2005-06-01 06:03:47 +04:00
/*
* drivers / cpufreq / cpufreq_conservative . c
*
* Copyright ( C ) 2001 Russell King
* ( C ) 2003 Venkatesh Pallipadi < venkatesh . pallipadi @ intel . com > .
* Jun Nakajima < jun . nakajima @ intel . com >
2009-02-13 22:01:01 +03:00
* ( C ) 2009 Alexander Clouter < alex @ digriz . org . uk >
2005-06-01 06:03:47 +04:00
*
* This program is free software ; you can redistribute it and / or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation .
*/
# include <linux/kernel.h>
# include <linux/module.h>
# include <linux/init.h>
# include <linux/cpufreq.h>
2006-06-23 14:31:19 +04:00
# include <linux/cpu.h>
2005-06-01 06:03:47 +04:00
# include <linux/jiffies.h>
# include <linux/kernel_stat.h>
2006-01-14 02:54:22 +03:00
# include <linux/mutex.h>
2009-02-13 22:02:34 +03:00
# include <linux/hrtimer.h>
# include <linux/tick.h>
# include <linux/ktime.h>
# include <linux/sched.h>
2005-06-01 06:03:47 +04:00
/*
* dbs is used in this file as a shortform for demandbased switching
* It helps to keep variable names smaller , simpler
*/
# define DEF_FREQUENCY_UP_THRESHOLD (80)
# define DEF_FREQUENCY_DOWN_THRESHOLD (20)
2007-10-23 00:49:09 +04:00
/*
* The polling frequency of this governor depends on the capability of
2005-06-01 06:03:47 +04:00
* the processor . Default polling frequency is 1000 times the transition
2007-10-23 00:49:09 +04:00
* latency of the processor . The governor will work on any processor with
* transition latency < = 10 mS , using appropriate sampling
2005-06-01 06:03:47 +04:00
* rate .
2009-02-13 22:02:34 +03:00
* For CPUs with transition latency > 10 mS ( mostly drivers with CPUFREQ_ETERNAL )
* this governor will not work .
2005-06-01 06:03:47 +04:00
* All times here are in uS .
*/
2006-03-22 12:54:10 +03:00
# define MIN_SAMPLING_RATE_RATIO (2)
2009-02-04 13:55:12 +03:00
2009-04-22 15:48:29 +04:00
static unsigned int min_sampling_rate ;
2009-02-04 13:55:12 +03:00
# define LATENCY_MULTIPLIER (1000)
2009-04-22 15:48:29 +04:00
# define MIN_LATENCY_MULTIPLIER (100)
2006-03-22 12:54:10 +03:00
# define DEF_SAMPLING_DOWN_FACTOR (1)
# define MAX_SAMPLING_DOWN_FACTOR (10)
2007-10-03 00:28:12 +04:00
# define TRANSITION_LATENCY_LIMIT (10 * 1000 * 1000)
2005-06-01 06:03:47 +04:00
2006-11-22 17:57:56 +03:00
static void do_dbs_timer ( struct work_struct * work ) ;
2005-06-01 06:03:47 +04:00
struct cpu_dbs_info_s {
2009-02-13 22:02:34 +03:00
cputime64_t prev_cpu_idle ;
cputime64_t prev_cpu_wall ;
cputime64_t prev_cpu_nice ;
2007-10-23 00:49:09 +04:00
struct cpufreq_policy * cur_policy ;
2009-02-13 22:02:34 +03:00
struct delayed_work work ;
2007-10-23 00:49:09 +04:00
unsigned int down_skip ;
unsigned int requested_freq ;
2009-02-13 22:02:34 +03:00
int cpu ;
unsigned int enable : 1 ;
2005-06-01 06:03:47 +04:00
} ;
static DEFINE_PER_CPU ( struct cpu_dbs_info_s , cpu_dbs_info ) ;
static unsigned int dbs_enable ; /* number of CPUs using this policy */
2006-06-22 02:18:34 +04:00
/*
* DEADLOCK ALERT ! There is a ordering requirement between cpu_hotplug
* lock and dbs_mutex . cpu_hotplug lock should always be held before
* dbs_mutex . If any function that can potentially take cpu_hotplug lock
* ( like __cpufreq_driver_target ( ) ) is being called with dbs_mutex taken , then
* cpu_hotplug lock should be taken before that . Note that cpu_hotplug lock
* is recursive for the same process . - Venki
2009-05-17 18:29:33 +04:00
* DEADLOCK ALERT ! ( 2 ) : do_dbs_timer ( ) must not take the dbs_mutex , because it
* would deadlock with cancel_delayed_work_sync ( ) , which is needed for proper
* raceless workqueue teardown .
2006-06-22 02:18:34 +04:00
*/
2009-01-18 09:39:51 +03:00
static DEFINE_MUTEX ( dbs_mutex ) ;
2005-06-01 06:03:47 +04:00
2009-02-13 22:02:34 +03:00
static struct workqueue_struct * kconservative_wq ;
static struct dbs_tuners {
2007-10-23 00:49:09 +04:00
unsigned int sampling_rate ;
unsigned int sampling_down_factor ;
unsigned int up_threshold ;
unsigned int down_threshold ;
unsigned int ignore_nice ;
unsigned int freq_step ;
2009-02-13 22:02:34 +03:00
} dbs_tuners_ins = {
2007-10-23 00:49:09 +04:00
. up_threshold = DEF_FREQUENCY_UP_THRESHOLD ,
. down_threshold = DEF_FREQUENCY_DOWN_THRESHOLD ,
. sampling_down_factor = DEF_SAMPLING_DOWN_FACTOR ,
. ignore_nice = 0 ,
. freq_step = 5 ,
2005-06-01 06:03:47 +04:00
} ;
2009-02-13 22:02:34 +03:00
static inline cputime64_t get_cpu_idle_time_jiffy ( unsigned int cpu ,
cputime64_t * wall )
2005-06-01 06:03:49 +04:00
{
2009-02-13 22:02:34 +03:00
cputime64_t idle_time ;
cputime64_t cur_wall_time ;
cputime64_t busy_time ;
cur_wall_time = jiffies64_to_cputime64 ( get_jiffies_64 ( ) ) ;
busy_time = cputime64_add ( kstat_cpu ( cpu ) . cpustat . user ,
kstat_cpu ( cpu ) . cpustat . system ) ;
2006-10-26 14:50:58 +04:00
2009-02-13 22:02:34 +03:00
busy_time = cputime64_add ( busy_time , kstat_cpu ( cpu ) . cpustat . irq ) ;
busy_time = cputime64_add ( busy_time , kstat_cpu ( cpu ) . cpustat . softirq ) ;
busy_time = cputime64_add ( busy_time , kstat_cpu ( cpu ) . cpustat . steal ) ;
busy_time = cputime64_add ( busy_time , kstat_cpu ( cpu ) . cpustat . nice ) ;
2006-10-26 14:50:58 +04:00
2009-02-13 22:02:34 +03:00
idle_time = cputime64_sub ( cur_wall_time , busy_time ) ;
if ( wall )
* wall = cur_wall_time ;
2006-10-26 14:50:58 +04:00
2009-02-13 22:02:34 +03:00
return idle_time ;
}
static inline cputime64_t get_cpu_idle_time ( unsigned int cpu , cputime64_t * wall )
{
u64 idle_time = get_cpu_idle_time_us ( cpu , wall ) ;
if ( idle_time = = - 1ULL )
return get_cpu_idle_time_jiffy ( cpu , wall ) ;
return idle_time ;
2005-06-01 06:03:49 +04:00
}
2007-10-22 11:50:13 +04:00
/* keep track of frequency transitions */
static int
dbs_cpufreq_notifier ( struct notifier_block * nb , unsigned long val ,
void * data )
{
struct cpufreq_freqs * freq = data ;
struct cpu_dbs_info_s * this_dbs_info = & per_cpu ( cpu_dbs_info ,
freq - > cpu ) ;
2009-02-13 22:01:51 +03:00
struct cpufreq_policy * policy ;
2007-10-22 11:50:13 +04:00
if ( ! this_dbs_info - > enable )
return 0 ;
2009-02-13 22:01:51 +03:00
policy = this_dbs_info - > cur_policy ;
/*
* we only care if our internally tracked freq moves outside
* the ' valid ' ranges of freqency available to us otherwise
* we do not change it
*/
if ( this_dbs_info - > requested_freq > policy - > max
| | this_dbs_info - > requested_freq < policy - > min )
this_dbs_info - > requested_freq = freq - > new ;
2007-10-22 11:50:13 +04:00
return 0 ;
}
static struct notifier_block dbs_cpufreq_notifier_block = {
. notifier_call = dbs_cpufreq_notifier
} ;
2005-06-01 06:03:47 +04:00
/************************** sysfs interface ************************/
static ssize_t show_sampling_rate_max ( struct cpufreq_policy * policy , char * buf )
{
2009-02-04 13:54:04 +03:00
static int print_once ;
if ( ! print_once ) {
printk ( KERN_INFO " CPUFREQ: conservative sampling_rate_max "
" sysfs file is deprecated - used by: %s \n " ,
current - > comm ) ;
print_once = 1 ;
}
2009-04-22 15:48:29 +04:00
return sprintf ( buf , " %u \n " , - 1U ) ;
2005-06-01 06:03:47 +04:00
}
static ssize_t show_sampling_rate_min ( struct cpufreq_policy * policy , char * buf )
{
2009-02-04 13:54:04 +03:00
static int print_once ;
if ( ! print_once ) {
printk ( KERN_INFO " CPUFREQ: conservative sampling_rate_max "
" sysfs file is deprecated - used by: %s \n " , current - > comm ) ;
print_once = 1 ;
}
2009-04-22 15:48:29 +04:00
return sprintf ( buf , " %u \n " , min_sampling_rate ) ;
2005-06-01 06:03:47 +04:00
}
2009-02-13 22:02:34 +03:00
# define define_one_ro(_name) \
static struct freq_attr _name = \
2005-06-01 06:03:47 +04:00
__ATTR ( _name , 0444 , show_ # # _name , NULL )
define_one_ro ( sampling_rate_max ) ;
define_one_ro ( sampling_rate_min ) ;
/* cpufreq_conservative Governor Tunables */
# define show_one(file_name, object) \
static ssize_t show_ # # file_name \
( struct cpufreq_policy * unused , char * buf ) \
{ \
return sprintf ( buf , " %u \n " , dbs_tuners_ins . object ) ; \
}
show_one ( sampling_rate , sampling_rate ) ;
show_one ( sampling_down_factor , sampling_down_factor ) ;
show_one ( up_threshold , up_threshold ) ;
show_one ( down_threshold , down_threshold ) ;
2005-12-01 12:09:25 +03:00
show_one ( ignore_nice_load , ignore_nice ) ;
2005-06-01 06:03:47 +04:00
show_one ( freq_step , freq_step ) ;
2007-10-23 00:49:09 +04:00
static ssize_t store_sampling_down_factor ( struct cpufreq_policy * unused ,
2005-06-01 06:03:47 +04:00
const char * buf , size_t count )
{
unsigned int input ;
int ret ;
2009-01-18 09:39:51 +03:00
ret = sscanf ( buf , " %u " , & input ) ;
2009-02-13 22:02:34 +03:00
2006-03-22 12:54:10 +03:00
if ( ret ! = 1 | | input > MAX_SAMPLING_DOWN_FACTOR | | input < 1 )
2005-06-01 06:03:47 +04:00
return - EINVAL ;
2006-01-14 02:54:22 +03:00
mutex_lock ( & dbs_mutex ) ;
2005-06-01 06:03:47 +04:00
dbs_tuners_ins . sampling_down_factor = input ;
2006-01-14 02:54:22 +03:00
mutex_unlock ( & dbs_mutex ) ;
2005-06-01 06:03:47 +04:00
return count ;
}
2007-10-23 00:49:09 +04:00
static ssize_t store_sampling_rate ( struct cpufreq_policy * unused ,
2005-06-01 06:03:47 +04:00
const char * buf , size_t count )
{
unsigned int input ;
int ret ;
2009-01-18 09:39:51 +03:00
ret = sscanf ( buf , " %u " , & input ) ;
2005-06-01 06:03:47 +04:00
2009-02-13 22:02:34 +03:00
if ( ret ! = 1 )
2005-06-01 06:03:47 +04:00
return - EINVAL ;
2009-02-13 22:02:34 +03:00
mutex_lock ( & dbs_mutex ) ;
2009-04-22 15:48:29 +04:00
dbs_tuners_ins . sampling_rate = max ( input , min_sampling_rate ) ;
2006-01-14 02:54:22 +03:00
mutex_unlock ( & dbs_mutex ) ;
2005-06-01 06:03:47 +04:00
return count ;
}
2007-10-23 00:49:09 +04:00
static ssize_t store_up_threshold ( struct cpufreq_policy * unused ,
2005-06-01 06:03:47 +04:00
const char * buf , size_t count )
{
unsigned int input ;
int ret ;
2009-01-18 09:39:51 +03:00
ret = sscanf ( buf , " %u " , & input ) ;
2005-06-01 06:03:47 +04:00
2006-01-14 02:54:22 +03:00
mutex_lock ( & dbs_mutex ) ;
2009-01-18 09:39:51 +03:00
if ( ret ! = 1 | | input > 100 | |
2009-02-13 22:02:34 +03:00
input < = dbs_tuners_ins . down_threshold ) {
2006-01-14 02:54:22 +03:00
mutex_unlock ( & dbs_mutex ) ;
2005-06-01 06:03:47 +04:00
return - EINVAL ;
}
dbs_tuners_ins . up_threshold = input ;
2006-01-14 02:54:22 +03:00
mutex_unlock ( & dbs_mutex ) ;
2005-06-01 06:03:47 +04:00
return count ;
}
2007-10-23 00:49:09 +04:00
static ssize_t store_down_threshold ( struct cpufreq_policy * unused ,
2005-06-01 06:03:47 +04:00
const char * buf , size_t count )
{
unsigned int input ;
int ret ;
2009-01-18 09:39:51 +03:00
ret = sscanf ( buf , " %u " , & input ) ;
2005-06-01 06:03:47 +04:00
2006-01-14 02:54:22 +03:00
mutex_lock ( & dbs_mutex ) ;
2009-02-13 22:02:34 +03:00
/* cannot be lower than 11 otherwise freq will not fall */
if ( ret ! = 1 | | input < 11 | | input > 100 | |
input > = dbs_tuners_ins . up_threshold ) {
2006-01-14 02:54:22 +03:00
mutex_unlock ( & dbs_mutex ) ;
2005-06-01 06:03:47 +04:00
return - EINVAL ;
}
dbs_tuners_ins . down_threshold = input ;
2006-01-14 02:54:22 +03:00
mutex_unlock ( & dbs_mutex ) ;
2005-06-01 06:03:47 +04:00
return count ;
}
2005-12-01 12:09:25 +03:00
static ssize_t store_ignore_nice_load ( struct cpufreq_policy * policy ,
2005-06-01 06:03:47 +04:00
const char * buf , size_t count )
{
unsigned int input ;
int ret ;
unsigned int j ;
2007-10-23 00:49:09 +04:00
ret = sscanf ( buf , " %u " , & input ) ;
if ( ret ! = 1 )
2005-06-01 06:03:47 +04:00
return - EINVAL ;
2007-10-23 00:49:09 +04:00
if ( input > 1 )
2005-06-01 06:03:47 +04:00
input = 1 ;
2007-10-23 00:49:09 +04:00
2006-01-14 02:54:22 +03:00
mutex_lock ( & dbs_mutex ) ;
2007-10-23 00:49:09 +04:00
if ( input = = dbs_tuners_ins . ignore_nice ) { /* nothing to do */
2006-01-14 02:54:22 +03:00
mutex_unlock ( & dbs_mutex ) ;
2005-06-01 06:03:47 +04:00
return count ;
}
dbs_tuners_ins . ignore_nice = input ;
2009-02-13 22:02:34 +03:00
/* we need to re-evaluate prev_cpu_idle */
2005-06-01 06:03:49 +04:00
for_each_online_cpu ( j ) {
2009-02-13 22:02:34 +03:00
struct cpu_dbs_info_s * dbs_info ;
dbs_info = & per_cpu ( cpu_dbs_info , j ) ;
dbs_info - > prev_cpu_idle = get_cpu_idle_time ( j ,
& dbs_info - > prev_cpu_wall ) ;
if ( dbs_tuners_ins . ignore_nice )
dbs_info - > prev_cpu_nice = kstat_cpu ( j ) . cpustat . nice ;
2005-06-01 06:03:47 +04:00
}
2006-01-14 02:54:22 +03:00
mutex_unlock ( & dbs_mutex ) ;
2005-06-01 06:03:47 +04:00
return count ;
}
static ssize_t store_freq_step ( struct cpufreq_policy * policy ,
const char * buf , size_t count )
{
unsigned int input ;
int ret ;
2007-10-23 00:49:09 +04:00
ret = sscanf ( buf , " %u " , & input ) ;
2005-06-01 06:03:47 +04:00
2007-10-23 00:49:09 +04:00
if ( ret ! = 1 )
2005-06-01 06:03:47 +04:00
return - EINVAL ;
2007-10-23 00:49:09 +04:00
if ( input > 100 )
2005-06-01 06:03:47 +04:00
input = 100 ;
2007-10-23 00:49:09 +04:00
2005-06-01 06:03:47 +04:00
/* no need to test here if freq_step is zero as the user might actually
* want this , they would be crazy though : ) */
2006-01-14 02:54:22 +03:00
mutex_lock ( & dbs_mutex ) ;
2005-06-01 06:03:47 +04:00
dbs_tuners_ins . freq_step = input ;
2006-01-14 02:54:22 +03:00
mutex_unlock ( & dbs_mutex ) ;
2005-06-01 06:03:47 +04:00
return count ;
}
# define define_one_rw(_name) \
static struct freq_attr _name = \
__ATTR ( _name , 0644 , show_ # # _name , store_ # # _name )
define_one_rw ( sampling_rate ) ;
define_one_rw ( sampling_down_factor ) ;
define_one_rw ( up_threshold ) ;
define_one_rw ( down_threshold ) ;
2005-12-01 12:09:25 +03:00
define_one_rw ( ignore_nice_load ) ;
2005-06-01 06:03:47 +04:00
define_one_rw ( freq_step ) ;
2009-01-18 09:39:51 +03:00
static struct attribute * dbs_attributes [ ] = {
2005-06-01 06:03:47 +04:00
& sampling_rate_max . attr ,
& sampling_rate_min . attr ,
& sampling_rate . attr ,
& sampling_down_factor . attr ,
& up_threshold . attr ,
& down_threshold . attr ,
2005-12-01 12:09:25 +03:00
& ignore_nice_load . attr ,
2005-06-01 06:03:47 +04:00
& freq_step . attr ,
NULL
} ;
static struct attribute_group dbs_attr_group = {
. attrs = dbs_attributes ,
. name = " conservative " ,
} ;
/************************** sysfs end ************************/
2009-02-13 22:02:34 +03:00
static void dbs_check_cpu ( struct cpu_dbs_info_s * this_dbs_info )
2005-06-01 06:03:47 +04:00
{
2009-02-13 22:02:34 +03:00
unsigned int load = 0 ;
2008-07-30 20:59:56 +04:00
unsigned int freq_target ;
2005-06-01 06:03:47 +04:00
2009-02-13 22:02:34 +03:00
struct cpufreq_policy * policy ;
unsigned int j ;
2005-06-01 06:03:47 +04:00
2006-03-22 12:59:16 +03:00
policy = this_dbs_info - > cur_policy ;
2007-10-23 00:49:09 +04:00
/*
2009-02-13 22:02:34 +03:00
* Every sampling_rate , we check , if current idle time is less
* than 20 % ( default ) , then we try to increase frequency
* Every sampling_rate * sampling_down_factor , we check , if current
* idle time is more than 80 % , then we try to decrease frequency
2005-06-01 06:03:47 +04:00
*
2007-10-23 00:49:09 +04:00
* Any frequency increase takes it to the maximum frequency .
* Frequency reduction happens at minimum steps of
2009-02-13 22:02:34 +03:00
* 5 % ( default ) of maximum frequency
2005-06-01 06:03:47 +04:00
*/
2009-02-13 22:02:34 +03:00
/* Get Absolute Load */
for_each_cpu ( j , policy - > cpus ) {
struct cpu_dbs_info_s * j_dbs_info ;
cputime64_t cur_wall_time , cur_idle_time ;
unsigned int idle_time , wall_time ;
2005-06-01 06:03:47 +04:00
2009-02-13 22:02:34 +03:00
j_dbs_info = & per_cpu ( cpu_dbs_info , j ) ;
cur_idle_time = get_cpu_idle_time ( j , & cur_wall_time ) ;
wall_time = ( unsigned int ) cputime64_sub ( cur_wall_time ,
j_dbs_info - > prev_cpu_wall ) ;
j_dbs_info - > prev_cpu_wall = cur_wall_time ;
2006-03-22 12:59:16 +03:00
2009-02-13 22:02:34 +03:00
idle_time = ( unsigned int ) cputime64_sub ( cur_idle_time ,
j_dbs_info - > prev_cpu_idle ) ;
j_dbs_info - > prev_cpu_idle = cur_idle_time ;
2005-06-01 06:03:47 +04:00
2009-02-13 22:02:34 +03:00
if ( dbs_tuners_ins . ignore_nice ) {
cputime64_t cur_nice ;
unsigned long cur_nice_jiffies ;
cur_nice = cputime64_sub ( kstat_cpu ( j ) . cpustat . nice ,
j_dbs_info - > prev_cpu_nice ) ;
/*
* Assumption : nice time between sampling periods will
* be less than 2 ^ 32 jiffies for 32 bit sys
*/
cur_nice_jiffies = ( unsigned long )
cputime64_to_jiffies64 ( cur_nice ) ;
j_dbs_info - > prev_cpu_nice = kstat_cpu ( j ) . cpustat . nice ;
idle_time + = jiffies_to_usecs ( cur_nice_jiffies ) ;
}
if ( unlikely ( ! wall_time | | wall_time < idle_time ) )
continue ;
load = 100 * ( wall_time - idle_time ) / wall_time ;
}
/*
* break out if we ' cannot ' reduce the speed as the user might
* want freq_step to be zero
*/
if ( dbs_tuners_ins . freq_step = = 0 )
return ;
2005-06-01 06:03:47 +04:00
2009-02-13 22:02:34 +03:00
/* Check for frequency increase */
if ( load > dbs_tuners_ins . up_threshold ) {
2006-03-22 13:00:18 +03:00
this_dbs_info - > down_skip = 0 ;
2005-06-01 06:03:49 +04:00
2005-06-01 06:03:47 +04:00
/* if we are already at full speed then break out early */
2006-03-22 13:00:18 +03:00
if ( this_dbs_info - > requested_freq = = policy - > max )
2005-06-01 06:03:47 +04:00
return ;
2007-10-23 00:49:09 +04:00
2008-07-30 20:59:56 +04:00
freq_target = ( dbs_tuners_ins . freq_step * policy - > max ) / 100 ;
2005-06-01 06:03:47 +04:00
/* max freq cannot be less than 100. But who knows.... */
2008-07-30 20:59:56 +04:00
if ( unlikely ( freq_target = = 0 ) )
freq_target = 5 ;
2007-10-23 00:49:09 +04:00
2008-07-30 20:59:56 +04:00
this_dbs_info - > requested_freq + = freq_target ;
2006-03-22 13:00:18 +03:00
if ( this_dbs_info - > requested_freq > policy - > max )
this_dbs_info - > requested_freq = policy - > max ;
2005-06-01 06:03:47 +04:00
2006-03-22 13:00:18 +03:00
__cpufreq_driver_target ( policy , this_dbs_info - > requested_freq ,
2005-06-01 06:03:47 +04:00
CPUFREQ_RELATION_H ) ;
return ;
}
2009-02-13 22:02:34 +03:00
/*
* The optimal frequency is the frequency that is the lowest that
* can support the current CPU usage without triggering the up
* policy . To be safe , we focus 10 points under the threshold .
*/
if ( load < ( dbs_tuners_ins . down_threshold - 10 ) ) {
2008-07-30 20:59:56 +04:00
freq_target = ( dbs_tuners_ins . freq_step * policy - > max ) / 100 ;
2005-06-01 06:03:47 +04:00
2008-07-30 20:59:56 +04:00
this_dbs_info - > requested_freq - = freq_target ;
2006-03-22 13:00:18 +03:00
if ( this_dbs_info - > requested_freq < policy - > min )
this_dbs_info - > requested_freq = policy - > min ;
2005-06-01 06:03:47 +04:00
2009-02-13 22:02:34 +03:00
/*
* if we cannot reduce the frequency anymore , break out early
*/
if ( policy - > cur = = policy - > min )
return ;
2006-03-22 13:00:18 +03:00
__cpufreq_driver_target ( policy , this_dbs_info - > requested_freq ,
2006-03-22 12:54:10 +03:00
CPUFREQ_RELATION_H ) ;
2005-06-01 06:03:47 +04:00
return ;
}
}
2006-11-22 17:57:56 +03:00
static void do_dbs_timer ( struct work_struct * work )
2007-10-23 00:49:09 +04:00
{
2009-02-13 22:02:34 +03:00
struct cpu_dbs_info_s * dbs_info =
container_of ( work , struct cpu_dbs_info_s , work . work ) ;
unsigned int cpu = dbs_info - > cpu ;
/* We want all CPUs to do sampling nearly on same jiffy */
int delay = usecs_to_jiffies ( dbs_tuners_ins . sampling_rate ) ;
delay - = jiffies % delay ;
if ( lock_policy_rwsem_write ( cpu ) < 0 )
return ;
if ( ! dbs_info - > enable ) {
unlock_policy_rwsem_write ( cpu ) ;
return ;
}
dbs_check_cpu ( dbs_info ) ;
queue_delayed_work_on ( cpu , kconservative_wq , & dbs_info - > work , delay ) ;
unlock_policy_rwsem_write ( cpu ) ;
2007-10-23 00:49:09 +04:00
}
2005-06-01 06:03:47 +04:00
2009-02-13 22:02:34 +03:00
static inline void dbs_timer_init ( struct cpu_dbs_info_s * dbs_info )
2005-06-01 06:03:47 +04:00
{
2009-02-13 22:02:34 +03:00
/* We want all CPUs to do sampling nearly on same jiffy */
int delay = usecs_to_jiffies ( dbs_tuners_ins . sampling_rate ) ;
delay - = jiffies % delay ;
dbs_info - > enable = 1 ;
INIT_DELAYED_WORK_DEFERRABLE ( & dbs_info - > work , do_dbs_timer ) ;
queue_delayed_work_on ( dbs_info - > cpu , kconservative_wq , & dbs_info - > work ,
delay ) ;
2005-06-01 06:03:47 +04:00
}
2009-02-13 22:02:34 +03:00
static inline void dbs_timer_exit ( struct cpu_dbs_info_s * dbs_info )
2005-06-01 06:03:47 +04:00
{
2009-02-13 22:02:34 +03:00
dbs_info - > enable = 0 ;
2009-05-17 18:29:33 +04:00
cancel_delayed_work_sync ( & dbs_info - > work ) ;
2005-06-01 06:03:47 +04:00
}
static int cpufreq_governor_dbs ( struct cpufreq_policy * policy ,
unsigned int event )
{
unsigned int cpu = policy - > cpu ;
struct cpu_dbs_info_s * this_dbs_info ;
unsigned int j ;
2006-10-21 01:31:00 +04:00
int rc ;
2005-06-01 06:03:47 +04:00
this_dbs_info = & per_cpu ( cpu_dbs_info , cpu ) ;
switch ( event ) {
case CPUFREQ_GOV_START :
2007-10-23 00:49:09 +04:00
if ( ( ! cpu_online ( cpu ) ) | | ( ! policy - > cur ) )
2005-06-01 06:03:47 +04:00
return - EINVAL ;
if ( this_dbs_info - > enable ) /* Already enabled */
break ;
2007-10-23 00:49:09 +04:00
2006-01-14 02:54:22 +03:00
mutex_lock ( & dbs_mutex ) ;
2006-10-21 01:31:00 +04:00
rc = sysfs_create_group ( & policy - > kobj , & dbs_attr_group ) ;
if ( rc ) {
mutex_unlock ( & dbs_mutex ) ;
return rc ;
}
2009-01-04 16:18:06 +03:00
for_each_cpu ( j , policy - > cpus ) {
2005-06-01 06:03:47 +04:00
struct cpu_dbs_info_s * j_dbs_info ;
j_dbs_info = & per_cpu ( cpu_dbs_info , j ) ;
j_dbs_info - > cur_policy = policy ;
2007-10-23 00:49:09 +04:00
2009-02-13 22:02:34 +03:00
j_dbs_info - > prev_cpu_idle = get_cpu_idle_time ( j ,
& j_dbs_info - > prev_cpu_wall ) ;
if ( dbs_tuners_ins . ignore_nice ) {
j_dbs_info - > prev_cpu_nice =
kstat_cpu ( j ) . cpustat . nice ;
}
2005-06-01 06:03:47 +04:00
}
2006-03-22 13:00:18 +03:00
this_dbs_info - > down_skip = 0 ;
this_dbs_info - > requested_freq = policy - > cur ;
2006-10-21 01:31:00 +04:00
2005-06-01 06:03:47 +04:00
dbs_enable + + ;
/*
* Start the timerschedule work , when this governor
* is used for first time
*/
if ( dbs_enable = = 1 ) {
unsigned int latency ;
/* policy latency is in nS. Convert it to uS first */
2006-03-22 12:54:10 +03:00
latency = policy - > cpuinfo . transition_latency / 1000 ;
if ( latency = = 0 )
latency = 1 ;
2005-06-01 06:03:47 +04:00
2009-04-22 15:48:29 +04:00
/*
* conservative does not implement micro like ondemand
* governor , thus we are bound to jiffes / HZ
*/
min_sampling_rate =
MIN_SAMPLING_RATE_RATIO * jiffies_to_usecs ( 10 ) ;
/* Bring kernel and HW constraints together */
min_sampling_rate = max ( min_sampling_rate ,
MIN_LATENCY_MULTIPLIER * latency ) ;
dbs_tuners_ins . sampling_rate =
max ( min_sampling_rate ,
latency * LATENCY_MULTIPLIER ) ;
2005-06-01 06:03:47 +04:00
2007-10-22 11:50:13 +04:00
cpufreq_register_notifier (
& dbs_cpufreq_notifier_block ,
CPUFREQ_TRANSITION_NOTIFIER ) ;
2005-06-01 06:03:47 +04:00
}
2009-02-13 22:02:34 +03:00
dbs_timer_init ( this_dbs_info ) ;
2007-10-23 00:49:09 +04:00
2006-01-14 02:54:22 +03:00
mutex_unlock ( & dbs_mutex ) ;
2009-02-13 22:02:34 +03:00
2005-06-01 06:03:47 +04:00
break ;
case CPUFREQ_GOV_STOP :
2006-01-14 02:54:22 +03:00
mutex_lock ( & dbs_mutex ) ;
2009-02-13 22:02:34 +03:00
dbs_timer_exit ( this_dbs_info ) ;
2005-06-01 06:03:47 +04:00
sysfs_remove_group ( & policy - > kobj , & dbs_attr_group ) ;
dbs_enable - - ;
2009-02-13 22:02:34 +03:00
2005-06-01 06:03:47 +04:00
/*
* Stop the timerschedule work , when this governor
* is used for first time
*/
2009-02-13 22:02:34 +03:00
if ( dbs_enable = = 0 )
2007-10-22 11:50:13 +04:00
cpufreq_unregister_notifier (
& dbs_cpufreq_notifier_block ,
CPUFREQ_TRANSITION_NOTIFIER ) ;
2006-01-14 02:54:22 +03:00
mutex_unlock ( & dbs_mutex ) ;
2005-06-01 06:03:47 +04:00
break ;
case CPUFREQ_GOV_LIMITS :
2006-01-14 02:54:22 +03:00
mutex_lock ( & dbs_mutex ) ;
2005-06-01 06:03:47 +04:00
if ( policy - > max < this_dbs_info - > cur_policy - > cur )
__cpufreq_driver_target (
this_dbs_info - > cur_policy ,
2007-10-23 00:49:09 +04:00
policy - > max , CPUFREQ_RELATION_H ) ;
2005-06-01 06:03:47 +04:00
else if ( policy - > min > this_dbs_info - > cur_policy - > cur )
__cpufreq_driver_target (
this_dbs_info - > cur_policy ,
2007-10-23 00:49:09 +04:00
policy - > min , CPUFREQ_RELATION_L ) ;
2006-01-14 02:54:22 +03:00
mutex_unlock ( & dbs_mutex ) ;
2009-02-13 22:02:34 +03:00
2005-06-01 06:03:47 +04:00
break ;
}
return 0 ;
}
2008-09-20 18:50:08 +04:00
# ifndef CONFIG_CPU_FREQ_DEFAULT_GOV_CONSERVATIVE
static
# endif
2007-10-03 00:28:12 +04:00
struct cpufreq_governor cpufreq_gov_conservative = {
. name = " conservative " ,
. governor = cpufreq_governor_dbs ,
. max_transition_latency = TRANSITION_LATENCY_LIMIT ,
. owner = THIS_MODULE ,
2005-06-01 06:03:47 +04:00
} ;
static int __init cpufreq_gov_dbs_init ( void )
{
2009-02-13 22:02:34 +03:00
int err ;
kconservative_wq = create_workqueue ( " kconservative " ) ;
if ( ! kconservative_wq ) {
printk ( KERN_ERR " Creation of kconservative failed \n " ) ;
return - EFAULT ;
}
err = cpufreq_register_governor ( & cpufreq_gov_conservative ) ;
if ( err )
destroy_workqueue ( kconservative_wq ) ;
return err ;
2005-06-01 06:03:47 +04:00
}
static void __exit cpufreq_gov_dbs_exit ( void )
{
2007-10-03 00:28:12 +04:00
cpufreq_unregister_governor ( & cpufreq_gov_conservative ) ;
2009-02-13 22:02:34 +03:00
destroy_workqueue ( kconservative_wq ) ;
2005-06-01 06:03:47 +04:00
}
2009-02-13 22:01:01 +03:00
MODULE_AUTHOR ( " Alexander Clouter <alex@digriz.org.uk> " ) ;
2009-01-18 09:39:51 +03:00
MODULE_DESCRIPTION ( " 'cpufreq_conservative' - A dynamic cpufreq governor for "
2005-06-01 06:03:47 +04:00
" Low Latency Frequency Transition capable processors "
" optimised for use in a battery environment " ) ;
2009-01-18 09:39:51 +03:00
MODULE_LICENSE ( " GPL " ) ;
2005-06-01 06:03:47 +04:00
2008-01-18 02:21:08 +03:00
# ifdef CONFIG_CPU_FREQ_DEFAULT_GOV_CONSERVATIVE
fs_initcall ( cpufreq_gov_dbs_init ) ;
# else
2005-06-01 06:03:47 +04:00
module_init ( cpufreq_gov_dbs_init ) ;
2008-01-18 02:21:08 +03:00
# endif
2005-06-01 06:03:47 +04:00
module_exit ( cpufreq_gov_dbs_exit ) ;