linux/fs/xfs/xfs_trans_priv.h

199 lines
5.0 KiB
C
Raw Normal View History

// SPDX-License-Identifier: GPL-2.0
/*
* Copyright (c) 2000,2002,2005 Silicon Graphics, Inc.
* All Rights Reserved.
*/
#ifndef __XFS_TRANS_PRIV_H__
#define __XFS_TRANS_PRIV_H__
struct xlog;
struct xfs_log_item;
struct xfs_mount;
struct xfs_trans;
xfs: bulk AIL insertion during transaction commit When inserting items into the AIL from the transaction committed callbacks, we take the AIL lock for every single item that is to be inserted. For a CIL checkpoint commit, this can be tens of thousands of individual inserts, yet almost all of the items will be inserted at the same point in the AIL because they have the same index. To reduce the overhead and contention on the AIL lock for such operations, introduce a "bulk insert" operation which allows a list of log items with the same LSN to be inserted in a single operation via a list splice. To do this, we need to pre-sort the log items being committed into a temporary list for insertion. The complexity is that not every log item will end up with the same LSN, and not every item is actually inserted into the AIL. Items that don't match the commit LSN will be inserted and unpinned as per the current one-at-a-time method (relatively rare), while items that are not to be inserted will be unpinned and freed immediately. Items that are to be inserted at the given commit lsn are placed in a temporary array and inserted into the AIL in bulk each time the array fills up. As a result of this, we trade off AIL hold time for a significant reduction in traffic. lock_stat output shows that the worst case hold time is unchanged, but contention from AIL inserts drops by an order of magnitude and the number of lock traversal decreases significantly. Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Christoph Hellwig <hch@lst.de>
2010-12-20 12:02:19 +11:00
struct xfs_ail;
struct xfs_log_vec;
void xfs_trans_init(struct xfs_mount *);
void xfs_trans_add_item(struct xfs_trans *, struct xfs_log_item *);
void xfs_trans_del_item(struct xfs_log_item *);
xfs: Introduce delayed logging core code The delayed logging code only changes in-memory structures and as such can be enabled and disabled with a mount option. Add the mount option and emit a warning that this is an experimental feature that should not be used in production yet. We also need infrastructure to track committed items that have not yet been written to the log. This is what the Committed Item List (CIL) is for. The log item also needs to be extended to track the current log vector, the associated memory buffer and it's location in the Commit Item List. Extend the log item and log vector structures to enable this tracking. To maintain the current log format for transactions with delayed logging, we need to introduce a checkpoint transaction and a context for tracking each checkpoint from initiation to transaction completion. This includes adding a log ticket for tracking space log required/used by the context checkpoint. To track all the changes we need an io vector array per log item, rather than a single array for the entire transaction. Using the new log vector structure for this requires two passes - the first to allocate the log vector structures and chain them together, and the second to fill them out. This log vector chain can then be passed to the CIL for formatting, pinning and insertion into the CIL. Formatting of the log vector chain is relatively simple - it's just a loop over the iovecs on each log vector, but it is made slightly more complex because we re-write the iovec after the copy to point back at the memory buffer we just copied into. This code also needs to pin log items. If the log item is not already tracked in this checkpoint context, then it needs to be pinned. Otherwise it is already pinned and we don't need to pin it again. The only other complexity is calculating the amount of new log space the formatting has consumed. This needs to be accounted to the transaction in progress, and the accounting is made more complex becase we need also to steal space from it for log metadata in the checkpoint transaction. Calculate all this at insert time and update all the tickets, counters, etc correctly. Once we've formatted all the log items in the transaction, attach the busy extents to the checkpoint context so the busy extents live until checkpoint completion and can be processed at that point in time. Transactions can then be freed at this point in time. Now we need to issue checkpoints - we are tracking the amount of log space used by the items in the CIL, so we can trigger background checkpoints when the space usage gets to a certain threshold. Otherwise, checkpoints need ot be triggered when a log synchronisation point is reached - a log force event. Because the log write code already handles chained log vectors, writing the transaction is trivial, too. Construct a transaction header, add it to the head of the chain and write it into the log, then issue a commit record write. Then we can release the checkpoint log ticket and attach the context to the log buffer so it can be called during Io completion to complete the checkpoint. We also need to allow for synchronising multiple in-flight checkpoints. This is needed for two things - the first is to ensure that checkpoint commit records appear in the log in the correct sequence order (so they are replayed in the correct order). The second is so that xfs_log_force_lsn() operates correctly and only flushes and/or waits for the specific sequence it was provided with. To do this we need a wait variable and a list tracking the checkpoint commits in progress. We can walk this list and wait for the checkpoints to change state or complete easily, an this provides the necessary synchronisation for correct operation in both cases. Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Alex Elder <aelder@sgi.com>
2010-05-21 14:37:18 +10:00
void xfs_trans_unreserve_and_mod_sb(struct xfs_trans *tp);
/*
* AIL traversal cursor.
*
* Rather than using a generation number for detecting changes in the ail, use
* a cursor that is protected by the ail lock. The aild cursor exists in the
* struct xfs_ail, but other traversals can declare it on the stack and link it
* to the ail list.
*
* When an object is deleted from or moved int the AIL, the cursor list is
* searched to see if the object is a designated cursor item. If it is, it is
* deleted from the cursor so that the next time the cursor is used traversal
* will return to the start.
*
* This means a traversal colliding with a removal will cause a restart of the
* list scan, rather than any insertion or deletion anywhere in the list. The
* low bit of the item pointer is set if the cursor has been invalidated so
* that we can tell the difference between invalidation and reaching the end
* of the list to trigger traversal restarts.
*/
struct xfs_ail_cursor {
struct list_head list;
struct xfs_log_item *item;
};
[XFS] Move AIL pushing into it's own thread When many hundreds to thousands of threads all try to do simultaneous transactions and the log is in a tail-pushing situation (i.e. full), we can get multiple threads walking the AIL list and contending on the AIL lock. The AIL push is, in effect, a simple I/O dispatch algorithm complicated by the ordering constraints placed on it by the transaction subsystem. It really does not need multiple threads to push on it - even when only a single CPU is pushing the AIL, it can push the I/O out far faster that pretty much any disk subsystem can handle. So, to avoid contention problems stemming from multiple list walkers, move the list walk off into another thread and simply provide a "target" to push to. When a thread requires a push, it sets the target and wakes the push thread, then goes to sleep waiting for the required amount of space to become available in the log. This mechanism should also be a lot fairer under heavy load as the waiters will queue in arrival order, rather than queuing in "who completed a push first" order. Also, by moving the pushing to a separate thread we can do more effectively overload detection and prevention as we can keep context from loop iteration to loop iteration. That is, we can push only part of the list each loop and not have to loop back to the start of the list every time we run. This should also help by reducing the number of items we try to lock and/or push items that we cannot move. Note that this patch is not intended to solve the inefficiencies in the AIL structure and the associated issues with extremely large list contents. That needs to be addresses separately; parallel access would cause problems to any new structure as well, so I'm only aiming to isolate the structure from unbounded parallelism here. SGI-PV: 972759 SGI-Modid: xfs-linux-melb:xfs-kern:30371a Signed-off-by: David Chinner <dgc@sgi.com> Signed-off-by: Lachlan McIlroy <lachlan@sgi.com>
2008-02-05 12:13:32 +11:00
/*
* Private AIL structures.
*
* Eventually we need to drive the locking in here as well.
[XFS] Move AIL pushing into it's own thread When many hundreds to thousands of threads all try to do simultaneous transactions and the log is in a tail-pushing situation (i.e. full), we can get multiple threads walking the AIL list and contending on the AIL lock. The AIL push is, in effect, a simple I/O dispatch algorithm complicated by the ordering constraints placed on it by the transaction subsystem. It really does not need multiple threads to push on it - even when only a single CPU is pushing the AIL, it can push the I/O out far faster that pretty much any disk subsystem can handle. So, to avoid contention problems stemming from multiple list walkers, move the list walk off into another thread and simply provide a "target" to push to. When a thread requires a push, it sets the target and wakes the push thread, then goes to sleep waiting for the required amount of space to become available in the log. This mechanism should also be a lot fairer under heavy load as the waiters will queue in arrival order, rather than queuing in "who completed a push first" order. Also, by moving the pushing to a separate thread we can do more effectively overload detection and prevention as we can keep context from loop iteration to loop iteration. That is, we can push only part of the list each loop and not have to loop back to the start of the list every time we run. This should also help by reducing the number of items we try to lock and/or push items that we cannot move. Note that this patch is not intended to solve the inefficiencies in the AIL structure and the associated issues with extremely large list contents. That needs to be addresses separately; parallel access would cause problems to any new structure as well, so I'm only aiming to isolate the structure from unbounded parallelism here. SGI-PV: 972759 SGI-Modid: xfs-linux-melb:xfs-kern:30371a Signed-off-by: David Chinner <dgc@sgi.com> Signed-off-by: Lachlan McIlroy <lachlan@sgi.com>
2008-02-05 12:13:32 +11:00
*/
struct xfs_ail {
struct xlog *ail_log;
struct task_struct *ail_task;
struct list_head ail_head;
struct list_head ail_cursors;
spinlock_t ail_lock;
xfs_lsn_t ail_last_pushed_lsn;
xfs: l_last_sync_lsn is really AIL state The current implementation of xlog_assign_tail_lsn() assumes that when the AIL is empty, the log tail matches the LSN of the last written commit record. This is recorded in xlog_state_set_callback() as log->l_last_sync_lsn when the iclog state changes to XLOG_STATE_CALLBACK. This change is then immediately followed by running the callbacks on the iclog which then insert the log items into the AIL at the "commit lsn" of that checkpoint. The AIL tracks log items via the start record LSN of the checkpoint, not the commit record LSN. This is because we can pipeline multiple checkpoints, and so the start record of checkpoint N+1 can be written before the commit record of checkpoint N. i.e: start N commit N +-------------+------------+----------------+ start N+1 commit N+1 The tail of the log cannot be moved to the LSN of commit N when all the items of that checkpoint are written back, because then the start record for N+1 is no longer in the active portion of the log and recovery will fail/corrupt the filesystem. Hence when all the log items in checkpoint N are written back, the tail of the log most now only move as far forwards as the start LSN of checkpoint N+1. Hence we cannot use the maximum start record LSN the AIL sees as a replacement the pointer to the current head of the on-disk log records. However, we currently only use the l_last_sync_lsn when the AIL is empty - when there is no start LSN remaining, the tail of the log moves to the LSN of the last commit record as this is where recovery needs to start searching for recoverable records. THe next checkpoint will have a start record LSN that is higher than l_last_sync_lsn, and so everything still works correctly when new checkpoints are written to an otherwise empty log. l_last_sync_lsn is an atomic variable because it is currently updated when an iclog with callbacks attached moves to the CALLBACK state. While we hold the icloglock at this point, we don't hold the AIL lock. When we assign the log tail, we hold the AIL lock, not the icloglock because we have to look up the AIL. Hence it is an atomic variable so it's not bound to a specific lock context. However, the iclog callbacks are only used for CIL checkpoints. We don't use callbacks with unmount record writes, so the l_last_sync_lsn variable only gets updated when we are processing CIL checkpoint callbacks. And those callbacks run under AIL lock contexts, not icloglock context. The CIL checkpoint already knows what the LSN of the iclog the commit record was written to (obtained when written into the iclog before submission) and so we can update the l_last_sync_lsn under the AIL lock in this callback. No other iclog callbacks will run until the currently executing one completes, and hence we can update the l_last_sync_lsn under the AIL lock safely. This means l_last_sync_lsn can move to the AIL as the "ail_head_lsn" and it can be used to replace the atomic l_last_sync_lsn in the iclog code. This makes tracking the log tail belong entirely to the AIL, rather than being smeared across log, iclog and AIL state and locking. Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Darrick J. Wong <djwong@kernel.org> Signed-off-by: Chandan Babu R <chandanbabu@kernel.org>
2024-06-20 09:21:23 +02:00
xfs_lsn_t ail_head_lsn;
int ail_log_flush;
xfs: AIL doesn't need manual pushing We have a mechanism that checks the amount of log space remaining available every time we make a transaction reservation. If the amount of space is below a threshold (25% free) we push on the AIL to tell it to do more work. To do this, we end up calculating the LSN that the AIL needs to push to on every reservation and updating the push target for the AIL with that new target LSN. This is silly and expensive. The AIL is perfectly capable of calculating the push target itself, and it will always be running when the AIL contains objects. What the target does is determine if the AIL needs to do any work before it goes back to sleep. If we haven't run out of reservation space or memory (or some other push all trigger), it will simply go back to sleep for a while if there is more than 25% of the journal space free without doing anything. If there are items in the AIL at a lower LSN than the target, it will try to push up to the target or to the point of getting stuck before going back to sleep and trying again soon after.` Hence we can modify the AIL to calculate it's own 25% push target before it starts a push using the same reserve grant head based calculation as is currently used, and remove all the places where we ask the AIL to push to a new 25% free target. We can also drop the minimum free space size of 256BBs from the calculation because the 25% of a minimum sized log is *always going to be larger than 256BBs. This does still require a manual push in certain circumstances. These circumstances arise when the AIL is not full, but the reservation grants consume the entire of the free space in the log. In this case, we still need to push on the AIL to free up space, so when we hit this condition (i.e. reservation going to sleep to wait on log space) we do a single push to tell the AIL it should empty itself. This will keep the AIL moving as new reservations come in and want more space, rather than keep queuing them and having to push the AIL repeatedly. The reason for using the "push all" when grant space runs out is that we can run out of grant space when there is more than 25% of the log free. Small logs are notorious for this, and we have a hack in the log callback code (xlog_state_set_callback()) where we push the AIL because the *head* moved) to ensure that we kick the AIL when we consume space in it because that can push us over the "less than 25% available" available that starts tail pushing back up again. Hence when we run out of grant space and are going to sleep, we have to consider that the grant space may be consuming almost all the log space and there is almost nothing in the AIL. In this situation, the AIL pins the tail and moving the tail forwards is the only way the grant space will come available, so we have to force the AIL to push everything to guarantee grant space will eventually be returned. Hence triggering a "push all" just before sleeping removes all the nasty corner cases we have in other parts of the code that work around the "we didn't ask the AIL to push enough to free grant space" condition that leads to log space hangs... Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Darrick J. Wong <djwong@kernel.org> Signed-off-by: Chandan Babu R <chandanbabu@kernel.org>
2024-06-20 09:21:20 +02:00
unsigned long ail_opstate;
struct list_head ail_buf_list;
wait_queue_head_t ail_empty;
xfs: background AIL push should target physical space Currently the AIL attempts to keep 25% of the "log space" free, where the current used space is tracked by the reserve grant head. That is, it tracks both physical space used plus the amount reserved by transactions in progress. When we start tail pushing, we are trying to make space for new reservations by writing back older metadata and the log is generally physically full of dirty metadata, and reservations for modifications in flight take up whatever space the AIL can physically free up. Hence we don't really need to take into account the reservation space that has been used - we just need to keep the log tail moving as fast as we can to free up space for more reservations to be made. We know exactly how much physical space the journal is consuming in the AIL (i.e. max LSN - min LSN) so we can base push thresholds directly on this state rather than have to look at grant head reservations to determine how much to physically push out of the log. This also allows code that needs to know if log items in the current transaction need to be pushed or re-logged to simply sample the current target - they don't need to calculate the current target themselves. This avoids the need for any locking when doing such checks. Further, moving to a physical target means we don't need "push all until empty semantics" like were introduced in the previous patch. We can now test and clear the "push all" as a one-shot command to set the target to the current head of the AIL. This allows the xfsaild to maximise the use of log space right up to the point where conditions indicate that the xfsaild is not keeping up with load and it needs to work harder, and as soon as those constraints go away (i.e. external code no longer needs everything pushed) the xfsaild will return to maintaining the normal 25% free space thresholds. Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Darrick J. Wong <djwong@kernel.org> Signed-off-by: Chandan Babu R <chandanbabu@kernel.org>
2024-06-20 09:21:21 +02:00
xfs_lsn_t ail_target;
};
xfs: AIL doesn't need manual pushing We have a mechanism that checks the amount of log space remaining available every time we make a transaction reservation. If the amount of space is below a threshold (25% free) we push on the AIL to tell it to do more work. To do this, we end up calculating the LSN that the AIL needs to push to on every reservation and updating the push target for the AIL with that new target LSN. This is silly and expensive. The AIL is perfectly capable of calculating the push target itself, and it will always be running when the AIL contains objects. What the target does is determine if the AIL needs to do any work before it goes back to sleep. If we haven't run out of reservation space or memory (or some other push all trigger), it will simply go back to sleep for a while if there is more than 25% of the journal space free without doing anything. If there are items in the AIL at a lower LSN than the target, it will try to push up to the target or to the point of getting stuck before going back to sleep and trying again soon after.` Hence we can modify the AIL to calculate it's own 25% push target before it starts a push using the same reserve grant head based calculation as is currently used, and remove all the places where we ask the AIL to push to a new 25% free target. We can also drop the minimum free space size of 256BBs from the calculation because the 25% of a minimum sized log is *always going to be larger than 256BBs. This does still require a manual push in certain circumstances. These circumstances arise when the AIL is not full, but the reservation grants consume the entire of the free space in the log. In this case, we still need to push on the AIL to free up space, so when we hit this condition (i.e. reservation going to sleep to wait on log space) we do a single push to tell the AIL it should empty itself. This will keep the AIL moving as new reservations come in and want more space, rather than keep queuing them and having to push the AIL repeatedly. The reason for using the "push all" when grant space runs out is that we can run out of grant space when there is more than 25% of the log free. Small logs are notorious for this, and we have a hack in the log callback code (xlog_state_set_callback()) where we push the AIL because the *head* moved) to ensure that we kick the AIL when we consume space in it because that can push us over the "less than 25% available" available that starts tail pushing back up again. Hence when we run out of grant space and are going to sleep, we have to consider that the grant space may be consuming almost all the log space and there is almost nothing in the AIL. In this situation, the AIL pins the tail and moving the tail forwards is the only way the grant space will come available, so we have to force the AIL to push everything to guarantee grant space will eventually be returned. Hence triggering a "push all" just before sleeping removes all the nasty corner cases we have in other parts of the code that work around the "we didn't ask the AIL to push enough to free grant space" condition that leads to log space hangs... Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Darrick J. Wong <djwong@kernel.org> Signed-off-by: Chandan Babu R <chandanbabu@kernel.org>
2024-06-20 09:21:20 +02:00
/* Push all items out of the AIL immediately. */
#define XFS_AIL_OPSTATE_PUSH_ALL 0u
/*
* From xfs_trans_ail.c
*/
void xfs_trans_ail_update_bulk(struct xfs_ail *ailp,
struct xfs_ail_cursor *cur,
struct xfs_log_item **log_items, int nr_items,
xfs_lsn_t lsn) __releases(ailp->ail_lock);
/*
* Return a pointer to the first item in the AIL. If the AIL is empty, then
* return NULL.
*/
static inline struct xfs_log_item *
xfs_ail_min(
struct xfs_ail *ailp)
{
return list_first_entry_or_null(&ailp->ail_head, struct xfs_log_item,
li_ail);
}
static inline void
xfs_trans_ail_update(
struct xfs_ail *ailp,
struct xfs_log_item *lip,
xfs_lsn_t lsn) __releases(ailp->ail_lock)
{
xfs_trans_ail_update_bulk(ailp, NULL, &lip, 1, lsn);
}
void xfs_trans_ail_insert(struct xfs_ail *ailp, struct xfs_log_item *lip,
xfs_lsn_t lsn);
xfs_lsn_t xfs_ail_delete_one(struct xfs_ail *ailp, struct xfs_log_item *lip);
void xfs_ail_update_finish(struct xfs_ail *ailp, xfs_lsn_t old_lsn)
__releases(ailp->ail_lock);
void xfs_trans_ail_delete(struct xfs_log_item *lip, int shutdown_type);
xfs: AIL doesn't need manual pushing We have a mechanism that checks the amount of log space remaining available every time we make a transaction reservation. If the amount of space is below a threshold (25% free) we push on the AIL to tell it to do more work. To do this, we end up calculating the LSN that the AIL needs to push to on every reservation and updating the push target for the AIL with that new target LSN. This is silly and expensive. The AIL is perfectly capable of calculating the push target itself, and it will always be running when the AIL contains objects. What the target does is determine if the AIL needs to do any work before it goes back to sleep. If we haven't run out of reservation space or memory (or some other push all trigger), it will simply go back to sleep for a while if there is more than 25% of the journal space free without doing anything. If there are items in the AIL at a lower LSN than the target, it will try to push up to the target or to the point of getting stuck before going back to sleep and trying again soon after.` Hence we can modify the AIL to calculate it's own 25% push target before it starts a push using the same reserve grant head based calculation as is currently used, and remove all the places where we ask the AIL to push to a new 25% free target. We can also drop the minimum free space size of 256BBs from the calculation because the 25% of a minimum sized log is *always going to be larger than 256BBs. This does still require a manual push in certain circumstances. These circumstances arise when the AIL is not full, but the reservation grants consume the entire of the free space in the log. In this case, we still need to push on the AIL to free up space, so when we hit this condition (i.e. reservation going to sleep to wait on log space) we do a single push to tell the AIL it should empty itself. This will keep the AIL moving as new reservations come in and want more space, rather than keep queuing them and having to push the AIL repeatedly. The reason for using the "push all" when grant space runs out is that we can run out of grant space when there is more than 25% of the log free. Small logs are notorious for this, and we have a hack in the log callback code (xlog_state_set_callback()) where we push the AIL because the *head* moved) to ensure that we kick the AIL when we consume space in it because that can push us over the "less than 25% available" available that starts tail pushing back up again. Hence when we run out of grant space and are going to sleep, we have to consider that the grant space may be consuming almost all the log space and there is almost nothing in the AIL. In this situation, the AIL pins the tail and moving the tail forwards is the only way the grant space will come available, so we have to force the AIL to push everything to guarantee grant space will eventually be returned. Hence triggering a "push all" just before sleeping removes all the nasty corner cases we have in other parts of the code that work around the "we didn't ask the AIL to push enough to free grant space" condition that leads to log space hangs... Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Darrick J. Wong <djwong@kernel.org> Signed-off-by: Chandan Babu R <chandanbabu@kernel.org>
2024-06-20 09:21:20 +02:00
static inline void xfs_ail_push(struct xfs_ail *ailp)
{
wake_up_process(ailp->ail_task);
}
static inline void xfs_ail_push_all(struct xfs_ail *ailp)
{
if (!test_and_set_bit(XFS_AIL_OPSTATE_PUSH_ALL, &ailp->ail_opstate))
xfs_ail_push(ailp);
}
xfs: background AIL push should target physical space Currently the AIL attempts to keep 25% of the "log space" free, where the current used space is tracked by the reserve grant head. That is, it tracks both physical space used plus the amount reserved by transactions in progress. When we start tail pushing, we are trying to make space for new reservations by writing back older metadata and the log is generally physically full of dirty metadata, and reservations for modifications in flight take up whatever space the AIL can physically free up. Hence we don't really need to take into account the reservation space that has been used - we just need to keep the log tail moving as fast as we can to free up space for more reservations to be made. We know exactly how much physical space the journal is consuming in the AIL (i.e. max LSN - min LSN) so we can base push thresholds directly on this state rather than have to look at grant head reservations to determine how much to physically push out of the log. This also allows code that needs to know if log items in the current transaction need to be pushed or re-logged to simply sample the current target - they don't need to calculate the current target themselves. This avoids the need for any locking when doing such checks. Further, moving to a physical target means we don't need "push all until empty semantics" like were introduced in the previous patch. We can now test and clear the "push all" as a one-shot command to set the target to the current head of the AIL. This allows the xfsaild to maximise the use of log space right up to the point where conditions indicate that the xfsaild is not keeping up with load and it needs to work harder, and as soon as those constraints go away (i.e. external code no longer needs everything pushed) the xfsaild will return to maintaining the normal 25% free space thresholds. Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Darrick J. Wong <djwong@kernel.org> Signed-off-by: Chandan Babu R <chandanbabu@kernel.org>
2024-06-20 09:21:21 +02:00
static inline xfs_lsn_t xfs_ail_get_push_target(struct xfs_ail *ailp)
xfs: AIL doesn't need manual pushing We have a mechanism that checks the amount of log space remaining available every time we make a transaction reservation. If the amount of space is below a threshold (25% free) we push on the AIL to tell it to do more work. To do this, we end up calculating the LSN that the AIL needs to push to on every reservation and updating the push target for the AIL with that new target LSN. This is silly and expensive. The AIL is perfectly capable of calculating the push target itself, and it will always be running when the AIL contains objects. What the target does is determine if the AIL needs to do any work before it goes back to sleep. If we haven't run out of reservation space or memory (or some other push all trigger), it will simply go back to sleep for a while if there is more than 25% of the journal space free without doing anything. If there are items in the AIL at a lower LSN than the target, it will try to push up to the target or to the point of getting stuck before going back to sleep and trying again soon after.` Hence we can modify the AIL to calculate it's own 25% push target before it starts a push using the same reserve grant head based calculation as is currently used, and remove all the places where we ask the AIL to push to a new 25% free target. We can also drop the minimum free space size of 256BBs from the calculation because the 25% of a minimum sized log is *always going to be larger than 256BBs. This does still require a manual push in certain circumstances. These circumstances arise when the AIL is not full, but the reservation grants consume the entire of the free space in the log. In this case, we still need to push on the AIL to free up space, so when we hit this condition (i.e. reservation going to sleep to wait on log space) we do a single push to tell the AIL it should empty itself. This will keep the AIL moving as new reservations come in and want more space, rather than keep queuing them and having to push the AIL repeatedly. The reason for using the "push all" when grant space runs out is that we can run out of grant space when there is more than 25% of the log free. Small logs are notorious for this, and we have a hack in the log callback code (xlog_state_set_callback()) where we push the AIL because the *head* moved) to ensure that we kick the AIL when we consume space in it because that can push us over the "less than 25% available" available that starts tail pushing back up again. Hence when we run out of grant space and are going to sleep, we have to consider that the grant space may be consuming almost all the log space and there is almost nothing in the AIL. In this situation, the AIL pins the tail and moving the tail forwards is the only way the grant space will come available, so we have to force the AIL to push everything to guarantee grant space will eventually be returned. Hence triggering a "push all" just before sleeping removes all the nasty corner cases we have in other parts of the code that work around the "we didn't ask the AIL to push enough to free grant space" condition that leads to log space hangs... Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Darrick J. Wong <djwong@kernel.org> Signed-off-by: Chandan Babu R <chandanbabu@kernel.org>
2024-06-20 09:21:20 +02:00
{
xfs: background AIL push should target physical space Currently the AIL attempts to keep 25% of the "log space" free, where the current used space is tracked by the reserve grant head. That is, it tracks both physical space used plus the amount reserved by transactions in progress. When we start tail pushing, we are trying to make space for new reservations by writing back older metadata and the log is generally physically full of dirty metadata, and reservations for modifications in flight take up whatever space the AIL can physically free up. Hence we don't really need to take into account the reservation space that has been used - we just need to keep the log tail moving as fast as we can to free up space for more reservations to be made. We know exactly how much physical space the journal is consuming in the AIL (i.e. max LSN - min LSN) so we can base push thresholds directly on this state rather than have to look at grant head reservations to determine how much to physically push out of the log. This also allows code that needs to know if log items in the current transaction need to be pushed or re-logged to simply sample the current target - they don't need to calculate the current target themselves. This avoids the need for any locking when doing such checks. Further, moving to a physical target means we don't need "push all until empty semantics" like were introduced in the previous patch. We can now test and clear the "push all" as a one-shot command to set the target to the current head of the AIL. This allows the xfsaild to maximise the use of log space right up to the point where conditions indicate that the xfsaild is not keeping up with load and it needs to work harder, and as soon as those constraints go away (i.e. external code no longer needs everything pushed) the xfsaild will return to maintaining the normal 25% free space thresholds. Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Darrick J. Wong <djwong@kernel.org> Signed-off-by: Chandan Babu R <chandanbabu@kernel.org>
2024-06-20 09:21:21 +02:00
return READ_ONCE(ailp->ail_target);
xfs: AIL doesn't need manual pushing We have a mechanism that checks the amount of log space remaining available every time we make a transaction reservation. If the amount of space is below a threshold (25% free) we push on the AIL to tell it to do more work. To do this, we end up calculating the LSN that the AIL needs to push to on every reservation and updating the push target for the AIL with that new target LSN. This is silly and expensive. The AIL is perfectly capable of calculating the push target itself, and it will always be running when the AIL contains objects. What the target does is determine if the AIL needs to do any work before it goes back to sleep. If we haven't run out of reservation space or memory (or some other push all trigger), it will simply go back to sleep for a while if there is more than 25% of the journal space free without doing anything. If there are items in the AIL at a lower LSN than the target, it will try to push up to the target or to the point of getting stuck before going back to sleep and trying again soon after.` Hence we can modify the AIL to calculate it's own 25% push target before it starts a push using the same reserve grant head based calculation as is currently used, and remove all the places where we ask the AIL to push to a new 25% free target. We can also drop the minimum free space size of 256BBs from the calculation because the 25% of a minimum sized log is *always going to be larger than 256BBs. This does still require a manual push in certain circumstances. These circumstances arise when the AIL is not full, but the reservation grants consume the entire of the free space in the log. In this case, we still need to push on the AIL to free up space, so when we hit this condition (i.e. reservation going to sleep to wait on log space) we do a single push to tell the AIL it should empty itself. This will keep the AIL moving as new reservations come in and want more space, rather than keep queuing them and having to push the AIL repeatedly. The reason for using the "push all" when grant space runs out is that we can run out of grant space when there is more than 25% of the log free. Small logs are notorious for this, and we have a hack in the log callback code (xlog_state_set_callback()) where we push the AIL because the *head* moved) to ensure that we kick the AIL when we consume space in it because that can push us over the "less than 25% available" available that starts tail pushing back up again. Hence when we run out of grant space and are going to sleep, we have to consider that the grant space may be consuming almost all the log space and there is almost nothing in the AIL. In this situation, the AIL pins the tail and moving the tail forwards is the only way the grant space will come available, so we have to force the AIL to push everything to guarantee grant space will eventually be returned. Hence triggering a "push all" just before sleeping removes all the nasty corner cases we have in other parts of the code that work around the "we didn't ask the AIL to push enough to free grant space" condition that leads to log space hangs... Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Darrick J. Wong <djwong@kernel.org> Signed-off-by: Chandan Babu R <chandanbabu@kernel.org>
2024-06-20 09:21:20 +02:00
}
void xfs_ail_push_all_sync(struct xfs_ail *ailp);
xfs_lsn_t xfs_ail_min_lsn(struct xfs_ail *ailp);
struct xfs_log_item * xfs_trans_ail_cursor_first(struct xfs_ail *ailp,
struct xfs_ail_cursor *cur,
xfs_lsn_t lsn);
struct xfs_log_item * xfs_trans_ail_cursor_last(struct xfs_ail *ailp,
struct xfs_ail_cursor *cur,
xfs_lsn_t lsn);
struct xfs_log_item * xfs_trans_ail_cursor_next(struct xfs_ail *ailp,
struct xfs_ail_cursor *cur);
void xfs_trans_ail_cursor_done(struct xfs_ail_cursor *cur);
xfs: l_last_sync_lsn is really AIL state The current implementation of xlog_assign_tail_lsn() assumes that when the AIL is empty, the log tail matches the LSN of the last written commit record. This is recorded in xlog_state_set_callback() as log->l_last_sync_lsn when the iclog state changes to XLOG_STATE_CALLBACK. This change is then immediately followed by running the callbacks on the iclog which then insert the log items into the AIL at the "commit lsn" of that checkpoint. The AIL tracks log items via the start record LSN of the checkpoint, not the commit record LSN. This is because we can pipeline multiple checkpoints, and so the start record of checkpoint N+1 can be written before the commit record of checkpoint N. i.e: start N commit N +-------------+------------+----------------+ start N+1 commit N+1 The tail of the log cannot be moved to the LSN of commit N when all the items of that checkpoint are written back, because then the start record for N+1 is no longer in the active portion of the log and recovery will fail/corrupt the filesystem. Hence when all the log items in checkpoint N are written back, the tail of the log most now only move as far forwards as the start LSN of checkpoint N+1. Hence we cannot use the maximum start record LSN the AIL sees as a replacement the pointer to the current head of the on-disk log records. However, we currently only use the l_last_sync_lsn when the AIL is empty - when there is no start LSN remaining, the tail of the log moves to the LSN of the last commit record as this is where recovery needs to start searching for recoverable records. THe next checkpoint will have a start record LSN that is higher than l_last_sync_lsn, and so everything still works correctly when new checkpoints are written to an otherwise empty log. l_last_sync_lsn is an atomic variable because it is currently updated when an iclog with callbacks attached moves to the CALLBACK state. While we hold the icloglock at this point, we don't hold the AIL lock. When we assign the log tail, we hold the AIL lock, not the icloglock because we have to look up the AIL. Hence it is an atomic variable so it's not bound to a specific lock context. However, the iclog callbacks are only used for CIL checkpoints. We don't use callbacks with unmount record writes, so the l_last_sync_lsn variable only gets updated when we are processing CIL checkpoint callbacks. And those callbacks run under AIL lock contexts, not icloglock context. The CIL checkpoint already knows what the LSN of the iclog the commit record was written to (obtained when written into the iclog before submission) and so we can update the l_last_sync_lsn under the AIL lock in this callback. No other iclog callbacks will run until the currently executing one completes, and hence we can update the l_last_sync_lsn under the AIL lock safely. This means l_last_sync_lsn can move to the AIL as the "ail_head_lsn" and it can be used to replace the atomic l_last_sync_lsn in the iclog code. This makes tracking the log tail belong entirely to the AIL, rather than being smeared across log, iclog and AIL state and locking. Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Darrick J. Wong <djwong@kernel.org> Signed-off-by: Chandan Babu R <chandanbabu@kernel.org>
2024-06-20 09:21:23 +02:00
void __xfs_ail_assign_tail_lsn(struct xfs_ail *ailp);
static inline void
xfs_ail_assign_tail_lsn(
struct xfs_ail *ailp)
{
spin_lock(&ailp->ail_lock);
__xfs_ail_assign_tail_lsn(ailp);
spin_unlock(&ailp->ail_lock);
}
#if BITS_PER_LONG != 64
static inline void
xfs_trans_ail_copy_lsn(
struct xfs_ail *ailp,
xfs_lsn_t *dst,
xfs_lsn_t *src)
{
ASSERT(sizeof(xfs_lsn_t) == 8); /* don't lock if it shrinks */
spin_lock(&ailp->ail_lock);
*dst = *src;
spin_unlock(&ailp->ail_lock);
}
#else
static inline void
xfs_trans_ail_copy_lsn(
struct xfs_ail *ailp,
xfs_lsn_t *dst,
xfs_lsn_t *src)
{
ASSERT(sizeof(xfs_lsn_t) == 8);
*dst = *src;
}
#endif
static inline void
xfs_clear_li_failed(
struct xfs_log_item *lip)
{
struct xfs_buf *bp = lip->li_buf;
ASSERT(test_bit(XFS_LI_IN_AIL, &lip->li_flags));
lockdep_assert_held(&lip->li_ailp->ail_lock);
if (test_and_clear_bit(XFS_LI_FAILED, &lip->li_flags)) {
lip->li_buf = NULL;
xfs_buf_rele(bp);
}
}
static inline void
xfs_set_li_failed(
struct xfs_log_item *lip,
struct xfs_buf *bp)
{
lockdep_assert_held(&lip->li_ailp->ail_lock);
if (!test_and_set_bit(XFS_LI_FAILED, &lip->li_flags)) {
xfs_buf_hold(bp);
lip->li_buf = bp;
}
}
#endif /* __XFS_TRANS_PRIV_H__ */