt:0.032/0.001 ato:40 mss:1448 cwnd:10 send 3620.0Mbps pacing_rate 7240.0Mbps unacked:1 rcv_rtt:993 rcv_space:29559 Updated iproute2 ip command displays : lpk51:~# ./ip tcp_metrics | grep 10.246.11.52 10.246.11.52 age 561.914sec cwnd 10 rtt 274us rttvar 213us source 10.246.11.51 Old binary displays : lpk51:~# ip tcp_metrics | grep 10.246.11.52 10.246.11.52 age 561.914sec cwnd 10 rtt 250us rttvar 125us source 10.246.11.51 With help from Julian Anastasov, Stephen Hemminger and Yuchung Cheng Signed-off-by: Eric Dumazet <edumazet@google.com> Acked-by: Neal Cardwell <ncardwell@google.com> Cc: Stephen Hemminger <stephen@networkplumber.org> Cc: Yuchung Cheng <ycheng@google.com> Cc: Larry Brakmo <brakmo@google.com> Cc: Julian Anastasov <ja@ssi.bg> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-02-26 14:02:48 -08:00
tcp_rtt_estimator(sk, seq_rtt_us);
tcp_set_rto(sk);
/* RFC6298: only reset backoff on valid RTT measurement. */
inet_csk(sk)->icsk_backoff = 0;
return true;
}
/* Compute time elapsed between (last) SYNACK and the ACK completing 3WHS. */
tcp: usec resolution SYN/ACK RTT Currently SYN/ACK RTT is measured in jiffies. For LAN the SYN/ACK RTT is often measured as 0ms or sometimes 1ms, which would affect RTT estimation and min RTT samping used by some congestion control. This patch improves SYN/ACK RTT to be usec resolution if platform supports it. While the timestamping of SYN/ACK is done in request sock, the RTT measurement is carefully arranged to avoid storing another u64 timestamp in tcp_sock. For regular handshake w/o SYNACK retransmission, the RTT is sampled right after the child socket is created and right before the request sock is released (tcp_check_req() in tcp_minisocks.c) For Fast Open the child socket is already created when SYN/ACK was sent, the RTT is sampled in tcp_rcv_state_process() after processing the final ACK an right before the request socket is released. If the SYN/ACK was retransmistted or SYN-cookie was used, we rely on TCP timestamps to measure the RTT. The sample is taken at the same place in tcp_rcv_state_process() after the timestamp values are validated in tcp_validate_incoming(). Note that we do not store TS echo value in request_sock for SYN-cookies, because the value is already stored in tp->rx_opt used by tcp_ack_update_rtt(). One side benefit is that the RTT measurement now happens before initializing congestion control (of the passive side). Therefore the congestion control can use the SYN/ACK RTT. Signed-off-by: Yuchung Cheng <ycheng@google.com> Signed-off-by: Neal Cardwell <ncardwell@google.com> Signed-off-by: Eric Dumazet <edumazet@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2015-09-18 11:36:14 -07:00
void tcp_synack_rtt_meas(struct sock *sk, struct request_sock *req)
{
struct rate_sample rs;
tcp: usec resolution SYN/ACK RTT Currently SYN/ACK RTT is measured in jiffies. For LAN the SYN/ACK RTT is often measured as 0ms or sometimes 1ms, which would affect RTT estimation and min RTT samping used by some congestion control. This patch improves SYN/ACK RTT to be usec resolution if platform supports it. While the timestamping of SYN/ACK is done in request sock, the RTT measurement is carefully arranged to avoid storing another u64 timestamp in tcp_sock. For regular handshake w/o SYNACK retransmission, the RTT is sampled right after the child socket is created and right before the request sock is released (tcp_check_req() in tcp_minisocks.c) For Fast Open the child socket is already created when SYN/ACK was sent, the RTT is sampled in tcp_rcv_state_process() after processing the final ACK an right before the request socket is released. If the SYN/ACK was retransmistted or SYN-cookie was used, we rely on TCP timestamps to measure the RTT. The sample is taken at the same place in tcp_rcv_state_process() after the timestamp values are validated in tcp_validate_incoming(). Note that we do not store TS echo value in request_sock for SYN-cookies, because the value is already stored in tp->rx_opt used by tcp_ack_update_rtt(). One side benefit is that the RTT measurement now happens before initializing congestion control (of the passive side). Therefore the congestion control can use the SYN/ACK RTT. Signed-off-by: Yuchung Cheng <ycheng@google.com> Signed-off-by: Neal Cardwell <ncardwell@google.com> Signed-off-by: Eric Dumazet <edumazet@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2015-09-18 11:36:14 -07:00
long rtt_us = -1L;
if (req && !req->num_retrans && tcp_rsk(req)->snt_synack)
rtt_us = tcp_stamp_us_delta(tcp_clock_us(), tcp_rsk(req)->snt_synack);
tcp: usec resolution SYN/ACK RTT Currently SYN/ACK RTT is measured in jiffies. For LAN the SYN/ACK RTT is often measured as 0ms or sometimes 1ms, which would affect RTT estimation and min RTT samping used by some congestion control. This patch improves SYN/ACK RTT to be usec resolution if platform supports it. While the timestamping of SYN/ACK is done in request sock, the RTT measurement is carefully arranged to avoid storing another u64 timestamp in tcp_sock. For regular handshake w/o SYNACK retransmission, the RTT is sampled right after the child socket is created and right before the request sock is released (tcp_check_req() in tcp_minisocks.c) For Fast Open the child socket is already created when SYN/ACK was sent, the RTT is sampled in tcp_rcv_state_process() after processing the final ACK an right before the request socket is released. If the SYN/ACK was retransmistted or SYN-cookie was used, we rely on TCP timestamps to measure the RTT. The sample is taken at the same place in tcp_rcv_state_process() after the timestamp values are validated in tcp_validate_incoming(). Note that we do not store TS echo value in request_sock for SYN-cookies, because the value is already stored in tp->rx_opt used by tcp_ack_update_rtt(). One side benefit is that the RTT measurement now happens before initializing congestion control (of the passive side). Therefore the congestion control can use the SYN/ACK RTT. Signed-off-by: Yuchung Cheng <ycheng@google.com> Signed-off-by: Neal Cardwell <ncardwell@google.com> Signed-off-by: Eric Dumazet <edumazet@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2015-09-18 11:36:14 -07:00
tcp_ack_update_rtt(sk, FLAG_SYN_ACKED, rtt_us, -1L, rtt_us, &rs);
}
tcp: usec resolution SYN/ACK RTT Currently SYN/ACK RTT is measured in jiffies. For LAN the SYN/ACK RTT is often measured as 0ms or sometimes 1ms, which would affect RTT estimation and min RTT samping used by some congestion control. This patch improves SYN/ACK RTT to be usec resolution if platform supports it. While the timestamping of SYN/ACK is done in request sock, the RTT measurement is carefully arranged to avoid storing another u64 timestamp in tcp_sock. For regular handshake w/o SYNACK retransmission, the RTT is sampled right after the child socket is created and right before the request sock is released (tcp_check_req() in tcp_minisocks.c) For Fast Open the child socket is already created when SYN/ACK was sent, the RTT is sampled in tcp_rcv_state_process() after processing the final ACK an right before the request socket is released. If the SYN/ACK was retransmistted or SYN-cookie was used, we rely on TCP timestamps to measure the RTT. The sample is taken at the same place in tcp_rcv_state_process() after the timestamp values are validated in tcp_validate_incoming(). Note that we do not store TS echo value in request_sock for SYN-cookies, because the value is already stored in tp->rx_opt used by tcp_ack_update_rtt(). One side benefit is that the RTT measurement now happens before initializing congestion control (of the passive side). Therefore the congestion control can use the SYN/ACK RTT. Signed-off-by: Yuchung Cheng <ycheng@google.com> Signed-off-by: Neal Cardwell <ncardwell@google.com> Signed-off-by: Eric Dumazet <edumazet@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2015-09-18 11:36:14 -07:00
static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 acked)
{
const struct inet_connection_sock *icsk = inet_csk(sk);
icsk->icsk_ca_ops->cong_avoid(sk, ack, acked);
tcp_sk(sk)->snd_cwnd_stamp = tcp_jiffies32;
}
/* Restart timer after forward progress on connection.
* RFC2988 recommends to restart timer to now+rto.
*/
void tcp_rearm_rto(struct sock *sk)
{
tcp: Tail loss probe (TLP) This patch series implement the Tail loss probe (TLP) algorithm described in http://tools.ietf.org/html/draft-dukkipati-tcpm-tcp-loss-probe-01. The first patch implements the basic algorithm. TLP's goal is to reduce tail latency of short transactions. It achieves this by converting retransmission timeouts (RTOs) occuring due to tail losses (losses at end of transactions) into fast recovery. TLP transmits one packet in two round-trips when a connection is in Open state and isn't receiving any ACKs. The transmitted packet, aka loss probe, can be either new or a retransmission. When there is tail loss, the ACK from a loss probe triggers FACK/early-retransmit based fast recovery, thus avoiding a costly RTO. In the absence of loss, there is no change in the connection state. PTO stands for probe timeout. It is a timer event indicating that an ACK is overdue and triggers a loss probe packet. The PTO value is set to max(2*SRTT, 10ms) and is adjusted to account for delayed ACK timer when there is only one oustanding packet. TLP Algorithm On transmission of new data in Open state: -> packets_out > 1: schedule PTO in max(2*SRTT, 10ms). -> packets_out == 1: schedule PTO in max(2*RTT, 1.5*RTT + 200ms) -> PTO = min(PTO, RTO) Conditions for scheduling PTO: -> Connection is in Open state. -> Connection is either cwnd limited or no new data to send. -> Number of probes per tail loss episode is limited to one. -> Connection is SACK enabled. When PTO fires: new_segment_exists: -> transmit new segment. -> packets_out++. cwnd remains same. no_new_packet: -> retransmit the last segment. Its ACK triggers FACK or early retransmit based recovery. ACK path: -> rearm RTO at start of ACK processing. -> reschedule PTO if need be. In addition, the patch includes a small variation to the Early Retransmit (ER) algorithm, such that ER and TLP together can in principle recover any N-degree of tail loss through fast recovery. TLP is controlled by the same sysctl as ER, tcp_early_retrans sysctl. tcp_early_retrans==0; disables TLP and ER. ==1; enables RFC5827 ER. ==2; delayed ER. ==3; TLP and delayed ER. [DEFAULT] ==4; TLP only. The TLP patch series have been extensively tested on Google Web servers. It is most effective for short Web trasactions, where it reduced RTOs by 15% and improved HTTP response time (average by 6%, 99th percentile by 10%). The transmitted probes account for <0.5% of the overall transmissions. Signed-off-by: Nandita Dukkipati <nanditad@google.com> Acked-by: Neal Cardwell <ncardwell@google.com> Acked-by: Yuchung Cheng <ycheng@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2013-03-11 10:00:43 +00:00
const struct inet_connection_sock *icsk = inet_csk(sk);
struct tcp_sock *tp = tcp_sk(sk);
[TCP]: Sed magic converts func(sk, tp, ...) -> func(sk, ...) This is (mostly) automated change using magic: sed -e '/struct sock \*sk/ N' -e '/struct sock \*sk/ N' -e '/struct sock \*sk/ N' -e '/struct sock \*sk/ N' -e 's|struct sock \*sk,[\n\t ]*struct tcp_sock \*tp\([^{]*\n{\n\)| struct sock \*sk\1\tstruct tcp_sock *tp = tcp_sk(sk);\n|g' -e 's|struct sock \*sk, struct tcp_sock \*tp| struct sock \*sk|g' -e 's|sk, tp\([^-]\)|sk\1|g' Fixed four unused variable (tp) warnings that were introduced. In addition, manually added newlines after local variables and tweaked function arguments positioning. $ gcc --version gcc (GCC) 4.1.1 20060525 (Red Hat 4.1.1-1) ... $ codiff -fV built-in.o.old built-in.o.new net/ipv4/route.c: rt_cache_flush | +14 1 function changed, 14 bytes added net/ipv4/tcp.c: tcp_setsockopt | -5 tcp_sendpage | -25 tcp_sendmsg | -16 3 functions changed, 46 bytes removed net/ipv4/tcp_input.c: tcp_try_undo_recovery | +3 tcp_try_undo_dsack | +2 tcp_mark_head_lost | -12 tcp_ack | -15 tcp_event_data_recv | -32 tcp_rcv_state_process | -10 tcp_rcv_established | +1 7 functions changed, 6 bytes added, 69 bytes removed, diff: -63 net/ipv4/tcp_output.c: update_send_head | -9 tcp_transmit_skb | +19 tcp_cwnd_validate | +1 tcp_write_wakeup | -17 __tcp_push_pending_frames | -25 tcp_push_one | -8 tcp_send_fin | -4 7 functions changed, 20 bytes added, 63 bytes removed, diff: -43 built-in.o.new: 18 functions changed, 40 bytes added, 178 bytes removed, diff: -138 Signed-off-by: Ilpo Järvinen <ilpo.jarvinen@helsinki.fi> Signed-off-by: David S. Miller <davem@davemloft.net>
2007-04-20 22:18:02 -07:00
/* If the retrans timer is currently being used by Fast Open
* for SYN-ACK retrans purpose, stay put.
*/
if (rcu_access_pointer(tp->fastopen_rsk))
return;
if (!tp->packets_out) {
inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
} else {
u32 rto = inet_csk(sk)->icsk_rto;
/* Offset the time elapsed after installing regular RTO */
if (icsk->icsk_pending == ICSK_TIME_REO_TIMEOUT ||
tcp: Tail loss probe (TLP) This patch series implement the Tail loss probe (TLP) algorithm described in http://tools.ietf.org/html/draft-dukkipati-tcpm-tcp-loss-probe-01. The first patch implements the basic algorithm. TLP's goal is to reduce tail latency of short transactions. It achieves this by converting retransmission timeouts (RTOs) occuring due to tail losses (losses at end of transactions) into fast recovery. TLP transmits one packet in two round-trips when a connection is in Open state and isn't receiving any ACKs. The transmitted packet, aka loss probe, can be either new or a retransmission. When there is tail loss, the ACK from a loss probe triggers FACK/early-retransmit based fast recovery, thus avoiding a costly RTO. In the absence of loss, there is no change in the connection state. PTO stands for probe timeout. It is a timer event indicating that an ACK is overdue and triggers a loss probe packet. The PTO value is set to max(2*SRTT, 10ms) and is adjusted to account for delayed ACK timer when there is only one oustanding packet. TLP Algorithm On transmission of new data in Open state: -> packets_out > 1: schedule PTO in max(2*SRTT, 10ms). -> packets_out == 1: schedule PTO in max(2*RTT, 1.5*RTT + 200ms) -> PTO = min(PTO, RTO) Conditions for scheduling PTO: -> Connection is in Open state. -> Connection is either cwnd limited or no new data to send. -> Number of probes per tail loss episode is limited to one. -> Connection is SACK enabled. When PTO fires: new_segment_exists: -> transmit new segment. -> packets_out++. cwnd remains same. no_new_packet: -> retransmit the last segment. Its ACK triggers FACK or early retransmit based recovery. ACK path: -> rearm RTO at start of ACK processing. -> reschedule PTO if need be. In addition, the patch includes a small variation to the Early Retransmit (ER) algorithm, such that ER and TLP together can in principle recover any N-degree of tail loss through fast recovery. TLP is controlled by the same sysctl as ER, tcp_early_retrans sysctl. tcp_early_retrans==0; disables TLP and ER. ==1; enables RFC5827 ER. ==2; delayed ER. ==3; TLP and delayed ER. [DEFAULT] ==4; TLP only. The TLP patch series have been extensively tested on Google Web servers. It is most effective for short Web trasactions, where it reduced RTOs by 15% and improved HTTP response time (average by 6%, 99th percentile by 10%). The transmitted probes account for <0.5% of the overall transmissions. Signed-off-by: Nandita Dukkipati <nanditad@google.com> Acked-by: Neal Cardwell <ncardwell@google.com> Acked-by: Yuchung Cheng <ycheng@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2013-03-11 10:00:43 +00:00
icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) {
s64 delta_us = tcp_rto_delta_us(sk);
/* delta_us may not be positive if the socket is locked
tcp: Tail loss probe (TLP) This patch series implement the Tail loss probe (TLP) algorithm described in http://tools.ietf.org/html/draft-dukkipati-tcpm-tcp-loss-probe-01. The first patch implements the basic algorithm. TLP's goal is to reduce tail latency of short transactions. It achieves this by converting retransmission timeouts (RTOs) occuring due to tail losses (losses at end of transactions) into fast recovery. TLP transmits one packet in two round-trips when a connection is in Open state and isn't receiving any ACKs. The transmitted packet, aka loss probe, can be either new or a retransmission. When there is tail loss, the ACK from a loss probe triggers FACK/early-retransmit based fast recovery, thus avoiding a costly RTO. In the absence of loss, there is no change in the connection state. PTO stands for probe timeout. It is a timer event indicating that an ACK is overdue and triggers a loss probe packet. The PTO value is set to max(2*SRTT, 10ms) and is adjusted to account for delayed ACK timer when there is only one oustanding packet. TLP Algorithm On transmission of new data in Open state: -> packets_out > 1: schedule PTO in max(2*SRTT, 10ms). -> packets_out == 1: schedule PTO in max(2*RTT, 1.5*RTT + 200ms) -> PTO = min(PTO, RTO) Conditions for scheduling PTO: -> Connection is in Open state. -> Connection is either cwnd limited or no new data to send. -> Number of probes per tail loss episode is limited to one. -> Connection is SACK enabled. When PTO fires: new_segment_exists: -> transmit new segment. -> packets_out++. cwnd remains same. no_new_packet: -> retransmit the last segment. Its ACK triggers FACK or early retransmit based recovery. ACK path: -> rearm RTO at start of ACK processing. -> reschedule PTO if need be. In addition, the patch includes a small variation to the Early Retransmit (ER) algorithm, such that ER and TLP together can in principle recover any N-degree of tail loss through fast recovery. TLP is controlled by the same sysctl as ER, tcp_early_retrans sysctl. tcp_early_retrans==0; disables TLP and ER. ==1; enables RFC5827 ER. ==2; delayed ER. ==3; TLP and delayed ER. [DEFAULT] ==4; TLP only. The TLP patch series have been extensively tested on Google Web servers. It is most effective for short Web trasactions, where it reduced RTOs by 15% and improved HTTP response time (average by 6%, 99th percentile by 10%). The transmitted probes account for <0.5% of the overall transmissions. Signed-off-by: Nandita Dukkipati <nanditad@google.com> Acked-by: Neal Cardwell <ncardwell@google.com> Acked-by: Yuchung Cheng <ycheng@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2013-03-11 10:00:43 +00:00
* when the retrans timer fires and is rescheduled.
*/
rto = usecs_to_jiffies(max_t(int, delta_us, 1));
}
tcp_reset_xmit_timer(sk, ICSK_TIME_RETRANS, rto,
TCP_RTO_MAX);
}
}
tcp: fix xmit timer to only be reset if data ACKed/SACKed Fix a TCP loss recovery performance bug raised recently on the netdev list, in two threads: (i) July 26, 2017: netdev thread "TCP fast retransmit issues" (ii) July 26, 2017: netdev thread: "[PATCH V2 net-next] TLP: Don't reschedule PTO when there's one outstanding TLP retransmission" The basic problem is that incoming TCP packets that did not indicate forward progress could cause the xmit timer (TLP or RTO) to be rearmed and pushed back in time. In certain corner cases this could result in the following problems noted in these threads: - Repeated ACKs coming in with bogus SACKs corrupted by middleboxes could cause TCP to repeatedly schedule TLPs forever. We kept sending TLPs after every ~200ms, which elicited bogus SACKs, which caused more TLPs, ad infinitum; we never fired an RTO to fill in the holes. - Incoming data segments could, in some cases, cause us to reschedule our RTO or TLP timer further out in time, for no good reason. This could cause repeated inbound data to result in stalls in outbound data, in the presence of packet loss. This commit fixes these bugs by changing the TLP and RTO ACK processing to: (a) Only reschedule the xmit timer once per ACK. (b) Only reschedule the xmit timer if tcp_clean_rtx_queue() deems the ACK indicates sufficient forward progress (a packet was cumulatively ACKed, or we got a SACK for a packet that was sent before the most recent retransmit of the write queue head). This brings us back into closer compliance with the RFCs, since, as the comment for tcp_rearm_rto() notes, we should only restart the RTO timer after forward progress on the connection. Previously we were restarting the xmit timer even in these cases where there was no forward progress. As a side benefit, this commit simplifies and speeds up the TCP timer arming logic. We had been calling inet_csk_reset_xmit_timer() three times on normal ACKs that cumulatively acknowledged some data: 1) Once near the top of tcp_ack() to switch from TLP timer to RTO: if (icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) tcp_rearm_rto(sk); 2) Once in tcp_clean_rtx_queue(), to update the RTO: if (flag & FLAG_ACKED) { tcp_rearm_rto(sk); 3) Once in tcp_ack() after tcp_fastretrans_alert() to switch from RTO to TLP: if (icsk->icsk_pending == ICSK_TIME_RETRANS) tcp_schedule_loss_probe(sk); This commit, by only rescheduling the xmit timer once per ACK, simplifies the code and reduces CPU overhead. This commit was tested in an A/B test with Google web server traffic. SNMP stats and request latency metrics were within noise levels, substantiating that for normal web traffic patterns this is a rare issue. This commit was also tested with packetdrill tests to verify that it fixes the timer behavior in the corner cases discussed in the netdev threads mentioned above. This patch is a bug fix patch intended to be queued for -stable relases. Fixes: 6ba8a3b19e76 ("tcp: Tail loss probe (TLP)") Reported-by: Klavs Klavsen <kl@vsen.dk> Reported-by: Mao Wenan <maowenan@huawei.com> Signed-off-by: Neal Cardwell <ncardwell@google.com> Signed-off-by: Yuchung Cheng <ycheng@google.com> Signed-off-by: Nandita Dukkipati <nanditad@google.com> Acked-by: Eric Dumazet <edumazet@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-08-03 09:19:54 -04:00
/* Try to schedule a loss probe; if that doesn't work, then schedule an RTO. */
static void tcp_set_xmit_timer(struct sock *sk)
{
tcp: when scheduling TLP, time of RTO should account for current ACK Fix the TLP scheduling logic so that when scheduling a TLP probe, we ensure that the estimated time at which an RTO would fire accounts for the fact that ACKs indicating forward progress should push back RTO times. After the following fix: df92c8394e6e ("tcp: fix xmit timer to only be reset if data ACKed/SACKed") we had an unintentional behavior change in the following kind of scenario: suppose the RTT variance has been very low recently. Then suppose we send out a flight of N packets and our RTT is 100ms: t=0: send a flight of N packets t=100ms: receive an ACK for N-1 packets The response before df92c8394e6e that was: -> schedule a TLP for now + RTO_interval The response after df92c8394e6e is: -> schedule a TLP for t=0 + RTO_interval Since RTO_interval = srtt + RTT_variance, this means that we have scheduled a TLP timer at a point in the future that only accounts for RTT_variance. If the RTT_variance term is small, this means that the timer fires soon. Before df92c8394e6e this would not happen, because in that code, when we receive an ACK for a prefix of flight, we did: 1) Near the top of tcp_ack(), switch from TLP timer to RTO at write_queue_head->paket_tx_time + RTO_interval: if (icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) tcp_rearm_rto(sk); 2) In tcp_clean_rtx_queue(), update the RTO to now + RTO_interval: if (flag & FLAG_ACKED) { tcp_rearm_rto(sk); 3) In tcp_ack() after tcp_fastretrans_alert() switch from RTO to TLP at now + RTO_interval: if (icsk->icsk_pending == ICSK_TIME_RETRANS) tcp_schedule_loss_probe(sk); In df92c8394e6e we removed that 3-phase dance, and instead directly set the TLP timer once: we set the TLP timer in cases like this to write_queue_head->packet_tx_time + RTO_interval. So if the RTT variance is small, then this means that this is setting the TLP timer to fire quite soon. This means if the ACK for the tail of the flight takes longer than an RTT to arrive (often due to delayed ACKs), then the TLP timer fires too quickly. Fixes: df92c8394e6e ("tcp: fix xmit timer to only be reset if data ACKed/SACKed") Signed-off-by: Neal Cardwell <ncardwell@google.com> Signed-off-by: Yuchung Cheng <ycheng@google.com> Signed-off-by: Eric Dumazet <edumazet@google.com> Acked-by: Soheil Hassas Yeganeh <soheil@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-11-17 21:06:14 -05:00
if (!tcp_schedule_loss_probe(sk, true))
tcp: fix xmit timer to only be reset if data ACKed/SACKed Fix a TCP loss recovery performance bug raised recently on the netdev list, in two threads: (i) July 26, 2017: netdev thread "TCP fast retransmit issues" (ii) July 26, 2017: netdev thread: "[PATCH V2 net-next] TLP: Don't reschedule PTO when there's one outstanding TLP retransmission" The basic problem is that incoming TCP packets that did not indicate forward progress could cause the xmit timer (TLP or RTO) to be rearmed and pushed back in time. In certain corner cases this could result in the following problems noted in these threads: - Repeated ACKs coming in with bogus SACKs corrupted by middleboxes could cause TCP to repeatedly schedule TLPs forever. We kept sending TLPs after every ~200ms, which elicited bogus SACKs, which caused more TLPs, ad infinitum; we never fired an RTO to fill in the holes. - Incoming data segments could, in some cases, cause us to reschedule our RTO or TLP timer further out in time, for no good reason. This could cause repeated inbound data to result in stalls in outbound data, in the presence of packet loss. This commit fixes these bugs by changing the TLP and RTO ACK processing to: (a) Only reschedule the xmit timer once per ACK. (b) Only reschedule the xmit timer if tcp_clean_rtx_queue() deems the ACK indicates sufficient forward progress (a packet was cumulatively ACKed, or we got a SACK for a packet that was sent before the most recent retransmit of the write queue head). This brings us back into closer compliance with the RFCs, since, as the comment for tcp_rearm_rto() notes, we should only restart the RTO timer after forward progress on the connection. Previously we were restarting the xmit timer even in these cases where there was no forward progress. As a side benefit, this commit simplifies and speeds up the TCP timer arming logic. We had been calling inet_csk_reset_xmit_timer() three times on normal ACKs that cumulatively acknowledged some data: 1) Once near the top of tcp_ack() to switch from TLP timer to RTO: if (icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) tcp_rearm_rto(sk); 2) Once in tcp_clean_rtx_queue(), to update the RTO: if (flag & FLAG_ACKED) { tcp_rearm_rto(sk); 3) Once in tcp_ack() after tcp_fastretrans_alert() to switch from RTO to TLP: if (icsk->icsk_pending == ICSK_TIME_RETRANS) tcp_schedule_loss_probe(sk); This commit, by only rescheduling the xmit timer once per ACK, simplifies the code and reduces CPU overhead. This commit was tested in an A/B test with Google web server traffic. SNMP stats and request latency metrics were within noise levels, substantiating that for normal web traffic patterns this is a rare issue. This commit was also tested with packetdrill tests to verify that it fixes the timer behavior in the corner cases discussed in the netdev threads mentioned above. This patch is a bug fix patch intended to be queued for -stable relases. Fixes: 6ba8a3b19e76 ("tcp: Tail loss probe (TLP)") Reported-by: Klavs Klavsen <kl@vsen.dk> Reported-by: Mao Wenan <maowenan@huawei.com> Signed-off-by: Neal Cardwell <ncardwell@google.com> Signed-off-by: Yuchung Cheng <ycheng@google.com> Signed-off-by: Nandita Dukkipati <nanditad@google.com> Acked-by: Eric Dumazet <edumazet@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-08-03 09:19:54 -04:00
tcp_rearm_rto(sk);
}
/* If we get here, the whole TSO packet has not been acked. */
static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb)
{
struct tcp_sock *tp = tcp_sk(sk);
u32 packets_acked;
BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una));
packets_acked = tcp_skb_pcount(skb);
if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
return 0;
packets_acked -= tcp_skb_pcount(skb);
if (packets_acked) {
BUG_ON(tcp_skb_pcount(skb) == 0);
BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq));
}
return packets_acked;
}
static void tcp_ack_tstamp(struct sock *sk, struct sk_buff *skb,
const struct sk_buff *ack_skb, u32 prior_snd_una)
{
const struct skb_shared_info *shinfo;
/* Avoid cache line misses to get skb_shinfo() and shinfo->tx_flags */
if (likely(!TCP_SKB_CB(skb)->txstamp_ack))
return;
shinfo = skb_shinfo(skb);
if (!before(shinfo->tskey, prior_snd_una) &&
tcp: new list for sent but unacked skbs for RACK recovery This patch adds a new queue (list) that tracks the sent but not yet acked or SACKed skbs for a TCP connection. The list is chronologically ordered by skb->skb_mstamp (the head is the oldest sent skb). This list will be used to optimize TCP Rack recovery, which checks an skb's timestamp to judge if it has been lost and needs to be retransmitted. Since TCP write queue is ordered by sequence instead of sent time, RACK has to scan over the write queue to catch all eligible packets to detect lost retransmission, and iterates through SACKed skbs repeatedly. Special cares for rare events: 1. TCP repair fakes skb transmission so the send queue needs adjusted 2. SACK reneging would require re-inserting SACKed skbs into the send queue. For now I believe it's not worth the complexity to make RACK work perfectly on SACK reneging, so we do nothing here. 3. Fast Open: currently for non-TFO, send-queue correctly queues the pure SYN packet. For TFO which queues a pure SYN and then a data packet, send-queue only queues the data packet but not the pure SYN due to the structure of TFO code. This is okay because the SYN receiver would never respond with a SACK on a missing SYN (i.e. SYN is never fast-retransmitted by SACK/RACK). In order to not grow sk_buff, we use an union for the new list and _skb_refdst/destructor fields. This is a bit complicated because we need to make sure _skb_refdst and destructor are properly zeroed before skb is cloned/copied at transmit, and before being freed. Signed-off-by: Eric Dumazet <edumazet@google.com> Signed-off-by: Yuchung Cheng <ycheng@google.com> Signed-off-by: Neal Cardwell <ncardwell@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-10-04 12:59:58 -07:00
before(shinfo->tskey, tcp_sk(sk)->snd_una)) {
tcp_skb_tsorted_save(skb) {
__skb_tstamp_tx(skb, ack_skb, NULL, sk, SCM_TSTAMP_ACK);
tcp: new list for sent but unacked skbs for RACK recovery This patch adds a new queue (list) that tracks the sent but not yet acked or SACKed skbs for a TCP connection. The list is chronologically ordered by skb->skb_mstamp (the head is the oldest sent skb). This list will be used to optimize TCP Rack recovery, which checks an skb's timestamp to judge if it has been lost and needs to be retransmitted. Since TCP write queue is ordered by sequence instead of sent time, RACK has to scan over the write queue to catch all eligible packets to detect lost retransmission, and iterates through SACKed skbs repeatedly. Special cares for rare events: 1. TCP repair fakes skb transmission so the send queue needs adjusted 2. SACK reneging would require re-inserting SACKed skbs into the send queue. For now I believe it's not worth the complexity to make RACK work perfectly on SACK reneging, so we do nothing here. 3. Fast Open: currently for non-TFO, send-queue correctly queues the pure SYN packet. For TFO which queues a pure SYN and then a data packet, send-queue only queues the data packet but not the pure SYN due to the structure of TFO code. This is okay because the SYN receiver would never respond with a SACK on a missing SYN (i.e. SYN is never fast-retransmitted by SACK/RACK). In order to not grow sk_buff, we use an union for the new list and _skb_refdst/destructor fields. This is a bit complicated because we need to make sure _skb_refdst and destructor are properly zeroed before skb is cloned/copied at transmit, and before being freed. Signed-off-by: Eric Dumazet <edumazet@google.com> Signed-off-by: Yuchung Cheng <ycheng@google.com> Signed-off-by: Neal Cardwell <ncardwell@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-10-04 12:59:58 -07:00
} tcp_skb_tsorted_restore(skb);
}
}
/* Remove acknowledged frames from the retransmission queue. If our packet
* is before the ack sequence we can discard it as it's confirmed to have
* arrived at the other end.
*/
static int tcp_clean_rtx_queue(struct sock *sk, const struct sk_buff *ack_skb,
u32 prior_fack, u32 prior_snd_una,
struct tcp_sacktag_state *sack, bool ece_ack)
{
const struct inet_connection_sock *icsk = inet_csk(sk);
u64 first_ackt, last_ackt;
tcp: switch rtt estimations to usec resolution Upcoming congestion controls for TCP require usec resolution for RTT estimations. Millisecond resolution is simply not enough these days. FQ/pacing in DC environments also require this change for finer control and removal of bimodal behavior due to the current hack in tcp_update_pacing_rate() for 'small rtt' TCP_CONG_RTT_STAMP is no longer needed. As Julian Anastasov pointed out, we need to keep user compatibility : tcp_metrics used to export RTT and RTTVAR in msec resolution, so we added RTT_US and RTTVAR_US. An iproute2 patch is needed to use the new attributes if provided by the kernel. In this example ss command displays a srtt of 32 usecs (10Gbit link) lpk51:~# ./ss -i dst lpk52 Netid State Recv-Q Send-Q Local Address:Port Peer Address:Port tcp ESTAB 0 1 10.246.11.51:42959 10.246.11.52:64614 cubic wscale:6,6 rto:201 rtt:0.032/0.001 ato:40 mss:1448 cwnd:10 send 3620.0Mbps pacing_rate 7240.0Mbps unacked:1 rcv_rtt:993 rcv_space:29559 Updated iproute2 ip command displays : lpk51:~# ./ip tcp_metrics | grep 10.246.11.52 10.246.11.52 age 561.914sec cwnd 10 rtt 274us rttvar 213us source 10.246.11.51 Old binary displays : lpk51:~# ip tcp_metrics | grep 10.246.11.52 10.246.11.52 age 561.914sec cwnd 10 rtt 250us rttvar 125us source 10.246.11.51 With help from Julian Anastasov, Stephen Hemminger and Yuchung Cheng Signed-off-by: Eric Dumazet <edumazet@google.com> Acked-by: Neal Cardwell <ncardwell@google.com> Cc: Stephen Hemminger <stephen@networkplumber.org> Cc: Yuchung Cheng <ycheng@google.com> Cc: Larry Brakmo <brakmo@google.com> Cc: Julian Anastasov <ja@ssi.bg> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-02-26 14:02:48 -08:00
struct tcp_sock *tp = tcp_sk(sk);
u32 prior_sacked = tp->sacked_out;
u32 reord = tp->snd_nxt; /* lowest acked un-retx un-sacked seq */
tcp: implement rb-tree based retransmit queue Using a linear list to store all skbs in write queue has been okay for quite a while : O(N) is not too bad when N < 500. Things get messy when N is the order of 100,000 : Modern TCP stacks want 10Gbit+ of throughput even with 200 ms RTT flows. 40 ns per cache line miss means a full scan can use 4 ms, blowing away CPU caches. SACK processing often can use various hints to avoid parsing whole retransmit queue. But with high packet losses and/or high reordering, hints no longer work. Sender has to process thousands of unfriendly SACK, accumulating a huge socket backlog, burning a cpu and massively dropping packets. Using an rb-tree for retransmit queue has been avoided for years because it added complexity and overhead, but now is the time to be more resistant and say no to quadratic behavior. 1) RTX queue is no longer part of the write queue : already sent skbs are stored in one rb-tree. 2) Since reaching the head of write queue no longer needs sk->sk_send_head, we added an union of sk_send_head and tcp_rtx_queue Tested: On receiver : netem on ingress : delay 150ms 200us loss 1 GRO disabled to force stress and SACK storms. for f in `seq 1 10` do ./netperf -H lpaa6 -l30 -- -K bbr -o THROUGHPUT|tail -1 done | awk '{print $0} {sum += $0} END {printf "%7u\n",sum}' Before patch : 323.87 351.48 339.59 338.62 306.72 204.07 304.93 291.88 202.47 176.88 2840 After patch: 1700.83 2207.98 2070.17 1544.26 2114.76 2124.89 1693.14 1080.91 2216.82 1299.94 18053 Signed-off-by: Eric Dumazet <edumazet@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-10-05 22:21:27 -07:00
struct sk_buff *skb, *next;
bool fully_acked = true;
long sack_rtt_us = -1L;
tcp: switch rtt estimations to usec resolution Upcoming congestion controls for TCP require usec resolution for RTT estimations. Millisecond resolution is simply not enough these days. FQ/pacing in DC environments also require this change for finer control and removal of bimodal behavior due to the current hack in tcp_update_pacing_rate() for 'small rtt' TCP_CONG_RTT_STAMP is no longer needed. As Julian Anastasov pointed out, we need to keep user compatibility : tcp_metrics used to export RTT and RTTVAR in msec resolution, so we added RTT_US and RTTVAR_US. An iproute2 patch is needed to use the new attributes if provided by the kernel. In this example ss command displays a srtt of 32 usecs (10Gbit link) lpk51:~# ./ss -i dst lpk52 Netid State Recv-Q Send-Q Local Address:Port Peer Address:Port tcp ESTAB 0 1 10.246.11.51:42959 10.246.11.52:64614 cubic wscale:6,6 rto:201 rtt:0.032/0.001 ato:40 mss:1448 cwnd:10 send 3620.0Mbps pacing_rate 7240.0Mbps unacked:1 rcv_rtt:993 rcv_space:29559 Updated iproute2 ip command displays : lpk51:~# ./ip tcp_metrics | grep 10.246.11.52 10.246.11.52 age 561.914sec cwnd 10 rtt 274us rttvar 213us source 10.246.11.51 Old binary displays : lpk51:~# ip tcp_metrics | grep 10.246.11.52 10.246.11.52 age 561.914sec cwnd 10 rtt 250us rttvar 125us source 10.246.11.51 With help from Julian Anastasov, Stephen Hemminger and Yuchung Cheng Signed-off-by: Eric Dumazet <edumazet@google.com> Acked-by: Neal Cardwell <ncardwell@google.com> Cc: Stephen Hemminger <stephen@networkplumber.org> Cc: Yuchung Cheng <ycheng@google.com> Cc: Larry Brakmo <brakmo@google.com> Cc: Julian Anastasov <ja@ssi.bg> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-02-26 14:02:48 -08:00
long seq_rtt_us = -1L;
long ca_rtt_us = -1L;
u32 pkts_acked = 0;
bool rtt_update;
tcp: switch rtt estimations to usec resolution Upcoming congestion controls for TCP require usec resolution for RTT estimations. Millisecond resolution is simply not enough these days. FQ/pacing in DC environments also require this change for finer control and removal of bimodal behavior due to the current hack in tcp_update_pacing_rate() for 'small rtt' TCP_CONG_RTT_STAMP is no longer needed. As Julian Anastasov pointed out, we need to keep user compatibility : tcp_metrics used to export RTT and RTTVAR in msec resolution, so we added RTT_US and RTTVAR_US. An iproute2 patch is needed to use the new attributes if provided by the kernel. In this example ss command displays a srtt of 32 usecs (10Gbit link) lpk51:~# ./ss -i dst lpk52 Netid State Recv-Q Send-Q Local Address:Port Peer Address:Port tcp ESTAB 0 1 10.246.11.51:42959 10.246.11.52:64614 cubic wscale:6,6 rto:201 rtt:0.032/0.001 ato:40 mss:1448 cwnd:10 send 3620.0Mbps pacing_rate 7240.0Mbps unacked:1 rcv_rtt:993 rcv_space:29559 Updated iproute2 ip command displays : lpk51:~# ./ip tcp_metrics | grep 10.246.11.52 10.246.11.52 age 561.914sec cwnd 10 rtt 274us rttvar 213us source 10.246.11.51 Old binary displays : lpk51:~# ip tcp_metrics | grep 10.246.11.52 10.246.11.52 age 561.914sec cwnd 10 rtt 250us rttvar 125us source 10.246.11.51 With help from Julian Anastasov, Stephen Hemminger and Yuchung Cheng Signed-off-by: Eric Dumazet <edumazet@google.com> Acked-by: Neal Cardwell <ncardwell@google.com> Cc: Stephen Hemminger <stephen@networkplumber.org> Cc: Yuchung Cheng <ycheng@google.com> Cc: Larry Brakmo <brakmo@google.com> Cc: Julian Anastasov <ja@ssi.bg> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-02-26 14:02:48 -08:00
int flag = 0;
first_ackt = 0;
tcp: implement rb-tree based retransmit queue Using a linear list to store all skbs in write queue has been okay for quite a while : O(N) is not too bad when N < 500. Things get messy when N is the order of 100,000 : Modern TCP stacks want 10Gbit+ of throughput even with 200 ms RTT flows. 40 ns per cache line miss means a full scan can use 4 ms, blowing away CPU caches. SACK processing often can use various hints to avoid parsing whole retransmit queue. But with high packet losses and/or high reordering, hints no longer work. Sender has to process thousands of unfriendly SACK, accumulating a huge socket backlog, burning a cpu and massively dropping packets. Using an rb-tree for retransmit queue has been avoided for years because it added complexity and overhead, but now is the time to be more resistant and say no to quadratic behavior. 1) RTX queue is no longer part of the write queue : already sent skbs are stored in one rb-tree. 2) Since reaching the head of write queue no longer needs sk->sk_send_head, we added an union of sk_send_head and tcp_rtx_queue Tested: On receiver : netem on ingress : delay 150ms 200us loss 1 GRO disabled to force stress and SACK storms. for f in `seq 1 10` do ./netperf -H lpaa6 -l30 -- -K bbr -o THROUGHPUT|tail -1 done | awk '{print $0} {sum += $0} END {printf "%7u\n",sum}' Before patch : 323.87 351.48 339.59 338.62 306.72 204.07 304.93 291.88 202.47 176.88 2840 After patch: 1700.83 2207.98 2070.17 1544.26 2114.76 2124.89 1693.14 1080.91 2216.82 1299.94 18053 Signed-off-by: Eric Dumazet <edumazet@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-10-05 22:21:27 -07:00
for (skb = skb_rb_first(&sk->tcp_rtx_queue); skb; skb = next) {
struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
const u32 start_seq = scb->seq;
u8 sacked = scb->sacked;
tcp: switch rtt estimations to usec resolution Upcoming congestion controls for TCP require usec resolution for RTT estimations. Millisecond resolution is simply not enough these days. FQ/pacing in DC environments also require this change for finer control and removal of bimodal behavior due to the current hack in tcp_update_pacing_rate() for 'small rtt' TCP_CONG_RTT_STAMP is no longer needed. As Julian Anastasov pointed out, we need to keep user compatibility : tcp_metrics used to export RTT and RTTVAR in msec resolution, so we added RTT_US and RTTVAR_US. An iproute2 patch is needed to use the new attributes if provided by the kernel. In this example ss command displays a srtt of 32 usecs (10Gbit link) lpk51:~# ./ss -i dst lpk52 Netid State Recv-Q Send-Q Local Address:Port Peer Address:Port tcp ESTAB 0 1 10.246.11.51:42959 10.246.11.52:64614 cubic wscale:6,6 rto:201 rtt:0.032/0.001 ato:40 mss:1448 cwnd:10 send 3620.0Mbps pacing_rate 7240.0Mbps unacked:1 rcv_rtt:993 rcv_space:29559 Updated iproute2 ip command displays : lpk51:~# ./ip tcp_metrics | grep 10.246.11.52 10.246.11.52 age 561.914sec cwnd 10 rtt 274us rttvar 213us source 10.246.11.51 Old binary displays : lpk51:~# ip tcp_metrics | grep 10.246.11.52 10.246.11.52 age 561.914sec cwnd 10 rtt 250us rttvar 125us source 10.246.11.51 With help from Julian Anastasov, Stephen Hemminger and Yuchung Cheng Signed-off-by: Eric Dumazet <edumazet@google.com> Acked-by: Neal Cardwell <ncardwell@google.com> Cc: Stephen Hemminger <stephen@networkplumber.org> Cc: Yuchung Cheng <ycheng@google.com> Cc: Larry Brakmo <brakmo@google.com> Cc: Julian Anastasov <ja@ssi.bg> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-02-26 14:02:48 -08:00
u32 acked_pcount;
[TCP]: use non-delayed ACK for congestion control RTT When a delayed ACK representing two packets arrives, there are two RTT samples available, one for each packet. The first (in order of seq number) will be artificially long due to the delay waiting for the second packet, the second will trigger the ACK and so will not itself be delayed. According to rfc1323, the SRTT used for RTO calculation should use the first rtt, so receivers echo the timestamp from the first packet in the delayed ack. For congestion control however, it seems measuring delayed ack delay is not desirable as it varies independently of congestion. The patch below causes seq_rtt and last_ackt to be updated with any available later packet rtts which should have less (and hopefully zero) delack delay. The rtt value then gets passed to ca_ops->pkts_acked(). Where TCP_CONG_RTT_STAMP was set, effort was made to supress RTTs from within a TSO chunk (!fully_acked), using only the final ACK (which includes any TSO delay) to generate RTTs. This patch removes these checks so RTTs are passed for each ACK to ca_ops->pkts_acked(). For non-delay based congestion control (cubic, h-tcp), rtt is sometimes used for rtt-scaling. In shortening the RTT, this may make them a little less aggressive. Delay-based schemes (eg vegas, veno, illinois) should get a cleaner, more accurate congestion signal, particularly for small cwnds. The congestion control module can potentially also filter out bad RTTs due to the delayed ack alarm by looking at the associated cnt which (where delayed acking is in use) should probably be 1 if the alarm went off or greater if the ACK was triggered by a packet. Signed-off-by: Gavin McCullagh <gavin.mccullagh@nuim.ie> Acked-by: Ilpo Jrvinen <ilpo.jarvinen@helsinki.fi> Signed-off-by: David S. Miller <davem@davemloft.net>
2007-12-29 19:11:21 -08:00
/* Determine how many packets and what bytes were acked, tso and else */
if (after(scb->end_seq, tp->snd_una)) {
if (tcp_skb_pcount(skb) == 1 ||
!after(tp->snd_una, scb->seq))
break;
acked_pcount = tcp_tso_acked(sk, skb);
if (!acked_pcount)
break;
fully_acked = false;
} else {
acked_pcount = tcp_skb_pcount(skb);
}
if (unlikely(sacked & TCPCB_RETRANS)) {
if (sacked & TCPCB_SACKED_RETRANS)
tp->retrans_out -= acked_pcount;
flag |= FLAG_RETRANS_DATA_ACKED;
} else if (!(sacked & TCPCB_SACKED_ACKED)) {
last_ackt = tcp_skb_timestamp_us(skb);
WARN_ON_ONCE(last_ackt == 0);
if (!first_ackt)
tcp: switch rtt estimations to usec resolution Upcoming congestion controls for TCP require usec resolution for RTT estimations. Millisecond resolution is simply not enough these days. FQ/pacing in DC environments also require this change for finer control and removal of bimodal behavior due to the current hack in tcp_update_pacing_rate() for 'small rtt' TCP_CONG_RTT_STAMP is no longer needed. As Julian Anastasov pointed out, we need to keep user compatibility : tcp_metrics used to export RTT and RTTVAR in msec resolution, so we added RTT_US and RTTVAR_US. An iproute2 patch is needed to use the new attributes if provided by the kernel. In this example ss command displays a srtt of 32 usecs (10Gbit link) lpk51:~# ./ss -i dst lpk52 Netid State Recv-Q Send-Q Local Address:Port Peer Address:Port tcp ESTAB 0 1 10.246.11.51:42959 10.246.11.52:64614 cubic wscale:6,6 rto:201 rtt:0.032/0.001 ato:40 mss:1448 cwnd:10 send 3620.0Mbps pacing_rate 7240.0Mbps unacked:1 rcv_rtt:993 rcv_space:29559 Updated iproute2 ip command displays : lpk51:~# ./ip tcp_metrics | grep 10.246.11.52 10.246.11.52 age 561.914sec cwnd 10 rtt 274us rttvar 213us source 10.246.11.51 Old binary displays : lpk51:~# ip tcp_metrics | grep 10.246.11.52 10.246.11.52 age 561.914sec cwnd 10 rtt 250us rttvar 125us source 10.246.11.51 With help from Julian Anastasov, Stephen Hemminger and Yuchung Cheng Signed-off-by: Eric Dumazet <edumazet@google.com> Acked-by: Neal Cardwell <ncardwell@google.com> Cc: Stephen Hemminger <stephen@networkplumber.org> Cc: Yuchung Cheng <ycheng@google.com> Cc: Larry Brakmo <brakmo@google.com> Cc: Julian Anastasov <ja@ssi.bg> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-02-26 14:02:48 -08:00
first_ackt = last_ackt;
if (before(start_seq, reord))
reord = start_seq;
if (!after(scb->end_seq, tp->high_seq))
flag |= FLAG_ORIG_SACK_ACKED;
}
tcp: new delivery accounting This patch changes the accounting of how many packets are newly acked or sacked when the sender receives an ACK. The current approach basically computes newly_acked_sacked = (prior_packets - prior_sacked) - (tp->packets_out - tp->sacked_out) where prior_packets and prior_sacked out are snapshot at the beginning of the ACK processing. The new approach tracks the delivery information via a new TCP state variable "delivered" which monotically increases as new packets are delivered in order or out-of-order. The reason for this change is that the current approach is brittle that produces negative or inaccurate estimate. 1) For non-SACK connections, an ACK that advances the SND.UNA could reset the DUPACK counters (tp->sacked_out) in tcp_process_loss() or tcp_fastretrans_alert(). This inflates the inflight suddenly and causes under-estimate or even negative estimate. Here is a real example: before after (processing ACK) packets_out 75 73 sacked_out 23 0 ca state Loss Open The old approach computes (75-23) - (73 - 0) = -21 delivered while the new approach computes 1 delivered since it considers the 2nd-24th packets are delivered OOO. 2) MSS change would re-count packets_out and sacked_out so the estimate is in-accurate and can even become negative. E.g., the inflight is doubled when MSS is halved. 3) Spurious retransmission signaled by DSACK is not accounted The new approach is simpler and more robust. For SACK connections, tp->delivered increments as packets are being acked or sacked in SACK and ACK processing. For non-sack connections, it's done in tcp_remove_reno_sacks() and tcp_add_reno_sack(). When an ACK advances the SND.UNA, tp->delivered is incremented by the number of packets ACKed (less the current number of DUPACKs received plus one packet hole). Upon receiving a DUPACK, tp->delivered is incremented assuming one out-of-order packet is delivered. Upon receiving a DSACK, tp->delivered is incremtened assuming one retransmission is delivered in tcp_sacktag_write_queue(). Signed-off-by: Yuchung Cheng <ycheng@google.com> Signed-off-by: Neal Cardwell <ncardwell@google.com> Signed-off-by: Eric Dumazet <ncardwell@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-02-02 10:33:06 -08:00
if (sacked & TCPCB_SACKED_ACKED) {
tp->sacked_out -= acked_pcount;
tcp: new delivery accounting This patch changes the accounting of how many packets are newly acked or sacked when the sender receives an ACK. The current approach basically computes newly_acked_sacked = (prior_packets - prior_sacked) - (tp->packets_out - tp->sacked_out) where prior_packets and prior_sacked out are snapshot at the beginning of the ACK processing. The new approach tracks the delivery information via a new TCP state variable "delivered" which monotically increases as new packets are delivered in order or out-of-order. The reason for this change is that the current approach is brittle that produces negative or inaccurate estimate. 1) For non-SACK connections, an ACK that advances the SND.UNA could reset the DUPACK counters (tp->sacked_out) in tcp_process_loss() or tcp_fastretrans_alert(). This inflates the inflight suddenly and causes under-estimate or even negative estimate. Here is a real example: before after (processing ACK) packets_out 75 73 sacked_out 23 0 ca state Loss Open The old approach computes (75-23) - (73 - 0) = -21 delivered while the new approach computes 1 delivered since it considers the 2nd-24th packets are delivered OOO. 2) MSS change would re-count packets_out and sacked_out so the estimate is in-accurate and can even become negative. E.g., the inflight is doubled when MSS is halved. 3) Spurious retransmission signaled by DSACK is not accounted The new approach is simpler and more robust. For SACK connections, tp->delivered increments as packets are being acked or sacked in SACK and ACK processing. For non-sack connections, it's done in tcp_remove_reno_sacks() and tcp_add_reno_sack(). When an ACK advances the SND.UNA, tp->delivered is incremented by the number of packets ACKed (less the current number of DUPACKs received plus one packet hole). Upon receiving a DUPACK, tp->delivered is incremented assuming one out-of-order packet is delivered. Upon receiving a DSACK, tp->delivered is incremtened assuming one retransmission is delivered in tcp_sacktag_write_queue(). Signed-off-by: Yuchung Cheng <ycheng@google.com> Signed-off-by: Neal Cardwell <ncardwell@google.com> Signed-off-by: Eric Dumazet <ncardwell@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-02-02 10:33:06 -08:00
} else if (tcp_is_sack(tp)) {
tcp_count_delivered(tp, acked_pcount, ece_ack);
tcp: new delivery accounting This patch changes the accounting of how many packets are newly acked or sacked when the sender receives an ACK. The current approach basically computes newly_acked_sacked = (prior_packets - prior_sacked) - (tp->packets_out - tp->sacked_out) where prior_packets and prior_sacked out are snapshot at the beginning of the ACK processing. The new approach tracks the delivery information via a new TCP state variable "delivered" which monotically increases as new packets are delivered in order or out-of-order. The reason for this change is that the current approach is brittle that produces negative or inaccurate estimate. 1) For non-SACK connections, an ACK that advances the SND.UNA could reset the DUPACK counters (tp->sacked_out) in tcp_process_loss() or tcp_fastretrans_alert(). This inflates the inflight suddenly and causes under-estimate or even negative estimate. Here is a real example: before after (processing ACK) packets_out 75 73 sacked_out 23 0 ca state Loss Open The old approach computes (75-23) - (73 - 0) = -21 delivered while the new approach computes 1 delivered since it considers the 2nd-24th packets are delivered OOO. 2) MSS change would re-count packets_out and sacked_out so the estimate is in-accurate and can even become negative. E.g., the inflight is doubled when MSS is halved. 3) Spurious retransmission signaled by DSACK is not accounted The new approach is simpler and more robust. For SACK connections, tp->delivered increments as packets are being acked or sacked in SACK and ACK processing. For non-sack connections, it's done in tcp_remove_reno_sacks() and tcp_add_reno_sack(). When an ACK advances the SND.UNA, tp->delivered is incremented by the number of packets ACKed (less the current number of DUPACKs received plus one packet hole). Upon receiving a DUPACK, tp->delivered is incremented assuming one out-of-order packet is delivered. Upon receiving a DSACK, tp->delivered is incremtened assuming one retransmission is delivered in tcp_sacktag_write_queue(). Signed-off-by: Yuchung Cheng <ycheng@google.com> Signed-off-by: Neal Cardwell <ncardwell@google.com> Signed-off-by: Eric Dumazet <ncardwell@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-02-02 10:33:06 -08:00
if (!tcp_skb_spurious_retrans(tp, skb))
tcp_rack_advance(tp, sacked, scb->end_seq,
tcp_skb_timestamp_us(skb));
tcp: new delivery accounting This patch changes the accounting of how many packets are newly acked or sacked when the sender receives an ACK. The current approach basically computes newly_acked_sacked = (prior_packets - prior_sacked) - (tp->packets_out - tp->sacked_out) where prior_packets and prior_sacked out are snapshot at the beginning of the ACK processing. The new approach tracks the delivery information via a new TCP state variable "delivered" which monotically increases as new packets are delivered in order or out-of-order. The reason for this change is that the current approach is brittle that produces negative or inaccurate estimate. 1) For non-SACK connections, an ACK that advances the SND.UNA could reset the DUPACK counters (tp->sacked_out) in tcp_process_loss() or tcp_fastretrans_alert(). This inflates the inflight suddenly and causes under-estimate or even negative estimate. Here is a real example: before after (processing ACK) packets_out 75 73 sacked_out 23 0 ca state Loss Open The old approach computes (75-23) - (73 - 0) = -21 delivered while the new approach computes 1 delivered since it considers the 2nd-24th packets are delivered OOO. 2) MSS change would re-count packets_out and sacked_out so the estimate is in-accurate and can even become negative. E.g., the inflight is doubled when MSS is halved. 3) Spurious retransmission signaled by DSACK is not accounted The new approach is simpler and more robust. For SACK connections, tp->delivered increments as packets are being acked or sacked in SACK and ACK processing. For non-sack connections, it's done in tcp_remove_reno_sacks() and tcp_add_reno_sack(). When an ACK advances the SND.UNA, tp->delivered is incremented by the number of packets ACKed (less the current number of DUPACKs received plus one packet hole). Upon receiving a DUPACK, tp->delivered is incremented assuming one out-of-order packet is delivered. Upon receiving a DSACK, tp->delivered is incremtened assuming one retransmission is delivered in tcp_sacktag_write_queue(). Signed-off-by: Yuchung Cheng <ycheng@google.com> Signed-off-by: Neal Cardwell <ncardwell@google.com> Signed-off-by: Eric Dumazet <ncardwell@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-02-02 10:33:06 -08:00
}
if (sacked & TCPCB_LOST)
tp->lost_out -= acked_pcount;
tp->packets_out -= acked_pcount;
pkts_acked += acked_pcount;
tcp: track data delivery rate for a TCP connection This patch generates data delivery rate (throughput) samples on a per-ACK basis. These rate samples can be used by congestion control modules, and specifically will be used by TCP BBR in later patches in this series. Key state: tp->delivered: Tracks the total number of data packets (original or not) delivered so far. This is an already-existing field. tp->delivered_mstamp: the last time tp->delivered was updated. Algorithm: A rate sample is calculated as (d1 - d0)/(t1 - t0) on a per-ACK basis: d1: the current tp->delivered after processing the ACK t1: the current time after processing the ACK d0: the prior tp->delivered when the acked skb was transmitted t0: the prior tp->delivered_mstamp when the acked skb was transmitted When an skb is transmitted, we snapshot d0 and t0 in its control block in tcp_rate_skb_sent(). When an ACK arrives, it may SACK and ACK some skbs. For each SACKed or ACKed skb, tcp_rate_skb_delivered() updates the rate_sample struct to reflect the latest (d0, t0). Finally, tcp_rate_gen() generates a rate sample by storing (d1 - d0) in rs->delivered and (t1 - t0) in rs->interval_us. One caveat: if an skb was sent with no packets in flight, then tp->delivered_mstamp may be either invalid (if the connection is starting) or outdated (if the connection was idle). In that case, we'll re-stamp tp->delivered_mstamp. At first glance it seems t0 should always be the time when an skb was transmitted, but actually this could over-estimate the rate due to phase mismatch between transmit and ACK events. To track the delivery rate, we ensure that if packets are in flight then t0 and and t1 are times at which packets were marked delivered. If the initial and final RTTs are different then one may be corrupted by some sort of noise. The noise we see most often is sending gaps caused by delayed, compressed, or stretched acks. This either affects both RTTs equally or artificially reduces the final RTT. We approach this by recording the info we need to compute the initial RTT (duration of the "send phase" of the window) when we recorded the associated inflight. Then, for a filter to avoid bandwidth overestimates, we generalize the per-sample bandwidth computation from: bw = delivered / ack_phase_rtt to the following: bw = delivered / max(send_phase_rtt, ack_phase_rtt) In large-scale experiments, this filtering approach incorporating send_phase_rtt is effective at avoiding bandwidth overestimates due to ACK compression or stretched ACKs. Signed-off-by: Van Jacobson <vanj@google.com> Signed-off-by: Neal Cardwell <ncardwell@google.com> Signed-off-by: Yuchung Cheng <ycheng@google.com> Signed-off-by: Nandita Dukkipati <nanditad@google.com> Signed-off-by: Eric Dumazet <edumazet@google.com> Signed-off-by: Soheil Hassas Yeganeh <soheil@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-09-19 23:39:14 -04:00
tcp_rate_skb_delivered(sk, skb, sack->rate);
/* Initial outgoing SYN's get put onto the write_queue
* just like anything else we transmit. It is not
* true data, and if we misinform our callers that
* this ACK acks real data, we will erroneously exit
* connection startup slow start one packet too
* quickly. This is severely frowned upon behavior.
*/
if (likely(!(scb->tcp_flags & TCPHDR_SYN))) {
flag |= FLAG_DATA_ACKED;
} else {
flag |= FLAG_SYN_ACKED;
tp->retrans_stamp = 0;
}
if (!fully_acked)
break;
tcp_ack_tstamp(sk, skb, ack_skb, prior_snd_una);
tcp: implement rb-tree based retransmit queue Using a linear list to store all skbs in write queue has been okay for quite a while : O(N) is not too bad when N < 500. Things get messy when N is the order of 100,000 : Modern TCP stacks want 10Gbit+ of throughput even with 200 ms RTT flows. 40 ns per cache line miss means a full scan can use 4 ms, blowing away CPU caches. SACK processing often can use various hints to avoid parsing whole retransmit queue. But with high packet losses and/or high reordering, hints no longer work. Sender has to process thousands of unfriendly SACK, accumulating a huge socket backlog, burning a cpu and massively dropping packets. Using an rb-tree for retransmit queue has been avoided for years because it added complexity and overhead, but now is the time to be more resistant and say no to quadratic behavior. 1) RTX queue is no longer part of the write queue : already sent skbs are stored in one rb-tree. 2) Since reaching the head of write queue no longer needs sk->sk_send_head, we added an union of sk_send_head and tcp_rtx_queue Tested: On receiver : netem on ingress : delay 150ms 200us loss 1 GRO disabled to force stress and SACK storms. for f in `seq 1 10` do ./netperf -H lpaa6 -l30 -- -K bbr -o THROUGHPUT|tail -1 done | awk '{print $0} {sum += $0} END {printf "%7u\n",sum}' Before patch : 323.87 351.48 339.59 338.62 306.72 204.07 304.93 291.88 202.47 176.88 2840 After patch: 1700.83 2207.98 2070.17 1544.26 2114.76 2124.89 1693.14 1080.91 2216.82 1299.94 18053 Signed-off-by: Eric Dumazet <edumazet@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-10-05 22:21:27 -07:00
next = skb_rb_next(skb);
if (unlikely(skb == tp->retransmit_skb_hint))
tp->retransmit_skb_hint = NULL;
if (unlikely(skb == tp->lost_skb_hint))
tp->lost_skb_hint = NULL;
tcp: do not leave dangling pointers in tp->highest_sack Latest commit 853697504de0 ("tcp: Fix highest_sack and highest_sack_seq") apparently allowed syzbot to trigger various crashes in TCP stack [1] I believe this commit only made things easier for syzbot to find its way into triggering use-after-frees. But really the bugs could lead to bad TCP behavior or even plain crashes even for non malicious peers. I have audited all calls to tcp_rtx_queue_unlink() and tcp_rtx_queue_unlink_and_free() and made sure tp->highest_sack would be updated if we are removing from rtx queue the skb that tp->highest_sack points to. These updates were missing in three locations : 1) tcp_clean_rtx_queue() [This one seems quite serious, I have no idea why this was not caught earlier] 2) tcp_rtx_queue_purge() [Probably not a big deal for normal operations] 3) tcp_send_synack() [Probably not a big deal for normal operations] [1] BUG: KASAN: use-after-free in tcp_highest_sack_seq include/net/tcp.h:1864 [inline] BUG: KASAN: use-after-free in tcp_highest_sack_seq include/net/tcp.h:1856 [inline] BUG: KASAN: use-after-free in tcp_check_sack_reordering+0x33c/0x3a0 net/ipv4/tcp_input.c:891 Read of size 4 at addr ffff8880a488d068 by task ksoftirqd/1/16 CPU: 1 PID: 16 Comm: ksoftirqd/1 Not tainted 5.5.0-rc5-syzkaller #0 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 01/01/2011 Call Trace: __dump_stack lib/dump_stack.c:77 [inline] dump_stack+0x197/0x210 lib/dump_stack.c:118 print_address_description.constprop.0.cold+0xd4/0x30b mm/kasan/report.c:374 __kasan_report.cold+0x1b/0x41 mm/kasan/report.c:506 kasan_report+0x12/0x20 mm/kasan/common.c:639 __asan_report_load4_noabort+0x14/0x20 mm/kasan/generic_report.c:134 tcp_highest_sack_seq include/net/tcp.h:1864 [inline] tcp_highest_sack_seq include/net/tcp.h:1856 [inline] tcp_check_sack_reordering+0x33c/0x3a0 net/ipv4/tcp_input.c:891 tcp_try_undo_partial net/ipv4/tcp_input.c:2730 [inline] tcp_fastretrans_alert+0xf74/0x23f0 net/ipv4/tcp_input.c:2847 tcp_ack+0x2577/0x5bf0 net/ipv4/tcp_input.c:3710 tcp_rcv_established+0x6dd/0x1e90 net/ipv4/tcp_input.c:5706 tcp_v4_do_rcv+0x619/0x8d0 net/ipv4/tcp_ipv4.c:1619 tcp_v4_rcv+0x307f/0x3b40 net/ipv4/tcp_ipv4.c:2001 ip_protocol_deliver_rcu+0x5a/0x880 net/ipv4/ip_input.c:204 ip_local_deliver_finish+0x23b/0x380 net/ipv4/ip_input.c:231 NF_HOOK include/linux/netfilter.h:307 [inline] NF_HOOK include/linux/netfilter.h:301 [inline] ip_local_deliver+0x1e9/0x520 net/ipv4/ip_input.c:252 dst_input include/net/dst.h:442 [inline] ip_rcv_finish+0x1db/0x2f0 net/ipv4/ip_input.c:428 NF_HOOK include/linux/netfilter.h:307 [inline] NF_HOOK include/linux/netfilter.h:301 [inline] ip_rcv+0xe8/0x3f0 net/ipv4/ip_input.c:538 __netif_receive_skb_one_core+0x113/0x1a0 net/core/dev.c:5148 __netif_receive_skb+0x2c/0x1d0 net/core/dev.c:5262 process_backlog+0x206/0x750 net/core/dev.c:6093 napi_poll net/core/dev.c:6530 [inline] net_rx_action+0x508/0x1120 net/core/dev.c:6598 __do_softirq+0x262/0x98c kernel/softirq.c:292 run_ksoftirqd kernel/softirq.c:603 [inline] run_ksoftirqd+0x8e/0x110 kernel/softirq.c:595 smpboot_thread_fn+0x6a3/0xa40 kernel/smpboot.c:165 kthread+0x361/0x430 kernel/kthread.c:255 ret_from_fork+0x24/0x30 arch/x86/entry/entry_64.S:352 Allocated by task 10091: save_stack+0x23/0x90 mm/kasan/common.c:72 set_track mm/kasan/common.c:80 [inline] __kasan_kmalloc mm/kasan/common.c:513 [inline] __kasan_kmalloc.constprop.0+0xcf/0xe0 mm/kasan/common.c:486 kasan_slab_alloc+0xf/0x20 mm/kasan/common.c:521 slab_post_alloc_hook mm/slab.h:584 [inline] slab_alloc_node mm/slab.c:3263 [inline] kmem_cache_alloc_node+0x138/0x740 mm/slab.c:3575 __alloc_skb+0xd5/0x5e0 net/core/skbuff.c:198 alloc_skb_fclone include/linux/skbuff.h:1099 [inline] sk_stream_alloc_skb net/ipv4/tcp.c:875 [inline] sk_stream_alloc_skb+0x113/0xc90 net/ipv4/tcp.c:852 tcp_sendmsg_locked+0xcf9/0x3470 net/ipv4/tcp.c:1282 tcp_sendmsg+0x30/0x50 net/ipv4/tcp.c:1432 inet_sendmsg+0x9e/0xe0 net/ipv4/af_inet.c:807 sock_sendmsg_nosec net/socket.c:652 [inline] sock_sendmsg+0xd7/0x130 net/socket.c:672 __sys_sendto+0x262/0x380 net/socket.c:1998 __do_sys_sendto net/socket.c:2010 [inline] __se_sys_sendto net/socket.c:2006 [inline] __x64_sys_sendto+0xe1/0x1a0 net/socket.c:2006 do_syscall_64+0xfa/0x790 arch/x86/entry/common.c:294 entry_SYSCALL_64_after_hwframe+0x49/0xbe Freed by task 10095: save_stack+0x23/0x90 mm/kasan/common.c:72 set_track mm/kasan/common.c:80 [inline] kasan_set_free_info mm/kasan/common.c:335 [inline] __kasan_slab_free+0x102/0x150 mm/kasan/common.c:474 kasan_slab_free+0xe/0x10 mm/kasan/common.c:483 __cache_free mm/slab.c:3426 [inline] kmem_cache_free+0x86/0x320 mm/slab.c:3694 kfree_skbmem+0x178/0x1c0 net/core/skbuff.c:645 __kfree_skb+0x1e/0x30 net/core/skbuff.c:681 sk_eat_skb include/net/sock.h:2453 [inline] tcp_recvmsg+0x1252/0x2930 net/ipv4/tcp.c:2166 inet_recvmsg+0x136/0x610 net/ipv4/af_inet.c:838 sock_recvmsg_nosec net/socket.c:886 [inline] sock_recvmsg net/socket.c:904 [inline] sock_recvmsg+0xce/0x110 net/socket.c:900 __sys_recvfrom+0x1ff/0x350 net/socket.c:2055 __do_sys_recvfrom net/socket.c:2073 [inline] __se_sys_recvfrom net/socket.c:2069 [inline] __x64_sys_recvfrom+0xe1/0x1a0 net/socket.c:2069 do_syscall_64+0xfa/0x790 arch/x86/entry/common.c:294 entry_SYSCALL_64_after_hwframe+0x49/0xbe The buggy address belongs to the object at ffff8880a488d040 which belongs to the cache skbuff_fclone_cache of size 456 The buggy address is located 40 bytes inside of 456-byte region [ffff8880a488d040, ffff8880a488d208) The buggy address belongs to the page: page:ffffea0002922340 refcount:1 mapcount:0 mapping:ffff88821b057000 index:0x0 raw: 00fffe0000000200 ffffea00022a5788 ffffea0002624a48 ffff88821b057000 raw: 0000000000000000 ffff8880a488d040 0000000100000006 0000000000000000 page dumped because: kasan: bad access detected Memory state around the buggy address: ffff8880a488cf00: fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc ffff8880a488cf80: fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc >ffff8880a488d000: fc fc fc fc fc fc fc fc fb fb fb fb fb fb fb fb ^ ffff8880a488d080: fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb ffff8880a488d100: fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb Fixes: 853697504de0 ("tcp: Fix highest_sack and highest_sack_seq") Fixes: 50895b9de1d3 ("tcp: highest_sack fix") Fixes: 737ff314563c ("tcp: use sequence distance to detect reordering") Signed-off-by: Eric Dumazet <edumazet@google.com> Cc: Cambda Zhu <cambda@linux.alibaba.com> Cc: Yuchung Cheng <ycheng@google.com> Cc: Neal Cardwell <ncardwell@google.com> Acked-by: Neal Cardwell <ncardwell@google.com> Acked-by: Yuchung Cheng <ycheng@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2020-01-22 21:03:00 -08:00
tcp_highest_sack_replace(sk, skb, next);
tcp: implement rb-tree based retransmit queue Using a linear list to store all skbs in write queue has been okay for quite a while : O(N) is not too bad when N < 500. Things get messy when N is the order of 100,000 : Modern TCP stacks want 10Gbit+ of throughput even with 200 ms RTT flows. 40 ns per cache line miss means a full scan can use 4 ms, blowing away CPU caches. SACK processing often can use various hints to avoid parsing whole retransmit queue. But with high packet losses and/or high reordering, hints no longer work. Sender has to process thousands of unfriendly SACK, accumulating a huge socket backlog, burning a cpu and massively dropping packets. Using an rb-tree for retransmit queue has been avoided for years because it added complexity and overhead, but now is the time to be more resistant and say no to quadratic behavior. 1) RTX queue is no longer part of the write queue : already sent skbs are stored in one rb-tree. 2) Since reaching the head of write queue no longer needs sk->sk_send_head, we added an union of sk_send_head and tcp_rtx_queue Tested: On receiver : netem on ingress : delay 150ms 200us loss 1 GRO disabled to force stress and SACK storms. for f in `seq 1 10` do ./netperf -H lpaa6 -l30 -- -K bbr -o THROUGHPUT|tail -1 done | awk '{print $0} {sum += $0} END {printf "%7u\n",sum}' Before patch : 323.87 351.48 339.59 338.62 306.72 204.07 304.93 291.88 202.47 176.88 2840 After patch: 1700.83 2207.98 2070.17 1544.26 2114.76 2124.89 1693.14 1080.91 2216.82 1299.94 18053 Signed-off-by: Eric Dumazet <edumazet@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-10-05 22:21:27 -07:00
tcp_rtx_queue_unlink_and_free(skb, sk);
}
if (!skb)
tcp_chrono_stop(sk, TCP_CHRONO_BUSY);
if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una)))
tp->snd_up = tp->snd_una;
if (skb) {
tcp_ack_tstamp(sk, skb, ack_skb, prior_snd_una);
if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
flag |= FLAG_SACK_RENEGING;
}
if (likely(first_ackt) && !(flag & FLAG_RETRANS_DATA_ACKED)) {
seq_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, first_ackt);
ca_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, last_ackt);
if (pkts_acked == 1 && fully_acked && !prior_sacked &&
(tp->snd_una - prior_snd_una) < tp->mss_cache &&
sack->rate->prior_delivered + 1 == tp->delivered &&
!(flag & (FLAG_CA_ALERT | FLAG_SYN_ACKED))) {
/* Conservatively mark a delayed ACK. It's typically
* from a lone runt packet over the round trip to
* a receiver w/o out-of-order or CE events.
*/
flag |= FLAG_ACK_MAYBE_DELAYED;
}
}
if (sack->first_sackt) {
sack_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, sack->first_sackt);
ca_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, sack->last_sackt);
tcp: switch rtt estimations to usec resolution Upcoming congestion controls for TCP require usec resolution for RTT estimations. Millisecond resolution is simply not enough these days. FQ/pacing in DC environments also require this change for finer control and removal of bimodal behavior due to the current hack in tcp_update_pacing_rate() for 'small rtt' TCP_CONG_RTT_STAMP is no longer needed. As Julian Anastasov pointed out, we need to keep user compatibility : tcp_metrics used to export RTT and RTTVAR in msec resolution, so we added RTT_US and RTTVAR_US. An iproute2 patch is needed to use the new attributes if provided by the kernel. In this example ss command displays a srtt of 32 usecs (10Gbit link) lpk51:~# ./ss -i dst lpk52 Netid State Recv-Q Send-Q Local Address:Port Peer Address:Port tcp ESTAB 0 1 10.246.11.51:42959 10.246.11.52:64614 cubic wscale:6,6 rto:201 rtt:0.032/0.001 ato:40 mss:1448 cwnd:10 send 3620.0Mbps pacing_rate 7240.0Mbps unacked:1 rcv_rtt:993 rcv_space:29559 Updated iproute2 ip command displays : lpk51:~# ./ip tcp_metrics | grep 10.246.11.52 10.246.11.52 age 561.914sec cwnd 10 rtt 274us rttvar 213us source 10.246.11.51 Old binary displays : lpk51:~# ip tcp_metrics | grep 10.246.11.52 10.246.11.52 age 561.914sec cwnd 10 rtt 250us rttvar 125us source 10.246.11.51 With help from Julian Anastasov, Stephen Hemminger and Yuchung Cheng Signed-off-by: Eric Dumazet <edumazet@google.com> Acked-by: Neal Cardwell <ncardwell@google.com> Cc: Stephen Hemminger <stephen@networkplumber.org> Cc: Yuchung Cheng <ycheng@google.com> Cc: Larry Brakmo <brakmo@google.com> Cc: Julian Anastasov <ja@ssi.bg> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-02-26 14:02:48 -08:00
}
tcp: track min RTT using windowed min-filter Kathleen Nichols' algorithm for tracking the minimum RTT of a data stream over some measurement window. It uses constant space and constant time per update. Yet it almost always delivers the same minimum as an implementation that has to keep all the data in the window. The measurement window is tunable via sysctl.net.ipv4.tcp_min_rtt_wlen with a default value of 5 minutes. The algorithm keeps track of the best, 2nd best & 3rd best min values, maintaining an invariant that the measurement time of the n'th best >= n-1'th best. It also makes sure that the three values are widely separated in the time window since that bounds the worse case error when that data is monotonically increasing over the window. Upon getting a new min, we can forget everything earlier because it has no value - the new min is less than everything else in the window by definition and it's the most recent. So we restart fresh on every new min and overwrites the 2nd & 3rd choices. The same property holds for the 2nd & 3rd best. Therefore we have to maintain two invariants to maximize the information in the samples, one on values (1st.v <= 2nd.v <= 3rd.v) and the other on times (now-win <=1st.t <= 2nd.t <= 3rd.t <= now). These invariants determine the structure of the code The RTT input to the windowed filter is the minimum RTT measured from ACK or SACK, or as the last resort from TCP timestamps. The accessor tcp_min_rtt() returns the minimum RTT seen in the window. ~0U indicates it is not available. The minimum is 1usec even if the true RTT is below that. Signed-off-by: Yuchung Cheng <ycheng@google.com> Signed-off-by: Neal Cardwell <ncardwell@google.com> Signed-off-by: Eric Dumazet <edumazet@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2015-10-16 21:57:42 -07:00
rtt_update = tcp_ack_update_rtt(sk, flag, seq_rtt_us, sack_rtt_us,
ca_rtt_us, sack->rate);
if (flag & FLAG_ACKED) {
tcp: fix xmit timer to only be reset if data ACKed/SACKed Fix a TCP loss recovery performance bug raised recently on the netdev list, in two threads: (i) July 26, 2017: netdev thread "TCP fast retransmit issues" (ii) July 26, 2017: netdev thread: "[PATCH V2 net-next] TLP: Don't reschedule PTO when there's one outstanding TLP retransmission" The basic problem is that incoming TCP packets that did not indicate forward progress could cause the xmit timer (TLP or RTO) to be rearmed and pushed back in time. In certain corner cases this could result in the following problems noted in these threads: - Repeated ACKs coming in with bogus SACKs corrupted by middleboxes could cause TCP to repeatedly schedule TLPs forever. We kept sending TLPs after every ~200ms, which elicited bogus SACKs, which caused more TLPs, ad infinitum; we never fired an RTO to fill in the holes. - Incoming data segments could, in some cases, cause us to reschedule our RTO or TLP timer further out in time, for no good reason. This could cause repeated inbound data to result in stalls in outbound data, in the presence of packet loss. This commit fixes these bugs by changing the TLP and RTO ACK processing to: (a) Only reschedule the xmit timer once per ACK. (b) Only reschedule the xmit timer if tcp_clean_rtx_queue() deems the ACK indicates sufficient forward progress (a packet was cumulatively ACKed, or we got a SACK for a packet that was sent before the most recent retransmit of the write queue head). This brings us back into closer compliance with the RFCs, since, as the comment for tcp_rearm_rto() notes, we should only restart the RTO timer after forward progress on the connection. Previously we were restarting the xmit timer even in these cases where there was no forward progress. As a side benefit, this commit simplifies and speeds up the TCP timer arming logic. We had been calling inet_csk_reset_xmit_timer() three times on normal ACKs that cumulatively acknowledged some data: 1) Once near the top of tcp_ack() to switch from TLP timer to RTO: if (icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) tcp_rearm_rto(sk); 2) Once in tcp_clean_rtx_queue(), to update the RTO: if (flag & FLAG_ACKED) { tcp_rearm_rto(sk); 3) Once in tcp_ack() after tcp_fastretrans_alert() to switch from RTO to TLP: if (icsk->icsk_pending == ICSK_TIME_RETRANS) tcp_schedule_loss_probe(sk); This commit, by only rescheduling the xmit timer once per ACK, simplifies the code and reduces CPU overhead. This commit was tested in an A/B test with Google web server traffic. SNMP stats and request latency metrics were within noise levels, substantiating that for normal web traffic patterns this is a rare issue. This commit was also tested with packetdrill tests to verify that it fixes the timer behavior in the corner cases discussed in the netdev threads mentioned above. This patch is a bug fix patch intended to be queued for -stable relases. Fixes: 6ba8a3b19e76 ("tcp: Tail loss probe (TLP)") Reported-by: Klavs Klavsen <kl@vsen.dk> Reported-by: Mao Wenan <maowenan@huawei.com> Signed-off-by: Neal Cardwell <ncardwell@google.com> Signed-off-by: Yuchung Cheng <ycheng@google.com> Signed-off-by: Nandita Dukkipati <nanditad@google.com> Acked-by: Eric Dumazet <edumazet@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-08-03 09:19:54 -04:00
flag |= FLAG_SET_XMIT_TIMER; /* set TLP or RTO timer */
if (unlikely(icsk->icsk_mtup.probe_size &&
!after(tp->mtu_probe.probe_seq_end, tp->snd_una))) {
tcp_mtup_probe_success(sk);
}
if (tcp_is_reno(tp)) {
tcp_remove_reno_sacks(sk, pkts_acked, ece_ack);
tcp: prevent bogus FRTO undos with non-SACK flows If SACK is not enabled and the first cumulative ACK after the RTO retransmission covers more than the retransmitted skb, a spurious FRTO undo will trigger (assuming FRTO is enabled for that RTO). The reason is that any non-retransmitted segment acknowledged will set FLAG_ORIG_SACK_ACKED in tcp_clean_rtx_queue even if there is no indication that it would have been delivered for real (the scoreboard is not kept with TCPCB_SACKED_ACKED bits in the non-SACK case so the check for that bit won't help like it does with SACK). Having FLAG_ORIG_SACK_ACKED set results in the spurious FRTO undo in tcp_process_loss. We need to use more strict condition for non-SACK case and check that none of the cumulatively ACKed segments were retransmitted to prove that progress is due to original transmissions. Only then keep FLAG_ORIG_SACK_ACKED set, allowing FRTO undo to proceed in non-SACK case. (FLAG_ORIG_SACK_ACKED is planned to be renamed to FLAG_ORIG_PROGRESS to better indicate its purpose but to keep this change minimal, it will be done in another patch). Besides burstiness and congestion control violations, this problem can result in RTO loop: When the loss recovery is prematurely undoed, only new data will be transmitted (if available) and the next retransmission can occur only after a new RTO which in case of multiple losses (that are not for consecutive packets) requires one RTO per loss to recover. Signed-off-by: Ilpo Järvinen <ilpo.jarvinen@helsinki.fi> Tested-by: Neal Cardwell <ncardwell@google.com> Acked-by: Neal Cardwell <ncardwell@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2018-06-29 13:07:53 +03:00
/* If any of the cumulatively ACKed segments was
* retransmitted, non-SACK case cannot confirm that
* progress was due to original transmission due to
* lack of TCPCB_SACKED_ACKED bits even if some of
* the packets may have been never retransmitted.
*/
if (flag & FLAG_RETRANS_DATA_ACKED)
flag &= ~FLAG_ORIG_SACK_ACKED;
} else {
int delta;
/* Non-retransmitted hole got filled? That's reordering */
if (before(reord, prior_fack))
tcp_check_sack_reordering(sk, reord, 0);
delta = prior_sacked - tp->sacked_out;
tp->lost_cnt_hint -= min(tp->lost_cnt_hint, delta);
}
tcp: switch rtt estimations to usec resolution Upcoming congestion controls for TCP require usec resolution for RTT estimations. Millisecond resolution is simply not enough these days. FQ/pacing in DC environments also require this change for finer control and removal of bimodal behavior due to the current hack in tcp_update_pacing_rate() for 'small rtt' TCP_CONG_RTT_STAMP is no longer needed. As Julian Anastasov pointed out, we need to keep user compatibility : tcp_metrics used to export RTT and RTTVAR in msec resolution, so we added RTT_US and RTTVAR_US. An iproute2 patch is needed to use the new attributes if provided by the kernel. In this example ss command displays a srtt of 32 usecs (10Gbit link) lpk51:~# ./ss -i dst lpk52 Netid State Recv-Q Send-Q Local Address:Port Peer Address:Port tcp ESTAB 0 1 10.246.11.51:42959 10.246.11.52:64614 cubic wscale:6,6 rto:201 rtt:0.032/0.001 ato:40 mss:1448 cwnd:10 send 3620.0Mbps pacing_rate 7240.0Mbps unacked:1 rcv_rtt:993 rcv_space:29559 Updated iproute2 ip command displays : lpk51:~# ./ip tcp_metrics | grep 10.246.11.52 10.246.11.52 age 561.914sec cwnd 10 rtt 274us rttvar 213us source 10.246.11.51 Old binary displays : lpk51:~# ip tcp_metrics | grep 10.246.11.52 10.246.11.52 age 561.914sec cwnd 10 rtt 250us rttvar 125us source 10.246.11.51 With help from Julian Anastasov, Stephen Hemminger and Yuchung Cheng Signed-off-by: Eric Dumazet <edumazet@google.com> Acked-by: Neal Cardwell <ncardwell@google.com> Cc: Stephen Hemminger <stephen@networkplumber.org> Cc: Yuchung Cheng <ycheng@google.com> Cc: Larry Brakmo <brakmo@google.com> Cc: Julian Anastasov <ja@ssi.bg> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-02-26 14:02:48 -08:00
} else if (skb && rtt_update && sack_rtt_us >= 0 &&
sack_rtt_us > tcp_stamp_us_delta(tp->tcp_mstamp,
tcp_skb_timestamp_us(skb))) {
/* Do not re-arm RTO if the sack RTT is measured from data sent
* after when the head was last (re)transmitted. Otherwise the
* timeout may continue to extend in loss recovery.
*/
tcp: fix xmit timer to only be reset if data ACKed/SACKed Fix a TCP loss recovery performance bug raised recently on the netdev list, in two threads: (i) July 26, 2017: netdev thread "TCP fast retransmit issues" (ii) July 26, 2017: netdev thread: "[PATCH V2 net-next] TLP: Don't reschedule PTO when there's one outstanding TLP retransmission" The basic problem is that incoming TCP packets that did not indicate forward progress could cause the xmit timer (TLP or RTO) to be rearmed and pushed back in time. In certain corner cases this could result in the following problems noted in these threads: - Repeated ACKs coming in with bogus SACKs corrupted by middleboxes could cause TCP to repeatedly schedule TLPs forever. We kept sending TLPs after every ~200ms, which elicited bogus SACKs, which caused more TLPs, ad infinitum; we never fired an RTO to fill in the holes. - Incoming data segments could, in some cases, cause us to reschedule our RTO or TLP timer further out in time, for no good reason. This could cause repeated inbound data to result in stalls in outbound data, in the presence of packet loss. This commit fixes these bugs by changing the TLP and RTO ACK processing to: (a) Only reschedule the xmit timer once per ACK. (b) Only reschedule the xmit timer if tcp_clean_rtx_queue() deems the ACK indicates sufficient forward progress (a packet was cumulatively ACKed, or we got a SACK for a packet that was sent before the most recent retransmit of the write queue head). This brings us back into closer compliance with the RFCs, since, as the comment for tcp_rearm_rto() notes, we should only restart the RTO timer after forward progress on the connection. Previously we were restarting the xmit timer even in these cases where there was no forward progress. As a side benefit, this commit simplifies and speeds up the TCP timer arming logic. We had been calling inet_csk_reset_xmit_timer() three times on normal ACKs that cumulatively acknowledged some data: 1) Once near the top of tcp_ack() to switch from TLP timer to RTO: if (icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) tcp_rearm_rto(sk); 2) Once in tcp_clean_rtx_queue(), to update the RTO: if (flag & FLAG_ACKED) { tcp_rearm_rto(sk); 3) Once in tcp_ack() after tcp_fastretrans_alert() to switch from RTO to TLP: if (icsk->icsk_pending == ICSK_TIME_RETRANS) tcp_schedule_loss_probe(sk); This commit, by only rescheduling the xmit timer once per ACK, simplifies the code and reduces CPU overhead. This commit was tested in an A/B test with Google web server traffic. SNMP stats and request latency metrics were within noise levels, substantiating that for normal web traffic patterns this is a rare issue. This commit was also tested with packetdrill tests to verify that it fixes the timer behavior in the corner cases discussed in the netdev threads mentioned above. This patch is a bug fix patch intended to be queued for -stable relases. Fixes: 6ba8a3b19e76 ("tcp: Tail loss probe (TLP)") Reported-by: Klavs Klavsen <kl@vsen.dk> Reported-by: Mao Wenan <maowenan@huawei.com> Signed-off-by: Neal Cardwell <ncardwell@google.com> Signed-off-by: Yuchung Cheng <ycheng@google.com> Signed-off-by: Nandita Dukkipati <nanditad@google.com> Acked-by: Eric Dumazet <edumazet@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-08-03 09:19:54 -04:00
flag |= FLAG_SET_XMIT_TIMER; /* set TLP or RTO timer */
}
if (icsk->icsk_ca_ops->pkts_acked) {
struct ack_sample sample = { .pkts_acked = pkts_acked,
.rtt_us = sack->rate->rtt_us };
sample.in_flight = tp->mss_cache *
(tp->delivered - sack->rate->prior_delivered);
icsk->icsk_ca_ops->pkts_acked(sk, &sample);
}
#if FASTRETRANS_DEBUG > 0
WARN_ON((int)tp->sacked_out < 0);
WARN_ON((int)tp->lost_out < 0);
WARN_ON((int)tp->retrans_out < 0);
if (!tp->packets_out && tcp_is_sack(tp)) {
icsk = inet_csk(sk);
if (tp->lost_out) {
pr_debug("Leak l=%u %d\n",
tp->lost_out, icsk->icsk_ca_state);
tp->lost_out = 0;
}
if (tp->sacked_out) {
pr_debug("Leak s=%u %d\n",
tp->sacked_out, icsk->icsk_ca_state);
tp->sacked_out = 0;
}
if (tp->retrans_out) {
pr_debug("Leak r=%u %d\n",
tp->retrans_out, icsk->icsk_ca_state);
tp->retrans_out = 0;
}
}
#endif
return flag;
}
static void tcp_ack_probe(struct sock *sk)
{
struct inet_connection_sock *icsk = inet_csk(sk);
tcp: implement rb-tree based retransmit queue Using a linear list to store all skbs in write queue has been okay for quite a while : O(N) is not too bad when N < 500. Things get messy when N is the order of 100,000 : Modern TCP stacks want 10Gbit+ of throughput even with 200 ms RTT flows. 40 ns per cache line miss means a full scan can use 4 ms, blowing away CPU caches. SACK processing often can use various hints to avoid parsing whole retransmit queue. But with high packet losses and/or high reordering, hints no longer work. Sender has to process thousands of unfriendly SACK, accumulating a huge socket backlog, burning a cpu and massively dropping packets. Using an rb-tree for retransmit queue has been avoided for years because it added complexity and overhead, but now is the time to be more resistant and say no to quadratic behavior. 1) RTX queue is no longer part of the write queue : already sent skbs are stored in one rb-tree. 2) Since reaching the head of write queue no longer needs sk->sk_send_head, we added an union of sk_send_head and tcp_rtx_queue Tested: On receiver : netem on ingress : delay 150ms 200us loss 1 GRO disabled to force stress and SACK storms. for f in `seq 1 10` do ./netperf -H lpaa6 -l30 -- -K bbr -o THROUGHPUT|tail -1 done | awk '{print $0} {sum += $0} END {printf "%7u\n",sum}' Before patch : 323.87 351.48 339.59 338.62 306.72 204.07 304.93 291.88 202.47 176.88 2840 After patch: 1700.83 2207.98 2070.17 1544.26 2114.76 2124.89 1693.14 1080.91 2216.82 1299.94 18053 Signed-off-by: Eric Dumazet <edumazet@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-10-05 22:21:27 -07:00
struct sk_buff *head = tcp_send_head(sk);
const struct tcp_sock *tp = tcp_sk(sk);
/* Was it a usable window open? */
tcp: implement rb-tree based retransmit queue Using a linear list to store all skbs in write queue has been okay for quite a while : O(N) is not too bad when N < 500. Things get messy when N is the order of 100,000 : Modern TCP stacks want 10Gbit+ of throughput even with 200 ms RTT flows. 40 ns per cache line miss means a full scan can use 4 ms, blowing away CPU caches. SACK processing often can use various hints to avoid parsing whole retransmit queue. But with high packet losses and/or high reordering, hints no longer work. Sender has to process thousands of unfriendly SACK, accumulating a huge socket backlog, burning a cpu and massively dropping packets. Using an rb-tree for retransmit queue has been avoided for years because it added complexity and overhead, but now is the time to be more resistant and say no to quadratic behavior. 1) RTX queue is no longer part of the write queue : already sent skbs are stored in one rb-tree. 2) Since reaching the head of write queue no longer needs sk->sk_send_head, we added an union of sk_send_head and tcp_rtx_queue Tested: On receiver : netem on ingress : delay 150ms 200us loss 1 GRO disabled to force stress and SACK storms. for f in `seq 1 10` do ./netperf -H lpaa6 -l30 -- -K bbr -o THROUGHPUT|tail -1 done | awk '{print $0} {sum += $0} END {printf "%7u\n",sum}' Before patch : 323.87 351.48 339.59 338.62 306.72 204.07 304.93 291.88 202.47 176.88 2840 After patch: 1700.83 2207.98 2070.17 1544.26 2114.76 2124.89 1693.14 1080.91 2216.82 1299.94 18053 Signed-off-by: Eric Dumazet <edumazet@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-10-05 22:21:27 -07:00
if (!head)
return;
if (!after(TCP_SKB_CB(head)->end_seq, tcp_wnd_end(tp))) {
icsk->icsk_backoff = 0;
icsk->icsk_probes_tstamp = 0;
inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
/* Socket must be waked up by subsequent tcp_data_snd_check().
* This function is not for random using!
*/
} else {
unsigned long when = tcp_probe0_when(sk, TCP_RTO_MAX);
when = tcp_clamp_probe0_to_user_timeout(sk, when);
tcp_reset_xmit_timer(sk, ICSK_TIME_PROBE0, when, TCP_RTO_MAX);
}
}
static inline bool tcp_ack_is_dubious(const struct sock *sk, const int flag)
{
return !(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
inet_csk(sk)->icsk_ca_state != TCP_CA_Open;
}
/* Decide wheather to run the increase function of congestion control. */
static inline bool tcp_may_raise_cwnd(const struct sock *sk, const int flag)
{
/* If reordering is high then always grow cwnd whenever data is
* delivered regardless of its ordering. Otherwise stay conservative
* and only grow cwnd on in-order delivery (RFC5681). A stretched ACK w/
* new SACK or ECE mark may first advance cwnd here and later reduce
* cwnd in tcp_fastretrans_alert() based on more states.
*/
if (tcp_sk(sk)->reordering >
READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_reordering))
return flag & FLAG_FORWARD_PROGRESS;
return flag & FLAG_DATA_ACKED;
}
/* The "ultimate" congestion control function that aims to replace the rigid
* cwnd increase and decrease control (tcp_cong_avoid,tcp_*cwnd_reduction).
* It's called toward the end of processing an ACK with precise rate
* information. All transmission or retransmission are delayed afterwards.
*/
static void tcp_cong_control(struct sock *sk, u32 ack, u32 acked_sacked,
tcp: new CC hook to set sending rate with rate_sample in any CA state This commit introduces an optional new "omnipotent" hook, cong_control(), for congestion control modules. The cong_control() function is called at the end of processing an ACK (i.e., after updating sequence numbers, the SACK scoreboard, and loss detection). At that moment we have precise delivery rate information the congestion control module can use to control the sending behavior (using cwnd, TSO skb size, and pacing rate) in any CA state. This function can also be used by a congestion control that prefers not to use the default cwnd reduction approach (i.e., the PRR algorithm) during CA_Recovery to control the cwnd and sending rate during loss recovery. We take advantage of the fact that recent changes defer the retransmission or transmission of new data (e.g. by F-RTO) in recovery until the new tcp_cong_control() function is run. With this commit, we only run tcp_update_pacing_rate() if the congestion control is not using this new API. New congestion controls which use the new API do not want the TCP stack to run the default pacing rate calculation and overwrite whatever pacing rate they have chosen at initialization time. Signed-off-by: Van Jacobson <vanj@google.com> Signed-off-by: Neal Cardwell <ncardwell@google.com> Signed-off-by: Yuchung Cheng <ycheng@google.com> Signed-off-by: Nandita Dukkipati <nanditad@google.com> Signed-off-by: Eric Dumazet <edumazet@google.com> Signed-off-by: Soheil Hassas Yeganeh <soheil@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-09-19 23:39:21 -04:00
int flag, const struct rate_sample *rs)
{
tcp: new CC hook to set sending rate with rate_sample in any CA state This commit introduces an optional new "omnipotent" hook, cong_control(), for congestion control modules. The cong_control() function is called at the end of processing an ACK (i.e., after updating sequence numbers, the SACK scoreboard, and loss detection). At that moment we have precise delivery rate information the congestion control module can use to control the sending behavior (using cwnd, TSO skb size, and pacing rate) in any CA state. This function can also be used by a congestion control that prefers not to use the default cwnd reduction approach (i.e., the PRR algorithm) during CA_Recovery to control the cwnd and sending rate during loss recovery. We take advantage of the fact that recent changes defer the retransmission or transmission of new data (e.g. by F-RTO) in recovery until the new tcp_cong_control() function is run. With this commit, we only run tcp_update_pacing_rate() if the congestion control is not using this new API. New congestion controls which use the new API do not want the TCP stack to run the default pacing rate calculation and overwrite whatever pacing rate they have chosen at initialization time. Signed-off-by: Van Jacobson <vanj@google.com> Signed-off-by: Neal Cardwell <ncardwell@google.com> Signed-off-by: Yuchung Cheng <ycheng@google.com> Signed-off-by: Nandita Dukkipati <nanditad@google.com> Signed-off-by: Eric Dumazet <edumazet@google.com> Signed-off-by: Soheil Hassas Yeganeh <soheil@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-09-19 23:39:21 -04:00
const struct inet_connection_sock *icsk = inet_csk(sk);
if (icsk->icsk_ca_ops->cong_control) {
icsk->icsk_ca_ops->cong_control(sk, rs);
return;
}
if (tcp_in_cwnd_reduction(sk)) {
/* Reduce cwnd if state mandates */
tcp_cwnd_reduction(sk, acked_sacked, rs->losses, flag);
} else if (tcp_may_raise_cwnd(sk, flag)) {
/* Advance cwnd if state allows */
tcp_cong_avoid(sk, ack, acked_sacked);
}
tcp_update_pacing_rate(sk);
}
/* Check that window update is acceptable.
* The function assumes that snd_una<=ack<=snd_next.
*/
static inline bool tcp_may_update_window(const struct tcp_sock *tp,
const u32 ack, const u32 ack_seq,
const u32 nwin)
{
return after(ack, tp->snd_una) ||
after(ack_seq, tp->snd_wl1) ||
(ack_seq == tp->snd_wl1 && (nwin > tp->snd_wnd || !nwin));
}
/* If we update tp->snd_una, also update tp->bytes_acked */
static void tcp_snd_una_update(struct tcp_sock *tp, u32 ack)
{
u32 delta = ack - tp->snd_una;
sock_owned_by_me((struct sock *)tp);
tp->bytes_acked += delta;
tp->snd_una = ack;
}
/* If we update tp->rcv_nxt, also update tp->bytes_received */
static void tcp_rcv_nxt_update(struct tcp_sock *tp, u32 seq)
{
u32 delta = seq - tp->rcv_nxt;
sock_owned_by_me((struct sock *)tp);
tp->bytes_received += delta;
tcp: annotate tp->rcv_nxt lockless reads There are few places where we fetch tp->rcv_nxt while this field can change from IRQ or other cpu. We need to add READ_ONCE() annotations, and also make sure write sides use corresponding WRITE_ONCE() to avoid store-tearing. Note that tcp_inq_hint() was already using READ_ONCE(tp->rcv_nxt) syzbot reported : BUG: KCSAN: data-race in tcp_poll / tcp_queue_rcv write to 0xffff888120425770 of 4 bytes by interrupt on cpu 0: tcp_rcv_nxt_update net/ipv4/tcp_input.c:3365 [inline] tcp_queue_rcv+0x180/0x380 net/ipv4/tcp_input.c:4638 tcp_rcv_established+0xbf1/0xf50 net/ipv4/tcp_input.c:5616 tcp_v4_do_rcv+0x381/0x4e0 net/ipv4/tcp_ipv4.c:1542 tcp_v4_rcv+0x1a03/0x1bf0 net/ipv4/tcp_ipv4.c:1923 ip_protocol_deliver_rcu+0x51/0x470 net/ipv4/ip_input.c:204 ip_local_deliver_finish+0x110/0x140 net/ipv4/ip_input.c:231 NF_HOOK include/linux/netfilter.h:305 [inline] NF_HOOK include/linux/netfilter.h:299 [inline] ip_local_deliver+0x133/0x210 net/ipv4/ip_input.c:252 dst_input include/net/dst.h:442 [inline] ip_rcv_finish+0x121/0x160 net/ipv4/ip_input.c:413 NF_HOOK include/linux/netfilter.h:305 [inline] NF_HOOK include/linux/netfilter.h:299 [inline] ip_rcv+0x18f/0x1a0 net/ipv4/ip_input.c:523 __netif_receive_skb_one_core+0xa7/0xe0 net/core/dev.c:5004 __netif_receive_skb+0x37/0xf0 net/core/dev.c:5118 netif_receive_skb_internal+0x59/0x190 net/core/dev.c:5208 napi_skb_finish net/core/dev.c:5671 [inline] napi_gro_receive+0x28f/0x330 net/core/dev.c:5704 receive_buf+0x284/0x30b0 drivers/net/virtio_net.c:1061 read to 0xffff888120425770 of 4 bytes by task 7254 on cpu 1: tcp_stream_is_readable net/ipv4/tcp.c:480 [inline] tcp_poll+0x204/0x6b0 net/ipv4/tcp.c:554 sock_poll+0xed/0x250 net/socket.c:1256 vfs_poll include/linux/poll.h:90 [inline] ep_item_poll.isra.0+0x90/0x190 fs/eventpoll.c:892 ep_send_events_proc+0x113/0x5c0 fs/eventpoll.c:1749 ep_scan_ready_list.constprop.0+0x189/0x500 fs/eventpoll.c:704 ep_send_events fs/eventpoll.c:1793 [inline] ep_poll+0xe3/0x900 fs/eventpoll.c:1930 do_epoll_wait+0x162/0x180 fs/eventpoll.c:2294 __do_sys_epoll_pwait fs/eventpoll.c:2325 [inline] __se_sys_epoll_pwait fs/eventpoll.c:2311 [inline] __x64_sys_epoll_pwait+0xcd/0x170 fs/eventpoll.c:2311 do_syscall_64+0xcf/0x2f0 arch/x86/entry/common.c:296 entry_SYSCALL_64_after_hwframe+0x44/0xa9 Reported by Kernel Concurrency Sanitizer on: CPU: 1 PID: 7254 Comm: syz-fuzzer Not tainted 5.3.0+ #0 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 01/01/2011 Signed-off-by: Eric Dumazet <edumazet@google.com> Reported-by: syzbot <syzkaller@googlegroups.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-10-10 20:17:39 -07:00
WRITE_ONCE(tp->rcv_nxt, seq);
}
/* Update our send window.
*
* Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
* and in FreeBSD. NetBSD's one is even worse.) is wrong.
*/
static int tcp_ack_update_window(struct sock *sk, const struct sk_buff *skb, u32 ack,
[TCP]: Sed magic converts func(sk, tp, ...) -> func(sk, ...) This is (mostly) automated change using magic: sed -e '/struct sock \*sk/ N' -e '/struct sock \*sk/ N' -e '/struct sock \*sk/ N' -e '/struct sock \*sk/ N' -e 's|struct sock \*sk,[\n\t ]*struct tcp_sock \*tp\([^{]*\n{\n\)| struct sock \*sk\1\tstruct tcp_sock *tp = tcp_sk(sk);\n|g' -e 's|struct sock \*sk, struct tcp_sock \*tp| struct sock \*sk|g' -e 's|sk, tp\([^-]\)|sk\1|g' Fixed four unused variable (tp) warnings that were introduced. In addition, manually added newlines after local variables and tweaked function arguments positioning. $ gcc --version gcc (GCC) 4.1.1 20060525 (Red Hat 4.1.1-1) ... $ codiff -fV built-in.o.old built-in.o.new net/ipv4/route.c: rt_cache_flush | +14 1 function changed, 14 bytes added net/ipv4/tcp.c: tcp_setsockopt | -5 tcp_sendpage | -25 tcp_sendmsg | -16 3 functions changed, 46 bytes removed net/ipv4/tcp_input.c: tcp_try_undo_recovery | +3 tcp_try_undo_dsack | +2 tcp_mark_head_lost | -12 tcp_ack | -15 tcp_event_data_recv | -32 tcp_rcv_state_process | -10 tcp_rcv_established | +1 7 functions changed, 6 bytes added, 69 bytes removed, diff: -63 net/ipv4/tcp_output.c: update_send_head | -9 tcp_transmit_skb | +19 tcp_cwnd_validate | +1 tcp_write_wakeup | -17 __tcp_push_pending_frames | -25 tcp_push_one | -8 tcp_send_fin | -4 7 functions changed, 20 bytes added, 63 bytes removed, diff: -43 built-in.o.new: 18 functions changed, 40 bytes added, 178 bytes removed, diff: -138 Signed-off-by: Ilpo Järvinen <ilpo.jarvinen@helsinki.fi> Signed-off-by: David S. Miller <davem@davemloft.net>
2007-04-20 22:18:02 -07:00
u32 ack_seq)
{
[TCP]: Sed magic converts func(sk, tp, ...) -> func(sk, ...) This is (mostly) automated change using magic: sed -e '/struct sock \*sk/ N' -e '/struct sock \*sk/ N' -e '/struct sock \*sk/ N' -e '/struct sock \*sk/ N' -e 's|struct sock \*sk,[\n\t ]*struct tcp_sock \*tp\([^{]*\n{\n\)| struct sock \*sk\1\tstruct tcp_sock *tp = tcp_sk(sk);\n|g' -e 's|struct sock \*sk, struct tcp_sock \*tp| struct sock \*sk|g' -e 's|sk, tp\([^-]\)|sk\1|g' Fixed four unused variable (tp) warnings that were introduced. In addition, manually added newlines after local variables and tweaked function arguments positioning. $ gcc --version gcc (GCC) 4.1.1 20060525 (Red Hat 4.1.1-1) ... $ codiff -fV built-in.o.old built-in.o.new net/ipv4/route.c: rt_cache_flush | +14 1 function changed, 14 bytes added net/ipv4/tcp.c: tcp_setsockopt | -5 tcp_sendpage | -25 tcp_sendmsg | -16 3 functions changed, 46 bytes removed net/ipv4/tcp_input.c: tcp_try_undo_recovery | +3 tcp_try_undo_dsack | +2 tcp_mark_head_lost | -12 tcp_ack | -15 tcp_event_data_recv | -32 tcp_rcv_state_process | -10 tcp_rcv_established | +1 7 functions changed, 6 bytes added, 69 bytes removed, diff: -63 net/ipv4/tcp_output.c: update_send_head | -9 tcp_transmit_skb | +19 tcp_cwnd_validate | +1 tcp_write_wakeup | -17 __tcp_push_pending_frames | -25 tcp_push_one | -8 tcp_send_fin | -4 7 functions changed, 20 bytes added, 63 bytes removed, diff: -43 built-in.o.new: 18 functions changed, 40 bytes added, 178 bytes removed, diff: -138 Signed-off-by: Ilpo Järvinen <ilpo.jarvinen@helsinki.fi> Signed-off-by: David S. Miller <davem@davemloft.net>
2007-04-20 22:18:02 -07:00
struct tcp_sock *tp = tcp_sk(sk);
int flag = 0;
u32 nwin = ntohs(tcp_hdr(skb)->window);
if (likely(!tcp_hdr(skb)->syn))
nwin <<= tp->rx_opt.snd_wscale;
if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
flag |= FLAG_WIN_UPDATE;
tcp_update_wl(tp, ack_seq);
if (tp->snd_wnd != nwin) {
tp->snd_wnd = nwin;
/* Note, it is the only place, where
* fast path is recovered for sending TCP.
*/
tp->pred_flags = 0;
tcp_fast_path_check(sk);
tcp: implement rb-tree based retransmit queue Using a linear list to store all skbs in write queue has been okay for quite a while : O(N) is not too bad when N < 500. Things get messy when N is the order of 100,000 : Modern TCP stacks want 10Gbit+ of throughput even with 200 ms RTT flows. 40 ns per cache line miss means a full scan can use 4 ms, blowing away CPU caches. SACK processing often can use various hints to avoid parsing whole retransmit queue. But with high packet losses and/or high reordering, hints no longer work. Sender has to process thousands of unfriendly SACK, accumulating a huge socket backlog, burning a cpu and massively dropping packets. Using an rb-tree for retransmit queue has been avoided for years because it added complexity and overhead, but now is the time to be more resistant and say no to quadratic behavior. 1) RTX queue is no longer part of the write queue : already sent skbs are stored in one rb-tree. 2) Since reaching the head of write queue no longer needs sk->sk_send_head, we added an union of sk_send_head and tcp_rtx_queue Tested: On receiver : netem on ingress : delay 150ms 200us loss 1 GRO disabled to force stress and SACK storms. for f in `seq 1 10` do ./netperf -H lpaa6 -l30 -- -K bbr -o THROUGHPUT|tail -1 done | awk '{print $0} {sum += $0} END {printf "%7u\n",sum}' Before patch : 323.87 351.48 339.59 338.62 306.72 204.07 304.93 291.88 202.47 176.88 2840 After patch: 1700.83 2207.98 2070.17 1544.26 2114.76 2124.89 1693.14 1080.91 2216.82 1299.94 18053 Signed-off-by: Eric Dumazet <edumazet@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-10-05 22:21:27 -07:00
if (!tcp_write_queue_empty(sk))
tcp: fix slow start after idle vs TSO/GSO slow start after idle might reduce cwnd, but we perform this after first packet was cooked and sent. With TSO/GSO, it means that we might send a full TSO packet even if cwnd should have been reduced to IW10. Moving the SSAI check in skb_entail() makes sense, because we slightly reduce number of times this check is done, especially for large send() and TCP Small queue callbacks from softirq context. As Neal pointed out, we also need to perform the check if/when receive window opens. Tested: Following packetdrill test demonstrates the problem // Test of slow start after idle `sysctl -q net.ipv4.tcp_slow_start_after_idle=1` 0.000 socket(..., SOCK_STREAM, IPPROTO_TCP) = 3 +0 setsockopt(3, SOL_SOCKET, SO_REUSEADDR, [1], 4) = 0 +0 bind(3, ..., ...) = 0 +0 listen(3, 1) = 0 +0 < S 0:0(0) win 65535 <mss 1000,sackOK,nop,nop,nop,wscale 7> +0 > S. 0:0(0) ack 1 <mss 1460,nop,nop,sackOK,nop,wscale 6> +.100 < . 1:1(0) ack 1 win 511 +0 accept(3, ..., ...) = 4 +0 setsockopt(4, SOL_SOCKET, SO_SNDBUF, [200000], 4) = 0 +0 write(4, ..., 26000) = 26000 +0 > . 1:5001(5000) ack 1 +0 > . 5001:10001(5000) ack 1 +0 %{ assert tcpi_snd_cwnd == 10 }% +.100 < . 1:1(0) ack 10001 win 511 +0 %{ assert tcpi_snd_cwnd == 20, tcpi_snd_cwnd }% +0 > . 10001:20001(10000) ack 1 +0 > P. 20001:26001(6000) ack 1 +.100 < . 1:1(0) ack 26001 win 511 +0 %{ assert tcpi_snd_cwnd == 36, tcpi_snd_cwnd }% +4 write(4, ..., 20000) = 20000 // If slow start after idle works properly, we should send 5 MSS here (cwnd/2) +0 > . 26001:31001(5000) ack 1 +0 %{ assert tcpi_snd_cwnd == 10, tcpi_snd_cwnd }% +0 > . 31001:36001(5000) ack 1 Signed-off-by: Eric Dumazet <edumazet@google.com> Cc: Neal Cardwell <ncardwell@google.com> Cc: Yuchung Cheng <ycheng@google.com> Acked-by: Neal Cardwell <ncardwell@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2015-08-21 12:30:00 -07:00
tcp_slow_start_after_idle_check(sk);
if (nwin > tp->max_window) {
tp->max_window = nwin;
tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie);
}
}
}
tcp_snd_una_update(tp, ack);
return flag;
}
static bool __tcp_oow_rate_limited(struct net *net, int mib_idx,
u32 *last_oow_ack_time)
{
/* Paired with the WRITE_ONCE() in this function. */
u32 val = READ_ONCE(*last_oow_ack_time);
if (val) {
s32 elapsed = (s32)(tcp_jiffies32 - val);
if (0 <= elapsed &&
elapsed < READ_ONCE(net->ipv4.sysctl_tcp_invalid_ratelimit)) {
NET_INC_STATS(net, mib_idx);
return true; /* rate-limited: don't send yet! */
}
}
/* Paired with the prior READ_ONCE() and with itself,
* as we might be lockless.
*/
WRITE_ONCE(*last_oow_ack_time, tcp_jiffies32);
return false; /* not rate-limited: go ahead, send dupack now! */
}
/* Return true if we're currently rate-limiting out-of-window ACKs and
* thus shouldn't send a dupack right now. We rate-limit dupacks in
* response to out-of-window SYNs or ACKs to mitigate ACK loops or DoS
* attacks that send repeated SYNs or ACKs for the same connection. To
* do this, we do not send a duplicate SYNACK or ACK if the remote
* endpoint is sending out-of-window SYNs or pure ACKs at a high rate.
*/
bool tcp_oow_rate_limited(struct net *net, const struct sk_buff *skb,
int mib_idx, u32 *last_oow_ack_time)
{
/* Data packets without SYNs are not likely part of an ACK loop. */
if ((TCP_SKB_CB(skb)->seq != TCP_SKB_CB(skb)->end_seq) &&
!tcp_hdr(skb)->syn)
return false;
return __tcp_oow_rate_limited(net, mib_idx, last_oow_ack_time);
}
/* RFC 5961 7 [ACK Throttling] */
static void tcp_send_challenge_ack(struct sock *sk)
{
struct tcp_sock *tp = tcp_sk(sk);
struct net *net = sock_net(sk);
u32 count, now, ack_limit;
/* First check our per-socket dupack rate limit. */
if (__tcp_oow_rate_limited(net,
LINUX_MIB_TCPACKSKIPPEDCHALLENGE,
&tp->last_oow_ack_time))
return;
ack_limit = READ_ONCE(net->ipv4.sysctl_tcp_challenge_ack_limit);
if (ack_limit == INT_MAX)
goto send_ack;
/* Then check host-wide RFC 5961 rate limit. */
now = jiffies / HZ;
if (now != READ_ONCE(net->ipv4.tcp_challenge_timestamp)) {
u32 half = (ack_limit + 1) >> 1;
WRITE_ONCE(net->ipv4.tcp_challenge_timestamp, now);
WRITE_ONCE(net->ipv4.tcp_challenge_count,
get_random_u32_inclusive(half, ack_limit + half - 1));
}
count = READ_ONCE(net->ipv4.tcp_challenge_count);
if (count > 0) {
WRITE_ONCE(net->ipv4.tcp_challenge_count, count - 1);
send_ack:
NET_INC_STATS(net, LINUX_MIB_TCPCHALLENGEACK);
tcp_send_ack(sk);
}
}
static void tcp_store_ts_recent(struct tcp_sock *tp)
{
tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
tp->rx_opt.ts_recent_stamp = ktime_get_seconds();
}
static void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
{
if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
/* PAWS bug workaround wrt. ACK frames, the PAWS discard
* extra check below makes sure this can only happen
* for pure ACK frames. -DaveM
*
* Not only, also it occurs for expired timestamps.
*/
if (tcp_paws_check(&tp->rx_opt, 0))
tcp_store_ts_recent(tp);
}
}
/* This routine deals with acks during a TLP episode and ends an episode by
* resetting tlp_high_seq. Ref: TLP algorithm in draft-ietf-tcpm-rack
*/
static void tcp_process_tlp_ack(struct sock *sk, u32 ack, int flag)
{
struct tcp_sock *tp = tcp_sk(sk);
tcp: avoid reducing cwnd when ACK+DSACK is received With TLP, the peer may reply to a probe with an ACK+D-SACK, with ack value set to tlp_high_seq. In the current code, such ACK+DSACK will be missed and only at next, higher ack will the TLP episode be considered done. Since the DSACK is not present anymore, this will cost a cwnd reduction. This patch ensures that this scenario does not cause a cwnd reduction, since receiving an ACK+DSACK indicates that both the initial segment and the probe have been received by the peer. The following packetdrill test, from Neal Cardwell, validates this patch: // Establish a connection. 0 socket(..., SOCK_STREAM, IPPROTO_TCP) = 3 +0 setsockopt(3, SOL_SOCKET, SO_REUSEADDR, [1], 4) = 0 +0 bind(3, ..., ...) = 0 +0 listen(3, 1) = 0 +0 < S 0:0(0) win 32792 <mss 1000,sackOK,nop,nop,nop,wscale 7> +0 > S. 0:0(0) ack 1 <mss 1460,nop,nop,sackOK,nop,wscale 6> +.020 < . 1:1(0) ack 1 win 257 +0 accept(3, ..., ...) = 4 // Send 1 packet. +0 write(4, ..., 1000) = 1000 +0 > P. 1:1001(1000) ack 1 // Loss probe retransmission. // packets_out == 1 => schedule PTO in max(2*RTT, 1.5*RTT + 200ms) // In this case, this means: 1.5*RTT + 200ms = 230ms +.230 > P. 1:1001(1000) ack 1 +0 %{ assert tcpi_snd_cwnd == 10 }% // Receiver ACKs at tlp_high_seq with a DSACK, // indicating they received the original packet and probe. +.020 < . 1:1(0) ack 1001 win 257 <sack 1:1001,nop,nop> +0 %{ assert tcpi_snd_cwnd == 10 }% // Send another packet. +0 write(4, ..., 1000) = 1000 +0 > P. 1001:2001(1000) ack 1 // Receiver ACKs above tlp_high_seq, which should end the TLP episode // if we haven't already. We should not reduce cwnd. +.020 < . 1:1(0) ack 2001 win 257 +0 %{ assert tcpi_snd_cwnd == 10, tcpi_snd_cwnd }% Credits: -Gregory helped in finding that tcp_process_tlp_ack was where the cwnd got reduced in our MPTCP tests. -Neal wrote the packetdrill test above -Yuchung reworked the patch to make it more readable. Cc: Gregory Detal <gregory.detal@uclouvain.be> Cc: Nandita Dukkipati <nanditad@google.com> Tested-by: Neal Cardwell <ncardwell@google.com> Reviewed-by: Yuchung Cheng <ycheng@google.com> Reviewed-by: Eric Dumazet <eric.dumazet@gmail.com> Signed-off-by: Sébastien Barré <sebastien.barre@uclouvain.be> Acked-by: Eric Dumazet <edumazet@google.com> Acked-by: Neal Cardwell <ncardwell@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2015-01-12 10:30:40 +01:00
if (before(ack, tp->tlp_high_seq))
return;
if (!tp->tlp_retrans) {
/* TLP of new data has been acknowledged */
tp->tlp_high_seq = 0;
} else if (flag & FLAG_DSACK_TLP) {
tcp: avoid reducing cwnd when ACK+DSACK is received With TLP, the peer may reply to a probe with an ACK+D-SACK, with ack value set to tlp_high_seq. In the current code, such ACK+DSACK will be missed and only at next, higher ack will the TLP episode be considered done. Since the DSACK is not present anymore, this will cost a cwnd reduction. This patch ensures that this scenario does not cause a cwnd reduction, since receiving an ACK+DSACK indicates that both the initial segment and the probe have been received by the peer. The following packetdrill test, from Neal Cardwell, validates this patch: // Establish a connection. 0 socket(..., SOCK_STREAM, IPPROTO_TCP) = 3 +0 setsockopt(3, SOL_SOCKET, SO_REUSEADDR, [1], 4) = 0 +0 bind(3, ..., ...) = 0 +0 listen(3, 1) = 0 +0 < S 0:0(0) win 32792 <mss 1000,sackOK,nop,nop,nop,wscale 7> +0 > S. 0:0(0) ack 1 <mss 1460,nop,nop,sackOK,nop,wscale 6> +.020 < . 1:1(0) ack 1 win 257 +0 accept(3, ..., ...) = 4 // Send 1 packet. +0 write(4, ..., 1000) = 1000 +0 > P. 1:1001(1000) ack 1 // Loss probe retransmission. // packets_out == 1 => schedule PTO in max(2*RTT, 1.5*RTT + 200ms) // In this case, this means: 1.5*RTT + 200ms = 230ms +.230 > P. 1:1001(1000) ack 1 +0 %{ assert tcpi_snd_cwnd == 10 }% // Receiver ACKs at tlp_high_seq with a DSACK, // indicating they received the original packet and probe. +.020 < . 1:1(0) ack 1001 win 257 <sack 1:1001,nop,nop> +0 %{ assert tcpi_snd_cwnd == 10 }% // Send another packet. +0 write(4, ..., 1000) = 1000 +0 > P. 1001:2001(1000) ack 1 // Receiver ACKs above tlp_high_seq, which should end the TLP episode // if we haven't already. We should not reduce cwnd. +.020 < . 1:1(0) ack 2001 win 257 +0 %{ assert tcpi_snd_cwnd == 10, tcpi_snd_cwnd }% Credits: -Gregory helped in finding that tcp_process_tlp_ack was where the cwnd got reduced in our MPTCP tests. -Neal wrote the packetdrill test above -Yuchung reworked the patch to make it more readable. Cc: Gregory Detal <gregory.detal@uclouvain.be> Cc: Nandita Dukkipati <nanditad@google.com> Tested-by: Neal Cardwell <ncardwell@google.com> Reviewed-by: Yuchung Cheng <ycheng@google.com> Reviewed-by: Eric Dumazet <eric.dumazet@gmail.com> Signed-off-by: Sébastien Barré <sebastien.barre@uclouvain.be> Acked-by: Eric Dumazet <edumazet@google.com> Acked-by: Neal Cardwell <ncardwell@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2015-01-12 10:30:40 +01:00
/* This DSACK means original and TLP probe arrived; no loss */
tp->tlp_high_seq = 0;
} else if (after(ack, tp->tlp_high_seq)) {
/* ACK advances: there was a loss, so reduce cwnd. Reset
* tlp_high_seq in tcp_init_cwnd_reduction()
*/
tcp_init_cwnd_reduction(sk);
tcp_set_ca_state(sk, TCP_CA_CWR);
tcp_end_cwnd_reduction(sk);
tcp_try_keep_open(sk);
NET_INC_STATS(sock_net(sk),
LINUX_MIB_TCPLOSSPROBERECOVERY);
tcp: avoid reducing cwnd when ACK+DSACK is received With TLP, the peer may reply to a probe with an ACK+D-SACK, with ack value set to tlp_high_seq. In the current code, such ACK+DSACK will be missed and only at next, higher ack will the TLP episode be considered done. Since the DSACK is not present anymore, this will cost a cwnd reduction. This patch ensures that this scenario does not cause a cwnd reduction, since receiving an ACK+DSACK indicates that both the initial segment and the probe have been received by the peer. The following packetdrill test, from Neal Cardwell, validates this patch: // Establish a connection. 0 socket(..., SOCK_STREAM, IPPROTO_TCP) = 3 +0 setsockopt(3, SOL_SOCKET, SO_REUSEADDR, [1], 4) = 0 +0 bind(3, ..., ...) = 0 +0 listen(3, 1) = 0 +0 < S 0:0(0) win 32792 <mss 1000,sackOK,nop,nop,nop,wscale 7> +0 > S. 0:0(0) ack 1 <mss 1460,nop,nop,sackOK,nop,wscale 6> +.020 < . 1:1(0) ack 1 win 257 +0 accept(3, ..., ...) = 4 // Send 1 packet. +0 write(4, ..., 1000) = 1000 +0 > P. 1:1001(1000) ack 1 // Loss probe retransmission. // packets_out == 1 => schedule PTO in max(2*RTT, 1.5*RTT + 200ms) // In this case, this means: 1.5*RTT + 200ms = 230ms +.230 > P. 1:1001(1000) ack 1 +0 %{ assert tcpi_snd_cwnd == 10 }% // Receiver ACKs at tlp_high_seq with a DSACK, // indicating they received the original packet and probe. +.020 < . 1:1(0) ack 1001 win 257 <sack 1:1001,nop,nop> +0 %{ assert tcpi_snd_cwnd == 10 }% // Send another packet. +0 write(4, ..., 1000) = 1000 +0 > P. 1001:2001(1000) ack 1 // Receiver ACKs above tlp_high_seq, which should end the TLP episode // if we haven't already. We should not reduce cwnd. +.020 < . 1:1(0) ack 2001 win 257 +0 %{ assert tcpi_snd_cwnd == 10, tcpi_snd_cwnd }% Credits: -Gregory helped in finding that tcp_process_tlp_ack was where the cwnd got reduced in our MPTCP tests. -Neal wrote the packetdrill test above -Yuchung reworked the patch to make it more readable. Cc: Gregory Detal <gregory.detal@uclouvain.be> Cc: Nandita Dukkipati <nanditad@google.com> Tested-by: Neal Cardwell <ncardwell@google.com> Reviewed-by: Yuchung Cheng <ycheng@google.com> Reviewed-by: Eric Dumazet <eric.dumazet@gmail.com> Signed-off-by: Sébastien Barré <sebastien.barre@uclouvain.be> Acked-by: Eric Dumazet <edumazet@google.com> Acked-by: Neal Cardwell <ncardwell@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2015-01-12 10:30:40 +01:00
} else if (!(flag & (FLAG_SND_UNA_ADVANCED |
FLAG_NOT_DUP | FLAG_DATA_SACKED))) {
/* Pure dupack: original and TLP probe arrived; no loss */
tp->tlp_high_seq = 0;
}
}
static inline void tcp_in_ack_event(struct sock *sk, u32 flags)
{
const struct inet_connection_sock *icsk = inet_csk(sk);
if (icsk->icsk_ca_ops->in_ack_event)
icsk->icsk_ca_ops->in_ack_event(sk, flags);
}
/* Congestion control has updated the cwnd already. So if we're in
* loss recovery then now we do any new sends (for FRTO) or
* retransmits (for CA_Loss or CA_recovery) that make sense.
*/
static void tcp_xmit_recovery(struct sock *sk, int rexmit)
{
struct tcp_sock *tp = tcp_sk(sk);
if (rexmit == REXMIT_NONE || sk->sk_state == TCP_SYN_SENT)
return;
if (unlikely(rexmit == REXMIT_NEW)) {
__tcp_push_pending_frames(sk, tcp_current_mss(sk),
TCP_NAGLE_OFF);
if (after(tp->snd_nxt, tp->high_seq))
return;
tp->frto = 0;
}
tcp_xmit_retransmit_queue(sk);
}
/* Returns the number of packets newly acked or sacked by the current ACK */
static u32 tcp_newly_delivered(struct sock *sk, u32 prior_delivered, int flag)
{
const struct net *net = sock_net(sk);
struct tcp_sock *tp = tcp_sk(sk);
u32 delivered;
delivered = tp->delivered - prior_delivered;
NET_ADD_STATS(net, LINUX_MIB_TCPDELIVERED, delivered);
if (flag & FLAG_ECE)
NET_ADD_STATS(net, LINUX_MIB_TCPDELIVEREDCE, delivered);
return delivered;
}
/* This routine deals with incoming acks, but not outgoing ones. */
static int tcp_ack(struct sock *sk, const struct sk_buff *skb, int flag)
{
struct inet_connection_sock *icsk = inet_csk(sk);
struct tcp_sock *tp = tcp_sk(sk);
struct tcp_sacktag_state sack_state;
tcp: track data delivery rate for a TCP connection This patch generates data delivery rate (throughput) samples on a per-ACK basis. These rate samples can be used by congestion control modules, and specifically will be used by TCP BBR in later patches in this series. Key state: tp->delivered: Tracks the total number of data packets (original or not) delivered so far. This is an already-existing field. tp->delivered_mstamp: the last time tp->delivered was updated. Algorithm: A rate sample is calculated as (d1 - d0)/(t1 - t0) on a per-ACK basis: d1: the current tp->delivered after processing the ACK t1: the current time after processing the ACK d0: the prior tp->delivered when the acked skb was transmitted t0: the prior tp->delivered_mstamp when the acked skb was transmitted When an skb is transmitted, we snapshot d0 and t0 in its control block in tcp_rate_skb_sent(). When an ACK arrives, it may SACK and ACK some skbs. For each SACKed or ACKed skb, tcp_rate_skb_delivered() updates the rate_sample struct to reflect the latest (d0, t0). Finally, tcp_rate_gen() generates a rate sample by storing (d1 - d0) in rs->delivered and (t1 - t0) in rs->interval_us. One caveat: if an skb was sent with no packets in flight, then tp->delivered_mstamp may be either invalid (if the connection is starting) or outdated (if the connection was idle). In that case, we'll re-stamp tp->delivered_mstamp. At first glance it seems t0 should always be the time when an skb was transmitted, but actually this could over-estimate the rate due to phase mismatch between transmit and ACK events. To track the delivery rate, we ensure that if packets are in flight then t0 and and t1 are times at which packets were marked delivered. If the initial and final RTTs are different then one may be corrupted by some sort of noise. The noise we see most often is sending gaps caused by delayed, compressed, or stretched acks. This either affects both RTTs equally or artificially reduces the final RTT. We approach this by recording the info we need to compute the initial RTT (duration of the "send phase" of the window) when we recorded the associated inflight. Then, for a filter to avoid bandwidth overestimates, we generalize the per-sample bandwidth computation from: bw = delivered / ack_phase_rtt to the following: bw = delivered / max(send_phase_rtt, ack_phase_rtt) In large-scale experiments, this filtering approach incorporating send_phase_rtt is effective at avoiding bandwidth overestimates due to ACK compression or stretched ACKs. Signed-off-by: Van Jacobson <vanj@google.com> Signed-off-by: Neal Cardwell <ncardwell@google.com> Signed-off-by: Yuchung Cheng <ycheng@google.com> Signed-off-by: Nandita Dukkipati <nanditad@google.com> Signed-off-by: Eric Dumazet <edumazet@google.com> Signed-off-by: Soheil Hassas Yeganeh <soheil@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-09-19 23:39:14 -04:00
struct rate_sample rs = { .prior_delivered = 0 };
u32 prior_snd_una = tp->snd_una;
bool is_sack_reneg = tp->is_sack_reneg;
u32 ack_seq = TCP_SKB_CB(skb)->seq;
u32 ack = TCP_SKB_CB(skb)->ack_seq;
int num_dupack = 0;
int prior_packets = tp->packets_out;
tcp: track data delivery rate for a TCP connection This patch generates data delivery rate (throughput) samples on a per-ACK basis. These rate samples can be used by congestion control modules, and specifically will be used by TCP BBR in later patches in this series. Key state: tp->delivered: Tracks the total number of data packets (original or not) delivered so far. This is an already-existing field. tp->delivered_mstamp: the last time tp->delivered was updated. Algorithm: A rate sample is calculated as (d1 - d0)/(t1 - t0) on a per-ACK basis: d1: the current tp->delivered after processing the ACK t1: the current time after processing the ACK d0: the prior tp->delivered when the acked skb was transmitted t0: the prior tp->delivered_mstamp when the acked skb was transmitted When an skb is transmitted, we snapshot d0 and t0 in its control block in tcp_rate_skb_sent(). When an ACK arrives, it may SACK and ACK some skbs. For each SACKed or ACKed skb, tcp_rate_skb_delivered() updates the rate_sample struct to reflect the latest (d0, t0). Finally, tcp_rate_gen() generates a rate sample by storing (d1 - d0) in rs->delivered and (t1 - t0) in rs->interval_us. One caveat: if an skb was sent with no packets in flight, then tp->delivered_mstamp may be either invalid (if the connection is starting) or outdated (if the connection was idle). In that case, we'll re-stamp tp->delivered_mstamp. At first glance it seems t0 should always be the time when an skb was transmitted, but actually this could over-estimate the rate due to phase mismatch between transmit and ACK events. To track the delivery rate, we ensure that if packets are in flight then t0 and and t1 are times at which packets were marked delivered. If the initial and final RTTs are different then one may be corrupted by some sort of noise. The noise we see most often is sending gaps caused by delayed, compressed, or stretched acks. This either affects both RTTs equally or artificially reduces the final RTT. We approach this by recording the info we need to compute the initial RTT (duration of the "send phase" of the window) when we recorded the associated inflight. Then, for a filter to avoid bandwidth overestimates, we generalize the per-sample bandwidth computation from: bw = delivered / ack_phase_rtt to the following: bw = delivered / max(send_phase_rtt, ack_phase_rtt) In large-scale experiments, this filtering approach incorporating send_phase_rtt is effective at avoiding bandwidth overestimates due to ACK compression or stretched ACKs. Signed-off-by: Van Jacobson <vanj@google.com> Signed-off-by: Neal Cardwell <ncardwell@google.com> Signed-off-by: Yuchung Cheng <ycheng@google.com> Signed-off-by: Nandita Dukkipati <nanditad@google.com> Signed-off-by: Eric Dumazet <edumazet@google.com> Signed-off-by: Soheil Hassas Yeganeh <soheil@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-09-19 23:39:14 -04:00
u32 delivered = tp->delivered;
u32 lost = tp->lost;
int rexmit = REXMIT_NONE; /* Flag to (re)transmit to recover losses */
u32 prior_fack;
sack_state.first_sackt = 0;
tcp: track data delivery rate for a TCP connection This patch generates data delivery rate (throughput) samples on a per-ACK basis. These rate samples can be used by congestion control modules, and specifically will be used by TCP BBR in later patches in this series. Key state: tp->delivered: Tracks the total number of data packets (original or not) delivered so far. This is an already-existing field. tp->delivered_mstamp: the last time tp->delivered was updated. Algorithm: A rate sample is calculated as (d1 - d0)/(t1 - t0) on a per-ACK basis: d1: the current tp->delivered after processing the ACK t1: the current time after processing the ACK d0: the prior tp->delivered when the acked skb was transmitted t0: the prior tp->delivered_mstamp when the acked skb was transmitted When an skb is transmitted, we snapshot d0 and t0 in its control block in tcp_rate_skb_sent(). When an ACK arrives, it may SACK and ACK some skbs. For each SACKed or ACKed skb, tcp_rate_skb_delivered() updates the rate_sample struct to reflect the latest (d0, t0). Finally, tcp_rate_gen() generates a rate sample by storing (d1 - d0) in rs->delivered and (t1 - t0) in rs->interval_us. One caveat: if an skb was sent with no packets in flight, then tp->delivered_mstamp may be either invalid (if the connection is starting) or outdated (if the connection was idle). In that case, we'll re-stamp tp->delivered_mstamp. At first glance it seems t0 should always be the time when an skb was transmitted, but actually this could over-estimate the rate due to phase mismatch between transmit and ACK events. To track the delivery rate, we ensure that if packets are in flight then t0 and and t1 are times at which packets were marked delivered. If the initial and final RTTs are different then one may be corrupted by some sort of noise. The noise we see most often is sending gaps caused by delayed, compressed, or stretched acks. This either affects both RTTs equally or artificially reduces the final RTT. We approach this by recording the info we need to compute the initial RTT (duration of the "send phase" of the window) when we recorded the associated inflight. Then, for a filter to avoid bandwidth overestimates, we generalize the per-sample bandwidth computation from: bw = delivered / ack_phase_rtt to the following: bw = delivered / max(send_phase_rtt, ack_phase_rtt) In large-scale experiments, this filtering approach incorporating send_phase_rtt is effective at avoiding bandwidth overestimates due to ACK compression or stretched ACKs. Signed-off-by: Van Jacobson <vanj@google.com> Signed-off-by: Neal Cardwell <ncardwell@google.com> Signed-off-by: Yuchung Cheng <ycheng@google.com> Signed-off-by: Nandita Dukkipati <nanditad@google.com> Signed-off-by: Eric Dumazet <edumazet@google.com> Signed-off-by: Soheil Hassas Yeganeh <soheil@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-09-19 23:39:14 -04:00
sack_state.rate = &rs;
sack_state.sack_delivered = 0;
tcp: implement rb-tree based retransmit queue Using a linear list to store all skbs in write queue has been okay for quite a while : O(N) is not too bad when N < 500. Things get messy when N is the order of 100,000 : Modern TCP stacks want 10Gbit+ of throughput even with 200 ms RTT flows. 40 ns per cache line miss means a full scan can use 4 ms, blowing away CPU caches. SACK processing often can use various hints to avoid parsing whole retransmit queue. But with high packet losses and/or high reordering, hints no longer work. Sender has to process thousands of unfriendly SACK, accumulating a huge socket backlog, burning a cpu and massively dropping packets. Using an rb-tree for retransmit queue has been avoided for years because it added complexity and overhead, but now is the time to be more resistant and say no to quadratic behavior. 1) RTX queue is no longer part of the write queue : already sent skbs are stored in one rb-tree. 2) Since reaching the head of write queue no longer needs sk->sk_send_head, we added an union of sk_send_head and tcp_rtx_queue Tested: On receiver : netem on ingress : delay 150ms 200us loss 1 GRO disabled to force stress and SACK storms. for f in `seq 1 10` do ./netperf -H lpaa6 -l30 -- -K bbr -o THROUGHPUT|tail -1 done | awk '{print $0} {sum += $0} END {printf "%7u\n",sum}' Before patch : 323.87 351.48 339.59 338.62 306.72 204.07 304.93 291.88 202.47 176.88 2840 After patch: 1700.83 2207.98 2070.17 1544.26 2114.76 2124.89 1693.14 1080.91 2216.82 1299.94 18053 Signed-off-by: Eric Dumazet <edumazet@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-10-05 22:21:27 -07:00
/* We very likely will need to access rtx queue. */
prefetch(sk->tcp_rtx_queue.rb_node);
/* If the ack is older than previous acks
* then we can probably ignore it.
*/
if (before(ack, prior_snd_una)) {
/* RFC 5961 5.2 [Blind Data Injection Attack].[Mitigation] */
if (before(ack, prior_snd_una - tp->max_window)) {
tcp: better validation of received ack sequences Paul Fiterau Brostean reported : <quote> Linux TCP stack we analyze exhibits behavior that seems odd to me. The scenario is as follows (all packets have empty payloads, no window scaling, rcv/snd window size should not be a factor): TEST HARNESS (CLIENT) LINUX SERVER 1. - LISTEN (server listen, then accepts) 2. - --> <SEQ=100><CTL=SYN> --> SYN-RECEIVED 3. - <-- <SEQ=300><ACK=101><CTL=SYN,ACK> <-- SYN-RECEIVED 4. - --> <SEQ=101><ACK=301><CTL=ACK> --> ESTABLISHED 5. - <-- <SEQ=301><ACK=101><CTL=FIN,ACK> <-- FIN WAIT-1 (server opts to close the data connection calling "close" on the connection socket) 6. - --> <SEQ=101><ACK=99999><CTL=FIN,ACK> --> CLOSING (client sends FIN,ACK with not yet sent acknowledgement number) 7. - <-- <SEQ=302><ACK=102><CTL=ACK> <-- CLOSING (ACK is 102 instead of 101, why?) ... (silence from CLIENT) 8. - <-- <SEQ=301><ACK=102><CTL=FIN,ACK> <-- CLOSING (retransmission, again ACK is 102) Now, note that packet 6 while having the expected sequence number, acknowledges something that wasn't sent by the server. So I would expect the packet to maybe prompt an ACK response from the server, and then be ignored. Yet it is not ignored and actually leads to an increase of the acknowledgement number in the server's retransmission of the FIN,ACK packet. The explanation I found is that the FIN in packet 6 was processed, despite the acknowledgement number being unacceptable. Further experiments indeed show that the server processes this FIN, transitioning to CLOSING, then on receiving an ACK for the FIN it had send in packet 5, the server (or better said connection) transitions from CLOSING to TIME_WAIT (as signaled by netstat). </quote> Indeed, tcp_rcv_state_process() calls tcp_ack() but does not exploit the @acceptable status but for TCP_SYN_RECV state. What we want here is to send a challenge ACK, if not in TCP_SYN_RECV state. TCP_FIN_WAIT1 state is not the only state we should fix. Add a FLAG_NO_CHALLENGE_ACK so that tcp_rcv_state_process() can choose to send a challenge ACK and discard the packet instead of wrongly change socket state. With help from Neal Cardwell. Signed-off-by: Eric Dumazet <edumazet@google.com> Reported-by: Paul Fiterau Brostean <p.fiterau-brostean@science.ru.nl> Cc: Neal Cardwell <ncardwell@google.com> Cc: Yuchung Cheng <ycheng@google.com> Cc: Soheil Hassas Yeganeh <soheil@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-05-23 15:24:46 -07:00
if (!(flag & FLAG_NO_CHALLENGE_ACK))
tcp_send_challenge_ack(sk);
return -SKB_DROP_REASON_TCP_TOO_OLD_ACK;
}
goto old_ack;
}
/* If the ack includes data we haven't sent yet, discard
* this segment (RFC793 Section 3.9).
*/
if (after(ack, tp->snd_nxt))
return -SKB_DROP_REASON_TCP_ACK_UNSENT_DATA;
tcp: fix ssthresh and undo for consecutive short FRTO episodes Fix TCP FRTO logic so that it always notices when snd_una advances, indicating that any RTO after that point will be a new and distinct loss episode. Previously there was a very specific sequence that could cause FRTO to fail to notice a new loss episode had started: (1) RTO timer fires, enter FRTO and retransmit packet 1 in write queue (2) receiver ACKs packet 1 (3) FRTO sends 2 more packets (4) RTO timer fires again (should start a new loss episode) The problem was in step (3) above, where tcp_process_loss() returned early (in the spot marked "Step 2.b"), so that it never got to the logic to clear icsk_retransmits. Thus icsk_retransmits stayed non-zero. Thus in step (4) tcp_enter_loss() would see the non-zero icsk_retransmits, decide that this RTO is not a new episode, and decide not to cut ssthresh and remember the current cwnd and ssthresh for undo. There were two main consequences to the bug that we have observed. First, ssthresh was not decreased in step (4). Second, when there was a series of such FRTO (1-4) sequences that happened to be followed by an FRTO undo, we would restore the cwnd and ssthresh from before the entire series started (instead of the cwnd and ssthresh from before the most recent RTO). This could result in cwnd and ssthresh being restored to values much bigger than the proper values. Signed-off-by: Neal Cardwell <ncardwell@google.com> Signed-off-by: Yuchung Cheng <ycheng@google.com> Fixes: e33099f96d99c ("tcp: implement RFC5682 F-RTO") Signed-off-by: David S. Miller <davem@davemloft.net>
2014-08-14 16:13:07 -04:00
if (after(ack, prior_snd_una)) {
flag |= FLAG_SND_UNA_ADVANCED;
tcp: fix ssthresh and undo for consecutive short FRTO episodes Fix TCP FRTO logic so that it always notices when snd_una advances, indicating that any RTO after that point will be a new and distinct loss episode. Previously there was a very specific sequence that could cause FRTO to fail to notice a new loss episode had started: (1) RTO timer fires, enter FRTO and retransmit packet 1 in write queue (2) receiver ACKs packet 1 (3) FRTO sends 2 more packets (4) RTO timer fires again (should start a new loss episode) The problem was in step (3) above, where tcp_process_loss() returned early (in the spot marked "Step 2.b"), so that it never got to the logic to clear icsk_retransmits. Thus icsk_retransmits stayed non-zero. Thus in step (4) tcp_enter_loss() would see the non-zero icsk_retransmits, decide that this RTO is not a new episode, and decide not to cut ssthresh and remember the current cwnd and ssthresh for undo. There were two main consequences to the bug that we have observed. First, ssthresh was not decreased in step (4). Second, when there was a series of such FRTO (1-4) sequences that happened to be followed by an FRTO undo, we would restore the cwnd and ssthresh from before the entire series started (instead of the cwnd and ssthresh from before the most recent RTO). This could result in cwnd and ssthresh being restored to values much bigger than the proper values. Signed-off-by: Neal Cardwell <ncardwell@google.com> Signed-off-by: Yuchung Cheng <ycheng@google.com> Fixes: e33099f96d99c ("tcp: implement RFC5682 F-RTO") Signed-off-by: David S. Miller <davem@davemloft.net>
2014-08-14 16:13:07 -04:00
icsk->icsk_retransmits = 0;
#if IS_ENABLED(CONFIG_TLS_DEVICE)
if (static_branch_unlikely(&clean_acked_data_enabled.key))
if (icsk->icsk_clean_acked)
icsk->icsk_clean_acked(sk, ack);
#endif
tcp: fix ssthresh and undo for consecutive short FRTO episodes Fix TCP FRTO logic so that it always notices when snd_una advances, indicating that any RTO after that point will be a new and distinct loss episode. Previously there was a very specific sequence that could cause FRTO to fail to notice a new loss episode had started: (1) RTO timer fires, enter FRTO and retransmit packet 1 in write queue (2) receiver ACKs packet 1 (3) FRTO sends 2 more packets (4) RTO timer fires again (should start a new loss episode) The problem was in step (3) above, where tcp_process_loss() returned early (in the spot marked "Step 2.b"), so that it never got to the logic to clear icsk_retransmits. Thus icsk_retransmits stayed non-zero. Thus in step (4) tcp_enter_loss() would see the non-zero icsk_retransmits, decide that this RTO is not a new episode, and decide not to cut ssthresh and remember the current cwnd and ssthresh for undo. There were two main consequences to the bug that we have observed. First, ssthresh was not decreased in step (4). Second, when there was a series of such FRTO (1-4) sequences that happened to be followed by an FRTO undo, we would restore the cwnd and ssthresh from before the entire series started (instead of the cwnd and ssthresh from before the most recent RTO). This could result in cwnd and ssthresh being restored to values much bigger than the proper values. Signed-off-by: Neal Cardwell <ncardwell@google.com> Signed-off-by: Yuchung Cheng <ycheng@google.com> Fixes: e33099f96d99c ("tcp: implement RFC5682 F-RTO") Signed-off-by: David S. Miller <davem@davemloft.net>
2014-08-14 16:13:07 -04:00
}
tcp: highest_sack fix syzbot easily found a regression added in our latest patches [1] No longer set tp->highest_sack to the head of the send queue since this is not logical and error prone. Only sack processing should maintain the pointer to an skb from rtx queue. We might in the future only remember the sequence instead of a pointer to skb, since rb-tree should allow a fast lookup. [1] BUG: KASAN: use-after-free in tcp_highest_sack_seq include/net/tcp.h:1706 [inline] BUG: KASAN: use-after-free in tcp_ack+0x42bb/0x4fd0 net/ipv4/tcp_input.c:3537 Read of size 4 at addr ffff8801c154faa8 by task syz-executor4/12860 CPU: 0 PID: 12860 Comm: syz-executor4 Not tainted 4.14.0-next-20171113+ #41 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 01/01/2011 Call Trace: __dump_stack lib/dump_stack.c:17 [inline] dump_stack+0x194/0x257 lib/dump_stack.c:53 print_address_description+0x73/0x250 mm/kasan/report.c:252 kasan_report_error mm/kasan/report.c:351 [inline] kasan_report+0x25b/0x340 mm/kasan/report.c:409 __asan_report_load4_noabort+0x14/0x20 mm/kasan/report.c:429 tcp_highest_sack_seq include/net/tcp.h:1706 [inline] tcp_ack+0x42bb/0x4fd0 net/ipv4/tcp_input.c:3537 tcp_rcv_established+0x672/0x18a0 net/ipv4/tcp_input.c:5439 tcp_v4_do_rcv+0x2ab/0x7d0 net/ipv4/tcp_ipv4.c:1468 sk_backlog_rcv include/net/sock.h:909 [inline] __release_sock+0x124/0x360 net/core/sock.c:2264 release_sock+0xa4/0x2a0 net/core/sock.c:2778 tcp_sendmsg+0x3a/0x50 net/ipv4/tcp.c:1462 inet_sendmsg+0x11f/0x5e0 net/ipv4/af_inet.c:763 sock_sendmsg_nosec net/socket.c:632 [inline] sock_sendmsg+0xca/0x110 net/socket.c:642 ___sys_sendmsg+0x75b/0x8a0 net/socket.c:2048 __sys_sendmsg+0xe5/0x210 net/socket.c:2082 SYSC_sendmsg net/socket.c:2093 [inline] SyS_sendmsg+0x2d/0x50 net/socket.c:2089 entry_SYSCALL_64_fastpath+0x1f/0x96 RIP: 0033:0x452879 RSP: 002b:00007fc9761bfbe8 EFLAGS: 00000212 ORIG_RAX: 000000000000002e RAX: ffffffffffffffda RBX: 0000000000758020 RCX: 0000000000452879 RDX: 0000000000000000 RSI: 0000000020917fc8 RDI: 0000000000000015 RBP: 0000000000000086 R08: 0000000000000000 R09: 0000000000000000 R10: 0000000000000000 R11: 0000000000000212 R12: 00000000006ee3a0 R13: 00000000ffffffff R14: 00007fc9761c06d4 R15: 0000000000000000 Allocated by task 12860: save_stack+0x43/0xd0 mm/kasan/kasan.c:447 set_track mm/kasan/kasan.c:459 [inline] kasan_kmalloc+0xad/0xe0 mm/kasan/kasan.c:551 kasan_slab_alloc+0x12/0x20 mm/kasan/kasan.c:489 kmem_cache_alloc_node+0x144/0x760 mm/slab.c:3638 __alloc_skb+0xf1/0x780 net/core/skbuff.c:193 alloc_skb_fclone include/linux/skbuff.h:1023 [inline] sk_stream_alloc_skb+0x11d/0x900 net/ipv4/tcp.c:870 tcp_sendmsg_locked+0x1341/0x3b80 net/ipv4/tcp.c:1299 tcp_sendmsg+0x2f/0x50 net/ipv4/tcp.c:1461 inet_sendmsg+0x11f/0x5e0 net/ipv4/af_inet.c:763 sock_sendmsg_nosec net/socket.c:632 [inline] sock_sendmsg+0xca/0x110 net/socket.c:642 SYSC_sendto+0x358/0x5a0 net/socket.c:1749 SyS_sendto+0x40/0x50 net/socket.c:1717 entry_SYSCALL_64_fastpath+0x1f/0x96 Freed by task 12860: save_stack+0x43/0xd0 mm/kasan/kasan.c:447 set_track mm/kasan/kasan.c:459 [inline] kasan_slab_free+0x71/0xc0 mm/kasan/kasan.c:524 __cache_free mm/slab.c:3492 [inline] kmem_cache_free+0x77/0x280 mm/slab.c:3750 kfree_skbmem+0xdd/0x1d0 net/core/skbuff.c:603 __kfree_skb+0x1d/0x20 net/core/skbuff.c:642 sk_wmem_free_skb include/net/sock.h:1419 [inline] tcp_rtx_queue_unlink_and_free include/net/tcp.h:1682 [inline] tcp_clean_rtx_queue net/ipv4/tcp_input.c:3111 [inline] tcp_ack+0x1b17/0x4fd0 net/ipv4/tcp_input.c:3593 tcp_rcv_established+0x672/0x18a0 net/ipv4/tcp_input.c:5439 tcp_v4_do_rcv+0x2ab/0x7d0 net/ipv4/tcp_ipv4.c:1468 sk_backlog_rcv include/net/sock.h:909 [inline] __release_sock+0x124/0x360 net/core/sock.c:2264 release_sock+0xa4/0x2a0 net/core/sock.c:2778 tcp_sendmsg+0x3a/0x50 net/ipv4/tcp.c:1462 inet_sendmsg+0x11f/0x5e0 net/ipv4/af_inet.c:763 sock_sendmsg_nosec net/socket.c:632 [inline] sock_sendmsg+0xca/0x110 net/socket.c:642 ___sys_sendmsg+0x75b/0x8a0 net/socket.c:2048 __sys_sendmsg+0xe5/0x210 net/socket.c:2082 SYSC_sendmsg net/socket.c:2093 [inline] SyS_sendmsg+0x2d/0x50 net/socket.c:2089 entry_SYSCALL_64_fastpath+0x1f/0x96 The buggy address belongs to the object at ffff8801c154fa80 which belongs to the cache skbuff_fclone_cache of size 456 The buggy address is located 40 bytes inside of 456-byte region [ffff8801c154fa80, ffff8801c154fc48) The buggy address belongs to the page: page:ffffea00070553c0 count:1 mapcount:0 mapping:ffff8801c154f080 index:0x0 flags: 0x2fffc0000000100(slab) raw: 02fffc0000000100 ffff8801c154f080 0000000000000000 0000000100000006 raw: ffffea00070a5a20 ffffea0006a18360 ffff8801d9ca0500 0000000000000000 page dumped because: kasan: bad access detected Fixes: 737ff314563c ("tcp: use sequence distance to detect reordering") Signed-off-by: Eric Dumazet <edumazet@google.com> Cc: Yuchung Cheng <ycheng@google.com> Reported-by: syzbot <syzkaller@googlegroups.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-11-14 21:02:19 -08:00
prior_fack = tcp_is_sack(tp) ? tcp_highest_sack_seq(tp) : tp->snd_una;
tcp: track data delivery rate for a TCP connection This patch generates data delivery rate (throughput) samples on a per-ACK basis. These rate samples can be used by congestion control modules, and specifically will be used by TCP BBR in later patches in this series. Key state: tp->delivered: Tracks the total number of data packets (original or not) delivered so far. This is an already-existing field. tp->delivered_mstamp: the last time tp->delivered was updated. Algorithm: A rate sample is calculated as (d1 - d0)/(t1 - t0) on a per-ACK basis: d1: the current tp->delivered after processing the ACK t1: the current time after processing the ACK d0: the prior tp->delivered when the acked skb was transmitted t0: the prior tp->delivered_mstamp when the acked skb was transmitted When an skb is transmitted, we snapshot d0 and t0 in its control block in tcp_rate_skb_sent(). When an ACK arrives, it may SACK and ACK some skbs. For each SACKed or ACKed skb, tcp_rate_skb_delivered() updates the rate_sample struct to reflect the latest (d0, t0). Finally, tcp_rate_gen() generates a rate sample by storing (d1 - d0) in rs->delivered and (t1 - t0) in rs->interval_us. One caveat: if an skb was sent with no packets in flight, then tp->delivered_mstamp may be either invalid (if the connection is starting) or outdated (if the connection was idle). In that case, we'll re-stamp tp->delivered_mstamp. At first glance it seems t0 should always be the time when an skb was transmitted, but actually this could over-estimate the rate due to phase mismatch between transmit and ACK events. To track the delivery rate, we ensure that if packets are in flight then t0 and and t1 are times at which packets were marked delivered. If the initial and final RTTs are different then one may be corrupted by some sort of noise. The noise we see most often is sending gaps caused by delayed, compressed, or stretched acks. This either affects both RTTs equally or artificially reduces the final RTT. We approach this by recording the info we need to compute the initial RTT (duration of the "send phase" of the window) when we recorded the associated inflight. Then, for a filter to avoid bandwidth overestimates, we generalize the per-sample bandwidth computation from: bw = delivered / ack_phase_rtt to the following: bw = delivered / max(send_phase_rtt, ack_phase_rtt) In large-scale experiments, this filtering approach incorporating send_phase_rtt is effective at avoiding bandwidth overestimates due to ACK compression or stretched ACKs. Signed-off-by: Van Jacobson <vanj@google.com> Signed-off-by: Neal Cardwell <ncardwell@google.com> Signed-off-by: Yuchung Cheng <ycheng@google.com> Signed-off-by: Nandita Dukkipati <nanditad@google.com> Signed-off-by: Eric Dumazet <edumazet@google.com> Signed-off-by: Soheil Hassas Yeganeh <soheil@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-09-19 23:39:14 -04:00
rs.prior_in_flight = tcp_packets_in_flight(tp);
/* ts_recent update must be made after we are sure that the packet
* is in window.
*/
if (flag & FLAG_UPDATE_TS_RECENT)
tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
if ((flag & (FLAG_SLOWPATH | FLAG_SND_UNA_ADVANCED)) ==
FLAG_SND_UNA_ADVANCED) {
/* Window is constant, pure forward advance.
* No more checks are required.
* Note, we use the fact that SND.UNA>=SND.WL2.
*/
tcp_update_wl(tp, ack_seq);
tcp_snd_una_update(tp, ack);
flag |= FLAG_WIN_UPDATE;
tcp_in_ack_event(sk, CA_ACK_WIN_UPDATE);
NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPACKS);
} else {
u32 ack_ev_flags = CA_ACK_SLOWPATH;
if (ack_seq != TCP_SKB_CB(skb)->end_seq)
flag |= FLAG_DATA;
else
NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPUREACKS);
flag |= tcp_ack_update_window(sk, skb, ack, ack_seq);
if (TCP_SKB_CB(skb)->sacked)
flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una,
&sack_state);
if (tcp_ecn_rcv_ecn_echo(tp, tcp_hdr(skb))) {
flag |= FLAG_ECE;
ack_ev_flags |= CA_ACK_ECE;
}
if (sack_state.sack_delivered)
tcp_count_delivered(tp, sack_state.sack_delivered,
flag & FLAG_ECE);
if (flag & FLAG_WIN_UPDATE)
ack_ev_flags |= CA_ACK_WIN_UPDATE;
tcp_in_ack_event(sk, ack_ev_flags);
}
tcp: don't ignore ECN CWR on pure ACK there is a problem with the CWR flag set in an incoming ACK segment and it leads to the situation when the ECE flag is latched forever the following packetdrill script shows what happens: // Stack receives incoming segments with CE set +0.1 <[ect0] . 11001:12001(1000) ack 1001 win 65535 +0.0 <[ce] . 12001:13001(1000) ack 1001 win 65535 +0.0 <[ect0] P. 13001:14001(1000) ack 1001 win 65535 // Stack repsonds with ECN ECHO +0.0 >[noecn] . 1001:1001(0) ack 12001 +0.0 >[noecn] E. 1001:1001(0) ack 13001 +0.0 >[noecn] E. 1001:1001(0) ack 14001 // Write a packet +0.1 write(3, ..., 1000) = 1000 +0.0 >[ect0] PE. 1001:2001(1000) ack 14001 // Pure ACK received +0.01 <[noecn] W. 14001:14001(0) ack 2001 win 65535 // Since CWR was sent, this packet should NOT have ECE set +0.1 write(3, ..., 1000) = 1000 +0.0 >[ect0] P. 2001:3001(1000) ack 14001 // but Linux will still keep ECE latched here, with packetdrill // flagging a missing ECE flag, expecting // >[ect0] PE. 2001:3001(1000) ack 14001 // in the script In the situation above we will continue to send ECN ECHO packets and trigger the peer to reduce the congestion window. To avoid that we can check CWR on pure ACKs received. v3: - Add a sequence check to avoid sending an ACK to an ACK v2: - Adjusted the comment - move CWR check before checking for unacknowledged packets Signed-off-by: Denis Kirjanov <denis.kirjanov@suse.com> Acked-by: Neal Cardwell <ncardwell@google.com> Signed-off-by: Eric Dumazet <edumazet@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2020-06-25 14:51:06 +03:00
/* This is a deviation from RFC3168 since it states that:
* "When the TCP data sender is ready to set the CWR bit after reducing
* the congestion window, it SHOULD set the CWR bit only on the first
* new data packet that it transmits."
* We accept CWR on pure ACKs to be more robust
* with widely-deployed TCP implementations that do this.
*/
tcp_ecn_accept_cwr(sk, skb);
/* We passed data and got it acked, remove any soft error
* log. Something worked...
*/
WRITE_ONCE(sk->sk_err_soft, 0);
tcp: Clear probes_out more aggressively in tcp_ack(). This is based upon an excellent bug report from Eric Dumazet. tcp_ack() should clear ->icsk_probes_out even if there are packets outstanding. Otherwise if we get a sequence of ACKs while we do have packets outstanding over and over again, we'll never clear the probes_out value and eventually think the connection is too sick and we'll reset it. This appears to be some "optimization" added to tcp_ack() in the 2.4.x timeframe. In 2.2.x, probes_out is pretty much always cleared by tcp_ack(). Here is Eric's original report: ---------------------------------------- Apparently, we can in some situations reset TCP connections in a couple of seconds when some frames are lost. In order to reproduce the problem, please try the following program on linux-2.6.25.* Setup some iptables rules to allow two frames per second sent on loopback interface to tcp destination port 12000 iptables -N SLOWLO iptables -A SLOWLO -m hashlimit --hashlimit 2 --hashlimit-burst 1 --hashlimit-mode dstip --hashlimit-name slow2 -j ACCEPT iptables -A SLOWLO -j DROP iptables -A OUTPUT -o lo -p tcp --dport 12000 -j SLOWLO Then run the attached program and see the output : # ./loop State Recv-Q Send-Q Local Address:Port Peer Address:Port ESTAB 0 40 127.0.0.1:54455 127.0.0.1:12000 timer:(persist,200ms,1) State Recv-Q Send-Q Local Address:Port Peer Address:Port ESTAB 0 40 127.0.0.1:54455 127.0.0.1:12000 timer:(persist,200ms,3) State Recv-Q Send-Q Local Address:Port Peer Address:Port ESTAB 0 40 127.0.0.1:54455 127.0.0.1:12000 timer:(persist,200ms,5) State Recv-Q Send-Q Local Address:Port Peer Address:Port ESTAB 0 40 127.0.0.1:54455 127.0.0.1:12000 timer:(persist,200ms,7) State Recv-Q Send-Q Local Address:Port Peer Address:Port ESTAB 0 40 127.0.0.1:54455 127.0.0.1:12000 timer:(persist,200ms,9) State Recv-Q Send-Q Local Address:Port Peer Address:Port ESTAB 0 40 127.0.0.1:54455 127.0.0.1:12000 timer:(persist,200ms,11) State Recv-Q Send-Q Local Address:Port Peer Address:Port ESTAB 0 40 127.0.0.1:54455 127.0.0.1:12000 timer:(persist,201ms,13) State Recv-Q Send-Q Local Address:Port Peer Address:Port ESTAB 0 40 127.0.0.1:54455 127.0.0.1:12000 timer:(persist,188ms,15) write(): Connection timed out wrote 890 bytes but was interrupted after 9 seconds ESTAB 0 0 127.0.0.1:12000 127.0.0.1:54455 Exiting read() because no data available (4000 ms timeout). read 860 bytes While this tcp session makes progress (sending frames with 50 bytes of payload, every 500ms), linux tcp stack decides to reset it, when tcp_retries 2 is reached (default value : 15) tcpdump : 15:30:28.856695 IP 127.0.0.1.56554 > 127.0.0.1.12000: S 33788768:33788768(0) win 32792 <mss 16396,nop,nop,sackOK,nop,wscale 7> 15:30:28.856711 IP 127.0.0.1.12000 > 127.0.0.1.56554: S 33899253:33899253(0) ack 33788769 win 32792 <mss 16396,nop,nop,sackOK,nop,wscale 7> 15:30:29.356947 IP 127.0.0.1.56554 > 127.0.0.1.12000: P 1:61(60) ack 1 win 257 15:30:29.356966 IP 127.0.0.1.12000 > 127.0.0.1.56554: . ack 61 win 257 15:30:29.866415 IP 127.0.0.1.56554 > 127.0.0.1.12000: P 61:111(50) ack 1 win 257 15:30:29.866427 IP 127.0.0.1.12000 > 127.0.0.1.56554: . ack 111 win 257 15:30:30.366516 IP 127.0.0.1.56554 > 127.0.0.1.12000: P 111:161(50) ack 1 win 257 15:30:30.366527 IP 127.0.0.1.12000 > 127.0.0.1.56554: . ack 161 win 257 15:30:30.876196 IP 127.0.0.1.56554 > 127.0.0.1.12000: P 161:211(50) ack 1 win 257 15:30:30.876207 IP 127.0.0.1.12000 > 127.0.0.1.56554: . ack 211 win 257 15:30:31.376282 IP 127.0.0.1.56554 > 127.0.0.1.12000: P 211:261(50) ack 1 win 257 15:30:31.376290 IP 127.0.0.1.12000 > 127.0.0.1.56554: . ack 261 win 257 15:30:31.885619 IP 127.0.0.1.56554 > 127.0.0.1.12000: P 261:311(50) ack 1 win 257 15:30:31.885631 IP 127.0.0.1.12000 > 127.0.0.1.56554: . ack 311 win 257 15:30:32.385705 IP 127.0.0.1.56554 > 127.0.0.1.12000: P 311:361(50) ack 1 win 257 15:30:32.385715 IP 127.0.0.1.12000 > 127.0.0.1.56554: . ack 361 win 257 15:30:32.895249 IP 127.0.0.1.56554 > 127.0.0.1.12000: P 361:411(50) ack 1 win 257 15:30:32.895266 IP 127.0.0.1.12000 > 127.0.0.1.56554: . ack 411 win 257 15:30:33.395341 IP 127.0.0.1.56554 > 127.0.0.1.12000: P 411:461(50) ack 1 win 257 15:30:33.395351 IP 127.0.0.1.12000 > 127.0.0.1.56554: . ack 461 win 257 15:30:33.918085 IP 127.0.0.1.56554 > 127.0.0.1.12000: P 461:511(50) ack 1 win 257 15:30:33.918096 IP 127.0.0.1.12000 > 127.0.0.1.56554: . ack 511 win 257 15:30:34.418163 IP 127.0.0.1.56554 > 127.0.0.1.12000: P 511:561(50) ack 1 win 257 15:30:34.418172 IP 127.0.0.1.12000 > 127.0.0.1.56554: . ack 561 win 257 15:30:34.927685 IP 127.0.0.1.56554 > 127.0.0.1.12000: P 561:611(50) ack 1 win 257 15:30:34.927698 IP 127.0.0.1.12000 > 127.0.0.1.56554: . ack 611 win 257 15:30:35.427757 IP 127.0.0.1.56554 > 127.0.0.1.12000: P 611:661(50) ack 1 win 257 15:30:35.427766 IP 127.0.0.1.12000 > 127.0.0.1.56554: . ack 661 win 257 15:30:35.937359 IP 127.0.0.1.56554 > 127.0.0.1.12000: P 661:711(50) ack 1 win 257 15:30:35.937376 IP 127.0.0.1.12000 > 127.0.0.1.56554: . ack 711 win 257 15:30:36.437451 IP 127.0.0.1.56554 > 127.0.0.1.12000: P 711:761(50) ack 1 win 257 15:30:36.437464 IP 127.0.0.1.12000 > 127.0.0.1.56554: . ack 761 win 257 15:30:36.947022 IP 127.0.0.1.56554 > 127.0.0.1.12000: P 761:811(50) ack 1 win 257 15:30:36.947039 IP 127.0.0.1.12000 > 127.0.0.1.56554: . ack 811 win 257 15:30:37.447135 IP 127.0.0.1.56554 > 127.0.0.1.12000: P 811:861(50) ack 1 win 257 15:30:37.447203 IP 127.0.0.1.12000 > 127.0.0.1.56554: . ack 861 win 257 15:30:41.448171 IP 127.0.0.1.12000 > 127.0.0.1.56554: F 1:1(0) ack 861 win 257 15:30:41.448189 IP 127.0.0.1.56554 > 127.0.0.1.12000: R 33789629:33789629(0) win 0 Source of program : /* * small producer/consumer program. * setup a listener on 127.0.0.1:12000 * Forks a child * child connect to 127.0.0.1, and sends 10 bytes on this tcp socket every 100 ms * Father accepts connection, and read all data */ #include <sys/types.h> #include <sys/socket.h> #include <netinet/in.h> #include <unistd.h> #include <stdio.h> #include <time.h> #include <sys/poll.h> int port = 12000; char buffer[4096]; int main(int argc, char *argv[]) { int lfd = socket(AF_INET, SOCK_STREAM, 0); struct sockaddr_in socket_address; time_t t0, t1; int on = 1, sfd, res; unsigned long total = 0; socklen_t alen = sizeof(socket_address); pid_t pid; time(&t0); socket_address.sin_family = AF_INET; socket_address.sin_port = htons(port); socket_address.sin_addr.s_addr = htonl(INADDR_LOOPBACK); if (lfd == -1) { perror("socket()"); return 1; } setsockopt(lfd, SOL_SOCKET, SO_REUSEADDR, &on, sizeof(int)); if (bind(lfd, (struct sockaddr *)&socket_address, sizeof(socket_address)) == -1) { perror("bind"); close(lfd); return 1; } if (listen(lfd, 1) == -1) { perror("listen()"); close(lfd); return 1; } pid = fork(); if (pid == 0) { int i, cfd = socket(AF_INET, SOCK_STREAM, 0); close(lfd); if (connect(cfd, (struct sockaddr *)&socket_address, sizeof(socket_address)) == -1) { perror("connect()"); return 1; } for (i = 0 ; ;) { res = write(cfd, "blablabla\n", 10); if (res > 0) total += res; else if (res == -1) { perror("write()"); break; } else break; usleep(100000); if (++i == 10) { system("ss -on dst 127.0.0.1:12000"); i = 0; } } time(&t1); fprintf(stderr, "wrote %lu bytes but was interrupted after %g seconds\n", total, difftime(t1, t0)); system("ss -on | grep 127.0.0.1:12000"); close(cfd); return 0; } sfd = accept(lfd, (struct sockaddr *)&socket_address, &alen); if (sfd == -1) { perror("accept"); return 1; } close(lfd); while (1) { struct pollfd pfd[1]; pfd[0].fd = sfd; pfd[0].events = POLLIN; if (poll(pfd, 1, 4000) == 0) { fprintf(stderr, "Exiting read() because no data available (4000 ms timeout).\n"); break; } res = read(sfd, buffer, sizeof(buffer)); if (res > 0) total += res; else if (res == 0) break; else perror("read()"); } fprintf(stderr, "read %lu bytes\n", total); close(sfd); return 0; } ---------------------------------------- Signed-off-by: David S. Miller <davem@davemloft.net>
2008-07-23 16:38:45 -07:00
icsk->icsk_probes_out = 0;
tp->rcv_tstamp = tcp_jiffies32;
if (!prior_packets)
goto no_queue;
/* See if we can take anything off of the retransmit queue. */
flag |= tcp_clean_rtx_queue(sk, skb, prior_fack, prior_snd_una,
&sack_state, flag & FLAG_ECE);
Proportional Rate Reduction for TCP. This patch implements Proportional Rate Reduction (PRR) for TCP. PRR is an algorithm that determines TCP's sending rate in fast recovery. PRR avoids excessive window reductions and aims for the actual congestion window size at the end of recovery to be as close as possible to the window determined by the congestion control algorithm. PRR also improves accuracy of the amount of data sent during loss recovery. The patch implements the recommended flavor of PRR called PRR-SSRB (Proportional rate reduction with slow start reduction bound) and replaces the existing rate halving algorithm. PRR improves upon the existing Linux fast recovery under a number of conditions including: 1) burst losses where the losses implicitly reduce the amount of outstanding data (pipe) below the ssthresh value selected by the congestion control algorithm and, 2) losses near the end of short flows where application runs out of data to send. As an example, with the existing rate halving implementation a single loss event can cause a connection carrying short Web transactions to go into the slow start mode after the recovery. This is because during recovery Linux pulls the congestion window down to packets_in_flight+1 on every ACK. A short Web response often runs out of new data to send and its pipe reduces to zero by the end of recovery when all its packets are drained from the network. Subsequent HTTP responses using the same connection will have to slow start to raise cwnd to ssthresh. PRR on the other hand aims for the cwnd to be as close as possible to ssthresh by the end of recovery. A description of PRR and a discussion of its performance can be found at the following links: - IETF Draft: http://tools.ietf.org/html/draft-mathis-tcpm-proportional-rate-reduction-01 - IETF Slides: http://www.ietf.org/proceedings/80/slides/tcpm-6.pdf http://tools.ietf.org/agenda/81/slides/tcpm-2.pdf - Paper to appear in Internet Measurements Conference (IMC) 2011: Improving TCP Loss Recovery Nandita Dukkipati, Matt Mathis, Yuchung Cheng Signed-off-by: Nandita Dukkipati <nanditad@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2011-08-21 20:21:57 +00:00
tcp: higher throughput under reordering with adaptive RACK reordering wnd Currently TCP RACK loss detection does not work well if packets are being reordered beyond its static reordering window (min_rtt/4).Under such reordering it may falsely trigger loss recoveries and reduce TCP throughput significantly. This patch improves that by increasing and reducing the reordering window based on DSACK, which is now supported in major TCP implementations. It makes RACK's reo_wnd adaptive based on DSACK and no. of recoveries. - If DSACK is received, increment reo_wnd by min_rtt/4 (upper bounded by srtt), since there is possibility that spurious retransmission was due to reordering delay longer than reo_wnd. - Persist the current reo_wnd value for TCP_RACK_RECOVERY_THRESH (16) no. of successful recoveries (accounts for full DSACK-based loss recovery undo). After that, reset it to default (min_rtt/4). - At max, reo_wnd is incremented only once per rtt. So that the new DSACK on which we are reacting, is due to the spurious retx (approx) after the reo_wnd has been updated last time. - reo_wnd is tracked in terms of steps (of min_rtt/4), rather than absolute value to account for change in rtt. In our internal testing, we observed significant increase in throughput, in scenarios where reordering exceeds min_rtt/4 (previous static value). Signed-off-by: Priyaranjan Jha <priyarjha@google.com> Signed-off-by: Yuchung Cheng <ycheng@google.com> Signed-off-by: Neal Cardwell <ncardwell@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-11-03 16:38:48 -07:00
tcp_rack_update_reo_wnd(sk, &rs);
Proportional Rate Reduction for TCP. This patch implements Proportional Rate Reduction (PRR) for TCP. PRR is an algorithm that determines TCP's sending rate in fast recovery. PRR avoids excessive window reductions and aims for the actual congestion window size at the end of recovery to be as close as possible to the window determined by the congestion control algorithm. PRR also improves accuracy of the amount of data sent during loss recovery. The patch implements the recommended flavor of PRR called PRR-SSRB (Proportional rate reduction with slow start reduction bound) and replaces the existing rate halving algorithm. PRR improves upon the existing Linux fast recovery under a number of conditions including: 1) burst losses where the losses implicitly reduce the amount of outstanding data (pipe) below the ssthresh value selected by the congestion control algorithm and, 2) losses near the end of short flows where application runs out of data to send. As an example, with the existing rate halving implementation a single loss event can cause a connection carrying short Web transactions to go into the slow start mode after the recovery. This is because during recovery Linux pulls the congestion window down to packets_in_flight+1 on every ACK. A short Web response often runs out of new data to send and its pipe reduces to zero by the end of recovery when all its packets are drained from the network. Subsequent HTTP responses using the same connection will have to slow start to raise cwnd to ssthresh. PRR on the other hand aims for the cwnd to be as close as possible to ssthresh by the end of recovery. A description of PRR and a discussion of its performance can be found at the following links: - IETF Draft: http://tools.ietf.org/html/draft-mathis-tcpm-proportional-rate-reduction-01 - IETF Slides: http://www.ietf.org/proceedings/80/slides/tcpm-6.pdf http://tools.ietf.org/agenda/81/slides/tcpm-2.pdf - Paper to appear in Internet Measurements Conference (IMC) 2011: Improving TCP Loss Recovery Nandita Dukkipati, Matt Mathis, Yuchung Cheng Signed-off-by: Nandita Dukkipati <nanditad@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2011-08-21 20:21:57 +00:00
tcp: fix xmit timer to only be reset if data ACKed/SACKed Fix a TCP loss recovery performance bug raised recently on the netdev list, in two threads: (i) July 26, 2017: netdev thread "TCP fast retransmit issues" (ii) July 26, 2017: netdev thread: "[PATCH V2 net-next] TLP: Don't reschedule PTO when there's one outstanding TLP retransmission" The basic problem is that incoming TCP packets that did not indicate forward progress could cause the xmit timer (TLP or RTO) to be rearmed and pushed back in time. In certain corner cases this could result in the following problems noted in these threads: - Repeated ACKs coming in with bogus SACKs corrupted by middleboxes could cause TCP to repeatedly schedule TLPs forever. We kept sending TLPs after every ~200ms, which elicited bogus SACKs, which caused more TLPs, ad infinitum; we never fired an RTO to fill in the holes. - Incoming data segments could, in some cases, cause us to reschedule our RTO or TLP timer further out in time, for no good reason. This could cause repeated inbound data to result in stalls in outbound data, in the presence of packet loss. This commit fixes these bugs by changing the TLP and RTO ACK processing to: (a) Only reschedule the xmit timer once per ACK. (b) Only reschedule the xmit timer if tcp_clean_rtx_queue() deems the ACK indicates sufficient forward progress (a packet was cumulatively ACKed, or we got a SACK for a packet that was sent before the most recent retransmit of the write queue head). This brings us back into closer compliance with the RFCs, since, as the comment for tcp_rearm_rto() notes, we should only restart the RTO timer after forward progress on the connection. Previously we were restarting the xmit timer even in these cases where there was no forward progress. As a side benefit, this commit simplifies and speeds up the TCP timer arming logic. We had been calling inet_csk_reset_xmit_timer() three times on normal ACKs that cumulatively acknowledged some data: 1) Once near the top of tcp_ack() to switch from TLP timer to RTO: if (icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) tcp_rearm_rto(sk); 2) Once in tcp_clean_rtx_queue(), to update the RTO: if (flag & FLAG_ACKED) { tcp_rearm_rto(sk); 3) Once in tcp_ack() after tcp_fastretrans_alert() to switch from RTO to TLP: if (icsk->icsk_pending == ICSK_TIME_RETRANS) tcp_schedule_loss_probe(sk); This commit, by only rescheduling the xmit timer once per ACK, simplifies the code and reduces CPU overhead. This commit was tested in an A/B test with Google web server traffic. SNMP stats and request latency metrics were within noise levels, substantiating that for normal web traffic patterns this is a rare issue. This commit was also tested with packetdrill tests to verify that it fixes the timer behavior in the corner cases discussed in the netdev threads mentioned above. This patch is a bug fix patch intended to be queued for -stable relases. Fixes: 6ba8a3b19e76 ("tcp: Tail loss probe (TLP)") Reported-by: Klavs Klavsen <kl@vsen.dk> Reported-by: Mao Wenan <maowenan@huawei.com> Signed-off-by: Neal Cardwell <ncardwell@google.com> Signed-off-by: Yuchung Cheng <ycheng@google.com> Signed-off-by: Nandita Dukkipati <nanditad@google.com> Acked-by: Eric Dumazet <edumazet@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-08-03 09:19:54 -04:00
if (tp->tlp_high_seq)
tcp_process_tlp_ack(sk, ack, flag);
if (tcp_ack_is_dubious(sk, flag)) {
tcp: fix F-RTO may not work correctly when receiving DSACK Currently DSACK is regarded as a dupack, which may cause F-RTO to incorrectly enter "loss was real" when receiving DSACK. Packetdrill to demonstrate: // Enable F-RTO and TLP 0 `sysctl -q net.ipv4.tcp_frto=2` 0 `sysctl -q net.ipv4.tcp_early_retrans=3` 0 `sysctl -q net.ipv4.tcp_congestion_control=cubic` // Establish a connection +0 socket(..., SOCK_STREAM, IPPROTO_TCP) = 3 +0 setsockopt(3, SOL_SOCKET, SO_REUSEADDR, [1], 4) = 0 +0 bind(3, ..., ...) = 0 +0 listen(3, 1) = 0 // RTT 10ms, RTO 210ms +.1 < S 0:0(0) win 32792 <mss 1000,sackOK,nop,nop,nop,wscale 7> +0 > S. 0:0(0) ack 1 <...> +.01 < . 1:1(0) ack 1 win 257 +0 accept(3, ..., ...) = 4 // Send 2 data segments +0 write(4, ..., 2000) = 2000 +0 > P. 1:2001(2000) ack 1 // TLP +.022 > P. 1001:2001(1000) ack 1 // Continue to send 8 data segments +0 write(4, ..., 10000) = 10000 +0 > P. 2001:10001(8000) ack 1 // RTO +.188 > . 1:1001(1000) ack 1 // The original data is acked and new data is sent(F-RTO step 2.b) +0 < . 1:1(0) ack 2001 win 257 +0 > P. 10001:12001(2000) ack 1 // D-SACK caused by TLP is regarded as a dupack, this results in // the incorrect judgment of "loss was real"(F-RTO step 3.a) +.022 < . 1:1(0) ack 2001 win 257 <sack 1001:2001,nop,nop> // Never-retransmitted data(3001:4001) are acked and // expect to switch to open state(F-RTO step 3.b) +0 < . 1:1(0) ack 4001 win 257 +0 %{ assert tcpi_ca_state == 0, tcpi_ca_state }% Fixes: e33099f96d99 ("tcp: implement RFC5682 F-RTO") Signed-off-by: Pengcheng Yang <yangpc@wangsu.com> Acked-by: Neal Cardwell <ncardwell@google.com> Tested-by: Neal Cardwell <ncardwell@google.com> Reviewed-by: Eric Dumazet <edumazet@google.com> Link: https://lore.kernel.org/r/1650967419-2150-1-git-send-email-yangpc@wangsu.com Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2022-04-26 18:03:39 +08:00
if (!(flag & (FLAG_SND_UNA_ADVANCED |
FLAG_NOT_DUP | FLAG_DSACKING_ACK))) {
num_dupack = 1;
/* Consider if pure acks were aggregated in tcp_add_backlog() */
if (!(flag & FLAG_DATA))
num_dupack = max_t(u16, 1, skb_shinfo(skb)->gso_segs);
}
tcp_fastretrans_alert(sk, prior_snd_una, num_dupack, &flag,
&rexmit);
}
/* If needed, reset TLP/RTO timer when RACK doesn't set. */
if (flag & FLAG_SET_XMIT_TIMER)
tcp_set_xmit_timer(sk);
if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP))
sk_dst_confirm(sk);
tcp: Tail loss probe (TLP) This patch series implement the Tail loss probe (TLP) algorithm described in http://tools.ietf.org/html/draft-dukkipati-tcpm-tcp-loss-probe-01. The first patch implements the basic algorithm. TLP's goal is to reduce tail latency of short transactions. It achieves this by converting retransmission timeouts (RTOs) occuring due to tail losses (losses at end of transactions) into fast recovery. TLP transmits one packet in two round-trips when a connection is in Open state and isn't receiving any ACKs. The transmitted packet, aka loss probe, can be either new or a retransmission. When there is tail loss, the ACK from a loss probe triggers FACK/early-retransmit based fast recovery, thus avoiding a costly RTO. In the absence of loss, there is no change in the connection state. PTO stands for probe timeout. It is a timer event indicating that an ACK is overdue and triggers a loss probe packet. The PTO value is set to max(2*SRTT, 10ms) and is adjusted to account for delayed ACK timer when there is only one oustanding packet. TLP Algorithm On transmission of new data in Open state: -> packets_out > 1: schedule PTO in max(2*SRTT, 10ms). -> packets_out == 1: schedule PTO in max(2*RTT, 1.5*RTT + 200ms) -> PTO = min(PTO, RTO) Conditions for scheduling PTO: -> Connection is in Open state. -> Connection is either cwnd limited or no new data to send. -> Number of probes per tail loss episode is limited to one. -> Connection is SACK enabled. When PTO fires: new_segment_exists: -> transmit new segment. -> packets_out++. cwnd remains same. no_new_packet: -> retransmit the last segment. Its ACK triggers FACK or early retransmit based recovery. ACK path: -> rearm RTO at start of ACK processing. -> reschedule PTO if need be. In addition, the patch includes a small variation to the Early Retransmit (ER) algorithm, such that ER and TLP together can in principle recover any N-degree of tail loss through fast recovery. TLP is controlled by the same sysctl as ER, tcp_early_retrans sysctl. tcp_early_retrans==0; disables TLP and ER. ==1; enables RFC5827 ER. ==2; delayed ER. ==3; TLP and delayed ER. [DEFAULT] ==4; TLP only. The TLP patch series have been extensively tested on Google Web servers. It is most effective for short Web trasactions, where it reduced RTOs by 15% and improved HTTP response time (average by 6%, 99th percentile by 10%). The transmitted probes account for <0.5% of the overall transmissions. Signed-off-by: Nandita Dukkipati <nanditad@google.com> Acked-by: Neal Cardwell <ncardwell@google.com> Acked-by: Yuchung Cheng <ycheng@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2013-03-11 10:00:43 +00:00
delivered = tcp_newly_delivered(sk, delivered, flag);
tcp: track data delivery rate for a TCP connection This patch generates data delivery rate (throughput) samples on a per-ACK basis. These rate samples can be used by congestion control modules, and specifically will be used by TCP BBR in later patches in this series. Key state: tp->delivered: Tracks the total number of data packets (original or not) delivered so far. This is an already-existing field. tp->delivered_mstamp: the last time tp->delivered was updated. Algorithm: A rate sample is calculated as (d1 - d0)/(t1 - t0) on a per-ACK basis: d1: the current tp->delivered after processing the ACK t1: the current time after processing the ACK d0: the prior tp->delivered when the acked skb was transmitted t0: the prior tp->delivered_mstamp when the acked skb was transmitted When an skb is transmitted, we snapshot d0 and t0 in its control block in tcp_rate_skb_sent(). When an ACK arrives, it may SACK and ACK some skbs. For each SACKed or ACKed skb, tcp_rate_skb_delivered() updates the rate_sample struct to reflect the latest (d0, t0). Finally, tcp_rate_gen() generates a rate sample by storing (d1 - d0) in rs->delivered and (t1 - t0) in rs->interval_us. One caveat: if an skb was sent with no packets in flight, then tp->delivered_mstamp may be either invalid (if the connection is starting) or outdated (if the connection was idle). In that case, we'll re-stamp tp->delivered_mstamp. At first glance it seems t0 should always be the time when an skb was transmitted, but actually this could over-estimate the rate due to phase mismatch between transmit and ACK events. To track the delivery rate, we ensure that if packets are in flight then t0 and and t1 are times at which packets were marked delivered. If the initial and final RTTs are different then one may be corrupted by some sort of noise. The noise we see most often is sending gaps caused by delayed, compressed, or stretched acks. This either affects both RTTs equally or artificially reduces the final RTT. We approach this by recording the info we need to compute the initial RTT (duration of the "send phase" of the window) when we recorded the associated inflight. Then, for a filter to avoid bandwidth overestimates, we generalize the per-sample bandwidth computation from: bw = delivered / ack_phase_rtt to the following: bw = delivered / max(send_phase_rtt, ack_phase_rtt) In large-scale experiments, this filtering approach incorporating send_phase_rtt is effective at avoiding bandwidth overestimates due to ACK compression or stretched ACKs. Signed-off-by: Van Jacobson <vanj@google.com> Signed-off-by: Neal Cardwell <ncardwell@google.com> Signed-off-by: Yuchung Cheng <ycheng@google.com> Signed-off-by: Nandita Dukkipati <nanditad@google.com> Signed-off-by: Eric Dumazet <edumazet@google.com> Signed-off-by: Soheil Hassas Yeganeh <soheil@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-09-19 23:39:14 -04:00
lost = tp->lost - lost; /* freshly marked lost */
rs.is_ack_delayed = !!(flag & FLAG_ACK_MAYBE_DELAYED);
tcp_rate_gen(sk, delivered, lost, is_sack_reneg, sack_state.rate);
tcp_cong_control(sk, ack, delivered, flag, sack_state.rate);
tcp_xmit_recovery(sk, rexmit);
return 1;
no_queue:
/* If data was DSACKed, see if we can undo a cwnd reduction. */
if (flag & FLAG_DSACKING_ACK) {
tcp_fastretrans_alert(sk, prior_snd_una, num_dupack, &flag,
&rexmit);
tcp_newly_delivered(sk, delivered, flag);
}
/* If this ack opens up a zero window, clear backoff. It was
* being used to time the probes, and is probably far higher than
* it needs to be for normal retransmission.
*/
tcp: implement rb-tree based retransmit queue Using a linear list to store all skbs in write queue has been okay for quite a while : O(N) is not too bad when N < 500. Things get messy when N is the order of 100,000 : Modern TCP stacks want 10Gbit+ of throughput even with 200 ms RTT flows. 40 ns per cache line miss means a full scan can use 4 ms, blowing away CPU caches. SACK processing often can use various hints to avoid parsing whole retransmit queue. But with high packet losses and/or high reordering, hints no longer work. Sender has to process thousands of unfriendly SACK, accumulating a huge socket backlog, burning a cpu and massively dropping packets. Using an rb-tree for retransmit queue has been avoided for years because it added complexity and overhead, but now is the time to be more resistant and say no to quadratic behavior. 1) RTX queue is no longer part of the write queue : already sent skbs are stored in one rb-tree. 2) Since reaching the head of write queue no longer needs sk->sk_send_head, we added an union of sk_send_head and tcp_rtx_queue Tested: On receiver : netem on ingress : delay 150ms 200us loss 1 GRO disabled to force stress and SACK storms. for f in `seq 1 10` do ./netperf -H lpaa6 -l30 -- -K bbr -o THROUGHPUT|tail -1 done | awk '{print $0} {sum += $0} END {printf "%7u\n",sum}' Before patch : 323.87 351.48 339.59 338.62 306.72 204.07 304.93 291.88 202.47 176.88 2840 After patch: 1700.83 2207.98 2070.17 1544.26 2114.76 2124.89 1693.14 1080.91 2216.82 1299.94 18053 Signed-off-by: Eric Dumazet <edumazet@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-10-05 22:21:27 -07:00
tcp_ack_probe(sk);
if (tp->tlp_high_seq)
tcp_process_tlp_ack(sk, ack, flag);
return 1;
old_ack:
/* If data was SACKed, tag it and see if we should send more data.
* If data was DSACKed, see if we can undo a cwnd reduction.
*/
tcp: Fix inconsistency source (CA_Open only when !tcp_left_out(tp)) It is possible that this skip path causes TCP to end up into an invalid state where ca_state was left to CA_Open while some segments already came into sacked_out. If next valid ACK doesn't contain new SACK information TCP fails to enter into tcp_fastretrans_alert(). Thus at least high_seq is set incorrectly to a too high seqno because some new data segments could be sent in between (and also, limited transmit is not being correctly invoked there). Reordering in both directions can easily cause this situation to occur. I guess we would want to use tcp_moderate_cwnd(tp) there as well as it may be possible to use this to trigger oversized burst to network by sending an old ACK with huge amount of SACK info, but I'm a bit unsure about its effects (mainly to FlightSize), so to be on the safe side I just currently fixed it minimally to keep TCP's state consistent (obviously, such nasty ACKs have been possible this far). Though it seems that FlightSize is already underestimated by some amount, so probably on the long term we might want to trigger recovery there too, if appropriate, to make FlightSize calculation to resemble reality at the time when the losses where discovered (but such change scares me too much now and requires some more thinking anyway how to do that as it likely involves some code shuffling). This bug was found by Brian Vowell while running my TCP debug patch to find cause of another TCP issue (fackets_out miscount). Signed-off-by: Ilpo Järvinen <ilpo.jarvinen@helsinki.fi> Signed-off-by: David S. Miller <davem@davemloft.net>
2008-06-04 11:34:22 -07:00
if (TCP_SKB_CB(skb)->sacked) {
flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una,
&sack_state);
tcp_fastretrans_alert(sk, prior_snd_una, num_dupack, &flag,
&rexmit);
tcp_newly_delivered(sk, delivered, flag);
tcp_xmit_recovery(sk, rexmit);
tcp: Fix inconsistency source (CA_Open only when !tcp_left_out(tp)) It is possible that this skip path causes TCP to end up into an invalid state where ca_state was left to CA_Open while some segments already came into sacked_out. If next valid ACK doesn't contain new SACK information TCP fails to enter into tcp_fastretrans_alert(). Thus at least high_seq is set incorrectly to a too high seqno because some new data segments could be sent in between (and also, limited transmit is not being correctly invoked there). Reordering in both directions can easily cause this situation to occur. I guess we would want to use tcp_moderate_cwnd(tp) there as well as it may be possible to use this to trigger oversized burst to network by sending an old ACK with huge amount of SACK info, but I'm a bit unsure about its effects (mainly to FlightSize), so to be on the safe side I just currently fixed it minimally to keep TCP's state consistent (obviously, such nasty ACKs have been possible this far). Though it seems that FlightSize is already underestimated by some amount, so probably on the long term we might want to trigger recovery there too, if appropriate, to make FlightSize calculation to resemble reality at the time when the losses where discovered (but such change scares me too much now and requires some more thinking anyway how to do that as it likely involves some code shuffling). This bug was found by Brian Vowell while running my TCP debug patch to find cause of another TCP issue (fackets_out miscount). Signed-off-by: Ilpo Järvinen <ilpo.jarvinen@helsinki.fi> Signed-off-by: David S. Miller <davem@davemloft.net>
2008-06-04 11:34:22 -07:00
}
return 0;
}
static void tcp_parse_fastopen_option(int len, const unsigned char *cookie,
bool syn, struct tcp_fastopen_cookie *foc,
bool exp_opt)
{
/* Valid only in SYN or SYN-ACK with an even length. */
if (!foc || !syn || len < 0 || (len & 1))
return;
if (len >= TCP_FASTOPEN_COOKIE_MIN &&
len <= TCP_FASTOPEN_COOKIE_MAX)
memcpy(foc->val, cookie, len);
else if (len != 0)
len = -1;
foc->len = len;
foc->exp = exp_opt;
}
static bool smc_parse_options(const struct tcphdr *th,
struct tcp_options_received *opt_rx,
const unsigned char *ptr,
int opsize)
{
#if IS_ENABLED(CONFIG_SMC)
if (static_branch_unlikely(&tcp_have_smc)) {
if (th->syn && !(opsize & 1) &&
opsize >= TCPOLEN_EXP_SMC_BASE &&
get_unaligned_be32(ptr) == TCPOPT_SMC_MAGIC) {
opt_rx->smc_ok = 1;
return true;
}
}
#endif
return false;
}
/* Try to parse the MSS option from the TCP header. Return 0 on failure, clamped
* value on success.
*/
u16 tcp_parse_mss_option(const struct tcphdr *th, u16 user_mss)
{
const unsigned char *ptr = (const unsigned char *)(th + 1);
int length = (th->doff * 4) - sizeof(struct tcphdr);
u16 mss = 0;
while (length > 0) {
int opcode = *ptr++;
int opsize;
switch (opcode) {
case TCPOPT_EOL:
return mss;
case TCPOPT_NOP: /* Ref: RFC 793 section 3.1 */
length--;
continue;
default:
if (length < 2)
return mss;
opsize = *ptr++;
if (opsize < 2) /* "silly options" */
return mss;
if (opsize > length)
return mss; /* fail on partial options */
if (opcode == TCPOPT_MSS && opsize == TCPOLEN_MSS) {
u16 in_mss = get_unaligned_be16(ptr);
if (in_mss) {
if (user_mss && user_mss < in_mss)
in_mss = user_mss;
mss = in_mss;
}
}
ptr += opsize - 2;
length -= opsize;
}
}
return mss;
}
EXPORT_SYMBOL_GPL(tcp_parse_mss_option);
/* Look for tcp options. Normally only called on SYN and SYNACK packets.
* But, this can also be called on packets in the established flow when
* the fast version below fails.
*/
void tcp_parse_options(const struct net *net,
const struct sk_buff *skb,
struct tcp_options_received *opt_rx, int estab,
struct tcp_fastopen_cookie *foc)
{
const unsigned char *ptr;
const struct tcphdr *th = tcp_hdr(skb);
int length = (th->doff * 4) - sizeof(struct tcphdr);
ptr = (const unsigned char *)(th + 1);
opt_rx->saw_tstamp = 0;
opt_rx->saw_unknown = 0;
while (length > 0) {
int opcode = *ptr++;
int opsize;
switch (opcode) {
case TCPOPT_EOL:
return;
case TCPOPT_NOP: /* Ref: RFC 793 section 3.1 */
length--;
continue;
default:
if (length < 2)
return;
opsize = *ptr++;
if (opsize < 2) /* "silly options" */
return;
if (opsize > length)
return; /* don't parse partial options */
switch (opcode) {
case TCPOPT_MSS:
if (opsize == TCPOLEN_MSS && th->syn && !estab) {
u16 in_mss = get_unaligned_be16(ptr);
if (in_mss) {
if (opt_rx->user_mss &&
opt_rx->user_mss < in_mss)
in_mss = opt_rx->user_mss;
opt_rx->mss_clamp = in_mss;
}
}
break;
case TCPOPT_WINDOW:
if (opsize == TCPOLEN_WINDOW && th->syn &&
!estab && READ_ONCE(net->ipv4.sysctl_tcp_window_scaling)) {
__u8 snd_wscale = *(__u8 *)ptr;
opt_rx->wscale_ok = 1;
if (snd_wscale > TCP_MAX_WSCALE) {
net_info_ratelimited("%s: Illegal window scaling value %d > %u received\n",
__func__,
snd_wscale,
TCP_MAX_WSCALE);
snd_wscale = TCP_MAX_WSCALE;
}
opt_rx->snd_wscale = snd_wscale;
}
break;
case TCPOPT_TIMESTAMP:
if ((opsize == TCPOLEN_TIMESTAMP) &&
((estab && opt_rx->tstamp_ok) ||
(!estab && READ_ONCE(net->ipv4.sysctl_tcp_timestamps)))) {
opt_rx->saw_tstamp = 1;
opt_rx->rcv_tsval = get_unaligned_be32(ptr);
opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4);
}
break;
case TCPOPT_SACK_PERM:
if (opsize == TCPOLEN_SACK_PERM && th->syn &&
!estab && READ_ONCE(net->ipv4.sysctl_tcp_sack)) {
opt_rx->sack_ok = TCP_SACK_SEEN;
tcp_sack_reset(opt_rx);
}
break;
case TCPOPT_SACK:
if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
!((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
opt_rx->sack_ok) {
TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
}
break;
#ifdef CONFIG_TCP_MD5SIG
case TCPOPT_MD5SIG:
/* The MD5 Hash has already been
* checked (see tcp_v{4,6}_rcv()).
*/
break;
#endif
case TCPOPT_FASTOPEN:
tcp_parse_fastopen_option(
opsize - TCPOLEN_FASTOPEN_BASE,
ptr, th->syn, foc, false);
break;
case TCPOPT_EXP:
/* Fast Open option shares code 254 using a
* 16 bits magic number.
*/
if (opsize >= TCPOLEN_EXP_FASTOPEN_BASE &&
get_unaligned_be16(ptr) ==
TCPOPT_FASTOPEN_MAGIC) {
tcp_parse_fastopen_option(opsize -
TCPOLEN_EXP_FASTOPEN_BASE,
ptr + 2, th->syn, foc, true);
break;
}
if (smc_parse_options(th, opt_rx, ptr, opsize))
break;
opt_rx->saw_unknown = 1;
break;
default:
opt_rx->saw_unknown = 1;
}
ptr += opsize-2;
length -= opsize;
}
}
}
EXPORT_SYMBOL(tcp_parse_options);
static bool tcp_parse_aligned_timestamp(struct tcp_sock *tp, const struct tcphdr *th)
{
const __be32 *ptr = (const __be32 *)(th + 1);
if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
| (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
tp->rx_opt.saw_tstamp = 1;
++ptr;
tp->rx_opt.rcv_tsval = ntohl(*ptr);
++ptr;
if (*ptr)
tp->rx_opt.rcv_tsecr = ntohl(*ptr) - tp->tsoffset;
else
tp->rx_opt.rcv_tsecr = 0;
return true;
}
return false;
}
/* Fast parse options. This hopes to only see timestamps.
* If it is wrong it falls back on tcp_parse_options().
*/
static bool tcp_fast_parse_options(const struct net *net,
const struct sk_buff *skb,
const struct tcphdr *th, struct tcp_sock *tp)
{
/* In the spirit of fast parsing, compare doff directly to constant
* values. Because equality is used, short doff can be ignored here.
*/
if (th->doff == (sizeof(*th) / 4)) {
tp->rx_opt.saw_tstamp = 0;
return false;
} else if (tp->rx_opt.tstamp_ok &&
th->doff == ((sizeof(*th) + TCPOLEN_TSTAMP_ALIGNED) / 4)) {
if (tcp_parse_aligned_timestamp(tp, th))
return true;
}
tcp_parse_options(net, skb, &tp->rx_opt, 1, NULL);
if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
tp->rx_opt.rcv_tsecr -= tp->tsoffset;
return true;
}
#ifdef CONFIG_TCP_MD5SIG
/*
* Parse MD5 Signature option
*/
const u8 *tcp_parse_md5sig_option(const struct tcphdr *th)
{
int length = (th->doff << 2) - sizeof(*th);
const u8 *ptr = (const u8 *)(th + 1);
tcp: don't read out-of-bounds opsize The old code reads the "opsize" variable from out-of-bounds memory (first byte behind the segment) if a broken TCP segment ends directly after an opcode that is neither EOL nor NOP. The result of the read isn't used for anything, so the worst thing that could theoretically happen is a pagefault; and since the physmap is usually mostly contiguous, even that seems pretty unlikely. The following C reproducer triggers the uninitialized read - however, you can't actually see anything happen unless you put something like a pr_warn() in tcp_parse_md5sig_option() to print the opsize. ==================================== #define _GNU_SOURCE #include <arpa/inet.h> #include <stdlib.h> #include <errno.h> #include <stdarg.h> #include <net/if.h> #include <linux/if.h> #include <linux/ip.h> #include <linux/tcp.h> #include <linux/in.h> #include <linux/if_tun.h> #include <err.h> #include <sys/types.h> #include <sys/stat.h> #include <fcntl.h> #include <string.h> #include <stdio.h> #include <unistd.h> #include <sys/ioctl.h> #include <assert.h> void systemf(const char *command, ...) { char *full_command; va_list ap; va_start(ap, command); if (vasprintf(&full_command, command, ap) == -1) err(1, "vasprintf"); va_end(ap); printf("systemf: <<<%s>>>\n", full_command); system(full_command); } char *devname; int tun_alloc(char *name) { int fd = open("/dev/net/tun", O_RDWR); if (fd == -1) err(1, "open tun dev"); static struct ifreq req = { .ifr_flags = IFF_TUN|IFF_NO_PI }; strcpy(req.ifr_name, name); if (ioctl(fd, TUNSETIFF, &req)) err(1, "TUNSETIFF"); devname = req.ifr_name; printf("device name: %s\n", devname); return fd; } #define IPADDR(a,b,c,d) (((a)<<0)+((b)<<8)+((c)<<16)+((d)<<24)) void sum_accumulate(unsigned int *sum, void *data, int len) { assert((len&2)==0); for (int i=0; i<len/2; i++) { *sum += ntohs(((unsigned short *)data)[i]); } } unsigned short sum_final(unsigned int sum) { sum = (sum >> 16) + (sum & 0xffff); sum = (sum >> 16) + (sum & 0xffff); return htons(~sum); } void fix_ip_sum(struct iphdr *ip) { unsigned int sum = 0; sum_accumulate(&sum, ip, sizeof(*ip)); ip->check = sum_final(sum); } void fix_tcp_sum(struct iphdr *ip, struct tcphdr *tcp) { unsigned int sum = 0; struct { unsigned int saddr; unsigned int daddr; unsigned char pad; unsigned char proto_num; unsigned short tcp_len; } fakehdr = { .saddr = ip->saddr, .daddr = ip->daddr, .proto_num = ip->protocol, .tcp_len = htons(ntohs(ip->tot_len) - ip->ihl*4) }; sum_accumulate(&sum, &fakehdr, sizeof(fakehdr)); sum_accumulate(&sum, tcp, tcp->doff*4); tcp->check = sum_final(sum); } int main(void) { int tun_fd = tun_alloc("inject_dev%d"); systemf("ip link set %s up", devname); systemf("ip addr add 192.168.42.1/24 dev %s", devname); struct { struct iphdr ip; struct tcphdr tcp; unsigned char tcp_opts[20]; } __attribute__((packed)) syn_packet = { .ip = { .ihl = sizeof(struct iphdr)/4, .version = 4, .tot_len = htons(sizeof(syn_packet)), .ttl = 30, .protocol = IPPROTO_TCP, /* FIXUP check */ .saddr = IPADDR(192,168,42,2), .daddr = IPADDR(192,168,42,1) }, .tcp = { .source = htons(1), .dest = htons(1337), .seq = 0x12345678, .doff = (sizeof(syn_packet.tcp)+sizeof(syn_packet.tcp_opts))/4, .syn = 1, .window = htons(64), .check = 0 /*FIXUP*/ }, .tcp_opts = { /* INVALID: trailing MD5SIG opcode after NOPs */ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 19 } }; fix_ip_sum(&syn_packet.ip); fix_tcp_sum(&syn_packet.ip, &syn_packet.tcp); while (1) { int write_res = write(tun_fd, &syn_packet, sizeof(syn_packet)); if (write_res != sizeof(syn_packet)) err(1, "packet write failed"); } } ==================================== Fixes: cfb6eeb4c860 ("[TCP]: MD5 Signature Option (RFC2385) support.") Signed-off-by: Jann Horn <jannh@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2018-04-20 15:57:30 +02:00
/* If not enough data remaining, we can short cut */
while (length >= TCPOLEN_MD5SIG) {
int opcode = *ptr++;
int opsize;
switch (opcode) {
case TCPOPT_EOL:
return NULL;
case TCPOPT_NOP:
length--;
continue;
default:
opsize = *ptr++;
if (opsize < 2 || opsize > length)
return NULL;
if (opcode == TCPOPT_MD5SIG)
return opsize == TCPOLEN_MD5SIG ? ptr : NULL;
}
ptr += opsize - 2;
length -= opsize;
}
return NULL;
}
EXPORT_SYMBOL(tcp_parse_md5sig_option);
#endif
/* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
*
* It is not fatal. If this ACK does _not_ change critical state (seqs, window)
* it can pass through stack. So, the following predicate verifies that
* this segment is not used for anything but congestion avoidance or
* fast retransmit. Moreover, we even are able to eliminate most of such
* second order effects, if we apply some small "replay" window (~RTO)
* to timestamp space.
*
* All these measures still do not guarantee that we reject wrapped ACKs
* on networks with high bandwidth, when sequence space is recycled fastly,
* but it guarantees that such events will be very rare and do not affect
* connection seriously. This doesn't look nice, but alas, PAWS is really
* buggy extension.
*
* [ Later note. Even worse! It is buggy for segments _with_ data. RFC
* states that events when retransmit arrives after original data are rare.
* It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
* the biggest problem on large power networks even with minor reordering.
* OK, let's give it small replay window. If peer clock is even 1hz, it is safe
* up to bandwidth of 18Gigabit/sec. 8) ]
*/
static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb)
{
const struct tcp_sock *tp = tcp_sk(sk);
const struct tcphdr *th = tcp_hdr(skb);
u32 seq = TCP_SKB_CB(skb)->seq;
u32 ack = TCP_SKB_CB(skb)->ack_seq;
return (/* 1. Pure ACK with correct sequence number. */
(th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) &&
/* 2. ... and duplicate ACK. */
ack == tp->snd_una &&
/* 3. ... and does not update window. */
!tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) &&
/* 4. ... and sits in replay window. */
(s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ);
}
static inline bool tcp_paws_discard(const struct sock *sk,
const struct sk_buff *skb)
{
const struct tcp_sock *tp = tcp_sk(sk);
return !tcp_paws_check(&tp->rx_opt, TCP_PAWS_WINDOW) &&
!tcp_disordered_ack(sk, skb);
}
/* Check segment sequence number for validity.
*
* Segment controls are considered valid, if the segment
* fits to the window after truncation to the window. Acceptability
* of data (and SYN, FIN, of course) is checked separately.
* See tcp_data_queue(), for example.
*
* Also, controls (RST is main one) are accepted using RCV.WUP instead
* of RCV.NXT. Peer still did not advance his SND.UNA when we
* delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
* (borrowed from freebsd)
*/
static enum skb_drop_reason tcp_sequence(const struct tcp_sock *tp,
u32 seq, u32 end_seq)
{
if (before(end_seq, tp->rcv_wup))
return SKB_DROP_REASON_TCP_OLD_SEQUENCE;
if (after(seq, tp->rcv_nxt + tcp_receive_window(tp)))
return SKB_DROP_REASON_TCP_INVALID_SEQUENCE;
return SKB_NOT_DROPPED_YET;
}
/* When we get a reset we do this. */
void tcp_reset(struct sock *sk, struct sk_buff *skb)
{
trace_tcp_receive_reset(sk);
/* mptcp can't tell us to ignore reset pkts,
* so just ignore the return value of mptcp_incoming_options().
*/
if (sk_is_mptcp(sk))
mptcp_incoming_options(sk, skb);
/* We want the right error as BSD sees it (and indeed as we do). */
switch (sk->sk_state) {
case TCP_SYN_SENT:
WRITE_ONCE(sk->sk_err, ECONNREFUSED);
break;
case TCP_CLOSE_WAIT:
WRITE_ONCE(sk->sk_err, EPIPE);
break;
case TCP_CLOSE:
return;
default:
WRITE_ONCE(sk->sk_err, ECONNRESET);
}
/* This barrier is coupled with smp_rmb() in tcp_poll() */
smp_wmb();
tcp_write_queue_purge(sk);
tcp_done(sk);
if (!sock_flag(sk, SOCK_DEAD))
sk_error_report(sk);
}
/*
* Process the FIN bit. This now behaves as it is supposed to work
* and the FIN takes effect when it is validly part of sequence
* space. Not before when we get holes.
*
* If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
* (and thence onto LAST-ACK and finally, CLOSE, we never enter
* TIME-WAIT)
*
* If we are in FINWAIT-1, a received FIN indicates simultaneous
* close and we go into CLOSING (and later onto TIME-WAIT)
*
* If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
*/
void tcp_fin(struct sock *sk)
{
struct tcp_sock *tp = tcp_sk(sk);
inet_csk_schedule_ack(sk);
tcp: add annotations around sk->sk_shutdown accesses Now sk->sk_shutdown is no longer a bitfield, we can add standard READ_ONCE()/WRITE_ONCE() annotations to silence KCSAN reports like the following: BUG: KCSAN: data-race in tcp_disconnect / tcp_poll write to 0xffff88814588582c of 1 bytes by task 3404 on cpu 1: tcp_disconnect+0x4d6/0xdb0 net/ipv4/tcp.c:3121 __inet_stream_connect+0x5dd/0x6e0 net/ipv4/af_inet.c:715 inet_stream_connect+0x48/0x70 net/ipv4/af_inet.c:727 __sys_connect_file net/socket.c:2001 [inline] __sys_connect+0x19b/0x1b0 net/socket.c:2018 __do_sys_connect net/socket.c:2028 [inline] __se_sys_connect net/socket.c:2025 [inline] __x64_sys_connect+0x41/0x50 net/socket.c:2025 do_syscall_x64 arch/x86/entry/common.c:50 [inline] do_syscall_64+0x41/0xc0 arch/x86/entry/common.c:80 entry_SYSCALL_64_after_hwframe+0x63/0xcd read to 0xffff88814588582c of 1 bytes by task 3374 on cpu 0: tcp_poll+0x2e6/0x7d0 net/ipv4/tcp.c:562 sock_poll+0x253/0x270 net/socket.c:1383 vfs_poll include/linux/poll.h:88 [inline] io_poll_check_events io_uring/poll.c:281 [inline] io_poll_task_func+0x15a/0x820 io_uring/poll.c:333 handle_tw_list io_uring/io_uring.c:1184 [inline] tctx_task_work+0x1fe/0x4d0 io_uring/io_uring.c:1246 task_work_run+0x123/0x160 kernel/task_work.c:179 get_signal+0xe64/0xff0 kernel/signal.c:2635 arch_do_signal_or_restart+0x89/0x2a0 arch/x86/kernel/signal.c:306 exit_to_user_mode_loop+0x6f/0xe0 kernel/entry/common.c:168 exit_to_user_mode_prepare+0x6c/0xb0 kernel/entry/common.c:204 __syscall_exit_to_user_mode_work kernel/entry/common.c:286 [inline] syscall_exit_to_user_mode+0x26/0x140 kernel/entry/common.c:297 do_syscall_64+0x4d/0xc0 arch/x86/entry/common.c:86 entry_SYSCALL_64_after_hwframe+0x63/0xcd value changed: 0x03 -> 0x00 Fixes: 1da177e4c3f4 ("Linux-2.6.12-rc2") Reported-by: syzbot <syzkaller@googlegroups.com> Signed-off-by: Eric Dumazet <edumazet@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2023-05-09 20:36:56 +00:00
WRITE_ONCE(sk->sk_shutdown, sk->sk_shutdown | RCV_SHUTDOWN);
sock_set_flag(sk, SOCK_DONE);
switch (sk->sk_state) {
case TCP_SYN_RECV:
case TCP_ESTABLISHED:
/* Move to CLOSE_WAIT */
tcp_set_state(sk, TCP_CLOSE_WAIT);
inet_csk_enter_pingpong_mode(sk);
break;
case TCP_CLOSE_WAIT:
case TCP_CLOSING:
/* Received a retransmission of the FIN, do
* nothing.
*/
break;
case TCP_LAST_ACK:
/* RFC793: Remain in the LAST-ACK state. */
break;
case TCP_FIN_WAIT1:
/* This case occurs when a simultaneous close
* happens, we must ack the received FIN and
* enter the CLOSING state.
*/
tcp_send_ack(sk);
tcp_set_state(sk, TCP_CLOSING);
break;
case TCP_FIN_WAIT2:
/* Received a FIN -- send ACK and enter TIME_WAIT. */
tcp_send_ack(sk);
tcp_time_wait(sk, TCP_TIME_WAIT, 0);
break;
default:
/* Only TCP_LISTEN and TCP_CLOSE are left, in these
* cases we should never reach this piece of code.
*/
pr_err("%s: Impossible, sk->sk_state=%d\n",
__func__, sk->sk_state);
break;
}
/* It _is_ possible, that we have something out-of-order _after_ FIN.
* Probably, we should reset in this case. For now drop them.
*/
2016-09-07 14:49:28 -07:00
skb_rbtree_purge(&tp->out_of_order_queue);
if (tcp_is_sack(tp))
tcp_sack_reset(&tp->rx_opt);
if (!sock_flag(sk, SOCK_DEAD)) {
sk->sk_state_change(sk);
/* Do not send POLL_HUP for half duplex close. */
if (sk->sk_shutdown == SHUTDOWN_MASK ||
sk->sk_state == TCP_CLOSE)
sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
else
sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
}
}
static inline bool tcp_sack_extend(struct tcp_sack_block *sp, u32 seq,
u32 end_seq)
{
if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
if (before(seq, sp->start_seq))
sp->start_seq = seq;
if (after(end_seq, sp->end_seq))
sp->end_seq = end_seq;
return true;
}
return false;
}
static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq)
{
struct tcp_sock *tp = tcp_sk(sk);
if (tcp_is_sack(tp) && READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_dsack)) {
int mib_idx;
if (before(seq, tp->rcv_nxt))
mib_idx = LINUX_MIB_TCPDSACKOLDSENT;
else
mib_idx = LINUX_MIB_TCPDSACKOFOSENT;
NET_INC_STATS(sock_net(sk), mib_idx);
tp->rx_opt.dsack = 1;
tp->duplicate_sack[0].start_seq = seq;
tp->duplicate_sack[0].end_seq = end_seq;
}
}
static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq)
{
struct tcp_sock *tp = tcp_sk(sk);
if (!tp->rx_opt.dsack)
tcp_dsack_set(sk, seq, end_seq);
else
tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
}
static void tcp_rcv_spurious_retrans(struct sock *sk, const struct sk_buff *skb)
{
/* When the ACK path fails or drops most ACKs, the sender would
* timeout and spuriously retransmit the same segment repeatedly.
tcp: change data receiver flowlabel after one dup This commit changes the data receiver repath behavior to occur after receiving a single duplicate. This can help recover ACK connectivity quicker if a TLP was sent along a nonworking path. For instance, consider the case where we have an initially nonworking forward path and reverse path and subsequently switch to only working forward paths. Before this patch we would have the following behavior. +---------+--------+--------+----------+----------+----------+ | Event | For FL | Rev FL | FP Works | RP Works | Data Del | +---------+--------+--------+----------+----------+----------+ | Initial | A | 1 | N | N | 0 | +---------+--------+--------+----------+----------+----------+ | TLP | A | 1 | N | N | 0 | +---------+--------+--------+----------+----------+----------+ | RTO 1 | B | 1 | Y | N | 1 | +---------+--------+--------+----------+----------+----------+ | RTO 2 | C | 1 | Y | N | 2 | +---------+--------+--------+----------+----------+----------+ | RTO 3 | D | 2 | Y | Y | 3 | +---------+--------+--------+----------+----------+----------+ This patch gets rid of at least RTO 3, avoiding additional unnecessary repaths of a working forward path to a (potentially) nonworking one. In addition, this commit changes the behavior to avoid repathing upon rx of duplicate data if the local endpoint is in CA_Loss (in which case the RTOs will already be changing the outgoing flowlabel). Signed-off-by: David Morley <morleyd@google.com> Signed-off-by: Neal Cardwell <ncardwell@google.com> Signed-off-by: Yuchung Cheng <ycheng@google.com> Tested-by: David Morley <morleyd@google.com> Reviewed-by: Eric Dumazet <edumazet@google.com> Signed-off-by: Paolo Abeni <pabeni@redhat.com>
2023-10-06 01:18:41 +00:00
* If it seems our ACKs are not reaching the other side,
* based on receiving a duplicate data segment with new flowlabel
* (suggesting the sender suffered an RTO), and we are not already
* repathing due to our own RTO, then rehash the socket to repath our
* packets.
*/
tcp: change data receiver flowlabel after one dup This commit changes the data receiver repath behavior to occur after receiving a single duplicate. This can help recover ACK connectivity quicker if a TLP was sent along a nonworking path. For instance, consider the case where we have an initially nonworking forward path and reverse path and subsequently switch to only working forward paths. Before this patch we would have the following behavior. +---------+--------+--------+----------+----------+----------+ | Event | For FL | Rev FL | FP Works | RP Works | Data Del | +---------+--------+--------+----------+----------+----------+ | Initial | A | 1 | N | N | 0 | +---------+--------+--------+----------+----------+----------+ | TLP | A | 1 | N | N | 0 | +---------+--------+--------+----------+----------+----------+ | RTO 1 | B | 1 | Y | N | 1 | +---------+--------+--------+----------+----------+----------+ | RTO 2 | C | 1 | Y | N | 2 | +---------+--------+--------+----------+----------+----------+ | RTO 3 | D | 2 | Y | Y | 3 | +---------+--------+--------+----------+----------+----------+ This patch gets rid of at least RTO 3, avoiding additional unnecessary repaths of a working forward path to a (potentially) nonworking one. In addition, this commit changes the behavior to avoid repathing upon rx of duplicate data if the local endpoint is in CA_Loss (in which case the RTOs will already be changing the outgoing flowlabel). Signed-off-by: David Morley <morleyd@google.com> Signed-off-by: Neal Cardwell <ncardwell@google.com> Signed-off-by: Yuchung Cheng <ycheng@google.com> Tested-by: David Morley <morleyd@google.com> Reviewed-by: Eric Dumazet <edumazet@google.com> Signed-off-by: Paolo Abeni <pabeni@redhat.com>
2023-10-06 01:18:41 +00:00
#if IS_ENABLED(CONFIG_IPV6)
if (inet_csk(sk)->icsk_ca_state != TCP_CA_Loss &&
skb->protocol == htons(ETH_P_IPV6) &&
(tcp_sk(sk)->inet_conn.icsk_ack.lrcv_flowlabel !=
ntohl(ip6_flowlabel(ipv6_hdr(skb)))) &&
sk_rethink_txhash(sk))
NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDUPLICATEDATAREHASH);
/* Save last flowlabel after a spurious retrans. */
tcp_save_lrcv_flowlabel(sk, skb);
tcp: change data receiver flowlabel after one dup This commit changes the data receiver repath behavior to occur after receiving a single duplicate. This can help recover ACK connectivity quicker if a TLP was sent along a nonworking path. For instance, consider the case where we have an initially nonworking forward path and reverse path and subsequently switch to only working forward paths. Before this patch we would have the following behavior. +---------+--------+--------+----------+----------+----------+ | Event | For FL | Rev FL | FP Works | RP Works | Data Del | +---------+--------+--------+----------+----------+----------+ | Initial | A | 1 | N | N | 0 | +---------+--------+--------+----------+----------+----------+ | TLP | A | 1 | N | N | 0 | +---------+--------+--------+----------+----------+----------+ | RTO 1 | B | 1 | Y | N | 1 | +---------+--------+--------+----------+----------+----------+ | RTO 2 | C | 1 | Y | N | 2 | +---------+--------+--------+----------+----------+----------+ | RTO 3 | D | 2 | Y | Y | 3 | +---------+--------+--------+----------+----------+----------+ This patch gets rid of at least RTO 3, avoiding additional unnecessary repaths of a working forward path to a (potentially) nonworking one. In addition, this commit changes the behavior to avoid repathing upon rx of duplicate data if the local endpoint is in CA_Loss (in which case the RTOs will already be changing the outgoing flowlabel). Signed-off-by: David Morley <morleyd@google.com> Signed-off-by: Neal Cardwell <ncardwell@google.com> Signed-off-by: Yuchung Cheng <ycheng@google.com> Tested-by: David Morley <morleyd@google.com> Reviewed-by: Eric Dumazet <edumazet@google.com> Signed-off-by: Paolo Abeni <pabeni@redhat.com>
2023-10-06 01:18:41 +00:00
#endif
}
static void tcp_send_dupack(struct sock *sk, const struct sk_buff *skb)
{
struct tcp_sock *tp = tcp_sk(sk);
if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS);
if (tcp_is_sack(tp) && READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_dsack)) {
u32 end_seq = TCP_SKB_CB(skb)->end_seq;
tcp_rcv_spurious_retrans(sk, skb);
if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
end_seq = tp->rcv_nxt;
tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq);
}
}
tcp_send_ack(sk);
}
/* These routines update the SACK block as out-of-order packets arrive or
* in-order packets close up the sequence space.
*/
static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
{
int this_sack;
struct tcp_sack_block *sp = &tp->selective_acks[0];
struct tcp_sack_block *swalk = sp + 1;
/* See if the recent change to the first SACK eats into
* or hits the sequence space of other SACK blocks, if so coalesce.
*/
for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) {
if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
int i;
/* Zap SWALK, by moving every further SACK up by one slot.
* Decrease num_sacks.
*/
tp->rx_opt.num_sacks--;
for (i = this_sack; i < tp->rx_opt.num_sacks; i++)
sp[i] = sp[i + 1];
continue;
}
this_sack++;
swalk++;
}
}
void tcp_sack_compress_send_ack(struct sock *sk)
{
struct tcp_sock *tp = tcp_sk(sk);
if (!tp->compressed_ack)
return;
if (hrtimer_try_to_cancel(&tp->compressed_ack_timer) == 1)
__sock_put(sk);
/* Since we have to send one ack finally,
* substract one from tp->compressed_ack to keep
* LINUX_MIB_TCPACKCOMPRESSED accurate.
*/
NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPACKCOMPRESSED,
tp->compressed_ack - 1);
tp->compressed_ack = 0;
tcp_send_ack(sk);
}
/* Reasonable amount of sack blocks included in TCP SACK option
* The max is 4, but this becomes 3 if TCP timestamps are there.
* Given that SACK packets might be lost, be conservative and use 2.
*/
#define TCP_SACK_BLOCKS_EXPECTED 2
static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
{
struct tcp_sock *tp = tcp_sk(sk);
struct tcp_sack_block *sp = &tp->selective_acks[0];
int cur_sacks = tp->rx_opt.num_sacks;
int this_sack;
if (!cur_sacks)
goto new_sack;
for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) {
if (tcp_sack_extend(sp, seq, end_seq)) {
if (this_sack >= TCP_SACK_BLOCKS_EXPECTED)
tcp_sack_compress_send_ack(sk);
/* Rotate this_sack to the first one. */
for (; this_sack > 0; this_sack--, sp--)
swap(*sp, *(sp - 1));
if (cur_sacks > 1)
tcp_sack_maybe_coalesce(tp);
return;
}
}
if (this_sack >= TCP_SACK_BLOCKS_EXPECTED)
tcp_sack_compress_send_ack(sk);
/* Could not find an adjacent existing SACK, build a new one,
* put it at the front, and shift everyone else down. We
* always know there is at least one SACK present already here.
*
* If the sack array is full, forget about the last one.
*/
if (this_sack >= TCP_NUM_SACKS) {
this_sack--;
tp->rx_opt.num_sacks--;
sp--;
}
for (; this_sack > 0; this_sack--, sp--)
*sp = *(sp - 1);
new_sack:
/* Build the new head SACK, and we're done. */
sp->start_seq = seq;
sp->end_seq = end_seq;
tp->rx_opt.num_sacks++;
}
/* RCV.NXT advances, some SACKs should be eaten. */
static void tcp_sack_remove(struct tcp_sock *tp)
{
struct tcp_sack_block *sp = &tp->selective_acks[0];
int num_sacks = tp->rx_opt.num_sacks;
int this_sack;
/* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
2016-09-07 14:49:28 -07:00
if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
tp->rx_opt.num_sacks = 0;
return;
}
for (this_sack = 0; this_sack < num_sacks;) {
/* Check if the start of the sack is covered by RCV.NXT. */
if (!before(tp->rcv_nxt, sp->start_seq)) {
int i;
/* RCV.NXT must cover all the block! */
WARN_ON(before(tp->rcv_nxt, sp->end_seq));
/* Zap this SACK, by moving forward any other SACKS. */
for (i = this_sack+1; i < num_sacks; i++)
tp->selective_acks[i-1] = tp->selective_acks[i];
num_sacks--;
continue;
}
this_sack++;
sp++;
}
tp->rx_opt.num_sacks = num_sacks;
}
/**
* tcp_try_coalesce - try to merge skb to prior one
* @sk: socket
* @to: prior buffer
* @from: buffer to add in queue
* @fragstolen: pointer to boolean
*
* Before queueing skb @from after @to, try to merge them
* to reduce overall memory use and queue lengths, if cost is small.
* Packets in ofo or receive queues can stay a long time.
* Better try to coalesce them right now to avoid future collapses.
* Returns true if caller should free @from instead of queueing it
*/
static bool tcp_try_coalesce(struct sock *sk,
struct sk_buff *to,
struct sk_buff *from,
bool *fragstolen)
{
int delta;
*fragstolen = false;
/* Its possible this segment overlaps with prior segment in queue */
if (TCP_SKB_CB(from)->seq != TCP_SKB_CB(to)->end_seq)
return false;
if (!mptcp_skb_can_collapse(to, from))
return false;
#ifdef CONFIG_TLS_DEVICE
if (from->decrypted != to->decrypted)
return false;
#endif
if (!skb_try_coalesce(to, from, fragstolen, &delta))
return false;
atomic_add(delta, &sk->sk_rmem_alloc);
sk_mem_charge(sk, delta);
NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOALESCE);
TCP_SKB_CB(to)->end_seq = TCP_SKB_CB(from)->end_seq;
TCP_SKB_CB(to)->ack_seq = TCP_SKB_CB(from)->ack_seq;
TCP_SKB_CB(to)->tcp_flags |= TCP_SKB_CB(from)->tcp_flags;
if (TCP_SKB_CB(from)->has_rxtstamp) {
TCP_SKB_CB(to)->has_rxtstamp = true;
to->tstamp = from->tstamp;
skb_hwtstamps(to)->hwtstamp = skb_hwtstamps(from)->hwtstamp;
}
return true;
}
static bool tcp_ooo_try_coalesce(struct sock *sk,
struct sk_buff *to,
struct sk_buff *from,
bool *fragstolen)
{
bool res = tcp_try_coalesce(sk, to, from, fragstolen);
/* In case tcp_drop_reason() is called later, update to->gso_segs */
if (res) {
u32 gso_segs = max_t(u16, 1, skb_shinfo(to)->gso_segs) +
max_t(u16, 1, skb_shinfo(from)->gso_segs);
skb_shinfo(to)->gso_segs = min_t(u32, gso_segs, 0xFFFF);
}
return res;
}
static void tcp_drop_reason(struct sock *sk, struct sk_buff *skb,
enum skb_drop_reason reason)
{
sk_drops_add(sk, skb);
kfree_skb_reason(skb, reason);
}
/* This one checks to see if we can put data from the
* out_of_order queue into the receive_queue.
*/
static void tcp_ofo_queue(struct sock *sk)
{
struct tcp_sock *tp = tcp_sk(sk);
__u32 dsack_high = tp->rcv_nxt;
2016-09-07 14:49:28 -07:00
bool fin, fragstolen, eaten;
struct sk_buff *skb, *tail;
2016-09-07 14:49:28 -07:00
struct rb_node *p;
2016-09-07 14:49:28 -07:00
p = rb_first(&tp->out_of_order_queue);
while (p) {
skb = rb_to_skb(p);
if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
break;
if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
__u32 dsack = dsack_high;
if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
dsack_high = TCP_SKB_CB(skb)->end_seq;
tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack);
}
2016-09-07 14:49:28 -07:00
p = rb_next(p);
rb_erase(&skb->rbnode, &tp->out_of_order_queue);
2016-09-07 14:49:28 -07:00
if (unlikely(!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))) {
tcp_drop_reason(sk, skb, SKB_DROP_REASON_TCP_OFO_DROP);
continue;
}
tail = skb_peek_tail(&sk->sk_receive_queue);
eaten = tail && tcp_try_coalesce(sk, tail, skb, &fragstolen);
tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq);
2016-09-07 14:49:28 -07:00
fin = TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN;
if (!eaten)
__skb_queue_tail(&sk->sk_receive_queue, skb);
2016-09-07 14:49:28 -07:00
else
kfree_skb_partial(skb, fragstolen);
2016-09-07 14:49:28 -07:00
if (unlikely(fin)) {
tcp_fin(sk);
/* tcp_fin() purges tp->out_of_order_queue,
* so we must end this loop right now.
*/
break;
}
}
}
tcp: refine tcp_prune_ofo_queue() logic After commits 36a6503fedda ("tcp: refine tcp_prune_ofo_queue() to not drop all packets") and 72cd43ba64fc1 ("tcp: free batches of packets in tcp_prune_ofo_queue()") tcp_prune_ofo_queue() drops a fraction of ooo queue, to make room for incoming packet. However it makes no sense to drop packets that are before the incoming packet, in sequence space. In order to recover from packet losses faster, it makes more sense to only drop ooo packets which are after the incoming packet. Tested: packetdrill test: 0 socket(..., SOCK_STREAM, IPPROTO_TCP) = 3 +0 setsockopt(3, SOL_SOCKET, SO_REUSEADDR, [1], 4) = 0 +0 setsockopt(3, SOL_SOCKET, SO_RCVBUF, [3800], 4) = 0 +0 bind(3, ..., ...) = 0 +0 listen(3, 1) = 0 +0 < S 0:0(0) win 32792 <mss 1000,sackOK,nop,nop,nop,wscale 7> +0 > S. 0:0(0) ack 1 <mss 1460,nop,nop,sackOK,nop,wscale 0> +.1 < . 1:1(0) ack 1 win 1024 +0 accept(3, ..., ...) = 4 +.01 < . 200:300(100) ack 1 win 1024 +0 > . 1:1(0) ack 1 <nop,nop, sack 200:300> +.01 < . 400:500(100) ack 1 win 1024 +0 > . 1:1(0) ack 1 <nop,nop, sack 400:500 200:300> +.01 < . 600:700(100) ack 1 win 1024 +0 > . 1:1(0) ack 1 <nop,nop, sack 600:700 400:500 200:300> +.01 < . 800:900(100) ack 1 win 1024 +0 > . 1:1(0) ack 1 <nop,nop, sack 800:900 600:700 400:500 200:300> +.01 < . 1000:1100(100) ack 1 win 1024 +0 > . 1:1(0) ack 1 <nop,nop, sack 1000:1100 800:900 600:700 400:500> +.01 < . 1200:1300(100) ack 1 win 1024 +0 > . 1:1(0) ack 1 <nop,nop, sack 1200:1300 1000:1100 800:900 600:700> // this packet is dropped because we have no room left. +.01 < . 1400:1500(100) ack 1 win 1024 +.01 < . 1:200(199) ack 1 win 1024 // Make sure kernel did not drop 200:300 sequence +0 > . 1:1(0) ack 300 <nop,nop, sack 1200:1300 1000:1100 800:900 600:700> // Make room, since our RCVBUF is very small +0 read(4, ..., 299) = 299 +.01 < . 300:400(100) ack 1 win 1024 +0 > . 1:1(0) ack 500 <nop,nop, sack 1200:1300 1000:1100 800:900 600:700> +.01 < . 500:600(100) ack 1 win 1024 +0 > . 1:1(0) ack 700 <nop,nop, sack 1200:1300 1000:1100 800:900> +0 read(4, ..., 400) = 400 +.01 < . 700:800(100) ack 1 win 1024 +0 > . 1:1(0) ack 900 <nop,nop, sack 1200:1300 1000:1100> +.01 < . 900:1000(100) ack 1 win 1024 +0 > . 1:1(0) ack 1100 <nop,nop, sack 1200:1300> +.01 < . 1100:1200(100) ack 1 win 1024 // This checks that 1200:1300 has not been removed from ooo queue +0 > . 1:1(0) ack 1300 Suggested-by: Jakub Kicinski <kuba@kernel.org> Signed-off-by: Eric Dumazet <edumazet@google.com> Acked-by: Soheil Hassas Yeganeh <soheil@google.com> Acked-by: Kuniyuki Iwashima <kuniyu@amazon.com> Link: https://lore.kernel.org/r/20221101035234.3910189-1-edumazet@google.com Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2022-11-01 03:52:34 +00:00
static bool tcp_prune_ofo_queue(struct sock *sk, const struct sk_buff *in_skb);
static int tcp_prune_queue(struct sock *sk, const struct sk_buff *in_skb);
netvm: prevent a stream-specific deadlock This patch series is based on top of "Swap-over-NBD without deadlocking v15" as it depends on the same reservation of PF_MEMALLOC reserves logic. When a user or administrator requires swap for their application, they create a swap partition and file, format it with mkswap and activate it with swapon. In diskless systems this is not an option so if swap if required then swapping over the network is considered. The two likely scenarios are when blade servers are used as part of a cluster where the form factor or maintenance costs do not allow the use of disks and thin clients. The Linux Terminal Server Project recommends the use of the Network Block Device (NBD) for swap but this is not always an option. There is no guarantee that the network attached storage (NAS) device is running Linux or supports NBD. However, it is likely that it supports NFS so there are users that want support for swapping over NFS despite any performance concern. Some distributions currently carry patches that support swapping over NFS but it would be preferable to support it in the mainline kernel. Patch 1 avoids a stream-specific deadlock that potentially affects TCP. Patch 2 is a small modification to SELinux to avoid using PFMEMALLOC reserves. Patch 3 adds three helpers for filesystems to handle swap cache pages. For example, page_file_mapping() returns page->mapping for file-backed pages and the address_space of the underlying swap file for swap cache pages. Patch 4 adds two address_space_operations to allow a filesystem to pin all metadata relevant to a swapfile in memory. Upon successful activation, the swapfile is marked SWP_FILE and the address space operation ->direct_IO is used for writing and ->readpage for reading in swap pages. Patch 5 notes that patch 3 is bolting filesystem-specific-swapfile-support onto the side and that the default handlers have different information to what is available to the filesystem. This patch refactors the code so that there are generic handlers for each of the new address_space operations. Patch 6 adds an API to allow a vector of kernel addresses to be translated to struct pages and pinned for IO. Patch 7 adds support for using highmem pages for swap by kmapping the pages before calling the direct_IO handler. Patch 8 updates NFS to use the helpers from patch 3 where necessary. Patch 9 avoids setting PF_private on PG_swapcache pages within NFS. Patch 10 implements the new swapfile-related address_space operations for NFS and teaches the direct IO handler how to manage kernel addresses. Patch 11 prevents page allocator recursions in NFS by using GFP_NOIO where appropriate. Patch 12 fixes a NULL pointer dereference that occurs when using swap-over-NFS. With the patches applied, it is possible to mount a swapfile that is on an NFS filesystem. Swap performance is not great with a swap stress test taking roughly twice as long to complete than if the swap device was backed by NBD. This patch: netvm: prevent a stream-specific deadlock It could happen that all !SOCK_MEMALLOC sockets have buffered so much data that we're over the global rmem limit. This will prevent SOCK_MEMALLOC buffers from receiving data, which will prevent userspace from running, which is needed to reduce the buffered data. Fix this by exempting the SOCK_MEMALLOC sockets from the rmem limit. Once this change it applied, it is important that sockets that set SOCK_MEMALLOC do not clear the flag until the socket is being torn down. If this happens, a warning is generated and the tokens reclaimed to avoid accounting errors until the bug is fixed. [davem@davemloft.net: Warning about clearing SOCK_MEMALLOC] Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl> Signed-off-by: Mel Gorman <mgorman@suse.de> Acked-by: David S. Miller <davem@davemloft.net> Acked-by: Rik van Riel <riel@redhat.com> Cc: Trond Myklebust <Trond.Myklebust@netapp.com> Cc: Neil Brown <neilb@suse.de> Cc: Christoph Hellwig <hch@infradead.org> Cc: Mike Christie <michaelc@cs.wisc.edu> Cc: Eric B Munson <emunson@mgebm.net> Cc: Sebastian Andrzej Siewior <sebastian@breakpoint.cc> Cc: Mel Gorman <mgorman@suse.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-07-31 16:44:41 -07:00
static int tcp_try_rmem_schedule(struct sock *sk, struct sk_buff *skb,
unsigned int size)
{
if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
netvm: prevent a stream-specific deadlock This patch series is based on top of "Swap-over-NBD without deadlocking v15" as it depends on the same reservation of PF_MEMALLOC reserves logic. When a user or administrator requires swap for their application, they create a swap partition and file, format it with mkswap and activate it with swapon. In diskless systems this is not an option so if swap if required then swapping over the network is considered. The two likely scenarios are when blade servers are used as part of a cluster where the form factor or maintenance costs do not allow the use of disks and thin clients. The Linux Terminal Server Project recommends the use of the Network Block Device (NBD) for swap but this is not always an option. There is no guarantee that the network attached storage (NAS) device is running Linux or supports NBD. However, it is likely that it supports NFS so there are users that want support for swapping over NFS despite any performance concern. Some distributions currently carry patches that support swapping over NFS but it would be preferable to support it in the mainline kernel. Patch 1 avoids a stream-specific deadlock that potentially affects TCP. Patch 2 is a small modification to SELinux to avoid using PFMEMALLOC reserves. Patch 3 adds three helpers for filesystems to handle swap cache pages. For example, page_file_mapping() returns page->mapping for file-backed pages and the address_space of the underlying swap file for swap cache pages. Patch 4 adds two address_space_operations to allow a filesystem to pin all metadata relevant to a swapfile in memory. Upon successful activation, the swapfile is marked SWP_FILE and the address space operation ->direct_IO is used for writing and ->readpage for reading in swap pages. Patch 5 notes that patch 3 is bolting filesystem-specific-swapfile-support onto the side and that the default handlers have different information to what is available to the filesystem. This patch refactors the code so that there are generic handlers for each of the new address_space operations. Patch 6 adds an API to allow a vector of kernel addresses to be translated to struct pages and pinned for IO. Patch 7 adds support for using highmem pages for swap by kmapping the pages before calling the direct_IO handler. Patch 8 updates NFS to use the helpers from patch 3 where necessary. Patch 9 avoids setting PF_private on PG_swapcache pages within NFS. Patch 10 implements the new swapfile-related address_space operations for NFS and teaches the direct IO handler how to manage kernel addresses. Patch 11 prevents page allocator recursions in NFS by using GFP_NOIO where appropriate. Patch 12 fixes a NULL pointer dereference that occurs when using swap-over-NFS. With the patches applied, it is possible to mount a swapfile that is on an NFS filesystem. Swap performance is not great with a swap stress test taking roughly twice as long to complete than if the swap device was backed by NBD. This patch: netvm: prevent a stream-specific deadlock It could happen that all !SOCK_MEMALLOC sockets have buffered so much data that we're over the global rmem limit. This will prevent SOCK_MEMALLOC buffers from receiving data, which will prevent userspace from running, which is needed to reduce the buffered data. Fix this by exempting the SOCK_MEMALLOC sockets from the rmem limit. Once this change it applied, it is important that sockets that set SOCK_MEMALLOC do not clear the flag until the socket is being torn down. If this happens, a warning is generated and the tokens reclaimed to avoid accounting errors until the bug is fixed. [davem@davemloft.net: Warning about clearing SOCK_MEMALLOC] Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl> Signed-off-by: Mel Gorman <mgorman@suse.de> Acked-by: David S. Miller <davem@davemloft.net> Acked-by: Rik van Riel <riel@redhat.com> Cc: Trond Myklebust <Trond.Myklebust@netapp.com> Cc: Neil Brown <neilb@suse.de> Cc: Christoph Hellwig <hch@infradead.org> Cc: Mike Christie <michaelc@cs.wisc.edu> Cc: Eric B Munson <emunson@mgebm.net> Cc: Sebastian Andrzej Siewior <sebastian@breakpoint.cc> Cc: Mel Gorman <mgorman@suse.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-07-31 16:44:41 -07:00
!sk_rmem_schedule(sk, skb, size)) {
tcp: refine tcp_prune_ofo_queue() logic After commits 36a6503fedda ("tcp: refine tcp_prune_ofo_queue() to not drop all packets") and 72cd43ba64fc1 ("tcp: free batches of packets in tcp_prune_ofo_queue()") tcp_prune_ofo_queue() drops a fraction of ooo queue, to make room for incoming packet. However it makes no sense to drop packets that are before the incoming packet, in sequence space. In order to recover from packet losses faster, it makes more sense to only drop ooo packets which are after the incoming packet. Tested: packetdrill test: 0 socket(..., SOCK_STREAM, IPPROTO_TCP) = 3 +0 setsockopt(3, SOL_SOCKET, SO_REUSEADDR, [1], 4) = 0 +0 setsockopt(3, SOL_SOCKET, SO_RCVBUF, [3800], 4) = 0 +0 bind(3, ..., ...) = 0 +0 listen(3, 1) = 0 +0 < S 0:0(0) win 32792 <mss 1000,sackOK,nop,nop,nop,wscale 7> +0 > S. 0:0(0) ack 1 <mss 1460,nop,nop,sackOK,nop,wscale 0> +.1 < . 1:1(0) ack 1 win 1024 +0 accept(3, ..., ...) = 4 +.01 < . 200:300(100) ack 1 win 1024 +0 > . 1:1(0) ack 1 <nop,nop, sack 200:300> +.01 < . 400:500(100) ack 1 win 1024 +0 > . 1:1(0) ack 1 <nop,nop, sack 400:500 200:300> +.01 < . 600:700(100) ack 1 win 1024 +0 > . 1:1(0) ack 1 <nop,nop, sack 600:700 400:500 200:300> +.01 < . 800:900(100) ack 1 win 1024 +0 > . 1:1(0) ack 1 <nop,nop, sack 800:900 600:700 400:500 200:300> +.01 < . 1000:1100(100) ack 1 win 1024 +0 > . 1:1(0) ack 1 <nop,nop, sack 1000:1100 800:900 600:700 400:500> +.01 < . 1200:1300(100) ack 1 win 1024 +0 > . 1:1(0) ack 1 <nop,nop, sack 1200:1300 1000:1100 800:900 600:700> // this packet is dropped because we have no room left. +.01 < . 1400:1500(100) ack 1 win 1024 +.01 < . 1:200(199) ack 1 win 1024 // Make sure kernel did not drop 200:300 sequence +0 > . 1:1(0) ack 300 <nop,nop, sack 1200:1300 1000:1100 800:900 600:700> // Make room, since our RCVBUF is very small +0 read(4, ..., 299) = 299 +.01 < . 300:400(100) ack 1 win 1024 +0 > . 1:1(0) ack 500 <nop,nop, sack 1200:1300 1000:1100 800:900 600:700> +.01 < . 500:600(100) ack 1 win 1024 +0 > . 1:1(0) ack 700 <nop,nop, sack 1200:1300 1000:1100 800:900> +0 read(4, ..., 400) = 400 +.01 < . 700:800(100) ack 1 win 1024 +0 > . 1:1(0) ack 900 <nop,nop, sack 1200:1300 1000:1100> +.01 < . 900:1000(100) ack 1 win 1024 +0 > . 1:1(0) ack 1100 <nop,nop, sack 1200:1300> +.01 < . 1100:1200(100) ack 1 win 1024 // This checks that 1200:1300 has not been removed from ooo queue +0 > . 1:1(0) ack 1300 Suggested-by: Jakub Kicinski <kuba@kernel.org> Signed-off-by: Eric Dumazet <edumazet@google.com> Acked-by: Soheil Hassas Yeganeh <soheil@google.com> Acked-by: Kuniyuki Iwashima <kuniyu@amazon.com> Link: https://lore.kernel.org/r/20221101035234.3910189-1-edumazet@google.com Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2022-11-01 03:52:34 +00:00
if (tcp_prune_queue(sk, skb) < 0)
return -1;
while (!sk_rmem_schedule(sk, skb, size)) {
tcp: refine tcp_prune_ofo_queue() logic After commits 36a6503fedda ("tcp: refine tcp_prune_ofo_queue() to not drop all packets") and 72cd43ba64fc1 ("tcp: free batches of packets in tcp_prune_ofo_queue()") tcp_prune_ofo_queue() drops a fraction of ooo queue, to make room for incoming packet. However it makes no sense to drop packets that are before the incoming packet, in sequence space. In order to recover from packet losses faster, it makes more sense to only drop ooo packets which are after the incoming packet. Tested: packetdrill test: 0 socket(..., SOCK_STREAM, IPPROTO_TCP) = 3 +0 setsockopt(3, SOL_SOCKET, SO_REUSEADDR, [1], 4) = 0 +0 setsockopt(3, SOL_SOCKET, SO_RCVBUF, [3800], 4) = 0 +0 bind(3, ..., ...) = 0 +0 listen(3, 1) = 0 +0 < S 0:0(0) win 32792 <mss 1000,sackOK,nop,nop,nop,wscale 7> +0 > S. 0:0(0) ack 1 <mss 1460,nop,nop,sackOK,nop,wscale 0> +.1 < . 1:1(0) ack 1 win 1024 +0 accept(3, ..., ...) = 4 +.01 < . 200:300(100) ack 1 win 1024 +0 > . 1:1(0) ack 1 <nop,nop, sack 200:300> +.01 < . 400:500(100) ack 1 win 1024 +0 > . 1:1(0) ack 1 <nop,nop, sack 400:500 200:300> +.01 < . 600:700(100) ack 1 win 1024 +0 > . 1:1(0) ack 1 <nop,nop, sack 600:700 400:500 200:300> +.01 < . 800:900(100) ack 1 win 1024 +0 > . 1:1(0) ack 1 <nop,nop, sack 800:900 600:700 400:500 200:300> +.01 < . 1000:1100(100) ack 1 win 1024 +0 > . 1:1(0) ack 1 <nop,nop, sack 1000:1100 800:900 600:700 400:500> +.01 < . 1200:1300(100) ack 1 win 1024 +0 > . 1:1(0) ack 1 <nop,nop, sack 1200:1300 1000:1100 800:900 600:700> // this packet is dropped because we have no room left. +.01 < . 1400:1500(100) ack 1 win 1024 +.01 < . 1:200(199) ack 1 win 1024 // Make sure kernel did not drop 200:300 sequence +0 > . 1:1(0) ack 300 <nop,nop, sack 1200:1300 1000:1100 800:900 600:700> // Make room, since our RCVBUF is very small +0 read(4, ..., 299) = 299 +.01 < . 300:400(100) ack 1 win 1024 +0 > . 1:1(0) ack 500 <nop,nop, sack 1200:1300 1000:1100 800:900 600:700> +.01 < . 500:600(100) ack 1 win 1024 +0 > . 1:1(0) ack 700 <nop,nop, sack 1200:1300 1000:1100 800:900> +0 read(4, ..., 400) = 400 +.01 < . 700:800(100) ack 1 win 1024 +0 > . 1:1(0) ack 900 <nop,nop, sack 1200:1300 1000:1100> +.01 < . 900:1000(100) ack 1 win 1024 +0 > . 1:1(0) ack 1100 <nop,nop, sack 1200:1300> +.01 < . 1100:1200(100) ack 1 win 1024 // This checks that 1200:1300 has not been removed from ooo queue +0 > . 1:1(0) ack 1300 Suggested-by: Jakub Kicinski <kuba@kernel.org> Signed-off-by: Eric Dumazet <edumazet@google.com> Acked-by: Soheil Hassas Yeganeh <soheil@google.com> Acked-by: Kuniyuki Iwashima <kuniyu@amazon.com> Link: https://lore.kernel.org/r/20221101035234.3910189-1-edumazet@google.com Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2022-11-01 03:52:34 +00:00
if (!tcp_prune_ofo_queue(sk, skb))
return -1;
}
}
return 0;
}
static void tcp_data_queue_ofo(struct sock *sk, struct sk_buff *skb)
{
struct tcp_sock *tp = tcp_sk(sk);
struct rb_node **p, *parent;
struct sk_buff *skb1;
u32 seq, end_seq;
2016-09-07 14:49:28 -07:00
bool fragstolen;
tcp_save_lrcv_flowlabel(sk, skb);
tcp_ecn_check_ce(sk, skb);
netvm: prevent a stream-specific deadlock This patch series is based on top of "Swap-over-NBD without deadlocking v15" as it depends on the same reservation of PF_MEMALLOC reserves logic. When a user or administrator requires swap for their application, they create a swap partition and file, format it with mkswap and activate it with swapon. In diskless systems this is not an option so if swap if required then swapping over the network is considered. The two likely scenarios are when blade servers are used as part of a cluster where the form factor or maintenance costs do not allow the use of disks and thin clients. The Linux Terminal Server Project recommends the use of the Network Block Device (NBD) for swap but this is not always an option. There is no guarantee that the network attached storage (NAS) device is running Linux or supports NBD. However, it is likely that it supports NFS so there are users that want support for swapping over NFS despite any performance concern. Some distributions currently carry patches that support swapping over NFS but it would be preferable to support it in the mainline kernel. Patch 1 avoids a stream-specific deadlock that potentially affects TCP. Patch 2 is a small modification to SELinux to avoid using PFMEMALLOC reserves. Patch 3 adds three helpers for filesystems to handle swap cache pages. For example, page_file_mapping() returns page->mapping for file-backed pages and the address_space of the underlying swap file for swap cache pages. Patch 4 adds two address_space_operations to allow a filesystem to pin all metadata relevant to a swapfile in memory. Upon successful activation, the swapfile is marked SWP_FILE and the address space operation ->direct_IO is used for writing and ->readpage for reading in swap pages. Patch 5 notes that patch 3 is bolting filesystem-specific-swapfile-support onto the side and that the default handlers have different information to what is available to the filesystem. This patch refactors the code so that there are generic handlers for each of the new address_space operations. Patch 6 adds an API to allow a vector of kernel addresses to be translated to struct pages and pinned for IO. Patch 7 adds support for using highmem pages for swap by kmapping the pages before calling the direct_IO handler. Patch 8 updates NFS to use the helpers from patch 3 where necessary. Patch 9 avoids setting PF_private on PG_swapcache pages within NFS. Patch 10 implements the new swapfile-related address_space operations for NFS and teaches the direct IO handler how to manage kernel addresses. Patch 11 prevents page allocator recursions in NFS by using GFP_NOIO where appropriate. Patch 12 fixes a NULL pointer dereference that occurs when using swap-over-NFS. With the patches applied, it is possible to mount a swapfile that is on an NFS filesystem. Swap performance is not great with a swap stress test taking roughly twice as long to complete than if the swap device was backed by NBD. This patch: netvm: prevent a stream-specific deadlock It could happen that all !SOCK_MEMALLOC sockets have buffered so much data that we're over the global rmem limit. This will prevent SOCK_MEMALLOC buffers from receiving data, which will prevent userspace from running, which is needed to reduce the buffered data. Fix this by exempting the SOCK_MEMALLOC sockets from the rmem limit. Once this change it applied, it is important that sockets that set SOCK_MEMALLOC do not clear the flag until the socket is being torn down. If this happens, a warning is generated and the tokens reclaimed to avoid accounting errors until the bug is fixed. [davem@davemloft.net: Warning about clearing SOCK_MEMALLOC] Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl> Signed-off-by: Mel Gorman <mgorman@suse.de> Acked-by: David S. Miller <davem@davemloft.net> Acked-by: Rik van Riel <riel@redhat.com> Cc: Trond Myklebust <Trond.Myklebust@netapp.com> Cc: Neil Brown <neilb@suse.de> Cc: Christoph Hellwig <hch@infradead.org> Cc: Mike Christie <michaelc@cs.wisc.edu> Cc: Eric B Munson <emunson@mgebm.net> Cc: Sebastian Andrzej Siewior <sebastian@breakpoint.cc> Cc: Mel Gorman <mgorman@suse.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-07-31 16:44:41 -07:00
if (unlikely(tcp_try_rmem_schedule(sk, skb, skb->truesize))) {
NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFODROP);
sk->sk_data_ready(sk);
tcp_drop_reason(sk, skb, SKB_DROP_REASON_PROTO_MEM);
return;
}
/* Disable header prediction. */
tp->pred_flags = 0;
inet_csk_schedule_ack(sk);
tp->rcv_ooopack += max_t(u16, 1, skb_shinfo(skb)->gso_segs);
NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOQUEUE);
2016-09-07 14:49:28 -07:00
seq = TCP_SKB_CB(skb)->seq;
end_seq = TCP_SKB_CB(skb)->end_seq;
2016-09-07 14:49:28 -07:00
p = &tp->out_of_order_queue.rb_node;
if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
/* Initial out of order segment, build 1 SACK. */
if (tcp_is_sack(tp)) {
tp->rx_opt.num_sacks = 1;
2016-09-07 14:49:28 -07:00
tp->selective_acks[0].start_seq = seq;
tp->selective_acks[0].end_seq = end_seq;
}
2016-09-07 14:49:28 -07:00
rb_link_node(&skb->rbnode, NULL, p);
rb_insert_color(&skb->rbnode, &tp->out_of_order_queue);
tp->ooo_last_skb = skb;
goto end;
}
2016-09-07 14:49:28 -07:00
/* In the typical case, we are adding an skb to the end of the list.
* Use of ooo_last_skb avoids the O(Log(N)) rbtree lookup.
*/
if (tcp_ooo_try_coalesce(sk, tp->ooo_last_skb,
skb, &fragstolen)) {
2016-09-07 14:49:28 -07:00
coalesce_done:
tcp: grow window for OOO packets only for SACK flows Back in 2013, we made a change that broke fast retransmit for non SACK flows. Indeed, for these flows, a sender needs to receive three duplicate ACK before starting fast retransmit. Sending ACK with different receive window do not count. Even if enabling SACK is strongly recommended these days, there still are some cases where it has to be disabled. Not increasing the window seems better than having to rely on RTO. After the fix, following packetdrill test gives : // Initialize connection 0 socket(..., SOCK_STREAM, IPPROTO_TCP) = 3 +0 setsockopt(3, SOL_SOCKET, SO_REUSEADDR, [1], 4) = 0 +0 bind(3, ..., ...) = 0 +0 listen(3, 1) = 0 +0 < S 0:0(0) win 32792 <mss 1000,nop,wscale 7> +0 > S. 0:0(0) ack 1 <mss 1460,nop,wscale 8> +0 < . 1:1(0) ack 1 win 514 +0 accept(3, ..., ...) = 4 +0 < . 1:1001(1000) ack 1 win 514 // Quick ack +0 > . 1:1(0) ack 1001 win 264 +0 < . 2001:3001(1000) ack 1 win 514 // DUPACK : Normally we should not change the window +0 > . 1:1(0) ack 1001 win 264 +0 < . 3001:4001(1000) ack 1 win 514 // DUPACK : Normally we should not change the window +0 > . 1:1(0) ack 1001 win 264 +0 < . 4001:5001(1000) ack 1 win 514 // DUPACK : Normally we should not change the window +0 > . 1:1(0) ack 1001 win 264 +0 < . 1001:2001(1000) ack 1 win 514 // Hole is repaired. +0 > . 1:1(0) ack 5001 win 272 Fixes: 4e4f1fc22681 ("tcp: properly increase rcv_ssthresh for ofo packets") Signed-off-by: Eric Dumazet <edumazet@google.com> Reported-by: Venkat Venkatsubra <venkat.x.venkatsubra@oracle.com> Acked-by: Neal Cardwell <ncardwell@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2020-06-15 20:37:07 -07:00
/* For non sack flows, do not grow window to force DUPACK
* and trigger fast retransmit.
*/
if (tcp_is_sack(tp))
2021-07-21 03:15:28 -07:00
tcp_grow_window(sk, skb, true);
2016-09-07 14:49:28 -07:00
kfree_skb_partial(skb, fragstolen);
skb = NULL;
goto add_sack;
}
/* Can avoid an rbtree lookup if we are adding skb after ooo_last_skb */
if (!before(seq, TCP_SKB_CB(tp->ooo_last_skb)->end_seq)) {
parent = &tp->ooo_last_skb->rbnode;
p = &parent->rb_right;
goto insert;
}
2016-09-07 14:49:28 -07:00
/* Find place to insert this segment. Handle overlaps on the way. */
parent = NULL;
while (*p) {
parent = *p;
skb1 = rb_to_skb(parent);
2016-09-07 14:49:28 -07:00
if (before(seq, TCP_SKB_CB(skb1)->seq)) {
p = &parent->rb_left;
continue;
}
2016-09-07 14:49:28 -07:00
if (before(seq, TCP_SKB_CB(skb1)->end_seq)) {
if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
/* All the bits are present. Drop. */
NET_INC_STATS(sock_net(sk),
LINUX_MIB_TCPOFOMERGE);
tcp_drop_reason(sk, skb,
SKB_DROP_REASON_TCP_OFOMERGE);
2016-09-07 14:49:28 -07:00
skb = NULL;
tcp_dsack_set(sk, seq, end_seq);
goto add_sack;
}
if (after(seq, TCP_SKB_CB(skb1)->seq)) {
/* Partial overlap. */
tcp_dsack_set(sk, seq, TCP_SKB_CB(skb1)->end_seq);
} else {
/* skb's seq == skb1's seq and skb covers skb1.
* Replace skb1 with skb.
*/
rb_replace_node(&skb1->rbnode, &skb->rbnode,
&tp->out_of_order_queue);
tcp_dsack_extend(sk,
TCP_SKB_CB(skb1)->seq,
TCP_SKB_CB(skb1)->end_seq);
NET_INC_STATS(sock_net(sk),
LINUX_MIB_TCPOFOMERGE);
tcp_drop_reason(sk, skb1,
SKB_DROP_REASON_TCP_OFOMERGE);
goto merge_right;
2016-09-07 14:49:28 -07:00
}
} else if (tcp_ooo_try_coalesce(sk, skb1,
skb, &fragstolen)) {
2016-09-07 14:49:28 -07:00
goto coalesce_done;
}
2016-09-07 14:49:28 -07:00
p = &parent->rb_right;
}
insert:
2016-09-07 14:49:28 -07:00
/* Insert segment into RB tree. */
rb_link_node(&skb->rbnode, parent, p);
rb_insert_color(&skb->rbnode, &tp->out_of_order_queue);
merge_right:
2016-09-07 14:49:28 -07:00
/* Remove other segments covered by skb. */
while ((skb1 = skb_rb_next(skb)) != NULL) {
if (!after(end_seq, TCP_SKB_CB(skb1)->seq))
break;
if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
end_seq);
break;
}
2016-09-07 14:49:28 -07:00
rb_erase(&skb1->rbnode, &tp->out_of_order_queue);
tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
TCP_SKB_CB(skb1)->end_seq);
NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOMERGE);
tcp_drop_reason(sk, skb1, SKB_DROP_REASON_TCP_OFOMERGE);
}
2016-09-07 14:49:28 -07:00
/* If there is no skb after us, we are the last_skb ! */
if (!skb1)
2016-09-07 14:49:28 -07:00
tp->ooo_last_skb = skb;
add_sack:
if (tcp_is_sack(tp))
tcp_sack_new_ofo_skb(sk, seq, end_seq);
end:
if (skb) {
tcp: grow window for OOO packets only for SACK flows Back in 2013, we made a change that broke fast retransmit for non SACK flows. Indeed, for these flows, a sender needs to receive three duplicate ACK before starting fast retransmit. Sending ACK with different receive window do not count. Even if enabling SACK is strongly recommended these days, there still are some cases where it has to be disabled. Not increasing the window seems better than having to rely on RTO. After the fix, following packetdrill test gives : // Initialize connection 0 socket(..., SOCK_STREAM, IPPROTO_TCP) = 3 +0 setsockopt(3, SOL_SOCKET, SO_REUSEADDR, [1], 4) = 0 +0 bind(3, ..., ...) = 0 +0 listen(3, 1) = 0 +0 < S 0:0(0) win 32792 <mss 1000,nop,wscale 7> +0 > S. 0:0(0) ack 1 <mss 1460,nop,wscale 8> +0 < . 1:1(0) ack 1 win 514 +0 accept(3, ..., ...) = 4 +0 < . 1:1001(1000) ack 1 win 514 // Quick ack +0 > . 1:1(0) ack 1001 win 264 +0 < . 2001:3001(1000) ack 1 win 514 // DUPACK : Normally we should not change the window +0 > . 1:1(0) ack 1001 win 264 +0 < . 3001:4001(1000) ack 1 win 514 // DUPACK : Normally we should not change the window +0 > . 1:1(0) ack 1001 win 264 +0 < . 4001:5001(1000) ack 1 win 514 // DUPACK : Normally we should not change the window +0 > . 1:1(0) ack 1001 win 264 +0 < . 1001:2001(1000) ack 1 win 514 // Hole is repaired. +0 > . 1:1(0) ack 5001 win 272 Fixes: 4e4f1fc22681 ("tcp: properly increase rcv_ssthresh for ofo packets") Signed-off-by: Eric Dumazet <edumazet@google.com> Reported-by: Venkat Venkatsubra <venkat.x.venkatsubra@oracle.com> Acked-by: Neal Cardwell <ncardwell@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2020-06-15 20:37:07 -07:00
/* For non sack flows, do not grow window to force DUPACK
* and trigger fast retransmit.
*/
if (tcp_is_sack(tp))
2021-07-21 03:15:28 -07:00
tcp_grow_window(sk, skb, false);
skb_condense(skb);
skb_set_owner_r(skb, sk);
}
}
static int __must_check tcp_queue_rcv(struct sock *sk, struct sk_buff *skb,
bool *fragstolen)
{
int eaten;
struct sk_buff *tail = skb_peek_tail(&sk->sk_receive_queue);
eaten = (tail &&
tcp_try_coalesce(sk, tail,
skb, fragstolen)) ? 1 : 0;
tcp_rcv_nxt_update(tcp_sk(sk), TCP_SKB_CB(skb)->end_seq);
if (!eaten) {
__skb_queue_tail(&sk->sk_receive_queue, skb);
skb_set_owner_r(skb, sk);
}
return eaten;
}
int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size)
{
struct sk_buff *skb;
int err = -ENOMEM;
int data_len = 0;
bool fragstolen;
if (size == 0)
return 0;
if (size > PAGE_SIZE) {
int npages = min_t(size_t, size >> PAGE_SHIFT, MAX_SKB_FRAGS);
data_len = npages << PAGE_SHIFT;
size = data_len + (size & ~PAGE_MASK);
}
skb = alloc_skb_with_frags(size - data_len, data_len,
PAGE_ALLOC_COSTLY_ORDER,
&err, sk->sk_allocation);
if (!skb)
goto err;
skb_put(skb, size - data_len);
skb->data_len = data_len;
skb->len = size;
if (tcp_try_rmem_schedule(sk, skb, skb->truesize)) {
NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVQDROP);
netvm: prevent a stream-specific deadlock This patch series is based on top of "Swap-over-NBD without deadlocking v15" as it depends on the same reservation of PF_MEMALLOC reserves logic. When a user or administrator requires swap for their application, they create a swap partition and file, format it with mkswap and activate it with swapon. In diskless systems this is not an option so if swap if required then swapping over the network is considered. The two likely scenarios are when blade servers are used as part of a cluster where the form factor or maintenance costs do not allow the use of disks and thin clients. The Linux Terminal Server Project recommends the use of the Network Block Device (NBD) for swap but this is not always an option. There is no guarantee that the network attached storage (NAS) device is running Linux or supports NBD. However, it is likely that it supports NFS so there are users that want support for swapping over NFS despite any performance concern. Some distributions currently carry patches that support swapping over NFS but it would be preferable to support it in the mainline kernel. Patch 1 avoids a stream-specific deadlock that potentially affects TCP. Patch 2 is a small modification to SELinux to avoid using PFMEMALLOC reserves. Patch 3 adds three helpers for filesystems to handle swap cache pages. For example, page_file_mapping() returns page->mapping for file-backed pages and the address_space of the underlying swap file for swap cache pages. Patch 4 adds two address_space_operations to allow a filesystem to pin all metadata relevant to a swapfile in memory. Upon successful activation, the swapfile is marked SWP_FILE and the address space operation ->direct_IO is used for writing and ->readpage for reading in swap pages. Patch 5 notes that patch 3 is bolting filesystem-specific-swapfile-support onto the side and that the default handlers have different information to what is available to the filesystem. This patch refactors the code so that there are generic handlers for each of the new address_space operations. Patch 6 adds an API to allow a vector of kernel addresses to be translated to struct pages and pinned for IO. Patch 7 adds support for using highmem pages for swap by kmapping the pages before calling the direct_IO handler. Patch 8 updates NFS to use the helpers from patch 3 where necessary. Patch 9 avoids setting PF_private on PG_swapcache pages within NFS. Patch 10 implements the new swapfile-related address_space operations for NFS and teaches the direct IO handler how to manage kernel addresses. Patch 11 prevents page allocator recursions in NFS by using GFP_NOIO where appropriate. Patch 12 fixes a NULL pointer dereference that occurs when using swap-over-NFS. With the patches applied, it is possible to mount a swapfile that is on an NFS filesystem. Swap performance is not great with a swap stress test taking roughly twice as long to complete than if the swap device was backed by NBD. This patch: netvm: prevent a stream-specific deadlock It could happen that all !SOCK_MEMALLOC sockets have buffered so much data that we're over the global rmem limit. This will prevent SOCK_MEMALLOC buffers from receiving data, which will prevent userspace from running, which is needed to reduce the buffered data. Fix this by exempting the SOCK_MEMALLOC sockets from the rmem limit. Once this change it applied, it is important that sockets that set SOCK_MEMALLOC do not clear the flag until the socket is being torn down. If this happens, a warning is generated and the tokens reclaimed to avoid accounting errors until the bug is fixed. [davem@davemloft.net: Warning about clearing SOCK_MEMALLOC] Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl> Signed-off-by: Mel Gorman <mgorman@suse.de> Acked-by: David S. Miller <davem@davemloft.net> Acked-by: Rik van Riel <riel@redhat.com> Cc: Trond Myklebust <Trond.Myklebust@netapp.com> Cc: Neil Brown <neilb@suse.de> Cc: Christoph Hellwig <hch@infradead.org> Cc: Mike Christie <michaelc@cs.wisc.edu> Cc: Eric B Munson <emunson@mgebm.net> Cc: Sebastian Andrzej Siewior <sebastian@breakpoint.cc> Cc: Mel Gorman <mgorman@suse.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-07-31 16:44:41 -07:00
goto err_free;
}
netvm: prevent a stream-specific deadlock This patch series is based on top of "Swap-over-NBD without deadlocking v15" as it depends on the same reservation of PF_MEMALLOC reserves logic. When a user or administrator requires swap for their application, they create a swap partition and file, format it with mkswap and activate it with swapon. In diskless systems this is not an option so if swap if required then swapping over the network is considered. The two likely scenarios are when blade servers are used as part of a cluster where the form factor or maintenance costs do not allow the use of disks and thin clients. The Linux Terminal Server Project recommends the use of the Network Block Device (NBD) for swap but this is not always an option. There is no guarantee that the network attached storage (NAS) device is running Linux or supports NBD. However, it is likely that it supports NFS so there are users that want support for swapping over NFS despite any performance concern. Some distributions currently carry patches that support swapping over NFS but it would be preferable to support it in the mainline kernel. Patch 1 avoids a stream-specific deadlock that potentially affects TCP. Patch 2 is a small modification to SELinux to avoid using PFMEMALLOC reserves. Patch 3 adds three helpers for filesystems to handle swap cache pages. For example, page_file_mapping() returns page->mapping for file-backed pages and the address_space of the underlying swap file for swap cache pages. Patch 4 adds two address_space_operations to allow a filesystem to pin all metadata relevant to a swapfile in memory. Upon successful activation, the swapfile is marked SWP_FILE and the address space operation ->direct_IO is used for writing and ->readpage for reading in swap pages. Patch 5 notes that patch 3 is bolting filesystem-specific-swapfile-support onto the side and that the default handlers have different information to what is available to the filesystem. This patch refactors the code so that there are generic handlers for each of the new address_space operations. Patch 6 adds an API to allow a vector of kernel addresses to be translated to struct pages and pinned for IO. Patch 7 adds support for using highmem pages for swap by kmapping the pages before calling the direct_IO handler. Patch 8 updates NFS to use the helpers from patch 3 where necessary. Patch 9 avoids setting PF_private on PG_swapcache pages within NFS. Patch 10 implements the new swapfile-related address_space operations for NFS and teaches the direct IO handler how to manage kernel addresses. Patch 11 prevents page allocator recursions in NFS by using GFP_NOIO where appropriate. Patch 12 fixes a NULL pointer dereference that occurs when using swap-over-NFS. With the patches applied, it is possible to mount a swapfile that is on an NFS filesystem. Swap performance is not great with a swap stress test taking roughly twice as long to complete than if the swap device was backed by NBD. This patch: netvm: prevent a stream-specific deadlock It could happen that all !SOCK_MEMALLOC sockets have buffered so much data that we're over the global rmem limit. This will prevent SOCK_MEMALLOC buffers from receiving data, which will prevent userspace from running, which is needed to reduce the buffered data. Fix this by exempting the SOCK_MEMALLOC sockets from the rmem limit. Once this change it applied, it is important that sockets that set SOCK_MEMALLOC do not clear the flag until the socket is being torn down. If this happens, a warning is generated and the tokens reclaimed to avoid accounting errors until the bug is fixed. [davem@davemloft.net: Warning about clearing SOCK_MEMALLOC] Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl> Signed-off-by: Mel Gorman <mgorman@suse.de> Acked-by: David S. Miller <davem@davemloft.net> Acked-by: Rik van Riel <riel@redhat.com> Cc: Trond Myklebust <Trond.Myklebust@netapp.com> Cc: Neil Brown <neilb@suse.de> Cc: Christoph Hellwig <hch@infradead.org> Cc: Mike Christie <michaelc@cs.wisc.edu> Cc: Eric B Munson <emunson@mgebm.net> Cc: Sebastian Andrzej Siewior <sebastian@breakpoint.cc> Cc: Mel Gorman <mgorman@suse.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-07-31 16:44:41 -07:00
err = skb_copy_datagram_from_iter(skb, 0, &msg->msg_iter, size);
if (err)
goto err_free;
TCP_SKB_CB(skb)->seq = tcp_sk(sk)->rcv_nxt;
TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq + size;
TCP_SKB_CB(skb)->ack_seq = tcp_sk(sk)->snd_una - 1;
if (tcp_queue_rcv(sk, skb, &fragstolen)) {
WARN_ON_ONCE(fragstolen); /* should not happen */
__kfree_skb(skb);
}
return size;
err_free:
kfree_skb(skb);
err:
return err;
}
void tcp_data_ready(struct sock *sk)
{
if (tcp_epollin_ready(sk, sk->sk_rcvlowat) || sock_flag(sk, SOCK_DONE))
sk->sk_data_ready(sk);
}
static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
{
struct tcp_sock *tp = tcp_sk(sk);
enum skb_drop_reason reason;
bool fragstolen;
int eaten;
/* If a subflow has been reset, the packet should not continue
* to be processed, drop the packet.
*/
if (sk_is_mptcp(sk) && !mptcp_incoming_options(sk, skb)) {
__kfree_skb(skb);
return;
}
if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq) {
__kfree_skb(skb);
return;
}
skb_dst_drop(skb);
__skb_pull(skb, tcp_hdr(skb)->doff * 4);
reason = SKB_DROP_REASON_NOT_SPECIFIED;
tp->rx_opt.dsack = 0;
/* Queue data for delivery to the user.
* Packets in sequence go to the receive queue.
* Out of sequence packets to the out_of_order_queue.
*/
if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
if (tcp_receive_window(tp) == 0) {
reason = SKB_DROP_REASON_TCP_ZEROWINDOW;
NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPZEROWINDOWDROP);
goto out_of_window;
}
/* Ok. In sequence. In window. */
queue_and_out:
if (tcp_try_rmem_schedule(sk, skb, skb->truesize)) {
/* TODO: maybe ratelimit these WIN 0 ACK ? */
inet_csk(sk)->icsk_ack.pending |=
(ICSK_ACK_NOMEM | ICSK_ACK_NOW);
inet_csk_schedule_ack(sk);
sk->sk_data_ready(sk);
if (skb_queue_len(&sk->sk_receive_queue)) {
reason = SKB_DROP_REASON_PROTO_MEM;
NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVQDROP);
goto drop;
}
sk_forced_mem_schedule(sk, skb->truesize);
}
eaten = tcp_queue_rcv(sk, skb, &fragstolen);
if (skb->len)
[TCP]: Sed magic converts func(sk, tp, ...) -> func(sk, ...) This is (mostly) automated change using magic: sed -e '/struct sock \*sk/ N' -e '/struct sock \*sk/ N' -e '/struct sock \*sk/ N' -e '/struct sock \*sk/ N' -e 's|struct sock \*sk,[\n\t ]*struct tcp_sock \*tp\([^{]*\n{\n\)| struct sock \*sk\1\tstruct tcp_sock *tp = tcp_sk(sk);\n|g' -e 's|struct sock \*sk, struct tcp_sock \*tp| struct sock \*sk|g' -e 's|sk, tp\([^-]\)|sk\1|g' Fixed four unused variable (tp) warnings that were introduced. In addition, manually added newlines after local variables and tweaked function arguments positioning. $ gcc --version gcc (GCC) 4.1.1 20060525 (Red Hat 4.1.1-1) ... $ codiff -fV built-in.o.old built-in.o.new net/ipv4/route.c: rt_cache_flush | +14 1 function changed, 14 bytes added net/ipv4/tcp.c: tcp_setsockopt | -5 tcp_sendpage | -25 tcp_sendmsg | -16 3 functions changed, 46 bytes removed net/ipv4/tcp_input.c: tcp_try_undo_recovery | +3 tcp_try_undo_dsack | +2 tcp_mark_head_lost | -12 tcp_ack | -15 tcp_event_data_recv | -32 tcp_rcv_state_process | -10 tcp_rcv_established | +1 7 functions changed, 6 bytes added, 69 bytes removed, diff: -63 net/ipv4/tcp_output.c: update_send_head | -9 tcp_transmit_skb | +19 tcp_cwnd_validate | +1 tcp_write_wakeup | -17 __tcp_push_pending_frames | -25 tcp_push_one | -8 tcp_send_fin | -4 7 functions changed, 20 bytes added, 63 bytes removed, diff: -43 built-in.o.new: 18 functions changed, 40 bytes added, 178 bytes removed, diff: -138 Signed-off-by: Ilpo Järvinen <ilpo.jarvinen@helsinki.fi> Signed-off-by: David S. Miller <davem@davemloft.net>
2007-04-20 22:18:02 -07:00
tcp_event_data_recv(sk, skb);
if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
tcp_fin(sk);
2016-09-07 14:49:28 -07:00
if (!RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
tcp_ofo_queue(sk);
/* RFC5681. 4.2. SHOULD send immediate ACK, when
* gap in queue is filled.
*/
2016-09-07 14:49:28 -07:00
if (RB_EMPTY_ROOT(&tp->out_of_order_queue))
inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_NOW;
}
if (tp->rx_opt.num_sacks)
tcp_sack_remove(tp);
tcp_fast_path_check(sk);
if (eaten > 0)
kfree_skb_partial(skb, fragstolen);
if (!sock_flag(sk, SOCK_DEAD))
tcp_data_ready(sk);
return;
}
if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
tcp_rcv_spurious_retrans(sk, skb);
/* A retransmit, 2nd most common case. Force an immediate ack. */
reason = SKB_DROP_REASON_TCP_OLD_DATA;
NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
out_of_window:
tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS);
inet_csk_schedule_ack(sk);
drop:
tcp_drop_reason(sk, skb, reason);
return;
}
/* Out of window. F.e. zero window probe. */
if (!before(TCP_SKB_CB(skb)->seq,
tp->rcv_nxt + tcp_receive_window(tp))) {
reason = SKB_DROP_REASON_TCP_OVERWINDOW;
goto out_of_window;
}
if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
/* Partial packet, seq < rcv_next < end_seq */
tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
/* If window is closed, drop tail of packet. But after
* remembering D-SACK for its head made in previous line.
*/
if (!tcp_receive_window(tp)) {
reason = SKB_DROP_REASON_TCP_ZEROWINDOW;
NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPZEROWINDOWDROP);
goto out_of_window;
}
goto queue_and_out;
}
tcp_data_queue_ofo(sk, skb);
}
2016-09-07 14:49:28 -07:00
static struct sk_buff *tcp_skb_next(struct sk_buff *skb, struct sk_buff_head *list)
{
if (list)
return !skb_queue_is_last(list, skb) ? skb->next : NULL;
return skb_rb_next(skb);
2016-09-07 14:49:28 -07:00
}
static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb,
2016-09-07 14:49:28 -07:00
struct sk_buff_head *list,
struct rb_root *root)
{
2016-09-07 14:49:28 -07:00
struct sk_buff *next = tcp_skb_next(skb, list);
2016-09-07 14:49:28 -07:00
if (list)
__skb_unlink(skb, list);
else
rb_erase(&skb->rbnode, root);
__kfree_skb(skb);
NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED);
return next;
}
2016-09-07 14:49:28 -07:00
/* Insert skb into rb tree, ordered by TCP_SKB_CB(skb)->seq */
tcp: implement rb-tree based retransmit queue Using a linear list to store all skbs in write queue has been okay for quite a while : O(N) is not too bad when N < 500. Things get messy when N is the order of 100,000 : Modern TCP stacks want 10Gbit+ of throughput even with 200 ms RTT flows. 40 ns per cache line miss means a full scan can use 4 ms, blowing away CPU caches. SACK processing often can use various hints to avoid parsing whole retransmit queue. But with high packet losses and/or high reordering, hints no longer work. Sender has to process thousands of unfriendly SACK, accumulating a huge socket backlog, burning a cpu and massively dropping packets. Using an rb-tree for retransmit queue has been avoided for years because it added complexity and overhead, but now is the time to be more resistant and say no to quadratic behavior. 1) RTX queue is no longer part of the write queue : already sent skbs are stored in one rb-tree. 2) Since reaching the head of write queue no longer needs sk->sk_send_head, we added an union of sk_send_head and tcp_rtx_queue Tested: On receiver : netem on ingress : delay 150ms 200us loss 1 GRO disabled to force stress and SACK storms. for f in `seq 1 10` do ./netperf -H lpaa6 -l30 -- -K bbr -o THROUGHPUT|tail -1 done | awk '{print $0} {sum += $0} END {printf "%7u\n",sum}' Before patch : 323.87 351.48 339.59 338.62 306.72 204.07 304.93 291.88 202.47 176.88 2840 After patch: 1700.83 2207.98 2070.17 1544.26 2114.76 2124.89 1693.14 1080.91 2216.82 1299.94 18053 Signed-off-by: Eric Dumazet <edumazet@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-10-05 22:21:27 -07:00
void tcp_rbtree_insert(struct rb_root *root, struct sk_buff *skb)
2016-09-07 14:49:28 -07:00
{
struct rb_node **p = &root->rb_node;
struct rb_node *parent = NULL;
struct sk_buff *skb1;
while (*p) {
parent = *p;
skb1 = rb_to_skb(parent);
2016-09-07 14:49:28 -07:00
if (before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb1)->seq))
p = &parent->rb_left;
else
p = &parent->rb_right;
}
rb_link_node(&skb->rbnode, parent, p);
rb_insert_color(&skb->rbnode, root);
}
/* Collapse contiguous sequence of skbs head..tail with
* sequence numbers start..end.
*
2016-09-07 14:49:28 -07:00
* If tail is NULL, this means until the end of the queue.
*
* Segments with FIN/SYN are not collapsed (only because this
* simplifies code)
*/
static void
2016-09-07 14:49:28 -07:00
tcp_collapse(struct sock *sk, struct sk_buff_head *list, struct rb_root *root,
struct sk_buff *head, struct sk_buff *tail, u32 start, u32 end)
{
2016-09-07 14:49:28 -07:00
struct sk_buff *skb = head, *n;
struct sk_buff_head tmp;
bool end_of_skbs;
/* First, check that queue is collapsible and find
2016-09-07 14:49:28 -07:00
* the point where collapsing can be useful.
*/
restart:
2016-09-07 14:49:28 -07:00
for (end_of_skbs = true; skb != NULL && skb != tail; skb = n) {
n = tcp_skb_next(skb, list);
/* No new bits? It is possible on ofo queue. */
if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
2016-09-07 14:49:28 -07:00
skb = tcp_collapse_one(sk, skb, list, root);
if (!skb)
break;
goto restart;
}
/* The first skb to collapse is:
* - not SYN/FIN and
* - bloated or contains data before "start" or
* overlaps to the next one and mptcp allow collapsing.
*/
if (!(TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)) &&
(tcp_win_from_space(sk, skb->truesize) > skb->len ||
before(TCP_SKB_CB(skb)->seq, start))) {
end_of_skbs = false;
break;
}
if (n && n != tail && mptcp_skb_can_collapse(skb, n) &&
2016-09-07 14:49:28 -07:00
TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(n)->seq) {
end_of_skbs = false;
break;
}
/* Decided to skip this, advance start seq. */
start = TCP_SKB_CB(skb)->end_seq;
}
if (end_of_skbs ||
(TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)))
return;
2016-09-07 14:49:28 -07:00
__skb_queue_head_init(&tmp);
while (before(start, end)) {
int copy = min_t(int, SKB_MAX_ORDER(0, 0), end - start);
struct sk_buff *nskb;
nskb = alloc_skb(copy, GFP_ATOMIC);
if (!nskb)
2016-09-07 14:49:28 -07:00
break;
memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
#ifdef CONFIG_TLS_DEVICE
nskb->decrypted = skb->decrypted;
#endif
TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
2016-09-07 14:49:28 -07:00
if (list)
__skb_queue_before(list, skb, nskb);
else
__skb_queue_tail(&tmp, nskb); /* defer rbtree insertion */
[NET] CORE: Introducing new memory accounting interface. This patch introduces new memory accounting functions for each network protocol. Most of them are renamed from memory accounting functions for stream protocols. At the same time, some stream memory accounting functions are removed since other functions do same thing. Renaming: sk_stream_free_skb() -> sk_wmem_free_skb() __sk_stream_mem_reclaim() -> __sk_mem_reclaim() sk_stream_mem_reclaim() -> sk_mem_reclaim() sk_stream_mem_schedule -> __sk_mem_schedule() sk_stream_pages() -> sk_mem_pages() sk_stream_rmem_schedule() -> sk_rmem_schedule() sk_stream_wmem_schedule() -> sk_wmem_schedule() sk_charge_skb() -> sk_mem_charge() Removeing sk_stream_rfree(): consolidates into sock_rfree() sk_stream_set_owner_r(): consolidates into skb_set_owner_r() sk_stream_mem_schedule() The following functions are added. sk_has_account(): check if the protocol supports accounting sk_mem_uncharge(): do the opposite of sk_mem_charge() In addition, to achieve consolidation, updating sk_wmem_queued is removed from sk_mem_charge(). Next, to consolidate memory accounting functions, this patch adds memory accounting calls to network core functions. Moreover, present memory accounting call is renamed to new accounting call. Finally we replace present memory accounting calls with new interface in TCP and SCTP. Signed-off-by: Takahiro Yasui <tyasui@redhat.com> Signed-off-by: Hideo Aoki <haoki@redhat.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2007-12-31 00:11:19 -08:00
skb_set_owner_r(nskb, sk);
mptcp_skb_ext_move(nskb, skb);
/* Copy data, releasing collapsed skbs. */
while (copy > 0) {
int offset = start - TCP_SKB_CB(skb)->seq;
int size = TCP_SKB_CB(skb)->end_seq - start;
BUG_ON(offset < 0);
if (size > 0) {
size = min(copy, size);
if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
BUG();
TCP_SKB_CB(nskb)->end_seq += size;
copy -= size;
start += size;
}
if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
2016-09-07 14:49:28 -07:00
skb = tcp_collapse_one(sk, skb, list, root);
if (!skb ||
skb == tail ||
!mptcp_skb_can_collapse(nskb, skb) ||
(TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)))
2016-09-07 14:49:28 -07:00
goto end;
#ifdef CONFIG_TLS_DEVICE
if (skb->decrypted != nskb->decrypted)
goto end;
#endif
}
}
}
2016-09-07 14:49:28 -07:00
end:
skb_queue_walk_safe(&tmp, skb, n)
tcp_rbtree_insert(root, skb);
}
/* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
* and tcp_collapse() them until all the queue is collapsed.
*/
static void tcp_collapse_ofo_queue(struct sock *sk)
{
struct tcp_sock *tp = tcp_sk(sk);
u32 range_truesize, sum_tiny = 0;
2016-09-07 14:49:28 -07:00
struct sk_buff *skb, *head;
u32 start, end;
skb = skb_rb_first(&tp->out_of_order_queue);
2016-09-07 14:49:28 -07:00
new_range:
if (!skb) {
tp->ooo_last_skb = skb_rb_last(&tp->out_of_order_queue);
return;
2016-09-07 14:49:28 -07:00
}
start = TCP_SKB_CB(skb)->seq;
end = TCP_SKB_CB(skb)->end_seq;
range_truesize = skb->truesize;
2016-09-07 14:49:28 -07:00
for (head = skb;;) {
skb = skb_rb_next(skb);
2016-09-07 14:49:28 -07:00
/* Range is terminated when we see a gap or when
* we are at the queue end.
*/
if (!skb ||
after(TCP_SKB_CB(skb)->seq, end) ||
before(TCP_SKB_CB(skb)->end_seq, start)) {
/* Do not attempt collapsing tiny skbs */
if (range_truesize != head->truesize ||
end - start >= SKB_WITH_OVERHEAD(PAGE_SIZE)) {
tcp_collapse(sk, NULL, &tp->out_of_order_queue,
head, skb, start, end);
} else {
sum_tiny += range_truesize;
if (sum_tiny > sk->sk_rcvbuf >> 3)
return;
}
2016-09-07 14:49:28 -07:00
goto new_range;
}
range_truesize += skb->truesize;
2016-09-07 14:49:28 -07:00
if (unlikely(before(TCP_SKB_CB(skb)->seq, start)))
start = TCP_SKB_CB(skb)->seq;
2016-09-07 14:49:28 -07:00
if (after(TCP_SKB_CB(skb)->end_seq, end))
end = TCP_SKB_CB(skb)->end_seq;
}
}
/*
* Clean the out-of-order queue to make room.
* We drop high sequences packets to :
* 1) Let a chance for holes to be filled.
tcp: refine tcp_prune_ofo_queue() logic After commits 36a6503fedda ("tcp: refine tcp_prune_ofo_queue() to not drop all packets") and 72cd43ba64fc1 ("tcp: free batches of packets in tcp_prune_ofo_queue()") tcp_prune_ofo_queue() drops a fraction of ooo queue, to make room for incoming packet. However it makes no sense to drop packets that are before the incoming packet, in sequence space. In order to recover from packet losses faster, it makes more sense to only drop ooo packets which are after the incoming packet. Tested: packetdrill test: 0 socket(..., SOCK_STREAM, IPPROTO_TCP) = 3 +0 setsockopt(3, SOL_SOCKET, SO_REUSEADDR, [1], 4) = 0 +0 setsockopt(3, SOL_SOCKET, SO_RCVBUF, [3800], 4) = 0 +0 bind(3, ..., ...) = 0 +0 listen(3, 1) = 0 +0 < S 0:0(0) win 32792 <mss 1000,sackOK,nop,nop,nop,wscale 7> +0 > S. 0:0(0) ack 1 <mss 1460,nop,nop,sackOK,nop,wscale 0> +.1 < . 1:1(0) ack 1 win 1024 +0 accept(3, ..., ...) = 4 +.01 < . 200:300(100) ack 1 win 1024 +0 > . 1:1(0) ack 1 <nop,nop, sack 200:300> +.01 < . 400:500(100) ack 1 win 1024 +0 > . 1:1(0) ack 1 <nop,nop, sack 400:500 200:300> +.01 < . 600:700(100) ack 1 win 1024 +0 > . 1:1(0) ack 1 <nop,nop, sack 600:700 400:500 200:300> +.01 < . 800:900(100) ack 1 win 1024 +0 > . 1:1(0) ack 1 <nop,nop, sack 800:900 600:700 400:500 200:300> +.01 < . 1000:1100(100) ack 1 win 1024 +0 > . 1:1(0) ack 1 <nop,nop, sack 1000:1100 800:900 600:700 400:500> +.01 < . 1200:1300(100) ack 1 win 1024 +0 > . 1:1(0) ack 1 <nop,nop, sack 1200:1300 1000:1100 800:900 600:700> // this packet is dropped because we have no room left. +.01 < . 1400:1500(100) ack 1 win 1024 +.01 < . 1:200(199) ack 1 win 1024 // Make sure kernel did not drop 200:300 sequence +0 > . 1:1(0) ack 300 <nop,nop, sack 1200:1300 1000:1100 800:900 600:700> // Make room, since our RCVBUF is very small +0 read(4, ..., 299) = 299 +.01 < . 300:400(100) ack 1 win 1024 +0 > . 1:1(0) ack 500 <nop,nop, sack 1200:1300 1000:1100 800:900 600:700> +.01 < . 500:600(100) ack 1 win 1024 +0 > . 1:1(0) ack 700 <nop,nop, sack 1200:1300 1000:1100 800:900> +0 read(4, ..., 400) = 400 +.01 < . 700:800(100) ack 1 win 1024 +0 > . 1:1(0) ack 900 <nop,nop, sack 1200:1300 1000:1100> +.01 < . 900:1000(100) ack 1 win 1024 +0 > . 1:1(0) ack 1100 <nop,nop, sack 1200:1300> +.01 < . 1100:1200(100) ack 1 win 1024 // This checks that 1200:1300 has not been removed from ooo queue +0 > . 1:1(0) ack 1300 Suggested-by: Jakub Kicinski <kuba@kernel.org> Signed-off-by: Eric Dumazet <edumazet@google.com> Acked-by: Soheil Hassas Yeganeh <soheil@google.com> Acked-by: Kuniyuki Iwashima <kuniyu@amazon.com> Link: https://lore.kernel.org/r/20221101035234.3910189-1-edumazet@google.com Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2022-11-01 03:52:34 +00:00
* This means we do not drop packets from ooo queue if their sequence
* is before incoming packet sequence.
* 2) not add too big latencies if thousands of packets sit there.
* (But if application shrinks SO_RCVBUF, we could still end up
* freeing whole queue here)
* 3) Drop at least 12.5 % of sk_rcvbuf to avoid malicious attacks.
*
* Return true if queue has shrunk.
*/
tcp: refine tcp_prune_ofo_queue() logic After commits 36a6503fedda ("tcp: refine tcp_prune_ofo_queue() to not drop all packets") and 72cd43ba64fc1 ("tcp: free batches of packets in tcp_prune_ofo_queue()") tcp_prune_ofo_queue() drops a fraction of ooo queue, to make room for incoming packet. However it makes no sense to drop packets that are before the incoming packet, in sequence space. In order to recover from packet losses faster, it makes more sense to only drop ooo packets which are after the incoming packet. Tested: packetdrill test: 0 socket(..., SOCK_STREAM, IPPROTO_TCP) = 3 +0 setsockopt(3, SOL_SOCKET, SO_REUSEADDR, [1], 4) = 0 +0 setsockopt(3, SOL_SOCKET, SO_RCVBUF, [3800], 4) = 0 +0 bind(3, ..., ...) = 0 +0 listen(3, 1) = 0 +0 < S 0:0(0) win 32792 <mss 1000,sackOK,nop,nop,nop,wscale 7> +0 > S. 0:0(0) ack 1 <mss 1460,nop,nop,sackOK,nop,wscale 0> +.1 < . 1:1(0) ack 1 win 1024 +0 accept(3, ..., ...) = 4 +.01 < . 200:300(100) ack 1 win 1024 +0 > . 1:1(0) ack 1 <nop,nop, sack 200:300> +.01 < . 400:500(100) ack 1 win 1024 +0 > . 1:1(0) ack 1 <nop,nop, sack 400:500 200:300> +.01 < . 600:700(100) ack 1 win 1024 +0 > . 1:1(0) ack 1 <nop,nop, sack 600:700 400:500 200:300> +.01 < . 800:900(100) ack 1 win 1024 +0 > . 1:1(0) ack 1 <nop,nop, sack 800:900 600:700 400:500 200:300> +.01 < . 1000:1100(100) ack 1 win 1024 +0 > . 1:1(0) ack 1 <nop,nop, sack 1000:1100 800:900 600:700 400:500> +.01 < . 1200:1300(100) ack 1 win 1024 +0 > . 1:1(0) ack 1 <nop,nop, sack 1200:1300 1000:1100 800:900 600:700> // this packet is dropped because we have no room left. +.01 < . 1400:1500(100) ack 1 win 1024 +.01 < . 1:200(199) ack 1 win 1024 // Make sure kernel did not drop 200:300 sequence +0 > . 1:1(0) ack 300 <nop,nop, sack 1200:1300 1000:1100 800:900 600:700> // Make room, since our RCVBUF is very small +0 read(4, ..., 299) = 299 +.01 < . 300:400(100) ack 1 win 1024 +0 > . 1:1(0) ack 500 <nop,nop, sack 1200:1300 1000:1100 800:900 600:700> +.01 < . 500:600(100) ack 1 win 1024 +0 > . 1:1(0) ack 700 <nop,nop, sack 1200:1300 1000:1100 800:900> +0 read(4, ..., 400) = 400 +.01 < . 700:800(100) ack 1 win 1024 +0 > . 1:1(0) ack 900 <nop,nop, sack 1200:1300 1000:1100> +.01 < . 900:1000(100) ack 1 win 1024 +0 > . 1:1(0) ack 1100 <nop,nop, sack 1200:1300> +.01 < . 1100:1200(100) ack 1 win 1024 // This checks that 1200:1300 has not been removed from ooo queue +0 > . 1:1(0) ack 1300 Suggested-by: Jakub Kicinski <kuba@kernel.org> Signed-off-by: Eric Dumazet <edumazet@google.com> Acked-by: Soheil Hassas Yeganeh <soheil@google.com> Acked-by: Kuniyuki Iwashima <kuniyu@amazon.com> Link: https://lore.kernel.org/r/20221101035234.3910189-1-edumazet@google.com Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2022-11-01 03:52:34 +00:00
static bool tcp_prune_ofo_queue(struct sock *sk, const struct sk_buff *in_skb)
{
struct tcp_sock *tp = tcp_sk(sk);
2016-09-07 14:49:28 -07:00
struct rb_node *node, *prev;
tcp: refine tcp_prune_ofo_queue() logic After commits 36a6503fedda ("tcp: refine tcp_prune_ofo_queue() to not drop all packets") and 72cd43ba64fc1 ("tcp: free batches of packets in tcp_prune_ofo_queue()") tcp_prune_ofo_queue() drops a fraction of ooo queue, to make room for incoming packet. However it makes no sense to drop packets that are before the incoming packet, in sequence space. In order to recover from packet losses faster, it makes more sense to only drop ooo packets which are after the incoming packet. Tested: packetdrill test: 0 socket(..., SOCK_STREAM, IPPROTO_TCP) = 3 +0 setsockopt(3, SOL_SOCKET, SO_REUSEADDR, [1], 4) = 0 +0 setsockopt(3, SOL_SOCKET, SO_RCVBUF, [3800], 4) = 0 +0 bind(3, ..., ...) = 0 +0 listen(3, 1) = 0 +0 < S 0:0(0) win 32792 <mss 1000,sackOK,nop,nop,nop,wscale 7> +0 > S. 0:0(0) ack 1 <mss 1460,nop,nop,sackOK,nop,wscale 0> +.1 < . 1:1(0) ack 1 win 1024 +0 accept(3, ..., ...) = 4 +.01 < . 200:300(100) ack 1 win 1024 +0 > . 1:1(0) ack 1 <nop,nop, sack 200:300> +.01 < . 400:500(100) ack 1 win 1024 +0 > . 1:1(0) ack 1 <nop,nop, sack 400:500 200:300> +.01 < . 600:700(100) ack 1 win 1024 +0 > . 1:1(0) ack 1 <nop,nop, sack 600:700 400:500 200:300> +.01 < . 800:900(100) ack 1 win 1024 +0 > . 1:1(0) ack 1 <nop,nop, sack 800:900 600:700 400:500 200:300> +.01 < . 1000:1100(100) ack 1 win 1024 +0 > . 1:1(0) ack 1 <nop,nop, sack 1000:1100 800:900 600:700 400:500> +.01 < . 1200:1300(100) ack 1 win 1024 +0 > . 1:1(0) ack 1 <nop,nop, sack 1200:1300 1000:1100 800:900 600:700> // this packet is dropped because we have no room left. +.01 < . 1400:1500(100) ack 1 win 1024 +.01 < . 1:200(199) ack 1 win 1024 // Make sure kernel did not drop 200:300 sequence +0 > . 1:1(0) ack 300 <nop,nop, sack 1200:1300 1000:1100 800:900 600:700> // Make room, since our RCVBUF is very small +0 read(4, ..., 299) = 299 +.01 < . 300:400(100) ack 1 win 1024 +0 > . 1:1(0) ack 500 <nop,nop, sack 1200:1300 1000:1100 800:900 600:700> +.01 < . 500:600(100) ack 1 win 1024 +0 > . 1:1(0) ack 700 <nop,nop, sack 1200:1300 1000:1100 800:900> +0 read(4, ..., 400) = 400 +.01 < . 700:800(100) ack 1 win 1024 +0 > . 1:1(0) ack 900 <nop,nop, sack 1200:1300 1000:1100> +.01 < . 900:1000(100) ack 1 win 1024 +0 > . 1:1(0) ack 1100 <nop,nop, sack 1200:1300> +.01 < . 1100:1200(100) ack 1 win 1024 // This checks that 1200:1300 has not been removed from ooo queue +0 > . 1:1(0) ack 1300 Suggested-by: Jakub Kicinski <kuba@kernel.org> Signed-off-by: Eric Dumazet <edumazet@google.com> Acked-by: Soheil Hassas Yeganeh <soheil@google.com> Acked-by: Kuniyuki Iwashima <kuniyu@amazon.com> Link: https://lore.kernel.org/r/20221101035234.3910189-1-edumazet@google.com Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2022-11-01 03:52:34 +00:00
bool pruned = false;
int goal;
2016-09-07 14:49:28 -07:00
if (RB_EMPTY_ROOT(&tp->out_of_order_queue))
return false;
goal = sk->sk_rcvbuf >> 3;
2016-09-07 14:49:28 -07:00
node = &tp->ooo_last_skb->rbnode;
tcp: refine tcp_prune_ofo_queue() logic After commits 36a6503fedda ("tcp: refine tcp_prune_ofo_queue() to not drop all packets") and 72cd43ba64fc1 ("tcp: free batches of packets in tcp_prune_ofo_queue()") tcp_prune_ofo_queue() drops a fraction of ooo queue, to make room for incoming packet. However it makes no sense to drop packets that are before the incoming packet, in sequence space. In order to recover from packet losses faster, it makes more sense to only drop ooo packets which are after the incoming packet. Tested: packetdrill test: 0 socket(..., SOCK_STREAM, IPPROTO_TCP) = 3 +0 setsockopt(3, SOL_SOCKET, SO_REUSEADDR, [1], 4) = 0 +0 setsockopt(3, SOL_SOCKET, SO_RCVBUF, [3800], 4) = 0 +0 bind(3, ..., ...) = 0 +0 listen(3, 1) = 0 +0 < S 0:0(0) win 32792 <mss 1000,sackOK,nop,nop,nop,wscale 7> +0 > S. 0:0(0) ack 1 <mss 1460,nop,nop,sackOK,nop,wscale 0> +.1 < . 1:1(0) ack 1 win 1024 +0 accept(3, ..., ...) = 4 +.01 < . 200:300(100) ack 1 win 1024 +0 > . 1:1(0) ack 1 <nop,nop, sack 200:300> +.01 < . 400:500(100) ack 1 win 1024 +0 > . 1:1(0) ack 1 <nop,nop, sack 400:500 200:300> +.01 < . 600:700(100) ack 1 win 1024 +0 > . 1:1(0) ack 1 <nop,nop, sack 600:700 400:500 200:300> +.01 < . 800:900(100) ack 1 win 1024 +0 > . 1:1(0) ack 1 <nop,nop, sack 800:900 600:700 400:500 200:300> +.01 < . 1000:1100(100) ack 1 win 1024 +0 > . 1:1(0) ack 1 <nop,nop, sack 1000:1100 800:900 600:700 400:500> +.01 < . 1200:1300(100) ack 1 win 1024 +0 > . 1:1(0) ack 1 <nop,nop, sack 1200:1300 1000:1100 800:900 600:700> // this packet is dropped because we have no room left. +.01 < . 1400:1500(100) ack 1 win 1024 +.01 < . 1:200(199) ack 1 win 1024 // Make sure kernel did not drop 200:300 sequence +0 > . 1:1(0) ack 300 <nop,nop, sack 1200:1300 1000:1100 800:900 600:700> // Make room, since our RCVBUF is very small +0 read(4, ..., 299) = 299 +.01 < . 300:400(100) ack 1 win 1024 +0 > . 1:1(0) ack 500 <nop,nop, sack 1200:1300 1000:1100 800:900 600:700> +.01 < . 500:600(100) ack 1 win 1024 +0 > . 1:1(0) ack 700 <nop,nop, sack 1200:1300 1000:1100 800:900> +0 read(4, ..., 400) = 400 +.01 < . 700:800(100) ack 1 win 1024 +0 > . 1:1(0) ack 900 <nop,nop, sack 1200:1300 1000:1100> +.01 < . 900:1000(100) ack 1 win 1024 +0 > . 1:1(0) ack 1100 <nop,nop, sack 1200:1300> +.01 < . 1100:1200(100) ack 1 win 1024 // This checks that 1200:1300 has not been removed from ooo queue +0 > . 1:1(0) ack 1300 Suggested-by: Jakub Kicinski <kuba@kernel.org> Signed-off-by: Eric Dumazet <edumazet@google.com> Acked-by: Soheil Hassas Yeganeh <soheil@google.com> Acked-by: Kuniyuki Iwashima <kuniyu@amazon.com> Link: https://lore.kernel.org/r/20221101035234.3910189-1-edumazet@google.com Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2022-11-01 03:52:34 +00:00
2016-09-07 14:49:28 -07:00
do {
tcp: refine tcp_prune_ofo_queue() logic After commits 36a6503fedda ("tcp: refine tcp_prune_ofo_queue() to not drop all packets") and 72cd43ba64fc1 ("tcp: free batches of packets in tcp_prune_ofo_queue()") tcp_prune_ofo_queue() drops a fraction of ooo queue, to make room for incoming packet. However it makes no sense to drop packets that are before the incoming packet, in sequence space. In order to recover from packet losses faster, it makes more sense to only drop ooo packets which are after the incoming packet. Tested: packetdrill test: 0 socket(..., SOCK_STREAM, IPPROTO_TCP) = 3 +0 setsockopt(3, SOL_SOCKET, SO_REUSEADDR, [1], 4) = 0 +0 setsockopt(3, SOL_SOCKET, SO_RCVBUF, [3800], 4) = 0 +0 bind(3, ..., ...) = 0 +0 listen(3, 1) = 0 +0 < S 0:0(0) win 32792 <mss 1000,sackOK,nop,nop,nop,wscale 7> +0 > S. 0:0(0) ack 1 <mss 1460,nop,nop,sackOK,nop,wscale 0> +.1 < . 1:1(0) ack 1 win 1024 +0 accept(3, ..., ...) = 4 +.01 < . 200:300(100) ack 1 win 1024 +0 > . 1:1(0) ack 1 <nop,nop, sack 200:300> +.01 < . 400:500(100) ack 1 win 1024 +0 > . 1:1(0) ack 1 <nop,nop, sack 400:500 200:300> +.01 < . 600:700(100) ack 1 win 1024 +0 > . 1:1(0) ack 1 <nop,nop, sack 600:700 400:500 200:300> +.01 < . 800:900(100) ack 1 win 1024 +0 > . 1:1(0) ack 1 <nop,nop, sack 800:900 600:700 400:500 200:300> +.01 < . 1000:1100(100) ack 1 win 1024 +0 > . 1:1(0) ack 1 <nop,nop, sack 1000:1100 800:900 600:700 400:500> +.01 < . 1200:1300(100) ack 1 win 1024 +0 > . 1:1(0) ack 1 <nop,nop, sack 1200:1300 1000:1100 800:900 600:700> // this packet is dropped because we have no room left. +.01 < . 1400:1500(100) ack 1 win 1024 +.01 < . 1:200(199) ack 1 win 1024 // Make sure kernel did not drop 200:300 sequence +0 > . 1:1(0) ack 300 <nop,nop, sack 1200:1300 1000:1100 800:900 600:700> // Make room, since our RCVBUF is very small +0 read(4, ..., 299) = 299 +.01 < . 300:400(100) ack 1 win 1024 +0 > . 1:1(0) ack 500 <nop,nop, sack 1200:1300 1000:1100 800:900 600:700> +.01 < . 500:600(100) ack 1 win 1024 +0 > . 1:1(0) ack 700 <nop,nop, sack 1200:1300 1000:1100 800:900> +0 read(4, ..., 400) = 400 +.01 < . 700:800(100) ack 1 win 1024 +0 > . 1:1(0) ack 900 <nop,nop, sack 1200:1300 1000:1100> +.01 < . 900:1000(100) ack 1 win 1024 +0 > . 1:1(0) ack 1100 <nop,nop, sack 1200:1300> +.01 < . 1100:1200(100) ack 1 win 1024 // This checks that 1200:1300 has not been removed from ooo queue +0 > . 1:1(0) ack 1300 Suggested-by: Jakub Kicinski <kuba@kernel.org> Signed-off-by: Eric Dumazet <edumazet@google.com> Acked-by: Soheil Hassas Yeganeh <soheil@google.com> Acked-by: Kuniyuki Iwashima <kuniyu@amazon.com> Link: https://lore.kernel.org/r/20221101035234.3910189-1-edumazet@google.com Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2022-11-01 03:52:34 +00:00
struct sk_buff *skb = rb_to_skb(node);
/* If incoming skb would land last in ofo queue, stop pruning. */
if (after(TCP_SKB_CB(in_skb)->seq, TCP_SKB_CB(skb)->seq))
break;
pruned = true;
2016-09-07 14:49:28 -07:00
prev = rb_prev(node);
rb_erase(node, &tp->out_of_order_queue);
tcp: refine tcp_prune_ofo_queue() logic After commits 36a6503fedda ("tcp: refine tcp_prune_ofo_queue() to not drop all packets") and 72cd43ba64fc1 ("tcp: free batches of packets in tcp_prune_ofo_queue()") tcp_prune_ofo_queue() drops a fraction of ooo queue, to make room for incoming packet. However it makes no sense to drop packets that are before the incoming packet, in sequence space. In order to recover from packet losses faster, it makes more sense to only drop ooo packets which are after the incoming packet. Tested: packetdrill test: 0 socket(..., SOCK_STREAM, IPPROTO_TCP) = 3 +0 setsockopt(3, SOL_SOCKET, SO_REUSEADDR, [1], 4) = 0 +0 setsockopt(3, SOL_SOCKET, SO_RCVBUF, [3800], 4) = 0 +0 bind(3, ..., ...) = 0 +0 listen(3, 1) = 0 +0 < S 0:0(0) win 32792 <mss 1000,sackOK,nop,nop,nop,wscale 7> +0 > S. 0:0(0) ack 1 <mss 1460,nop,nop,sackOK,nop,wscale 0> +.1 < . 1:1(0) ack 1 win 1024 +0 accept(3, ..., ...) = 4 +.01 < . 200:300(100) ack 1 win 1024 +0 > . 1:1(0) ack 1 <nop,nop, sack 200:300> +.01 < . 400:500(100) ack 1 win 1024 +0 > . 1:1(0) ack 1 <nop,nop, sack 400:500 200:300> +.01 < . 600:700(100) ack 1 win 1024 +0 > . 1:1(0) ack 1 <nop,nop, sack 600:700 400:500 200:300> +.01 < . 800:900(100) ack 1 win 1024 +0 > . 1:1(0) ack 1 <nop,nop, sack 800:900 600:700 400:500 200:300> +.01 < . 1000:1100(100) ack 1 win 1024 +0 > . 1:1(0) ack 1 <nop,nop, sack 1000:1100 800:900 600:700 400:500> +.01 < . 1200:1300(100) ack 1 win 1024 +0 > . 1:1(0) ack 1 <nop,nop, sack 1200:1300 1000:1100 800:900 600:700> // this packet is dropped because we have no room left. +.01 < . 1400:1500(100) ack 1 win 1024 +.01 < . 1:200(199) ack 1 win 1024 // Make sure kernel did not drop 200:300 sequence +0 > . 1:1(0) ack 300 <nop,nop, sack 1200:1300 1000:1100 800:900 600:700> // Make room, since our RCVBUF is very small +0 read(4, ..., 299) = 299 +.01 < . 300:400(100) ack 1 win 1024 +0 > . 1:1(0) ack 500 <nop,nop, sack 1200:1300 1000:1100 800:900 600:700> +.01 < . 500:600(100) ack 1 win 1024 +0 > . 1:1(0) ack 700 <nop,nop, sack 1200:1300 1000:1100 800:900> +0 read(4, ..., 400) = 400 +.01 < . 700:800(100) ack 1 win 1024 +0 > . 1:1(0) ack 900 <nop,nop, sack 1200:1300 1000:1100> +.01 < . 900:1000(100) ack 1 win 1024 +0 > . 1:1(0) ack 1100 <nop,nop, sack 1200:1300> +.01 < . 1100:1200(100) ack 1 win 1024 // This checks that 1200:1300 has not been removed from ooo queue +0 > . 1:1(0) ack 1300 Suggested-by: Jakub Kicinski <kuba@kernel.org> Signed-off-by: Eric Dumazet <edumazet@google.com> Acked-by: Soheil Hassas Yeganeh <soheil@google.com> Acked-by: Kuniyuki Iwashima <kuniyu@amazon.com> Link: https://lore.kernel.org/r/20221101035234.3910189-1-edumazet@google.com Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2022-11-01 03:52:34 +00:00
goal -= skb->truesize;
tcp_drop_reason(sk, skb, SKB_DROP_REASON_TCP_OFO_QUEUE_PRUNE);
tp->ooo_last_skb = rb_to_skb(prev);
if (!prev || goal <= 0) {
if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf &&
!tcp_under_memory_pressure(sk))
break;
goal = sk->sk_rcvbuf >> 3;
}
2016-09-07 14:49:28 -07:00
node = prev;
} while (node);
tcp: refine tcp_prune_ofo_queue() logic After commits 36a6503fedda ("tcp: refine tcp_prune_ofo_queue() to not drop all packets") and 72cd43ba64fc1 ("tcp: free batches of packets in tcp_prune_ofo_queue()") tcp_prune_ofo_queue() drops a fraction of ooo queue, to make room for incoming packet. However it makes no sense to drop packets that are before the incoming packet, in sequence space. In order to recover from packet losses faster, it makes more sense to only drop ooo packets which are after the incoming packet. Tested: packetdrill test: 0 socket(..., SOCK_STREAM, IPPROTO_TCP) = 3 +0 setsockopt(3, SOL_SOCKET, SO_REUSEADDR, [1], 4) = 0 +0 setsockopt(3, SOL_SOCKET, SO_RCVBUF, [3800], 4) = 0 +0 bind(3, ..., ...) = 0 +0 listen(3, 1) = 0 +0 < S 0:0(0) win 32792 <mss 1000,sackOK,nop,nop,nop,wscale 7> +0 > S. 0:0(0) ack 1 <mss 1460,nop,nop,sackOK,nop,wscale 0> +.1 < . 1:1(0) ack 1 win 1024 +0 accept(3, ..., ...) = 4 +.01 < . 200:300(100) ack 1 win 1024 +0 > . 1:1(0) ack 1 <nop,nop, sack 200:300> +.01 < . 400:500(100) ack 1 win 1024 +0 > . 1:1(0) ack 1 <nop,nop, sack 400:500 200:300> +.01 < . 600:700(100) ack 1 win 1024 +0 > . 1:1(0) ack 1 <nop,nop, sack 600:700 400:500 200:300> +.01 < . 800:900(100) ack 1 win 1024 +0 > . 1:1(0) ack 1 <nop,nop, sack 800:900 600:700 400:500 200:300> +.01 < . 1000:1100(100) ack 1 win 1024 +0 > . 1:1(0) ack 1 <nop,nop, sack 1000:1100 800:900 600:700 400:500> +.01 < . 1200:1300(100) ack 1 win 1024 +0 > . 1:1(0) ack 1 <nop,nop, sack 1200:1300 1000:1100 800:900 600:700> // this packet is dropped because we have no room left. +.01 < . 1400:1500(100) ack 1 win 1024 +.01 < . 1:200(199) ack 1 win 1024 // Make sure kernel did not drop 200:300 sequence +0 > . 1:1(0) ack 300 <nop,nop, sack 1200:1300 1000:1100 800:900 600:700> // Make room, since our RCVBUF is very small +0 read(4, ..., 299) = 299 +.01 < . 300:400(100) ack 1 win 1024 +0 > . 1:1(0) ack 500 <nop,nop, sack 1200:1300 1000:1100 800:900 600:700> +.01 < . 500:600(100) ack 1 win 1024 +0 > . 1:1(0) ack 700 <nop,nop, sack 1200:1300 1000:1100 800:900> +0 read(4, ..., 400) = 400 +.01 < . 700:800(100) ack 1 win 1024 +0 > . 1:1(0) ack 900 <nop,nop, sack 1200:1300 1000:1100> +.01 < . 900:1000(100) ack 1 win 1024 +0 > . 1:1(0) ack 1100 <nop,nop, sack 1200:1300> +.01 < . 1100:1200(100) ack 1 win 1024 // This checks that 1200:1300 has not been removed from ooo queue +0 > . 1:1(0) ack 1300 Suggested-by: Jakub Kicinski <kuba@kernel.org> Signed-off-by: Eric Dumazet <edumazet@google.com> Acked-by: Soheil Hassas Yeganeh <soheil@google.com> Acked-by: Kuniyuki Iwashima <kuniyu@amazon.com> Link: https://lore.kernel.org/r/20221101035234.3910189-1-edumazet@google.com Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2022-11-01 03:52:34 +00:00
if (pruned) {
NET_INC_STATS(sock_net(sk), LINUX_MIB_OFOPRUNED);
/* Reset SACK state. A conforming SACK implementation will
* do the same at a timeout based retransmit. When a connection
* is in a sad state like this, we care only about integrity
* of the connection not performance.
*/
if (tp->rx_opt.sack_ok)
tcp_sack_reset(&tp->rx_opt);
}
return pruned;
}
/* Reduce allocated memory if we can, trying to get
* the socket within its memory limits again.
*
* Return less than zero if we should start dropping frames
* until the socket owning process reads some of the data
* to stabilize the situation.
*/
tcp: refine tcp_prune_ofo_queue() logic After commits 36a6503fedda ("tcp: refine tcp_prune_ofo_queue() to not drop all packets") and 72cd43ba64fc1 ("tcp: free batches of packets in tcp_prune_ofo_queue()") tcp_prune_ofo_queue() drops a fraction of ooo queue, to make room for incoming packet. However it makes no sense to drop packets that are before the incoming packet, in sequence space. In order to recover from packet losses faster, it makes more sense to only drop ooo packets which are after the incoming packet. Tested: packetdrill test: 0 socket(..., SOCK_STREAM, IPPROTO_TCP) = 3 +0 setsockopt(3, SOL_SOCKET, SO_REUSEADDR, [1], 4) = 0 +0 setsockopt(3, SOL_SOCKET, SO_RCVBUF, [3800], 4) = 0 +0 bind(3, ..., ...) = 0 +0 listen(3, 1) = 0 +0 < S 0:0(0) win 32792 <mss 1000,sackOK,nop,nop,nop,wscale 7> +0 > S. 0:0(0) ack 1 <mss 1460,nop,nop,sackOK,nop,wscale 0> +.1 < . 1:1(0) ack 1 win 1024 +0 accept(3, ..., ...) = 4 +.01 < . 200:300(100) ack 1 win 1024 +0 > . 1:1(0) ack 1 <nop,nop, sack 200:300> +.01 < . 400:500(100) ack 1 win 1024 +0 > . 1:1(0) ack 1 <nop,nop, sack 400:500 200:300> +.01 < . 600:700(100) ack 1 win 1024 +0 > . 1:1(0) ack 1 <nop,nop, sack 600:700 400:500 200:300> +.01 < . 800:900(100) ack 1 win 1024 +0 > . 1:1(0) ack 1 <nop,nop, sack 800:900 600:700 400:500 200:300> +.01 < . 1000:1100(100) ack 1 win 1024 +0 > . 1:1(0) ack 1 <nop,nop, sack 1000:1100 800:900 600:700 400:500> +.01 < . 1200:1300(100) ack 1 win 1024 +0 > . 1:1(0) ack 1 <nop,nop, sack 1200:1300 1000:1100 800:900 600:700> // this packet is dropped because we have no room left. +.01 < . 1400:1500(100) ack 1 win 1024 +.01 < . 1:200(199) ack 1 win 1024 // Make sure kernel did not drop 200:300 sequence +0 > . 1:1(0) ack 300 <nop,nop, sack 1200:1300 1000:1100 800:900 600:700> // Make room, since our RCVBUF is very small +0 read(4, ..., 299) = 299 +.01 < . 300:400(100) ack 1 win 1024 +0 > . 1:1(0) ack 500 <nop,nop, sack 1200:1300 1000:1100 800:900 600:700> +.01 < . 500:600(100) ack 1 win 1024 +0 > . 1:1(0) ack 700 <nop,nop, sack 1200:1300 1000:1100 800:900> +0 read(4, ..., 400) = 400 +.01 < . 700:800(100) ack 1 win 1024 +0 > . 1:1(0) ack 900 <nop,nop, sack 1200:1300 1000:1100> +.01 < . 900:1000(100) ack 1 win 1024 +0 > . 1:1(0) ack 1100 <nop,nop, sack 1200:1300> +.01 < . 1100:1200(100) ack 1 win 1024 // This checks that 1200:1300 has not been removed from ooo queue +0 > . 1:1(0) ack 1300 Suggested-by: Jakub Kicinski <kuba@kernel.org> Signed-off-by: Eric Dumazet <edumazet@google.com> Acked-by: Soheil Hassas Yeganeh <soheil@google.com> Acked-by: Kuniyuki Iwashima <kuniyu@amazon.com> Link: https://lore.kernel.org/r/20221101035234.3910189-1-edumazet@google.com Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2022-11-01 03:52:34 +00:00
static int tcp_prune_queue(struct sock *sk, const struct sk_buff *in_skb)
{
struct tcp_sock *tp = tcp_sk(sk);
NET_INC_STATS(sock_net(sk), LINUX_MIB_PRUNECALLED);
if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
[TCP]: Sed magic converts func(sk, tp, ...) -> func(sk, ...) This is (mostly) automated change using magic: sed -e '/struct sock \*sk/ N' -e '/struct sock \*sk/ N' -e '/struct sock \*sk/ N' -e '/struct sock \*sk/ N' -e 's|struct sock \*sk,[\n\t ]*struct tcp_sock \*tp\([^{]*\n{\n\)| struct sock \*sk\1\tstruct tcp_sock *tp = tcp_sk(sk);\n|g' -e 's|struct sock \*sk, struct tcp_sock \*tp| struct sock \*sk|g' -e 's|sk, tp\([^-]\)|sk\1|g' Fixed four unused variable (tp) warnings that were introduced. In addition, manually added newlines after local variables and tweaked function arguments positioning. $ gcc --version gcc (GCC) 4.1.1 20060525 (Red Hat 4.1.1-1) ... $ codiff -fV built-in.o.old built-in.o.new net/ipv4/route.c: rt_cache_flush | +14 1 function changed, 14 bytes added net/ipv4/tcp.c: tcp_setsockopt | -5 tcp_sendpage | -25 tcp_sendmsg | -16 3 functions changed, 46 bytes removed net/ipv4/tcp_input.c: tcp_try_undo_recovery | +3 tcp_try_undo_dsack | +2 tcp_mark_head_lost | -12 tcp_ack | -15 tcp_event_data_recv | -32 tcp_rcv_state_process | -10 tcp_rcv_established | +1 7 functions changed, 6 bytes added, 69 bytes removed, diff: -63 net/ipv4/tcp_output.c: update_send_head | -9 tcp_transmit_skb | +19 tcp_cwnd_validate | +1 tcp_write_wakeup | -17 __tcp_push_pending_frames | -25 tcp_push_one | -8 tcp_send_fin | -4 7 functions changed, 20 bytes added, 63 bytes removed, diff: -43 built-in.o.new: 18 functions changed, 40 bytes added, 178 bytes removed, diff: -138 Signed-off-by: Ilpo Järvinen <ilpo.jarvinen@helsinki.fi> Signed-off-by: David S. Miller <davem@davemloft.net>
2007-04-20 22:18:02 -07:00
tcp_clamp_window(sk);
else if (tcp_under_memory_pressure(sk))
tcp_adjust_rcv_ssthresh(sk);
if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
return 0;
tcp_collapse_ofo_queue(sk);
if (!skb_queue_empty(&sk->sk_receive_queue))
2016-09-07 14:49:28 -07:00
tcp_collapse(sk, &sk->sk_receive_queue, NULL,
skb_peek(&sk->sk_receive_queue),
NULL,
tp->copied_seq, tp->rcv_nxt);
if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
return 0;
/* Collapsing did not help, destructive actions follow.
* This must not ever occur. */
tcp: refine tcp_prune_ofo_queue() logic After commits 36a6503fedda ("tcp: refine tcp_prune_ofo_queue() to not drop all packets") and 72cd43ba64fc1 ("tcp: free batches of packets in tcp_prune_ofo_queue()") tcp_prune_ofo_queue() drops a fraction of ooo queue, to make room for incoming packet. However it makes no sense to drop packets that are before the incoming packet, in sequence space. In order to recover from packet losses faster, it makes more sense to only drop ooo packets which are after the incoming packet. Tested: packetdrill test: 0 socket(..., SOCK_STREAM, IPPROTO_TCP) = 3 +0 setsockopt(3, SOL_SOCKET, SO_REUSEADDR, [1], 4) = 0 +0 setsockopt(3, SOL_SOCKET, SO_RCVBUF, [3800], 4) = 0 +0 bind(3, ..., ...) = 0 +0 listen(3, 1) = 0 +0 < S 0:0(0) win 32792 <mss 1000,sackOK,nop,nop,nop,wscale 7> +0 > S. 0:0(0) ack 1 <mss 1460,nop,nop,sackOK,nop,wscale 0> +.1 < . 1:1(0) ack 1 win 1024 +0 accept(3, ..., ...) = 4 +.01 < . 200:300(100) ack 1 win 1024 +0 > . 1:1(0) ack 1 <nop,nop, sack 200:300> +.01 < . 400:500(100) ack 1 win 1024 +0 > . 1:1(0) ack 1 <nop,nop, sack 400:500 200:300> +.01 < . 600:700(100) ack 1 win 1024 +0 > . 1:1(0) ack 1 <nop,nop, sack 600:700 400:500 200:300> +.01 < . 800:900(100) ack 1 win 1024 +0 > . 1:1(0) ack 1 <nop,nop, sack 800:900 600:700 400:500 200:300> +.01 < . 1000:1100(100) ack 1 win 1024 +0 > . 1:1(0) ack 1 <nop,nop, sack 1000:1100 800:900 600:700 400:500> +.01 < . 1200:1300(100) ack 1 win 1024 +0 > . 1:1(0) ack 1 <nop,nop, sack 1200:1300 1000:1100 800:900 600:700> // this packet is dropped because we have no room left. +.01 < . 1400:1500(100) ack 1 win 1024 +.01 < . 1:200(199) ack 1 win 1024 // Make sure kernel did not drop 200:300 sequence +0 > . 1:1(0) ack 300 <nop,nop, sack 1200:1300 1000:1100 800:900 600:700> // Make room, since our RCVBUF is very small +0 read(4, ..., 299) = 299 +.01 < . 300:400(100) ack 1 win 1024 +0 > . 1:1(0) ack 500 <nop,nop, sack 1200:1300 1000:1100 800:900 600:700> +.01 < . 500:600(100) ack 1 win 1024 +0 > . 1:1(0) ack 700 <nop,nop, sack 1200:1300 1000:1100 800:900> +0 read(4, ..., 400) = 400 +.01 < . 700:800(100) ack 1 win 1024 +0 > . 1:1(0) ack 900 <nop,nop, sack 1200:1300 1000:1100> +.01 < . 900:1000(100) ack 1 win 1024 +0 > . 1:1(0) ack 1100 <nop,nop, sack 1200:1300> +.01 < . 1100:1200(100) ack 1 win 1024 // This checks that 1200:1300 has not been removed from ooo queue +0 > . 1:1(0) ack 1300 Suggested-by: Jakub Kicinski <kuba@kernel.org> Signed-off-by: Eric Dumazet <edumazet@google.com> Acked-by: Soheil Hassas Yeganeh <soheil@google.com> Acked-by: Kuniyuki Iwashima <kuniyu@amazon.com> Link: https://lore.kernel.org/r/20221101035234.3910189-1-edumazet@google.com Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2022-11-01 03:52:34 +00:00
tcp_prune_ofo_queue(sk, in_skb);
if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
return 0;
/* If we are really being abused, tell the caller to silently
* drop receive data on the floor. It will get retransmitted
* and hopefully then we'll have sufficient space.
*/
NET_INC_STATS(sock_net(sk), LINUX_MIB_RCVPRUNED);
/* Massive buffer overcommit. */
tp->pred_flags = 0;
return -1;
}
static bool tcp_should_expand_sndbuf(struct sock *sk)
{
const struct tcp_sock *tp = tcp_sk(sk);
[TCP]: Sed magic converts func(sk, tp, ...) -> func(sk, ...) This is (mostly) automated change using magic: sed -e '/struct sock \*sk/ N' -e '/struct sock \*sk/ N' -e '/struct sock \*sk/ N' -e '/struct sock \*sk/ N' -e 's|struct sock \*sk,[\n\t ]*struct tcp_sock \*tp\([^{]*\n{\n\)| struct sock \*sk\1\tstruct tcp_sock *tp = tcp_sk(sk);\n|g' -e 's|struct sock \*sk, struct tcp_sock \*tp| struct sock \*sk|g' -e 's|sk, tp\([^-]\)|sk\1|g' Fixed four unused variable (tp) warnings that were introduced. In addition, manually added newlines after local variables and tweaked function arguments positioning. $ gcc --version gcc (GCC) 4.1.1 20060525 (Red Hat 4.1.1-1) ... $ codiff -fV built-in.o.old built-in.o.new net/ipv4/route.c: rt_cache_flush | +14 1 function changed, 14 bytes added net/ipv4/tcp.c: tcp_setsockopt | -5 tcp_sendpage | -25 tcp_sendmsg | -16 3 functions changed, 46 bytes removed net/ipv4/tcp_input.c: tcp_try_undo_recovery | +3 tcp_try_undo_dsack | +2 tcp_mark_head_lost | -12 tcp_ack | -15 tcp_event_data_recv | -32 tcp_rcv_state_process | -10 tcp_rcv_established | +1 7 functions changed, 6 bytes added, 69 bytes removed, diff: -63 net/ipv4/tcp_output.c: update_send_head | -9 tcp_transmit_skb | +19 tcp_cwnd_validate | +1 tcp_write_wakeup | -17 __tcp_push_pending_frames | -25 tcp_push_one | -8 tcp_send_fin | -4 7 functions changed, 20 bytes added, 63 bytes removed, diff: -43 built-in.o.new: 18 functions changed, 40 bytes added, 178 bytes removed, diff: -138 Signed-off-by: Ilpo Järvinen <ilpo.jarvinen@helsinki.fi> Signed-off-by: David S. Miller <davem@davemloft.net>
2007-04-20 22:18:02 -07:00
/* If the user specified a specific send buffer setting, do
* not modify it.
*/
if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
return false;
/* If we are under global TCP memory pressure, do not expand. */
if (tcp_under_memory_pressure(sk)) {
int unused_mem = sk_unused_reserved_mem(sk);
/* Adjust sndbuf according to reserved mem. But make sure
* it never goes below SOCK_MIN_SNDBUF.
* See sk_stream_moderate_sndbuf() for more details.
*/
if (unused_mem > SOCK_MIN_SNDBUF)
WRITE_ONCE(sk->sk_sndbuf, unused_mem);
return false;
}
/* If we are under soft global TCP memory pressure, do not expand. */
if (sk_memory_allocated(sk) >= sk_prot_mem_limits(sk, 0))
return false;
/* If we filled the congestion window, do not expand. */
if (tcp_packets_in_flight(tp) >= tcp_snd_cwnd(tp))
return false;
return true;
}
static void tcp_new_space(struct sock *sk)
{
struct tcp_sock *tp = tcp_sk(sk);
[TCP]: Sed magic converts func(sk, tp, ...) -> func(sk, ...) This is (mostly) automated change using magic: sed -e '/struct sock \*sk/ N' -e '/struct sock \*sk/ N' -e '/struct sock \*sk/ N' -e '/struct sock \*sk/ N' -e 's|struct sock \*sk,[\n\t ]*struct tcp_sock \*tp\([^{]*\n{\n\)| struct sock \*sk\1\tstruct tcp_sock *tp = tcp_sk(sk);\n|g' -e 's|struct sock \*sk, struct tcp_sock \*tp| struct sock \*sk|g' -e 's|sk, tp\([^-]\)|sk\1|g' Fixed four unused variable (tp) warnings that were introduced. In addition, manually added newlines after local variables and tweaked function arguments positioning. $ gcc --version gcc (GCC) 4.1.1 20060525 (Red Hat 4.1.1-1) ... $ codiff -fV built-in.o.old built-in.o.new net/ipv4/route.c: rt_cache_flush | +14 1 function changed, 14 bytes added net/ipv4/tcp.c: tcp_setsockopt | -5 tcp_sendpage | -25 tcp_sendmsg | -16 3 functions changed, 46 bytes removed net/ipv4/tcp_input.c: tcp_try_undo_recovery | +3 tcp_try_undo_dsack | +2 tcp_mark_head_lost | -12 tcp_ack | -15 tcp_event_data_recv | -32 tcp_rcv_state_process | -10 tcp_rcv_established | +1 7 functions changed, 6 bytes added, 69 bytes removed, diff: -63 net/ipv4/tcp_output.c: update_send_head | -9 tcp_transmit_skb | +19 tcp_cwnd_validate | +1 tcp_write_wakeup | -17 __tcp_push_pending_frames | -25 tcp_push_one | -8 tcp_send_fin | -4 7 functions changed, 20 bytes added, 63 bytes removed, diff: -43 built-in.o.new: 18 functions changed, 40 bytes added, 178 bytes removed, diff: -138 Signed-off-by: Ilpo Järvinen <ilpo.jarvinen@helsinki.fi> Signed-off-by: David S. Miller <davem@davemloft.net>
2007-04-20 22:18:02 -07:00
if (tcp_should_expand_sndbuf(sk)) {
tcp_sndbuf_expand(sk);
tp->snd_cwnd_stamp = tcp_jiffies32;
}
INDIRECT_CALL_1(sk->sk_write_space, sk_stream_write_space, sk);
}
tcp: fix potential xmit stalls caused by TCP_NOTSENT_LOWAT I had this bug sitting for too long in my pile, it is time to fix it. Thanks to Doug Porter for reminding me of it! We had various attempts in the past, including commit 0cbe6a8f089e ("tcp: remove SOCK_QUEUE_SHRUNK"), but the issue is that TCP stack currently only generates EPOLLOUT from input path, when tp->snd_una has advanced and skb(s) cleaned from rtx queue. If a flow has a big RTT, and/or receives SACKs, it is possible that the notsent part (tp->write_seq - tp->snd_nxt) reaches 0 and no more data can be sent until tp->snd_una finally advances. What is needed is to also check if POLLOUT needs to be generated whenever tp->snd_nxt is advanced, from output path. This bug triggers more often after an idle period, as we do not receive ACK for at least one RTT. tcp_notsent_lowat could be a fraction of what CWND and pacing rate would allow to send during this RTT. In a followup patch, I will remove the bogus call to tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED) from tcp_check_space(). Fact that we have decided to generate an EPOLLOUT does not mean the application has immediately refilled the transmit queue. This optimistic call might have been the reason the bug seemed not too serious. Tested: 200 ms rtt, 1% packet loss, 32 MB tcp_rmem[2] and tcp_wmem[2] $ echo 500000 >/proc/sys/net/ipv4/tcp_notsent_lowat $ cat bench_rr.sh SUM=0 for i in {1..10} do V=`netperf -H remote_host -l30 -t TCP_RR -- -r 10000000,10000 -o LOCAL_BYTES_SENT | egrep -v "MIGRATED|Bytes"` echo $V SUM=$(($SUM + $V)) done echo SUM=$SUM Before patch: $ bench_rr.sh 130000000 80000000 140000000 140000000 140000000 140000000 130000000 40000000 90000000 110000000 SUM=1140000000 After patch: $ bench_rr.sh 430000000 590000000 530000000 450000000 450000000 350000000 450000000 490000000 480000000 460000000 SUM=4680000000 # This is 410 % of the value before patch. Fixes: c9bee3b7fdec ("tcp: TCP_NOTSENT_LOWAT socket option") Signed-off-by: Eric Dumazet <edumazet@google.com> Reported-by: Doug Porter <dsp@fb.com> Cc: Soheil Hassas Yeganeh <soheil@google.com> Cc: Neal Cardwell <ncardwell@google.com> Acked-by: Soheil Hassas Yeganeh <soheil@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2022-04-24 17:34:07 -07:00
/* Caller made space either from:
* 1) Freeing skbs in rtx queues (after tp->snd_una has advanced)
* 2) Sent skbs from output queue (and thus advancing tp->snd_nxt)
*
* We might be able to generate EPOLLOUT to the application if:
* 1) Space consumed in output/rtx queues is below sk->sk_sndbuf/2
* 2) notsent amount (tp->write_seq - tp->snd_nxt) became
* small enough that tcp_stream_memory_free() decides it
* is time to generate EPOLLOUT.
*/
void tcp_check_space(struct sock *sk)
{
/* pairs with tcp_poll() */
smp_mb();
if (sk->sk_socket &&
test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
tcp_new_space(sk);
if (!test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED);
}
}
[TCP]: Sed magic converts func(sk, tp, ...) -> func(sk, ...) This is (mostly) automated change using magic: sed -e '/struct sock \*sk/ N' -e '/struct sock \*sk/ N' -e '/struct sock \*sk/ N' -e '/struct sock \*sk/ N' -e 's|struct sock \*sk,[\n\t ]*struct tcp_sock \*tp\([^{]*\n{\n\)| struct sock \*sk\1\tstruct tcp_sock *tp = tcp_sk(sk);\n|g' -e 's|struct sock \*sk, struct tcp_sock \*tp| struct sock \*sk|g' -e 's|sk, tp\([^-]\)|sk\1|g' Fixed four unused variable (tp) warnings that were introduced. In addition, manually added newlines after local variables and tweaked function arguments positioning. $ gcc --version gcc (GCC) 4.1.1 20060525 (Red Hat 4.1.1-1) ... $ codiff -fV built-in.o.old built-in.o.new net/ipv4/route.c: rt_cache_flush | +14 1 function changed, 14 bytes added net/ipv4/tcp.c: tcp_setsockopt | -5 tcp_sendpage | -25 tcp_sendmsg | -16 3 functions changed, 46 bytes removed net/ipv4/tcp_input.c: tcp_try_undo_recovery | +3 tcp_try_undo_dsack | +2 tcp_mark_head_lost | -12 tcp_ack | -15 tcp_event_data_recv | -32 tcp_rcv_state_process | -10 tcp_rcv_established | +1 7 functions changed, 6 bytes added, 69 bytes removed, diff: -63 net/ipv4/tcp_output.c: update_send_head | -9 tcp_transmit_skb | +19 tcp_cwnd_validate | +1 tcp_write_wakeup | -17 __tcp_push_pending_frames | -25 tcp_push_one | -8 tcp_send_fin | -4 7 functions changed, 20 bytes added, 63 bytes removed, diff: -43 built-in.o.new: 18 functions changed, 40 bytes added, 178 bytes removed, diff: -138 Signed-off-by: Ilpo Järvinen <ilpo.jarvinen@helsinki.fi> Signed-off-by: David S. Miller <davem@davemloft.net>
2007-04-20 22:18:02 -07:00
static inline void tcp_data_snd_check(struct sock *sk)
{
[TCP]: Sed magic converts func(sk, tp, ...) -> func(sk, ...) This is (mostly) automated change using magic: sed -e '/struct sock \*sk/ N' -e '/struct sock \*sk/ N' -e '/struct sock \*sk/ N' -e '/struct sock \*sk/ N' -e 's|struct sock \*sk,[\n\t ]*struct tcp_sock \*tp\([^{]*\n{\n\)| struct sock \*sk\1\tstruct tcp_sock *tp = tcp_sk(sk);\n|g' -e 's|struct sock \*sk, struct tcp_sock \*tp| struct sock \*sk|g' -e 's|sk, tp\([^-]\)|sk\1|g' Fixed four unused variable (tp) warnings that were introduced. In addition, manually added newlines after local variables and tweaked function arguments positioning. $ gcc --version gcc (GCC) 4.1.1 20060525 (Red Hat 4.1.1-1) ... $ codiff -fV built-in.o.old built-in.o.new net/ipv4/route.c: rt_cache_flush | +14 1 function changed, 14 bytes added net/ipv4/tcp.c: tcp_setsockopt | -5 tcp_sendpage | -25 tcp_sendmsg | -16 3 functions changed, 46 bytes removed net/ipv4/tcp_input.c: tcp_try_undo_recovery | +3 tcp_try_undo_dsack | +2 tcp_mark_head_lost | -12 tcp_ack | -15 tcp_event_data_recv | -32 tcp_rcv_state_process | -10 tcp_rcv_established | +1 7 functions changed, 6 bytes added, 69 bytes removed, diff: -63 net/ipv4/tcp_output.c: update_send_head | -9 tcp_transmit_skb | +19 tcp_cwnd_validate | +1 tcp_write_wakeup | -17 __tcp_push_pending_frames | -25 tcp_push_one | -8 tcp_send_fin | -4 7 functions changed, 20 bytes added, 63 bytes removed, diff: -43 built-in.o.new: 18 functions changed, 40 bytes added, 178 bytes removed, diff: -138 Signed-off-by: Ilpo Järvinen <ilpo.jarvinen@helsinki.fi> Signed-off-by: David S. Miller <davem@davemloft.net>
2007-04-20 22:18:02 -07:00
tcp_push_pending_frames(sk);
tcp_check_space(sk);
}
/*
* Check if sending an ack is needed.
*/
static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
{
struct tcp_sock *tp = tcp_sk(sk);
unsigned long rtt, delay;
/* More than one full frame received... */
if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss &&
/* ... and right edge of window advances far enough.
* (tcp_recvmsg() will send ACK otherwise).
* If application uses SO_RCVLOWAT, we want send ack now if
* we have not received enough bytes to satisfy the condition.
*/
(tp->rcv_nxt - tp->copied_seq < sk->sk_rcvlowat ||
__tcp_select_window(sk) >= tp->rcv_wnd)) ||
/* We ACK each frame or... */
tcp_in_quickack_mode(sk) ||
/* Protocol state mandates a one-time immediate ACK */
inet_csk(sk)->icsk_ack.pending & ICSK_ACK_NOW) {
tcp: defer regular ACK while processing socket backlog This idea came after a particular workload requested the quickack attribute set on routes, and a performance drop was noticed for large bulk transfers. For high throughput flows, it is best to use one cpu running the user thread issuing socket system calls, and a separate cpu to process incoming packets from BH context. (With TSO/GRO, bottleneck is usually the 'user' cpu) Problem is the user thread can spend a lot of time while holding the socket lock, forcing BH handler to queue most of incoming packets in the socket backlog. Whenever the user thread releases the socket lock, it must first process all accumulated packets in the backlog, potentially adding latency spikes. Due to flood mitigation, having too many packets in the backlog increases chance of unexpected drops. Backlog processing unfortunately shifts a fair amount of cpu cycles from the BH cpu to the 'user' cpu, thus reducing max throughput. This patch takes advantage of the backlog processing, and the fact that ACK are mostly cumulative. The idea is to detect we are in the backlog processing and defer all eligible ACK into a single one, sent from tcp_release_cb(). This saves cpu cycles on both sides, and network resources. Performance of a single TCP flow on a 200Gbit NIC: - Throughput is increased by 20% (100Gbit -> 120Gbit). - Number of generated ACK per second shrinks from 240,000 to 40,000. - Number of backlog drops per second shrinks from 230 to 0. Benchmark context: - Regular netperf TCP_STREAM (no zerocopy) - Intel(R) Xeon(R) Platinum 8481C (Saphire Rapids) - MAX_SKB_FRAGS = 17 (~60KB per GRO packet) This feature is guarded by a new sysctl, and enabled by default: /proc/sys/net/ipv4/tcp_backlog_ack_defer Signed-off-by: Eric Dumazet <edumazet@google.com> Acked-by: Yuchung Cheng <ycheng@google.com> Acked-by: Neal Cardwell <ncardwell@google.com> Acked-by: Soheil Hassas Yeganeh <soheil@google.com> Acked-by: Dave Taht <dave.taht@gmail.com> Signed-off-by: Paolo Abeni <pabeni@redhat.com>
2023-09-11 17:05:31 +00:00
/* If we are running from __release_sock() in user context,
* Defer the ack until tcp_release_cb().
*/
if (sock_owned_by_user_nocheck(sk) &&
READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_backlog_ack_defer)) {
set_bit(TCP_ACK_DEFERRED, &sk->sk_tsq_flags);
return;
}
send_now:
tcp_send_ack(sk);
return;
}
if (!ofo_possible || RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
tcp_send_delayed_ack(sk);
return;
}
if (!tcp_is_sack(tp) ||
tp->compressed_ack >= READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_comp_sack_nr))
goto send_now;
tcp: defer SACK compression after DupThresh Jean-Louis reported a TCP regression and bisected to recent SACK compression. After a loss episode (receiver not able to keep up and dropping packets because its backlog is full), linux TCP stack is sending a single SACK (DUPACK). Sender waits a full RTO timer before recovering losses. While RFC 6675 says in section 5, "Algorithm Details", (2) If DupAcks < DupThresh but IsLost (HighACK + 1) returns true -- indicating at least three segments have arrived above the current cumulative acknowledgment point, which is taken to indicate loss -- go to step (4). ... (4) Invoke fast retransmit and enter loss recovery as follows: there are old TCP stacks not implementing this strategy, and still counting the dupacks before starting fast retransmit. While these stacks probably perform poorly when receivers implement LRO/GRO, we should be a little more gentle to them. This patch makes sure we do not enable SACK compression unless 3 dupacks have been sent since last rcv_nxt update. Ideally we should even rearm the timer to send one or two more DUPACK if no more packets are coming, but that will be work aiming for linux-4.21. Many thanks to Jean-Louis for bisecting the issue, providing packet captures and testing this patch. Fixes: 5d9f4262b7ea ("tcp: add SACK compression") Reported-by: Jean-Louis Dupond <jean-louis@dupond.be> Tested-by: Jean-Louis Dupond <jean-louis@dupond.be> Signed-off-by: Eric Dumazet <edumazet@google.com> Acked-by: Neal Cardwell <ncardwell@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2018-11-20 05:53:59 -08:00
if (tp->compressed_ack_rcv_nxt != tp->rcv_nxt) {
tp->compressed_ack_rcv_nxt = tp->rcv_nxt;
tp->dup_ack_counter = 0;
tcp: defer SACK compression after DupThresh Jean-Louis reported a TCP regression and bisected to recent SACK compression. After a loss episode (receiver not able to keep up and dropping packets because its backlog is full), linux TCP stack is sending a single SACK (DUPACK). Sender waits a full RTO timer before recovering losses. While RFC 6675 says in section 5, "Algorithm Details", (2) If DupAcks < DupThresh but IsLost (HighACK + 1) returns true -- indicating at least three segments have arrived above the current cumulative acknowledgment point, which is taken to indicate loss -- go to step (4). ... (4) Invoke fast retransmit and enter loss recovery as follows: there are old TCP stacks not implementing this strategy, and still counting the dupacks before starting fast retransmit. While these stacks probably perform poorly when receivers implement LRO/GRO, we should be a little more gentle to them. This patch makes sure we do not enable SACK compression unless 3 dupacks have been sent since last rcv_nxt update. Ideally we should even rearm the timer to send one or two more DUPACK if no more packets are coming, but that will be work aiming for linux-4.21. Many thanks to Jean-Louis for bisecting the issue, providing packet captures and testing this patch. Fixes: 5d9f4262b7ea ("tcp: add SACK compression") Reported-by: Jean-Louis Dupond <jean-louis@dupond.be> Tested-by: Jean-Louis Dupond <jean-louis@dupond.be> Signed-off-by: Eric Dumazet <edumazet@google.com> Acked-by: Neal Cardwell <ncardwell@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2018-11-20 05:53:59 -08:00
}
if (tp->dup_ack_counter < TCP_FASTRETRANS_THRESH) {
tp->dup_ack_counter++;
tcp: defer SACK compression after DupThresh Jean-Louis reported a TCP regression and bisected to recent SACK compression. After a loss episode (receiver not able to keep up and dropping packets because its backlog is full), linux TCP stack is sending a single SACK (DUPACK). Sender waits a full RTO timer before recovering losses. While RFC 6675 says in section 5, "Algorithm Details", (2) If DupAcks < DupThresh but IsLost (HighACK + 1) returns true -- indicating at least three segments have arrived above the current cumulative acknowledgment point, which is taken to indicate loss -- go to step (4). ... (4) Invoke fast retransmit and enter loss recovery as follows: there are old TCP stacks not implementing this strategy, and still counting the dupacks before starting fast retransmit. While these stacks probably perform poorly when receivers implement LRO/GRO, we should be a little more gentle to them. This patch makes sure we do not enable SACK compression unless 3 dupacks have been sent since last rcv_nxt update. Ideally we should even rearm the timer to send one or two more DUPACK if no more packets are coming, but that will be work aiming for linux-4.21. Many thanks to Jean-Louis for bisecting the issue, providing packet captures and testing this patch. Fixes: 5d9f4262b7ea ("tcp: add SACK compression") Reported-by: Jean-Louis Dupond <jean-louis@dupond.be> Tested-by: Jean-Louis Dupond <jean-louis@dupond.be> Signed-off-by: Eric Dumazet <edumazet@google.com> Acked-by: Neal Cardwell <ncardwell@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2018-11-20 05:53:59 -08:00
goto send_now;
}
tp->compressed_ack++;
if (hrtimer_is_queued(&tp->compressed_ack_timer))
return;
/* compress ack timer : 5 % of rtt, but no more than tcp_comp_sack_delay_ns */
rtt = tp->rcv_rtt_est.rtt_us;
if (tp->srtt_us && tp->srtt_us < rtt)
rtt = tp->srtt_us;
delay = min_t(unsigned long,
READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_comp_sack_delay_ns),
rtt * (NSEC_PER_USEC >> 3)/20);
sock_hold(sk);
hrtimer_start_range_ns(&tp->compressed_ack_timer, ns_to_ktime(delay),
READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_comp_sack_slack_ns),
HRTIMER_MODE_REL_PINNED_SOFT);
}
static inline void tcp_ack_snd_check(struct sock *sk)
{
if (!inet_csk_ack_scheduled(sk)) {
/* We sent a data segment already. */
return;
}
__tcp_ack_snd_check(sk, 1);
}
/*
* This routine is only called when we have urgent data
* signaled. Its the 'slow' part of tcp_urg. It could be
* moved inline now as tcp_urg is only called from one
* place. We handle URGent data wrong. We have to - as
* BSD still doesn't use the correction from RFC961.
* For 1003.1g we should support a new option TCP_STDURG to permit
* either form (or just set the sysctl tcp_stdurg).
*/
static void tcp_check_urg(struct sock *sk, const struct tcphdr *th)
{
struct tcp_sock *tp = tcp_sk(sk);
u32 ptr = ntohs(th->urg_ptr);
if (ptr && !READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_stdurg))
ptr--;
ptr += ntohl(th->seq);
/* Ignore urgent data that we've already seen and read. */
if (after(tp->copied_seq, ptr))
return;
/* Do not replay urg ptr.
*
* NOTE: interesting situation not covered by specs.
* Misbehaving sender may send urg ptr, pointing to segment,
* which we already have in ofo queue. We are not able to fetch
* such data and will stay in TCP_URG_NOTYET until will be eaten
* by recvmsg(). Seems, we are not obliged to handle such wicked
* situations. But it is worth to think about possibility of some
* DoSes using some hypothetical application level deadlock.
*/
if (before(ptr, tp->rcv_nxt))
return;
/* Do we already have a newer (or duplicate) urgent pointer? */
if (tp->urg_data && !after(ptr, tp->urg_seq))
return;
/* Tell the world about our new urgent pointer. */
sk_send_sigurg(sk);
/* We may be adding urgent data when the last byte read was
* urgent. To do this requires some care. We cannot just ignore
* tp->copied_seq since we would read the last urgent byte again
* as data, nor can we alter copied_seq until this data arrives
* or we break the semantics of SIOCATMARK (and thus sockatmark())
*
* NOTE. Double Dutch. Rendering to plain English: author of comment
* above did something sort of send("A", MSG_OOB); send("B", MSG_OOB);
* and expect that both A and B disappear from stream. This is _wrong_.
* Though this happens in BSD with high probability, this is occasional.
* Any application relying on this is buggy. Note also, that fix "works"
* only in this artificial test. Insert some normal data between A and B and we will
* decline of BSD again. Verdict: it is better to remove to trap
* buggy users.
*/
if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
!sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) {
struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
tp->copied_seq++;
if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
__skb_unlink(skb, &sk->sk_receive_queue);
__kfree_skb(skb);
}
}
WRITE_ONCE(tp->urg_data, TCP_URG_NOTYET);
WRITE_ONCE(tp->urg_seq, ptr);
/* Disable header prediction. */
tp->pred_flags = 0;
}
/* This is the 'fast' part of urgent handling. */
static void tcp_urg(struct sock *sk, struct sk_buff *skb, const struct tcphdr *th)
{
struct tcp_sock *tp = tcp_sk(sk);
/* Check if we get a new urgent pointer - normally not. */
if (unlikely(th->urg))
tcp_check_urg(sk, th);
/* Do we wait for any urgent data? - normally not... */
if (unlikely(tp->urg_data == TCP_URG_NOTYET)) {
u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
th->syn;
/* Is the urgent pointer pointing into this packet? */
if (ptr < skb->len) {
u8 tmp;
if (skb_copy_bits(skb, ptr, &tmp, 1))
BUG();
WRITE_ONCE(tp->urg_data, TCP_URG_VALID | tmp);
if (!sock_flag(sk, SOCK_DEAD))
sk->sk_data_ready(sk);
}
}
}
tcp: accept RST for rcv_nxt - 1 after receiving a FIN Using a Mac OSX box as a client connecting to a Linux server, we have found that when certain applications (such as 'ab'), are abruptly terminated (via ^C), a FIN is sent followed by a RST packet on tcp connections. The FIN is accepted by the Linux stack but the RST is sent with the same sequence number as the FIN, and Linux responds with a challenge ACK per RFC 5961. The OSX client then sometimes (they are rate-limited) does not reply with any RST as would be expected on a closed socket. This results in sockets accumulating on the Linux server left mostly in the CLOSE_WAIT state, although LAST_ACK and CLOSING are also possible. This sequence of events can tie up a lot of resources on the Linux server since there may be a lot of data in write buffers at the time of the RST. Accepting a RST equal to rcv_nxt - 1, after we have already successfully processed a FIN, has made a significant difference for us in practice, by freeing up unneeded resources in a more expedient fashion. A packetdrill test demonstrating the behavior: // testing mac osx rst behavior // Establish a connection 0.000 socket(..., SOCK_STREAM, IPPROTO_TCP) = 3 0.000 setsockopt(3, SOL_SOCKET, SO_REUSEADDR, [1], 4) = 0 0.000 bind(3, ..., ...) = 0 0.000 listen(3, 1) = 0 0.100 < S 0:0(0) win 32768 <mss 1460,nop,wscale 10> 0.100 > S. 0:0(0) ack 1 <mss 1460,nop,wscale 5> 0.200 < . 1:1(0) ack 1 win 32768 0.200 accept(3, ..., ...) = 4 // Client closes the connection 0.300 < F. 1:1(0) ack 1 win 32768 // now send rst with same sequence 0.300 < R. 1:1(0) ack 1 win 32768 // make sure we are in TCP_CLOSE 0.400 %{ assert tcpi_state == 7 }% Signed-off-by: Jason Baron <jbaron@akamai.com> Cc: Eric Dumazet <edumazet@google.com> Acked-by: Eric Dumazet <edumazet@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-01-17 13:37:19 -05:00
/* Accept RST for rcv_nxt - 1 after a FIN.
* When tcp connections are abruptly terminated from Mac OSX (via ^C), a
* FIN is sent followed by a RST packet. The RST is sent with the same
* sequence number as the FIN, and thus according to RFC 5961 a challenge
* ACK should be sent. However, Mac OSX rate limits replies to challenge
* ACKs on the closed socket. In addition middleboxes can drop either the
* challenge ACK or a subsequent RST.
*/
static bool tcp_reset_check(const struct sock *sk, const struct sk_buff *skb)
{
const struct tcp_sock *tp = tcp_sk(sk);
tcp: accept RST for rcv_nxt - 1 after receiving a FIN Using a Mac OSX box as a client connecting to a Linux server, we have found that when certain applications (such as 'ab'), are abruptly terminated (via ^C), a FIN is sent followed by a RST packet on tcp connections. The FIN is accepted by the Linux stack but the RST is sent with the same sequence number as the FIN, and Linux responds with a challenge ACK per RFC 5961. The OSX client then sometimes (they are rate-limited) does not reply with any RST as would be expected on a closed socket. This results in sockets accumulating on the Linux server left mostly in the CLOSE_WAIT state, although LAST_ACK and CLOSING are also possible. This sequence of events can tie up a lot of resources on the Linux server since there may be a lot of data in write buffers at the time of the RST. Accepting a RST equal to rcv_nxt - 1, after we have already successfully processed a FIN, has made a significant difference for us in practice, by freeing up unneeded resources in a more expedient fashion. A packetdrill test demonstrating the behavior: // testing mac osx rst behavior // Establish a connection 0.000 socket(..., SOCK_STREAM, IPPROTO_TCP) = 3 0.000 setsockopt(3, SOL_SOCKET, SO_REUSEADDR, [1], 4) = 0 0.000 bind(3, ..., ...) = 0 0.000 listen(3, 1) = 0 0.100 < S 0:0(0) win 32768 <mss 1460,nop,wscale 10> 0.100 > S. 0:0(0) ack 1 <mss 1460,nop,wscale 5> 0.200 < . 1:1(0) ack 1 win 32768 0.200 accept(3, ..., ...) = 4 // Client closes the connection 0.300 < F. 1:1(0) ack 1 win 32768 // now send rst with same sequence 0.300 < R. 1:1(0) ack 1 win 32768 // make sure we are in TCP_CLOSE 0.400 %{ assert tcpi_state == 7 }% Signed-off-by: Jason Baron <jbaron@akamai.com> Cc: Eric Dumazet <edumazet@google.com> Acked-by: Eric Dumazet <edumazet@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-01-17 13:37:19 -05:00
return unlikely(TCP_SKB_CB(skb)->seq == (tp->rcv_nxt - 1) &&
(1 << sk->sk_state) & (TCPF_CLOSE_WAIT | TCPF_LAST_ACK |
TCPF_CLOSING));
}
/* Does PAWS and seqno based validation of an incoming segment, flags will
* play significant role here.
*/
static bool tcp_validate_incoming(struct sock *sk, struct sk_buff *skb,
const struct tcphdr *th, int syn_inerr)
{
struct tcp_sock *tp = tcp_sk(sk);
SKB_DR(reason);
/* RFC1323: H1. Apply PAWS check first. */
if (tcp_fast_parse_options(sock_net(sk), skb, th, tp) &&
tp->rx_opt.saw_tstamp &&
tcp_paws_discard(sk, skb)) {
if (!th->rst) {
tcp: Refine SYN handling for PAWS. Our Network Load Balancer (NLB) [0] has multiple nodes with different IP addresses, and each node forwards TCP flows from clients to backend targets. NLB has an option to preserve the client's source IP address and port when routing packets to backend targets. [1] When a client connects to two different NLB nodes, they may select the same backend target. Then, if the client has used the same source IP and port, the two flows at the backend side will have the same 4-tuple. While testing around such cases, I saw these sequences on the backend target. IP 10.0.0.215.60000 > 10.0.3.249.10000: Flags [S], seq 2819965599, win 62727, options [mss 8365,sackOK,TS val 1029816180 ecr 0,nop,wscale 7], length 0 IP 10.0.3.249.10000 > 10.0.0.215.60000: Flags [S.], seq 3040695044, ack 2819965600, win 62643, options [mss 8961,sackOK,TS val 1224784076 ecr 1029816180,nop,wscale 7], length 0 IP 10.0.0.215.60000 > 10.0.3.249.10000: Flags [.], ack 1, win 491, options [nop,nop,TS val 1029816181 ecr 1224784076], length 0 IP 10.0.0.215.60000 > 10.0.3.249.10000: Flags [S], seq 2681819307, win 62727, options [mss 8365,sackOK,TS val 572088282 ecr 0,nop,wscale 7], length 0 IP 10.0.3.249.10000 > 10.0.0.215.60000: Flags [.], ack 1, win 490, options [nop,nop,TS val 1224794914 ecr 1029816181,nop,nop,sack 1 {4156821004:4156821005}], length 0 It seems to be working correctly, but the last ACK was generated by tcp_send_dupack() and PAWSEstab was increased. This is because the second connection has a smaller timestamp than the first one. In this case, we should send a dup ACK in tcp_send_challenge_ack() to increase the correct counter and rate-limit it properly. Let's check the SYN flag after the PAWS tests to avoid adding unnecessary overhead for most packets. Link: https://docs.aws.amazon.com/elasticloadbalancing/latest/network/introduction.html [0] Link: https://docs.aws.amazon.com/elasticloadbalancing/latest/network/load-balancer-target-groups.html#client-ip-preservation [1] Signed-off-by: Kuniyuki Iwashima <kuniyu@amazon.com> Reviewed-by: Jason Xing <kerneljasonxing@gmail.com> Reviewed-by: Eric Dumazet <edumazet@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2023-03-29 13:13:48 -07:00
if (unlikely(th->syn))
goto syn_challenge;
NET_INC_STATS(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED);
if (!tcp_oow_rate_limited(sock_net(sk), skb,
LINUX_MIB_TCPACKSKIPPEDPAWS,
&tp->last_oow_ack_time))
tcp_send_dupack(sk, skb);
SKB_DR_SET(reason, TCP_RFC7323_PAWS);
goto discard;
}
/* Reset is accepted even if it did not pass PAWS. */
}
/* Step 1: check sequence number */
reason = tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
if (reason) {
/* RFC793, page 37: "In all states except SYN-SENT, all reset
* (RST) segments are validated by checking their SEQ-fields."
* And page 69: "If an incoming segment is not acceptable,
* an acknowledgment should be sent in reply (unless the RST
* bit is set, if so drop the segment and return)".
*/
if (!th->rst) {
if (th->syn)
goto syn_challenge;
if (!tcp_oow_rate_limited(sock_net(sk), skb,
LINUX_MIB_TCPACKSKIPPEDSEQ,
&tp->last_oow_ack_time))
tcp_send_dupack(sk, skb);
tcp: accept RST for rcv_nxt - 1 after receiving a FIN Using a Mac OSX box as a client connecting to a Linux server, we have found that when certain applications (such as 'ab'), are abruptly terminated (via ^C), a FIN is sent followed by a RST packet on tcp connections. The FIN is accepted by the Linux stack but the RST is sent with the same sequence number as the FIN, and Linux responds with a challenge ACK per RFC 5961. The OSX client then sometimes (they are rate-limited) does not reply with any RST as would be expected on a closed socket. This results in sockets accumulating on the Linux server left mostly in the CLOSE_WAIT state, although LAST_ACK and CLOSING are also possible. This sequence of events can tie up a lot of resources on the Linux server since there may be a lot of data in write buffers at the time of the RST. Accepting a RST equal to rcv_nxt - 1, after we have already successfully processed a FIN, has made a significant difference for us in practice, by freeing up unneeded resources in a more expedient fashion. A packetdrill test demonstrating the behavior: // testing mac osx rst behavior // Establish a connection 0.000 socket(..., SOCK_STREAM, IPPROTO_TCP) = 3 0.000 setsockopt(3, SOL_SOCKET, SO_REUSEADDR, [1], 4) = 0 0.000 bind(3, ..., ...) = 0 0.000 listen(3, 1) = 0 0.100 < S 0:0(0) win 32768 <mss 1460,nop,wscale 10> 0.100 > S. 0:0(0) ack 1 <mss 1460,nop,wscale 5> 0.200 < . 1:1(0) ack 1 win 32768 0.200 accept(3, ..., ...) = 4 // Client closes the connection 0.300 < F. 1:1(0) ack 1 win 32768 // now send rst with same sequence 0.300 < R. 1:1(0) ack 1 win 32768 // make sure we are in TCP_CLOSE 0.400 %{ assert tcpi_state == 7 }% Signed-off-by: Jason Baron <jbaron@akamai.com> Cc: Eric Dumazet <edumazet@google.com> Acked-by: Eric Dumazet <edumazet@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-01-17 13:37:19 -05:00
} else if (tcp_reset_check(sk, skb)) {
goto reset;
}
goto discard;
}
/* Step 2: check RST bit */
if (th->rst) {
tcp: accept RST for rcv_nxt - 1 after receiving a FIN Using a Mac OSX box as a client connecting to a Linux server, we have found that when certain applications (such as 'ab'), are abruptly terminated (via ^C), a FIN is sent followed by a RST packet on tcp connections. The FIN is accepted by the Linux stack but the RST is sent with the same sequence number as the FIN, and Linux responds with a challenge ACK per RFC 5961. The OSX client then sometimes (they are rate-limited) does not reply with any RST as would be expected on a closed socket. This results in sockets accumulating on the Linux server left mostly in the CLOSE_WAIT state, although LAST_ACK and CLOSING are also possible. This sequence of events can tie up a lot of resources on the Linux server since there may be a lot of data in write buffers at the time of the RST. Accepting a RST equal to rcv_nxt - 1, after we have already successfully processed a FIN, has made a significant difference for us in practice, by freeing up unneeded resources in a more expedient fashion. A packetdrill test demonstrating the behavior: // testing mac osx rst behavior // Establish a connection 0.000 socket(..., SOCK_STREAM, IPPROTO_TCP) = 3 0.000 setsockopt(3, SOL_SOCKET, SO_REUSEADDR, [1], 4) = 0 0.000 bind(3, ..., ...) = 0 0.000 listen(3, 1) = 0 0.100 < S 0:0(0) win 32768 <mss 1460,nop,wscale 10> 0.100 > S. 0:0(0) ack 1 <mss 1460,nop,wscale 5> 0.200 < . 1:1(0) ack 1 win 32768 0.200 accept(3, ..., ...) = 4 // Client closes the connection 0.300 < F. 1:1(0) ack 1 win 32768 // now send rst with same sequence 0.300 < R. 1:1(0) ack 1 win 32768 // make sure we are in TCP_CLOSE 0.400 %{ assert tcpi_state == 7 }% Signed-off-by: Jason Baron <jbaron@akamai.com> Cc: Eric Dumazet <edumazet@google.com> Acked-by: Eric Dumazet <edumazet@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-01-17 13:37:19 -05:00
/* RFC 5961 3.2 (extend to match against (RCV.NXT - 1) after a
* FIN and SACK too if available):
* If seq num matches RCV.NXT or (RCV.NXT - 1) after a FIN, or
* the right-most SACK block,
tcp: accept RST if SEQ matches right edge of right-most SACK block RFC 5961 advises to only accept RST packets containing a seq number matching the next expected seq number instead of the whole receive window in order to avoid spoofing attacks. However, this situation is not optimal in the case SACK is in use at the time the RST is sent. I recently run into a scenario in which packet losses were high while uploading data to a server, and userspace was willing to frequently terminate connections by sending a RST. In this case, the ACK sent on the receiver side (rcv_nxt) is frozen waiting for a lost packet retransmission and SACK blocks are used to let the client continue uploading data. At some point later on, the client sends the RST (snd_nxt), which matches the next expected seq number of the right-most SACK block on the receiver side which is going forward receiving data. In this scenario, as RFC 5961 defines, the RST SEQ doesn't match the frozen main ACK at receiver side and thus gets dropped and a challenge ACK is sent, which gets usually lost due to network conditions. The main consequence is that the connection stays alive for a while even if it made sense to accept the RST. This can get really bad if lots of connections like this one are created in few seconds, allocating all the resources of the server easily. For security reasons, not all SACK blocks are checked (there could be a big amount of SACK blocks => acceptable SEQ numbers). Furthermore, it wouldn't make sense to check for RST in blocks other than the right-most received one because the sender is not expected to be sending new data after the RST. For simplicity, only up to the 4 most recently updated SACK blocks (selective_acks[4] field) are compared to find the right-most block, as usually those are the ones with bigger probability to contain it. This patch was tested in a 3.18 kernel and probed to improve the situation in the scenario described above. Signed-off-by: Pau Espin Pedrol <pau.espin@tessares.net> Acked-by: Eric Dumazet <edumazet@google.com> Acked-by: Neal Cardwell <ncardwell@google.com> Tested-by: Neal Cardwell <ncardwell@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-06-07 16:30:34 +02:00
* then
* RESET the connection
* else
* Send a challenge ACK
*/
tcp: accept RST for rcv_nxt - 1 after receiving a FIN Using a Mac OSX box as a client connecting to a Linux server, we have found that when certain applications (such as 'ab'), are abruptly terminated (via ^C), a FIN is sent followed by a RST packet on tcp connections. The FIN is accepted by the Linux stack but the RST is sent with the same sequence number as the FIN, and Linux responds with a challenge ACK per RFC 5961. The OSX client then sometimes (they are rate-limited) does not reply with any RST as would be expected on a closed socket. This results in sockets accumulating on the Linux server left mostly in the CLOSE_WAIT state, although LAST_ACK and CLOSING are also possible. This sequence of events can tie up a lot of resources on the Linux server since there may be a lot of data in write buffers at the time of the RST. Accepting a RST equal to rcv_nxt - 1, after we have already successfully processed a FIN, has made a significant difference for us in practice, by freeing up unneeded resources in a more expedient fashion. A packetdrill test demonstrating the behavior: // testing mac osx rst behavior // Establish a connection 0.000 socket(..., SOCK_STREAM, IPPROTO_TCP) = 3 0.000 setsockopt(3, SOL_SOCKET, SO_REUSEADDR, [1], 4) = 0 0.000 bind(3, ..., ...) = 0 0.000 listen(3, 1) = 0 0.100 < S 0:0(0) win 32768 <mss 1460,nop,wscale 10> 0.100 > S. 0:0(0) ack 1 <mss 1460,nop,wscale 5> 0.200 < . 1:1(0) ack 1 win 32768 0.200 accept(3, ..., ...) = 4 // Client closes the connection 0.300 < F. 1:1(0) ack 1 win 32768 // now send rst with same sequence 0.300 < R. 1:1(0) ack 1 win 32768 // make sure we are in TCP_CLOSE 0.400 %{ assert tcpi_state == 7 }% Signed-off-by: Jason Baron <jbaron@akamai.com> Cc: Eric Dumazet <edumazet@google.com> Acked-by: Eric Dumazet <edumazet@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-01-17 13:37:19 -05:00
if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt ||
tcp_reset_check(sk, skb))
goto reset;
if (tcp_is_sack(tp) && tp->rx_opt.num_sacks > 0) {
tcp: accept RST if SEQ matches right edge of right-most SACK block RFC 5961 advises to only accept RST packets containing a seq number matching the next expected seq number instead of the whole receive window in order to avoid spoofing attacks. However, this situation is not optimal in the case SACK is in use at the time the RST is sent. I recently run into a scenario in which packet losses were high while uploading data to a server, and userspace was willing to frequently terminate connections by sending a RST. In this case, the ACK sent on the receiver side (rcv_nxt) is frozen waiting for a lost packet retransmission and SACK blocks are used to let the client continue uploading data. At some point later on, the client sends the RST (snd_nxt), which matches the next expected seq number of the right-most SACK block on the receiver side which is going forward receiving data. In this scenario, as RFC 5961 defines, the RST SEQ doesn't match the frozen main ACK at receiver side and thus gets dropped and a challenge ACK is sent, which gets usually lost due to network conditions. The main consequence is that the connection stays alive for a while even if it made sense to accept the RST. This can get really bad if lots of connections like this one are created in few seconds, allocating all the resources of the server easily. For security reasons, not all SACK blocks are checked (there could be a big amount of SACK blocks => acceptable SEQ numbers). Furthermore, it wouldn't make sense to check for RST in blocks other than the right-most received one because the sender is not expected to be sending new data after the RST. For simplicity, only up to the 4 most recently updated SACK blocks (selective_acks[4] field) are compared to find the right-most block, as usually those are the ones with bigger probability to contain it. This patch was tested in a 3.18 kernel and probed to improve the situation in the scenario described above. Signed-off-by: Pau Espin Pedrol <pau.espin@tessares.net> Acked-by: Eric Dumazet <edumazet@google.com> Acked-by: Neal Cardwell <ncardwell@google.com> Tested-by: Neal Cardwell <ncardwell@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-06-07 16:30:34 +02:00
struct tcp_sack_block *sp = &tp->selective_acks[0];
int max_sack = sp[0].end_seq;
int this_sack;
for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;
++this_sack) {
max_sack = after(sp[this_sack].end_seq,
max_sack) ?
sp[this_sack].end_seq : max_sack;
}
if (TCP_SKB_CB(skb)->seq == max_sack)
goto reset;
tcp: accept RST if SEQ matches right edge of right-most SACK block RFC 5961 advises to only accept RST packets containing a seq number matching the next expected seq number instead of the whole receive window in order to avoid spoofing attacks. However, this situation is not optimal in the case SACK is in use at the time the RST is sent. I recently run into a scenario in which packet losses were high while uploading data to a server, and userspace was willing to frequently terminate connections by sending a RST. In this case, the ACK sent on the receiver side (rcv_nxt) is frozen waiting for a lost packet retransmission and SACK blocks are used to let the client continue uploading data. At some point later on, the client sends the RST (snd_nxt), which matches the next expected seq number of the right-most SACK block on the receiver side which is going forward receiving data. In this scenario, as RFC 5961 defines, the RST SEQ doesn't match the frozen main ACK at receiver side and thus gets dropped and a challenge ACK is sent, which gets usually lost due to network conditions. The main consequence is that the connection stays alive for a while even if it made sense to accept the RST. This can get really bad if lots of connections like this one are created in few seconds, allocating all the resources of the server easily. For security reasons, not all SACK blocks are checked (there could be a big amount of SACK blocks => acceptable SEQ numbers). Furthermore, it wouldn't make sense to check for RST in blocks other than the right-most received one because the sender is not expected to be sending new data after the RST. For simplicity, only up to the 4 most recently updated SACK blocks (selective_acks[4] field) are compared to find the right-most block, as usually those are the ones with bigger probability to contain it. This patch was tested in a 3.18 kernel and probed to improve the situation in the scenario described above. Signed-off-by: Pau Espin Pedrol <pau.espin@tessares.net> Acked-by: Eric Dumazet <edumazet@google.com> Acked-by: Neal Cardwell <ncardwell@google.com> Tested-by: Neal Cardwell <ncardwell@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-06-07 16:30:34 +02:00
}
/* Disable TFO if RST is out-of-order
* and no data has been received
* for current active TFO socket
*/
if (tp->syn_fastopen && !tp->data_segs_in &&
sk->sk_state == TCP_ESTABLISHED)
tcp_fastopen_active_disable(sk);
tcp_send_challenge_ack(sk);
SKB_DR_SET(reason, TCP_RESET);
goto discard;
}
/* step 3: check security and precedence [ignored] */
/* step 4: Check for a SYN
* RFC 5961 4.2 : Send a challenge ack
*/
if (th->syn) {
syn_challenge:
if (syn_inerr)
TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNCHALLENGE);
tcp_send_challenge_ack(sk);
SKB_DR_SET(reason, TCP_INVALID_SYN);
goto discard;
}
bpf_skops_parse_hdr(sk, skb);
return true;
discard:
tcp_drop_reason(sk, skb, reason);
return false;
reset:
tcp_reset(sk, skb);
__kfree_skb(skb);
return false;
}
/*
* TCP receive function for the ESTABLISHED state.
*
* It is split into a fast path and a slow path. The fast path is
* disabled when:
* - A zero window was announced from us - zero window probing
* is only handled properly in the slow path.
* - Out of order segments arrived.
* - Urgent data is expected.
* - There is no buffer space left
* - Unexpected TCP flags/window values/header lengths are received
* (detected by checking the TCP header against pred_flags)
* - Data is sent in both directions. Fast path only supports pure senders
* or pure receivers (this means either the sequence number or the ack
* value must stay constant)
* - Unexpected TCP option.
*
* When these conditions are not satisfied it drops into a standard
* receive procedure patterned after RFC793 to handle all cases.
* The first three cases are guaranteed by proper pred_flags setting,
* the rest is checked inline. Fast processing is turned on in
* tcp_data_queue when everything is OK.
*/
void tcp_rcv_established(struct sock *sk, struct sk_buff *skb)
{
enum skb_drop_reason reason = SKB_DROP_REASON_NOT_SPECIFIED;
const struct tcphdr *th = (const struct tcphdr *)skb->data;
struct tcp_sock *tp = tcp_sk(sk);
unsigned int len = skb->len;
/* TCP congestion window tracking */
trace_tcp_probe(sk, skb);
tcp_mstamp_refresh(tp);
inet: fully convert sk->sk_rx_dst to RCU rules syzbot reported various issues around early demux, one being included in this changelog [1] sk->sk_rx_dst is using RCU protection without clearly documenting it. And following sequences in tcp_v4_do_rcv()/tcp_v6_do_rcv() are not following standard RCU rules. [a] dst_release(dst); [b] sk->sk_rx_dst = NULL; They look wrong because a delete operation of RCU protected pointer is supposed to clear the pointer before the call_rcu()/synchronize_rcu() guarding actual memory freeing. In some cases indeed, dst could be freed before [b] is done. We could cheat by clearing sk_rx_dst before calling dst_release(), but this seems the right time to stick to standard RCU annotations and debugging facilities. [1] BUG: KASAN: use-after-free in dst_check include/net/dst.h:470 [inline] BUG: KASAN: use-after-free in tcp_v4_early_demux+0x95b/0x960 net/ipv4/tcp_ipv4.c:1792 Read of size 2 at addr ffff88807f1cb73a by task syz-executor.5/9204 CPU: 0 PID: 9204 Comm: syz-executor.5 Not tainted 5.16.0-rc5-syzkaller #0 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 01/01/2011 Call Trace: <TASK> __dump_stack lib/dump_stack.c:88 [inline] dump_stack_lvl+0xcd/0x134 lib/dump_stack.c:106 print_address_description.constprop.0.cold+0x8d/0x320 mm/kasan/report.c:247 __kasan_report mm/kasan/report.c:433 [inline] kasan_report.cold+0x83/0xdf mm/kasan/report.c:450 dst_check include/net/dst.h:470 [inline] tcp_v4_early_demux+0x95b/0x960 net/ipv4/tcp_ipv4.c:1792 ip_rcv_finish_core.constprop.0+0x15de/0x1e80 net/ipv4/ip_input.c:340 ip_list_rcv_finish.constprop.0+0x1b2/0x6e0 net/ipv4/ip_input.c:583 ip_sublist_rcv net/ipv4/ip_input.c:609 [inline] ip_list_rcv+0x34e/0x490 net/ipv4/ip_input.c:644 __netif_receive_skb_list_ptype net/core/dev.c:5508 [inline] __netif_receive_skb_list_core+0x549/0x8e0 net/core/dev.c:5556 __netif_receive_skb_list net/core/dev.c:5608 [inline] netif_receive_skb_list_internal+0x75e/0xd80 net/core/dev.c:5699 gro_normal_list net/core/dev.c:5853 [inline] gro_normal_list net/core/dev.c:5849 [inline] napi_complete_done+0x1f1/0x880 net/core/dev.c:6590 virtqueue_napi_complete drivers/net/virtio_net.c:339 [inline] virtnet_poll+0xca2/0x11b0 drivers/net/virtio_net.c:1557 __napi_poll+0xaf/0x440 net/core/dev.c:7023 napi_poll net/core/dev.c:7090 [inline] net_rx_action+0x801/0xb40 net/core/dev.c:7177 __do_softirq+0x29b/0x9c2 kernel/softirq.c:558 invoke_softirq kernel/softirq.c:432 [inline] __irq_exit_rcu+0x123/0x180 kernel/softirq.c:637 irq_exit_rcu+0x5/0x20 kernel/softirq.c:649 common_interrupt+0x52/0xc0 arch/x86/kernel/irq.c:240 asm_common_interrupt+0x1e/0x40 arch/x86/include/asm/idtentry.h:629 RIP: 0033:0x7f5e972bfd57 Code: 39 d1 73 14 0f 1f 80 00 00 00 00 48 8b 50 f8 48 83 e8 08 48 39 ca 77 f3 48 39 c3 73 3e 48 89 13 48 8b 50 f8 48 89 38 49 8b 0e <48> 8b 3e 48 83 c3 08 48 83 c6 08 eb bc 48 39 d1 72 9e 48 39 d0 73 RSP: 002b:00007fff8a413210 EFLAGS: 00000283 RAX: 00007f5e97108990 RBX: 00007f5e97108338 RCX: ffffffff81d3aa45 RDX: ffffffff81d3aa45 RSI: 00007f5e97108340 RDI: ffffffff81d3aa45 RBP: 00007f5e97107eb8 R08: 00007f5e97108d88 R09: 0000000093c2e8d9 R10: 0000000000000000 R11: 0000000000000000 R12: 00007f5e97107eb0 R13: 00007f5e97108338 R14: 00007f5e97107ea8 R15: 0000000000000019 </TASK> Allocated by task 13: kasan_save_stack+0x1e/0x50 mm/kasan/common.c:38 kasan_set_track mm/kasan/common.c:46 [inline] set_alloc_info mm/kasan/common.c:434 [inline] __kasan_slab_alloc+0x90/0xc0 mm/kasan/common.c:467 kasan_slab_alloc include/linux/kasan.h:259 [inline] slab_post_alloc_hook mm/slab.h:519 [inline] slab_alloc_node mm/slub.c:3234 [inline] slab_alloc mm/slub.c:3242 [inline] kmem_cache_alloc+0x202/0x3a0 mm/slub.c:3247 dst_alloc+0x146/0x1f0 net/core/dst.c:92 rt_dst_alloc+0x73/0x430 net/ipv4/route.c:1613 ip_route_input_slow+0x1817/0x3a20 net/ipv4/route.c:2340 ip_route_input_rcu net/ipv4/route.c:2470 [inline] ip_route_input_noref+0x116/0x2a0 net/ipv4/route.c:2415 ip_rcv_finish_core.constprop.0+0x288/0x1e80 net/ipv4/ip_input.c:354 ip_list_rcv_finish.constprop.0+0x1b2/0x6e0 net/ipv4/ip_input.c:583 ip_sublist_rcv net/ipv4/ip_input.c:609 [inline] ip_list_rcv+0x34e/0x490 net/ipv4/ip_input.c:644 __netif_receive_skb_list_ptype net/core/dev.c:5508 [inline] __netif_receive_skb_list_core+0x549/0x8e0 net/core/dev.c:5556 __netif_receive_skb_list net/core/dev.c:5608 [inline] netif_receive_skb_list_internal+0x75e/0xd80 net/core/dev.c:5699 gro_normal_list net/core/dev.c:5853 [inline] gro_normal_list net/core/dev.c:5849 [inline] napi_complete_done+0x1f1/0x880 net/core/dev.c:6590 virtqueue_napi_complete drivers/net/virtio_net.c:339 [inline] virtnet_poll+0xca2/0x11b0 drivers/net/virtio_net.c:1557 __napi_poll+0xaf/0x440 net/core/dev.c:7023 napi_poll net/core/dev.c:7090 [inline] net_rx_action+0x801/0xb40 net/core/dev.c:7177 __do_softirq+0x29b/0x9c2 kernel/softirq.c:558 Freed by task 13: kasan_save_stack+0x1e/0x50 mm/kasan/common.c:38 kasan_set_track+0x21/0x30 mm/kasan/common.c:46 kasan_set_free_info+0x20/0x30 mm/kasan/generic.c:370 ____kasan_slab_free mm/kasan/common.c:366 [inline] ____kasan_slab_free mm/kasan/common.c:328 [inline] __kasan_slab_free+0xff/0x130 mm/kasan/common.c:374 kasan_slab_free include/linux/kasan.h:235 [inline] slab_free_hook mm/slub.c:1723 [inline] slab_free_freelist_hook+0x8b/0x1c0 mm/slub.c:1749 slab_free mm/slub.c:3513 [inline] kmem_cache_free+0xbd/0x5d0 mm/slub.c:3530 dst_destroy+0x2d6/0x3f0 net/core/dst.c:127 rcu_do_batch kernel/rcu/tree.c:2506 [inline] rcu_core+0x7ab/0x1470 kernel/rcu/tree.c:2741 __do_softirq+0x29b/0x9c2 kernel/softirq.c:558 Last potentially related work creation: kasan_save_stack+0x1e/0x50 mm/kasan/common.c:38 __kasan_record_aux_stack+0xf5/0x120 mm/kasan/generic.c:348 __call_rcu kernel/rcu/tree.c:2985 [inline] call_rcu+0xb1/0x740 kernel/rcu/tree.c:3065 dst_release net/core/dst.c:177 [inline] dst_release+0x79/0xe0 net/core/dst.c:167 tcp_v4_do_rcv+0x612/0x8d0 net/ipv4/tcp_ipv4.c:1712 sk_backlog_rcv include/net/sock.h:1030 [inline] __release_sock+0x134/0x3b0 net/core/sock.c:2768 release_sock+0x54/0x1b0 net/core/sock.c:3300 tcp_sendmsg+0x36/0x40 net/ipv4/tcp.c:1441 inet_sendmsg+0x99/0xe0 net/ipv4/af_inet.c:819 sock_sendmsg_nosec net/socket.c:704 [inline] sock_sendmsg+0xcf/0x120 net/socket.c:724 sock_write_iter+0x289/0x3c0 net/socket.c:1057 call_write_iter include/linux/fs.h:2162 [inline] new_sync_write+0x429/0x660 fs/read_write.c:503 vfs_write+0x7cd/0xae0 fs/read_write.c:590 ksys_write+0x1ee/0x250 fs/read_write.c:643 do_syscall_x64 arch/x86/entry/common.c:50 [inline] do_syscall_64+0x35/0xb0 arch/x86/entry/common.c:80 entry_SYSCALL_64_after_hwframe+0x44/0xae The buggy address belongs to the object at ffff88807f1cb700 which belongs to the cache ip_dst_cache of size 176 The buggy address is located 58 bytes inside of 176-byte region [ffff88807f1cb700, ffff88807f1cb7b0) The buggy address belongs to the page: page:ffffea0001fc72c0 refcount:1 mapcount:0 mapping:0000000000000000 index:0x0 pfn:0x7f1cb flags: 0xfff00000000200(slab|node=0|zone=1|lastcpupid=0x7ff) raw: 00fff00000000200 dead000000000100 dead000000000122 ffff8881413bb780 raw: 0000000000000000 0000000000100010 00000001ffffffff 0000000000000000 page dumped because: kasan: bad access detected page_owner tracks the page as allocated page last allocated via order 0, migratetype Unmovable, gfp_mask 0x112a20(GFP_ATOMIC|__GFP_NOWARN|__GFP_NORETRY|__GFP_HARDWALL), pid 5, ts 108466983062, free_ts 108048976062 prep_new_page mm/page_alloc.c:2418 [inline] get_page_from_freelist+0xa72/0x2f50 mm/page_alloc.c:4149 __alloc_pages+0x1b2/0x500 mm/page_alloc.c:5369 alloc_pages+0x1a7/0x300 mm/mempolicy.c:2191 alloc_slab_page mm/slub.c:1793 [inline] allocate_slab mm/slub.c:1930 [inline] new_slab+0x32d/0x4a0 mm/slub.c:1993 ___slab_alloc+0x918/0xfe0 mm/slub.c:3022 __slab_alloc.constprop.0+0x4d/0xa0 mm/slub.c:3109 slab_alloc_node mm/slub.c:3200 [inline] slab_alloc mm/slub.c:3242 [inline] kmem_cache_alloc+0x35c/0x3a0 mm/slub.c:3247 dst_alloc+0x146/0x1f0 net/core/dst.c:92 rt_dst_alloc+0x73/0x430 net/ipv4/route.c:1613 __mkroute_output net/ipv4/route.c:2564 [inline] ip_route_output_key_hash_rcu+0x921/0x2d00 net/ipv4/route.c:2791 ip_route_output_key_hash+0x18b/0x300 net/ipv4/route.c:2619 __ip_route_output_key include/net/route.h:126 [inline] ip_route_output_flow+0x23/0x150 net/ipv4/route.c:2850 ip_route_output_key include/net/route.h:142 [inline] geneve_get_v4_rt+0x3a6/0x830 drivers/net/geneve.c:809 geneve_xmit_skb drivers/net/geneve.c:899 [inline] geneve_xmit+0xc4a/0x3540 drivers/net/geneve.c:1082 __netdev_start_xmit include/linux/netdevice.h:4994 [inline] netdev_start_xmit include/linux/netdevice.h:5008 [inline] xmit_one net/core/dev.c:3590 [inline] dev_hard_start_xmit+0x1eb/0x920 net/core/dev.c:3606 __dev_queue_xmit+0x299a/0x3650 net/core/dev.c:4229 page last free stack trace: reset_page_owner include/linux/page_owner.h:24 [inline] free_pages_prepare mm/page_alloc.c:1338 [inline] free_pcp_prepare+0x374/0x870 mm/page_alloc.c:1389 free_unref_page_prepare mm/page_alloc.c:3309 [inline] free_unref_page+0x19/0x690 mm/page_alloc.c:3388 qlink_free mm/kasan/quarantine.c:146 [inline] qlist_free_all+0x5a/0xc0 mm/kasan/quarantine.c:165 kasan_quarantine_reduce+0x180/0x200 mm/kasan/quarantine.c:272 __kasan_slab_alloc+0xa2/0xc0 mm/kasan/common.c:444 kasan_slab_alloc include/linux/kasan.h:259 [inline] slab_post_alloc_hook mm/slab.h:519 [inline] slab_alloc_node mm/slub.c:3234 [inline] kmem_cache_alloc_node+0x255/0x3f0 mm/slub.c:3270 __alloc_skb+0x215/0x340 net/core/skbuff.c:414 alloc_skb include/linux/skbuff.h:1126 [inline] alloc_skb_with_frags+0x93/0x620 net/core/skbuff.c:6078 sock_alloc_send_pskb+0x783/0x910 net/core/sock.c:2575 mld_newpack+0x1df/0x770 net/ipv6/mcast.c:1754 add_grhead+0x265/0x330 net/ipv6/mcast.c:1857 add_grec+0x1053/0x14e0 net/ipv6/mcast.c:1995 mld_send_initial_cr.part.0+0xf6/0x230 net/ipv6/mcast.c:2242 mld_send_initial_cr net/ipv6/mcast.c:1232 [inline] mld_dad_work+0x1d3/0x690 net/ipv6/mcast.c:2268 process_one_work+0x9b2/0x1690 kernel/workqueue.c:2298 worker_thread+0x658/0x11f0 kernel/workqueue.c:2445 Memory state around the buggy address: ffff88807f1cb600: fa fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb ffff88807f1cb680: fb fb fb fb fb fb fc fc fc fc fc fc fc fc fc fc >ffff88807f1cb700: fa fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb ^ ffff88807f1cb780: fb fb fb fb fb fb fc fc fc fc fc fc fc fc fc fc ffff88807f1cb800: fa fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb Fixes: 41063e9dd119 ("ipv4: Early TCP socket demux.") Signed-off-by: Eric Dumazet <edumazet@google.com> Link: https://lore.kernel.org/r/20211220143330.680945-1-eric.dumazet@gmail.com Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2021-12-20 06:33:30 -08:00
if (unlikely(!rcu_access_pointer(sk->sk_rx_dst)))
inet_csk(sk)->icsk_af_ops->sk_rx_dst_set(sk, skb);
/*
* Header prediction.
* The code loosely follows the one in the famous
* "30 instruction TCP receive" Van Jacobson mail.
*
* Van's trick is to deposit buffers into socket queue
* on a device interrupt, to call tcp_recv function
* on the receive process context and checksum and copy
* the buffer to user space. smart...
*
* Our current scheme is not silly either but we take the
* extra cost of the net_bh soft interrupt processing...
* We do checksum and copy also but from device to kernel.
*/
tp->rx_opt.saw_tstamp = 0;
/* pred_flags is 0xS?10 << 16 + snd_wnd
* if header_prediction is to be made
* 'S' will always be tp->tcp_header_len >> 2
* '?' will be 0 for the fast path, otherwise pred_flags is 0 to
* turn it off (when there are holes in the receive
* space for instance)
* PSH flag is ignored.
*/
if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
TCP_SKB_CB(skb)->seq == tp->rcv_nxt &&
!after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) {
int tcp_header_len = tp->tcp_header_len;
/* Timestamp header prediction: tcp_header_len
* is automatically equal to th->doff*4 due to pred_flags
* match.
*/
/* Check timestamp */
if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
/* No? Slow path! */
if (!tcp_parse_aligned_timestamp(tp, th))
goto slow_path;
/* If PAWS failed, check it more carefully in slow path */
if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0)
goto slow_path;
/* DO NOT update ts_recent here, if checksum fails
* and timestamp was corrupted part, it will result
* in a hung connection since we will drop all
* future packets due to the PAWS test.
*/
}
if (len <= tcp_header_len) {
/* Bulk data transfer: sender */
if (len == tcp_header_len) {
/* Predicted packet is in window by definition.
* seq == rcv_nxt and rcv_wup <= rcv_nxt.
* Hence, check seq<=rcv_wup reduces to:
*/
if (tcp_header_len ==
(sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
tp->rcv_nxt == tp->rcv_wup)
tcp_store_ts_recent(tp);
/* We know that such packets are checksummed
* on entry.
*/
tcp_ack(sk, skb, 0);
__kfree_skb(skb);
tcp_data_snd_check(sk);
/* When receiving pure ack in fast path, update
* last ts ecr directly instead of calling
* tcp_rcv_rtt_measure_ts()
*/
tp->rcv_rtt_last_tsecr = tp->rx_opt.rcv_tsecr;
return;
} else { /* Header too small */
reason = SKB_DROP_REASON_PKT_TOO_SMALL;
TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
goto discard;
}
} else {
int eaten = 0;
bool fragstolen = false;
if (tcp_checksum_complete(skb))
goto csum_error;
if ((int)skb->truesize > sk->sk_forward_alloc)
goto step5;
/* Predicted packet is in window by definition.
* seq == rcv_nxt and rcv_wup <= rcv_nxt.
* Hence, check seq<=rcv_wup reduces to:
*/
if (tcp_header_len ==
(sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
tp->rcv_nxt == tp->rcv_wup)
tcp_store_ts_recent(tp);
tcp_rcv_rtt_measure_ts(sk, skb);
NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPHITS);
/* Bulk data transfer: receiver */
skb_dst_drop(skb);
__skb_pull(skb, tcp_header_len);
eaten = tcp_queue_rcv(sk, skb, &fragstolen);
tcp_event_data_recv(sk, skb);
if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
/* Well, only one small jumplet in fast path... */
tcp_ack(sk, skb, FLAG_DATA);
tcp_data_snd_check(sk);
if (!inet_csk_ack_scheduled(sk))
goto no_ack;
tcp: fix to update snd_wl1 in bulk receiver fast path In the header prediction fast path for a bulk data receiver, if no data is newly acknowledged then we do not call tcp_ack() and do not call tcp_ack_update_window(). This means that a bulk receiver that receives large amounts of data can have the incoming sequence numbers wrap, so that the check in tcp_may_update_window fails: after(ack_seq, tp->snd_wl1) If the incoming receive windows are zero in this state, and then the connection that was a bulk data receiver later wants to send data, that connection can find itself persistently rejecting the window updates in incoming ACKs. This means the connection can persistently fail to discover that the receive window has opened, which in turn means that the connection is unable to send anything, and the connection's sending process can get permanently "stuck". The fix is to update snd_wl1 in the header prediction fast path for a bulk data receiver, so that it keeps up and does not see wrapping problems. This fix is based on a very nice and thorough analysis and diagnosis by Apollon Oikonomopoulos (see link below). This is a stable candidate but there is no Fixes tag here since the bug predates current git history. Just for fun: looks like the bug dates back to when header prediction was added in Linux v2.1.8 in Nov 1996. In that version tcp_rcv_established() was added, and the code only updates snd_wl1 in tcp_ack(), and in the new "Bulk data transfer: receiver" code path it does not call tcp_ack(). This fix seems to apply cleanly at least as far back as v3.2. Fixes: 1da177e4c3f4 ("Linux-2.6.12-rc2") Signed-off-by: Neal Cardwell <ncardwell@google.com> Reported-by: Apollon Oikonomopoulos <apoikos@dmesg.gr> Tested-by: Apollon Oikonomopoulos <apoikos@dmesg.gr> Link: https://www.spinics.net/lists/netdev/msg692430.html Acked-by: Soheil Hassas Yeganeh <soheil@google.com> Acked-by: Yuchung Cheng <ycheng@google.com> Signed-off-by: Eric Dumazet <edumazet@google.com> Link: https://lore.kernel.org/r/20201022143331.1887495-1-ncardwell.kernel@gmail.com Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2020-10-22 10:33:31 -04:00
} else {
tcp_update_wl(tp, TCP_SKB_CB(skb)->seq);
}
__tcp_ack_snd_check(sk, 0);
no_ack:
if (eaten)
kfree_skb_partial(skb, fragstolen);
tcp_data_ready(sk);
return;
}
}
slow_path:
if (len < (th->doff << 2) || tcp_checksum_complete(skb))
goto csum_error;
if (!th->ack && !th->rst && !th->syn) {
reason = SKB_DROP_REASON_TCP_FLAGS;
goto discard;
}
/*
* Standard slow path.
*/
if (!tcp_validate_incoming(sk, skb, th, 1))
return;
step5:
reason = tcp_ack(sk, skb, FLAG_SLOWPATH | FLAG_UPDATE_TS_RECENT);
if ((int)reason < 0) {
reason = -reason;
goto discard;
}
tcp_rcv_rtt_measure_ts(sk, skb);
/* Process urgent data. */
tcp_urg(sk, skb, th);
/* step 7: process the segment text */
tcp_data_queue(sk, skb);
[TCP]: Sed magic converts func(sk, tp, ...) -> func(sk, ...) This is (mostly) automated change using magic: sed -e '/struct sock \*sk/ N' -e '/struct sock \*sk/ N' -e '/struct sock \*sk/ N' -e '/struct sock \*sk/ N' -e 's|struct sock \*sk,[\n\t ]*struct tcp_sock \*tp\([^{]*\n{\n\)| struct sock \*sk\1\tstruct tcp_sock *tp = tcp_sk(sk);\n|g' -e 's|struct sock \*sk, struct tcp_sock \*tp| struct sock \*sk|g' -e 's|sk, tp\([^-]\)|sk\1|g' Fixed four unused variable (tp) warnings that were introduced. In addition, manually added newlines after local variables and tweaked function arguments positioning. $ gcc --version gcc (GCC) 4.1.1 20060525 (Red Hat 4.1.1-1) ... $ codiff -fV built-in.o.old built-in.o.new net/ipv4/route.c: rt_cache_flush | +14 1 function changed, 14 bytes added net/ipv4/tcp.c: tcp_setsockopt | -5 tcp_sendpage | -25 tcp_sendmsg | -16 3 functions changed, 46 bytes removed net/ipv4/tcp_input.c: tcp_try_undo_recovery | +3 tcp_try_undo_dsack | +2 tcp_mark_head_lost | -12 tcp_ack | -15 tcp_event_data_recv | -32 tcp_rcv_state_process | -10 tcp_rcv_established | +1 7 functions changed, 6 bytes added, 69 bytes removed, diff: -63 net/ipv4/tcp_output.c: update_send_head | -9 tcp_transmit_skb | +19 tcp_cwnd_validate | +1 tcp_write_wakeup | -17 __tcp_push_pending_frames | -25 tcp_push_one | -8 tcp_send_fin | -4 7 functions changed, 20 bytes added, 63 bytes removed, diff: -43 built-in.o.new: 18 functions changed, 40 bytes added, 178 bytes removed, diff: -138 Signed-off-by: Ilpo Järvinen <ilpo.jarvinen@helsinki.fi> Signed-off-by: David S. Miller <davem@davemloft.net>
2007-04-20 22:18:02 -07:00
tcp_data_snd_check(sk);
tcp_ack_snd_check(sk);
return;
csum_error:
reason = SKB_DROP_REASON_TCP_CSUM;
trace_tcp_bad_csum(skb);
TCP_INC_STATS(sock_net(sk), TCP_MIB_CSUMERRORS);
TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
discard:
tcp_drop_reason(sk, skb, reason);
}
EXPORT_SYMBOL(tcp_rcv_established);
void tcp_init_transfer(struct sock *sk, int bpf_op, struct sk_buff *skb)
{
struct inet_connection_sock *icsk = inet_csk(sk);
struct tcp_sock *tp = tcp_sk(sk);
tcp_mtup_init(sk);
icsk->icsk_af_ops->rebuild_header(sk);
tcp_init_metrics(sk);
/* Initialize the congestion window to start the transfer.
* Cut cwnd down to 1 per RFC5681 if SYN or SYN-ACK has been
* retransmitted. In light of RFC6298 more aggressive 1sec
* initRTO, we only reset cwnd when more than 1 SYN/SYN-ACK
* retransmission has occurred.
*/
if (tp->total_retrans > 1 && tp->undo_marker)
tcp_snd_cwnd_set(tp, 1);
else
tcp_snd_cwnd_set(tp, tcp_init_cwnd(tp, __sk_dst_get(sk)));
tp->snd_cwnd_stamp = tcp_jiffies32;
bpf_skops_established(sk, bpf_op, skb);
tcp: fix tcp_init_transfer() to not reset icsk_ca_initialized This commit fixes a bug (found by syzkaller) that could cause spurious double-initializations for congestion control modules, which could cause memory leaks or other problems for congestion control modules (like CDG) that allocate memory in their init functions. The buggy scenario constructed by syzkaller was something like: (1) create a TCP socket (2) initiate a TFO connect via sendto() (3) while socket is in TCP_SYN_SENT, call setsockopt(TCP_CONGESTION), which calls: tcp_set_congestion_control() -> tcp_reinit_congestion_control() -> tcp_init_congestion_control() (4) receive ACK, connection is established, call tcp_init_transfer(), set icsk_ca_initialized=0 (without first calling cc->release()), call tcp_init_congestion_control() again. Note that in this sequence tcp_init_congestion_control() is called twice without a cc->release() call in between. Thus, for CC modules that allocate memory in their init() function, e.g, CDG, a memory leak may occur. The syzkaller tool managed to find a reproducer that triggered such a leak in CDG. The bug was introduced when that commit 8919a9b31eb4 ("tcp: Only init congestion control if not initialized already") introduced icsk_ca_initialized and set icsk_ca_initialized to 0 in tcp_init_transfer(), missing the possibility for a sequence like the one above, where a process could call setsockopt(TCP_CONGESTION) in state TCP_SYN_SENT (i.e. after the connect() or TFO open sendmsg()), which would call tcp_init_congestion_control(). It did not intend to reset any initialization that the user had already explicitly made; it just missed the possibility of that particular sequence (which syzkaller managed to find). Fixes: 8919a9b31eb4 ("tcp: Only init congestion control if not initialized already") Reported-by: syzbot+f1e24a0594d4e3a895d3@syzkaller.appspotmail.com Signed-off-by: Nguyen Dinh Phi <phind.uet@gmail.com> Acked-by: Neal Cardwell <ncardwell@google.com> Tested-by: Neal Cardwell <ncardwell@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2021-07-06 07:19:12 +08:00
/* Initialize congestion control unless BPF initialized it already: */
if (!icsk->icsk_ca_initialized)
tcp_init_congestion_control(sk);
tcp_init_buffer_space(sk);
}
void tcp_finish_connect(struct sock *sk, struct sk_buff *skb)
{
struct tcp_sock *tp = tcp_sk(sk);
struct inet_connection_sock *icsk = inet_csk(sk);
tcp_set_state(sk, TCP_ESTABLISHED);
icsk->icsk_ack.lrcvtime = tcp_jiffies32;
if (skb) {
icsk->icsk_af_ops->sk_rx_dst_set(sk, skb);
security_inet_conn_established(sk, skb);
sk_mark_napi_id(sk, skb);
}
tcp_init_transfer(sk, BPF_SOCK_OPS_ACTIVE_ESTABLISHED_CB, skb);
/* Prevent spurious tcp_cwnd_restart() on first data
* packet.
*/
tp->lsndtime = tcp_jiffies32;
if (sock_flag(sk, SOCK_KEEPOPEN))
inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp));
if (!tp->rx_opt.snd_wscale)
__tcp_fast_path_on(tp, tp->snd_wnd);
else
tp->pred_flags = 0;
}
static bool tcp_rcv_fastopen_synack(struct sock *sk, struct sk_buff *synack,
struct tcp_fastopen_cookie *cookie)
{
struct tcp_sock *tp = tcp_sk(sk);
tcp: implement rb-tree based retransmit queue Using a linear list to store all skbs in write queue has been okay for quite a while : O(N) is not too bad when N < 500. Things get messy when N is the order of 100,000 : Modern TCP stacks want 10Gbit+ of throughput even with 200 ms RTT flows. 40 ns per cache line miss means a full scan can use 4 ms, blowing away CPU caches. SACK processing often can use various hints to avoid parsing whole retransmit queue. But with high packet losses and/or high reordering, hints no longer work. Sender has to process thousands of unfriendly SACK, accumulating a huge socket backlog, burning a cpu and massively dropping packets. Using an rb-tree for retransmit queue has been avoided for years because it added complexity and overhead, but now is the time to be more resistant and say no to quadratic behavior. 1) RTX queue is no longer part of the write queue : already sent skbs are stored in one rb-tree. 2) Since reaching the head of write queue no longer needs sk->sk_send_head, we added an union of sk_send_head and tcp_rtx_queue Tested: On receiver : netem on ingress : delay 150ms 200us loss 1 GRO disabled to force stress and SACK storms. for f in `seq 1 10` do ./netperf -H lpaa6 -l30 -- -K bbr -o THROUGHPUT|tail -1 done | awk '{print $0} {sum += $0} END {printf "%7u\n",sum}' Before patch : 323.87 351.48 339.59 338.62 306.72 204.07 304.93 291.88 202.47 176.88 2840 After patch: 1700.83 2207.98 2070.17 1544.26 2114.76 2124.89 1693.14 1080.91 2216.82 1299.94 18053 Signed-off-by: Eric Dumazet <edumazet@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-10-05 22:21:27 -07:00
struct sk_buff *data = tp->syn_data ? tcp_rtx_queue_head(sk) : NULL;
u16 mss = tp->rx_opt.mss_clamp, try_exp = 0;
bool syn_drop = false;
if (mss == tp->rx_opt.user_mss) {
struct tcp_options_received opt;
/* Get original SYNACK MSS value if user MSS sets mss_clamp */
tcp_clear_options(&opt);
opt.user_mss = opt.mss_clamp = 0;
tcp_parse_options(sock_net(sk), synack, &opt, 0, NULL);
mss = opt.mss_clamp;
}
if (!tp->syn_fastopen) {
/* Ignore an unsolicited cookie */
cookie->len = -1;
} else if (tp->total_retrans) {
/* SYN timed out and the SYN-ACK neither has a cookie nor
* acknowledges data. Presumably the remote received only
* the retransmitted (regular) SYNs: either the original
* SYN-data or the corresponding SYN-ACK was dropped.
*/
syn_drop = (cookie->len < 0 && data);
} else if (cookie->len < 0 && !tp->syn_data) {
/* We requested a cookie but didn't get it. If we did not use
* the (old) exp opt format then try so next time (try_exp=1).
* Otherwise we go back to use the RFC7413 opt (try_exp=2).
*/
try_exp = tp->syn_fastopen_exp ? 2 : 1;
}
tcp_fastopen_cache_set(sk, mss, cookie, syn_drop, try_exp);
if (data) { /* Retransmit unacked data in SYN */
tcp: add TCP_INFO status for failed client TFO The TCPI_OPT_SYN_DATA bit as part of tcpi_options currently reports whether or not data-in-SYN was ack'd on both the client and server side. We'd like to gather more information on the client-side in the failure case in order to indicate the reason for the failure. This can be useful for not only debugging TFO, but also for creating TFO socket policies. For example, if a middle box removes the TFO option or drops a data-in-SYN, we can can detect this case, and turn off TFO for these connections saving the extra retransmits. The newly added tcpi_fastopen_client_fail status is 2 bits and has the following 4 states: 1) TFO_STATUS_UNSPEC Catch-all state which includes when TFO is disabled via black hole detection, which is indicated via LINUX_MIB_TCPFASTOPENBLACKHOLE. 2) TFO_COOKIE_UNAVAILABLE If TFO_CLIENT_NO_COOKIE mode is off, this state indicates that no cookie is available in the cache. 3) TFO_DATA_NOT_ACKED Data was sent with SYN, we received a SYN/ACK but it did not cover the data portion. Cookie is not accepted by server because the cookie may be invalid or the server may be overloaded. 4) TFO_SYN_RETRANSMITTED Data was sent with SYN, we received a SYN/ACK which did not cover the data after at least 1 additional SYN was sent (without data). It may be the case that a middle-box is dropping data-in-SYN packets. Thus, it would be more efficient to not use TFO on this connection to avoid extra retransmits during connection establishment. These new fields do not cover all the cases where TFO may fail, but other failures, such as SYN/ACK + data being dropped, will result in the connection not becoming established. And a connection blackhole after session establishment shows up as a stalled connection. Signed-off-by: Jason Baron <jbaron@akamai.com> Cc: Eric Dumazet <edumazet@google.com> Cc: Neal Cardwell <ncardwell@google.com> Cc: Christoph Paasch <cpaasch@apple.com> Cc: Yuchung Cheng <ycheng@google.com> Acked-by: Yuchung Cheng <ycheng@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-10-23 11:09:26 -04:00
if (tp->total_retrans)
tp->fastopen_client_fail = TFO_SYN_RETRANSMITTED;
else
tp->fastopen_client_fail = TFO_DATA_NOT_ACKED;
skb_rbtree_walk_from(data)
tcp_mark_skb_lost(sk, data);
tcp_xmit_retransmit_queue(sk);
NET_INC_STATS(sock_net(sk),
LINUX_MIB_TCPFASTOPENACTIVEFAIL);
return true;
}
tp->syn_data_acked = tp->syn_data;
if (tp->syn_data_acked) {
NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFASTOPENACTIVE);
/* SYN-data is counted as two separate packets in tcp_ack() */
if (tp->delivered > 1)
--tp->delivered;
}
tcp_fastopen_add_skb(sk, synack);
return false;
}
static void smc_check_reset_syn(struct tcp_sock *tp)
{
#if IS_ENABLED(CONFIG_SMC)
if (static_branch_unlikely(&tcp_have_smc)) {
if (tp->syn_smc && !tp->rx_opt.smc_ok)
tp->syn_smc = 0;
}
#endif
}
static void tcp_try_undo_spurious_syn(struct sock *sk)
{
struct tcp_sock *tp = tcp_sk(sk);
u32 syn_stamp;
/* undo_marker is set when SYN or SYNACK times out. The timeout is
* spurious if the ACK's timestamp option echo value matches the
* original SYN timestamp.
*/
syn_stamp = tp->retrans_stamp;
if (tp->undo_marker && syn_stamp && tp->rx_opt.saw_tstamp &&
syn_stamp == tp->rx_opt.rcv_tsecr)
tp->undo_marker = 0;
}
static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
const struct tcphdr *th)
{
struct inet_connection_sock *icsk = inet_csk(sk);
struct tcp_sock *tp = tcp_sk(sk);
struct tcp_fastopen_cookie foc = { .len = -1 };
int saved_clamp = tp->rx_opt.mss_clamp;
bool fastopen_fail;
SKB_DR(reason);
tcp_parse_options(sock_net(sk), skb, &tp->rx_opt, 0, &foc);
if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
tp->rx_opt.rcv_tsecr -= tp->tsoffset;
if (th->ack) {
/* rfc793:
* "If the state is SYN-SENT then
* first check the ACK bit
* If the ACK bit is set
* If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
* a reset (unless the RST bit is set, if so drop
* the segment and return)"
*/
if (!after(TCP_SKB_CB(skb)->ack_seq, tp->snd_una) ||
tcp: Reduce SYN resend delay if a suspicous ACK is received When closing a connection, the two acks that required to change closing socket's status to FIN_WAIT_2 and then TIME_WAIT could be processed in reverse order. This is possible in RSS disabled environments such as a connection inside a host. For example, expected state transitions and required packets for the disconnection will be similar to below flow. 00 (Process A) (Process B) 01 ESTABLISHED ESTABLISHED 02 close() 03 FIN_WAIT_1 04 ---FIN--> 05 CLOSE_WAIT 06 <--ACK--- 07 FIN_WAIT_2 08 <--FIN/ACK--- 09 TIME_WAIT 10 ---ACK--> 11 LAST_ACK 12 CLOSED CLOSED In some cases such as LINGER option applied socket, the FIN and FIN/ACK will be substituted to RST and RST/ACK, but there is no difference in the main logic. The acks in lines 6 and 8 are the acks. If the line 8 packet is processed before the line 6 packet, it will be just ignored as it is not a expected packet, and the later process of the line 6 packet will change the status of Process A to FIN_WAIT_2, but as it has already handled line 8 packet, it will not go to TIME_WAIT and thus will not send the line 10 packet to Process B. Thus, Process B will left in CLOSE_WAIT status, as below. 00 (Process A) (Process B) 01 ESTABLISHED ESTABLISHED 02 close() 03 FIN_WAIT_1 04 ---FIN--> 05 CLOSE_WAIT 06 (<--ACK---) 07 (<--FIN/ACK---) 08 (fired in right order) 09 <--FIN/ACK--- 10 <--ACK--- 11 (processed in reverse order) 12 FIN_WAIT_2 Later, if the Process B sends SYN to Process A for reconnection using the same port, Process A will responds with an ACK for the last flow, which has no increased sequence number. Thus, Process A will send RST, wait for TIMEOUT_INIT (one second in default), and then try reconnection. If reconnections are frequent, the one second latency spikes can be a big problem. Below is a tcpdump results of the problem: 14.436259 IP 127.0.0.1.45150 > 127.0.0.1.4242: Flags [S], seq 2560603644 14.436266 IP 127.0.0.1.4242 > 127.0.0.1.45150: Flags [.], ack 5, win 512 14.436271 IP 127.0.0.1.45150 > 127.0.0.1.4242: Flags [R], seq 2541101298 /* ONE SECOND DELAY */ 15.464613 IP 127.0.0.1.45150 > 127.0.0.1.4242: Flags [S], seq 2560603644 This commit mitigates the problem by reducing the delay for the next SYN if the suspicous ACK is received while in SYN_SENT state. Following commit will add a selftest, which can be also helpful for understanding of this issue. Signed-off-by: Eric Dumazet <edumazet@google.com> Signed-off-by: SeongJae Park <sjpark@amazon.de> Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2020-02-02 03:38:26 +00:00
after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) {
/* Previous FIN/ACK or RST/ACK might be ignored. */
if (icsk->icsk_retransmits == 0)
inet_csk_reset_xmit_timer(sk,
ICSK_TIME_RETRANS,
TCP_TIMEOUT_MIN, TCP_RTO_MAX);
goto reset_and_undo;
tcp: Reduce SYN resend delay if a suspicous ACK is received When closing a connection, the two acks that required to change closing socket's status to FIN_WAIT_2 and then TIME_WAIT could be processed in reverse order. This is possible in RSS disabled environments such as a connection inside a host. For example, expected state transitions and required packets for the disconnection will be similar to below flow. 00 (Process A) (Process B) 01 ESTABLISHED ESTABLISHED 02 close() 03 FIN_WAIT_1 04 ---FIN--> 05 CLOSE_WAIT 06 <--ACK--- 07 FIN_WAIT_2 08 <--FIN/ACK--- 09 TIME_WAIT 10 ---ACK--> 11 LAST_ACK 12 CLOSED CLOSED In some cases such as LINGER option applied socket, the FIN and FIN/ACK will be substituted to RST and RST/ACK, but there is no difference in the main logic. The acks in lines 6 and 8 are the acks. If the line 8 packet is processed before the line 6 packet, it will be just ignored as it is not a expected packet, and the later process of the line 6 packet will change the status of Process A to FIN_WAIT_2, but as it has already handled line 8 packet, it will not go to TIME_WAIT and thus will not send the line 10 packet to Process B. Thus, Process B will left in CLOSE_WAIT status, as below. 00 (Process A) (Process B) 01 ESTABLISHED ESTABLISHED 02 close() 03 FIN_WAIT_1 04 ---FIN--> 05 CLOSE_WAIT 06 (<--ACK---) 07 (<--FIN/ACK---) 08 (fired in right order) 09 <--FIN/ACK--- 10 <--ACK--- 11 (processed in reverse order) 12 FIN_WAIT_2 Later, if the Process B sends SYN to Process A for reconnection using the same port, Process A will responds with an ACK for the last flow, which has no increased sequence number. Thus, Process A will send RST, wait for TIMEOUT_INIT (one second in default), and then try reconnection. If reconnections are frequent, the one second latency spikes can be a big problem. Below is a tcpdump results of the problem: 14.436259 IP 127.0.0.1.45150 > 127.0.0.1.4242: Flags [S], seq 2560603644 14.436266 IP 127.0.0.1.4242 > 127.0.0.1.45150: Flags [.], ack 5, win 512 14.436271 IP 127.0.0.1.45150 > 127.0.0.1.4242: Flags [R], seq 2541101298 /* ONE SECOND DELAY */ 15.464613 IP 127.0.0.1.45150 > 127.0.0.1.4242: Flags [S], seq 2560603644 This commit mitigates the problem by reducing the delay for the next SYN if the suspicous ACK is received while in SYN_SENT state. Following commit will add a selftest, which can be also helpful for understanding of this issue. Signed-off-by: Eric Dumazet <edumazet@google.com> Signed-off-by: SeongJae Park <sjpark@amazon.de> Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2020-02-02 03:38:26 +00:00
}
if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
!between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
tcp_time_stamp(tp))) {
NET_INC_STATS(sock_net(sk),
LINUX_MIB_PAWSACTIVEREJECTED);
goto reset_and_undo;
}
/* Now ACK is acceptable.
*
* "If the RST bit is set
* If the ACK was acceptable then signal the user "error:
* connection reset", drop the segment, enter CLOSED state,
* delete TCB, and return."
*/
if (th->rst) {
tcp_reset(sk, skb);
consume:
__kfree_skb(skb);
return 0;
}
/* rfc793:
* "fifth, if neither of the SYN or RST bits is set then
* drop the segment and return."
*
* See note below!
* --ANK(990513)
*/
if (!th->syn) {
SKB_DR_SET(reason, TCP_FLAGS);
goto discard_and_undo;
}
/* rfc793:
* "If the SYN bit is on ...
* are acceptable then ...
* (our SYN has been ACKed), change the connection
* state to ESTABLISHED..."
*/
tcp_ecn_rcv_synack(tp, th);
tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
tcp_try_undo_spurious_syn(sk);
tcp_ack(sk, skb, FLAG_SLOWPATH);
/* Ok.. it's good. Set up sequence numbers and
* move to established.
*/
tcp: annotate tp->rcv_nxt lockless reads There are few places where we fetch tp->rcv_nxt while this field can change from IRQ or other cpu. We need to add READ_ONCE() annotations, and also make sure write sides use corresponding WRITE_ONCE() to avoid store-tearing. Note that tcp_inq_hint() was already using READ_ONCE(tp->rcv_nxt) syzbot reported : BUG: KCSAN: data-race in tcp_poll / tcp_queue_rcv write to 0xffff888120425770 of 4 bytes by interrupt on cpu 0: tcp_rcv_nxt_update net/ipv4/tcp_input.c:3365 [inline] tcp_queue_rcv+0x180/0x380 net/ipv4/tcp_input.c:4638 tcp_rcv_established+0xbf1/0xf50 net/ipv4/tcp_input.c:5616 tcp_v4_do_rcv+0x381/0x4e0 net/ipv4/tcp_ipv4.c:1542 tcp_v4_rcv+0x1a03/0x1bf0 net/ipv4/tcp_ipv4.c:1923 ip_protocol_deliver_rcu+0x51/0x470 net/ipv4/ip_input.c:204 ip_local_deliver_finish+0x110/0x140 net/ipv4/ip_input.c:231 NF_HOOK include/linux/netfilter.h:305 [inline] NF_HOOK include/linux/netfilter.h:299 [inline] ip_local_deliver+0x133/0x210 net/ipv4/ip_input.c:252 dst_input include/net/dst.h:442 [inline] ip_rcv_finish+0x121/0x160 net/ipv4/ip_input.c:413 NF_HOOK include/linux/netfilter.h:305 [inline] NF_HOOK include/linux/netfilter.h:299 [inline] ip_rcv+0x18f/0x1a0 net/ipv4/ip_input.c:523 __netif_receive_skb_one_core+0xa7/0xe0 net/core/dev.c:5004 __netif_receive_skb+0x37/0xf0 net/core/dev.c:5118 netif_receive_skb_internal+0x59/0x190 net/core/dev.c:5208 napi_skb_finish net/core/dev.c:5671 [inline] napi_gro_receive+0x28f/0x330 net/core/dev.c:5704 receive_buf+0x284/0x30b0 drivers/net/virtio_net.c:1061 read to 0xffff888120425770 of 4 bytes by task 7254 on cpu 1: tcp_stream_is_readable net/ipv4/tcp.c:480 [inline] tcp_poll+0x204/0x6b0 net/ipv4/tcp.c:554 sock_poll+0xed/0x250 net/socket.c:1256 vfs_poll include/linux/poll.h:90 [inline] ep_item_poll.isra.0+0x90/0x190 fs/eventpoll.c:892 ep_send_events_proc+0x113/0x5c0 fs/eventpoll.c:1749 ep_scan_ready_list.constprop.0+0x189/0x500 fs/eventpoll.c:704 ep_send_events fs/eventpoll.c:1793 [inline] ep_poll+0xe3/0x900 fs/eventpoll.c:1930 do_epoll_wait+0x162/0x180 fs/eventpoll.c:2294 __do_sys_epoll_pwait fs/eventpoll.c:2325 [inline] __se_sys_epoll_pwait fs/eventpoll.c:2311 [inline] __x64_sys_epoll_pwait+0xcd/0x170 fs/eventpoll.c:2311 do_syscall_64+0xcf/0x2f0 arch/x86/entry/common.c:296 entry_SYSCALL_64_after_hwframe+0x44/0xa9 Reported by Kernel Concurrency Sanitizer on: CPU: 1 PID: 7254 Comm: syz-fuzzer Not tainted 5.3.0+ #0 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 01/01/2011 Signed-off-by: Eric Dumazet <edumazet@google.com> Reported-by: syzbot <syzkaller@googlegroups.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-10-10 20:17:39 -07:00
WRITE_ONCE(tp->rcv_nxt, TCP_SKB_CB(skb)->seq + 1);
tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
/* RFC1323: The window in SYN & SYN/ACK segments is
* never scaled.
*/
tp->snd_wnd = ntohs(th->window);
if (!tp->rx_opt.wscale_ok) {
tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
tp->window_clamp = min(tp->window_clamp, 65535U);
}
if (tp->rx_opt.saw_tstamp) {
tp->rx_opt.tstamp_ok = 1;
tp->tcp_header_len =
sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
tcp_store_ts_recent(tp);
} else {
tp->tcp_header_len = sizeof(struct tcphdr);
}
tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
tcp_initialize_rcv_mss(sk);
/* Remember, tcp_poll() does not lock socket!
* Change state from SYN-SENT only after copied_seq
* is initialized. */
WRITE_ONCE(tp->copied_seq, tp->rcv_nxt);
smc_check_reset_syn(tp);
smp_mb();
tcp_finish_connect(sk, skb);
fastopen_fail = (tp->syn_fastopen || tp->syn_data) &&
tcp_rcv_fastopen_synack(sk, skb, &foc);
if (!sock_flag(sk, SOCK_DEAD)) {
sk->sk_state_change(sk);
sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
}
if (fastopen_fail)
return -1;
if (sk->sk_write_pending ||
READ_ONCE(icsk->icsk_accept_queue.rskq_defer_accept) ||
inet_csk_in_pingpong_mode(sk)) {
/* Save one ACK. Data will be ready after
* several ticks, if write_pending is set.
*
* It may be deleted, but with this feature tcpdumps
* look so _wonderfully_ clever, that I was not able
* to stand against the temptation 8) --ANK
*/
inet_csk_schedule_ack(sk);
tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS);
inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
TCP_DELACK_MAX, TCP_RTO_MAX);
goto consume;
}
tcp_send_ack(sk);
return -1;
}
/* No ACK in the segment */
if (th->rst) {
/* rfc793:
* "If the RST bit is set
*
* Otherwise (no ACK) drop the segment and return."
*/
SKB_DR_SET(reason, TCP_RESET);
goto discard_and_undo;
}
/* PAWS check. */
if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp &&
tcp_paws_reject(&tp->rx_opt, 0)) {
SKB_DR_SET(reason, TCP_RFC7323_PAWS);
goto discard_and_undo;
}
if (th->syn) {
/* We see SYN without ACK. It is attempt of
* simultaneous connect with crossed SYNs.
* Particularly, it can be connect to self.
*/
tcp_set_state(sk, TCP_SYN_RECV);
if (tp->rx_opt.saw_tstamp) {
tp->rx_opt.tstamp_ok = 1;
tcp_store_ts_recent(tp);
tp->tcp_header_len =
sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
} else {
tp->tcp_header_len = sizeof(struct tcphdr);
}
tcp: annotate tp->rcv_nxt lockless reads There are few places where we fetch tp->rcv_nxt while this field can change from IRQ or other cpu. We need to add READ_ONCE() annotations, and also make sure write sides use corresponding WRITE_ONCE() to avoid store-tearing. Note that tcp_inq_hint() was already using READ_ONCE(tp->rcv_nxt) syzbot reported : BUG: KCSAN: data-race in tcp_poll / tcp_queue_rcv write to 0xffff888120425770 of 4 bytes by interrupt on cpu 0: tcp_rcv_nxt_update net/ipv4/tcp_input.c:3365 [inline] tcp_queue_rcv+0x180/0x380 net/ipv4/tcp_input.c:4638 tcp_rcv_established+0xbf1/0xf50 net/ipv4/tcp_input.c:5616 tcp_v4_do_rcv+0x381/0x4e0 net/ipv4/tcp_ipv4.c:1542 tcp_v4_rcv+0x1a03/0x1bf0 net/ipv4/tcp_ipv4.c:1923 ip_protocol_deliver_rcu+0x51/0x470 net/ipv4/ip_input.c:204 ip_local_deliver_finish+0x110/0x140 net/ipv4/ip_input.c:231 NF_HOOK include/linux/netfilter.h:305 [inline] NF_HOOK include/linux/netfilter.h:299 [inline] ip_local_deliver+0x133/0x210 net/ipv4/ip_input.c:252 dst_input include/net/dst.h:442 [inline] ip_rcv_finish+0x121/0x160 net/ipv4/ip_input.c:413 NF_HOOK include/linux/netfilter.h:305 [inline] NF_HOOK include/linux/netfilter.h:299 [inline] ip_rcv+0x18f/0x1a0 net/ipv4/ip_input.c:523 __netif_receive_skb_one_core+0xa7/0xe0 net/core/dev.c:5004 __netif_receive_skb+0x37/0xf0 net/core/dev.c:5118 netif_receive_skb_internal+0x59/0x190 net/core/dev.c:5208 napi_skb_finish net/core/dev.c:5671 [inline] napi_gro_receive+0x28f/0x330 net/core/dev.c:5704 receive_buf+0x284/0x30b0 drivers/net/virtio_net.c:1061 read to 0xffff888120425770 of 4 bytes by task 7254 on cpu 1: tcp_stream_is_readable net/ipv4/tcp.c:480 [inline] tcp_poll+0x204/0x6b0 net/ipv4/tcp.c:554 sock_poll+0xed/0x250 net/socket.c:1256 vfs_poll include/linux/poll.h:90 [inline] ep_item_poll.isra.0+0x90/0x190 fs/eventpoll.c:892 ep_send_events_proc+0x113/0x5c0 fs/eventpoll.c:1749 ep_scan_ready_list.constprop.0+0x189/0x500 fs/eventpoll.c:704 ep_send_events fs/eventpoll.c:1793 [inline] ep_poll+0xe3/0x900 fs/eventpoll.c:1930 do_epoll_wait+0x162/0x180 fs/eventpoll.c:2294 __do_sys_epoll_pwait fs/eventpoll.c:2325 [inline] __se_sys_epoll_pwait fs/eventpoll.c:2311 [inline] __x64_sys_epoll_pwait+0xcd/0x170 fs/eventpoll.c:2311 do_syscall_64+0xcf/0x2f0 arch/x86/entry/common.c:296 entry_SYSCALL_64_after_hwframe+0x44/0xa9 Reported by Kernel Concurrency Sanitizer on: CPU: 1 PID: 7254 Comm: syz-fuzzer Not tainted 5.3.0+ #0 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 01/01/2011 Signed-off-by: Eric Dumazet <edumazet@google.com> Reported-by: syzbot <syzkaller@googlegroups.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-10-10 20:17:39 -07:00
WRITE_ONCE(tp->rcv_nxt, TCP_SKB_CB(skb)->seq + 1);
WRITE_ONCE(tp->copied_seq, tp->rcv_nxt);
tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
/* RFC1323: The window in SYN & SYN/ACK segments is
* never scaled.
*/
tp->snd_wnd = ntohs(th->window);
tp->snd_wl1 = TCP_SKB_CB(skb)->seq;
tp->max_window = tp->snd_wnd;
tcp_ecn_rcv_syn(tp, th);
tcp_mtup_init(sk);
tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
tcp_initialize_rcv_mss(sk);
tcp_send_synack(sk);
#if 0
/* Note, we could accept data and URG from this segment.
* There are no obstacles to make this (except that we must
* either change tcp_recvmsg() to prevent it from returning data
* before 3WHS completes per RFC793, or employ TCP Fast Open).
*
* However, if we ignore data in ACKless segments sometimes,
* we have no reasons to accept it sometimes.
* Also, seems the code doing it in step6 of tcp_rcv_state_process
* is not flawless. So, discard packet for sanity.
* Uncomment this return to process the data.
*/
return -1;
#else
goto consume;
#endif
}
/* "fifth, if neither of the SYN or RST bits is set then
* drop the segment and return."
*/
discard_and_undo:
tcp_clear_options(&tp->rx_opt);
tp->rx_opt.mss_clamp = saved_clamp;
tcp_drop_reason(sk, skb, reason);
return 0;
reset_and_undo:
tcp_clear_options(&tp->rx_opt);
tp->rx_opt.mss_clamp = saved_clamp;
return 1;
}
static void tcp_rcv_synrecv_state_fastopen(struct sock *sk)
{
struct tcp_sock *tp = tcp_sk(sk);
struct request_sock *req;
tcp: fix TFO SYNACK undo to avoid double-timestamp-undo In a rare corner case the new logic for undo of SYNACK RTO could result in triggering the warning in tcp_fastretrans_alert() that says: WARN_ON(tp->retrans_out != 0); The warning looked like: WARNING: CPU: 1 PID: 1 at net/ipv4/tcp_input.c:2818 tcp_ack+0x13e0/0x3270 The sequence that tickles this bug is: - Fast Open server receives TFO SYN with data, sends SYNACK - (client receives SYNACK and sends ACK, but ACK is lost) - server app sends some data packets - (N of the first data packets are lost) - server receives client ACK that has a TS ECR matching first SYNACK, and also SACKs suggesting the first N data packets were lost - server performs TS undo of SYNACK RTO, then immediately enters recovery - buggy behavior then performed a *second* undo that caused the connection to be in CA_Open with retrans_out != 0 Basically, the incoming ACK packet with SACK blocks causes us to first undo the cwnd reduction from the SYNACK RTO, but then immediately enters fast recovery, which then makes us eligible for undo again. And then tcp_rcv_synrecv_state_fastopen() accidentally performs an undo using a "mash-up" of state from two different loss recovery phases: it uses the timestamp info from the ACK of the original SYNACK, and the undo_marker from the fast recovery. This fix refines the logic to only invoke the tcp_try_undo_loss() inside tcp_rcv_synrecv_state_fastopen() if the connection is still in CA_Loss. If peer SACKs triggered fast recovery, then tcp_rcv_synrecv_state_fastopen() can't safely undo. Fixes: 794200d66273 ("tcp: undo cwnd on Fast Open spurious SYNACK retransmit") Signed-off-by: Neal Cardwell <ncardwell@google.com> Signed-off-by: Yuchung Cheng <ycheng@google.com> Signed-off-by: Eric Dumazet <edumazet@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2020-02-22 11:21:15 -05:00
/* If we are still handling the SYNACK RTO, see if timestamp ECR allows
* undo. If peer SACKs triggered fast recovery, we can't undo here.
*/
if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss && !tp->packets_out)
tcp_try_undo_recovery(sk);
/* Reset rtx states to prevent spurious retransmits_timed_out() */
tcp_update_rto_time(tp);
tp->retrans_stamp = 0;
inet_csk(sk)->icsk_retransmits = 0;
/* Once we leave TCP_SYN_RECV or TCP_FIN_WAIT_1,
* we no longer need req so release it.
*/
req = rcu_dereference_protected(tp->fastopen_rsk,
lockdep_sock_is_held(sk));
reqsk_fastopen_remove(sk, req, false);
/* Re-arm the timer because data may have been sent out.
* This is similar to the regular data transmission case
* when new data has just been ack'ed.
*
* (TFO) - we could try to be more aggressive and
* retransmitting any data sooner based on when they
* are sent out.
*/
tcp_rearm_rto(sk);
}
/*
* This function implements the receiving procedure of RFC 793 for
* all states except ESTABLISHED and TIME_WAIT.
* It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
* address independent.
*/
int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb)
{
struct tcp_sock *tp = tcp_sk(sk);
struct inet_connection_sock *icsk = inet_csk(sk);
const struct tcphdr *th = tcp_hdr(skb);
struct request_sock *req;
int queued = 0;
bool acceptable;
SKB_DR(reason);
switch (sk->sk_state) {
case TCP_CLOSE:
SKB_DR_SET(reason, TCP_CLOSE);
goto discard;
case TCP_LISTEN:
if (th->ack)
return 1;
if (th->rst) {
SKB_DR_SET(reason, TCP_RESET);
goto discard;
}
if (th->syn) {
if (th->fin) {
SKB_DR_SET(reason, TCP_FLAGS);
goto discard;
}
tcp/dccp: block BH for SYN processing SYN processing really was meant to be handled from BH. When I got rid of BH blocking while processing socket backlog in commit 5413d1babe8f ("net: do not block BH while processing socket backlog"), I forgot that a malicious user could transition to TCP_LISTEN from a state that allowed (SYN) packets to be parked in the socket backlog while socket is owned by the thread doing the listen() call. Sure enough syzkaller found this and reported the bug ;) ================================= [ INFO: inconsistent lock state ] 4.10.0+ #60 Not tainted --------------------------------- inconsistent {IN-SOFTIRQ-W} -> {SOFTIRQ-ON-W} usage. syz-executor0/5090 [HC0[0]:SC0[0]:HE1:SE1] takes: (&(&hashinfo->ehash_locks[i])->rlock){+.?...}, at: [<ffffffff83a6a370>] spin_lock include/linux/spinlock.h:299 [inline] (&(&hashinfo->ehash_locks[i])->rlock){+.?...}, at: [<ffffffff83a6a370>] inet_ehash_insert+0x240/0xad0 net/ipv4/inet_hashtables.c:407 {IN-SOFTIRQ-W} state was registered at: mark_irqflags kernel/locking/lockdep.c:2923 [inline] __lock_acquire+0xbcf/0x3270 kernel/locking/lockdep.c:3295 lock_acquire+0x241/0x580 kernel/locking/lockdep.c:3753 __raw_spin_lock include/linux/spinlock_api_smp.h:142 [inline] _raw_spin_lock+0x33/0x50 kernel/locking/spinlock.c:151 spin_lock include/linux/spinlock.h:299 [inline] inet_ehash_insert+0x240/0xad0 net/ipv4/inet_hashtables.c:407 reqsk_queue_hash_req net/ipv4/inet_connection_sock.c:753 [inline] inet_csk_reqsk_queue_hash_add+0x1b7/0x2a0 net/ipv4/inet_connection_sock.c:764 tcp_conn_request+0x25cc/0x3310 net/ipv4/tcp_input.c:6399 tcp_v4_conn_request+0x157/0x220 net/ipv4/tcp_ipv4.c:1262 tcp_rcv_state_process+0x802/0x4130 net/ipv4/tcp_input.c:5889 tcp_v4_do_rcv+0x56b/0x940 net/ipv4/tcp_ipv4.c:1433 tcp_v4_rcv+0x2e12/0x3210 net/ipv4/tcp_ipv4.c:1711 ip_local_deliver_finish+0x4ce/0xc40 net/ipv4/ip_input.c:216 NF_HOOK include/linux/netfilter.h:257 [inline] ip_local_deliver+0x1ce/0x710 net/ipv4/ip_input.c:257 dst_input include/net/dst.h:492 [inline] ip_rcv_finish+0xb1d/0x2110 net/ipv4/ip_input.c:396 NF_HOOK include/linux/netfilter.h:257 [inline] ip_rcv+0xd90/0x19c0 net/ipv4/ip_input.c:487 __netif_receive_skb_core+0x1ad1/0x3400 net/core/dev.c:4179 __netif_receive_skb+0x2a/0x170 net/core/dev.c:4217 netif_receive_skb_internal+0x1d6/0x430 net/core/dev.c:4245 napi_skb_finish net/core/dev.c:4602 [inline] napi_gro_receive+0x4e6/0x680 net/core/dev.c:4636 e1000_receive_skb drivers/net/ethernet/intel/e1000/e1000_main.c:4033 [inline] e1000_clean_rx_irq+0x5e0/0x1490 drivers/net/ethernet/intel/e1000/e1000_main.c:4489 e1000_clean+0xb9a/0x2910 drivers/net/ethernet/intel/e1000/e1000_main.c:3834 napi_poll net/core/dev.c:5171 [inline] net_rx_action+0xe70/0x1900 net/core/dev.c:5236 __do_softirq+0x2fb/0xb7d kernel/softirq.c:284 invoke_softirq kernel/softirq.c:364 [inline] irq_exit+0x19e/0x1d0 kernel/softirq.c:405 exiting_irq arch/x86/include/asm/apic.h:658 [inline] do_IRQ+0x81/0x1a0 arch/x86/kernel/irq.c:250 ret_from_intr+0x0/0x20 native_safe_halt+0x6/0x10 arch/x86/include/asm/irqflags.h:53 arch_safe_halt arch/x86/include/asm/paravirt.h:98 [inline] default_idle+0x8f/0x410 arch/x86/kernel/process.c:271 arch_cpu_idle+0xa/0x10 arch/x86/kernel/process.c:262 default_idle_call+0x36/0x60 kernel/sched/idle.c:96 cpuidle_idle_call kernel/sched/idle.c:154 [inline] do_idle+0x348/0x440 kernel/sched/idle.c:243 cpu_startup_entry+0x18/0x20 kernel/sched/idle.c:345 start_secondary+0x344/0x440 arch/x86/kernel/smpboot.c:272 verify_cpu+0x0/0xfc irq event stamp: 1741 hardirqs last enabled at (1741): [<ffffffff84d49d77>] __raw_spin_unlock_irqrestore include/linux/spinlock_api_smp.h:160 [inline] hardirqs last enabled at (1741): [<ffffffff84d49d77>] _raw_spin_unlock_irqrestore+0xf7/0x1a0 kernel/locking/spinlock.c:191 hardirqs last disabled at (1740): [<ffffffff84d4a732>] __raw_spin_lock_irqsave include/linux/spinlock_api_smp.h:108 [inline] hardirqs last disabled at (1740): [<ffffffff84d4a732>] _raw_spin_lock_irqsave+0xa2/0x110 kernel/locking/spinlock.c:159 softirqs last enabled at (1738): [<ffffffff84d4deff>] __do_softirq+0x7cf/0xb7d kernel/softirq.c:310 softirqs last disabled at (1571): [<ffffffff84d4b92c>] do_softirq_own_stack+0x1c/0x30 arch/x86/entry/entry_64.S:902 other info that might help us debug this: Possible unsafe locking scenario: CPU0 ---- lock(&(&hashinfo->ehash_locks[i])->rlock); <Interrupt> lock(&(&hashinfo->ehash_locks[i])->rlock); *** DEADLOCK *** 1 lock held by syz-executor0/5090: #0: (sk_lock-AF_INET6){+.+.+.}, at: [<ffffffff83406b43>] lock_sock include/net/sock.h:1460 [inline] #0: (sk_lock-AF_INET6){+.+.+.}, at: [<ffffffff83406b43>] sock_setsockopt+0x233/0x1e40 net/core/sock.c:683 stack backtrace: CPU: 1 PID: 5090 Comm: syz-executor0 Not tainted 4.10.0+ #60 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS Bochs 01/01/2011 Call Trace: __dump_stack lib/dump_stack.c:15 [inline] dump_stack+0x292/0x398 lib/dump_stack.c:51 print_usage_bug+0x3ef/0x450 kernel/locking/lockdep.c:2387 valid_state kernel/locking/lockdep.c:2400 [inline] mark_lock_irq kernel/locking/lockdep.c:2602 [inline] mark_lock+0xf30/0x1410 kernel/locking/lockdep.c:3065 mark_irqflags kernel/locking/lockdep.c:2941 [inline] __lock_acquire+0x6dc/0x3270 kernel/locking/lockdep.c:3295 lock_acquire+0x241/0x580 kernel/locking/lockdep.c:3753 __raw_spin_lock include/linux/spinlock_api_smp.h:142 [inline] _raw_spin_lock+0x33/0x50 kernel/locking/spinlock.c:151 spin_lock include/linux/spinlock.h:299 [inline] inet_ehash_insert+0x240/0xad0 net/ipv4/inet_hashtables.c:407 reqsk_queue_hash_req net/ipv4/inet_connection_sock.c:753 [inline] inet_csk_reqsk_queue_hash_add+0x1b7/0x2a0 net/ipv4/inet_connection_sock.c:764 dccp_v6_conn_request+0xada/0x11b0 net/dccp/ipv6.c:380 dccp_rcv_state_process+0x51e/0x1660 net/dccp/input.c:606 dccp_v6_do_rcv+0x213/0x350 net/dccp/ipv6.c:632 sk_backlog_rcv include/net/sock.h:896 [inline] __release_sock+0x127/0x3a0 net/core/sock.c:2052 release_sock+0xa5/0x2b0 net/core/sock.c:2539 sock_setsockopt+0x60f/0x1e40 net/core/sock.c:1016 SYSC_setsockopt net/socket.c:1782 [inline] SyS_setsockopt+0x2fb/0x3a0 net/socket.c:1765 entry_SYSCALL_64_fastpath+0x1f/0xc2 RIP: 0033:0x4458b9 RSP: 002b:00007fe8b26c2b58 EFLAGS: 00000292 ORIG_RAX: 0000000000000036 RAX: ffffffffffffffda RBX: 0000000000000006 RCX: 00000000004458b9 RDX: 000000000000001a RSI: 0000000000000001 RDI: 0000000000000006 RBP: 00000000006e2110 R08: 0000000000000010 R09: 0000000000000000 R10: 00000000208c3000 R11: 0000000000000292 R12: 0000000000708000 R13: 0000000020000000 R14: 0000000000001000 R15: 0000000000000000 Fixes: 5413d1babe8f ("net: do not block BH while processing socket backlog") Signed-off-by: Eric Dumazet <edumazet@google.com> Reported-by: Andrey Konovalov <andreyknvl@google.com> Acked-by: Soheil Hassas Yeganeh <soheil@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-03-01 08:39:49 -08:00
/* It is possible that we process SYN packets from backlog,
* so we need to make sure to disable BH and RCU right there.
tcp/dccp: block BH for SYN processing SYN processing really was meant to be handled from BH. When I got rid of BH blocking while processing socket backlog in commit 5413d1babe8f ("net: do not block BH while processing socket backlog"), I forgot that a malicious user could transition to TCP_LISTEN from a state that allowed (SYN) packets to be parked in the socket backlog while socket is owned by the thread doing the listen() call. Sure enough syzkaller found this and reported the bug ;) ================================= [ INFO: inconsistent lock state ] 4.10.0+ #60 Not tainted --------------------------------- inconsistent {IN-SOFTIRQ-W} -> {SOFTIRQ-ON-W} usage. syz-executor0/5090 [HC0[0]:SC0[0]:HE1:SE1] takes: (&(&hashinfo->ehash_locks[i])->rlock){+.?...}, at: [<ffffffff83a6a370>] spin_lock include/linux/spinlock.h:299 [inline] (&(&hashinfo->ehash_locks[i])->rlock){+.?...}, at: [<ffffffff83a6a370>] inet_ehash_insert+0x240/0xad0 net/ipv4/inet_hashtables.c:407 {IN-SOFTIRQ-W} state was registered at: mark_irqflags kernel/locking/lockdep.c:2923 [inline] __lock_acquire+0xbcf/0x3270 kernel/locking/lockdep.c:3295 lock_acquire+0x241/0x580 kernel/locking/lockdep.c:3753 __raw_spin_lock include/linux/spinlock_api_smp.h:142 [inline] _raw_spin_lock+0x33/0x50 kernel/locking/spinlock.c:151 spin_lock include/linux/spinlock.h:299 [inline] inet_ehash_insert+0x240/0xad0 net/ipv4/inet_hashtables.c:407 reqsk_queue_hash_req net/ipv4/inet_connection_sock.c:753 [inline] inet_csk_reqsk_queue_hash_add+0x1b7/0x2a0 net/ipv4/inet_connection_sock.c:764 tcp_conn_request+0x25cc/0x3310 net/ipv4/tcp_input.c:6399 tcp_v4_conn_request+0x157/0x220 net/ipv4/tcp_ipv4.c:1262 tcp_rcv_state_process+0x802/0x4130 net/ipv4/tcp_input.c:5889 tcp_v4_do_rcv+0x56b/0x940 net/ipv4/tcp_ipv4.c:1433 tcp_v4_rcv+0x2e12/0x3210 net/ipv4/tcp_ipv4.c:1711 ip_local_deliver_finish+0x4ce/0xc40 net/ipv4/ip_input.c:216 NF_HOOK include/linux/netfilter.h:257 [inline] ip_local_deliver+0x1ce/0x710 net/ipv4/ip_input.c:257 dst_input include/net/dst.h:492 [inline] ip_rcv_finish+0xb1d/0x2110 net/ipv4/ip_input.c:396 NF_HOOK include/linux/netfilter.h:257 [inline] ip_rcv+0xd90/0x19c0 net/ipv4/ip_input.c:487 __netif_receive_skb_core+0x1ad1/0x3400 net/core/dev.c:4179 __netif_receive_skb+0x2a/0x170 net/core/dev.c:4217 netif_receive_skb_internal+0x1d6/0x430 net/core/dev.c:4245 napi_skb_finish net/core/dev.c:4602 [inline] napi_gro_receive+0x4e6/0x680 net/core/dev.c:4636 e1000_receive_skb drivers/net/ethernet/intel/e1000/e1000_main.c:4033 [inline] e1000_clean_rx_irq+0x5e0/0x1490 drivers/net/ethernet/intel/e1000/e1000_main.c:4489 e1000_clean+0xb9a/0x2910 drivers/net/ethernet/intel/e1000/e1000_main.c:3834 napi_poll net/core/dev.c:5171 [inline] net_rx_action+0xe70/0x1900 net/core/dev.c:5236 __do_softirq+0x2fb/0xb7d kernel/softirq.c:284 invoke_softirq kernel/softirq.c:364 [inline] irq_exit+0x19e/0x1d0 kernel/softirq.c:405 exiting_irq arch/x86/include/asm/apic.h:658 [inline] do_IRQ+0x81/0x1a0 arch/x86/kernel/irq.c:250 ret_from_intr+0x0/0x20 native_safe_halt+0x6/0x10 arch/x86/include/asm/irqflags.h:53 arch_safe_halt arch/x86/include/asm/paravirt.h:98 [inline] default_idle+0x8f/0x410 arch/x86/kernel/process.c:271 arch_cpu_idle+0xa/0x10 arch/x86/kernel/process.c:262 default_idle_call+0x36/0x60 kernel/sched/idle.c:96 cpuidle_idle_call kernel/sched/idle.c:154 [inline] do_idle+0x348/0x440 kernel/sched/idle.c:243 cpu_startup_entry+0x18/0x20 kernel/sched/idle.c:345 start_secondary+0x344/0x440 arch/x86/kernel/smpboot.c:272 verify_cpu+0x0/0xfc irq event stamp: 1741 hardirqs last enabled at (1741): [<ffffffff84d49d77>] __raw_spin_unlock_irqrestore include/linux/spinlock_api_smp.h:160 [inline] hardirqs last enabled at (1741): [<ffffffff84d49d77>] _raw_spin_unlock_irqrestore+0xf7/0x1a0 kernel/locking/spinlock.c:191 hardirqs last disabled at (1740): [<ffffffff84d4a732>] __raw_spin_lock_irqsave include/linux/spinlock_api_smp.h:108 [inline] hardirqs last disabled at (1740): [<ffffffff84d4a732>] _raw_spin_lock_irqsave+0xa2/0x110 kernel/locking/spinlock.c:159 softirqs last enabled at (1738): [<ffffffff84d4deff>] __do_softirq+0x7cf/0xb7d kernel/softirq.c:310 softirqs last disabled at (1571): [<ffffffff84d4b92c>] do_softirq_own_stack+0x1c/0x30 arch/x86/entry/entry_64.S:902 other info that might help us debug this: Possible unsafe locking scenario: CPU0 ---- lock(&(&hashinfo->ehash_locks[i])->rlock); <Interrupt> lock(&(&hashinfo->ehash_locks[i])->rlock); *** DEADLOCK *** 1 lock held by syz-executor0/5090: #0: (sk_lock-AF_INET6){+.+.+.}, at: [<ffffffff83406b43>] lock_sock include/net/sock.h:1460 [inline] #0: (sk_lock-AF_INET6){+.+.+.}, at: [<ffffffff83406b43>] sock_setsockopt+0x233/0x1e40 net/core/sock.c:683 stack backtrace: CPU: 1 PID: 5090 Comm: syz-executor0 Not tainted 4.10.0+ #60 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS Bochs 01/01/2011 Call Trace: __dump_stack lib/dump_stack.c:15 [inline] dump_stack+0x292/0x398 lib/dump_stack.c:51 print_usage_bug+0x3ef/0x450 kernel/locking/lockdep.c:2387 valid_state kernel/locking/lockdep.c:2400 [inline] mark_lock_irq kernel/locking/lockdep.c:2602 [inline] mark_lock+0xf30/0x1410 kernel/locking/lockdep.c:3065 mark_irqflags kernel/locking/lockdep.c:2941 [inline] __lock_acquire+0x6dc/0x3270 kernel/locking/lockdep.c:3295 lock_acquire+0x241/0x580 kernel/locking/lockdep.c:3753 __raw_spin_lock include/linux/spinlock_api_smp.h:142 [inline] _raw_spin_lock+0x33/0x50 kernel/locking/spinlock.c:151 spin_lock include/linux/spinlock.h:299 [inline] inet_ehash_insert+0x240/0xad0 net/ipv4/inet_hashtables.c:407 reqsk_queue_hash_req net/ipv4/inet_connection_sock.c:753 [inline] inet_csk_reqsk_queue_hash_add+0x1b7/0x2a0 net/ipv4/inet_connection_sock.c:764 dccp_v6_conn_request+0xada/0x11b0 net/dccp/ipv6.c:380 dccp_rcv_state_process+0x51e/0x1660 net/dccp/input.c:606 dccp_v6_do_rcv+0x213/0x350 net/dccp/ipv6.c:632 sk_backlog_rcv include/net/sock.h:896 [inline] __release_sock+0x127/0x3a0 net/core/sock.c:2052 release_sock+0xa5/0x2b0 net/core/sock.c:2539 sock_setsockopt+0x60f/0x1e40 net/core/sock.c:1016 SYSC_setsockopt net/socket.c:1782 [inline] SyS_setsockopt+0x2fb/0x3a0 net/socket.c:1765 entry_SYSCALL_64_fastpath+0x1f/0xc2 RIP: 0033:0x4458b9 RSP: 002b:00007fe8b26c2b58 EFLAGS: 00000292 ORIG_RAX: 0000000000000036 RAX: ffffffffffffffda RBX: 0000000000000006 RCX: 00000000004458b9 RDX: 000000000000001a RSI: 0000000000000001 RDI: 0000000000000006 RBP: 00000000006e2110 R08: 0000000000000010 R09: 0000000000000000 R10: 00000000208c3000 R11: 0000000000000292 R12: 0000000000708000 R13: 0000000020000000 R14: 0000000000001000 R15: 0000000000000000 Fixes: 5413d1babe8f ("net: do not block BH while processing socket backlog") Signed-off-by: Eric Dumazet <edumazet@google.com> Reported-by: Andrey Konovalov <andreyknvl@google.com> Acked-by: Soheil Hassas Yeganeh <soheil@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-03-01 08:39:49 -08:00
*/
rcu_read_lock();
tcp/dccp: block BH for SYN processing SYN processing really was meant to be handled from BH. When I got rid of BH blocking while processing socket backlog in commit 5413d1babe8f ("net: do not block BH while processing socket backlog"), I forgot that a malicious user could transition to TCP_LISTEN from a state that allowed (SYN) packets to be parked in the socket backlog while socket is owned by the thread doing the listen() call. Sure enough syzkaller found this and reported the bug ;) ================================= [ INFO: inconsistent lock state ] 4.10.0+ #60 Not tainted --------------------------------- inconsistent {IN-SOFTIRQ-W} -> {SOFTIRQ-ON-W} usage. syz-executor0/5090 [HC0[0]:SC0[0]:HE1:SE1] takes: (&(&hashinfo->ehash_locks[i])->rlock){+.?...}, at: [<ffffffff83a6a370>] spin_lock include/linux/spinlock.h:299 [inline] (&(&hashinfo->ehash_locks[i])->rlock){+.?...}, at: [<ffffffff83a6a370>] inet_ehash_insert+0x240/0xad0 net/ipv4/inet_hashtables.c:407 {IN-SOFTIRQ-W} state was registered at: mark_irqflags kernel/locking/lockdep.c:2923 [inline] __lock_acquire+0xbcf/0x3270 kernel/locking/lockdep.c:3295 lock_acquire+0x241/0x580 kernel/locking/lockdep.c:3753 __raw_spin_lock include/linux/spinlock_api_smp.h:142 [inline] _raw_spin_lock+0x33/0x50 kernel/locking/spinlock.c:151 spin_lock include/linux/spinlock.h:299 [inline] inet_ehash_insert+0x240/0xad0 net/ipv4/inet_hashtables.c:407 reqsk_queue_hash_req net/ipv4/inet_connection_sock.c:753 [inline] inet_csk_reqsk_queue_hash_add+0x1b7/0x2a0 net/ipv4/inet_connection_sock.c:764 tcp_conn_request+0x25cc/0x3310 net/ipv4/tcp_input.c:6399 tcp_v4_conn_request+0x157/0x220 net/ipv4/tcp_ipv4.c:1262 tcp_rcv_state_process+0x802/0x4130 net/ipv4/tcp_input.c:5889 tcp_v4_do_rcv+0x56b/0x940 net/ipv4/tcp_ipv4.c:1433 tcp_v4_rcv+0x2e12/0x3210 net/ipv4/tcp_ipv4.c:1711 ip_local_deliver_finish+0x4ce/0xc40 net/ipv4/ip_input.c:216 NF_HOOK include/linux/netfilter.h:257 [inline] ip_local_deliver+0x1ce/0x710 net/ipv4/ip_input.c:257 dst_input include/net/dst.h:492 [inline] ip_rcv_finish+0xb1d/0x2110 net/ipv4/ip_input.c:396 NF_HOOK include/linux/netfilter.h:257 [inline] ip_rcv+0xd90/0x19c0 net/ipv4/ip_input.c:487 __netif_receive_skb_core+0x1ad1/0x3400 net/core/dev.c:4179 __netif_receive_skb+0x2a/0x170 net/core/dev.c:4217 netif_receive_skb_internal+0x1d6/0x430 net/core/dev.c:4245 napi_skb_finish net/core/dev.c:4602 [inline] napi_gro_receive+0x4e6/0x680 net/core/dev.c:4636 e1000_receive_skb drivers/net/ethernet/intel/e1000/e1000_main.c:4033 [inline] e1000_clean_rx_irq+0x5e0/0x1490 drivers/net/ethernet/intel/e1000/e1000_main.c:4489 e1000_clean+0xb9a/0x2910 drivers/net/ethernet/intel/e1000/e1000_main.c:3834 napi_poll net/core/dev.c:5171 [inline] net_rx_action+0xe70/0x1900 net/core/dev.c:5236 __do_softirq+0x2fb/0xb7d kernel/softirq.c:284 invoke_softirq kernel/softirq.c:364 [inline] irq_exit+0x19e/0x1d0 kernel/softirq.c:405 exiting_irq arch/x86/include/asm/apic.h:658 [inline] do_IRQ+0x81/0x1a0 arch/x86/kernel/irq.c:250 ret_from_intr+0x0/0x20 native_safe_halt+0x6/0x10 arch/x86/include/asm/irqflags.h:53 arch_safe_halt arch/x86/include/asm/paravirt.h:98 [inline] default_idle+0x8f/0x410 arch/x86/kernel/process.c:271 arch_cpu_idle+0xa/0x10 arch/x86/kernel/process.c:262 default_idle_call+0x36/0x60 kernel/sched/idle.c:96 cpuidle_idle_call kernel/sched/idle.c:154 [inline] do_idle+0x348/0x440 kernel/sched/idle.c:243 cpu_startup_entry+0x18/0x20 kernel/sched/idle.c:345 start_secondary+0x344/0x440 arch/x86/kernel/smpboot.c:272 verify_cpu+0x0/0xfc irq event stamp: 1741 hardirqs last enabled at (1741): [<ffffffff84d49d77>] __raw_spin_unlock_irqrestore include/linux/spinlock_api_smp.h:160 [inline] hardirqs last enabled at (1741): [<ffffffff84d49d77>] _raw_spin_unlock_irqrestore+0xf7/0x1a0 kernel/locking/spinlock.c:191 hardirqs last disabled at (1740): [<ffffffff84d4a732>] __raw_spin_lock_irqsave include/linux/spinlock_api_smp.h:108 [inline] hardirqs last disabled at (1740): [<ffffffff84d4a732>] _raw_spin_lock_irqsave+0xa2/0x110 kernel/locking/spinlock.c:159 softirqs last enabled at (1738): [<ffffffff84d4deff>] __do_softirq+0x7cf/0xb7d kernel/softirq.c:310 softirqs last disabled at (1571): [<ffffffff84d4b92c>] do_softirq_own_stack+0x1c/0x30 arch/x86/entry/entry_64.S:902 other info that might help us debug this: Possible unsafe locking scenario: CPU0 ---- lock(&(&hashinfo->ehash_locks[i])->rlock); <Interrupt> lock(&(&hashinfo->ehash_locks[i])->rlock); *** DEADLOCK *** 1 lock held by syz-executor0/5090: #0: (sk_lock-AF_INET6){+.+.+.}, at: [<ffffffff83406b43>] lock_sock include/net/sock.h:1460 [inline] #0: (sk_lock-AF_INET6){+.+.+.}, at: [<ffffffff83406b43>] sock_setsockopt+0x233/0x1e40 net/core/sock.c:683 stack backtrace: CPU: 1 PID: 5090 Comm: syz-executor0 Not tainted 4.10.0+ #60 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS Bochs 01/01/2011 Call Trace: __dump_stack lib/dump_stack.c:15 [inline] dump_stack+0x292/0x398 lib/dump_stack.c:51 print_usage_bug+0x3ef/0x450 kernel/locking/lockdep.c:2387 valid_state kernel/locking/lockdep.c:2400 [inline] mark_lock_irq kernel/locking/lockdep.c:2602 [inline] mark_lock+0xf30/0x1410 kernel/locking/lockdep.c:3065 mark_irqflags kernel/locking/lockdep.c:2941 [inline] __lock_acquire+0x6dc/0x3270 kernel/locking/lockdep.c:3295 lock_acquire+0x241/0x580 kernel/locking/lockdep.c:3753 __raw_spin_lock include/linux/spinlock_api_smp.h:142 [inline] _raw_spin_lock+0x33/0x50 kernel/locking/spinlock.c:151 spin_lock include/linux/spinlock.h:299 [inline] inet_ehash_insert+0x240/0xad0 net/ipv4/inet_hashtables.c:407 reqsk_queue_hash_req net/ipv4/inet_connection_sock.c:753 [inline] inet_csk_reqsk_queue_hash_add+0x1b7/0x2a0 net/ipv4/inet_connection_sock.c:764 dccp_v6_conn_request+0xada/0x11b0 net/dccp/ipv6.c:380 dccp_rcv_state_process+0x51e/0x1660 net/dccp/input.c:606 dccp_v6_do_rcv+0x213/0x350 net/dccp/ipv6.c:632 sk_backlog_rcv include/net/sock.h:896 [inline] __release_sock+0x127/0x3a0 net/core/sock.c:2052 release_sock+0xa5/0x2b0 net/core/sock.c:2539 sock_setsockopt+0x60f/0x1e40 net/core/sock.c:1016 SYSC_setsockopt net/socket.c:1782 [inline] SyS_setsockopt+0x2fb/0x3a0 net/socket.c:1765 entry_SYSCALL_64_fastpath+0x1f/0xc2 RIP: 0033:0x4458b9 RSP: 002b:00007fe8b26c2b58 EFLAGS: 00000292 ORIG_RAX: 0000000000000036 RAX: ffffffffffffffda RBX: 0000000000000006 RCX: 00000000004458b9 RDX: 000000000000001a RSI: 0000000000000001 RDI: 0000000000000006 RBP: 00000000006e2110 R08: 0000000000000010 R09: 0000000000000000 R10: 00000000208c3000 R11: 0000000000000292 R12: 0000000000708000 R13: 0000000020000000 R14: 0000000000001000 R15: 0000000000000000 Fixes: 5413d1babe8f ("net: do not block BH while processing socket backlog") Signed-off-by: Eric Dumazet <edumazet@google.com> Reported-by: Andrey Konovalov <andreyknvl@google.com> Acked-by: Soheil Hassas Yeganeh <soheil@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-03-01 08:39:49 -08:00
local_bh_disable();
acceptable = icsk->icsk_af_ops->conn_request(sk, skb) >= 0;
local_bh_enable();
rcu_read_unlock();
tcp/dccp: block BH for SYN processing SYN processing really was meant to be handled from BH. When I got rid of BH blocking while processing socket backlog in commit 5413d1babe8f ("net: do not block BH while processing socket backlog"), I forgot that a malicious user could transition to TCP_LISTEN from a state that allowed (SYN) packets to be parked in the socket backlog while socket is owned by the thread doing the listen() call. Sure enough syzkaller found this and reported the bug ;) ================================= [ INFO: inconsistent lock state ] 4.10.0+ #60 Not tainted --------------------------------- inconsistent {IN-SOFTIRQ-W} -> {SOFTIRQ-ON-W} usage. syz-executor0/5090 [HC0[0]:SC0[0]:HE1:SE1] takes: (&(&hashinfo->ehash_locks[i])->rlock){+.?...}, at: [<ffffffff83a6a370>] spin_lock include/linux/spinlock.h:299 [inline] (&(&hashinfo->ehash_locks[i])->rlock){+.?...}, at: [<ffffffff83a6a370>] inet_ehash_insert+0x240/0xad0 net/ipv4/inet_hashtables.c:407 {IN-SOFTIRQ-W} state was registered at: mark_irqflags kernel/locking/lockdep.c:2923 [inline] __lock_acquire+0xbcf/0x3270 kernel/locking/lockdep.c:3295 lock_acquire+0x241/0x580 kernel/locking/lockdep.c:3753 __raw_spin_lock include/linux/spinlock_api_smp.h:142 [inline] _raw_spin_lock+0x33/0x50 kernel/locking/spinlock.c:151 spin_lock include/linux/spinlock.h:299 [inline] inet_ehash_insert+0x240/0xad0 net/ipv4/inet_hashtables.c:407 reqsk_queue_hash_req net/ipv4/inet_connection_sock.c:753 [inline] inet_csk_reqsk_queue_hash_add+0x1b7/0x2a0 net/ipv4/inet_connection_sock.c:764 tcp_conn_request+0x25cc/0x3310 net/ipv4/tcp_input.c:6399 tcp_v4_conn_request+0x157/0x220 net/ipv4/tcp_ipv4.c:1262 tcp_rcv_state_process+0x802/0x4130 net/ipv4/tcp_input.c:5889 tcp_v4_do_rcv+0x56b/0x940 net/ipv4/tcp_ipv4.c:1433 tcp_v4_rcv+0x2e12/0x3210 net/ipv4/tcp_ipv4.c:1711 ip_local_deliver_finish+0x4ce/0xc40 net/ipv4/ip_input.c:216 NF_HOOK include/linux/netfilter.h:257 [inline] ip_local_deliver+0x1ce/0x710 net/ipv4/ip_input.c:257 dst_input include/net/dst.h:492 [inline] ip_rcv_finish+0xb1d/0x2110 net/ipv4/ip_input.c:396 NF_HOOK include/linux/netfilter.h:257 [inline] ip_rcv+0xd90/0x19c0 net/ipv4/ip_input.c:487 __netif_receive_skb_core+0x1ad1/0x3400 net/core/dev.c:4179 __netif_receive_skb+0x2a/0x170 net/core/dev.c:4217 netif_receive_skb_internal+0x1d6/0x430 net/core/dev.c:4245 napi_skb_finish net/core/dev.c:4602 [inline] napi_gro_receive+0x4e6/0x680 net/core/dev.c:4636 e1000_receive_skb drivers/net/ethernet/intel/e1000/e1000_main.c:4033 [inline] e1000_clean_rx_irq+0x5e0/0x1490 drivers/net/ethernet/intel/e1000/e1000_main.c:4489 e1000_clean+0xb9a/0x2910 drivers/net/ethernet/intel/e1000/e1000_main.c:3834 napi_poll net/core/dev.c:5171 [inline] net_rx_action+0xe70/0x1900 net/core/dev.c:5236 __do_softirq+0x2fb/0xb7d kernel/softirq.c:284 invoke_softirq kernel/softirq.c:364 [inline] irq_exit+0x19e/0x1d0 kernel/softirq.c:405 exiting_irq arch/x86/include/asm/apic.h:658 [inline] do_IRQ+0x81/0x1a0 arch/x86/kernel/irq.c:250 ret_from_intr+0x0/0x20 native_safe_halt+0x6/0x10 arch/x86/include/asm/irqflags.h:53 arch_safe_halt arch/x86/include/asm/paravirt.h:98 [inline] default_idle+0x8f/0x410 arch/x86/kernel/process.c:271 arch_cpu_idle+0xa/0x10 arch/x86/kernel/process.c:262 default_idle_call+0x36/0x60 kernel/sched/idle.c:96 cpuidle_idle_call kernel/sched/idle.c:154 [inline] do_idle+0x348/0x440 kernel/sched/idle.c:243 cpu_startup_entry+0x18/0x20 kernel/sched/idle.c:345 start_secondary+0x344/0x440 arch/x86/kernel/smpboot.c:272 verify_cpu+0x0/0xfc irq event stamp: 1741 hardirqs last enabled at (1741): [<ffffffff84d49d77>] __raw_spin_unlock_irqrestore include/linux/spinlock_api_smp.h:160 [inline] hardirqs last enabled at (1741): [<ffffffff84d49d77>] _raw_spin_unlock_irqrestore+0xf7/0x1a0 kernel/locking/spinlock.c:191 hardirqs last disabled at (1740): [<ffffffff84d4a732>] __raw_spin_lock_irqsave include/linux/spinlock_api_smp.h:108 [inline] hardirqs last disabled at (1740): [<ffffffff84d4a732>] _raw_spin_lock_irqsave+0xa2/0x110 kernel/locking/spinlock.c:159 softirqs last enabled at (1738): [<ffffffff84d4deff>] __do_softirq+0x7cf/0xb7d kernel/softirq.c:310 softirqs last disabled at (1571): [<ffffffff84d4b92c>] do_softirq_own_stack+0x1c/0x30 arch/x86/entry/entry_64.S:902 other info that might help us debug this: Possible unsafe locking scenario: CPU0 ---- lock(&(&hashinfo->ehash_locks[i])->rlock); <Interrupt> lock(&(&hashinfo->ehash_locks[i])->rlock); *** DEADLOCK *** 1 lock held by syz-executor0/5090: #0: (sk_lock-AF_INET6){+.+.+.}, at: [<ffffffff83406b43>] lock_sock include/net/sock.h:1460 [inline] #0: (sk_lock-AF_INET6){+.+.+.}, at: [<ffffffff83406b43>] sock_setsockopt+0x233/0x1e40 net/core/sock.c:683 stack backtrace: CPU: 1 PID: 5090 Comm: syz-executor0 Not tainted 4.10.0+ #60 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS Bochs 01/01/2011 Call Trace: __dump_stack lib/dump_stack.c:15 [inline] dump_stack+0x292/0x398 lib/dump_stack.c:51 print_usage_bug+0x3ef/0x450 kernel/locking/lockdep.c:2387 valid_state kernel/locking/lockdep.c:2400 [inline] mark_lock_irq kernel/locking/lockdep.c:2602 [inline] mark_lock+0xf30/0x1410 kernel/locking/lockdep.c:3065 mark_irqflags kernel/locking/lockdep.c:2941 [inline] __lock_acquire+0x6dc/0x3270 kernel/locking/lockdep.c:3295 lock_acquire+0x241/0x580 kernel/locking/lockdep.c:3753 __raw_spin_lock include/linux/spinlock_api_smp.h:142 [inline] _raw_spin_lock+0x33/0x50 kernel/locking/spinlock.c:151 spin_lock include/linux/spinlock.h:299 [inline] inet_ehash_insert+0x240/0xad0 net/ipv4/inet_hashtables.c:407 reqsk_queue_hash_req net/ipv4/inet_connection_sock.c:753 [inline] inet_csk_reqsk_queue_hash_add+0x1b7/0x2a0 net/ipv4/inet_connection_sock.c:764 dccp_v6_conn_request+0xada/0x11b0 net/dccp/ipv6.c:380 dccp_rcv_state_process+0x51e/0x1660 net/dccp/input.c:606 dccp_v6_do_rcv+0x213/0x350 net/dccp/ipv6.c:632 sk_backlog_rcv include/net/sock.h:896 [inline] __release_sock+0x127/0x3a0 net/core/sock.c:2052 release_sock+0xa5/0x2b0 net/core/sock.c:2539 sock_setsockopt+0x60f/0x1e40 net/core/sock.c:1016 SYSC_setsockopt net/socket.c:1782 [inline] SyS_setsockopt+0x2fb/0x3a0 net/socket.c:1765 entry_SYSCALL_64_fastpath+0x1f/0xc2 RIP: 0033:0x4458b9 RSP: 002b:00007fe8b26c2b58 EFLAGS: 00000292 ORIG_RAX: 0000000000000036 RAX: ffffffffffffffda RBX: 0000000000000006 RCX: 00000000004458b9 RDX: 000000000000001a RSI: 0000000000000001 RDI: 0000000000000006 RBP: 00000000006e2110 R08: 0000000000000010 R09: 0000000000000000 R10: 00000000208c3000 R11: 0000000000000292 R12: 0000000000708000 R13: 0000000020000000 R14: 0000000000001000 R15: 0000000000000000 Fixes: 5413d1babe8f ("net: do not block BH while processing socket backlog") Signed-off-by: Eric Dumazet <edumazet@google.com> Reported-by: Andrey Konovalov <andreyknvl@google.com> Acked-by: Soheil Hassas Yeganeh <soheil@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-03-01 08:39:49 -08:00
if (!acceptable)
return 1;
consume_skb(skb);
return 0;
}
SKB_DR_SET(reason, TCP_FLAGS);
goto discard;
case TCP_SYN_SENT:
tp->rx_opt.saw_tstamp = 0;
tcp_mstamp_refresh(tp);
queued = tcp_rcv_synsent_state_process(sk, skb, th);
if (queued >= 0)
return queued;
/* Do step6 onward by hand. */
tcp_urg(sk, skb, th);
__kfree_skb(skb);
[TCP]: Sed magic converts func(sk, tp, ...) -> func(sk, ...) This is (mostly) automated change using magic: sed -e '/struct sock \*sk/ N' -e '/struct sock \*sk/ N' -e '/struct sock \*sk/ N' -e '/struct sock \*sk/ N' -e 's|struct sock \*sk,[\n\t ]*struct tcp_sock \*tp\([^{]*\n{\n\)| struct sock \*sk\1\tstruct tcp_sock *tp = tcp_sk(sk);\n|g' -e 's|struct sock \*sk, struct tcp_sock \*tp| struct sock \*sk|g' -e 's|sk, tp\([^-]\)|sk\1|g' Fixed four unused variable (tp) warnings that were introduced. In addition, manually added newlines after local variables and tweaked function arguments positioning. $ gcc --version gcc (GCC) 4.1.1 20060525 (Red Hat 4.1.1-1) ... $ codiff -fV built-in.o.old built-in.o.new net/ipv4/route.c: rt_cache_flush | +14 1 function changed, 14 bytes added net/ipv4/tcp.c: tcp_setsockopt | -5 tcp_sendpage | -25 tcp_sendmsg | -16 3 functions changed, 46 bytes removed net/ipv4/tcp_input.c: tcp_try_undo_recovery | +3 tcp_try_undo_dsack | +2 tcp_mark_head_lost | -12 tcp_ack | -15 tcp_event_data_recv | -32 tcp_rcv_state_process | -10 tcp_rcv_established | +1 7 functions changed, 6 bytes added, 69 bytes removed, diff: -63 net/ipv4/tcp_output.c: update_send_head | -9 tcp_transmit_skb | +19 tcp_cwnd_validate | +1 tcp_write_wakeup | -17 __tcp_push_pending_frames | -25 tcp_push_one | -8 tcp_send_fin | -4 7 functions changed, 20 bytes added, 63 bytes removed, diff: -43 built-in.o.new: 18 functions changed, 40 bytes added, 178 bytes removed, diff: -138 Signed-off-by: Ilpo Järvinen <ilpo.jarvinen@helsinki.fi> Signed-off-by: David S. Miller <davem@davemloft.net>
2007-04-20 22:18:02 -07:00
tcp_data_snd_check(sk);
return 0;
}
tcp_mstamp_refresh(tp);
tp->rx_opt.saw_tstamp = 0;
req = rcu_dereference_protected(tp->fastopen_rsk,
lockdep_sock_is_held(sk));
if (req) {
bool req_stolen;
WARN_ON_ONCE(sk->sk_state != TCP_SYN_RECV &&
sk->sk_state != TCP_FIN_WAIT1);
if (!tcp_check_req(sk, skb, req, true, &req_stolen)) {
SKB_DR_SET(reason, TCP_FASTOPEN);
goto discard;
}
}
if (!th->ack && !th->rst && !th->syn) {
SKB_DR_SET(reason, TCP_FLAGS);
goto discard;
}
if (!tcp_validate_incoming(sk, skb, th, 0))
return 0;
/* step 5: check the ACK field */
acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH |
FLAG_UPDATE_TS_RECENT |
tcp: better validation of received ack sequences Paul Fiterau Brostean reported : <quote> Linux TCP stack we analyze exhibits behavior that seems odd to me. The scenario is as follows (all packets have empty payloads, no window scaling, rcv/snd window size should not be a factor): TEST HARNESS (CLIENT) LINUX SERVER 1. - LISTEN (server listen, then accepts) 2. - --> <SEQ=100><CTL=SYN> --> SYN-RECEIVED 3. - <-- <SEQ=300><ACK=101><CTL=SYN,ACK> <-- SYN-RECEIVED 4. - --> <SEQ=101><ACK=301><CTL=ACK> --> ESTABLISHED 5. - <-- <SEQ=301><ACK=101><CTL=FIN,ACK> <-- FIN WAIT-1 (server opts to close the data connection calling "close" on the connection socket) 6. - --> <SEQ=101><ACK=99999><CTL=FIN,ACK> --> CLOSING (client sends FIN,ACK with not yet sent acknowledgement number) 7. - <-- <SEQ=302><ACK=102><CTL=ACK> <-- CLOSING (ACK is 102 instead of 101, why?) ... (silence from CLIENT) 8. - <-- <SEQ=301><ACK=102><CTL=FIN,ACK> <-- CLOSING (retransmission, again ACK is 102) Now, note that packet 6 while having the expected sequence number, acknowledges something that wasn't sent by the server. So I would expect the packet to maybe prompt an ACK response from the server, and then be ignored. Yet it is not ignored and actually leads to an increase of the acknowledgement number in the server's retransmission of the FIN,ACK packet. The explanation I found is that the FIN in packet 6 was processed, despite the acknowledgement number being unacceptable. Further experiments indeed show that the server processes this FIN, transitioning to CLOSING, then on receiving an ACK for the FIN it had send in packet 5, the server (or better said connection) transitions from CLOSING to TIME_WAIT (as signaled by netstat). </quote> Indeed, tcp_rcv_state_process() calls tcp_ack() but does not exploit the @acceptable status but for TCP_SYN_RECV state. What we want here is to send a challenge ACK, if not in TCP_SYN_RECV state. TCP_FIN_WAIT1 state is not the only state we should fix. Add a FLAG_NO_CHALLENGE_ACK so that tcp_rcv_state_process() can choose to send a challenge ACK and discard the packet instead of wrongly change socket state. With help from Neal Cardwell. Signed-off-by: Eric Dumazet <edumazet@google.com> Reported-by: Paul Fiterau Brostean <p.fiterau-brostean@science.ru.nl> Cc: Neal Cardwell <ncardwell@google.com> Cc: Yuchung Cheng <ycheng@google.com> Cc: Soheil Hassas Yeganeh <soheil@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-05-23 15:24:46 -07:00
FLAG_NO_CHALLENGE_ACK) > 0;
tcp: better validation of received ack sequences Paul Fiterau Brostean reported : <quote> Linux TCP stack we analyze exhibits behavior that seems odd to me. The scenario is as follows (all packets have empty payloads, no window scaling, rcv/snd window size should not be a factor): TEST HARNESS (CLIENT) LINUX SERVER 1. - LISTEN (server listen, then accepts) 2. - --> <SEQ=100><CTL=SYN> --> SYN-RECEIVED 3. - <-- <SEQ=300><ACK=101><CTL=SYN,ACK> <-- SYN-RECEIVED 4. - --> <SEQ=101><ACK=301><CTL=ACK> --> ESTABLISHED 5. - <-- <SEQ=301><ACK=101><CTL=FIN,ACK> <-- FIN WAIT-1 (server opts to close the data connection calling "close" on the connection socket) 6. - --> <SEQ=101><ACK=99999><CTL=FIN,ACK> --> CLOSING (client sends FIN,ACK with not yet sent acknowledgement number) 7. - <-- <SEQ=302><ACK=102><CTL=ACK> <-- CLOSING (ACK is 102 instead of 101, why?) ... (silence from CLIENT) 8. - <-- <SEQ=301><ACK=102><CTL=FIN,ACK> <-- CLOSING (retransmission, again ACK is 102) Now, note that packet 6 while having the expected sequence number, acknowledges something that wasn't sent by the server. So I would expect the packet to maybe prompt an ACK response from the server, and then be ignored. Yet it is not ignored and actually leads to an increase of the acknowledgement number in the server's retransmission of the FIN,ACK packet. The explanation I found is that the FIN in packet 6 was processed, despite the acknowledgement number being unacceptable. Further experiments indeed show that the server processes this FIN, transitioning to CLOSING, then on receiving an ACK for the FIN it had send in packet 5, the server (or better said connection) transitions from CLOSING to TIME_WAIT (as signaled by netstat). </quote> Indeed, tcp_rcv_state_process() calls tcp_ack() but does not exploit the @acceptable status but for TCP_SYN_RECV state. What we want here is to send a challenge ACK, if not in TCP_SYN_RECV state. TCP_FIN_WAIT1 state is not the only state we should fix. Add a FLAG_NO_CHALLENGE_ACK so that tcp_rcv_state_process() can choose to send a challenge ACK and discard the packet instead of wrongly change socket state. With help from Neal Cardwell. Signed-off-by: Eric Dumazet <edumazet@google.com> Reported-by: Paul Fiterau Brostean <p.fiterau-brostean@science.ru.nl> Cc: Neal Cardwell <ncardwell@google.com> Cc: Yuchung Cheng <ycheng@google.com> Cc: Soheil Hassas Yeganeh <soheil@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-05-23 15:24:46 -07:00
if (!acceptable) {
if (sk->sk_state == TCP_SYN_RECV)
return 1; /* send one RST */
tcp_send_challenge_ack(sk);
SKB_DR_SET(reason, TCP_OLD_ACK);
tcp: better validation of received ack sequences Paul Fiterau Brostean reported : <quote> Linux TCP stack we analyze exhibits behavior that seems odd to me. The scenario is as follows (all packets have empty payloads, no window scaling, rcv/snd window size should not be a factor): TEST HARNESS (CLIENT) LINUX SERVER 1. - LISTEN (server listen, then accepts) 2. - --> <SEQ=100><CTL=SYN> --> SYN-RECEIVED 3. - <-- <SEQ=300><ACK=101><CTL=SYN,ACK> <-- SYN-RECEIVED 4. - --> <SEQ=101><ACK=301><CTL=ACK> --> ESTABLISHED 5. - <-- <SEQ=301><ACK=101><CTL=FIN,ACK> <-- FIN WAIT-1 (server opts to close the data connection calling "close" on the connection socket) 6. - --> <SEQ=101><ACK=99999><CTL=FIN,ACK> --> CLOSING (client sends FIN,ACK with not yet sent acknowledgement number) 7. - <-- <SEQ=302><ACK=102><CTL=ACK> <-- CLOSING (ACK is 102 instead of 101, why?) ... (silence from CLIENT) 8. - <-- <SEQ=301><ACK=102><CTL=FIN,ACK> <-- CLOSING (retransmission, again ACK is 102) Now, note that packet 6 while having the expected sequence number, acknowledges something that wasn't sent by the server. So I would expect the packet to maybe prompt an ACK response from the server, and then be ignored. Yet it is not ignored and actually leads to an increase of the acknowledgement number in the server's retransmission of the FIN,ACK packet. The explanation I found is that the FIN in packet 6 was processed, despite the acknowledgement number being unacceptable. Further experiments indeed show that the server processes this FIN, transitioning to CLOSING, then on receiving an ACK for the FIN it had send in packet 5, the server (or better said connection) transitions from CLOSING to TIME_WAIT (as signaled by netstat). </quote> Indeed, tcp_rcv_state_process() calls tcp_ack() but does not exploit the @acceptable status but for TCP_SYN_RECV state. What we want here is to send a challenge ACK, if not in TCP_SYN_RECV state. TCP_FIN_WAIT1 state is not the only state we should fix. Add a FLAG_NO_CHALLENGE_ACK so that tcp_rcv_state_process() can choose to send a challenge ACK and discard the packet instead of wrongly change socket state. With help from Neal Cardwell. Signed-off-by: Eric Dumazet <edumazet@google.com> Reported-by: Paul Fiterau Brostean <p.fiterau-brostean@science.ru.nl> Cc: Neal Cardwell <ncardwell@google.com> Cc: Yuchung Cheng <ycheng@google.com> Cc: Soheil Hassas Yeganeh <soheil@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-05-23 15:24:46 -07:00
goto discard;
}
switch (sk->sk_state) {
case TCP_SYN_RECV:
tp->delivered++; /* SYN-ACK delivery isn't tracked in tcp_ack */
tcp: usec resolution SYN/ACK RTT Currently SYN/ACK RTT is measured in jiffies. For LAN the SYN/ACK RTT is often measured as 0ms or sometimes 1ms, which would affect RTT estimation and min RTT samping used by some congestion control. This patch improves SYN/ACK RTT to be usec resolution if platform supports it. While the timestamping of SYN/ACK is done in request sock, the RTT measurement is carefully arranged to avoid storing another u64 timestamp in tcp_sock. For regular handshake w/o SYNACK retransmission, the RTT is sampled right after the child socket is created and right before the request sock is released (tcp_check_req() in tcp_minisocks.c) For Fast Open the child socket is already created when SYN/ACK was sent, the RTT is sampled in tcp_rcv_state_process() after processing the final ACK an right before the request socket is released. If the SYN/ACK was retransmistted or SYN-cookie was used, we rely on TCP timestamps to measure the RTT. The sample is taken at the same place in tcp_rcv_state_process() after the timestamp values are validated in tcp_validate_incoming(). Note that we do not store TS echo value in request_sock for SYN-cookies, because the value is already stored in tp->rx_opt used by tcp_ack_update_rtt(). One side benefit is that the RTT measurement now happens before initializing congestion control (of the passive side). Therefore the congestion control can use the SYN/ACK RTT. Signed-off-by: Yuchung Cheng <ycheng@google.com> Signed-off-by: Neal Cardwell <ncardwell@google.com> Signed-off-by: Eric Dumazet <edumazet@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2015-09-18 11:36:14 -07:00
if (!tp->srtt_us)
tcp_synack_rtt_meas(sk, req);
if (req) {
tcp_rcv_synrecv_state_fastopen(sk);
} else {
tcp_try_undo_spurious_syn(sk);
tp->retrans_stamp = 0;
tcp_init_transfer(sk, BPF_SOCK_OPS_PASSIVE_ESTABLISHED_CB,
skb);
WRITE_ONCE(tp->copied_seq, tp->rcv_nxt);
}
smp_mb();
tcp_set_state(sk, TCP_ESTABLISHED);
sk->sk_state_change(sk);
/* Note, that this wakeup is only for marginal crossed SYN case.
* Passively open sockets are not waked up, because
* sk->sk_sleep == NULL and sk->sk_socket == NULL.
*/
if (sk->sk_socket)
sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
tp->snd_wnd = ntohs(th->window) << tp->rx_opt.snd_wscale;
tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
if (tp->rx_opt.tstamp_ok)
tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
tcp: new CC hook to set sending rate with rate_sample in any CA state This commit introduces an optional new "omnipotent" hook, cong_control(), for congestion control modules. The cong_control() function is called at the end of processing an ACK (i.e., after updating sequence numbers, the SACK scoreboard, and loss detection). At that moment we have precise delivery rate information the congestion control module can use to control the sending behavior (using cwnd, TSO skb size, and pacing rate) in any CA state. This function can also be used by a congestion control that prefers not to use the default cwnd reduction approach (i.e., the PRR algorithm) during CA_Recovery to control the cwnd and sending rate during loss recovery. We take advantage of the fact that recent changes defer the retransmission or transmission of new data (e.g. by F-RTO) in recovery until the new tcp_cong_control() function is run. With this commit, we only run tcp_update_pacing_rate() if the congestion control is not using this new API. New congestion controls which use the new API do not want the TCP stack to run the default pacing rate calculation and overwrite whatever pacing rate they have chosen at initialization time. Signed-off-by: Van Jacobson <vanj@google.com> Signed-off-by: Neal Cardwell <ncardwell@google.com> Signed-off-by: Yuchung Cheng <ycheng@google.com> Signed-off-by: Nandita Dukkipati <nanditad@google.com> Signed-off-by: Eric Dumazet <edumazet@google.com> Signed-off-by: Soheil Hassas Yeganeh <soheil@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-09-19 23:39:21 -04:00
if (!inet_csk(sk)->icsk_ca_ops->cong_control)
tcp_update_pacing_rate(sk);
/* Prevent spurious tcp_cwnd_restart() on first data packet */
tp->lsndtime = tcp_jiffies32;
tcp_initialize_rcv_mss(sk);
tcp_fast_path_on(tp);
break;
case TCP_FIN_WAIT1: {
int tmo;
if (req)
tcp_rcv_synrecv_state_fastopen(sk);
if (tp->snd_una != tp->write_seq)
break;
tcp_set_state(sk, TCP_FIN_WAIT2);
tcp: add annotations around sk->sk_shutdown accesses Now sk->sk_shutdown is no longer a bitfield, we can add standard READ_ONCE()/WRITE_ONCE() annotations to silence KCSAN reports like the following: BUG: KCSAN: data-race in tcp_disconnect / tcp_poll write to 0xffff88814588582c of 1 bytes by task 3404 on cpu 1: tcp_disconnect+0x4d6/0xdb0 net/ipv4/tcp.c:3121 __inet_stream_connect+0x5dd/0x6e0 net/ipv4/af_inet.c:715 inet_stream_connect+0x48/0x70 net/ipv4/af_inet.c:727 __sys_connect_file net/socket.c:2001 [inline] __sys_connect+0x19b/0x1b0 net/socket.c:2018 __do_sys_connect net/socket.c:2028 [inline] __se_sys_connect net/socket.c:2025 [inline] __x64_sys_connect+0x41/0x50 net/socket.c:2025 do_syscall_x64 arch/x86/entry/common.c:50 [inline] do_syscall_64+0x41/0xc0 arch/x86/entry/common.c:80 entry_SYSCALL_64_after_hwframe+0x63/0xcd read to 0xffff88814588582c of 1 bytes by task 3374 on cpu 0: tcp_poll+0x2e6/0x7d0 net/ipv4/tcp.c:562 sock_poll+0x253/0x270 net/socket.c:1383 vfs_poll include/linux/poll.h:88 [inline] io_poll_check_events io_uring/poll.c:281 [inline] io_poll_task_func+0x15a/0x820 io_uring/poll.c:333 handle_tw_list io_uring/io_uring.c:1184 [inline] tctx_task_work+0x1fe/0x4d0 io_uring/io_uring.c:1246 task_work_run+0x123/0x160 kernel/task_work.c:179 get_signal+0xe64/0xff0 kernel/signal.c:2635 arch_do_signal_or_restart+0x89/0x2a0 arch/x86/kernel/signal.c:306 exit_to_user_mode_loop+0x6f/0xe0 kernel/entry/common.c:168 exit_to_user_mode_prepare+0x6c/0xb0 kernel/entry/common.c:204 __syscall_exit_to_user_mode_work kernel/entry/common.c:286 [inline] syscall_exit_to_user_mode+0x26/0x140 kernel/entry/common.c:297 do_syscall_64+0x4d/0xc0 arch/x86/entry/common.c:86 entry_SYSCALL_64_after_hwframe+0x63/0xcd value changed: 0x03 -> 0x00 Fixes: 1da177e4c3f4 ("Linux-2.6.12-rc2") Reported-by: syzbot <syzkaller@googlegroups.com> Signed-off-by: Eric Dumazet <edumazet@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2023-05-09 20:36:56 +00:00
WRITE_ONCE(sk->sk_shutdown, sk->sk_shutdown | SEND_SHUTDOWN);
sk_dst_confirm(sk);
if (!sock_flag(sk, SOCK_DEAD)) {
/* Wake up lingering close() */
sk->sk_state_change(sk);
break;
}
if (READ_ONCE(tp->linger2) < 0) {
net/tcp_fastopen: Disable active side TFO in certain scenarios Middlebox firewall issues can potentially cause server's data being blackholed after a successful 3WHS using TFO. Following are the related reports from Apple: https://www.nanog.org/sites/default/files/Paasch_Network_Support.pdf Slide 31 identifies an issue where the client ACK to the server's data sent during a TFO'd handshake is dropped. C ---> syn-data ---> S C <--- syn/ack ----- S C (accept & write) C <---- data ------- S C ----- ACK -> X S [retry and timeout] https://www.ietf.org/proceedings/94/slides/slides-94-tcpm-13.pdf Slide 5 shows a similar situation that the server's data gets dropped after 3WHS. C ---- syn-data ---> S C <--- syn/ack ----- S C ---- ack --------> S S (accept & write) C? X <- data ------ S [retry and timeout] This is the worst failure b/c the client can not detect such behavior to mitigate the situation (such as disabling TFO). Failing to proceed, the application (e.g., SSL library) may simply timeout and retry with TFO again, and the process repeats indefinitely. The proposed solution is to disable active TFO globally under the following circumstances: 1. client side TFO socket detects out of order FIN 2. client side TFO socket receives out of order RST We disable active side TFO globally for 1hr at first. Then if it happens again, we disable it for 2h, then 4h, 8h, ... And we reset the timeout to 1hr if a client side TFO sockets not opened on loopback has successfully received data segs from server. And we examine this condition during close(). The rational behind it is that when such firewall issue happens, application running on the client should eventually close the socket as it is not able to get the data it is expecting. Or application running on the server should close the socket as it is not able to receive any response from client. In both cases, out of order FIN or RST will get received on the client given that the firewall will not block them as no data are in those frames. And we want to disable active TFO globally as it helps if the middle box is very close to the client and most of the connections are likely to fail. Also, add a debug sysctl: tcp_fastopen_blackhole_detect_timeout_sec: the initial timeout to use when firewall blackhole issue happens. This can be set and read. When setting it to 0, it means to disable the active disable logic. Signed-off-by: Wei Wang <weiwan@google.com> Acked-by: Yuchung Cheng <ycheng@google.com> Acked-by: Neal Cardwell <ncardwell@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-04-20 14:45:46 -07:00
tcp_done(sk);
NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
return 1;
}
if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
/* Receive out of order FIN after close() */
if (tp->syn_fastopen && th->fin)
tcp_fastopen_active_disable(sk);
tcp_done(sk);
NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
return 1;
}
tmo = tcp_fin_time(sk);
if (tmo > TCP_TIMEWAIT_LEN) {
inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
} else if (th->fin || sock_owned_by_user(sk)) {
/* Bad case. We could lose such FIN otherwise.
* It is not a big problem, but it looks confusing
* and not so rare event. We still can lose it now,
* if it spins in bh_lock_sock(), but it is really
* marginal case.
*/
inet_csk_reset_keepalive_timer(sk, tmo);
} else {
tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
goto consume;
}
break;
}
case TCP_CLOSING:
if (tp->snd_una == tp->write_seq) {
tcp_time_wait(sk, TCP_TIME_WAIT, 0);
goto consume;
}
break;
case TCP_LAST_ACK:
if (tp->snd_una == tp->write_seq) {
tcp_update_metrics(sk);
tcp_done(sk);
goto consume;
}
break;
}
/* step 6: check the URG bit */
tcp_urg(sk, skb, th);
/* step 7: process the segment text */
switch (sk->sk_state) {
case TCP_CLOSE_WAIT:
case TCP_CLOSING:
case TCP_LAST_ACK:
if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
/* If a subflow has been reset, the packet should not
* continue to be processed, drop the packet.
*/
if (sk_is_mptcp(sk) && !mptcp_incoming_options(sk, skb))
goto discard;
break;
}
fallthrough;
case TCP_FIN_WAIT1:
case TCP_FIN_WAIT2:
/* RFC 793 says to queue data in these states,
* RFC 1122 says we MUST send a reset.
* BSD 4.4 also does reset.
*/
if (sk->sk_shutdown & RCV_SHUTDOWN) {
if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
tcp_reset(sk, skb);
return 1;
}
}
fallthrough;
case TCP_ESTABLISHED:
tcp_data_queue(sk, skb);
queued = 1;
break;
}
/* tcp_data could move socket to TIME-WAIT */
if (sk->sk_state != TCP_CLOSE) {
[TCP]: Sed magic converts func(sk, tp, ...) -> func(sk, ...) This is (mostly) automated change using magic: sed -e '/struct sock \*sk/ N' -e '/struct sock \*sk/ N' -e '/struct sock \*sk/ N' -e '/struct sock \*sk/ N' -e 's|struct sock \*sk,[\n\t ]*struct tcp_sock \*tp\([^{]*\n{\n\)| struct sock \*sk\1\tstruct tcp_sock *tp = tcp_sk(sk);\n|g' -e 's|struct sock \*sk, struct tcp_sock \*tp| struct sock \*sk|g' -e 's|sk, tp\([^-]\)|sk\1|g' Fixed four unused variable (tp) warnings that were introduced. In addition, manually added newlines after local variables and tweaked function arguments positioning. $ gcc --version gcc (GCC) 4.1.1 20060525 (Red Hat 4.1.1-1) ... $ codiff -fV built-in.o.old built-in.o.new net/ipv4/route.c: rt_cache_flush | +14 1 function changed, 14 bytes added net/ipv4/tcp.c: tcp_setsockopt | -5 tcp_sendpage | -25 tcp_sendmsg | -16 3 functions changed, 46 bytes removed net/ipv4/tcp_input.c: tcp_try_undo_recovery | +3 tcp_try_undo_dsack | +2 tcp_mark_head_lost | -12 tcp_ack | -15 tcp_event_data_recv | -32 tcp_rcv_state_process | -10 tcp_rcv_established | +1 7 functions changed, 6 bytes added, 69 bytes removed, diff: -63 net/ipv4/tcp_output.c: update_send_head | -9 tcp_transmit_skb | +19 tcp_cwnd_validate | +1 tcp_write_wakeup | -17 __tcp_push_pending_frames | -25 tcp_push_one | -8 tcp_send_fin | -4 7 functions changed, 20 bytes added, 63 bytes removed, diff: -43 built-in.o.new: 18 functions changed, 40 bytes added, 178 bytes removed, diff: -138 Signed-off-by: Ilpo Järvinen <ilpo.jarvinen@helsinki.fi> Signed-off-by: David S. Miller <davem@davemloft.net>
2007-04-20 22:18:02 -07:00
tcp_data_snd_check(sk);
tcp_ack_snd_check(sk);
}
if (!queued) {
discard:
tcp_drop_reason(sk, skb, reason);
}
return 0;
consume:
__kfree_skb(skb);
return 0;
}
EXPORT_SYMBOL(tcp_rcv_state_process);
static inline void pr_drop_req(struct request_sock *req, __u16 port, int family)
{
struct inet_request_sock *ireq = inet_rsk(req);
if (family == AF_INET)
net_dbg_ratelimited("drop open request from %pI4/%u\n",
&ireq->ir_rmt_addr, port);
#if IS_ENABLED(CONFIG_IPV6)
else if (family == AF_INET6)
net_dbg_ratelimited("drop open request from %pI6/%u\n",
&ireq->ir_v6_rmt_addr, port);
#endif
}
/* RFC3168 : 6.1.1 SYN packets must not have ECT/ECN bits set
*
* If we receive a SYN packet with these bits set, it means a
* network is playing bad games with TOS bits. In order to
* avoid possible false congestion notifications, we disable
* TCP ECN negotiation.
*
* Exception: tcp_ca wants ECN. This is required for DCTCP
net: dctcp: loosen requirement to assert ECT(0) during 3WHS One deployment requirement of DCTCP is to be able to run in a DC setting along with TCP traffic. As Glenn Judd's NSDI'15 paper "Attaining the Promise and Avoiding the Pitfalls of TCP in the Datacenter" [1] (tba) explains, one way to solve this on switch side is to split DCTCP and TCP traffic in two queues per switch port based on the DSCP: one queue soley intended for DCTCP traffic and one for non-DCTCP traffic. For the DCTCP queue, there's the marking threshold K as explained in commit e3118e8359bb ("net: tcp: add DCTCP congestion control algorithm") for RED marking ECT(0) packets with CE. For the non-DCTCP queue, there's f.e. a classic tail drop queue. As already explained in e3118e8359bb, running DCTCP at scale when not marking SYN/SYN-ACK packets with ECT(0) has severe consequences as for non-ECT(0) packets, traversing the RED marking DCTCP queue will result in a severe reduction of connection probability. This is due to the DCTCP queue being dominated by ECT(0) traffic and switches handle non-ECT traffic in the RED marking queue after passing K as drops, where K is usually a low watermark in order to leave enough tailroom for bursts. Splitting DCTCP traffic among several queues (ECN and non-ECN queue) is being considered a terrible idea in the network community as it splits single flows across multiple network paths. Therefore, commit e3118e8359bb implements this on Linux as ECT(0) marked traffic, as we argue that marking all packets of a DCTCP flow is the only viable solution and also doesn't speak against the draft. However, recently, a DCTCP implementation for FreeBSD hit also their mainline kernel [2]. In order to let them play well together with Linux' DCTCP, we would need to loosen the requirement that ECT(0) has to be asserted during the 3WHS as not implemented in FreeBSD. This simplifies the ECN test and lets DCTCP work together with FreeBSD. Joint work with Daniel Borkmann. [1] https://www.usenix.org/conference/nsdi15/technical-sessions/presentation/judd [2] https://github.com/freebsd/freebsd/commit/8ad879445281027858a7fa706d13e458095b595f Signed-off-by: Florian Westphal <fw@strlen.de> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Cc: Glenn Judd <glenn.judd@morganstanley.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2015-01-30 20:45:20 +01:00
* congestion control: Linux DCTCP asserts ECT on all packets,
* including SYN, which is most optimal solution; however,
* others, such as FreeBSD do not.
*
* Exception: At least one of the reserved bits of the TCP header (th->res1) is
* set, indicating the use of a future TCP extension (such as AccECN). See
* RFC8311 §4.3 which updates RFC3168 to allow the development of such
* extensions.
*/
static void tcp_ecn_create_request(struct request_sock *req,
const struct sk_buff *skb,
net: allow setting ecn via routing table This patch allows to set ECN on a per-route basis in case the sysctl tcp_ecn is not set to 1. In other words, when ECN is set for specific routes, it provides a tcp_ecn=1 behaviour for that route while the rest of the stack acts according to the global settings. One can use 'ip route change dev $dev $net features ecn' to toggle this. Having a more fine-grained per-route setting can be beneficial for various reasons, for example, 1) within data centers, or 2) local ISPs may deploy ECN support for their own video/streaming services [1], etc. There was a recent measurement study/paper [2] which scanned the Alexa's publicly available top million websites list from a vantage point in US, Europe and Asia: Half of the Alexa list will now happily use ECN (tcp_ecn=2, most likely blamed to commit 255cac91c3 ("tcp: extend ECN sysctl to allow server-side only ECN") ;)); the break in connectivity on-path was found is about 1 in 10,000 cases. Timeouts rather than receiving back RSTs were much more common in the negotiation phase (and mostly seen in the Alexa middle band, ranks around 50k-150k): from 12-thousand hosts on which there _may_ be ECN-linked connection failures, only 79 failed with RST when _not_ failing with RST when ECN is not requested. It's unclear though, how much equipment in the wild actually marks CE when buffers start to fill up. We thought about a fallback to non-ECN for retransmitted SYNs as another global option (which could perhaps one day be made default), but as Eric points out, there's much more work needed to detect broken middleboxes. Two examples Eric mentioned are buggy firewalls that accept only a single SYN per flow, and middleboxes that successfully let an ECN flow establish, but later mark CE for all packets (so cwnd converges to 1). [1] http://www.ietf.org/proceedings/89/slides/slides-89-tsvarea-1.pdf, p.15 [2] http://ecn.ethz.ch/ Joint work with Daniel Borkmann. Reference: http://thread.gmane.org/gmane.linux.network/335797 Suggested-by: Hannes Frederic Sowa <hannes@stressinduktion.org> Acked-by: Eric Dumazet <edumazet@google.com> Signed-off-by: Daniel Borkmann <dborkman@redhat.com> Signed-off-by: Florian Westphal <fw@strlen.de> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-11-03 17:35:03 +01:00
const struct sock *listen_sk,
const struct dst_entry *dst)
{
const struct tcphdr *th = tcp_hdr(skb);
const struct net *net = sock_net(listen_sk);
bool th_ecn = th->ece && th->cwr;
net: dctcp: loosen requirement to assert ECT(0) during 3WHS One deployment requirement of DCTCP is to be able to run in a DC setting along with TCP traffic. As Glenn Judd's NSDI'15 paper "Attaining the Promise and Avoiding the Pitfalls of TCP in the Datacenter" [1] (tba) explains, one way to solve this on switch side is to split DCTCP and TCP traffic in two queues per switch port based on the DSCP: one queue soley intended for DCTCP traffic and one for non-DCTCP traffic. For the DCTCP queue, there's the marking threshold K as explained in commit e3118e8359bb ("net: tcp: add DCTCP congestion control algorithm") for RED marking ECT(0) packets with CE. For the non-DCTCP queue, there's f.e. a classic tail drop queue. As already explained in e3118e8359bb, running DCTCP at scale when not marking SYN/SYN-ACK packets with ECT(0) has severe consequences as for non-ECT(0) packets, traversing the RED marking DCTCP queue will result in a severe reduction of connection probability. This is due to the DCTCP queue being dominated by ECT(0) traffic and switches handle non-ECT traffic in the RED marking queue after passing K as drops, where K is usually a low watermark in order to leave enough tailroom for bursts. Splitting DCTCP traffic among several queues (ECN and non-ECN queue) is being considered a terrible idea in the network community as it splits single flows across multiple network paths. Therefore, commit e3118e8359bb implements this on Linux as ECT(0) marked traffic, as we argue that marking all packets of a DCTCP flow is the only viable solution and also doesn't speak against the draft. However, recently, a DCTCP implementation for FreeBSD hit also their mainline kernel [2]. In order to let them play well together with Linux' DCTCP, we would need to loosen the requirement that ECT(0) has to be asserted during the 3WHS as not implemented in FreeBSD. This simplifies the ECN test and lets DCTCP work together with FreeBSD. Joint work with Daniel Borkmann. [1] https://www.usenix.org/conference/nsdi15/technical-sessions/presentation/judd [2] https://github.com/freebsd/freebsd/commit/8ad879445281027858a7fa706d13e458095b595f Signed-off-by: Florian Westphal <fw@strlen.de> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Cc: Glenn Judd <glenn.judd@morganstanley.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2015-01-30 20:45:20 +01:00
bool ect, ecn_ok;
u32 ecn_ok_dst;
if (!th_ecn)
return;
ect = !INET_ECN_is_not_ect(TCP_SKB_CB(skb)->ip_dsfield);
ecn_ok_dst = dst_feature(dst, DST_FEATURE_ECN_MASK);
ecn_ok = READ_ONCE(net->ipv4.sysctl_tcp_ecn) || ecn_ok_dst;
if (((!ect || th->res1) && ecn_ok) || tcp_ca_needs_ecn(listen_sk) ||
(ecn_ok_dst & DST_FEATURE_ECN_CA) ||
tcp_bpf_ca_needs_ecn((struct sock *)req))
inet_rsk(req)->ecn_ok = 1;
}
static void tcp_openreq_init(struct request_sock *req,
const struct tcp_options_received *rx_opt,
struct sk_buff *skb, const struct sock *sk)
{
struct inet_request_sock *ireq = inet_rsk(req);
req->rsk_rcv_wnd = 0; /* So that tcp_send_synack() knows! */
tcp_rsk(req)->rcv_isn = TCP_SKB_CB(skb)->seq;
tcp_rsk(req)->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
tcp_rsk(req)->snt_synack = 0;
tcp_rsk(req)->last_oow_ack_time = 0;
req->mss = rx_opt->mss_clamp;
req->ts_recent = rx_opt->saw_tstamp ? rx_opt->rcv_tsval : 0;
ireq->tstamp_ok = rx_opt->tstamp_ok;
ireq->sack_ok = rx_opt->sack_ok;
ireq->snd_wscale = rx_opt->snd_wscale;
ireq->wscale_ok = rx_opt->wscale_ok;
ireq->acked = 0;
ireq->ecn_ok = 0;
ireq->ir_rmt_port = tcp_hdr(skb)->source;
ireq->ir_num = ntohs(tcp_hdr(skb)->dest);
ireq->ir_mark = inet_request_mark(sk, skb);
#if IS_ENABLED(CONFIG_SMC)
2022-02-10 17:11:36 +08:00
ireq->smc_ok = rx_opt->smc_ok && !(tcp_sk(sk)->smc_hs_congested &&
tcp_sk(sk)->smc_hs_congested(sk));
#endif
}
struct request_sock *inet_reqsk_alloc(const struct request_sock_ops *ops,
struct sock *sk_listener,
bool attach_listener)
{
struct request_sock *req = reqsk_alloc(ops, sk_listener,
attach_listener);
if (req) {
struct inet_request_sock *ireq = inet_rsk(req);
tcp/dccp: fix ireq->opt races syzkaller found another bug in DCCP/TCP stacks [1] For the reasons explained in commit ce1050089c96 ("tcp/dccp: fix ireq->pktopts race"), we need to make sure we do not access ireq->opt unless we own the request sock. Note the opt field is renamed to ireq_opt to ease grep games. [1] BUG: KASAN: use-after-free in ip_queue_xmit+0x1687/0x18e0 net/ipv4/ip_output.c:474 Read of size 1 at addr ffff8801c951039c by task syz-executor5/3295 CPU: 1 PID: 3295 Comm: syz-executor5 Not tainted 4.14.0-rc4+ #80 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 01/01/2011 Call Trace: __dump_stack lib/dump_stack.c:16 [inline] dump_stack+0x194/0x257 lib/dump_stack.c:52 print_address_description+0x73/0x250 mm/kasan/report.c:252 kasan_report_error mm/kasan/report.c:351 [inline] kasan_report+0x25b/0x340 mm/kasan/report.c:409 __asan_report_load1_noabort+0x14/0x20 mm/kasan/report.c:427 ip_queue_xmit+0x1687/0x18e0 net/ipv4/ip_output.c:474 tcp_transmit_skb+0x1ab7/0x3840 net/ipv4/tcp_output.c:1135 tcp_send_ack.part.37+0x3bb/0x650 net/ipv4/tcp_output.c:3587 tcp_send_ack+0x49/0x60 net/ipv4/tcp_output.c:3557 __tcp_ack_snd_check+0x2c6/0x4b0 net/ipv4/tcp_input.c:5072 tcp_ack_snd_check net/ipv4/tcp_input.c:5085 [inline] tcp_rcv_state_process+0x2eff/0x4850 net/ipv4/tcp_input.c:6071 tcp_child_process+0x342/0x990 net/ipv4/tcp_minisocks.c:816 tcp_v4_rcv+0x1827/0x2f80 net/ipv4/tcp_ipv4.c:1682 ip_local_deliver_finish+0x2e2/0xba0 net/ipv4/ip_input.c:216 NF_HOOK include/linux/netfilter.h:249 [inline] ip_local_deliver+0x1ce/0x6e0 net/ipv4/ip_input.c:257 dst_input include/net/dst.h:464 [inline] ip_rcv_finish+0x887/0x19a0 net/ipv4/ip_input.c:397 NF_HOOK include/linux/netfilter.h:249 [inline] ip_rcv+0xc3f/0x1820 net/ipv4/ip_input.c:493 __netif_receive_skb_core+0x1a3e/0x34b0 net/core/dev.c:4476 __netif_receive_skb+0x2c/0x1b0 net/core/dev.c:4514 netif_receive_skb_internal+0x10b/0x670 net/core/dev.c:4587 netif_receive_skb+0xae/0x390 net/core/dev.c:4611 tun_rx_batched.isra.50+0x5ed/0x860 drivers/net/tun.c:1372 tun_get_user+0x249c/0x36d0 drivers/net/tun.c:1766 tun_chr_write_iter+0xbf/0x160 drivers/net/tun.c:1792 call_write_iter include/linux/fs.h:1770 [inline] new_sync_write fs/read_write.c:468 [inline] __vfs_write+0x68a/0x970 fs/read_write.c:481 vfs_write+0x18f/0x510 fs/read_write.c:543 SYSC_write fs/read_write.c:588 [inline] SyS_write+0xef/0x220 fs/read_write.c:580 entry_SYSCALL_64_fastpath+0x1f/0xbe RIP: 0033:0x40c341 RSP: 002b:00007f469523ec10 EFLAGS: 00000293 ORIG_RAX: 0000000000000001 RAX: ffffffffffffffda RBX: 0000000000718000 RCX: 000000000040c341 RDX: 0000000000000037 RSI: 0000000020004000 RDI: 0000000000000015 RBP: 0000000000000086 R08: 0000000000000000 R09: 0000000000000000 R10: 00000000000f4240 R11: 0000000000000293 R12: 00000000004b7fd1 R13: 00000000ffffffff R14: 0000000020000000 R15: 0000000000025000 Allocated by task 3295: save_stack_trace+0x16/0x20 arch/x86/kernel/stacktrace.c:59 save_stack+0x43/0xd0 mm/kasan/kasan.c:447 set_track mm/kasan/kasan.c:459 [inline] kasan_kmalloc+0xad/0xe0 mm/kasan/kasan.c:551 __do_kmalloc mm/slab.c:3725 [inline] __kmalloc+0x162/0x760 mm/slab.c:3734 kmalloc include/linux/slab.h:498 [inline] tcp_v4_save_options include/net/tcp.h:1962 [inline] tcp_v4_init_req+0x2d3/0x3e0 net/ipv4/tcp_ipv4.c:1271 tcp_conn_request+0xf6d/0x3410 net/ipv4/tcp_input.c:6283 tcp_v4_conn_request+0x157/0x210 net/ipv4/tcp_ipv4.c:1313 tcp_rcv_state_process+0x8ea/0x4850 net/ipv4/tcp_input.c:5857 tcp_v4_do_rcv+0x55c/0x7d0 net/ipv4/tcp_ipv4.c:1482 tcp_v4_rcv+0x2d10/0x2f80 net/ipv4/tcp_ipv4.c:1711 ip_local_deliver_finish+0x2e2/0xba0 net/ipv4/ip_input.c:216 NF_HOOK include/linux/netfilter.h:249 [inline] ip_local_deliver+0x1ce/0x6e0 net/ipv4/ip_input.c:257 dst_input include/net/dst.h:464 [inline] ip_rcv_finish+0x887/0x19a0 net/ipv4/ip_input.c:397 NF_HOOK include/linux/netfilter.h:249 [inline] ip_rcv+0xc3f/0x1820 net/ipv4/ip_input.c:493 __netif_receive_skb_core+0x1a3e/0x34b0 net/core/dev.c:4476 __netif_receive_skb+0x2c/0x1b0 net/core/dev.c:4514 netif_receive_skb_internal+0x10b/0x670 net/core/dev.c:4587 netif_receive_skb+0xae/0x390 net/core/dev.c:4611 tun_rx_batched.isra.50+0x5ed/0x860 drivers/net/tun.c:1372 tun_get_user+0x249c/0x36d0 drivers/net/tun.c:1766 tun_chr_write_iter+0xbf/0x160 drivers/net/tun.c:1792 call_write_iter include/linux/fs.h:1770 [inline] new_sync_write fs/read_write.c:468 [inline] __vfs_write+0x68a/0x970 fs/read_write.c:481 vfs_write+0x18f/0x510 fs/read_write.c:543 SYSC_write fs/read_write.c:588 [inline] SyS_write+0xef/0x220 fs/read_write.c:580 entry_SYSCALL_64_fastpath+0x1f/0xbe Freed by task 3306: save_stack_trace+0x16/0x20 arch/x86/kernel/stacktrace.c:59 save_stack+0x43/0xd0 mm/kasan/kasan.c:447 set_track mm/kasan/kasan.c:459 [inline] kasan_slab_free+0x71/0xc0 mm/kasan/kasan.c:524 __cache_free mm/slab.c:3503 [inline] kfree+0xca/0x250 mm/slab.c:3820 inet_sock_destruct+0x59d/0x950 net/ipv4/af_inet.c:157 __sk_destruct+0xfd/0x910 net/core/sock.c:1560 sk_destruct+0x47/0x80 net/core/sock.c:1595 __sk_free+0x57/0x230 net/core/sock.c:1603 sk_free+0x2a/0x40 net/core/sock.c:1614 sock_put include/net/sock.h:1652 [inline] inet_csk_complete_hashdance+0xd5/0xf0 net/ipv4/inet_connection_sock.c:959 tcp_check_req+0xf4d/0x1620 net/ipv4/tcp_minisocks.c:765 tcp_v4_rcv+0x17f6/0x2f80 net/ipv4/tcp_ipv4.c:1675 ip_local_deliver_finish+0x2e2/0xba0 net/ipv4/ip_input.c:216 NF_HOOK include/linux/netfilter.h:249 [inline] ip_local_deliver+0x1ce/0x6e0 net/ipv4/ip_input.c:257 dst_input include/net/dst.h:464 [inline] ip_rcv_finish+0x887/0x19a0 net/ipv4/ip_input.c:397 NF_HOOK include/linux/netfilter.h:249 [inline] ip_rcv+0xc3f/0x1820 net/ipv4/ip_input.c:493 __netif_receive_skb_core+0x1a3e/0x34b0 net/core/dev.c:4476 __netif_receive_skb+0x2c/0x1b0 net/core/dev.c:4514 netif_receive_skb_internal+0x10b/0x670 net/core/dev.c:4587 netif_receive_skb+0xae/0x390 net/core/dev.c:4611 tun_rx_batched.isra.50+0x5ed/0x860 drivers/net/tun.c:1372 tun_get_user+0x249c/0x36d0 drivers/net/tun.c:1766 tun_chr_write_iter+0xbf/0x160 drivers/net/tun.c:1792 call_write_iter include/linux/fs.h:1770 [inline] new_sync_write fs/read_write.c:468 [inline] __vfs_write+0x68a/0x970 fs/read_write.c:481 vfs_write+0x18f/0x510 fs/read_write.c:543 SYSC_write fs/read_write.c:588 [inline] SyS_write+0xef/0x220 fs/read_write.c:580 entry_SYSCALL_64_fastpath+0x1f/0xbe Fixes: e994b2f0fb92 ("tcp: do not lock listener to process SYN packets") Fixes: 079096f103fa ("tcp/dccp: install syn_recv requests into ehash table") Signed-off-by: Eric Dumazet <edumazet@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-10-20 09:04:13 -07:00
ireq->ireq_opt = NULL;
#if IS_ENABLED(CONFIG_IPV6)
ireq->pktopts = NULL;
#endif
atomic64_set(&ireq->ir_cookie, 0);
ireq->ireq_state = TCP_NEW_SYN_RECV;
write_pnet(&ireq->ireq_net, sock_net(sk_listener));
ireq->ireq_family = sk_listener->sk_family;
req->timeout = TCP_TIMEOUT_INIT;
}
return req;
}
EXPORT_SYMBOL(inet_reqsk_alloc);
/*
* Return true if a syncookie should be sent
*/
static bool tcp_syn_flood_action(const struct sock *sk, const char *proto)
{
struct request_sock_queue *queue = &inet_csk(sk)->icsk_accept_queue;
const char *msg = "Dropping request";
struct net *net = sock_net(sk);
bool want_cookie = false;
u8 syncookies;
syncookies = READ_ONCE(net->ipv4.sysctl_tcp_syncookies);
#ifdef CONFIG_SYN_COOKIES
if (syncookies) {
msg = "Sending cookies";
want_cookie = true;
__NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDOCOOKIES);
} else
#endif
__NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDROP);
if (!READ_ONCE(queue->synflood_warned) && syncookies != 2 &&
xchg(&queue->synflood_warned, 1) == 0) {
if (IS_ENABLED(CONFIG_IPV6) && sk->sk_family == AF_INET6) {
net_info_ratelimited("%s: Possible SYN flooding on port [%pI6c]:%u. %s.\n",
proto, inet6_rcv_saddr(sk),
sk->sk_num, msg);
} else {
net_info_ratelimited("%s: Possible SYN flooding on port %pI4:%u. %s.\n",
proto, &sk->sk_rcv_saddr,
sk->sk_num, msg);
}
}
return want_cookie;
}
static void tcp_reqsk_record_syn(const struct sock *sk,
struct request_sock *req,
const struct sk_buff *skb)
{
if (tcp_sk(sk)->save_syn) {
u32 len = skb_network_header_len(skb) + tcp_hdrlen(skb);
struct saved_syn *saved_syn;
u32 mac_hdrlen;
void *base;
if (tcp_sk(sk)->save_syn == 2) { /* Save full header. */
base = skb_mac_header(skb);
mac_hdrlen = skb_mac_header_len(skb);
len += mac_hdrlen;
} else {
base = skb_network_header(skb);
mac_hdrlen = 0;
}
saved_syn = kmalloc(struct_size(saved_syn, data, len),
GFP_ATOMIC);
if (saved_syn) {
saved_syn->mac_hdrlen = mac_hdrlen;
saved_syn->network_hdrlen = skb_network_header_len(skb);
saved_syn->tcp_hdrlen = tcp_hdrlen(skb);
memcpy(saved_syn->data, base, len);
req->saved_syn = saved_syn;
}
}
}
/* If a SYN cookie is required and supported, returns a clamped MSS value to be
* used for SYN cookie generation.
*/
u16 tcp_get_syncookie_mss(struct request_sock_ops *rsk_ops,
const struct tcp_request_sock_ops *af_ops,
struct sock *sk, struct tcphdr *th)
{
struct tcp_sock *tp = tcp_sk(sk);
u16 mss;
if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_syncookies) != 2 &&
!inet_csk_reqsk_queue_is_full(sk))
return 0;
if (!tcp_syn_flood_action(sk, rsk_ops->slab_name))
return 0;
if (sk_acceptq_is_full(sk)) {
NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS);
return 0;
}
mss = tcp_parse_mss_option(th, tp->rx_opt.user_mss);
if (!mss)
mss = af_ops->mss_clamp;
return mss;
}
EXPORT_SYMBOL_GPL(tcp_get_syncookie_mss);
int tcp_conn_request(struct request_sock_ops *rsk_ops,
const struct tcp_request_sock_ops *af_ops,
struct sock *sk, struct sk_buff *skb)
{
struct tcp_fastopen_cookie foc = { .len = -1 };
__u32 isn = TCP_SKB_CB(skb)->tcp_tw_isn;
struct tcp_options_received tmp_opt;
struct tcp_sock *tp = tcp_sk(sk);
struct net *net = sock_net(sk);
struct sock *fastopen_sk = NULL;
struct request_sock *req;
bool want_cookie = false;
struct dst_entry *dst;
struct flowi fl;
u8 syncookies;
syncookies = READ_ONCE(net->ipv4.sysctl_tcp_syncookies);
/* TW buckets are converted to open requests without
* limitations, they conserve resources and peer is
* evidently real one.
*/
if ((syncookies == 2 || inet_csk_reqsk_queue_is_full(sk)) && !isn) {
want_cookie = tcp_syn_flood_action(sk, rsk_ops->slab_name);
if (!want_cookie)
goto drop;
}
if (sk_acceptq_is_full(sk)) {
NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS);
goto drop;
}
req = inet_reqsk_alloc(rsk_ops, sk, !want_cookie);
if (!req)
goto drop;
req->syncookie = want_cookie;
tcp_rsk(req)->af_specific = af_ops;
tcp_rsk(req)->ts_off = 0;
#if IS_ENABLED(CONFIG_MPTCP)
tcp_rsk(req)->is_mptcp = 0;
#endif
tcp_clear_options(&tmp_opt);
tmp_opt.mss_clamp = af_ops->mss_clamp;
tmp_opt.user_mss = tp->rx_opt.user_mss;
tcp_parse_options(sock_net(sk), skb, &tmp_opt, 0,
want_cookie ? NULL : &foc);
if (want_cookie && !tmp_opt.saw_tstamp)
tcp_clear_options(&tmp_opt);
if (IS_ENABLED(CONFIG_SMC) && want_cookie)
tmp_opt.smc_ok = 0;
tmp_opt.tstamp_ok = tmp_opt.saw_tstamp;
tcp_openreq_init(req, &tmp_opt, skb, sk);
inet_rsk(req)->no_srccheck = inet_test_bit(TRANSPARENT, sk);
/* Note: tcp_v6_init_req() might override ir_iif for link locals */
inet_rsk(req)->ir_iif = inet_request_bound_dev_if(sk, skb);
dst = af_ops->route_req(sk, skb, &fl, req);
if (!dst)
goto drop_and_free;
if (tmp_opt.tstamp_ok)
tcp_rsk(req)->ts_off = af_ops->init_ts_off(net, skb);
net: allow setting ecn via routing table This patch allows to set ECN on a per-route basis in case the sysctl tcp_ecn is not set to 1. In other words, when ECN is set for specific routes, it provides a tcp_ecn=1 behaviour for that route while the rest of the stack acts according to the global settings. One can use 'ip route change dev $dev $net features ecn' to toggle this. Having a more fine-grained per-route setting can be beneficial for various reasons, for example, 1) within data centers, or 2) local ISPs may deploy ECN support for their own video/streaming services [1], etc. There was a recent measurement study/paper [2] which scanned the Alexa's publicly available top million websites list from a vantage point in US, Europe and Asia: Half of the Alexa list will now happily use ECN (tcp_ecn=2, most likely blamed to commit 255cac91c3 ("tcp: extend ECN sysctl to allow server-side only ECN") ;)); the break in connectivity on-path was found is about 1 in 10,000 cases. Timeouts rather than receiving back RSTs were much more common in the negotiation phase (and mostly seen in the Alexa middle band, ranks around 50k-150k): from 12-thousand hosts on which there _may_ be ECN-linked connection failures, only 79 failed with RST when _not_ failing with RST when ECN is not requested. It's unclear though, how much equipment in the wild actually marks CE when buffers start to fill up. We thought about a fallback to non-ECN for retransmitted SYNs as another global option (which could perhaps one day be made default), but as Eric points out, there's much more work needed to detect broken middleboxes. Two examples Eric mentioned are buggy firewalls that accept only a single SYN per flow, and middleboxes that successfully let an ECN flow establish, but later mark CE for all packets (so cwnd converges to 1). [1] http://www.ietf.org/proceedings/89/slides/slides-89-tsvarea-1.pdf, p.15 [2] http://ecn.ethz.ch/ Joint work with Daniel Borkmann. Reference: http://thread.gmane.org/gmane.linux.network/335797 Suggested-by: Hannes Frederic Sowa <hannes@stressinduktion.org> Acked-by: Eric Dumazet <edumazet@google.com> Signed-off-by: Daniel Borkmann <dborkman@redhat.com> Signed-off-by: Florian Westphal <fw@strlen.de> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-11-03 17:35:03 +01:00
if (!want_cookie && !isn) {
int max_syn_backlog = READ_ONCE(net->ipv4.sysctl_max_syn_backlog);
/* Kill the following clause, if you dislike this way. */
if (!syncookies &&
(max_syn_backlog - inet_csk_reqsk_queue_len(sk) <
(max_syn_backlog >> 2)) &&
!tcp_peer_is_proven(req, dst)) {
/* Without syncookies last quarter of
* backlog is filled with destinations,
* proven to be alive.
* It means that we continue to communicate
* to destinations, already remembered
* to the moment of synflood.
*/
pr_drop_req(req, ntohs(tcp_hdr(skb)->source),
rsk_ops->family);
goto drop_and_release;
}
isn = af_ops->init_seq(skb);
}
net: allow setting ecn via routing table This patch allows to set ECN on a per-route basis in case the sysctl tcp_ecn is not set to 1. In other words, when ECN is set for specific routes, it provides a tcp_ecn=1 behaviour for that route while the rest of the stack acts according to the global settings. One can use 'ip route change dev $dev $net features ecn' to toggle this. Having a more fine-grained per-route setting can be beneficial for various reasons, for example, 1) within data centers, or 2) local ISPs may deploy ECN support for their own video/streaming services [1], etc. There was a recent measurement study/paper [2] which scanned the Alexa's publicly available top million websites list from a vantage point in US, Europe and Asia: Half of the Alexa list will now happily use ECN (tcp_ecn=2, most likely blamed to commit 255cac91c3 ("tcp: extend ECN sysctl to allow server-side only ECN") ;)); the break in connectivity on-path was found is about 1 in 10,000 cases. Timeouts rather than receiving back RSTs were much more common in the negotiation phase (and mostly seen in the Alexa middle band, ranks around 50k-150k): from 12-thousand hosts on which there _may_ be ECN-linked connection failures, only 79 failed with RST when _not_ failing with RST when ECN is not requested. It's unclear though, how much equipment in the wild actually marks CE when buffers start to fill up. We thought about a fallback to non-ECN for retransmitted SYNs as another global option (which could perhaps one day be made default), but as Eric points out, there's much more work needed to detect broken middleboxes. Two examples Eric mentioned are buggy firewalls that accept only a single SYN per flow, and middleboxes that successfully let an ECN flow establish, but later mark CE for all packets (so cwnd converges to 1). [1] http://www.ietf.org/proceedings/89/slides/slides-89-tsvarea-1.pdf, p.15 [2] http://ecn.ethz.ch/ Joint work with Daniel Borkmann. Reference: http://thread.gmane.org/gmane.linux.network/335797 Suggested-by: Hannes Frederic Sowa <hannes@stressinduktion.org> Acked-by: Eric Dumazet <edumazet@google.com> Signed-off-by: Daniel Borkmann <dborkman@redhat.com> Signed-off-by: Florian Westphal <fw@strlen.de> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-11-03 17:35:03 +01:00
tcp_ecn_create_request(req, skb, sk, dst);
if (want_cookie) {
isn = cookie_init_sequence(af_ops, sk, skb, &req->mss);
if (!tmp_opt.tstamp_ok)
inet_rsk(req)->ecn_ok = 0;
}
tcp_rsk(req)->snt_isn = isn;
tcp_rsk(req)->txhash = net_tx_rndhash();
tcp_rsk(req)->syn_tos = TCP_SKB_CB(skb)->ip_dsfield;
tcp_openreq_init_rwin(req, sk, dst);
sk_rx_queue_set(req_to_sk(req), skb);
if (!want_cookie) {
tcp_reqsk_record_syn(sk, req, skb);
fastopen_sk = tcp_try_fastopen(sk, skb, req, &foc, dst);
}
if (fastopen_sk) {
af_ops->send_synack(fastopen_sk, dst, &fl, req,
bpf: tcp: Add bpf_skops_hdr_opt_len() and bpf_skops_write_hdr_opt() The bpf prog needs to parse the SYN header to learn what options have been sent by the peer's bpf-prog before writing its options into SYNACK. This patch adds a "syn_skb" arg to tcp_make_synack() and send_synack(). This syn_skb will eventually be made available (as read-only) to the bpf prog. This will be the only SYN packet available to the bpf prog during syncookie. For other regular cases, the bpf prog can also use the saved_syn. When writing options, the bpf prog will first be called to tell the kernel its required number of bytes. It is done by the new bpf_skops_hdr_opt_len(). The bpf prog will only be called when the new BPF_SOCK_OPS_WRITE_HDR_OPT_CB_FLAG is set in tp->bpf_sock_ops_cb_flags. When the bpf prog returns, the kernel will know how many bytes are needed and then update the "*remaining" arg accordingly. 4 byte alignment will be included in the "*remaining" before this function returns. The 4 byte aligned number of bytes will also be stored into the opts->bpf_opt_len. "bpf_opt_len" is a newly added member to the struct tcp_out_options. Then the new bpf_skops_write_hdr_opt() will call the bpf prog to write the header options. The bpf prog is only called if it has reserved spaces before (opts->bpf_opt_len > 0). The bpf prog is the last one getting a chance to reserve header space and writing the header option. These two functions are half implemented to highlight the changes in TCP stack. The actual codes preparing the bpf running context and invoking the bpf prog will be added in the later patch with other necessary bpf pieces. Signed-off-by: Martin KaFai Lau <kafai@fb.com> Signed-off-by: Alexei Starovoitov <ast@kernel.org> Reviewed-by: Eric Dumazet <edumazet@google.com> Link: https://lore.kernel.org/bpf/20200820190052.2885316-1-kafai@fb.com
2020-08-20 12:00:52 -07:00
&foc, TCP_SYNACK_FASTOPEN, skb);
/* Add the child socket directly into the accept queue */
if (!inet_csk_reqsk_queue_add(sk, req, fastopen_sk)) {
reqsk_fastopen_remove(fastopen_sk, req, false);
bh_unlock_sock(fastopen_sk);
sock_put(fastopen_sk);
goto drop_and_free;
}
sk->sk_data_ready(sk);
bh_unlock_sock(fastopen_sk);
sock_put(fastopen_sk);
} else {
tcp_rsk(req)->tfo_listener = false;
if (!want_cookie) {
req->timeout = tcp_timeout_init((struct sock *)req);
inet_csk_reqsk_queue_hash_add(sk, req, req->timeout);
}
af_ops->send_synack(sk, dst, &fl, req, &foc,
!want_cookie ? TCP_SYNACK_NORMAL :
bpf: tcp: Add bpf_skops_hdr_opt_len() and bpf_skops_write_hdr_opt() The bpf prog needs to parse the SYN header to learn what options have been sent by the peer's bpf-prog before writing its options into SYNACK. This patch adds a "syn_skb" arg to tcp_make_synack() and send_synack(). This syn_skb will eventually be made available (as read-only) to the bpf prog. This will be the only SYN packet available to the bpf prog during syncookie. For other regular cases, the bpf prog can also use the saved_syn. When writing options, the bpf prog will first be called to tell the kernel its required number of bytes. It is done by the new bpf_skops_hdr_opt_len(). The bpf prog will only be called when the new BPF_SOCK_OPS_WRITE_HDR_OPT_CB_FLAG is set in tp->bpf_sock_ops_cb_flags. When the bpf prog returns, the kernel will know how many bytes are needed and then update the "*remaining" arg accordingly. 4 byte alignment will be included in the "*remaining" before this function returns. The 4 byte aligned number of bytes will also be stored into the opts->bpf_opt_len. "bpf_opt_len" is a newly added member to the struct tcp_out_options. Then the new bpf_skops_write_hdr_opt() will call the bpf prog to write the header options. The bpf prog is only called if it has reserved spaces before (opts->bpf_opt_len > 0). The bpf prog is the last one getting a chance to reserve header space and writing the header option. These two functions are half implemented to highlight the changes in TCP stack. The actual codes preparing the bpf running context and invoking the bpf prog will be added in the later patch with other necessary bpf pieces. Signed-off-by: Martin KaFai Lau <kafai@fb.com> Signed-off-by: Alexei Starovoitov <ast@kernel.org> Reviewed-by: Eric Dumazet <edumazet@google.com> Link: https://lore.kernel.org/bpf/20200820190052.2885316-1-kafai@fb.com
2020-08-20 12:00:52 -07:00
TCP_SYNACK_COOKIE,
skb);
if (want_cookie) {
reqsk_free(req);
return 0;
}
}
reqsk_put(req);
return 0;
drop_and_release:
dst_release(dst);
drop_and_free:
__reqsk_free(req);
drop:
tcp_listendrop(sk);
return 0;
}
EXPORT_SYMBOL(tcp_conn_request);