linux/drivers/spi/spi-cadence-quadspi.c

1719 lines
43 KiB
C
Raw Normal View History

// SPDX-License-Identifier: GPL-2.0-only
//
// Driver for Cadence QSPI Controller
//
// Copyright Altera Corporation (C) 2012-2014. All rights reserved.
// Copyright Intel Corporation (C) 2019-2020. All rights reserved.
// Copyright (C) 2020 Texas Instruments Incorporated - http://www.ti.com
#include <linux/clk.h>
#include <linux/completion.h>
#include <linux/delay.h>
#include <linux/dma-mapping.h>
#include <linux/dmaengine.h>
#include <linux/err.h>
#include <linux/errno.h>
#include <linux/interrupt.h>
#include <linux/io.h>
#include <linux/iopoll.h>
#include <linux/jiffies.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/of_device.h>
#include <linux/of.h>
#include <linux/platform_device.h>
#include <linux/pm_runtime.h>
#include <linux/reset.h>
#include <linux/sched.h>
#include <linux/spi/spi.h>
#include <linux/spi/spi-mem.h>
#include <linux/timer.h>
#define CQSPI_NAME "cadence-qspi"
#define CQSPI_MAX_CHIPSELECT 16
/* Quirks */
#define CQSPI_NEEDS_WR_DELAY BIT(0)
#define CQSPI_DISABLE_DAC_MODE BIT(1)
/* Capabilities */
#define CQSPI_SUPPORTS_OCTAL BIT(0)
struct cqspi_st;
struct cqspi_flash_pdata {
struct cqspi_st *cqspi;
u32 clk_rate;
u32 read_delay;
u32 tshsl_ns;
u32 tsd2d_ns;
u32 tchsh_ns;
u32 tslch_ns;
u8 inst_width;
u8 addr_width;
u8 data_width;
bool dtr;
u8 cs;
};
struct cqspi_st {
struct platform_device *pdev;
struct clk *clk;
unsigned int sclk;
void __iomem *iobase;
void __iomem *ahb_base;
resource_size_t ahb_size;
struct completion transfer_complete;
struct dma_chan *rx_chan;
struct completion rx_dma_complete;
dma_addr_t mmap_phys_base;
int current_cs;
unsigned long master_ref_clk_hz;
bool is_decoded_cs;
u32 fifo_depth;
u32 fifo_width;
bool rclk_en;
u32 trigger_address;
u32 wr_delay;
bool use_direct_mode;
struct cqspi_flash_pdata f_pdata[CQSPI_MAX_CHIPSELECT];
};
struct cqspi_driver_platdata {
u32 hwcaps_mask;
u8 quirks;
};
/* Operation timeout value */
#define CQSPI_TIMEOUT_MS 500
#define CQSPI_READ_TIMEOUT_MS 10
/* Instruction type */
#define CQSPI_INST_TYPE_SINGLE 0
#define CQSPI_INST_TYPE_DUAL 1
#define CQSPI_INST_TYPE_QUAD 2
#define CQSPI_INST_TYPE_OCTAL 3
#define CQSPI_DUMMY_CLKS_PER_BYTE 8
#define CQSPI_DUMMY_BYTES_MAX 4
#define CQSPI_DUMMY_CLKS_MAX 31
#define CQSPI_STIG_DATA_LEN_MAX 8
/* Register map */
#define CQSPI_REG_CONFIG 0x00
#define CQSPI_REG_CONFIG_ENABLE_MASK BIT(0)
#define CQSPI_REG_CONFIG_ENB_DIR_ACC_CTRL BIT(7)
#define CQSPI_REG_CONFIG_DECODE_MASK BIT(9)
#define CQSPI_REG_CONFIG_CHIPSELECT_LSB 10
#define CQSPI_REG_CONFIG_DMA_MASK BIT(15)
#define CQSPI_REG_CONFIG_BAUD_LSB 19
#define CQSPI_REG_CONFIG_DTR_PROTO BIT(24)
#define CQSPI_REG_CONFIG_DUAL_OPCODE BIT(30)
#define CQSPI_REG_CONFIG_IDLE_LSB 31
#define CQSPI_REG_CONFIG_CHIPSELECT_MASK 0xF
#define CQSPI_REG_CONFIG_BAUD_MASK 0xF
#define CQSPI_REG_RD_INSTR 0x04
#define CQSPI_REG_RD_INSTR_OPCODE_LSB 0
#define CQSPI_REG_RD_INSTR_TYPE_INSTR_LSB 8
#define CQSPI_REG_RD_INSTR_TYPE_ADDR_LSB 12
#define CQSPI_REG_RD_INSTR_TYPE_DATA_LSB 16
#define CQSPI_REG_RD_INSTR_MODE_EN_LSB 20
#define CQSPI_REG_RD_INSTR_DUMMY_LSB 24
#define CQSPI_REG_RD_INSTR_TYPE_INSTR_MASK 0x3
#define CQSPI_REG_RD_INSTR_TYPE_ADDR_MASK 0x3
#define CQSPI_REG_RD_INSTR_TYPE_DATA_MASK 0x3
#define CQSPI_REG_RD_INSTR_DUMMY_MASK 0x1F
#define CQSPI_REG_WR_INSTR 0x08
#define CQSPI_REG_WR_INSTR_OPCODE_LSB 0
#define CQSPI_REG_WR_INSTR_TYPE_ADDR_LSB 12
#define CQSPI_REG_WR_INSTR_TYPE_DATA_LSB 16
#define CQSPI_REG_DELAY 0x0C
#define CQSPI_REG_DELAY_TSLCH_LSB 0
#define CQSPI_REG_DELAY_TCHSH_LSB 8
#define CQSPI_REG_DELAY_TSD2D_LSB 16
#define CQSPI_REG_DELAY_TSHSL_LSB 24
#define CQSPI_REG_DELAY_TSLCH_MASK 0xFF
#define CQSPI_REG_DELAY_TCHSH_MASK 0xFF
#define CQSPI_REG_DELAY_TSD2D_MASK 0xFF
#define CQSPI_REG_DELAY_TSHSL_MASK 0xFF
#define CQSPI_REG_READCAPTURE 0x10
#define CQSPI_REG_READCAPTURE_BYPASS_LSB 0
#define CQSPI_REG_READCAPTURE_DELAY_LSB 1
#define CQSPI_REG_READCAPTURE_DELAY_MASK 0xF
#define CQSPI_REG_SIZE 0x14
#define CQSPI_REG_SIZE_ADDRESS_LSB 0
#define CQSPI_REG_SIZE_PAGE_LSB 4
#define CQSPI_REG_SIZE_BLOCK_LSB 16
#define CQSPI_REG_SIZE_ADDRESS_MASK 0xF
#define CQSPI_REG_SIZE_PAGE_MASK 0xFFF
#define CQSPI_REG_SIZE_BLOCK_MASK 0x3F
#define CQSPI_REG_SRAMPARTITION 0x18
#define CQSPI_REG_INDIRECTTRIGGER 0x1C
#define CQSPI_REG_DMA 0x20
#define CQSPI_REG_DMA_SINGLE_LSB 0
#define CQSPI_REG_DMA_BURST_LSB 8
#define CQSPI_REG_DMA_SINGLE_MASK 0xFF
#define CQSPI_REG_DMA_BURST_MASK 0xFF
#define CQSPI_REG_REMAP 0x24
#define CQSPI_REG_MODE_BIT 0x28
#define CQSPI_REG_SDRAMLEVEL 0x2C
#define CQSPI_REG_SDRAMLEVEL_RD_LSB 0
#define CQSPI_REG_SDRAMLEVEL_WR_LSB 16
#define CQSPI_REG_SDRAMLEVEL_RD_MASK 0xFFFF
#define CQSPI_REG_SDRAMLEVEL_WR_MASK 0xFFFF
#define CQSPI_REG_WR_COMPLETION_CTRL 0x38
#define CQSPI_REG_WR_DISABLE_AUTO_POLL BIT(14)
#define CQSPI_REG_IRQSTATUS 0x40
#define CQSPI_REG_IRQMASK 0x44
#define CQSPI_REG_INDIRECTRD 0x60
#define CQSPI_REG_INDIRECTRD_START_MASK BIT(0)
#define CQSPI_REG_INDIRECTRD_CANCEL_MASK BIT(1)
#define CQSPI_REG_INDIRECTRD_DONE_MASK BIT(5)
#define CQSPI_REG_INDIRECTRDWATERMARK 0x64
#define CQSPI_REG_INDIRECTRDSTARTADDR 0x68
#define CQSPI_REG_INDIRECTRDBYTES 0x6C
#define CQSPI_REG_CMDCTRL 0x90
#define CQSPI_REG_CMDCTRL_EXECUTE_MASK BIT(0)
#define CQSPI_REG_CMDCTRL_INPROGRESS_MASK BIT(1)
#define CQSPI_REG_CMDCTRL_DUMMY_LSB 7
#define CQSPI_REG_CMDCTRL_WR_BYTES_LSB 12
#define CQSPI_REG_CMDCTRL_WR_EN_LSB 15
#define CQSPI_REG_CMDCTRL_ADD_BYTES_LSB 16
#define CQSPI_REG_CMDCTRL_ADDR_EN_LSB 19
#define CQSPI_REG_CMDCTRL_RD_BYTES_LSB 20
#define CQSPI_REG_CMDCTRL_RD_EN_LSB 23
#define CQSPI_REG_CMDCTRL_OPCODE_LSB 24
#define CQSPI_REG_CMDCTRL_WR_BYTES_MASK 0x7
#define CQSPI_REG_CMDCTRL_ADD_BYTES_MASK 0x3
#define CQSPI_REG_CMDCTRL_RD_BYTES_MASK 0x7
#define CQSPI_REG_CMDCTRL_DUMMY_MASK 0x1F
#define CQSPI_REG_INDIRECTWR 0x70
#define CQSPI_REG_INDIRECTWR_START_MASK BIT(0)
#define CQSPI_REG_INDIRECTWR_CANCEL_MASK BIT(1)
#define CQSPI_REG_INDIRECTWR_DONE_MASK BIT(5)
#define CQSPI_REG_INDIRECTWRWATERMARK 0x74
#define CQSPI_REG_INDIRECTWRSTARTADDR 0x78
#define CQSPI_REG_INDIRECTWRBYTES 0x7C
#define CQSPI_REG_CMDADDRESS 0x94
#define CQSPI_REG_CMDREADDATALOWER 0xA0
#define CQSPI_REG_CMDREADDATAUPPER 0xA4
#define CQSPI_REG_CMDWRITEDATALOWER 0xA8
#define CQSPI_REG_CMDWRITEDATAUPPER 0xAC
#define CQSPI_REG_POLLING_STATUS 0xB0
#define CQSPI_REG_POLLING_STATUS_DUMMY_LSB 16
#define CQSPI_REG_OP_EXT_LOWER 0xE0
#define CQSPI_REG_OP_EXT_READ_LSB 24
#define CQSPI_REG_OP_EXT_WRITE_LSB 16
#define CQSPI_REG_OP_EXT_STIG_LSB 0
/* Interrupt status bits */
#define CQSPI_REG_IRQ_MODE_ERR BIT(0)
#define CQSPI_REG_IRQ_UNDERFLOW BIT(1)
#define CQSPI_REG_IRQ_IND_COMP BIT(2)
#define CQSPI_REG_IRQ_IND_RD_REJECT BIT(3)
#define CQSPI_REG_IRQ_WR_PROTECTED_ERR BIT(4)
#define CQSPI_REG_IRQ_ILLEGAL_AHB_ERR BIT(5)
#define CQSPI_REG_IRQ_WATERMARK BIT(6)
#define CQSPI_REG_IRQ_IND_SRAM_FULL BIT(12)
#define CQSPI_IRQ_MASK_RD (CQSPI_REG_IRQ_WATERMARK | \
CQSPI_REG_IRQ_IND_SRAM_FULL | \
CQSPI_REG_IRQ_IND_COMP)
#define CQSPI_IRQ_MASK_WR (CQSPI_REG_IRQ_IND_COMP | \
CQSPI_REG_IRQ_WATERMARK | \
CQSPI_REG_IRQ_UNDERFLOW)
#define CQSPI_IRQ_STATUS_MASK 0x1FFFF
static int cqspi_wait_for_bit(void __iomem *reg, const u32 mask, bool clr)
{
u32 val;
return readl_relaxed_poll_timeout(reg, val,
(((clr ? ~val : val) & mask) == mask),
10, CQSPI_TIMEOUT_MS * 1000);
}
static bool cqspi_is_idle(struct cqspi_st *cqspi)
{
u32 reg = readl(cqspi->iobase + CQSPI_REG_CONFIG);
return reg & (1 << CQSPI_REG_CONFIG_IDLE_LSB);
}
static u32 cqspi_get_rd_sram_level(struct cqspi_st *cqspi)
{
u32 reg = readl(cqspi->iobase + CQSPI_REG_SDRAMLEVEL);
reg >>= CQSPI_REG_SDRAMLEVEL_RD_LSB;
return reg & CQSPI_REG_SDRAMLEVEL_RD_MASK;
}
static irqreturn_t cqspi_irq_handler(int this_irq, void *dev)
{
struct cqspi_st *cqspi = dev;
unsigned int irq_status;
/* Read interrupt status */
irq_status = readl(cqspi->iobase + CQSPI_REG_IRQSTATUS);
/* Clear interrupt */
writel(irq_status, cqspi->iobase + CQSPI_REG_IRQSTATUS);
irq_status &= CQSPI_IRQ_MASK_RD | CQSPI_IRQ_MASK_WR;
if (irq_status)
complete(&cqspi->transfer_complete);
return IRQ_HANDLED;
}
static unsigned int cqspi_calc_rdreg(struct cqspi_flash_pdata *f_pdata)
{
u32 rdreg = 0;
rdreg |= f_pdata->inst_width << CQSPI_REG_RD_INSTR_TYPE_INSTR_LSB;
rdreg |= f_pdata->addr_width << CQSPI_REG_RD_INSTR_TYPE_ADDR_LSB;
rdreg |= f_pdata->data_width << CQSPI_REG_RD_INSTR_TYPE_DATA_LSB;
return rdreg;
}
static unsigned int cqspi_calc_dummy(const struct spi_mem_op *op, bool dtr)
{
unsigned int dummy_clk;
dummy_clk = op->dummy.nbytes * (8 / op->dummy.buswidth);
if (dtr)
dummy_clk /= 2;
return dummy_clk;
}
static int cqspi_set_protocol(struct cqspi_flash_pdata *f_pdata,
const struct spi_mem_op *op)
{
f_pdata->inst_width = CQSPI_INST_TYPE_SINGLE;
f_pdata->addr_width = CQSPI_INST_TYPE_SINGLE;
f_pdata->data_width = CQSPI_INST_TYPE_SINGLE;
f_pdata->dtr = op->data.dtr && op->cmd.dtr && op->addr.dtr;
switch (op->data.buswidth) {
case 0:
break;
case 1:
f_pdata->data_width = CQSPI_INST_TYPE_SINGLE;
break;
case 2:
f_pdata->data_width = CQSPI_INST_TYPE_DUAL;
break;
case 4:
f_pdata->data_width = CQSPI_INST_TYPE_QUAD;
break;
case 8:
f_pdata->data_width = CQSPI_INST_TYPE_OCTAL;
break;
default:
return -EINVAL;
}
/* Right now we only support 8-8-8 DTR mode. */
if (f_pdata->dtr) {
switch (op->cmd.buswidth) {
case 0:
break;
case 8:
f_pdata->inst_width = CQSPI_INST_TYPE_OCTAL;
break;
default:
return -EINVAL;
}
switch (op->addr.buswidth) {
case 0:
break;
case 8:
f_pdata->addr_width = CQSPI_INST_TYPE_OCTAL;
break;
default:
return -EINVAL;
}
switch (op->data.buswidth) {
case 0:
break;
case 8:
f_pdata->data_width = CQSPI_INST_TYPE_OCTAL;
break;
default:
return -EINVAL;
}
}
return 0;
}
static int cqspi_wait_idle(struct cqspi_st *cqspi)
{
const unsigned int poll_idle_retry = 3;
unsigned int count = 0;
unsigned long timeout;
timeout = jiffies + msecs_to_jiffies(CQSPI_TIMEOUT_MS);
while (1) {
/*
* Read few times in succession to ensure the controller
* is indeed idle, that is, the bit does not transition
* low again.
*/
if (cqspi_is_idle(cqspi))
count++;
else
count = 0;
if (count >= poll_idle_retry)
return 0;
if (time_after(jiffies, timeout)) {
/* Timeout, in busy mode. */
dev_err(&cqspi->pdev->dev,
"QSPI is still busy after %dms timeout.\n",
CQSPI_TIMEOUT_MS);
return -ETIMEDOUT;
}
cpu_relax();
}
}
static int cqspi_exec_flash_cmd(struct cqspi_st *cqspi, unsigned int reg)
{
void __iomem *reg_base = cqspi->iobase;
int ret;
/* Write the CMDCTRL without start execution. */
writel(reg, reg_base + CQSPI_REG_CMDCTRL);
/* Start execute */
reg |= CQSPI_REG_CMDCTRL_EXECUTE_MASK;
writel(reg, reg_base + CQSPI_REG_CMDCTRL);
/* Polling for completion. */
ret = cqspi_wait_for_bit(reg_base + CQSPI_REG_CMDCTRL,
CQSPI_REG_CMDCTRL_INPROGRESS_MASK, 1);
if (ret) {
dev_err(&cqspi->pdev->dev,
"Flash command execution timed out.\n");
return ret;
}
/* Polling QSPI idle status. */
return cqspi_wait_idle(cqspi);
}
static int cqspi_setup_opcode_ext(struct cqspi_flash_pdata *f_pdata,
const struct spi_mem_op *op,
unsigned int shift)
{
struct cqspi_st *cqspi = f_pdata->cqspi;
void __iomem *reg_base = cqspi->iobase;
unsigned int reg;
u8 ext;
if (op->cmd.nbytes != 2)
return -EINVAL;
/* Opcode extension is the LSB. */
ext = op->cmd.opcode & 0xff;
reg = readl(reg_base + CQSPI_REG_OP_EXT_LOWER);
reg &= ~(0xff << shift);
reg |= ext << shift;
writel(reg, reg_base + CQSPI_REG_OP_EXT_LOWER);
return 0;
}
static int cqspi_enable_dtr(struct cqspi_flash_pdata *f_pdata,
const struct spi_mem_op *op, unsigned int shift,
bool enable)
{
struct cqspi_st *cqspi = f_pdata->cqspi;
void __iomem *reg_base = cqspi->iobase;
unsigned int reg;
int ret;
reg = readl(reg_base + CQSPI_REG_CONFIG);
/*
* We enable dual byte opcode here. The callers have to set up the
* extension opcode based on which type of operation it is.
*/
if (enable) {
reg |= CQSPI_REG_CONFIG_DTR_PROTO;
reg |= CQSPI_REG_CONFIG_DUAL_OPCODE;
/* Set up command opcode extension. */
ret = cqspi_setup_opcode_ext(f_pdata, op, shift);
if (ret)
return ret;
} else {
reg &= ~CQSPI_REG_CONFIG_DTR_PROTO;
reg &= ~CQSPI_REG_CONFIG_DUAL_OPCODE;
}
writel(reg, reg_base + CQSPI_REG_CONFIG);
return cqspi_wait_idle(cqspi);
}
static int cqspi_command_read(struct cqspi_flash_pdata *f_pdata,
const struct spi_mem_op *op)
{
struct cqspi_st *cqspi = f_pdata->cqspi;
void __iomem *reg_base = cqspi->iobase;
u8 *rxbuf = op->data.buf.in;
u8 opcode;
size_t n_rx = op->data.nbytes;
unsigned int rdreg;
unsigned int reg;
unsigned int dummy_clk;
size_t read_len;
int status;
status = cqspi_set_protocol(f_pdata, op);
if (status)
return status;
status = cqspi_enable_dtr(f_pdata, op, CQSPI_REG_OP_EXT_STIG_LSB,
f_pdata->dtr);
if (status)
return status;
if (!n_rx || n_rx > CQSPI_STIG_DATA_LEN_MAX || !rxbuf) {
dev_err(&cqspi->pdev->dev,
"Invalid input argument, len %zu rxbuf 0x%p\n",
n_rx, rxbuf);
return -EINVAL;
}
if (f_pdata->dtr)
opcode = op->cmd.opcode >> 8;
else
opcode = op->cmd.opcode;
reg = opcode << CQSPI_REG_CMDCTRL_OPCODE_LSB;
rdreg = cqspi_calc_rdreg(f_pdata);
writel(rdreg, reg_base + CQSPI_REG_RD_INSTR);
dummy_clk = cqspi_calc_dummy(op, f_pdata->dtr);
if (dummy_clk > CQSPI_DUMMY_CLKS_MAX)
return -EOPNOTSUPP;
if (dummy_clk)
reg |= (dummy_clk & CQSPI_REG_CMDCTRL_DUMMY_MASK)
<< CQSPI_REG_CMDCTRL_DUMMY_LSB;
reg |= (0x1 << CQSPI_REG_CMDCTRL_RD_EN_LSB);
/* 0 means 1 byte. */
reg |= (((n_rx - 1) & CQSPI_REG_CMDCTRL_RD_BYTES_MASK)
<< CQSPI_REG_CMDCTRL_RD_BYTES_LSB);
status = cqspi_exec_flash_cmd(cqspi, reg);
if (status)
return status;
reg = readl(reg_base + CQSPI_REG_CMDREADDATALOWER);
/* Put the read value into rx_buf */
read_len = (n_rx > 4) ? 4 : n_rx;
memcpy(rxbuf, &reg, read_len);
rxbuf += read_len;
if (n_rx > 4) {
reg = readl(reg_base + CQSPI_REG_CMDREADDATAUPPER);
read_len = n_rx - read_len;
memcpy(rxbuf, &reg, read_len);
}
return 0;
}
static int cqspi_command_write(struct cqspi_flash_pdata *f_pdata,
const struct spi_mem_op *op)
{
struct cqspi_st *cqspi = f_pdata->cqspi;
void __iomem *reg_base = cqspi->iobase;
u8 opcode;
const u8 *txbuf = op->data.buf.out;
size_t n_tx = op->data.nbytes;
unsigned int reg;
unsigned int data;
size_t write_len;
int ret;
ret = cqspi_set_protocol(f_pdata, op);
if (ret)
return ret;
ret = cqspi_enable_dtr(f_pdata, op, CQSPI_REG_OP_EXT_STIG_LSB,
f_pdata->dtr);
if (ret)
return ret;
if (n_tx > CQSPI_STIG_DATA_LEN_MAX || (n_tx && !txbuf)) {
dev_err(&cqspi->pdev->dev,
"Invalid input argument, cmdlen %zu txbuf 0x%p\n",
n_tx, txbuf);
return -EINVAL;
}
reg = cqspi_calc_rdreg(f_pdata);
writel(reg, reg_base + CQSPI_REG_RD_INSTR);
if (f_pdata->dtr)
opcode = op->cmd.opcode >> 8;
else
opcode = op->cmd.opcode;
reg = opcode << CQSPI_REG_CMDCTRL_OPCODE_LSB;
if (op->addr.nbytes) {
reg |= (0x1 << CQSPI_REG_CMDCTRL_ADDR_EN_LSB);
reg |= ((op->addr.nbytes - 1) &
CQSPI_REG_CMDCTRL_ADD_BYTES_MASK)
<< CQSPI_REG_CMDCTRL_ADD_BYTES_LSB;
writel(op->addr.val, reg_base + CQSPI_REG_CMDADDRESS);
}
if (n_tx) {
reg |= (0x1 << CQSPI_REG_CMDCTRL_WR_EN_LSB);
reg |= ((n_tx - 1) & CQSPI_REG_CMDCTRL_WR_BYTES_MASK)
<< CQSPI_REG_CMDCTRL_WR_BYTES_LSB;
data = 0;
write_len = (n_tx > 4) ? 4 : n_tx;
memcpy(&data, txbuf, write_len);
txbuf += write_len;
writel(data, reg_base + CQSPI_REG_CMDWRITEDATALOWER);
if (n_tx > 4) {
data = 0;
write_len = n_tx - 4;
memcpy(&data, txbuf, write_len);
writel(data, reg_base + CQSPI_REG_CMDWRITEDATAUPPER);
}
}
return cqspi_exec_flash_cmd(cqspi, reg);
}
static int cqspi_read_setup(struct cqspi_flash_pdata *f_pdata,
const struct spi_mem_op *op)
{
struct cqspi_st *cqspi = f_pdata->cqspi;
void __iomem *reg_base = cqspi->iobase;
unsigned int dummy_clk = 0;
unsigned int reg;
int ret;
u8 opcode;
ret = cqspi_enable_dtr(f_pdata, op, CQSPI_REG_OP_EXT_READ_LSB,
f_pdata->dtr);
if (ret)
return ret;
if (f_pdata->dtr)
opcode = op->cmd.opcode >> 8;
else
opcode = op->cmd.opcode;
reg = opcode << CQSPI_REG_RD_INSTR_OPCODE_LSB;
reg |= cqspi_calc_rdreg(f_pdata);
/* Setup dummy clock cycles */
dummy_clk = cqspi_calc_dummy(op, f_pdata->dtr);
if (dummy_clk > CQSPI_DUMMY_CLKS_MAX)
return -EOPNOTSUPP;
if (dummy_clk)
reg |= (dummy_clk & CQSPI_REG_RD_INSTR_DUMMY_MASK)
<< CQSPI_REG_RD_INSTR_DUMMY_LSB;
writel(reg, reg_base + CQSPI_REG_RD_INSTR);
/* Set address width */
reg = readl(reg_base + CQSPI_REG_SIZE);
reg &= ~CQSPI_REG_SIZE_ADDRESS_MASK;
reg |= (op->addr.nbytes - 1);
writel(reg, reg_base + CQSPI_REG_SIZE);
return 0;
}
static int cqspi_indirect_read_execute(struct cqspi_flash_pdata *f_pdata,
u8 *rxbuf, loff_t from_addr,
const size_t n_rx)
{
struct cqspi_st *cqspi = f_pdata->cqspi;
struct device *dev = &cqspi->pdev->dev;
void __iomem *reg_base = cqspi->iobase;
void __iomem *ahb_base = cqspi->ahb_base;
unsigned int remaining = n_rx;
unsigned int mod_bytes = n_rx % 4;
unsigned int bytes_to_read = 0;
u8 *rxbuf_end = rxbuf + n_rx;
int ret = 0;
writel(from_addr, reg_base + CQSPI_REG_INDIRECTRDSTARTADDR);
writel(remaining, reg_base + CQSPI_REG_INDIRECTRDBYTES);
/* Clear all interrupts. */
writel(CQSPI_IRQ_STATUS_MASK, reg_base + CQSPI_REG_IRQSTATUS);
writel(CQSPI_IRQ_MASK_RD, reg_base + CQSPI_REG_IRQMASK);
reinit_completion(&cqspi->transfer_complete);
writel(CQSPI_REG_INDIRECTRD_START_MASK,
reg_base + CQSPI_REG_INDIRECTRD);
while (remaining > 0) {
if (!wait_for_completion_timeout(&cqspi->transfer_complete,
msecs_to_jiffies(CQSPI_READ_TIMEOUT_MS)))
ret = -ETIMEDOUT;
bytes_to_read = cqspi_get_rd_sram_level(cqspi);
if (ret && bytes_to_read == 0) {
dev_err(dev, "Indirect read timeout, no bytes\n");
goto failrd;
}
while (bytes_to_read != 0) {
unsigned int word_remain = round_down(remaining, 4);
bytes_to_read *= cqspi->fifo_width;
bytes_to_read = bytes_to_read > remaining ?
remaining : bytes_to_read;
bytes_to_read = round_down(bytes_to_read, 4);
/* Read 4 byte word chunks then single bytes */
if (bytes_to_read) {
ioread32_rep(ahb_base, rxbuf,
(bytes_to_read / 4));
} else if (!word_remain && mod_bytes) {
unsigned int temp = ioread32(ahb_base);
bytes_to_read = mod_bytes;
memcpy(rxbuf, &temp, min((unsigned int)
(rxbuf_end - rxbuf),
bytes_to_read));
}
rxbuf += bytes_to_read;
remaining -= bytes_to_read;
bytes_to_read = cqspi_get_rd_sram_level(cqspi);
}
if (remaining > 0)
reinit_completion(&cqspi->transfer_complete);
}
/* Check indirect done status */
ret = cqspi_wait_for_bit(reg_base + CQSPI_REG_INDIRECTRD,
CQSPI_REG_INDIRECTRD_DONE_MASK, 0);
if (ret) {
dev_err(dev, "Indirect read completion error (%i)\n", ret);
goto failrd;
}
/* Disable interrupt */
writel(0, reg_base + CQSPI_REG_IRQMASK);
/* Clear indirect completion status */
writel(CQSPI_REG_INDIRECTRD_DONE_MASK, reg_base + CQSPI_REG_INDIRECTRD);
return 0;
failrd:
/* Disable interrupt */
writel(0, reg_base + CQSPI_REG_IRQMASK);
/* Cancel the indirect read */
writel(CQSPI_REG_INDIRECTWR_CANCEL_MASK,
reg_base + CQSPI_REG_INDIRECTRD);
return ret;
}
static int cqspi_write_setup(struct cqspi_flash_pdata *f_pdata,
const struct spi_mem_op *op)
{
unsigned int reg;
int ret;
struct cqspi_st *cqspi = f_pdata->cqspi;
void __iomem *reg_base = cqspi->iobase;
u8 opcode;
ret = cqspi_enable_dtr(f_pdata, op, CQSPI_REG_OP_EXT_WRITE_LSB,
f_pdata->dtr);
if (ret)
return ret;
if (f_pdata->dtr)
opcode = op->cmd.opcode >> 8;
else
opcode = op->cmd.opcode;
/* Set opcode. */
reg = opcode << CQSPI_REG_WR_INSTR_OPCODE_LSB;
reg |= f_pdata->data_width << CQSPI_REG_WR_INSTR_TYPE_DATA_LSB;
reg |= f_pdata->addr_width << CQSPI_REG_WR_INSTR_TYPE_ADDR_LSB;
writel(reg, reg_base + CQSPI_REG_WR_INSTR);
reg = cqspi_calc_rdreg(f_pdata);
writel(reg, reg_base + CQSPI_REG_RD_INSTR);
if (f_pdata->dtr) {
/*
* Some flashes like the cypress Semper flash expect a 4-byte
* dummy address with the Read SR command in DTR mode, but this
* controller does not support sending address with the Read SR
* command. So, disable write completion polling on the
* controller's side. spi-nor will take care of polling the
* status register.
*/
reg = readl(reg_base + CQSPI_REG_WR_COMPLETION_CTRL);
reg |= CQSPI_REG_WR_DISABLE_AUTO_POLL;
writel(reg, reg_base + CQSPI_REG_WR_COMPLETION_CTRL);
}
reg = readl(reg_base + CQSPI_REG_SIZE);
reg &= ~CQSPI_REG_SIZE_ADDRESS_MASK;
reg |= (op->addr.nbytes - 1);
writel(reg, reg_base + CQSPI_REG_SIZE);
return 0;
}
static int cqspi_indirect_write_execute(struct cqspi_flash_pdata *f_pdata,
loff_t to_addr, const u8 *txbuf,
const size_t n_tx)
{
struct cqspi_st *cqspi = f_pdata->cqspi;
struct device *dev = &cqspi->pdev->dev;
void __iomem *reg_base = cqspi->iobase;
unsigned int remaining = n_tx;
unsigned int write_bytes;
int ret;
writel(to_addr, reg_base + CQSPI_REG_INDIRECTWRSTARTADDR);
writel(remaining, reg_base + CQSPI_REG_INDIRECTWRBYTES);
/* Clear all interrupts. */
writel(CQSPI_IRQ_STATUS_MASK, reg_base + CQSPI_REG_IRQSTATUS);
writel(CQSPI_IRQ_MASK_WR, reg_base + CQSPI_REG_IRQMASK);
reinit_completion(&cqspi->transfer_complete);
writel(CQSPI_REG_INDIRECTWR_START_MASK,
reg_base + CQSPI_REG_INDIRECTWR);
/*
* As per 66AK2G02 TRM SPRUHY8F section 11.15.5.3 Indirect Access
* Controller programming sequence, couple of cycles of
* QSPI_REF_CLK delay is required for the above bit to
* be internally synchronized by the QSPI module. Provide 5
* cycles of delay.
*/
if (cqspi->wr_delay)
ndelay(cqspi->wr_delay);
while (remaining > 0) {
size_t write_words, mod_bytes;
write_bytes = remaining;
write_words = write_bytes / 4;
mod_bytes = write_bytes % 4;
/* Write 4 bytes at a time then single bytes. */
if (write_words) {
iowrite32_rep(cqspi->ahb_base, txbuf, write_words);
txbuf += (write_words * 4);
}
if (mod_bytes) {
unsigned int temp = 0xFFFFFFFF;
memcpy(&temp, txbuf, mod_bytes);
iowrite32(temp, cqspi->ahb_base);
txbuf += mod_bytes;
}
if (!wait_for_completion_timeout(&cqspi->transfer_complete,
msecs_to_jiffies(CQSPI_TIMEOUT_MS))) {
dev_err(dev, "Indirect write timeout\n");
ret = -ETIMEDOUT;
goto failwr;
}
remaining -= write_bytes;
if (remaining > 0)
reinit_completion(&cqspi->transfer_complete);
}
/* Check indirect done status */
ret = cqspi_wait_for_bit(reg_base + CQSPI_REG_INDIRECTWR,
CQSPI_REG_INDIRECTWR_DONE_MASK, 0);
if (ret) {
dev_err(dev, "Indirect write completion error (%i)\n", ret);
goto failwr;
}
/* Disable interrupt. */
writel(0, reg_base + CQSPI_REG_IRQMASK);
/* Clear indirect completion status */
writel(CQSPI_REG_INDIRECTWR_DONE_MASK, reg_base + CQSPI_REG_INDIRECTWR);
cqspi_wait_idle(cqspi);
return 0;
failwr:
/* Disable interrupt. */
writel(0, reg_base + CQSPI_REG_IRQMASK);
/* Cancel the indirect write */
writel(CQSPI_REG_INDIRECTWR_CANCEL_MASK,
reg_base + CQSPI_REG_INDIRECTWR);
return ret;
}
static void cqspi_chipselect(struct cqspi_flash_pdata *f_pdata)
{
struct cqspi_st *cqspi = f_pdata->cqspi;
void __iomem *reg_base = cqspi->iobase;
unsigned int chip_select = f_pdata->cs;
unsigned int reg;
reg = readl(reg_base + CQSPI_REG_CONFIG);
if (cqspi->is_decoded_cs) {
reg |= CQSPI_REG_CONFIG_DECODE_MASK;
} else {
reg &= ~CQSPI_REG_CONFIG_DECODE_MASK;
/* Convert CS if without decoder.
* CS0 to 4b'1110
* CS1 to 4b'1101
* CS2 to 4b'1011
* CS3 to 4b'0111
*/
chip_select = 0xF & ~(1 << chip_select);
}
reg &= ~(CQSPI_REG_CONFIG_CHIPSELECT_MASK
<< CQSPI_REG_CONFIG_CHIPSELECT_LSB);
reg |= (chip_select & CQSPI_REG_CONFIG_CHIPSELECT_MASK)
<< CQSPI_REG_CONFIG_CHIPSELECT_LSB;
writel(reg, reg_base + CQSPI_REG_CONFIG);
}
static unsigned int calculate_ticks_for_ns(const unsigned int ref_clk_hz,
const unsigned int ns_val)
{
unsigned int ticks;
ticks = ref_clk_hz / 1000; /* kHz */
ticks = DIV_ROUND_UP(ticks * ns_val, 1000000);
return ticks;
}
static void cqspi_delay(struct cqspi_flash_pdata *f_pdata)
{
struct cqspi_st *cqspi = f_pdata->cqspi;
void __iomem *iobase = cqspi->iobase;
const unsigned int ref_clk_hz = cqspi->master_ref_clk_hz;
unsigned int tshsl, tchsh, tslch, tsd2d;
unsigned int reg;
unsigned int tsclk;
/* calculate the number of ref ticks for one sclk tick */
tsclk = DIV_ROUND_UP(ref_clk_hz, cqspi->sclk);
tshsl = calculate_ticks_for_ns(ref_clk_hz, f_pdata->tshsl_ns);
/* this particular value must be at least one sclk */
if (tshsl < tsclk)
tshsl = tsclk;
tchsh = calculate_ticks_for_ns(ref_clk_hz, f_pdata->tchsh_ns);
tslch = calculate_ticks_for_ns(ref_clk_hz, f_pdata->tslch_ns);
tsd2d = calculate_ticks_for_ns(ref_clk_hz, f_pdata->tsd2d_ns);
reg = (tshsl & CQSPI_REG_DELAY_TSHSL_MASK)
<< CQSPI_REG_DELAY_TSHSL_LSB;
reg |= (tchsh & CQSPI_REG_DELAY_TCHSH_MASK)
<< CQSPI_REG_DELAY_TCHSH_LSB;
reg |= (tslch & CQSPI_REG_DELAY_TSLCH_MASK)
<< CQSPI_REG_DELAY_TSLCH_LSB;
reg |= (tsd2d & CQSPI_REG_DELAY_TSD2D_MASK)
<< CQSPI_REG_DELAY_TSD2D_LSB;
writel(reg, iobase + CQSPI_REG_DELAY);
}
static void cqspi_config_baudrate_div(struct cqspi_st *cqspi)
{
const unsigned int ref_clk_hz = cqspi->master_ref_clk_hz;
void __iomem *reg_base = cqspi->iobase;
u32 reg, div;
/* Recalculate the baudrate divisor based on QSPI specification. */
div = DIV_ROUND_UP(ref_clk_hz, 2 * cqspi->sclk) - 1;
reg = readl(reg_base + CQSPI_REG_CONFIG);
reg &= ~(CQSPI_REG_CONFIG_BAUD_MASK << CQSPI_REG_CONFIG_BAUD_LSB);
reg |= (div & CQSPI_REG_CONFIG_BAUD_MASK) << CQSPI_REG_CONFIG_BAUD_LSB;
writel(reg, reg_base + CQSPI_REG_CONFIG);
}
static void cqspi_readdata_capture(struct cqspi_st *cqspi,
const bool bypass,
const unsigned int delay)
{
void __iomem *reg_base = cqspi->iobase;
unsigned int reg;
reg = readl(reg_base + CQSPI_REG_READCAPTURE);
if (bypass)
reg |= (1 << CQSPI_REG_READCAPTURE_BYPASS_LSB);
else
reg &= ~(1 << CQSPI_REG_READCAPTURE_BYPASS_LSB);
reg &= ~(CQSPI_REG_READCAPTURE_DELAY_MASK
<< CQSPI_REG_READCAPTURE_DELAY_LSB);
reg |= (delay & CQSPI_REG_READCAPTURE_DELAY_MASK)
<< CQSPI_REG_READCAPTURE_DELAY_LSB;
writel(reg, reg_base + CQSPI_REG_READCAPTURE);
}
static void cqspi_controller_enable(struct cqspi_st *cqspi, bool enable)
{
void __iomem *reg_base = cqspi->iobase;
unsigned int reg;
reg = readl(reg_base + CQSPI_REG_CONFIG);
if (enable)
reg |= CQSPI_REG_CONFIG_ENABLE_MASK;
else
reg &= ~CQSPI_REG_CONFIG_ENABLE_MASK;
writel(reg, reg_base + CQSPI_REG_CONFIG);
}
static void cqspi_configure(struct cqspi_flash_pdata *f_pdata,
unsigned long sclk)
{
struct cqspi_st *cqspi = f_pdata->cqspi;
int switch_cs = (cqspi->current_cs != f_pdata->cs);
int switch_ck = (cqspi->sclk != sclk);
if (switch_cs || switch_ck)
cqspi_controller_enable(cqspi, 0);
/* Switch chip select. */
if (switch_cs) {
cqspi->current_cs = f_pdata->cs;
cqspi_chipselect(f_pdata);
}
/* Setup baudrate divisor and delays */
if (switch_ck) {
cqspi->sclk = sclk;
cqspi_config_baudrate_div(cqspi);
cqspi_delay(f_pdata);
cqspi_readdata_capture(cqspi, !cqspi->rclk_en,
f_pdata->read_delay);
}
if (switch_cs || switch_ck)
cqspi_controller_enable(cqspi, 1);
}
static ssize_t cqspi_write(struct cqspi_flash_pdata *f_pdata,
const struct spi_mem_op *op)
{
struct cqspi_st *cqspi = f_pdata->cqspi;
loff_t to = op->addr.val;
size_t len = op->data.nbytes;
const u_char *buf = op->data.buf.out;
int ret;
ret = cqspi_set_protocol(f_pdata, op);
if (ret)
return ret;
ret = cqspi_write_setup(f_pdata, op);
if (ret)
return ret;
/*
* Some flashes like the Cypress Semper flash expect a dummy 4-byte
* address (all 0s) with the read status register command in DTR mode.
* But this controller does not support sending dummy address bytes to
* the flash when it is polling the write completion register in DTR
* mode. So, we can not use direct mode when in DTR mode for writing
* data.
*/
if (!f_pdata->dtr && cqspi->use_direct_mode &&
((to + len) <= cqspi->ahb_size)) {
memcpy_toio(cqspi->ahb_base + to, buf, len);
return cqspi_wait_idle(cqspi);
}
return cqspi_indirect_write_execute(f_pdata, to, buf, len);
}
static void cqspi_rx_dma_callback(void *param)
{
struct cqspi_st *cqspi = param;
complete(&cqspi->rx_dma_complete);
}
static int cqspi_direct_read_execute(struct cqspi_flash_pdata *f_pdata,
u_char *buf, loff_t from, size_t len)
{
struct cqspi_st *cqspi = f_pdata->cqspi;
struct device *dev = &cqspi->pdev->dev;
enum dma_ctrl_flags flags = DMA_CTRL_ACK | DMA_PREP_INTERRUPT;
dma_addr_t dma_src = (dma_addr_t)cqspi->mmap_phys_base + from;
int ret = 0;
struct dma_async_tx_descriptor *tx;
dma_cookie_t cookie;
dma_addr_t dma_dst;
struct device *ddev;
if (!cqspi->rx_chan || !virt_addr_valid(buf)) {
memcpy_fromio(buf, cqspi->ahb_base + from, len);
return 0;
}
ddev = cqspi->rx_chan->device->dev;
dma_dst = dma_map_single(ddev, buf, len, DMA_FROM_DEVICE);
if (dma_mapping_error(ddev, dma_dst)) {
dev_err(dev, "dma mapping failed\n");
return -ENOMEM;
}
tx = dmaengine_prep_dma_memcpy(cqspi->rx_chan, dma_dst, dma_src,
len, flags);
if (!tx) {
dev_err(dev, "device_prep_dma_memcpy error\n");
ret = -EIO;
goto err_unmap;
}
tx->callback = cqspi_rx_dma_callback;
tx->callback_param = cqspi;
cookie = tx->tx_submit(tx);
reinit_completion(&cqspi->rx_dma_complete);
ret = dma_submit_error(cookie);
if (ret) {
dev_err(dev, "dma_submit_error %d\n", cookie);
ret = -EIO;
goto err_unmap;
}
dma_async_issue_pending(cqspi->rx_chan);
if (!wait_for_completion_timeout(&cqspi->rx_dma_complete,
spi: cadence-quadspi: Fix build warning on 32-bit platforms The kernel test robot reports the following warning. drivers/spi/spi-cadence-quadspi.c:966:24: warning: comparison of distinct pointer types ('typeof (len) *' (aka 'unsigned int *') and 'typeof (500UL) *' (aka 'unsigned long *')) [-Wcompare-distinct-pointer-types] msecs_to_jiffies(max(len, 500UL)))) { ^~~~~~~~~~~~~~~ include/linux/minmax.h:58:19: note: expanded from macro 'max' #define max(x, y) __careful_cmp(x, y, >) ^~~~~~~~~~~~~~~~~~~~~~ include/linux/minmax.h:42:24: note: expanded from macro '__careful_cmp' __builtin_choose_expr(__safe_cmp(x, y), \ ^~~~~~~~~~~~~~~~ include/linux/minmax.h:32:4: note: expanded from macro '__safe_cmp' (__typecheck(x, y) && __no_side_effects(x, y)) ^~~~~~~~~~~~~~~~~ include/linux/minmax.h:18:28: note: expanded from macro '__typecheck' (!!(sizeof((typeof(x) *)1 == (typeof(y) *)1))) ~~~~~~~~~~~~~~ ^ ~~~~~~~~~~~~~~ 1 warning generated. This happens because size_t is unsigned long on 64-bit platforms like arm64 but it is unsigned int on 32-bit platforms like arm. Omitting the "UL" would result in a warning on 64-bit platforms. Squash it by type casting the arguments to size_t using max_t(). This way builds on both type of platforms can be satisfied. There is no chance of any truncation since 500 is small enough to fit into both int and long. Fixes: f453f293979f ("spi: cadence-quadspi: Wait at least 500 ms for direct reads") Reported-by: kernel test robot <lkp@intel.com> Signed-off-by: Pratyush Yadav <p.yadav@ti.com> Link: https://lore.kernel.org/r/20210108181457.30291-1-p.yadav@ti.com Signed-off-by: Mark Brown <broonie@kernel.org>
2021-01-08 21:14:57 +03:00
msecs_to_jiffies(max_t(size_t, len, 500)))) {
dmaengine_terminate_sync(cqspi->rx_chan);
dev_err(dev, "DMA wait_for_completion_timeout\n");
ret = -ETIMEDOUT;
goto err_unmap;
}
err_unmap:
dma_unmap_single(ddev, dma_dst, len, DMA_FROM_DEVICE);
return ret;
}
static ssize_t cqspi_read(struct cqspi_flash_pdata *f_pdata,
const struct spi_mem_op *op)
{
struct cqspi_st *cqspi = f_pdata->cqspi;
loff_t from = op->addr.val;
size_t len = op->data.nbytes;
u_char *buf = op->data.buf.in;
int ret;
ret = cqspi_set_protocol(f_pdata, op);
if (ret)
return ret;
ret = cqspi_read_setup(f_pdata, op);
if (ret)
return ret;
if (cqspi->use_direct_mode && ((from + len) <= cqspi->ahb_size))
return cqspi_direct_read_execute(f_pdata, buf, from, len);
return cqspi_indirect_read_execute(f_pdata, buf, from, len);
}
static int cqspi_mem_process(struct spi_mem *mem, const struct spi_mem_op *op)
{
struct cqspi_st *cqspi = spi_master_get_devdata(mem->spi->master);
struct cqspi_flash_pdata *f_pdata;
f_pdata = &cqspi->f_pdata[mem->spi->chip_select];
cqspi_configure(f_pdata, mem->spi->max_speed_hz);
if (op->data.dir == SPI_MEM_DATA_IN && op->data.buf.in) {
if (!op->addr.nbytes)
return cqspi_command_read(f_pdata, op);
return cqspi_read(f_pdata, op);
}
if (!op->addr.nbytes || !op->data.buf.out)
return cqspi_command_write(f_pdata, op);
return cqspi_write(f_pdata, op);
}
static int cqspi_exec_mem_op(struct spi_mem *mem, const struct spi_mem_op *op)
{
int ret;
ret = cqspi_mem_process(mem, op);
if (ret)
dev_err(&mem->spi->dev, "operation failed with %d\n", ret);
return ret;
}
static int cqspi_check_buswidth_req(struct spi_mem *mem, u8 buswidth, bool tx)
{
u32 mode = mem->spi->mode;
switch (buswidth) {
case 1:
return 0;
case 2:
if ((tx &&
(mode & (SPI_TX_DUAL | SPI_TX_QUAD | SPI_TX_OCTAL))) ||
(!tx &&
(mode & (SPI_RX_DUAL | SPI_RX_QUAD | SPI_RX_OCTAL))))
return 0;
break;
case 4:
if ((tx && (mode & (SPI_TX_QUAD | SPI_TX_OCTAL))) ||
(!tx && (mode & (SPI_RX_QUAD | SPI_RX_OCTAL))))
return 0;
break;
case 8:
if ((tx && (mode & SPI_TX_OCTAL)) ||
(!tx && (mode & SPI_RX_OCTAL)))
return 0;
break;
default:
break;
}
return -EOPNOTSUPP;
}
static bool cqspi_supports_mem_op(struct spi_mem *mem,
const struct spi_mem_op *op)
{
bool all_true, all_false;
if (cqspi_check_buswidth_req(mem, op->cmd.buswidth, true))
return false;
if (op->addr.nbytes &&
cqspi_check_buswidth_req(mem, op->addr.buswidth, true))
return false;
if (op->dummy.nbytes &&
cqspi_check_buswidth_req(mem, op->dummy.buswidth, true))
return false;
if (op->data.nbytes &&
cqspi_check_buswidth_req(mem, op->data.buswidth,
op->data.dir == SPI_MEM_DATA_OUT))
return false;
all_true = op->cmd.dtr && op->addr.dtr && op->dummy.dtr &&
op->data.dtr;
all_false = !op->cmd.dtr && !op->addr.dtr && !op->dummy.dtr &&
!op->data.dtr;
/* Mixed DTR modes not supported. */
if (!(all_true || all_false))
return false;
/* DTR mode opcodes should be 2 bytes. */
if (all_true && op->cmd.nbytes != 2)
return false;
return true;
}
static int cqspi_of_get_flash_pdata(struct platform_device *pdev,
struct cqspi_flash_pdata *f_pdata,
struct device_node *np)
{
if (of_property_read_u32(np, "cdns,read-delay", &f_pdata->read_delay)) {
dev_err(&pdev->dev, "couldn't determine read-delay\n");
return -ENXIO;
}
if (of_property_read_u32(np, "cdns,tshsl-ns", &f_pdata->tshsl_ns)) {
dev_err(&pdev->dev, "couldn't determine tshsl-ns\n");
return -ENXIO;
}
if (of_property_read_u32(np, "cdns,tsd2d-ns", &f_pdata->tsd2d_ns)) {
dev_err(&pdev->dev, "couldn't determine tsd2d-ns\n");
return -ENXIO;
}
if (of_property_read_u32(np, "cdns,tchsh-ns", &f_pdata->tchsh_ns)) {
dev_err(&pdev->dev, "couldn't determine tchsh-ns\n");
return -ENXIO;
}
if (of_property_read_u32(np, "cdns,tslch-ns", &f_pdata->tslch_ns)) {
dev_err(&pdev->dev, "couldn't determine tslch-ns\n");
return -ENXIO;
}
if (of_property_read_u32(np, "spi-max-frequency", &f_pdata->clk_rate)) {
dev_err(&pdev->dev, "couldn't determine spi-max-frequency\n");
return -ENXIO;
}
return 0;
}
static int cqspi_of_get_pdata(struct cqspi_st *cqspi)
{
struct device *dev = &cqspi->pdev->dev;
struct device_node *np = dev->of_node;
cqspi->is_decoded_cs = of_property_read_bool(np, "cdns,is-decoded-cs");
if (of_property_read_u32(np, "cdns,fifo-depth", &cqspi->fifo_depth)) {
dev_err(dev, "couldn't determine fifo-depth\n");
return -ENXIO;
}
if (of_property_read_u32(np, "cdns,fifo-width", &cqspi->fifo_width)) {
dev_err(dev, "couldn't determine fifo-width\n");
return -ENXIO;
}
if (of_property_read_u32(np, "cdns,trigger-address",
&cqspi->trigger_address)) {
dev_err(dev, "couldn't determine trigger-address\n");
return -ENXIO;
}
cqspi->rclk_en = of_property_read_bool(np, "cdns,rclk-en");
return 0;
}
static void cqspi_controller_init(struct cqspi_st *cqspi)
{
u32 reg;
cqspi_controller_enable(cqspi, 0);
/* Configure the remap address register, no remap */
writel(0, cqspi->iobase + CQSPI_REG_REMAP);
/* Disable all interrupts. */
writel(0, cqspi->iobase + CQSPI_REG_IRQMASK);
/* Configure the SRAM split to 1:1 . */
writel(cqspi->fifo_depth / 2, cqspi->iobase + CQSPI_REG_SRAMPARTITION);
/* Load indirect trigger address. */
writel(cqspi->trigger_address,
cqspi->iobase + CQSPI_REG_INDIRECTTRIGGER);
/* Program read watermark -- 1/2 of the FIFO. */
writel(cqspi->fifo_depth * cqspi->fifo_width / 2,
cqspi->iobase + CQSPI_REG_INDIRECTRDWATERMARK);
/* Program write watermark -- 1/8 of the FIFO. */
writel(cqspi->fifo_depth * cqspi->fifo_width / 8,
cqspi->iobase + CQSPI_REG_INDIRECTWRWATERMARK);
/* Enable Direct Access Controller */
reg = readl(cqspi->iobase + CQSPI_REG_CONFIG);
reg |= CQSPI_REG_CONFIG_ENB_DIR_ACC_CTRL;
writel(reg, cqspi->iobase + CQSPI_REG_CONFIG);
cqspi_controller_enable(cqspi, 1);
}
static int cqspi_request_mmap_dma(struct cqspi_st *cqspi)
{
dma_cap_mask_t mask;
dma_cap_zero(mask);
dma_cap_set(DMA_MEMCPY, mask);
cqspi->rx_chan = dma_request_chan_by_mask(&mask);
if (IS_ERR(cqspi->rx_chan)) {
int ret = PTR_ERR(cqspi->rx_chan);
cqspi->rx_chan = NULL;
return dev_err_probe(&cqspi->pdev->dev, ret, "No Rx DMA available\n");
}
init_completion(&cqspi->rx_dma_complete);
return 0;
}
static const char *cqspi_get_name(struct spi_mem *mem)
{
struct cqspi_st *cqspi = spi_master_get_devdata(mem->spi->master);
struct device *dev = &cqspi->pdev->dev;
return devm_kasprintf(dev, GFP_KERNEL, "%s.%d", dev_name(dev), mem->spi->chip_select);
}
static const struct spi_controller_mem_ops cqspi_mem_ops = {
.exec_op = cqspi_exec_mem_op,
.get_name = cqspi_get_name,
.supports_op = cqspi_supports_mem_op,
};
static int cqspi_setup_flash(struct cqspi_st *cqspi)
{
struct platform_device *pdev = cqspi->pdev;
struct device *dev = &pdev->dev;
struct device_node *np = dev->of_node;
struct cqspi_flash_pdata *f_pdata;
unsigned int cs;
int ret;
/* Get flash device data */
for_each_available_child_of_node(dev->of_node, np) {
ret = of_property_read_u32(np, "reg", &cs);
if (ret) {
dev_err(dev, "Couldn't determine chip select.\n");
return ret;
}
if (cs >= CQSPI_MAX_CHIPSELECT) {
dev_err(dev, "Chip select %d out of range.\n", cs);
return -EINVAL;
}
f_pdata = &cqspi->f_pdata[cs];
f_pdata->cqspi = cqspi;
f_pdata->cs = cs;
ret = cqspi_of_get_flash_pdata(pdev, f_pdata, np);
if (ret)
return ret;
}
return 0;
}
static int cqspi_probe(struct platform_device *pdev)
{
const struct cqspi_driver_platdata *ddata;
struct reset_control *rstc, *rstc_ocp;
struct device *dev = &pdev->dev;
struct spi_master *master;
struct resource *res_ahb;
struct cqspi_st *cqspi;
struct resource *res;
int ret;
int irq;
master = spi_alloc_master(&pdev->dev, sizeof(*cqspi));
if (!master) {
dev_err(&pdev->dev, "spi_alloc_master failed\n");
return -ENOMEM;
}
master->mode_bits = SPI_RX_QUAD | SPI_RX_DUAL;
master->mem_ops = &cqspi_mem_ops;
master->dev.of_node = pdev->dev.of_node;
cqspi = spi_master_get_devdata(master);
cqspi->pdev = pdev;
/* Obtain configuration from OF. */
ret = cqspi_of_get_pdata(cqspi);
if (ret) {
dev_err(dev, "Cannot get mandatory OF data.\n");
ret = -ENODEV;
goto probe_master_put;
}
/* Obtain QSPI clock. */
cqspi->clk = devm_clk_get(dev, NULL);
if (IS_ERR(cqspi->clk)) {
dev_err(dev, "Cannot claim QSPI clock.\n");
ret = PTR_ERR(cqspi->clk);
goto probe_master_put;
}
/* Obtain and remap controller address. */
res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
cqspi->iobase = devm_ioremap_resource(dev, res);
if (IS_ERR(cqspi->iobase)) {
dev_err(dev, "Cannot remap controller address.\n");
ret = PTR_ERR(cqspi->iobase);
goto probe_master_put;
}
/* Obtain and remap AHB address. */
res_ahb = platform_get_resource(pdev, IORESOURCE_MEM, 1);
cqspi->ahb_base = devm_ioremap_resource(dev, res_ahb);
if (IS_ERR(cqspi->ahb_base)) {
dev_err(dev, "Cannot remap AHB address.\n");
ret = PTR_ERR(cqspi->ahb_base);
goto probe_master_put;
}
cqspi->mmap_phys_base = (dma_addr_t)res_ahb->start;
cqspi->ahb_size = resource_size(res_ahb);
init_completion(&cqspi->transfer_complete);
/* Obtain IRQ line. */
irq = platform_get_irq(pdev, 0);
if (irq < 0) {
ret = -ENXIO;
goto probe_master_put;
}
pm_runtime_enable(dev);
ret = pm_runtime_get_sync(dev);
if (ret < 0) {
pm_runtime_put_noidle(dev);
goto probe_master_put;
}
ret = clk_prepare_enable(cqspi->clk);
if (ret) {
dev_err(dev, "Cannot enable QSPI clock.\n");
goto probe_clk_failed;
}
/* Obtain QSPI reset control */
rstc = devm_reset_control_get_optional_exclusive(dev, "qspi");
if (IS_ERR(rstc)) {
ret = PTR_ERR(rstc);
dev_err(dev, "Cannot get QSPI reset.\n");
goto probe_reset_failed;
}
rstc_ocp = devm_reset_control_get_optional_exclusive(dev, "qspi-ocp");
if (IS_ERR(rstc_ocp)) {
ret = PTR_ERR(rstc_ocp);
dev_err(dev, "Cannot get QSPI OCP reset.\n");
goto probe_reset_failed;
}
reset_control_assert(rstc);
reset_control_deassert(rstc);
reset_control_assert(rstc_ocp);
reset_control_deassert(rstc_ocp);
cqspi->master_ref_clk_hz = clk_get_rate(cqspi->clk);
master->max_speed_hz = cqspi->master_ref_clk_hz;
ddata = of_device_get_match_data(dev);
if (ddata) {
if (ddata->quirks & CQSPI_NEEDS_WR_DELAY)
cqspi->wr_delay = 50 * DIV_ROUND_UP(NSEC_PER_SEC,
cqspi->master_ref_clk_hz);
if (ddata->hwcaps_mask & CQSPI_SUPPORTS_OCTAL)
master->mode_bits |= SPI_RX_OCTAL | SPI_TX_OCTAL;
if (!(ddata->quirks & CQSPI_DISABLE_DAC_MODE))
cqspi->use_direct_mode = true;
}
ret = devm_request_irq(dev, irq, cqspi_irq_handler, 0,
pdev->name, cqspi);
if (ret) {
dev_err(dev, "Cannot request IRQ.\n");
goto probe_reset_failed;
}
cqspi_wait_idle(cqspi);
cqspi_controller_init(cqspi);
cqspi->current_cs = -1;
cqspi->sclk = 0;
ret = cqspi_setup_flash(cqspi);
if (ret) {
dev_err(dev, "failed to setup flash parameters %d\n", ret);
goto probe_setup_failed;
}
if (cqspi->use_direct_mode) {
ret = cqspi_request_mmap_dma(cqspi);
if (ret == -EPROBE_DEFER)
goto probe_setup_failed;
}
ret = devm_spi_register_master(dev, master);
if (ret) {
dev_err(&pdev->dev, "failed to register SPI ctlr %d\n", ret);
goto probe_setup_failed;
}
return 0;
probe_setup_failed:
cqspi_controller_enable(cqspi, 0);
probe_reset_failed:
clk_disable_unprepare(cqspi->clk);
probe_clk_failed:
pm_runtime_put_sync(dev);
pm_runtime_disable(dev);
probe_master_put:
spi_master_put(master);
return ret;
}
static int cqspi_remove(struct platform_device *pdev)
{
struct cqspi_st *cqspi = platform_get_drvdata(pdev);
cqspi_controller_enable(cqspi, 0);
if (cqspi->rx_chan)
dma_release_channel(cqspi->rx_chan);
clk_disable_unprepare(cqspi->clk);
pm_runtime_put_sync(&pdev->dev);
pm_runtime_disable(&pdev->dev);
return 0;
}
#ifdef CONFIG_PM_SLEEP
static int cqspi_suspend(struct device *dev)
{
struct cqspi_st *cqspi = dev_get_drvdata(dev);
cqspi_controller_enable(cqspi, 0);
return 0;
}
static int cqspi_resume(struct device *dev)
{
struct cqspi_st *cqspi = dev_get_drvdata(dev);
cqspi_controller_enable(cqspi, 1);
return 0;
}
static const struct dev_pm_ops cqspi__dev_pm_ops = {
.suspend = cqspi_suspend,
.resume = cqspi_resume,
};
#define CQSPI_DEV_PM_OPS (&cqspi__dev_pm_ops)
#else
#define CQSPI_DEV_PM_OPS NULL
#endif
static const struct cqspi_driver_platdata cdns_qspi = {
.quirks = CQSPI_DISABLE_DAC_MODE,
};
static const struct cqspi_driver_platdata k2g_qspi = {
.quirks = CQSPI_NEEDS_WR_DELAY,
};
static const struct cqspi_driver_platdata am654_ospi = {
.hwcaps_mask = CQSPI_SUPPORTS_OCTAL,
.quirks = CQSPI_NEEDS_WR_DELAY,
};
static const struct of_device_id cqspi_dt_ids[] = {
{
.compatible = "cdns,qspi-nor",
.data = &cdns_qspi,
},
{
.compatible = "ti,k2g-qspi",
.data = &k2g_qspi,
},
{
.compatible = "ti,am654-ospi",
.data = &am654_ospi,
},
{
.compatible = "intel,lgm-qspi",
},
{ /* end of table */ }
};
MODULE_DEVICE_TABLE(of, cqspi_dt_ids);
static struct platform_driver cqspi_platform_driver = {
.probe = cqspi_probe,
.remove = cqspi_remove,
.driver = {
.name = CQSPI_NAME,
.pm = CQSPI_DEV_PM_OPS,
.of_match_table = cqspi_dt_ids,
},
};
module_platform_driver(cqspi_platform_driver);
MODULE_DESCRIPTION("Cadence QSPI Controller Driver");
MODULE_LICENSE("GPL v2");
MODULE_ALIAS("platform:" CQSPI_NAME);
MODULE_AUTHOR("Ley Foon Tan <lftan@altera.com>");
MODULE_AUTHOR("Graham Moore <grmoore@opensource.altera.com>");
MODULE_AUTHOR("Vadivel Murugan R <vadivel.muruganx.ramuthevar@intel.com>");
MODULE_AUTHOR("Vignesh Raghavendra <vigneshr@ti.com>");
MODULE_AUTHOR("Pratyush Yadav <p.yadav@ti.com>");