linux/kernel/bpf/verifier.c

3703 lines
104 KiB
C
Raw Normal View History

/* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
bpf: direct packet access Extended BPF carried over two instructions from classic to access packet data: LD_ABS and LD_IND. They're highly optimized in JITs, but due to their design they have to do length check for every access. When BPF is processing 20M packets per second single LD_ABS after JIT is consuming 3% cpu. Hence the need to optimize it further by amortizing the cost of 'off < skb_headlen' over multiple packet accesses. One option is to introduce two new eBPF instructions LD_ABS_DW and LD_IND_DW with similar usage as skb_header_pointer(). The kernel part for interpreter and x64 JIT was implemented in [1], but such new insns behave like old ld_abs and abort the program with 'return 0' if access is beyond linear data. Such hidden control flow is hard to workaround plus changing JITs and rolling out new llvm is incovenient. Therefore allow cls_bpf/act_bpf program access skb->data directly: int bpf_prog(struct __sk_buff *skb) { struct iphdr *ip; if (skb->data + sizeof(struct iphdr) + ETH_HLEN > skb->data_end) /* packet too small */ return 0; ip = skb->data + ETH_HLEN; /* access IP header fields with direct loads */ if (ip->version != 4 || ip->saddr == 0x7f000001) return 1; [...] } This solution avoids introduction of new instructions. llvm stays the same and all JITs stay the same, but verifier has to work extra hard to prove safety of the above program. For XDP the direct store instructions can be allowed as well. The skb->data is NET_IP_ALIGNED, so for common cases the verifier can check the alignment. The complex packet parsers where packet pointer is adjusted incrementally cannot be tracked for alignment, so allow byte access in such cases and misaligned access on architectures that define efficient_unaligned_access [1] https://git.kernel.org/cgit/linux/kernel/git/ast/bpf.git/?h=ld_abs_dw Signed-off-by: Alexei Starovoitov <ast@kernel.org> Acked-by: Daniel Borkmann <daniel@iogearbox.net> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-05-05 19:49:10 -07:00
* Copyright (c) 2016 Facebook
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of version 2 of the GNU General Public
* License as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*/
#include <linux/kernel.h>
#include <linux/types.h>
#include <linux/slab.h>
#include <linux/bpf.h>
#include <linux/bpf_verifier.h>
#include <linux/filter.h>
#include <net/netlink.h>
#include <linux/file.h>
#include <linux/vmalloc.h>
#include <linux/stringify.h>
/* bpf_check() is a static code analyzer that walks eBPF program
* instruction by instruction and updates register/stack state.
* All paths of conditional branches are analyzed until 'bpf_exit' insn.
*
* The first pass is depth-first-search to check that the program is a DAG.
* It rejects the following programs:
* - larger than BPF_MAXINSNS insns
* - if loop is present (detected via back-edge)
* - unreachable insns exist (shouldn't be a forest. program = one function)
* - out of bounds or malformed jumps
* The second pass is all possible path descent from the 1st insn.
* Since it's analyzing all pathes through the program, the length of the
* analysis is limited to 64k insn, which may be hit even if total number of
* insn is less then 4K, but there are too many branches that change stack/regs.
* Number of 'branches to be analyzed' is limited to 1k
*
* On entry to each instruction, each register has a type, and the instruction
* changes the types of the registers depending on instruction semantics.
* If instruction is BPF_MOV64_REG(BPF_REG_1, BPF_REG_5), then type of R5 is
* copied to R1.
*
* All registers are 64-bit.
* R0 - return register
* R1-R5 argument passing registers
* R6-R9 callee saved registers
* R10 - frame pointer read-only
*
* At the start of BPF program the register R1 contains a pointer to bpf_context
* and has type PTR_TO_CTX.
*
* Verifier tracks arithmetic operations on pointers in case:
* BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),
* BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -20),
* 1st insn copies R10 (which has FRAME_PTR) type into R1
* and 2nd arithmetic instruction is pattern matched to recognize
* that it wants to construct a pointer to some element within stack.
* So after 2nd insn, the register R1 has type PTR_TO_STACK
* (and -20 constant is saved for further stack bounds checking).
* Meaning that this reg is a pointer to stack plus known immediate constant.
*
* Most of the time the registers have UNKNOWN_VALUE type, which
* means the register has some value, but it's not a valid pointer.
* (like pointer plus pointer becomes UNKNOWN_VALUE type)
*
* When verifier sees load or store instructions the type of base register
* can be: PTR_TO_MAP_VALUE, PTR_TO_CTX, FRAME_PTR. These are three pointer
* types recognized by check_mem_access() function.
*
* PTR_TO_MAP_VALUE means that this register is pointing to 'map element value'
* and the range of [ptr, ptr + map's value_size) is accessible.
*
* registers used to pass values to function calls are checked against
* function argument constraints.
*
* ARG_PTR_TO_MAP_KEY is one of such argument constraints.
* It means that the register type passed to this function must be
* PTR_TO_STACK and it will be used inside the function as
* 'pointer to map element key'
*
* For example the argument constraints for bpf_map_lookup_elem():
* .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL,
* .arg1_type = ARG_CONST_MAP_PTR,
* .arg2_type = ARG_PTR_TO_MAP_KEY,
*
* ret_type says that this function returns 'pointer to map elem value or null'
* function expects 1st argument to be a const pointer to 'struct bpf_map' and
* 2nd argument should be a pointer to stack, which will be used inside
* the helper function as a pointer to map element key.
*
* On the kernel side the helper function looks like:
* u64 bpf_map_lookup_elem(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
* {
* struct bpf_map *map = (struct bpf_map *) (unsigned long) r1;
* void *key = (void *) (unsigned long) r2;
* void *value;
*
* here kernel can access 'key' and 'map' pointers safely, knowing that
* [key, key + map->key_size) bytes are valid and were initialized on
* the stack of eBPF program.
* }
*
* Corresponding eBPF program may look like:
* BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), // after this insn R2 type is FRAME_PTR
* BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4), // after this insn R2 type is PTR_TO_STACK
* BPF_LD_MAP_FD(BPF_REG_1, map_fd), // after this insn R1 type is CONST_PTR_TO_MAP
* BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem),
* here verifier looks at prototype of map_lookup_elem() and sees:
* .arg1_type == ARG_CONST_MAP_PTR and R1->type == CONST_PTR_TO_MAP, which is ok,
* Now verifier knows that this map has key of R1->map_ptr->key_size bytes
*
* Then .arg2_type == ARG_PTR_TO_MAP_KEY and R2->type == PTR_TO_STACK, ok so far,
* Now verifier checks that [R2, R2 + map's key_size) are within stack limits
* and were initialized prior to this call.
* If it's ok, then verifier allows this BPF_CALL insn and looks at
* .ret_type which is RET_PTR_TO_MAP_VALUE_OR_NULL, so it sets
* R0->type = PTR_TO_MAP_VALUE_OR_NULL which means bpf_map_lookup_elem() function
* returns ether pointer to map value or NULL.
*
* When type PTR_TO_MAP_VALUE_OR_NULL passes through 'if (reg != 0) goto +off'
* insn, the register holding that pointer in the true branch changes state to
* PTR_TO_MAP_VALUE and the same register changes state to CONST_IMM in the false
* branch. See check_cond_jmp_op().
*
* After the call R0 is set to return type of the function and registers R1-R5
* are set to NOT_INIT to indicate that they are no longer readable.
*/
bpf: verifier (add verifier core) This patch adds verifier core which simulates execution of every insn and records the state of registers and program stack. Every branch instruction seen during simulation is pushed into state stack. When verifier reaches BPF_EXIT, it pops the state from the stack and continues until it reaches BPF_EXIT again. For program: 1: bpf_mov r1, xxx 2: if (r1 == 0) goto 5 3: bpf_mov r0, 1 4: goto 6 5: bpf_mov r0, 2 6: bpf_exit The verifier will walk insns: 1, 2, 3, 4, 6 then it will pop the state recorded at insn#2 and will continue: 5, 6 This way it walks all possible paths through the program and checks all possible values of registers. While doing so, it checks for: - invalid instructions - uninitialized register access - uninitialized stack access - misaligned stack access - out of range stack access - invalid calling convention - instruction encoding is not using reserved fields Kernel subsystem configures the verifier with two callbacks: - bool (*is_valid_access)(int off, int size, enum bpf_access_type type); that provides information to the verifer which fields of 'ctx' are accessible (remember 'ctx' is the first argument to eBPF program) - const struct bpf_func_proto *(*get_func_proto)(enum bpf_func_id func_id); returns argument constraints of kernel helper functions that eBPF program may call, so that verifier can checks that R1-R5 types match the prototype More details in Documentation/networking/filter.txt and in kernel/bpf/verifier.c Signed-off-by: Alexei Starovoitov <ast@plumgrid.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-09-26 00:17:06 -07:00
/* verifier_state + insn_idx are pushed to stack when branch is encountered */
struct bpf_verifier_stack_elem {
bpf: verifier (add verifier core) This patch adds verifier core which simulates execution of every insn and records the state of registers and program stack. Every branch instruction seen during simulation is pushed into state stack. When verifier reaches BPF_EXIT, it pops the state from the stack and continues until it reaches BPF_EXIT again. For program: 1: bpf_mov r1, xxx 2: if (r1 == 0) goto 5 3: bpf_mov r0, 1 4: goto 6 5: bpf_mov r0, 2 6: bpf_exit The verifier will walk insns: 1, 2, 3, 4, 6 then it will pop the state recorded at insn#2 and will continue: 5, 6 This way it walks all possible paths through the program and checks all possible values of registers. While doing so, it checks for: - invalid instructions - uninitialized register access - uninitialized stack access - misaligned stack access - out of range stack access - invalid calling convention - instruction encoding is not using reserved fields Kernel subsystem configures the verifier with two callbacks: - bool (*is_valid_access)(int off, int size, enum bpf_access_type type); that provides information to the verifer which fields of 'ctx' are accessible (remember 'ctx' is the first argument to eBPF program) - const struct bpf_func_proto *(*get_func_proto)(enum bpf_func_id func_id); returns argument constraints of kernel helper functions that eBPF program may call, so that verifier can checks that R1-R5 types match the prototype More details in Documentation/networking/filter.txt and in kernel/bpf/verifier.c Signed-off-by: Alexei Starovoitov <ast@plumgrid.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-09-26 00:17:06 -07:00
/* verifer state is 'st'
* before processing instruction 'insn_idx'
* and after processing instruction 'prev_insn_idx'
*/
struct bpf_verifier_state st;
bpf: verifier (add verifier core) This patch adds verifier core which simulates execution of every insn and records the state of registers and program stack. Every branch instruction seen during simulation is pushed into state stack. When verifier reaches BPF_EXIT, it pops the state from the stack and continues until it reaches BPF_EXIT again. For program: 1: bpf_mov r1, xxx 2: if (r1 == 0) goto 5 3: bpf_mov r0, 1 4: goto 6 5: bpf_mov r0, 2 6: bpf_exit The verifier will walk insns: 1, 2, 3, 4, 6 then it will pop the state recorded at insn#2 and will continue: 5, 6 This way it walks all possible paths through the program and checks all possible values of registers. While doing so, it checks for: - invalid instructions - uninitialized register access - uninitialized stack access - misaligned stack access - out of range stack access - invalid calling convention - instruction encoding is not using reserved fields Kernel subsystem configures the verifier with two callbacks: - bool (*is_valid_access)(int off, int size, enum bpf_access_type type); that provides information to the verifer which fields of 'ctx' are accessible (remember 'ctx' is the first argument to eBPF program) - const struct bpf_func_proto *(*get_func_proto)(enum bpf_func_id func_id); returns argument constraints of kernel helper functions that eBPF program may call, so that verifier can checks that R1-R5 types match the prototype More details in Documentation/networking/filter.txt and in kernel/bpf/verifier.c Signed-off-by: Alexei Starovoitov <ast@plumgrid.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-09-26 00:17:06 -07:00
int insn_idx;
int prev_insn_idx;
struct bpf_verifier_stack_elem *next;
};
bpf, verifier: further improve search pruning The verifier needs to go through every path of the program in order to check that it terminates safely, which can be quite a lot of instructions that need to be processed f.e. in cases with more branchy programs. With search pruning from f1bca824dabb ("bpf: add search pruning optimization to verifier") the search space can already be reduced significantly when the verifier detects that a previously walked path with same register and stack contents terminated already (see verifier's states_equal()), so the search can skip walking those states. When working with larger programs of > ~2000 (out of max 4096) insns, we found that the current limit of 32k instructions is easily hit. For example, a case we ran into is that the search space cannot be pruned due to branches at the beginning of the program that make use of certain stack space slots (STACK_MISC), which are never used in the remaining program (STACK_INVALID). Therefore, the verifier needs to walk paths for the slots in STACK_INVALID state, but also all remaining paths with a stack structure, where the slots are in STACK_MISC, which can nearly double the search space needed. After various experiments, we find that a limit of 64k processed insns is a more reasonable choice when dealing with larger programs in practice. This still allows to reject extreme crafted cases that can have a much higher complexity (f.e. > ~300k) within the 4096 insns limit due to search pruning not being able to take effect. Furthermore, we found that a lot of states can be pruned after a call instruction, f.e. we were able to reduce the search state by ~35% in some cases with this heuristic, trade-off is to keep a bit more states in env->explored_states. Usually, call instructions have a number of preceding register assignments and/or stack stores, where search pruning has a better chance to suceed in states_equal() test. The current code marks the branch targets with STATE_LIST_MARK in case of conditional jumps, and the next (t + 1) instruction in case of unconditional jump so that f.e. a backjump will walk it. We also did experiments with using t + insns[t].off + 1 as a marker in the unconditionally jump case instead of t + 1 with the rationale that these two branches of execution that converge after the label might have more potential of pruning. We found that it was a bit better, but not necessarily significantly better than the current state, perhaps also due to clang not generating back jumps often. Hence, we left that as is for now. Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-04-05 22:33:17 +02:00
#define BPF_COMPLEXITY_LIMIT_INSNS 65536
#define BPF_COMPLEXITY_LIMIT_STACK 1024
#define BPF_MAP_PTR_POISON ((void *)0xeB9F + POISON_POINTER_DELTA)
struct bpf_call_arg_meta {
struct bpf_map *map_ptr;
bpf, verifier: add ARG_PTR_TO_RAW_STACK type When passing buffers from eBPF stack space into a helper function, we have ARG_PTR_TO_STACK argument type for helpers available. The verifier makes sure that such buffers are initialized, within boundaries, etc. However, the downside with this is that we have a couple of helper functions such as bpf_skb_load_bytes() that fill out the passed buffer in the expected success case anyway, so zero initializing them prior to the helper call is unneeded/wasted instructions in the eBPF program that can be avoided. Therefore, add a new helper function argument type called ARG_PTR_TO_RAW_STACK. The idea is to skip the STACK_MISC check in check_stack_boundary() and color the related stack slots as STACK_MISC after we checked all call arguments. Helper functions using ARG_PTR_TO_RAW_STACK must make sure that every path of the helper function will fill the provided buffer area, so that we cannot leak any uninitialized stack memory. This f.e. means that error paths need to memset() the buffers, but the expected fast-path doesn't have to do this anymore. Since there's no such helper needing more than at most one ARG_PTR_TO_RAW_STACK argument, we can keep it simple and don't need to check for multiple areas. Should in future such a use-case really appear, we have check_raw_mode() that will make sure we implement support for it first. Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-04-13 00:10:51 +02:00
bool raw_mode;
bpf: direct packet write and access for helpers for clsact progs This work implements direct packet access for helpers and direct packet write in a similar fashion as already available for XDP types via commits 4acf6c0b84c9 ("bpf: enable direct packet data write for xdp progs") and 6841de8b0d03 ("bpf: allow helpers access the packet directly"), and as a complementary feature to the already available direct packet read for tc (cls/act) programs. For enabling this, we need to introduce two helpers, bpf_skb_pull_data() and bpf_csum_update(). The first is generally needed for both, read and write, because they would otherwise only be limited to the current linear skb head. Usually, when the data_end test fails, programs just bail out, or, in the direct read case, use bpf_skb_load_bytes() as an alternative to overcome this limitation. If such data sits in non-linear parts, we can just pull them in once with the new helper, retest and eventually access them. At the same time, this also makes sure the skb is uncloned, which is, of course, a necessary condition for direct write. As this needs to be an invariant for the write part only, the verifier detects writes and adds a prologue that is calling bpf_skb_pull_data() to effectively unclone the skb from the very beginning in case it is indeed cloned. The heuristic makes use of a similar trick that was done in 233577a22089 ("net: filter: constify detection of pkt_type_offset"). This comes at zero cost for other programs that do not use the direct write feature. Should a program use this feature only sparsely and has read access for the most parts with, for example, drop return codes, then such write action can be delegated to a tail called program for mitigating this cost of potential uncloning to a late point in time where it would have been paid similarly with the bpf_skb_store_bytes() as well. Advantage of direct write is that the writes are inlined whereas the helper cannot make any length assumptions and thus needs to generate a call to memcpy() also for small sizes, as well as cost of helper call itself with sanity checks are avoided. Plus, when direct read is already used, we don't need to cache or perform rechecks on the data boundaries (due to verifier invalidating previous checks for helpers that change skb->data), so more complex programs using rewrites can benefit from switching to direct read plus write. For direct packet access to helpers, we save the otherwise needed copy into a temp struct sitting on stack memory when use-case allows. Both facilities are enabled via may_access_direct_pkt_data() in verifier. For now, we limit this to map helpers and csum_diff, and can successively enable other helpers where we find it makes sense. Helpers that definitely cannot be allowed for this are those part of bpf_helper_changes_skb_data() since they can change underlying data, and those that write into memory as this could happen for packet typed args when still cloned. bpf_csum_update() helper accommodates for the fact that we need to fixup checksum_complete when using direct write instead of bpf_skb_store_bytes(), meaning the programs can use available helpers like bpf_csum_diff(), and implement csum_add(), csum_sub(), csum_block_add(), csum_block_sub() equivalents in eBPF together with the new helper. A usage example will be provided for iproute2's examples/bpf/ directory. Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-09-20 00:26:13 +02:00
bool pkt_access;
bpf, verifier: add ARG_PTR_TO_RAW_STACK type When passing buffers from eBPF stack space into a helper function, we have ARG_PTR_TO_STACK argument type for helpers available. The verifier makes sure that such buffers are initialized, within boundaries, etc. However, the downside with this is that we have a couple of helper functions such as bpf_skb_load_bytes() that fill out the passed buffer in the expected success case anyway, so zero initializing them prior to the helper call is unneeded/wasted instructions in the eBPF program that can be avoided. Therefore, add a new helper function argument type called ARG_PTR_TO_RAW_STACK. The idea is to skip the STACK_MISC check in check_stack_boundary() and color the related stack slots as STACK_MISC after we checked all call arguments. Helper functions using ARG_PTR_TO_RAW_STACK must make sure that every path of the helper function will fill the provided buffer area, so that we cannot leak any uninitialized stack memory. This f.e. means that error paths need to memset() the buffers, but the expected fast-path doesn't have to do this anymore. Since there's no such helper needing more than at most one ARG_PTR_TO_RAW_STACK argument, we can keep it simple and don't need to check for multiple areas. Should in future such a use-case really appear, we have check_raw_mode() that will make sure we implement support for it first. Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-04-13 00:10:51 +02:00
int regno;
int access_size;
};
/* verbose verifier prints what it's seeing
* bpf_check() is called under lock, so no race to access these global vars
*/
static u32 log_level, log_size, log_len;
static char *log_buf;
static DEFINE_MUTEX(bpf_verifier_lock);
/* log_level controls verbosity level of eBPF verifier.
* verbose() is used to dump the verification trace to the log, so the user
* can figure out what's wrong with the program
*/
static __printf(1, 2) void verbose(const char *fmt, ...)
{
va_list args;
if (log_level == 0 || log_len >= log_size - 1)
return;
va_start(args, fmt);
log_len += vscnprintf(log_buf + log_len, log_size - log_len, fmt, args);
va_end(args);
}
bpf: verifier (add verifier core) This patch adds verifier core which simulates execution of every insn and records the state of registers and program stack. Every branch instruction seen during simulation is pushed into state stack. When verifier reaches BPF_EXIT, it pops the state from the stack and continues until it reaches BPF_EXIT again. For program: 1: bpf_mov r1, xxx 2: if (r1 == 0) goto 5 3: bpf_mov r0, 1 4: goto 6 5: bpf_mov r0, 2 6: bpf_exit The verifier will walk insns: 1, 2, 3, 4, 6 then it will pop the state recorded at insn#2 and will continue: 5, 6 This way it walks all possible paths through the program and checks all possible values of registers. While doing so, it checks for: - invalid instructions - uninitialized register access - uninitialized stack access - misaligned stack access - out of range stack access - invalid calling convention - instruction encoding is not using reserved fields Kernel subsystem configures the verifier with two callbacks: - bool (*is_valid_access)(int off, int size, enum bpf_access_type type); that provides information to the verifer which fields of 'ctx' are accessible (remember 'ctx' is the first argument to eBPF program) - const struct bpf_func_proto *(*get_func_proto)(enum bpf_func_id func_id); returns argument constraints of kernel helper functions that eBPF program may call, so that verifier can checks that R1-R5 types match the prototype More details in Documentation/networking/filter.txt and in kernel/bpf/verifier.c Signed-off-by: Alexei Starovoitov <ast@plumgrid.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-09-26 00:17:06 -07:00
/* string representation of 'enum bpf_reg_type' */
static const char * const reg_type_str[] = {
[NOT_INIT] = "?",
[UNKNOWN_VALUE] = "inv",
[PTR_TO_CTX] = "ctx",
[CONST_PTR_TO_MAP] = "map_ptr",
[PTR_TO_MAP_VALUE] = "map_value",
[PTR_TO_MAP_VALUE_OR_NULL] = "map_value_or_null",
[PTR_TO_MAP_VALUE_ADJ] = "map_value_adj",
bpf: verifier (add verifier core) This patch adds verifier core which simulates execution of every insn and records the state of registers and program stack. Every branch instruction seen during simulation is pushed into state stack. When verifier reaches BPF_EXIT, it pops the state from the stack and continues until it reaches BPF_EXIT again. For program: 1: bpf_mov r1, xxx 2: if (r1 == 0) goto 5 3: bpf_mov r0, 1 4: goto 6 5: bpf_mov r0, 2 6: bpf_exit The verifier will walk insns: 1, 2, 3, 4, 6 then it will pop the state recorded at insn#2 and will continue: 5, 6 This way it walks all possible paths through the program and checks all possible values of registers. While doing so, it checks for: - invalid instructions - uninitialized register access - uninitialized stack access - misaligned stack access - out of range stack access - invalid calling convention - instruction encoding is not using reserved fields Kernel subsystem configures the verifier with two callbacks: - bool (*is_valid_access)(int off, int size, enum bpf_access_type type); that provides information to the verifer which fields of 'ctx' are accessible (remember 'ctx' is the first argument to eBPF program) - const struct bpf_func_proto *(*get_func_proto)(enum bpf_func_id func_id); returns argument constraints of kernel helper functions that eBPF program may call, so that verifier can checks that R1-R5 types match the prototype More details in Documentation/networking/filter.txt and in kernel/bpf/verifier.c Signed-off-by: Alexei Starovoitov <ast@plumgrid.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-09-26 00:17:06 -07:00
[FRAME_PTR] = "fp",
[PTR_TO_STACK] = "fp",
[CONST_IMM] = "imm",
bpf: direct packet access Extended BPF carried over two instructions from classic to access packet data: LD_ABS and LD_IND. They're highly optimized in JITs, but due to their design they have to do length check for every access. When BPF is processing 20M packets per second single LD_ABS after JIT is consuming 3% cpu. Hence the need to optimize it further by amortizing the cost of 'off < skb_headlen' over multiple packet accesses. One option is to introduce two new eBPF instructions LD_ABS_DW and LD_IND_DW with similar usage as skb_header_pointer(). The kernel part for interpreter and x64 JIT was implemented in [1], but such new insns behave like old ld_abs and abort the program with 'return 0' if access is beyond linear data. Such hidden control flow is hard to workaround plus changing JITs and rolling out new llvm is incovenient. Therefore allow cls_bpf/act_bpf program access skb->data directly: int bpf_prog(struct __sk_buff *skb) { struct iphdr *ip; if (skb->data + sizeof(struct iphdr) + ETH_HLEN > skb->data_end) /* packet too small */ return 0; ip = skb->data + ETH_HLEN; /* access IP header fields with direct loads */ if (ip->version != 4 || ip->saddr == 0x7f000001) return 1; [...] } This solution avoids introduction of new instructions. llvm stays the same and all JITs stay the same, but verifier has to work extra hard to prove safety of the above program. For XDP the direct store instructions can be allowed as well. The skb->data is NET_IP_ALIGNED, so for common cases the verifier can check the alignment. The complex packet parsers where packet pointer is adjusted incrementally cannot be tracked for alignment, so allow byte access in such cases and misaligned access on architectures that define efficient_unaligned_access [1] https://git.kernel.org/cgit/linux/kernel/git/ast/bpf.git/?h=ld_abs_dw Signed-off-by: Alexei Starovoitov <ast@kernel.org> Acked-by: Daniel Borkmann <daniel@iogearbox.net> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-05-05 19:49:10 -07:00
[PTR_TO_PACKET] = "pkt",
[PTR_TO_PACKET_END] = "pkt_end",
bpf: verifier (add verifier core) This patch adds verifier core which simulates execution of every insn and records the state of registers and program stack. Every branch instruction seen during simulation is pushed into state stack. When verifier reaches BPF_EXIT, it pops the state from the stack and continues until it reaches BPF_EXIT again. For program: 1: bpf_mov r1, xxx 2: if (r1 == 0) goto 5 3: bpf_mov r0, 1 4: goto 6 5: bpf_mov r0, 2 6: bpf_exit The verifier will walk insns: 1, 2, 3, 4, 6 then it will pop the state recorded at insn#2 and will continue: 5, 6 This way it walks all possible paths through the program and checks all possible values of registers. While doing so, it checks for: - invalid instructions - uninitialized register access - uninitialized stack access - misaligned stack access - out of range stack access - invalid calling convention - instruction encoding is not using reserved fields Kernel subsystem configures the verifier with two callbacks: - bool (*is_valid_access)(int off, int size, enum bpf_access_type type); that provides information to the verifer which fields of 'ctx' are accessible (remember 'ctx' is the first argument to eBPF program) - const struct bpf_func_proto *(*get_func_proto)(enum bpf_func_id func_id); returns argument constraints of kernel helper functions that eBPF program may call, so that verifier can checks that R1-R5 types match the prototype More details in Documentation/networking/filter.txt and in kernel/bpf/verifier.c Signed-off-by: Alexei Starovoitov <ast@plumgrid.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-09-26 00:17:06 -07:00
};
#define __BPF_FUNC_STR_FN(x) [BPF_FUNC_ ## x] = __stringify(bpf_ ## x)
static const char * const func_id_str[] = {
__BPF_FUNC_MAPPER(__BPF_FUNC_STR_FN)
};
#undef __BPF_FUNC_STR_FN
static const char *func_id_name(int id)
{
BUILD_BUG_ON(ARRAY_SIZE(func_id_str) != __BPF_FUNC_MAX_ID);
if (id >= 0 && id < __BPF_FUNC_MAX_ID && func_id_str[id])
return func_id_str[id];
else
return "unknown";
}
static void print_verifier_state(struct bpf_verifier_state *state)
bpf: verifier (add verifier core) This patch adds verifier core which simulates execution of every insn and records the state of registers and program stack. Every branch instruction seen during simulation is pushed into state stack. When verifier reaches BPF_EXIT, it pops the state from the stack and continues until it reaches BPF_EXIT again. For program: 1: bpf_mov r1, xxx 2: if (r1 == 0) goto 5 3: bpf_mov r0, 1 4: goto 6 5: bpf_mov r0, 2 6: bpf_exit The verifier will walk insns: 1, 2, 3, 4, 6 then it will pop the state recorded at insn#2 and will continue: 5, 6 This way it walks all possible paths through the program and checks all possible values of registers. While doing so, it checks for: - invalid instructions - uninitialized register access - uninitialized stack access - misaligned stack access - out of range stack access - invalid calling convention - instruction encoding is not using reserved fields Kernel subsystem configures the verifier with two callbacks: - bool (*is_valid_access)(int off, int size, enum bpf_access_type type); that provides information to the verifer which fields of 'ctx' are accessible (remember 'ctx' is the first argument to eBPF program) - const struct bpf_func_proto *(*get_func_proto)(enum bpf_func_id func_id); returns argument constraints of kernel helper functions that eBPF program may call, so that verifier can checks that R1-R5 types match the prototype More details in Documentation/networking/filter.txt and in kernel/bpf/verifier.c Signed-off-by: Alexei Starovoitov <ast@plumgrid.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-09-26 00:17:06 -07:00
{
struct bpf_reg_state *reg;
bpf: verifier (add verifier core) This patch adds verifier core which simulates execution of every insn and records the state of registers and program stack. Every branch instruction seen during simulation is pushed into state stack. When verifier reaches BPF_EXIT, it pops the state from the stack and continues until it reaches BPF_EXIT again. For program: 1: bpf_mov r1, xxx 2: if (r1 == 0) goto 5 3: bpf_mov r0, 1 4: goto 6 5: bpf_mov r0, 2 6: bpf_exit The verifier will walk insns: 1, 2, 3, 4, 6 then it will pop the state recorded at insn#2 and will continue: 5, 6 This way it walks all possible paths through the program and checks all possible values of registers. While doing so, it checks for: - invalid instructions - uninitialized register access - uninitialized stack access - misaligned stack access - out of range stack access - invalid calling convention - instruction encoding is not using reserved fields Kernel subsystem configures the verifier with two callbacks: - bool (*is_valid_access)(int off, int size, enum bpf_access_type type); that provides information to the verifer which fields of 'ctx' are accessible (remember 'ctx' is the first argument to eBPF program) - const struct bpf_func_proto *(*get_func_proto)(enum bpf_func_id func_id); returns argument constraints of kernel helper functions that eBPF program may call, so that verifier can checks that R1-R5 types match the prototype More details in Documentation/networking/filter.txt and in kernel/bpf/verifier.c Signed-off-by: Alexei Starovoitov <ast@plumgrid.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-09-26 00:17:06 -07:00
enum bpf_reg_type t;
int i;
for (i = 0; i < MAX_BPF_REG; i++) {
reg = &state->regs[i];
t = reg->type;
bpf: verifier (add verifier core) This patch adds verifier core which simulates execution of every insn and records the state of registers and program stack. Every branch instruction seen during simulation is pushed into state stack. When verifier reaches BPF_EXIT, it pops the state from the stack and continues until it reaches BPF_EXIT again. For program: 1: bpf_mov r1, xxx 2: if (r1 == 0) goto 5 3: bpf_mov r0, 1 4: goto 6 5: bpf_mov r0, 2 6: bpf_exit The verifier will walk insns: 1, 2, 3, 4, 6 then it will pop the state recorded at insn#2 and will continue: 5, 6 This way it walks all possible paths through the program and checks all possible values of registers. While doing so, it checks for: - invalid instructions - uninitialized register access - uninitialized stack access - misaligned stack access - out of range stack access - invalid calling convention - instruction encoding is not using reserved fields Kernel subsystem configures the verifier with two callbacks: - bool (*is_valid_access)(int off, int size, enum bpf_access_type type); that provides information to the verifer which fields of 'ctx' are accessible (remember 'ctx' is the first argument to eBPF program) - const struct bpf_func_proto *(*get_func_proto)(enum bpf_func_id func_id); returns argument constraints of kernel helper functions that eBPF program may call, so that verifier can checks that R1-R5 types match the prototype More details in Documentation/networking/filter.txt and in kernel/bpf/verifier.c Signed-off-by: Alexei Starovoitov <ast@plumgrid.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-09-26 00:17:06 -07:00
if (t == NOT_INIT)
continue;
verbose(" R%d=%s", i, reg_type_str[t]);
if (t == CONST_IMM || t == PTR_TO_STACK)
bpf: direct packet access Extended BPF carried over two instructions from classic to access packet data: LD_ABS and LD_IND. They're highly optimized in JITs, but due to their design they have to do length check for every access. When BPF is processing 20M packets per second single LD_ABS after JIT is consuming 3% cpu. Hence the need to optimize it further by amortizing the cost of 'off < skb_headlen' over multiple packet accesses. One option is to introduce two new eBPF instructions LD_ABS_DW and LD_IND_DW with similar usage as skb_header_pointer(). The kernel part for interpreter and x64 JIT was implemented in [1], but such new insns behave like old ld_abs and abort the program with 'return 0' if access is beyond linear data. Such hidden control flow is hard to workaround plus changing JITs and rolling out new llvm is incovenient. Therefore allow cls_bpf/act_bpf program access skb->data directly: int bpf_prog(struct __sk_buff *skb) { struct iphdr *ip; if (skb->data + sizeof(struct iphdr) + ETH_HLEN > skb->data_end) /* packet too small */ return 0; ip = skb->data + ETH_HLEN; /* access IP header fields with direct loads */ if (ip->version != 4 || ip->saddr == 0x7f000001) return 1; [...] } This solution avoids introduction of new instructions. llvm stays the same and all JITs stay the same, but verifier has to work extra hard to prove safety of the above program. For XDP the direct store instructions can be allowed as well. The skb->data is NET_IP_ALIGNED, so for common cases the verifier can check the alignment. The complex packet parsers where packet pointer is adjusted incrementally cannot be tracked for alignment, so allow byte access in such cases and misaligned access on architectures that define efficient_unaligned_access [1] https://git.kernel.org/cgit/linux/kernel/git/ast/bpf.git/?h=ld_abs_dw Signed-off-by: Alexei Starovoitov <ast@kernel.org> Acked-by: Daniel Borkmann <daniel@iogearbox.net> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-05-05 19:49:10 -07:00
verbose("%lld", reg->imm);
else if (t == PTR_TO_PACKET)
verbose("(id=%d,off=%d,r=%d)",
reg->id, reg->off, reg->range);
else if (t == UNKNOWN_VALUE && reg->imm)
verbose("%lld", reg->imm);
bpf: verifier (add verifier core) This patch adds verifier core which simulates execution of every insn and records the state of registers and program stack. Every branch instruction seen during simulation is pushed into state stack. When verifier reaches BPF_EXIT, it pops the state from the stack and continues until it reaches BPF_EXIT again. For program: 1: bpf_mov r1, xxx 2: if (r1 == 0) goto 5 3: bpf_mov r0, 1 4: goto 6 5: bpf_mov r0, 2 6: bpf_exit The verifier will walk insns: 1, 2, 3, 4, 6 then it will pop the state recorded at insn#2 and will continue: 5, 6 This way it walks all possible paths through the program and checks all possible values of registers. While doing so, it checks for: - invalid instructions - uninitialized register access - uninitialized stack access - misaligned stack access - out of range stack access - invalid calling convention - instruction encoding is not using reserved fields Kernel subsystem configures the verifier with two callbacks: - bool (*is_valid_access)(int off, int size, enum bpf_access_type type); that provides information to the verifer which fields of 'ctx' are accessible (remember 'ctx' is the first argument to eBPF program) - const struct bpf_func_proto *(*get_func_proto)(enum bpf_func_id func_id); returns argument constraints of kernel helper functions that eBPF program may call, so that verifier can checks that R1-R5 types match the prototype More details in Documentation/networking/filter.txt and in kernel/bpf/verifier.c Signed-off-by: Alexei Starovoitov <ast@plumgrid.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-09-26 00:17:06 -07:00
else if (t == CONST_PTR_TO_MAP || t == PTR_TO_MAP_VALUE ||
t == PTR_TO_MAP_VALUE_OR_NULL ||
t == PTR_TO_MAP_VALUE_ADJ)
verbose("(ks=%d,vs=%d,id=%u)",
reg->map_ptr->key_size,
reg->map_ptr->value_size,
reg->id);
if (reg->min_value != BPF_REGISTER_MIN_RANGE)
verbose(",min_value=%lld",
(long long)reg->min_value);
if (reg->max_value != BPF_REGISTER_MAX_RANGE)
verbose(",max_value=%llu",
(unsigned long long)reg->max_value);
bpf: Track alignment of register values in the verifier. Currently if we add only constant values to pointers we can fully validate the alignment, and properly check if we need to reject the program on !CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS architectures. However, once an unknown value is introduced we only allow byte sized memory accesses which is too restrictive. Add logic to track the known minimum alignment of register values, and propagate this state into registers containing pointers. The most common paradigm that makes use of this new logic is computing the transport header using the IP header length field. For example: struct ethhdr *ep = skb->data; struct iphdr *iph = (struct iphdr *) (ep + 1); struct tcphdr *th; ... n = iph->ihl; th = ((void *)iph + (n * 4)); port = th->dest; The existing code will reject the load of th->dest because it cannot validate that the alignment is at least 2 once "n * 4" is added the the packet pointer. In the new code, the register holding "n * 4" will have a reg->min_align value of 4, because any value multiplied by 4 will be at least 4 byte aligned. (actually, the eBPF code emitted by the compiler in this case is most likely to use a shift left by 2, but the end result is identical) At the critical addition: th = ((void *)iph + (n * 4)); The register holding 'th' will start with reg->off value of 14. The pointer addition will transform that reg into something that looks like: reg->aux_off = 14 reg->aux_off_align = 4 Next, the verifier will look at the th->dest load, and it will see a load offset of 2, and first check: if (reg->aux_off_align % size) which will pass because aux_off_align is 4. reg_off will be computed: reg_off = reg->off; ... reg_off += reg->aux_off; plus we have off==2, and it will thus check: if ((NET_IP_ALIGN + reg_off + off) % size != 0) which evaluates to: if ((NET_IP_ALIGN + 14 + 2) % size != 0) On strict alignment architectures, NET_IP_ALIGN is 2, thus: if ((2 + 14 + 2) % size != 0) which passes. These pointer transformations and checks work regardless of whether the constant offset or the variable with known alignment is added first to the pointer register. Signed-off-by: David S. Miller <davem@davemloft.net> Acked-by: Daniel Borkmann <daniel@iogearbox.net>
2017-05-10 11:22:52 -07:00
if (reg->min_align)
verbose(",min_align=%u", reg->min_align);
if (reg->aux_off)
verbose(",aux_off=%u", reg->aux_off);
if (reg->aux_off_align)
verbose(",aux_off_align=%u", reg->aux_off_align);
bpf: verifier (add verifier core) This patch adds verifier core which simulates execution of every insn and records the state of registers and program stack. Every branch instruction seen during simulation is pushed into state stack. When verifier reaches BPF_EXIT, it pops the state from the stack and continues until it reaches BPF_EXIT again. For program: 1: bpf_mov r1, xxx 2: if (r1 == 0) goto 5 3: bpf_mov r0, 1 4: goto 6 5: bpf_mov r0, 2 6: bpf_exit The verifier will walk insns: 1, 2, 3, 4, 6 then it will pop the state recorded at insn#2 and will continue: 5, 6 This way it walks all possible paths through the program and checks all possible values of registers. While doing so, it checks for: - invalid instructions - uninitialized register access - uninitialized stack access - misaligned stack access - out of range stack access - invalid calling convention - instruction encoding is not using reserved fields Kernel subsystem configures the verifier with two callbacks: - bool (*is_valid_access)(int off, int size, enum bpf_access_type type); that provides information to the verifer which fields of 'ctx' are accessible (remember 'ctx' is the first argument to eBPF program) - const struct bpf_func_proto *(*get_func_proto)(enum bpf_func_id func_id); returns argument constraints of kernel helper functions that eBPF program may call, so that verifier can checks that R1-R5 types match the prototype More details in Documentation/networking/filter.txt and in kernel/bpf/verifier.c Signed-off-by: Alexei Starovoitov <ast@plumgrid.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-09-26 00:17:06 -07:00
}
for (i = 0; i < MAX_BPF_STACK; i += BPF_REG_SIZE) {
if (state->stack_slot_type[i] == STACK_SPILL)
bpf: verifier (add verifier core) This patch adds verifier core which simulates execution of every insn and records the state of registers and program stack. Every branch instruction seen during simulation is pushed into state stack. When verifier reaches BPF_EXIT, it pops the state from the stack and continues until it reaches BPF_EXIT again. For program: 1: bpf_mov r1, xxx 2: if (r1 == 0) goto 5 3: bpf_mov r0, 1 4: goto 6 5: bpf_mov r0, 2 6: bpf_exit The verifier will walk insns: 1, 2, 3, 4, 6 then it will pop the state recorded at insn#2 and will continue: 5, 6 This way it walks all possible paths through the program and checks all possible values of registers. While doing so, it checks for: - invalid instructions - uninitialized register access - uninitialized stack access - misaligned stack access - out of range stack access - invalid calling convention - instruction encoding is not using reserved fields Kernel subsystem configures the verifier with two callbacks: - bool (*is_valid_access)(int off, int size, enum bpf_access_type type); that provides information to the verifer which fields of 'ctx' are accessible (remember 'ctx' is the first argument to eBPF program) - const struct bpf_func_proto *(*get_func_proto)(enum bpf_func_id func_id); returns argument constraints of kernel helper functions that eBPF program may call, so that verifier can checks that R1-R5 types match the prototype More details in Documentation/networking/filter.txt and in kernel/bpf/verifier.c Signed-off-by: Alexei Starovoitov <ast@plumgrid.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-09-26 00:17:06 -07:00
verbose(" fp%d=%s", -MAX_BPF_STACK + i,
reg_type_str[state->spilled_regs[i / BPF_REG_SIZE].type]);
bpf: verifier (add verifier core) This patch adds verifier core which simulates execution of every insn and records the state of registers and program stack. Every branch instruction seen during simulation is pushed into state stack. When verifier reaches BPF_EXIT, it pops the state from the stack and continues until it reaches BPF_EXIT again. For program: 1: bpf_mov r1, xxx 2: if (r1 == 0) goto 5 3: bpf_mov r0, 1 4: goto 6 5: bpf_mov r0, 2 6: bpf_exit The verifier will walk insns: 1, 2, 3, 4, 6 then it will pop the state recorded at insn#2 and will continue: 5, 6 This way it walks all possible paths through the program and checks all possible values of registers. While doing so, it checks for: - invalid instructions - uninitialized register access - uninitialized stack access - misaligned stack access - out of range stack access - invalid calling convention - instruction encoding is not using reserved fields Kernel subsystem configures the verifier with two callbacks: - bool (*is_valid_access)(int off, int size, enum bpf_access_type type); that provides information to the verifer which fields of 'ctx' are accessible (remember 'ctx' is the first argument to eBPF program) - const struct bpf_func_proto *(*get_func_proto)(enum bpf_func_id func_id); returns argument constraints of kernel helper functions that eBPF program may call, so that verifier can checks that R1-R5 types match the prototype More details in Documentation/networking/filter.txt and in kernel/bpf/verifier.c Signed-off-by: Alexei Starovoitov <ast@plumgrid.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-09-26 00:17:06 -07:00
}
verbose("\n");
}
static const char *const bpf_class_string[] = {
[BPF_LD] = "ld",
[BPF_LDX] = "ldx",
[BPF_ST] = "st",
[BPF_STX] = "stx",
[BPF_ALU] = "alu",
[BPF_JMP] = "jmp",
[BPF_RET] = "BUG",
[BPF_ALU64] = "alu64",
};
static const char *const bpf_alu_string[16] = {
[BPF_ADD >> 4] = "+=",
[BPF_SUB >> 4] = "-=",
[BPF_MUL >> 4] = "*=",
[BPF_DIV >> 4] = "/=",
[BPF_OR >> 4] = "|=",
[BPF_AND >> 4] = "&=",
[BPF_LSH >> 4] = "<<=",
[BPF_RSH >> 4] = ">>=",
[BPF_NEG >> 4] = "neg",
[BPF_MOD >> 4] = "%=",
[BPF_XOR >> 4] = "^=",
[BPF_MOV >> 4] = "=",
[BPF_ARSH >> 4] = "s>>=",
[BPF_END >> 4] = "endian",
};
static const char *const bpf_ldst_string[] = {
[BPF_W >> 3] = "u32",
[BPF_H >> 3] = "u16",
[BPF_B >> 3] = "u8",
[BPF_DW >> 3] = "u64",
};
static const char *const bpf_jmp_string[16] = {
[BPF_JA >> 4] = "jmp",
[BPF_JEQ >> 4] = "==",
[BPF_JGT >> 4] = ">",
[BPF_JGE >> 4] = ">=",
[BPF_JSET >> 4] = "&",
[BPF_JNE >> 4] = "!=",
[BPF_JSGT >> 4] = "s>",
[BPF_JSGE >> 4] = "s>=",
[BPF_CALL >> 4] = "call",
[BPF_EXIT >> 4] = "exit",
};
static void print_bpf_insn(const struct bpf_verifier_env *env,
const struct bpf_insn *insn)
{
u8 class = BPF_CLASS(insn->code);
if (class == BPF_ALU || class == BPF_ALU64) {
if (BPF_SRC(insn->code) == BPF_X)
verbose("(%02x) %sr%d %s %sr%d\n",
insn->code, class == BPF_ALU ? "(u32) " : "",
insn->dst_reg,
bpf_alu_string[BPF_OP(insn->code) >> 4],
class == BPF_ALU ? "(u32) " : "",
insn->src_reg);
else
verbose("(%02x) %sr%d %s %s%d\n",
insn->code, class == BPF_ALU ? "(u32) " : "",
insn->dst_reg,
bpf_alu_string[BPF_OP(insn->code) >> 4],
class == BPF_ALU ? "(u32) " : "",
insn->imm);
} else if (class == BPF_STX) {
if (BPF_MODE(insn->code) == BPF_MEM)
verbose("(%02x) *(%s *)(r%d %+d) = r%d\n",
insn->code,
bpf_ldst_string[BPF_SIZE(insn->code) >> 3],
insn->dst_reg,
insn->off, insn->src_reg);
else if (BPF_MODE(insn->code) == BPF_XADD)
verbose("(%02x) lock *(%s *)(r%d %+d) += r%d\n",
insn->code,
bpf_ldst_string[BPF_SIZE(insn->code) >> 3],
insn->dst_reg, insn->off,
insn->src_reg);
else
verbose("BUG_%02x\n", insn->code);
} else if (class == BPF_ST) {
if (BPF_MODE(insn->code) != BPF_MEM) {
verbose("BUG_st_%02x\n", insn->code);
return;
}
verbose("(%02x) *(%s *)(r%d %+d) = %d\n",
insn->code,
bpf_ldst_string[BPF_SIZE(insn->code) >> 3],
insn->dst_reg,
insn->off, insn->imm);
} else if (class == BPF_LDX) {
if (BPF_MODE(insn->code) != BPF_MEM) {
verbose("BUG_ldx_%02x\n", insn->code);
return;
}
verbose("(%02x) r%d = *(%s *)(r%d %+d)\n",
insn->code, insn->dst_reg,
bpf_ldst_string[BPF_SIZE(insn->code) >> 3],
insn->src_reg, insn->off);
} else if (class == BPF_LD) {
if (BPF_MODE(insn->code) == BPF_ABS) {
verbose("(%02x) r0 = *(%s *)skb[%d]\n",
insn->code,
bpf_ldst_string[BPF_SIZE(insn->code) >> 3],
insn->imm);
} else if (BPF_MODE(insn->code) == BPF_IND) {
verbose("(%02x) r0 = *(%s *)skb[r%d + %d]\n",
insn->code,
bpf_ldst_string[BPF_SIZE(insn->code) >> 3],
insn->src_reg, insn->imm);
} else if (BPF_MODE(insn->code) == BPF_IMM &&
BPF_SIZE(insn->code) == BPF_DW) {
/* At this point, we already made sure that the second
* part of the ldimm64 insn is accessible.
*/
u64 imm = ((u64)(insn + 1)->imm << 32) | (u32)insn->imm;
bool map_ptr = insn->src_reg == BPF_PSEUDO_MAP_FD;
if (map_ptr && !env->allow_ptr_leaks)
imm = 0;
verbose("(%02x) r%d = 0x%llx\n", insn->code,
insn->dst_reg, (unsigned long long)imm);
} else {
verbose("BUG_ld_%02x\n", insn->code);
return;
}
} else if (class == BPF_JMP) {
u8 opcode = BPF_OP(insn->code);
if (opcode == BPF_CALL) {
verbose("(%02x) call %s#%d\n", insn->code,
func_id_name(insn->imm), insn->imm);
} else if (insn->code == (BPF_JMP | BPF_JA)) {
verbose("(%02x) goto pc%+d\n",
insn->code, insn->off);
} else if (insn->code == (BPF_JMP | BPF_EXIT)) {
verbose("(%02x) exit\n", insn->code);
} else if (BPF_SRC(insn->code) == BPF_X) {
verbose("(%02x) if r%d %s r%d goto pc%+d\n",
insn->code, insn->dst_reg,
bpf_jmp_string[BPF_OP(insn->code) >> 4],
insn->src_reg, insn->off);
} else {
verbose("(%02x) if r%d %s 0x%x goto pc%+d\n",
insn->code, insn->dst_reg,
bpf_jmp_string[BPF_OP(insn->code) >> 4],
insn->imm, insn->off);
}
} else {
verbose("(%02x) %s\n", insn->code, bpf_class_string[class]);
}
}
static int pop_stack(struct bpf_verifier_env *env, int *prev_insn_idx)
bpf: verifier (add verifier core) This patch adds verifier core which simulates execution of every insn and records the state of registers and program stack. Every branch instruction seen during simulation is pushed into state stack. When verifier reaches BPF_EXIT, it pops the state from the stack and continues until it reaches BPF_EXIT again. For program: 1: bpf_mov r1, xxx 2: if (r1 == 0) goto 5 3: bpf_mov r0, 1 4: goto 6 5: bpf_mov r0, 2 6: bpf_exit The verifier will walk insns: 1, 2, 3, 4, 6 then it will pop the state recorded at insn#2 and will continue: 5, 6 This way it walks all possible paths through the program and checks all possible values of registers. While doing so, it checks for: - invalid instructions - uninitialized register access - uninitialized stack access - misaligned stack access - out of range stack access - invalid calling convention - instruction encoding is not using reserved fields Kernel subsystem configures the verifier with two callbacks: - bool (*is_valid_access)(int off, int size, enum bpf_access_type type); that provides information to the verifer which fields of 'ctx' are accessible (remember 'ctx' is the first argument to eBPF program) - const struct bpf_func_proto *(*get_func_proto)(enum bpf_func_id func_id); returns argument constraints of kernel helper functions that eBPF program may call, so that verifier can checks that R1-R5 types match the prototype More details in Documentation/networking/filter.txt and in kernel/bpf/verifier.c Signed-off-by: Alexei Starovoitov <ast@plumgrid.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-09-26 00:17:06 -07:00
{
struct bpf_verifier_stack_elem *elem;
bpf: verifier (add verifier core) This patch adds verifier core which simulates execution of every insn and records the state of registers and program stack. Every branch instruction seen during simulation is pushed into state stack. When verifier reaches BPF_EXIT, it pops the state from the stack and continues until it reaches BPF_EXIT again. For program: 1: bpf_mov r1, xxx 2: if (r1 == 0) goto 5 3: bpf_mov r0, 1 4: goto 6 5: bpf_mov r0, 2 6: bpf_exit The verifier will walk insns: 1, 2, 3, 4, 6 then it will pop the state recorded at insn#2 and will continue: 5, 6 This way it walks all possible paths through the program and checks all possible values of registers. While doing so, it checks for: - invalid instructions - uninitialized register access - uninitialized stack access - misaligned stack access - out of range stack access - invalid calling convention - instruction encoding is not using reserved fields Kernel subsystem configures the verifier with two callbacks: - bool (*is_valid_access)(int off, int size, enum bpf_access_type type); that provides information to the verifer which fields of 'ctx' are accessible (remember 'ctx' is the first argument to eBPF program) - const struct bpf_func_proto *(*get_func_proto)(enum bpf_func_id func_id); returns argument constraints of kernel helper functions that eBPF program may call, so that verifier can checks that R1-R5 types match the prototype More details in Documentation/networking/filter.txt and in kernel/bpf/verifier.c Signed-off-by: Alexei Starovoitov <ast@plumgrid.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-09-26 00:17:06 -07:00
int insn_idx;
if (env->head == NULL)
return -1;
memcpy(&env->cur_state, &env->head->st, sizeof(env->cur_state));
insn_idx = env->head->insn_idx;
if (prev_insn_idx)
*prev_insn_idx = env->head->prev_insn_idx;
elem = env->head->next;
kfree(env->head);
env->head = elem;
env->stack_size--;
return insn_idx;
}
static struct bpf_verifier_state *push_stack(struct bpf_verifier_env *env,
int insn_idx, int prev_insn_idx)
bpf: verifier (add verifier core) This patch adds verifier core which simulates execution of every insn and records the state of registers and program stack. Every branch instruction seen during simulation is pushed into state stack. When verifier reaches BPF_EXIT, it pops the state from the stack and continues until it reaches BPF_EXIT again. For program: 1: bpf_mov r1, xxx 2: if (r1 == 0) goto 5 3: bpf_mov r0, 1 4: goto 6 5: bpf_mov r0, 2 6: bpf_exit The verifier will walk insns: 1, 2, 3, 4, 6 then it will pop the state recorded at insn#2 and will continue: 5, 6 This way it walks all possible paths through the program and checks all possible values of registers. While doing so, it checks for: - invalid instructions - uninitialized register access - uninitialized stack access - misaligned stack access - out of range stack access - invalid calling convention - instruction encoding is not using reserved fields Kernel subsystem configures the verifier with two callbacks: - bool (*is_valid_access)(int off, int size, enum bpf_access_type type); that provides information to the verifer which fields of 'ctx' are accessible (remember 'ctx' is the first argument to eBPF program) - const struct bpf_func_proto *(*get_func_proto)(enum bpf_func_id func_id); returns argument constraints of kernel helper functions that eBPF program may call, so that verifier can checks that R1-R5 types match the prototype More details in Documentation/networking/filter.txt and in kernel/bpf/verifier.c Signed-off-by: Alexei Starovoitov <ast@plumgrid.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-09-26 00:17:06 -07:00
{
struct bpf_verifier_stack_elem *elem;
bpf: verifier (add verifier core) This patch adds verifier core which simulates execution of every insn and records the state of registers and program stack. Every branch instruction seen during simulation is pushed into state stack. When verifier reaches BPF_EXIT, it pops the state from the stack and continues until it reaches BPF_EXIT again. For program: 1: bpf_mov r1, xxx 2: if (r1 == 0) goto 5 3: bpf_mov r0, 1 4: goto 6 5: bpf_mov r0, 2 6: bpf_exit The verifier will walk insns: 1, 2, 3, 4, 6 then it will pop the state recorded at insn#2 and will continue: 5, 6 This way it walks all possible paths through the program and checks all possible values of registers. While doing so, it checks for: - invalid instructions - uninitialized register access - uninitialized stack access - misaligned stack access - out of range stack access - invalid calling convention - instruction encoding is not using reserved fields Kernel subsystem configures the verifier with two callbacks: - bool (*is_valid_access)(int off, int size, enum bpf_access_type type); that provides information to the verifer which fields of 'ctx' are accessible (remember 'ctx' is the first argument to eBPF program) - const struct bpf_func_proto *(*get_func_proto)(enum bpf_func_id func_id); returns argument constraints of kernel helper functions that eBPF program may call, so that verifier can checks that R1-R5 types match the prototype More details in Documentation/networking/filter.txt and in kernel/bpf/verifier.c Signed-off-by: Alexei Starovoitov <ast@plumgrid.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-09-26 00:17:06 -07:00
elem = kmalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL);
bpf: verifier (add verifier core) This patch adds verifier core which simulates execution of every insn and records the state of registers and program stack. Every branch instruction seen during simulation is pushed into state stack. When verifier reaches BPF_EXIT, it pops the state from the stack and continues until it reaches BPF_EXIT again. For program: 1: bpf_mov r1, xxx 2: if (r1 == 0) goto 5 3: bpf_mov r0, 1 4: goto 6 5: bpf_mov r0, 2 6: bpf_exit The verifier will walk insns: 1, 2, 3, 4, 6 then it will pop the state recorded at insn#2 and will continue: 5, 6 This way it walks all possible paths through the program and checks all possible values of registers. While doing so, it checks for: - invalid instructions - uninitialized register access - uninitialized stack access - misaligned stack access - out of range stack access - invalid calling convention - instruction encoding is not using reserved fields Kernel subsystem configures the verifier with two callbacks: - bool (*is_valid_access)(int off, int size, enum bpf_access_type type); that provides information to the verifer which fields of 'ctx' are accessible (remember 'ctx' is the first argument to eBPF program) - const struct bpf_func_proto *(*get_func_proto)(enum bpf_func_id func_id); returns argument constraints of kernel helper functions that eBPF program may call, so that verifier can checks that R1-R5 types match the prototype More details in Documentation/networking/filter.txt and in kernel/bpf/verifier.c Signed-off-by: Alexei Starovoitov <ast@plumgrid.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-09-26 00:17:06 -07:00
if (!elem)
goto err;
memcpy(&elem->st, &env->cur_state, sizeof(env->cur_state));
elem->insn_idx = insn_idx;
elem->prev_insn_idx = prev_insn_idx;
elem->next = env->head;
env->head = elem;
env->stack_size++;
bpf, verifier: further improve search pruning The verifier needs to go through every path of the program in order to check that it terminates safely, which can be quite a lot of instructions that need to be processed f.e. in cases with more branchy programs. With search pruning from f1bca824dabb ("bpf: add search pruning optimization to verifier") the search space can already be reduced significantly when the verifier detects that a previously walked path with same register and stack contents terminated already (see verifier's states_equal()), so the search can skip walking those states. When working with larger programs of > ~2000 (out of max 4096) insns, we found that the current limit of 32k instructions is easily hit. For example, a case we ran into is that the search space cannot be pruned due to branches at the beginning of the program that make use of certain stack space slots (STACK_MISC), which are never used in the remaining program (STACK_INVALID). Therefore, the verifier needs to walk paths for the slots in STACK_INVALID state, but also all remaining paths with a stack structure, where the slots are in STACK_MISC, which can nearly double the search space needed. After various experiments, we find that a limit of 64k processed insns is a more reasonable choice when dealing with larger programs in practice. This still allows to reject extreme crafted cases that can have a much higher complexity (f.e. > ~300k) within the 4096 insns limit due to search pruning not being able to take effect. Furthermore, we found that a lot of states can be pruned after a call instruction, f.e. we were able to reduce the search state by ~35% in some cases with this heuristic, trade-off is to keep a bit more states in env->explored_states. Usually, call instructions have a number of preceding register assignments and/or stack stores, where search pruning has a better chance to suceed in states_equal() test. The current code marks the branch targets with STATE_LIST_MARK in case of conditional jumps, and the next (t + 1) instruction in case of unconditional jump so that f.e. a backjump will walk it. We also did experiments with using t + insns[t].off + 1 as a marker in the unconditionally jump case instead of t + 1 with the rationale that these two branches of execution that converge after the label might have more potential of pruning. We found that it was a bit better, but not necessarily significantly better than the current state, perhaps also due to clang not generating back jumps often. Hence, we left that as is for now. Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-04-05 22:33:17 +02:00
if (env->stack_size > BPF_COMPLEXITY_LIMIT_STACK) {
bpf: verifier (add verifier core) This patch adds verifier core which simulates execution of every insn and records the state of registers and program stack. Every branch instruction seen during simulation is pushed into state stack. When verifier reaches BPF_EXIT, it pops the state from the stack and continues until it reaches BPF_EXIT again. For program: 1: bpf_mov r1, xxx 2: if (r1 == 0) goto 5 3: bpf_mov r0, 1 4: goto 6 5: bpf_mov r0, 2 6: bpf_exit The verifier will walk insns: 1, 2, 3, 4, 6 then it will pop the state recorded at insn#2 and will continue: 5, 6 This way it walks all possible paths through the program and checks all possible values of registers. While doing so, it checks for: - invalid instructions - uninitialized register access - uninitialized stack access - misaligned stack access - out of range stack access - invalid calling convention - instruction encoding is not using reserved fields Kernel subsystem configures the verifier with two callbacks: - bool (*is_valid_access)(int off, int size, enum bpf_access_type type); that provides information to the verifer which fields of 'ctx' are accessible (remember 'ctx' is the first argument to eBPF program) - const struct bpf_func_proto *(*get_func_proto)(enum bpf_func_id func_id); returns argument constraints of kernel helper functions that eBPF program may call, so that verifier can checks that R1-R5 types match the prototype More details in Documentation/networking/filter.txt and in kernel/bpf/verifier.c Signed-off-by: Alexei Starovoitov <ast@plumgrid.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-09-26 00:17:06 -07:00
verbose("BPF program is too complex\n");
goto err;
}
return &elem->st;
err:
/* pop all elements and return */
while (pop_stack(env, NULL) >= 0);
return NULL;
}
#define CALLER_SAVED_REGS 6
static const int caller_saved[CALLER_SAVED_REGS] = {
BPF_REG_0, BPF_REG_1, BPF_REG_2, BPF_REG_3, BPF_REG_4, BPF_REG_5
};
static void init_reg_state(struct bpf_reg_state *regs)
bpf: verifier (add verifier core) This patch adds verifier core which simulates execution of every insn and records the state of registers and program stack. Every branch instruction seen during simulation is pushed into state stack. When verifier reaches BPF_EXIT, it pops the state from the stack and continues until it reaches BPF_EXIT again. For program: 1: bpf_mov r1, xxx 2: if (r1 == 0) goto 5 3: bpf_mov r0, 1 4: goto 6 5: bpf_mov r0, 2 6: bpf_exit The verifier will walk insns: 1, 2, 3, 4, 6 then it will pop the state recorded at insn#2 and will continue: 5, 6 This way it walks all possible paths through the program and checks all possible values of registers. While doing so, it checks for: - invalid instructions - uninitialized register access - uninitialized stack access - misaligned stack access - out of range stack access - invalid calling convention - instruction encoding is not using reserved fields Kernel subsystem configures the verifier with two callbacks: - bool (*is_valid_access)(int off, int size, enum bpf_access_type type); that provides information to the verifer which fields of 'ctx' are accessible (remember 'ctx' is the first argument to eBPF program) - const struct bpf_func_proto *(*get_func_proto)(enum bpf_func_id func_id); returns argument constraints of kernel helper functions that eBPF program may call, so that verifier can checks that R1-R5 types match the prototype More details in Documentation/networking/filter.txt and in kernel/bpf/verifier.c Signed-off-by: Alexei Starovoitov <ast@plumgrid.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-09-26 00:17:06 -07:00
{
int i;
for (i = 0; i < MAX_BPF_REG; i++) {
regs[i].type = NOT_INIT;
regs[i].imm = 0;
regs[i].min_value = BPF_REGISTER_MIN_RANGE;
regs[i].max_value = BPF_REGISTER_MAX_RANGE;
bpf: Track alignment of register values in the verifier. Currently if we add only constant values to pointers we can fully validate the alignment, and properly check if we need to reject the program on !CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS architectures. However, once an unknown value is introduced we only allow byte sized memory accesses which is too restrictive. Add logic to track the known minimum alignment of register values, and propagate this state into registers containing pointers. The most common paradigm that makes use of this new logic is computing the transport header using the IP header length field. For example: struct ethhdr *ep = skb->data; struct iphdr *iph = (struct iphdr *) (ep + 1); struct tcphdr *th; ... n = iph->ihl; th = ((void *)iph + (n * 4)); port = th->dest; The existing code will reject the load of th->dest because it cannot validate that the alignment is at least 2 once "n * 4" is added the the packet pointer. In the new code, the register holding "n * 4" will have a reg->min_align value of 4, because any value multiplied by 4 will be at least 4 byte aligned. (actually, the eBPF code emitted by the compiler in this case is most likely to use a shift left by 2, but the end result is identical) At the critical addition: th = ((void *)iph + (n * 4)); The register holding 'th' will start with reg->off value of 14. The pointer addition will transform that reg into something that looks like: reg->aux_off = 14 reg->aux_off_align = 4 Next, the verifier will look at the th->dest load, and it will see a load offset of 2, and first check: if (reg->aux_off_align % size) which will pass because aux_off_align is 4. reg_off will be computed: reg_off = reg->off; ... reg_off += reg->aux_off; plus we have off==2, and it will thus check: if ((NET_IP_ALIGN + reg_off + off) % size != 0) which evaluates to: if ((NET_IP_ALIGN + 14 + 2) % size != 0) On strict alignment architectures, NET_IP_ALIGN is 2, thus: if ((2 + 14 + 2) % size != 0) which passes. These pointer transformations and checks work regardless of whether the constant offset or the variable with known alignment is added first to the pointer register. Signed-off-by: David S. Miller <davem@davemloft.net> Acked-by: Daniel Borkmann <daniel@iogearbox.net>
2017-05-10 11:22:52 -07:00
regs[i].min_align = 0;
regs[i].aux_off = 0;
regs[i].aux_off_align = 0;
bpf: verifier (add verifier core) This patch adds verifier core which simulates execution of every insn and records the state of registers and program stack. Every branch instruction seen during simulation is pushed into state stack. When verifier reaches BPF_EXIT, it pops the state from the stack and continues until it reaches BPF_EXIT again. For program: 1: bpf_mov r1, xxx 2: if (r1 == 0) goto 5 3: bpf_mov r0, 1 4: goto 6 5: bpf_mov r0, 2 6: bpf_exit The verifier will walk insns: 1, 2, 3, 4, 6 then it will pop the state recorded at insn#2 and will continue: 5, 6 This way it walks all possible paths through the program and checks all possible values of registers. While doing so, it checks for: - invalid instructions - uninitialized register access - uninitialized stack access - misaligned stack access - out of range stack access - invalid calling convention - instruction encoding is not using reserved fields Kernel subsystem configures the verifier with two callbacks: - bool (*is_valid_access)(int off, int size, enum bpf_access_type type); that provides information to the verifer which fields of 'ctx' are accessible (remember 'ctx' is the first argument to eBPF program) - const struct bpf_func_proto *(*get_func_proto)(enum bpf_func_id func_id); returns argument constraints of kernel helper functions that eBPF program may call, so that verifier can checks that R1-R5 types match the prototype More details in Documentation/networking/filter.txt and in kernel/bpf/verifier.c Signed-off-by: Alexei Starovoitov <ast@plumgrid.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-09-26 00:17:06 -07:00
}
/* frame pointer */
regs[BPF_REG_FP].type = FRAME_PTR;
/* 1st arg to a function */
regs[BPF_REG_1].type = PTR_TO_CTX;
}
bpf: fix mark_reg_unknown_value for spilled regs on map value marking Martin reported a verifier issue that hit the BUG_ON() for his test case in the mark_reg_unknown_value() function: [ 202.861380] kernel BUG at kernel/bpf/verifier.c:467! [...] [ 203.291109] Call Trace: [ 203.296501] [<ffffffff811364d5>] mark_map_reg+0x45/0x50 [ 203.308225] [<ffffffff81136558>] mark_map_regs+0x78/0x90 [ 203.320140] [<ffffffff8113938d>] do_check+0x226d/0x2c90 [ 203.331865] [<ffffffff8113a6ab>] bpf_check+0x48b/0x780 [ 203.343403] [<ffffffff81134c8e>] bpf_prog_load+0x27e/0x440 [ 203.355705] [<ffffffff8118a38f>] ? handle_mm_fault+0x11af/0x1230 [ 203.369158] [<ffffffff812d8188>] ? security_capable+0x48/0x60 [ 203.382035] [<ffffffff811351a4>] SyS_bpf+0x124/0x960 [ 203.393185] [<ffffffff810515f6>] ? __do_page_fault+0x276/0x490 [ 203.406258] [<ffffffff816db320>] entry_SYSCALL_64_fastpath+0x13/0x94 This issue got uncovered after the fix in a08dd0da5307 ("bpf: fix regression on verifier pruning wrt map lookups"). The reason why it wasn't noticed before was, because as mentioned in a08dd0da5307, mark_map_regs() was doing the id matching incorrectly based on the uncached regs[regno].id. So, in the first loop, we walked all regs and as soon as we found regno == i, then this reg's id was cleared when calling mark_reg_unknown_value() thus that every subsequent register was probed against id of 0 (which, in combination with the PTR_TO_MAP_VALUE_OR_NULL type is an invalid condition that no other register state can hold), and therefore wasn't type transitioned such as in the spilled register case for the second loop. Now since that got fixed, it turned out that 57a09bf0a416 ("bpf: Detect identical PTR_TO_MAP_VALUE_OR_NULL registers") used mark_reg_unknown_value() incorrectly for the spilled regs, and thus hitting the BUG_ON() in some cases due to regno >= MAX_BPF_REG. Although spilled regs have the same type as the non-spilled regs for the verifier state, that is, struct bpf_reg_state, they are semantically different from the non-spilled regs. In other words, there can be up to 64 (MAX_BPF_STACK / BPF_REG_SIZE) spilled regs in the stack, for example, register R<x> could have been spilled by the program to stack location X, Y, Z, and in mark_map_regs() we need to scan these stack slots of type STACK_SPILL for potential registers that we have to transition from PTR_TO_MAP_VALUE_OR_NULL. Therefore, depending on the location, the spilled_regs regno can be a lot higher than just MAX_BPF_REG's value since we operate on stack instead. The reset in mark_reg_unknown_value() itself is just fine, only that the BUG_ON() was inappropriate for this. Fix it by making a __mark_reg_unknown_value() version that can be called from mark_map_reg() generically; we know for the non-spilled case that the regno is always < MAX_BPF_REG anyway. Fixes: 57a09bf0a416 ("bpf: Detect identical PTR_TO_MAP_VALUE_OR_NULL registers") Reported-by: Martin KaFai Lau <kafai@fb.com> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-12-18 01:52:59 +01:00
static void __mark_reg_unknown_value(struct bpf_reg_state *regs, u32 regno)
bpf: verifier (add verifier core) This patch adds verifier core which simulates execution of every insn and records the state of registers and program stack. Every branch instruction seen during simulation is pushed into state stack. When verifier reaches BPF_EXIT, it pops the state from the stack and continues until it reaches BPF_EXIT again. For program: 1: bpf_mov r1, xxx 2: if (r1 == 0) goto 5 3: bpf_mov r0, 1 4: goto 6 5: bpf_mov r0, 2 6: bpf_exit The verifier will walk insns: 1, 2, 3, 4, 6 then it will pop the state recorded at insn#2 and will continue: 5, 6 This way it walks all possible paths through the program and checks all possible values of registers. While doing so, it checks for: - invalid instructions - uninitialized register access - uninitialized stack access - misaligned stack access - out of range stack access - invalid calling convention - instruction encoding is not using reserved fields Kernel subsystem configures the verifier with two callbacks: - bool (*is_valid_access)(int off, int size, enum bpf_access_type type); that provides information to the verifer which fields of 'ctx' are accessible (remember 'ctx' is the first argument to eBPF program) - const struct bpf_func_proto *(*get_func_proto)(enum bpf_func_id func_id); returns argument constraints of kernel helper functions that eBPF program may call, so that verifier can checks that R1-R5 types match the prototype More details in Documentation/networking/filter.txt and in kernel/bpf/verifier.c Signed-off-by: Alexei Starovoitov <ast@plumgrid.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-09-26 00:17:06 -07:00
{
regs[regno].type = UNKNOWN_VALUE;
regs[regno].id = 0;
bpf: verifier (add verifier core) This patch adds verifier core which simulates execution of every insn and records the state of registers and program stack. Every branch instruction seen during simulation is pushed into state stack. When verifier reaches BPF_EXIT, it pops the state from the stack and continues until it reaches BPF_EXIT again. For program: 1: bpf_mov r1, xxx 2: if (r1 == 0) goto 5 3: bpf_mov r0, 1 4: goto 6 5: bpf_mov r0, 2 6: bpf_exit The verifier will walk insns: 1, 2, 3, 4, 6 then it will pop the state recorded at insn#2 and will continue: 5, 6 This way it walks all possible paths through the program and checks all possible values of registers. While doing so, it checks for: - invalid instructions - uninitialized register access - uninitialized stack access - misaligned stack access - out of range stack access - invalid calling convention - instruction encoding is not using reserved fields Kernel subsystem configures the verifier with two callbacks: - bool (*is_valid_access)(int off, int size, enum bpf_access_type type); that provides information to the verifer which fields of 'ctx' are accessible (remember 'ctx' is the first argument to eBPF program) - const struct bpf_func_proto *(*get_func_proto)(enum bpf_func_id func_id); returns argument constraints of kernel helper functions that eBPF program may call, so that verifier can checks that R1-R5 types match the prototype More details in Documentation/networking/filter.txt and in kernel/bpf/verifier.c Signed-off-by: Alexei Starovoitov <ast@plumgrid.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-09-26 00:17:06 -07:00
regs[regno].imm = 0;
}
bpf: fix mark_reg_unknown_value for spilled regs on map value marking Martin reported a verifier issue that hit the BUG_ON() for his test case in the mark_reg_unknown_value() function: [ 202.861380] kernel BUG at kernel/bpf/verifier.c:467! [...] [ 203.291109] Call Trace: [ 203.296501] [<ffffffff811364d5>] mark_map_reg+0x45/0x50 [ 203.308225] [<ffffffff81136558>] mark_map_regs+0x78/0x90 [ 203.320140] [<ffffffff8113938d>] do_check+0x226d/0x2c90 [ 203.331865] [<ffffffff8113a6ab>] bpf_check+0x48b/0x780 [ 203.343403] [<ffffffff81134c8e>] bpf_prog_load+0x27e/0x440 [ 203.355705] [<ffffffff8118a38f>] ? handle_mm_fault+0x11af/0x1230 [ 203.369158] [<ffffffff812d8188>] ? security_capable+0x48/0x60 [ 203.382035] [<ffffffff811351a4>] SyS_bpf+0x124/0x960 [ 203.393185] [<ffffffff810515f6>] ? __do_page_fault+0x276/0x490 [ 203.406258] [<ffffffff816db320>] entry_SYSCALL_64_fastpath+0x13/0x94 This issue got uncovered after the fix in a08dd0da5307 ("bpf: fix regression on verifier pruning wrt map lookups"). The reason why it wasn't noticed before was, because as mentioned in a08dd0da5307, mark_map_regs() was doing the id matching incorrectly based on the uncached regs[regno].id. So, in the first loop, we walked all regs and as soon as we found regno == i, then this reg's id was cleared when calling mark_reg_unknown_value() thus that every subsequent register was probed against id of 0 (which, in combination with the PTR_TO_MAP_VALUE_OR_NULL type is an invalid condition that no other register state can hold), and therefore wasn't type transitioned such as in the spilled register case for the second loop. Now since that got fixed, it turned out that 57a09bf0a416 ("bpf: Detect identical PTR_TO_MAP_VALUE_OR_NULL registers") used mark_reg_unknown_value() incorrectly for the spilled regs, and thus hitting the BUG_ON() in some cases due to regno >= MAX_BPF_REG. Although spilled regs have the same type as the non-spilled regs for the verifier state, that is, struct bpf_reg_state, they are semantically different from the non-spilled regs. In other words, there can be up to 64 (MAX_BPF_STACK / BPF_REG_SIZE) spilled regs in the stack, for example, register R<x> could have been spilled by the program to stack location X, Y, Z, and in mark_map_regs() we need to scan these stack slots of type STACK_SPILL for potential registers that we have to transition from PTR_TO_MAP_VALUE_OR_NULL. Therefore, depending on the location, the spilled_regs regno can be a lot higher than just MAX_BPF_REG's value since we operate on stack instead. The reset in mark_reg_unknown_value() itself is just fine, only that the BUG_ON() was inappropriate for this. Fix it by making a __mark_reg_unknown_value() version that can be called from mark_map_reg() generically; we know for the non-spilled case that the regno is always < MAX_BPF_REG anyway. Fixes: 57a09bf0a416 ("bpf: Detect identical PTR_TO_MAP_VALUE_OR_NULL registers") Reported-by: Martin KaFai Lau <kafai@fb.com> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-12-18 01:52:59 +01:00
static void mark_reg_unknown_value(struct bpf_reg_state *regs, u32 regno)
{
BUG_ON(regno >= MAX_BPF_REG);
__mark_reg_unknown_value(regs, regno);
}
static void reset_reg_range_values(struct bpf_reg_state *regs, u32 regno)
{
regs[regno].min_value = BPF_REGISTER_MIN_RANGE;
regs[regno].max_value = BPF_REGISTER_MAX_RANGE;
bpf: Track alignment of register values in the verifier. Currently if we add only constant values to pointers we can fully validate the alignment, and properly check if we need to reject the program on !CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS architectures. However, once an unknown value is introduced we only allow byte sized memory accesses which is too restrictive. Add logic to track the known minimum alignment of register values, and propagate this state into registers containing pointers. The most common paradigm that makes use of this new logic is computing the transport header using the IP header length field. For example: struct ethhdr *ep = skb->data; struct iphdr *iph = (struct iphdr *) (ep + 1); struct tcphdr *th; ... n = iph->ihl; th = ((void *)iph + (n * 4)); port = th->dest; The existing code will reject the load of th->dest because it cannot validate that the alignment is at least 2 once "n * 4" is added the the packet pointer. In the new code, the register holding "n * 4" will have a reg->min_align value of 4, because any value multiplied by 4 will be at least 4 byte aligned. (actually, the eBPF code emitted by the compiler in this case is most likely to use a shift left by 2, but the end result is identical) At the critical addition: th = ((void *)iph + (n * 4)); The register holding 'th' will start with reg->off value of 14. The pointer addition will transform that reg into something that looks like: reg->aux_off = 14 reg->aux_off_align = 4 Next, the verifier will look at the th->dest load, and it will see a load offset of 2, and first check: if (reg->aux_off_align % size) which will pass because aux_off_align is 4. reg_off will be computed: reg_off = reg->off; ... reg_off += reg->aux_off; plus we have off==2, and it will thus check: if ((NET_IP_ALIGN + reg_off + off) % size != 0) which evaluates to: if ((NET_IP_ALIGN + 14 + 2) % size != 0) On strict alignment architectures, NET_IP_ALIGN is 2, thus: if ((2 + 14 + 2) % size != 0) which passes. These pointer transformations and checks work regardless of whether the constant offset or the variable with known alignment is added first to the pointer register. Signed-off-by: David S. Miller <davem@davemloft.net> Acked-by: Daniel Borkmann <daniel@iogearbox.net>
2017-05-10 11:22:52 -07:00
regs[regno].min_align = 0;
}
static void mark_reg_unknown_value_and_range(struct bpf_reg_state *regs,
u32 regno)
{
mark_reg_unknown_value(regs, regno);
reset_reg_range_values(regs, regno);
}
bpf: verifier (add verifier core) This patch adds verifier core which simulates execution of every insn and records the state of registers and program stack. Every branch instruction seen during simulation is pushed into state stack. When verifier reaches BPF_EXIT, it pops the state from the stack and continues until it reaches BPF_EXIT again. For program: 1: bpf_mov r1, xxx 2: if (r1 == 0) goto 5 3: bpf_mov r0, 1 4: goto 6 5: bpf_mov r0, 2 6: bpf_exit The verifier will walk insns: 1, 2, 3, 4, 6 then it will pop the state recorded at insn#2 and will continue: 5, 6 This way it walks all possible paths through the program and checks all possible values of registers. While doing so, it checks for: - invalid instructions - uninitialized register access - uninitialized stack access - misaligned stack access - out of range stack access - invalid calling convention - instruction encoding is not using reserved fields Kernel subsystem configures the verifier with two callbacks: - bool (*is_valid_access)(int off, int size, enum bpf_access_type type); that provides information to the verifer which fields of 'ctx' are accessible (remember 'ctx' is the first argument to eBPF program) - const struct bpf_func_proto *(*get_func_proto)(enum bpf_func_id func_id); returns argument constraints of kernel helper functions that eBPF program may call, so that verifier can checks that R1-R5 types match the prototype More details in Documentation/networking/filter.txt and in kernel/bpf/verifier.c Signed-off-by: Alexei Starovoitov <ast@plumgrid.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-09-26 00:17:06 -07:00
enum reg_arg_type {
SRC_OP, /* register is used as source operand */
DST_OP, /* register is used as destination operand */
DST_OP_NO_MARK /* same as above, check only, don't mark */
};
static int check_reg_arg(struct bpf_reg_state *regs, u32 regno,
bpf: verifier (add verifier core) This patch adds verifier core which simulates execution of every insn and records the state of registers and program stack. Every branch instruction seen during simulation is pushed into state stack. When verifier reaches BPF_EXIT, it pops the state from the stack and continues until it reaches BPF_EXIT again. For program: 1: bpf_mov r1, xxx 2: if (r1 == 0) goto 5 3: bpf_mov r0, 1 4: goto 6 5: bpf_mov r0, 2 6: bpf_exit The verifier will walk insns: 1, 2, 3, 4, 6 then it will pop the state recorded at insn#2 and will continue: 5, 6 This way it walks all possible paths through the program and checks all possible values of registers. While doing so, it checks for: - invalid instructions - uninitialized register access - uninitialized stack access - misaligned stack access - out of range stack access - invalid calling convention - instruction encoding is not using reserved fields Kernel subsystem configures the verifier with two callbacks: - bool (*is_valid_access)(int off, int size, enum bpf_access_type type); that provides information to the verifer which fields of 'ctx' are accessible (remember 'ctx' is the first argument to eBPF program) - const struct bpf_func_proto *(*get_func_proto)(enum bpf_func_id func_id); returns argument constraints of kernel helper functions that eBPF program may call, so that verifier can checks that R1-R5 types match the prototype More details in Documentation/networking/filter.txt and in kernel/bpf/verifier.c Signed-off-by: Alexei Starovoitov <ast@plumgrid.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-09-26 00:17:06 -07:00
enum reg_arg_type t)
{
if (regno >= MAX_BPF_REG) {
verbose("R%d is invalid\n", regno);
return -EINVAL;
}
if (t == SRC_OP) {
/* check whether register used as source operand can be read */
if (regs[regno].type == NOT_INIT) {
verbose("R%d !read_ok\n", regno);
return -EACCES;
}
} else {
/* check whether register used as dest operand can be written to */
if (regno == BPF_REG_FP) {
verbose("frame pointer is read only\n");
return -EACCES;
}
if (t == DST_OP)
mark_reg_unknown_value(regs, regno);
}
return 0;
}
static int bpf_size_to_bytes(int bpf_size)
{
if (bpf_size == BPF_W)
return 4;
else if (bpf_size == BPF_H)
return 2;
else if (bpf_size == BPF_B)
return 1;
else if (bpf_size == BPF_DW)
return 8;
else
return -EINVAL;
}
bpf: enable non-root eBPF programs In order to let unprivileged users load and execute eBPF programs teach verifier to prevent pointer leaks. Verifier will prevent - any arithmetic on pointers (except R10+Imm which is used to compute stack addresses) - comparison of pointers (except if (map_value_ptr == 0) ... ) - passing pointers to helper functions - indirectly passing pointers in stack to helper functions - returning pointer from bpf program - storing pointers into ctx or maps Spill/fill of pointers into stack is allowed, but mangling of pointers stored in the stack or reading them byte by byte is not. Within bpf programs the pointers do exist, since programs need to be able to access maps, pass skb pointer to LD_ABS insns, etc but programs cannot pass such pointer values to the outside or obfuscate them. Only allow BPF_PROG_TYPE_SOCKET_FILTER unprivileged programs, so that socket filters (tcpdump), af_packet (quic acceleration) and future kcm can use it. tracing and tc cls/act program types still require root permissions, since tracing actually needs to be able to see all kernel pointers and tc is for root only. For example, the following unprivileged socket filter program is allowed: int bpf_prog1(struct __sk_buff *skb) { u32 index = load_byte(skb, ETH_HLEN + offsetof(struct iphdr, protocol)); u64 *value = bpf_map_lookup_elem(&my_map, &index); if (value) *value += skb->len; return 0; } but the following program is not: int bpf_prog1(struct __sk_buff *skb) { u32 index = load_byte(skb, ETH_HLEN + offsetof(struct iphdr, protocol)); u64 *value = bpf_map_lookup_elem(&my_map, &index); if (value) *value += (u64) skb; return 0; } since it would leak the kernel address into the map. Unprivileged socket filter bpf programs have access to the following helper functions: - map lookup/update/delete (but they cannot store kernel pointers into them) - get_random (it's already exposed to unprivileged user space) - get_smp_processor_id - tail_call into another socket filter program - ktime_get_ns The feature is controlled by sysctl kernel.unprivileged_bpf_disabled. This toggle defaults to off (0), but can be set true (1). Once true, bpf programs and maps cannot be accessed from unprivileged process, and the toggle cannot be set back to false. Signed-off-by: Alexei Starovoitov <ast@plumgrid.com> Reviewed-by: Kees Cook <keescook@chromium.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2015-10-07 22:23:21 -07:00
static bool is_spillable_regtype(enum bpf_reg_type type)
{
switch (type) {
case PTR_TO_MAP_VALUE:
case PTR_TO_MAP_VALUE_OR_NULL:
case PTR_TO_MAP_VALUE_ADJ:
bpf: enable non-root eBPF programs In order to let unprivileged users load and execute eBPF programs teach verifier to prevent pointer leaks. Verifier will prevent - any arithmetic on pointers (except R10+Imm which is used to compute stack addresses) - comparison of pointers (except if (map_value_ptr == 0) ... ) - passing pointers to helper functions - indirectly passing pointers in stack to helper functions - returning pointer from bpf program - storing pointers into ctx or maps Spill/fill of pointers into stack is allowed, but mangling of pointers stored in the stack or reading them byte by byte is not. Within bpf programs the pointers do exist, since programs need to be able to access maps, pass skb pointer to LD_ABS insns, etc but programs cannot pass such pointer values to the outside or obfuscate them. Only allow BPF_PROG_TYPE_SOCKET_FILTER unprivileged programs, so that socket filters (tcpdump), af_packet (quic acceleration) and future kcm can use it. tracing and tc cls/act program types still require root permissions, since tracing actually needs to be able to see all kernel pointers and tc is for root only. For example, the following unprivileged socket filter program is allowed: int bpf_prog1(struct __sk_buff *skb) { u32 index = load_byte(skb, ETH_HLEN + offsetof(struct iphdr, protocol)); u64 *value = bpf_map_lookup_elem(&my_map, &index); if (value) *value += skb->len; return 0; } but the following program is not: int bpf_prog1(struct __sk_buff *skb) { u32 index = load_byte(skb, ETH_HLEN + offsetof(struct iphdr, protocol)); u64 *value = bpf_map_lookup_elem(&my_map, &index); if (value) *value += (u64) skb; return 0; } since it would leak the kernel address into the map. Unprivileged socket filter bpf programs have access to the following helper functions: - map lookup/update/delete (but they cannot store kernel pointers into them) - get_random (it's already exposed to unprivileged user space) - get_smp_processor_id - tail_call into another socket filter program - ktime_get_ns The feature is controlled by sysctl kernel.unprivileged_bpf_disabled. This toggle defaults to off (0), but can be set true (1). Once true, bpf programs and maps cannot be accessed from unprivileged process, and the toggle cannot be set back to false. Signed-off-by: Alexei Starovoitov <ast@plumgrid.com> Reviewed-by: Kees Cook <keescook@chromium.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2015-10-07 22:23:21 -07:00
case PTR_TO_STACK:
case PTR_TO_CTX:
bpf: direct packet access Extended BPF carried over two instructions from classic to access packet data: LD_ABS and LD_IND. They're highly optimized in JITs, but due to their design they have to do length check for every access. When BPF is processing 20M packets per second single LD_ABS after JIT is consuming 3% cpu. Hence the need to optimize it further by amortizing the cost of 'off < skb_headlen' over multiple packet accesses. One option is to introduce two new eBPF instructions LD_ABS_DW and LD_IND_DW with similar usage as skb_header_pointer(). The kernel part for interpreter and x64 JIT was implemented in [1], but such new insns behave like old ld_abs and abort the program with 'return 0' if access is beyond linear data. Such hidden control flow is hard to workaround plus changing JITs and rolling out new llvm is incovenient. Therefore allow cls_bpf/act_bpf program access skb->data directly: int bpf_prog(struct __sk_buff *skb) { struct iphdr *ip; if (skb->data + sizeof(struct iphdr) + ETH_HLEN > skb->data_end) /* packet too small */ return 0; ip = skb->data + ETH_HLEN; /* access IP header fields with direct loads */ if (ip->version != 4 || ip->saddr == 0x7f000001) return 1; [...] } This solution avoids introduction of new instructions. llvm stays the same and all JITs stay the same, but verifier has to work extra hard to prove safety of the above program. For XDP the direct store instructions can be allowed as well. The skb->data is NET_IP_ALIGNED, so for common cases the verifier can check the alignment. The complex packet parsers where packet pointer is adjusted incrementally cannot be tracked for alignment, so allow byte access in such cases and misaligned access on architectures that define efficient_unaligned_access [1] https://git.kernel.org/cgit/linux/kernel/git/ast/bpf.git/?h=ld_abs_dw Signed-off-by: Alexei Starovoitov <ast@kernel.org> Acked-by: Daniel Borkmann <daniel@iogearbox.net> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-05-05 19:49:10 -07:00
case PTR_TO_PACKET:
case PTR_TO_PACKET_END:
bpf: enable non-root eBPF programs In order to let unprivileged users load and execute eBPF programs teach verifier to prevent pointer leaks. Verifier will prevent - any arithmetic on pointers (except R10+Imm which is used to compute stack addresses) - comparison of pointers (except if (map_value_ptr == 0) ... ) - passing pointers to helper functions - indirectly passing pointers in stack to helper functions - returning pointer from bpf program - storing pointers into ctx or maps Spill/fill of pointers into stack is allowed, but mangling of pointers stored in the stack or reading them byte by byte is not. Within bpf programs the pointers do exist, since programs need to be able to access maps, pass skb pointer to LD_ABS insns, etc but programs cannot pass such pointer values to the outside or obfuscate them. Only allow BPF_PROG_TYPE_SOCKET_FILTER unprivileged programs, so that socket filters (tcpdump), af_packet (quic acceleration) and future kcm can use it. tracing and tc cls/act program types still require root permissions, since tracing actually needs to be able to see all kernel pointers and tc is for root only. For example, the following unprivileged socket filter program is allowed: int bpf_prog1(struct __sk_buff *skb) { u32 index = load_byte(skb, ETH_HLEN + offsetof(struct iphdr, protocol)); u64 *value = bpf_map_lookup_elem(&my_map, &index); if (value) *value += skb->len; return 0; } but the following program is not: int bpf_prog1(struct __sk_buff *skb) { u32 index = load_byte(skb, ETH_HLEN + offsetof(struct iphdr, protocol)); u64 *value = bpf_map_lookup_elem(&my_map, &index); if (value) *value += (u64) skb; return 0; } since it would leak the kernel address into the map. Unprivileged socket filter bpf programs have access to the following helper functions: - map lookup/update/delete (but they cannot store kernel pointers into them) - get_random (it's already exposed to unprivileged user space) - get_smp_processor_id - tail_call into another socket filter program - ktime_get_ns The feature is controlled by sysctl kernel.unprivileged_bpf_disabled. This toggle defaults to off (0), but can be set true (1). Once true, bpf programs and maps cannot be accessed from unprivileged process, and the toggle cannot be set back to false. Signed-off-by: Alexei Starovoitov <ast@plumgrid.com> Reviewed-by: Kees Cook <keescook@chromium.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2015-10-07 22:23:21 -07:00
case FRAME_PTR:
case CONST_PTR_TO_MAP:
return true;
default:
return false;
}
}
bpf: verifier (add verifier core) This patch adds verifier core which simulates execution of every insn and records the state of registers and program stack. Every branch instruction seen during simulation is pushed into state stack. When verifier reaches BPF_EXIT, it pops the state from the stack and continues until it reaches BPF_EXIT again. For program: 1: bpf_mov r1, xxx 2: if (r1 == 0) goto 5 3: bpf_mov r0, 1 4: goto 6 5: bpf_mov r0, 2 6: bpf_exit The verifier will walk insns: 1, 2, 3, 4, 6 then it will pop the state recorded at insn#2 and will continue: 5, 6 This way it walks all possible paths through the program and checks all possible values of registers. While doing so, it checks for: - invalid instructions - uninitialized register access - uninitialized stack access - misaligned stack access - out of range stack access - invalid calling convention - instruction encoding is not using reserved fields Kernel subsystem configures the verifier with two callbacks: - bool (*is_valid_access)(int off, int size, enum bpf_access_type type); that provides information to the verifer which fields of 'ctx' are accessible (remember 'ctx' is the first argument to eBPF program) - const struct bpf_func_proto *(*get_func_proto)(enum bpf_func_id func_id); returns argument constraints of kernel helper functions that eBPF program may call, so that verifier can checks that R1-R5 types match the prototype More details in Documentation/networking/filter.txt and in kernel/bpf/verifier.c Signed-off-by: Alexei Starovoitov <ast@plumgrid.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-09-26 00:17:06 -07:00
/* check_stack_read/write functions track spill/fill of registers,
* stack boundary and alignment are checked in check_mem_access()
*/
static int check_stack_write(struct bpf_verifier_state *state, int off,
int size, int value_regno)
bpf: verifier (add verifier core) This patch adds verifier core which simulates execution of every insn and records the state of registers and program stack. Every branch instruction seen during simulation is pushed into state stack. When verifier reaches BPF_EXIT, it pops the state from the stack and continues until it reaches BPF_EXIT again. For program: 1: bpf_mov r1, xxx 2: if (r1 == 0) goto 5 3: bpf_mov r0, 1 4: goto 6 5: bpf_mov r0, 2 6: bpf_exit The verifier will walk insns: 1, 2, 3, 4, 6 then it will pop the state recorded at insn#2 and will continue: 5, 6 This way it walks all possible paths through the program and checks all possible values of registers. While doing so, it checks for: - invalid instructions - uninitialized register access - uninitialized stack access - misaligned stack access - out of range stack access - invalid calling convention - instruction encoding is not using reserved fields Kernel subsystem configures the verifier with two callbacks: - bool (*is_valid_access)(int off, int size, enum bpf_access_type type); that provides information to the verifer which fields of 'ctx' are accessible (remember 'ctx' is the first argument to eBPF program) - const struct bpf_func_proto *(*get_func_proto)(enum bpf_func_id func_id); returns argument constraints of kernel helper functions that eBPF program may call, so that verifier can checks that R1-R5 types match the prototype More details in Documentation/networking/filter.txt and in kernel/bpf/verifier.c Signed-off-by: Alexei Starovoitov <ast@plumgrid.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-09-26 00:17:06 -07:00
{
int i;
/* caller checked that off % size == 0 and -MAX_BPF_STACK <= off < 0,
* so it's aligned access and [off, off + size) are within stack limits
*/
bpf: verifier (add verifier core) This patch adds verifier core which simulates execution of every insn and records the state of registers and program stack. Every branch instruction seen during simulation is pushed into state stack. When verifier reaches BPF_EXIT, it pops the state from the stack and continues until it reaches BPF_EXIT again. For program: 1: bpf_mov r1, xxx 2: if (r1 == 0) goto 5 3: bpf_mov r0, 1 4: goto 6 5: bpf_mov r0, 2 6: bpf_exit The verifier will walk insns: 1, 2, 3, 4, 6 then it will pop the state recorded at insn#2 and will continue: 5, 6 This way it walks all possible paths through the program and checks all possible values of registers. While doing so, it checks for: - invalid instructions - uninitialized register access - uninitialized stack access - misaligned stack access - out of range stack access - invalid calling convention - instruction encoding is not using reserved fields Kernel subsystem configures the verifier with two callbacks: - bool (*is_valid_access)(int off, int size, enum bpf_access_type type); that provides information to the verifer which fields of 'ctx' are accessible (remember 'ctx' is the first argument to eBPF program) - const struct bpf_func_proto *(*get_func_proto)(enum bpf_func_id func_id); returns argument constraints of kernel helper functions that eBPF program may call, so that verifier can checks that R1-R5 types match the prototype More details in Documentation/networking/filter.txt and in kernel/bpf/verifier.c Signed-off-by: Alexei Starovoitov <ast@plumgrid.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-09-26 00:17:06 -07:00
if (value_regno >= 0 &&
bpf: enable non-root eBPF programs In order to let unprivileged users load and execute eBPF programs teach verifier to prevent pointer leaks. Verifier will prevent - any arithmetic on pointers (except R10+Imm which is used to compute stack addresses) - comparison of pointers (except if (map_value_ptr == 0) ... ) - passing pointers to helper functions - indirectly passing pointers in stack to helper functions - returning pointer from bpf program - storing pointers into ctx or maps Spill/fill of pointers into stack is allowed, but mangling of pointers stored in the stack or reading them byte by byte is not. Within bpf programs the pointers do exist, since programs need to be able to access maps, pass skb pointer to LD_ABS insns, etc but programs cannot pass such pointer values to the outside or obfuscate them. Only allow BPF_PROG_TYPE_SOCKET_FILTER unprivileged programs, so that socket filters (tcpdump), af_packet (quic acceleration) and future kcm can use it. tracing and tc cls/act program types still require root permissions, since tracing actually needs to be able to see all kernel pointers and tc is for root only. For example, the following unprivileged socket filter program is allowed: int bpf_prog1(struct __sk_buff *skb) { u32 index = load_byte(skb, ETH_HLEN + offsetof(struct iphdr, protocol)); u64 *value = bpf_map_lookup_elem(&my_map, &index); if (value) *value += skb->len; return 0; } but the following program is not: int bpf_prog1(struct __sk_buff *skb) { u32 index = load_byte(skb, ETH_HLEN + offsetof(struct iphdr, protocol)); u64 *value = bpf_map_lookup_elem(&my_map, &index); if (value) *value += (u64) skb; return 0; } since it would leak the kernel address into the map. Unprivileged socket filter bpf programs have access to the following helper functions: - map lookup/update/delete (but they cannot store kernel pointers into them) - get_random (it's already exposed to unprivileged user space) - get_smp_processor_id - tail_call into another socket filter program - ktime_get_ns The feature is controlled by sysctl kernel.unprivileged_bpf_disabled. This toggle defaults to off (0), but can be set true (1). Once true, bpf programs and maps cannot be accessed from unprivileged process, and the toggle cannot be set back to false. Signed-off-by: Alexei Starovoitov <ast@plumgrid.com> Reviewed-by: Kees Cook <keescook@chromium.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2015-10-07 22:23:21 -07:00
is_spillable_regtype(state->regs[value_regno].type)) {
bpf: verifier (add verifier core) This patch adds verifier core which simulates execution of every insn and records the state of registers and program stack. Every branch instruction seen during simulation is pushed into state stack. When verifier reaches BPF_EXIT, it pops the state from the stack and continues until it reaches BPF_EXIT again. For program: 1: bpf_mov r1, xxx 2: if (r1 == 0) goto 5 3: bpf_mov r0, 1 4: goto 6 5: bpf_mov r0, 2 6: bpf_exit The verifier will walk insns: 1, 2, 3, 4, 6 then it will pop the state recorded at insn#2 and will continue: 5, 6 This way it walks all possible paths through the program and checks all possible values of registers. While doing so, it checks for: - invalid instructions - uninitialized register access - uninitialized stack access - misaligned stack access - out of range stack access - invalid calling convention - instruction encoding is not using reserved fields Kernel subsystem configures the verifier with two callbacks: - bool (*is_valid_access)(int off, int size, enum bpf_access_type type); that provides information to the verifer which fields of 'ctx' are accessible (remember 'ctx' is the first argument to eBPF program) - const struct bpf_func_proto *(*get_func_proto)(enum bpf_func_id func_id); returns argument constraints of kernel helper functions that eBPF program may call, so that verifier can checks that R1-R5 types match the prototype More details in Documentation/networking/filter.txt and in kernel/bpf/verifier.c Signed-off-by: Alexei Starovoitov <ast@plumgrid.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-09-26 00:17:06 -07:00
/* register containing pointer is being spilled into stack */
if (size != BPF_REG_SIZE) {
bpf: verifier (add verifier core) This patch adds verifier core which simulates execution of every insn and records the state of registers and program stack. Every branch instruction seen during simulation is pushed into state stack. When verifier reaches BPF_EXIT, it pops the state from the stack and continues until it reaches BPF_EXIT again. For program: 1: bpf_mov r1, xxx 2: if (r1 == 0) goto 5 3: bpf_mov r0, 1 4: goto 6 5: bpf_mov r0, 2 6: bpf_exit The verifier will walk insns: 1, 2, 3, 4, 6 then it will pop the state recorded at insn#2 and will continue: 5, 6 This way it walks all possible paths through the program and checks all possible values of registers. While doing so, it checks for: - invalid instructions - uninitialized register access - uninitialized stack access - misaligned stack access - out of range stack access - invalid calling convention - instruction encoding is not using reserved fields Kernel subsystem configures the verifier with two callbacks: - bool (*is_valid_access)(int off, int size, enum bpf_access_type type); that provides information to the verifer which fields of 'ctx' are accessible (remember 'ctx' is the first argument to eBPF program) - const struct bpf_func_proto *(*get_func_proto)(enum bpf_func_id func_id); returns argument constraints of kernel helper functions that eBPF program may call, so that verifier can checks that R1-R5 types match the prototype More details in Documentation/networking/filter.txt and in kernel/bpf/verifier.c Signed-off-by: Alexei Starovoitov <ast@plumgrid.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-09-26 00:17:06 -07:00
verbose("invalid size of register spill\n");
return -EACCES;
}
/* save register state */
state->spilled_regs[(MAX_BPF_STACK + off) / BPF_REG_SIZE] =
state->regs[value_regno];
bpf: verifier (add verifier core) This patch adds verifier core which simulates execution of every insn and records the state of registers and program stack. Every branch instruction seen during simulation is pushed into state stack. When verifier reaches BPF_EXIT, it pops the state from the stack and continues until it reaches BPF_EXIT again. For program: 1: bpf_mov r1, xxx 2: if (r1 == 0) goto 5 3: bpf_mov r0, 1 4: goto 6 5: bpf_mov r0, 2 6: bpf_exit The verifier will walk insns: 1, 2, 3, 4, 6 then it will pop the state recorded at insn#2 and will continue: 5, 6 This way it walks all possible paths through the program and checks all possible values of registers. While doing so, it checks for: - invalid instructions - uninitialized register access - uninitialized stack access - misaligned stack access - out of range stack access - invalid calling convention - instruction encoding is not using reserved fields Kernel subsystem configures the verifier with two callbacks: - bool (*is_valid_access)(int off, int size, enum bpf_access_type type); that provides information to the verifer which fields of 'ctx' are accessible (remember 'ctx' is the first argument to eBPF program) - const struct bpf_func_proto *(*get_func_proto)(enum bpf_func_id func_id); returns argument constraints of kernel helper functions that eBPF program may call, so that verifier can checks that R1-R5 types match the prototype More details in Documentation/networking/filter.txt and in kernel/bpf/verifier.c Signed-off-by: Alexei Starovoitov <ast@plumgrid.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-09-26 00:17:06 -07:00
for (i = 0; i < BPF_REG_SIZE; i++)
state->stack_slot_type[MAX_BPF_STACK + off + i] = STACK_SPILL;
} else {
bpf: verifier (add verifier core) This patch adds verifier core which simulates execution of every insn and records the state of registers and program stack. Every branch instruction seen during simulation is pushed into state stack. When verifier reaches BPF_EXIT, it pops the state from the stack and continues until it reaches BPF_EXIT again. For program: 1: bpf_mov r1, xxx 2: if (r1 == 0) goto 5 3: bpf_mov r0, 1 4: goto 6 5: bpf_mov r0, 2 6: bpf_exit The verifier will walk insns: 1, 2, 3, 4, 6 then it will pop the state recorded at insn#2 and will continue: 5, 6 This way it walks all possible paths through the program and checks all possible values of registers. While doing so, it checks for: - invalid instructions - uninitialized register access - uninitialized stack access - misaligned stack access - out of range stack access - invalid calling convention - instruction encoding is not using reserved fields Kernel subsystem configures the verifier with two callbacks: - bool (*is_valid_access)(int off, int size, enum bpf_access_type type); that provides information to the verifer which fields of 'ctx' are accessible (remember 'ctx' is the first argument to eBPF program) - const struct bpf_func_proto *(*get_func_proto)(enum bpf_func_id func_id); returns argument constraints of kernel helper functions that eBPF program may call, so that verifier can checks that R1-R5 types match the prototype More details in Documentation/networking/filter.txt and in kernel/bpf/verifier.c Signed-off-by: Alexei Starovoitov <ast@plumgrid.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-09-26 00:17:06 -07:00
/* regular write of data into stack */
state->spilled_regs[(MAX_BPF_STACK + off) / BPF_REG_SIZE] =
(struct bpf_reg_state) {};
for (i = 0; i < size; i++)
state->stack_slot_type[MAX_BPF_STACK + off + i] = STACK_MISC;
bpf: verifier (add verifier core) This patch adds verifier core which simulates execution of every insn and records the state of registers and program stack. Every branch instruction seen during simulation is pushed into state stack. When verifier reaches BPF_EXIT, it pops the state from the stack and continues until it reaches BPF_EXIT again. For program: 1: bpf_mov r1, xxx 2: if (r1 == 0) goto 5 3: bpf_mov r0, 1 4: goto 6 5: bpf_mov r0, 2 6: bpf_exit The verifier will walk insns: 1, 2, 3, 4, 6 then it will pop the state recorded at insn#2 and will continue: 5, 6 This way it walks all possible paths through the program and checks all possible values of registers. While doing so, it checks for: - invalid instructions - uninitialized register access - uninitialized stack access - misaligned stack access - out of range stack access - invalid calling convention - instruction encoding is not using reserved fields Kernel subsystem configures the verifier with two callbacks: - bool (*is_valid_access)(int off, int size, enum bpf_access_type type); that provides information to the verifer which fields of 'ctx' are accessible (remember 'ctx' is the first argument to eBPF program) - const struct bpf_func_proto *(*get_func_proto)(enum bpf_func_id func_id); returns argument constraints of kernel helper functions that eBPF program may call, so that verifier can checks that R1-R5 types match the prototype More details in Documentation/networking/filter.txt and in kernel/bpf/verifier.c Signed-off-by: Alexei Starovoitov <ast@plumgrid.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-09-26 00:17:06 -07:00
}
return 0;
}
static int check_stack_read(struct bpf_verifier_state *state, int off, int size,
bpf: verifier (add verifier core) This patch adds verifier core which simulates execution of every insn and records the state of registers and program stack. Every branch instruction seen during simulation is pushed into state stack. When verifier reaches BPF_EXIT, it pops the state from the stack and continues until it reaches BPF_EXIT again. For program: 1: bpf_mov r1, xxx 2: if (r1 == 0) goto 5 3: bpf_mov r0, 1 4: goto 6 5: bpf_mov r0, 2 6: bpf_exit The verifier will walk insns: 1, 2, 3, 4, 6 then it will pop the state recorded at insn#2 and will continue: 5, 6 This way it walks all possible paths through the program and checks all possible values of registers. While doing so, it checks for: - invalid instructions - uninitialized register access - uninitialized stack access - misaligned stack access - out of range stack access - invalid calling convention - instruction encoding is not using reserved fields Kernel subsystem configures the verifier with two callbacks: - bool (*is_valid_access)(int off, int size, enum bpf_access_type type); that provides information to the verifer which fields of 'ctx' are accessible (remember 'ctx' is the first argument to eBPF program) - const struct bpf_func_proto *(*get_func_proto)(enum bpf_func_id func_id); returns argument constraints of kernel helper functions that eBPF program may call, so that verifier can checks that R1-R5 types match the prototype More details in Documentation/networking/filter.txt and in kernel/bpf/verifier.c Signed-off-by: Alexei Starovoitov <ast@plumgrid.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-09-26 00:17:06 -07:00
int value_regno)
{
u8 *slot_type;
bpf: verifier (add verifier core) This patch adds verifier core which simulates execution of every insn and records the state of registers and program stack. Every branch instruction seen during simulation is pushed into state stack. When verifier reaches BPF_EXIT, it pops the state from the stack and continues until it reaches BPF_EXIT again. For program: 1: bpf_mov r1, xxx 2: if (r1 == 0) goto 5 3: bpf_mov r0, 1 4: goto 6 5: bpf_mov r0, 2 6: bpf_exit The verifier will walk insns: 1, 2, 3, 4, 6 then it will pop the state recorded at insn#2 and will continue: 5, 6 This way it walks all possible paths through the program and checks all possible values of registers. While doing so, it checks for: - invalid instructions - uninitialized register access - uninitialized stack access - misaligned stack access - out of range stack access - invalid calling convention - instruction encoding is not using reserved fields Kernel subsystem configures the verifier with two callbacks: - bool (*is_valid_access)(int off, int size, enum bpf_access_type type); that provides information to the verifer which fields of 'ctx' are accessible (remember 'ctx' is the first argument to eBPF program) - const struct bpf_func_proto *(*get_func_proto)(enum bpf_func_id func_id); returns argument constraints of kernel helper functions that eBPF program may call, so that verifier can checks that R1-R5 types match the prototype More details in Documentation/networking/filter.txt and in kernel/bpf/verifier.c Signed-off-by: Alexei Starovoitov <ast@plumgrid.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-09-26 00:17:06 -07:00
int i;
slot_type = &state->stack_slot_type[MAX_BPF_STACK + off];
bpf: verifier (add verifier core) This patch adds verifier core which simulates execution of every insn and records the state of registers and program stack. Every branch instruction seen during simulation is pushed into state stack. When verifier reaches BPF_EXIT, it pops the state from the stack and continues until it reaches BPF_EXIT again. For program: 1: bpf_mov r1, xxx 2: if (r1 == 0) goto 5 3: bpf_mov r0, 1 4: goto 6 5: bpf_mov r0, 2 6: bpf_exit The verifier will walk insns: 1, 2, 3, 4, 6 then it will pop the state recorded at insn#2 and will continue: 5, 6 This way it walks all possible paths through the program and checks all possible values of registers. While doing so, it checks for: - invalid instructions - uninitialized register access - uninitialized stack access - misaligned stack access - out of range stack access - invalid calling convention - instruction encoding is not using reserved fields Kernel subsystem configures the verifier with two callbacks: - bool (*is_valid_access)(int off, int size, enum bpf_access_type type); that provides information to the verifer which fields of 'ctx' are accessible (remember 'ctx' is the first argument to eBPF program) - const struct bpf_func_proto *(*get_func_proto)(enum bpf_func_id func_id); returns argument constraints of kernel helper functions that eBPF program may call, so that verifier can checks that R1-R5 types match the prototype More details in Documentation/networking/filter.txt and in kernel/bpf/verifier.c Signed-off-by: Alexei Starovoitov <ast@plumgrid.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-09-26 00:17:06 -07:00
if (slot_type[0] == STACK_SPILL) {
if (size != BPF_REG_SIZE) {
bpf: verifier (add verifier core) This patch adds verifier core which simulates execution of every insn and records the state of registers and program stack. Every branch instruction seen during simulation is pushed into state stack. When verifier reaches BPF_EXIT, it pops the state from the stack and continues until it reaches BPF_EXIT again. For program: 1: bpf_mov r1, xxx 2: if (r1 == 0) goto 5 3: bpf_mov r0, 1 4: goto 6 5: bpf_mov r0, 2 6: bpf_exit The verifier will walk insns: 1, 2, 3, 4, 6 then it will pop the state recorded at insn#2 and will continue: 5, 6 This way it walks all possible paths through the program and checks all possible values of registers. While doing so, it checks for: - invalid instructions - uninitialized register access - uninitialized stack access - misaligned stack access - out of range stack access - invalid calling convention - instruction encoding is not using reserved fields Kernel subsystem configures the verifier with two callbacks: - bool (*is_valid_access)(int off, int size, enum bpf_access_type type); that provides information to the verifer which fields of 'ctx' are accessible (remember 'ctx' is the first argument to eBPF program) - const struct bpf_func_proto *(*get_func_proto)(enum bpf_func_id func_id); returns argument constraints of kernel helper functions that eBPF program may call, so that verifier can checks that R1-R5 types match the prototype More details in Documentation/networking/filter.txt and in kernel/bpf/verifier.c Signed-off-by: Alexei Starovoitov <ast@plumgrid.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-09-26 00:17:06 -07:00
verbose("invalid size of register spill\n");
return -EACCES;
}
for (i = 1; i < BPF_REG_SIZE; i++) {
if (slot_type[i] != STACK_SPILL) {
bpf: verifier (add verifier core) This patch adds verifier core which simulates execution of every insn and records the state of registers and program stack. Every branch instruction seen during simulation is pushed into state stack. When verifier reaches BPF_EXIT, it pops the state from the stack and continues until it reaches BPF_EXIT again. For program: 1: bpf_mov r1, xxx 2: if (r1 == 0) goto 5 3: bpf_mov r0, 1 4: goto 6 5: bpf_mov r0, 2 6: bpf_exit The verifier will walk insns: 1, 2, 3, 4, 6 then it will pop the state recorded at insn#2 and will continue: 5, 6 This way it walks all possible paths through the program and checks all possible values of registers. While doing so, it checks for: - invalid instructions - uninitialized register access - uninitialized stack access - misaligned stack access - out of range stack access - invalid calling convention - instruction encoding is not using reserved fields Kernel subsystem configures the verifier with two callbacks: - bool (*is_valid_access)(int off, int size, enum bpf_access_type type); that provides information to the verifer which fields of 'ctx' are accessible (remember 'ctx' is the first argument to eBPF program) - const struct bpf_func_proto *(*get_func_proto)(enum bpf_func_id func_id); returns argument constraints of kernel helper functions that eBPF program may call, so that verifier can checks that R1-R5 types match the prototype More details in Documentation/networking/filter.txt and in kernel/bpf/verifier.c Signed-off-by: Alexei Starovoitov <ast@plumgrid.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-09-26 00:17:06 -07:00
verbose("corrupted spill memory\n");
return -EACCES;
}
}
if (value_regno >= 0)
/* restore register state from stack */
state->regs[value_regno] =
state->spilled_regs[(MAX_BPF_STACK + off) / BPF_REG_SIZE];
bpf: verifier (add verifier core) This patch adds verifier core which simulates execution of every insn and records the state of registers and program stack. Every branch instruction seen during simulation is pushed into state stack. When verifier reaches BPF_EXIT, it pops the state from the stack and continues until it reaches BPF_EXIT again. For program: 1: bpf_mov r1, xxx 2: if (r1 == 0) goto 5 3: bpf_mov r0, 1 4: goto 6 5: bpf_mov r0, 2 6: bpf_exit The verifier will walk insns: 1, 2, 3, 4, 6 then it will pop the state recorded at insn#2 and will continue: 5, 6 This way it walks all possible paths through the program and checks all possible values of registers. While doing so, it checks for: - invalid instructions - uninitialized register access - uninitialized stack access - misaligned stack access - out of range stack access - invalid calling convention - instruction encoding is not using reserved fields Kernel subsystem configures the verifier with two callbacks: - bool (*is_valid_access)(int off, int size, enum bpf_access_type type); that provides information to the verifer which fields of 'ctx' are accessible (remember 'ctx' is the first argument to eBPF program) - const struct bpf_func_proto *(*get_func_proto)(enum bpf_func_id func_id); returns argument constraints of kernel helper functions that eBPF program may call, so that verifier can checks that R1-R5 types match the prototype More details in Documentation/networking/filter.txt and in kernel/bpf/verifier.c Signed-off-by: Alexei Starovoitov <ast@plumgrid.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-09-26 00:17:06 -07:00
return 0;
} else {
for (i = 0; i < size; i++) {
if (slot_type[i] != STACK_MISC) {
bpf: verifier (add verifier core) This patch adds verifier core which simulates execution of every insn and records the state of registers and program stack. Every branch instruction seen during simulation is pushed into state stack. When verifier reaches BPF_EXIT, it pops the state from the stack and continues until it reaches BPF_EXIT again. For program: 1: bpf_mov r1, xxx 2: if (r1 == 0) goto 5 3: bpf_mov r0, 1 4: goto 6 5: bpf_mov r0, 2 6: bpf_exit The verifier will walk insns: 1, 2, 3, 4, 6 then it will pop the state recorded at insn#2 and will continue: 5, 6 This way it walks all possible paths through the program and checks all possible values of registers. While doing so, it checks for: - invalid instructions - uninitialized register access - uninitialized stack access - misaligned stack access - out of range stack access - invalid calling convention - instruction encoding is not using reserved fields Kernel subsystem configures the verifier with two callbacks: - bool (*is_valid_access)(int off, int size, enum bpf_access_type type); that provides information to the verifer which fields of 'ctx' are accessible (remember 'ctx' is the first argument to eBPF program) - const struct bpf_func_proto *(*get_func_proto)(enum bpf_func_id func_id); returns argument constraints of kernel helper functions that eBPF program may call, so that verifier can checks that R1-R5 types match the prototype More details in Documentation/networking/filter.txt and in kernel/bpf/verifier.c Signed-off-by: Alexei Starovoitov <ast@plumgrid.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-09-26 00:17:06 -07:00
verbose("invalid read from stack off %d+%d size %d\n",
off, i, size);
return -EACCES;
}
}
if (value_regno >= 0)
/* have read misc data from the stack */
mark_reg_unknown_value_and_range(state->regs,
value_regno);
bpf: verifier (add verifier core) This patch adds verifier core which simulates execution of every insn and records the state of registers and program stack. Every branch instruction seen during simulation is pushed into state stack. When verifier reaches BPF_EXIT, it pops the state from the stack and continues until it reaches BPF_EXIT again. For program: 1: bpf_mov r1, xxx 2: if (r1 == 0) goto 5 3: bpf_mov r0, 1 4: goto 6 5: bpf_mov r0, 2 6: bpf_exit The verifier will walk insns: 1, 2, 3, 4, 6 then it will pop the state recorded at insn#2 and will continue: 5, 6 This way it walks all possible paths through the program and checks all possible values of registers. While doing so, it checks for: - invalid instructions - uninitialized register access - uninitialized stack access - misaligned stack access - out of range stack access - invalid calling convention - instruction encoding is not using reserved fields Kernel subsystem configures the verifier with two callbacks: - bool (*is_valid_access)(int off, int size, enum bpf_access_type type); that provides information to the verifer which fields of 'ctx' are accessible (remember 'ctx' is the first argument to eBPF program) - const struct bpf_func_proto *(*get_func_proto)(enum bpf_func_id func_id); returns argument constraints of kernel helper functions that eBPF program may call, so that verifier can checks that R1-R5 types match the prototype More details in Documentation/networking/filter.txt and in kernel/bpf/verifier.c Signed-off-by: Alexei Starovoitov <ast@plumgrid.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-09-26 00:17:06 -07:00
return 0;
}
}
/* check read/write into map element returned by bpf_map_lookup_elem() */
static int check_map_access(struct bpf_verifier_env *env, u32 regno, int off,
bpf: verifier (add verifier core) This patch adds verifier core which simulates execution of every insn and records the state of registers and program stack. Every branch instruction seen during simulation is pushed into state stack. When verifier reaches BPF_EXIT, it pops the state from the stack and continues until it reaches BPF_EXIT again. For program: 1: bpf_mov r1, xxx 2: if (r1 == 0) goto 5 3: bpf_mov r0, 1 4: goto 6 5: bpf_mov r0, 2 6: bpf_exit The verifier will walk insns: 1, 2, 3, 4, 6 then it will pop the state recorded at insn#2 and will continue: 5, 6 This way it walks all possible paths through the program and checks all possible values of registers. While doing so, it checks for: - invalid instructions - uninitialized register access - uninitialized stack access - misaligned stack access - out of range stack access - invalid calling convention - instruction encoding is not using reserved fields Kernel subsystem configures the verifier with two callbacks: - bool (*is_valid_access)(int off, int size, enum bpf_access_type type); that provides information to the verifer which fields of 'ctx' are accessible (remember 'ctx' is the first argument to eBPF program) - const struct bpf_func_proto *(*get_func_proto)(enum bpf_func_id func_id); returns argument constraints of kernel helper functions that eBPF program may call, so that verifier can checks that R1-R5 types match the prototype More details in Documentation/networking/filter.txt and in kernel/bpf/verifier.c Signed-off-by: Alexei Starovoitov <ast@plumgrid.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-09-26 00:17:06 -07:00
int size)
{
struct bpf_map *map = env->cur_state.regs[regno].map_ptr;
bpf: allow helpers access to map element values Enable helpers to directly access a map element value by passing a register type PTR_TO_MAP_VALUE (or PTR_TO_MAP_VALUE_ADJ) to helper arguments ARG_PTR_TO_STACK or ARG_PTR_TO_RAW_STACK. This enables several use cases. For example, a typical tracing program might want to capture pathnames passed to sys_open() with: struct trace_data { char pathname[PATHLEN]; }; SEC("kprobe/sys_open") void bpf_sys_open(struct pt_regs *ctx) { struct trace_data data; bpf_probe_read(data.pathname, sizeof(data.pathname), ctx->di); /* consume data.pathname, for example via * bpf_trace_printk() or bpf_perf_event_output() */ } Such a program could easily hit the stack limit in case PATHLEN needs to be large or more local variables need to exist, both of which are quite common scenarios. Allowing direct helper access to map element values, one could do: struct bpf_map_def SEC("maps") scratch_map = { .type = BPF_MAP_TYPE_PERCPU_ARRAY, .key_size = sizeof(u32), .value_size = sizeof(struct trace_data), .max_entries = 1, }; SEC("kprobe/sys_open") int bpf_sys_open(struct pt_regs *ctx) { int id = 0; struct trace_data *p = bpf_map_lookup_elem(&scratch_map, &id); if (!p) return; bpf_probe_read(p->pathname, sizeof(p->pathname), ctx->di); /* consume p->pathname, for example via * bpf_trace_printk() or bpf_perf_event_output() */ } And wouldn't risk exhausting the stack. Code changes are loosely modeled after commit 6841de8b0d03 ("bpf: allow helpers access the packet directly"). Unlike with PTR_TO_PACKET, these changes just work with ARG_PTR_TO_STACK and ARG_PTR_TO_RAW_STACK (not ARG_PTR_TO_MAP_KEY, ARG_PTR_TO_MAP_VALUE, ...): adding those would be trivial, but since there is not currently a use case for that, it's reasonable to limit the set of changes. Also, add new tests to make sure accesses to map element values from helpers never go out of boundary, even when adjusted. Signed-off-by: Gianluca Borello <g.borello@gmail.com> Acked-by: Daniel Borkmann <daniel@iogearbox.net> Signed-off-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-01-09 10:19:47 -08:00
if (off < 0 || size <= 0 || off + size > map->value_size) {
bpf: verifier (add verifier core) This patch adds verifier core which simulates execution of every insn and records the state of registers and program stack. Every branch instruction seen during simulation is pushed into state stack. When verifier reaches BPF_EXIT, it pops the state from the stack and continues until it reaches BPF_EXIT again. For program: 1: bpf_mov r1, xxx 2: if (r1 == 0) goto 5 3: bpf_mov r0, 1 4: goto 6 5: bpf_mov r0, 2 6: bpf_exit The verifier will walk insns: 1, 2, 3, 4, 6 then it will pop the state recorded at insn#2 and will continue: 5, 6 This way it walks all possible paths through the program and checks all possible values of registers. While doing so, it checks for: - invalid instructions - uninitialized register access - uninitialized stack access - misaligned stack access - out of range stack access - invalid calling convention - instruction encoding is not using reserved fields Kernel subsystem configures the verifier with two callbacks: - bool (*is_valid_access)(int off, int size, enum bpf_access_type type); that provides information to the verifer which fields of 'ctx' are accessible (remember 'ctx' is the first argument to eBPF program) - const struct bpf_func_proto *(*get_func_proto)(enum bpf_func_id func_id); returns argument constraints of kernel helper functions that eBPF program may call, so that verifier can checks that R1-R5 types match the prototype More details in Documentation/networking/filter.txt and in kernel/bpf/verifier.c Signed-off-by: Alexei Starovoitov <ast@plumgrid.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-09-26 00:17:06 -07:00
verbose("invalid access to map value, value_size=%d off=%d size=%d\n",
map->value_size, off, size);
return -EACCES;
}
return 0;
}
/* check read/write into an adjusted map element */
static int check_map_access_adj(struct bpf_verifier_env *env, u32 regno,
int off, int size)
{
struct bpf_verifier_state *state = &env->cur_state;
struct bpf_reg_state *reg = &state->regs[regno];
int err;
/* We adjusted the register to this map value, so we
* need to change off and size to min_value and max_value
* respectively to make sure our theoretical access will be
* safe.
*/
if (log_level)
print_verifier_state(state);
env->varlen_map_value_access = true;
/* The minimum value is only important with signed
* comparisons where we can't assume the floor of a
* value is 0. If we are using signed variables for our
* index'es we need to make sure that whatever we use
* will have a set floor within our range.
*/
if (reg->min_value < 0) {
verbose("R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
regno);
return -EACCES;
}
err = check_map_access(env, regno, reg->min_value + off, size);
if (err) {
verbose("R%d min value is outside of the array range\n",
regno);
return err;
}
/* If we haven't set a max value then we need to bail
* since we can't be sure we won't do bad things.
*/
if (reg->max_value == BPF_REGISTER_MAX_RANGE) {
verbose("R%d unbounded memory access, make sure to bounds check any array access into a map\n",
regno);
return -EACCES;
}
return check_map_access(env, regno, reg->max_value + off, size);
}
bpf: direct packet access Extended BPF carried over two instructions from classic to access packet data: LD_ABS and LD_IND. They're highly optimized in JITs, but due to their design they have to do length check for every access. When BPF is processing 20M packets per second single LD_ABS after JIT is consuming 3% cpu. Hence the need to optimize it further by amortizing the cost of 'off < skb_headlen' over multiple packet accesses. One option is to introduce two new eBPF instructions LD_ABS_DW and LD_IND_DW with similar usage as skb_header_pointer(). The kernel part for interpreter and x64 JIT was implemented in [1], but such new insns behave like old ld_abs and abort the program with 'return 0' if access is beyond linear data. Such hidden control flow is hard to workaround plus changing JITs and rolling out new llvm is incovenient. Therefore allow cls_bpf/act_bpf program access skb->data directly: int bpf_prog(struct __sk_buff *skb) { struct iphdr *ip; if (skb->data + sizeof(struct iphdr) + ETH_HLEN > skb->data_end) /* packet too small */ return 0; ip = skb->data + ETH_HLEN; /* access IP header fields with direct loads */ if (ip->version != 4 || ip->saddr == 0x7f000001) return 1; [...] } This solution avoids introduction of new instructions. llvm stays the same and all JITs stay the same, but verifier has to work extra hard to prove safety of the above program. For XDP the direct store instructions can be allowed as well. The skb->data is NET_IP_ALIGNED, so for common cases the verifier can check the alignment. The complex packet parsers where packet pointer is adjusted incrementally cannot be tracked for alignment, so allow byte access in such cases and misaligned access on architectures that define efficient_unaligned_access [1] https://git.kernel.org/cgit/linux/kernel/git/ast/bpf.git/?h=ld_abs_dw Signed-off-by: Alexei Starovoitov <ast@kernel.org> Acked-by: Daniel Borkmann <daniel@iogearbox.net> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-05-05 19:49:10 -07:00
#define MAX_PACKET_OFF 0xffff
static bool may_access_direct_pkt_data(struct bpf_verifier_env *env,
const struct bpf_call_arg_meta *meta,
enum bpf_access_type t)
{
bpf: direct packet write and access for helpers for clsact progs This work implements direct packet access for helpers and direct packet write in a similar fashion as already available for XDP types via commits 4acf6c0b84c9 ("bpf: enable direct packet data write for xdp progs") and 6841de8b0d03 ("bpf: allow helpers access the packet directly"), and as a complementary feature to the already available direct packet read for tc (cls/act) programs. For enabling this, we need to introduce two helpers, bpf_skb_pull_data() and bpf_csum_update(). The first is generally needed for both, read and write, because they would otherwise only be limited to the current linear skb head. Usually, when the data_end test fails, programs just bail out, or, in the direct read case, use bpf_skb_load_bytes() as an alternative to overcome this limitation. If such data sits in non-linear parts, we can just pull them in once with the new helper, retest and eventually access them. At the same time, this also makes sure the skb is uncloned, which is, of course, a necessary condition for direct write. As this needs to be an invariant for the write part only, the verifier detects writes and adds a prologue that is calling bpf_skb_pull_data() to effectively unclone the skb from the very beginning in case it is indeed cloned. The heuristic makes use of a similar trick that was done in 233577a22089 ("net: filter: constify detection of pkt_type_offset"). This comes at zero cost for other programs that do not use the direct write feature. Should a program use this feature only sparsely and has read access for the most parts with, for example, drop return codes, then such write action can be delegated to a tail called program for mitigating this cost of potential uncloning to a late point in time where it would have been paid similarly with the bpf_skb_store_bytes() as well. Advantage of direct write is that the writes are inlined whereas the helper cannot make any length assumptions and thus needs to generate a call to memcpy() also for small sizes, as well as cost of helper call itself with sanity checks are avoided. Plus, when direct read is already used, we don't need to cache or perform rechecks on the data boundaries (due to verifier invalidating previous checks for helpers that change skb->data), so more complex programs using rewrites can benefit from switching to direct read plus write. For direct packet access to helpers, we save the otherwise needed copy into a temp struct sitting on stack memory when use-case allows. Both facilities are enabled via may_access_direct_pkt_data() in verifier. For now, we limit this to map helpers and csum_diff, and can successively enable other helpers where we find it makes sense. Helpers that definitely cannot be allowed for this are those part of bpf_helper_changes_skb_data() since they can change underlying data, and those that write into memory as this could happen for packet typed args when still cloned. bpf_csum_update() helper accommodates for the fact that we need to fixup checksum_complete when using direct write instead of bpf_skb_store_bytes(), meaning the programs can use available helpers like bpf_csum_diff(), and implement csum_add(), csum_sub(), csum_block_add(), csum_block_sub() equivalents in eBPF together with the new helper. A usage example will be provided for iproute2's examples/bpf/ directory. Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-09-20 00:26:13 +02:00
switch (env->prog->type) {
case BPF_PROG_TYPE_LWT_IN:
case BPF_PROG_TYPE_LWT_OUT:
/* dst_input() and dst_output() can't write for now */
if (t == BPF_WRITE)
return false;
bpf: reduce compiler warnings by adding fallthrough comments Fixes the following warnings: kernel/bpf/verifier.c: In function ‘may_access_direct_pkt_data’: kernel/bpf/verifier.c:702:6: warning: this statement may fall through [-Wimplicit-fallthrough=] if (t == BPF_WRITE) ^ kernel/bpf/verifier.c:704:2: note: here case BPF_PROG_TYPE_SCHED_CLS: ^~~~ kernel/bpf/verifier.c: In function ‘reg_set_min_max_inv’: kernel/bpf/verifier.c:2057:23: warning: this statement may fall through [-Wimplicit-fallthrough=] true_reg->min_value = 0; ~~~~~~~~~~~~~~~~~~~~^~~ kernel/bpf/verifier.c:2058:2: note: here case BPF_JSGT: ^~~~ kernel/bpf/verifier.c:2068:23: warning: this statement may fall through [-Wimplicit-fallthrough=] true_reg->min_value = 0; ~~~~~~~~~~~~~~~~~~~~^~~ kernel/bpf/verifier.c:2069:2: note: here case BPF_JSGE: ^~~~ kernel/bpf/verifier.c: In function ‘reg_set_min_max’: kernel/bpf/verifier.c:2009:24: warning: this statement may fall through [-Wimplicit-fallthrough=] false_reg->min_value = 0; ~~~~~~~~~~~~~~~~~~~~~^~~ kernel/bpf/verifier.c:2010:2: note: here case BPF_JSGT: ^~~~ kernel/bpf/verifier.c:2019:24: warning: this statement may fall through [-Wimplicit-fallthrough=] false_reg->min_value = 0; ~~~~~~~~~~~~~~~~~~~~~^~~ kernel/bpf/verifier.c:2020:2: note: here case BPF_JSGE: ^~~~ Reported-by: David Binderman <dcb314@hotmail.com> Signed-off-by: Alexander Alemayhu <alexander@alemayhu.com> Acked-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-02-14 00:02:35 +01:00
/* fallthrough */
bpf: direct packet write and access for helpers for clsact progs This work implements direct packet access for helpers and direct packet write in a similar fashion as already available for XDP types via commits 4acf6c0b84c9 ("bpf: enable direct packet data write for xdp progs") and 6841de8b0d03 ("bpf: allow helpers access the packet directly"), and as a complementary feature to the already available direct packet read for tc (cls/act) programs. For enabling this, we need to introduce two helpers, bpf_skb_pull_data() and bpf_csum_update(). The first is generally needed for both, read and write, because they would otherwise only be limited to the current linear skb head. Usually, when the data_end test fails, programs just bail out, or, in the direct read case, use bpf_skb_load_bytes() as an alternative to overcome this limitation. If such data sits in non-linear parts, we can just pull them in once with the new helper, retest and eventually access them. At the same time, this also makes sure the skb is uncloned, which is, of course, a necessary condition for direct write. As this needs to be an invariant for the write part only, the verifier detects writes and adds a prologue that is calling bpf_skb_pull_data() to effectively unclone the skb from the very beginning in case it is indeed cloned. The heuristic makes use of a similar trick that was done in 233577a22089 ("net: filter: constify detection of pkt_type_offset"). This comes at zero cost for other programs that do not use the direct write feature. Should a program use this feature only sparsely and has read access for the most parts with, for example, drop return codes, then such write action can be delegated to a tail called program for mitigating this cost of potential uncloning to a late point in time where it would have been paid similarly with the bpf_skb_store_bytes() as well. Advantage of direct write is that the writes are inlined whereas the helper cannot make any length assumptions and thus needs to generate a call to memcpy() also for small sizes, as well as cost of helper call itself with sanity checks are avoided. Plus, when direct read is already used, we don't need to cache or perform rechecks on the data boundaries (due to verifier invalidating previous checks for helpers that change skb->data), so more complex programs using rewrites can benefit from switching to direct read plus write. For direct packet access to helpers, we save the otherwise needed copy into a temp struct sitting on stack memory when use-case allows. Both facilities are enabled via may_access_direct_pkt_data() in verifier. For now, we limit this to map helpers and csum_diff, and can successively enable other helpers where we find it makes sense. Helpers that definitely cannot be allowed for this are those part of bpf_helper_changes_skb_data() since they can change underlying data, and those that write into memory as this could happen for packet typed args when still cloned. bpf_csum_update() helper accommodates for the fact that we need to fixup checksum_complete when using direct write instead of bpf_skb_store_bytes(), meaning the programs can use available helpers like bpf_csum_diff(), and implement csum_add(), csum_sub(), csum_block_add(), csum_block_sub() equivalents in eBPF together with the new helper. A usage example will be provided for iproute2's examples/bpf/ directory. Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-09-20 00:26:13 +02:00
case BPF_PROG_TYPE_SCHED_CLS:
case BPF_PROG_TYPE_SCHED_ACT:
case BPF_PROG_TYPE_XDP:
case BPF_PROG_TYPE_LWT_XMIT:
bpf: direct packet write and access for helpers for clsact progs This work implements direct packet access for helpers and direct packet write in a similar fashion as already available for XDP types via commits 4acf6c0b84c9 ("bpf: enable direct packet data write for xdp progs") and 6841de8b0d03 ("bpf: allow helpers access the packet directly"), and as a complementary feature to the already available direct packet read for tc (cls/act) programs. For enabling this, we need to introduce two helpers, bpf_skb_pull_data() and bpf_csum_update(). The first is generally needed for both, read and write, because they would otherwise only be limited to the current linear skb head. Usually, when the data_end test fails, programs just bail out, or, in the direct read case, use bpf_skb_load_bytes() as an alternative to overcome this limitation. If such data sits in non-linear parts, we can just pull them in once with the new helper, retest and eventually access them. At the same time, this also makes sure the skb is uncloned, which is, of course, a necessary condition for direct write. As this needs to be an invariant for the write part only, the verifier detects writes and adds a prologue that is calling bpf_skb_pull_data() to effectively unclone the skb from the very beginning in case it is indeed cloned. The heuristic makes use of a similar trick that was done in 233577a22089 ("net: filter: constify detection of pkt_type_offset"). This comes at zero cost for other programs that do not use the direct write feature. Should a program use this feature only sparsely and has read access for the most parts with, for example, drop return codes, then such write action can be delegated to a tail called program for mitigating this cost of potential uncloning to a late point in time where it would have been paid similarly with the bpf_skb_store_bytes() as well. Advantage of direct write is that the writes are inlined whereas the helper cannot make any length assumptions and thus needs to generate a call to memcpy() also for small sizes, as well as cost of helper call itself with sanity checks are avoided. Plus, when direct read is already used, we don't need to cache or perform rechecks on the data boundaries (due to verifier invalidating previous checks for helpers that change skb->data), so more complex programs using rewrites can benefit from switching to direct read plus write. For direct packet access to helpers, we save the otherwise needed copy into a temp struct sitting on stack memory when use-case allows. Both facilities are enabled via may_access_direct_pkt_data() in verifier. For now, we limit this to map helpers and csum_diff, and can successively enable other helpers where we find it makes sense. Helpers that definitely cannot be allowed for this are those part of bpf_helper_changes_skb_data() since they can change underlying data, and those that write into memory as this could happen for packet typed args when still cloned. bpf_csum_update() helper accommodates for the fact that we need to fixup checksum_complete when using direct write instead of bpf_skb_store_bytes(), meaning the programs can use available helpers like bpf_csum_diff(), and implement csum_add(), csum_sub(), csum_block_add(), csum_block_sub() equivalents in eBPF together with the new helper. A usage example will be provided for iproute2's examples/bpf/ directory. Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-09-20 00:26:13 +02:00
if (meta)
return meta->pkt_access;
env->seen_direct_write = true;
return true;
default:
return false;
}
}
static int check_packet_access(struct bpf_verifier_env *env, u32 regno, int off,
bpf: direct packet access Extended BPF carried over two instructions from classic to access packet data: LD_ABS and LD_IND. They're highly optimized in JITs, but due to their design they have to do length check for every access. When BPF is processing 20M packets per second single LD_ABS after JIT is consuming 3% cpu. Hence the need to optimize it further by amortizing the cost of 'off < skb_headlen' over multiple packet accesses. One option is to introduce two new eBPF instructions LD_ABS_DW and LD_IND_DW with similar usage as skb_header_pointer(). The kernel part for interpreter and x64 JIT was implemented in [1], but such new insns behave like old ld_abs and abort the program with 'return 0' if access is beyond linear data. Such hidden control flow is hard to workaround plus changing JITs and rolling out new llvm is incovenient. Therefore allow cls_bpf/act_bpf program access skb->data directly: int bpf_prog(struct __sk_buff *skb) { struct iphdr *ip; if (skb->data + sizeof(struct iphdr) + ETH_HLEN > skb->data_end) /* packet too small */ return 0; ip = skb->data + ETH_HLEN; /* access IP header fields with direct loads */ if (ip->version != 4 || ip->saddr == 0x7f000001) return 1; [...] } This solution avoids introduction of new instructions. llvm stays the same and all JITs stay the same, but verifier has to work extra hard to prove safety of the above program. For XDP the direct store instructions can be allowed as well. The skb->data is NET_IP_ALIGNED, so for common cases the verifier can check the alignment. The complex packet parsers where packet pointer is adjusted incrementally cannot be tracked for alignment, so allow byte access in such cases and misaligned access on architectures that define efficient_unaligned_access [1] https://git.kernel.org/cgit/linux/kernel/git/ast/bpf.git/?h=ld_abs_dw Signed-off-by: Alexei Starovoitov <ast@kernel.org> Acked-by: Daniel Borkmann <daniel@iogearbox.net> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-05-05 19:49:10 -07:00
int size)
{
struct bpf_reg_state *regs = env->cur_state.regs;
struct bpf_reg_state *reg = &regs[regno];
bpf: direct packet access Extended BPF carried over two instructions from classic to access packet data: LD_ABS and LD_IND. They're highly optimized in JITs, but due to their design they have to do length check for every access. When BPF is processing 20M packets per second single LD_ABS after JIT is consuming 3% cpu. Hence the need to optimize it further by amortizing the cost of 'off < skb_headlen' over multiple packet accesses. One option is to introduce two new eBPF instructions LD_ABS_DW and LD_IND_DW with similar usage as skb_header_pointer(). The kernel part for interpreter and x64 JIT was implemented in [1], but such new insns behave like old ld_abs and abort the program with 'return 0' if access is beyond linear data. Such hidden control flow is hard to workaround plus changing JITs and rolling out new llvm is incovenient. Therefore allow cls_bpf/act_bpf program access skb->data directly: int bpf_prog(struct __sk_buff *skb) { struct iphdr *ip; if (skb->data + sizeof(struct iphdr) + ETH_HLEN > skb->data_end) /* packet too small */ return 0; ip = skb->data + ETH_HLEN; /* access IP header fields with direct loads */ if (ip->version != 4 || ip->saddr == 0x7f000001) return 1; [...] } This solution avoids introduction of new instructions. llvm stays the same and all JITs stay the same, but verifier has to work extra hard to prove safety of the above program. For XDP the direct store instructions can be allowed as well. The skb->data is NET_IP_ALIGNED, so for common cases the verifier can check the alignment. The complex packet parsers where packet pointer is adjusted incrementally cannot be tracked for alignment, so allow byte access in such cases and misaligned access on architectures that define efficient_unaligned_access [1] https://git.kernel.org/cgit/linux/kernel/git/ast/bpf.git/?h=ld_abs_dw Signed-off-by: Alexei Starovoitov <ast@kernel.org> Acked-by: Daniel Borkmann <daniel@iogearbox.net> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-05-05 19:49:10 -07:00
off += reg->off;
2016-09-20 00:26:12 +02:00
if (off < 0 || size <= 0 || off + size > reg->range) {
verbose("invalid access to packet, off=%d size=%d, R%d(id=%d,off=%d,r=%d)\n",
off, size, regno, reg->id, reg->off, reg->range);
bpf: direct packet access Extended BPF carried over two instructions from classic to access packet data: LD_ABS and LD_IND. They're highly optimized in JITs, but due to their design they have to do length check for every access. When BPF is processing 20M packets per second single LD_ABS after JIT is consuming 3% cpu. Hence the need to optimize it further by amortizing the cost of 'off < skb_headlen' over multiple packet accesses. One option is to introduce two new eBPF instructions LD_ABS_DW and LD_IND_DW with similar usage as skb_header_pointer(). The kernel part for interpreter and x64 JIT was implemented in [1], but such new insns behave like old ld_abs and abort the program with 'return 0' if access is beyond linear data. Such hidden control flow is hard to workaround plus changing JITs and rolling out new llvm is incovenient. Therefore allow cls_bpf/act_bpf program access skb->data directly: int bpf_prog(struct __sk_buff *skb) { struct iphdr *ip; if (skb->data + sizeof(struct iphdr) + ETH_HLEN > skb->data_end) /* packet too small */ return 0; ip = skb->data + ETH_HLEN; /* access IP header fields with direct loads */ if (ip->version != 4 || ip->saddr == 0x7f000001) return 1; [...] } This solution avoids introduction of new instructions. llvm stays the same and all JITs stay the same, but verifier has to work extra hard to prove safety of the above program. For XDP the direct store instructions can be allowed as well. The skb->data is NET_IP_ALIGNED, so for common cases the verifier can check the alignment. The complex packet parsers where packet pointer is adjusted incrementally cannot be tracked for alignment, so allow byte access in such cases and misaligned access on architectures that define efficient_unaligned_access [1] https://git.kernel.org/cgit/linux/kernel/git/ast/bpf.git/?h=ld_abs_dw Signed-off-by: Alexei Starovoitov <ast@kernel.org> Acked-by: Daniel Borkmann <daniel@iogearbox.net> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-05-05 19:49:10 -07:00
return -EACCES;
}
return 0;
}
bpf: verifier (add verifier core) This patch adds verifier core which simulates execution of every insn and records the state of registers and program stack. Every branch instruction seen during simulation is pushed into state stack. When verifier reaches BPF_EXIT, it pops the state from the stack and continues until it reaches BPF_EXIT again. For program: 1: bpf_mov r1, xxx 2: if (r1 == 0) goto 5 3: bpf_mov r0, 1 4: goto 6 5: bpf_mov r0, 2 6: bpf_exit The verifier will walk insns: 1, 2, 3, 4, 6 then it will pop the state recorded at insn#2 and will continue: 5, 6 This way it walks all possible paths through the program and checks all possible values of registers. While doing so, it checks for: - invalid instructions - uninitialized register access - uninitialized stack access - misaligned stack access - out of range stack access - invalid calling convention - instruction encoding is not using reserved fields Kernel subsystem configures the verifier with two callbacks: - bool (*is_valid_access)(int off, int size, enum bpf_access_type type); that provides information to the verifer which fields of 'ctx' are accessible (remember 'ctx' is the first argument to eBPF program) - const struct bpf_func_proto *(*get_func_proto)(enum bpf_func_id func_id); returns argument constraints of kernel helper functions that eBPF program may call, so that verifier can checks that R1-R5 types match the prototype More details in Documentation/networking/filter.txt and in kernel/bpf/verifier.c Signed-off-by: Alexei Starovoitov <ast@plumgrid.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-09-26 00:17:06 -07:00
/* check access to 'struct bpf_context' fields */
static int check_ctx_access(struct bpf_verifier_env *env, int off, int size,
enum bpf_access_type t, enum bpf_reg_type *reg_type)
bpf: verifier (add verifier core) This patch adds verifier core which simulates execution of every insn and records the state of registers and program stack. Every branch instruction seen during simulation is pushed into state stack. When verifier reaches BPF_EXIT, it pops the state from the stack and continues until it reaches BPF_EXIT again. For program: 1: bpf_mov r1, xxx 2: if (r1 == 0) goto 5 3: bpf_mov r0, 1 4: goto 6 5: bpf_mov r0, 2 6: bpf_exit The verifier will walk insns: 1, 2, 3, 4, 6 then it will pop the state recorded at insn#2 and will continue: 5, 6 This way it walks all possible paths through the program and checks all possible values of registers. While doing so, it checks for: - invalid instructions - uninitialized register access - uninitialized stack access - misaligned stack access - out of range stack access - invalid calling convention - instruction encoding is not using reserved fields Kernel subsystem configures the verifier with two callbacks: - bool (*is_valid_access)(int off, int size, enum bpf_access_type type); that provides information to the verifer which fields of 'ctx' are accessible (remember 'ctx' is the first argument to eBPF program) - const struct bpf_func_proto *(*get_func_proto)(enum bpf_func_id func_id); returns argument constraints of kernel helper functions that eBPF program may call, so that verifier can checks that R1-R5 types match the prototype More details in Documentation/networking/filter.txt and in kernel/bpf/verifier.c Signed-off-by: Alexei Starovoitov <ast@plumgrid.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-09-26 00:17:06 -07:00
{
/* for analyzer ctx accesses are already validated and converted */
if (env->analyzer_ops)
return 0;
bpf: verifier (add verifier core) This patch adds verifier core which simulates execution of every insn and records the state of registers and program stack. Every branch instruction seen during simulation is pushed into state stack. When verifier reaches BPF_EXIT, it pops the state from the stack and continues until it reaches BPF_EXIT again. For program: 1: bpf_mov r1, xxx 2: if (r1 == 0) goto 5 3: bpf_mov r0, 1 4: goto 6 5: bpf_mov r0, 2 6: bpf_exit The verifier will walk insns: 1, 2, 3, 4, 6 then it will pop the state recorded at insn#2 and will continue: 5, 6 This way it walks all possible paths through the program and checks all possible values of registers. While doing so, it checks for: - invalid instructions - uninitialized register access - uninitialized stack access - misaligned stack access - out of range stack access - invalid calling convention - instruction encoding is not using reserved fields Kernel subsystem configures the verifier with two callbacks: - bool (*is_valid_access)(int off, int size, enum bpf_access_type type); that provides information to the verifer which fields of 'ctx' are accessible (remember 'ctx' is the first argument to eBPF program) - const struct bpf_func_proto *(*get_func_proto)(enum bpf_func_id func_id); returns argument constraints of kernel helper functions that eBPF program may call, so that verifier can checks that R1-R5 types match the prototype More details in Documentation/networking/filter.txt and in kernel/bpf/verifier.c Signed-off-by: Alexei Starovoitov <ast@plumgrid.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-09-26 00:17:06 -07:00
if (env->prog->aux->ops->is_valid_access &&
env->prog->aux->ops->is_valid_access(off, size, t, reg_type)) {
/* remember the offset of last byte accessed in ctx */
if (env->prog->aux->max_ctx_offset < off + size)
env->prog->aux->max_ctx_offset = off + size;
bpf: verifier (add verifier core) This patch adds verifier core which simulates execution of every insn and records the state of registers and program stack. Every branch instruction seen during simulation is pushed into state stack. When verifier reaches BPF_EXIT, it pops the state from the stack and continues until it reaches BPF_EXIT again. For program: 1: bpf_mov r1, xxx 2: if (r1 == 0) goto 5 3: bpf_mov r0, 1 4: goto 6 5: bpf_mov r0, 2 6: bpf_exit The verifier will walk insns: 1, 2, 3, 4, 6 then it will pop the state recorded at insn#2 and will continue: 5, 6 This way it walks all possible paths through the program and checks all possible values of registers. While doing so, it checks for: - invalid instructions - uninitialized register access - uninitialized stack access - misaligned stack access - out of range stack access - invalid calling convention - instruction encoding is not using reserved fields Kernel subsystem configures the verifier with two callbacks: - bool (*is_valid_access)(int off, int size, enum bpf_access_type type); that provides information to the verifer which fields of 'ctx' are accessible (remember 'ctx' is the first argument to eBPF program) - const struct bpf_func_proto *(*get_func_proto)(enum bpf_func_id func_id); returns argument constraints of kernel helper functions that eBPF program may call, so that verifier can checks that R1-R5 types match the prototype More details in Documentation/networking/filter.txt and in kernel/bpf/verifier.c Signed-off-by: Alexei Starovoitov <ast@plumgrid.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-09-26 00:17:06 -07:00
return 0;
}
bpf: verifier (add verifier core) This patch adds verifier core which simulates execution of every insn and records the state of registers and program stack. Every branch instruction seen during simulation is pushed into state stack. When verifier reaches BPF_EXIT, it pops the state from the stack and continues until it reaches BPF_EXIT again. For program: 1: bpf_mov r1, xxx 2: if (r1 == 0) goto 5 3: bpf_mov r0, 1 4: goto 6 5: bpf_mov r0, 2 6: bpf_exit The verifier will walk insns: 1, 2, 3, 4, 6 then it will pop the state recorded at insn#2 and will continue: 5, 6 This way it walks all possible paths through the program and checks all possible values of registers. While doing so, it checks for: - invalid instructions - uninitialized register access - uninitialized stack access - misaligned stack access - out of range stack access - invalid calling convention - instruction encoding is not using reserved fields Kernel subsystem configures the verifier with two callbacks: - bool (*is_valid_access)(int off, int size, enum bpf_access_type type); that provides information to the verifer which fields of 'ctx' are accessible (remember 'ctx' is the first argument to eBPF program) - const struct bpf_func_proto *(*get_func_proto)(enum bpf_func_id func_id); returns argument constraints of kernel helper functions that eBPF program may call, so that verifier can checks that R1-R5 types match the prototype More details in Documentation/networking/filter.txt and in kernel/bpf/verifier.c Signed-off-by: Alexei Starovoitov <ast@plumgrid.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-09-26 00:17:06 -07:00
verbose("invalid bpf_context access off=%d size=%d\n", off, size);
return -EACCES;
}
static bool is_pointer_value(struct bpf_verifier_env *env, int regno)
bpf: enable non-root eBPF programs In order to let unprivileged users load and execute eBPF programs teach verifier to prevent pointer leaks. Verifier will prevent - any arithmetic on pointers (except R10+Imm which is used to compute stack addresses) - comparison of pointers (except if (map_value_ptr == 0) ... ) - passing pointers to helper functions - indirectly passing pointers in stack to helper functions - returning pointer from bpf program - storing pointers into ctx or maps Spill/fill of pointers into stack is allowed, but mangling of pointers stored in the stack or reading them byte by byte is not. Within bpf programs the pointers do exist, since programs need to be able to access maps, pass skb pointer to LD_ABS insns, etc but programs cannot pass such pointer values to the outside or obfuscate them. Only allow BPF_PROG_TYPE_SOCKET_FILTER unprivileged programs, so that socket filters (tcpdump), af_packet (quic acceleration) and future kcm can use it. tracing and tc cls/act program types still require root permissions, since tracing actually needs to be able to see all kernel pointers and tc is for root only. For example, the following unprivileged socket filter program is allowed: int bpf_prog1(struct __sk_buff *skb) { u32 index = load_byte(skb, ETH_HLEN + offsetof(struct iphdr, protocol)); u64 *value = bpf_map_lookup_elem(&my_map, &index); if (value) *value += skb->len; return 0; } but the following program is not: int bpf_prog1(struct __sk_buff *skb) { u32 index = load_byte(skb, ETH_HLEN + offsetof(struct iphdr, protocol)); u64 *value = bpf_map_lookup_elem(&my_map, &index); if (value) *value += (u64) skb; return 0; } since it would leak the kernel address into the map. Unprivileged socket filter bpf programs have access to the following helper functions: - map lookup/update/delete (but they cannot store kernel pointers into them) - get_random (it's already exposed to unprivileged user space) - get_smp_processor_id - tail_call into another socket filter program - ktime_get_ns The feature is controlled by sysctl kernel.unprivileged_bpf_disabled. This toggle defaults to off (0), but can be set true (1). Once true, bpf programs and maps cannot be accessed from unprivileged process, and the toggle cannot be set back to false. Signed-off-by: Alexei Starovoitov <ast@plumgrid.com> Reviewed-by: Kees Cook <keescook@chromium.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2015-10-07 22:23:21 -07:00
{
if (env->allow_ptr_leaks)
return false;
switch (env->cur_state.regs[regno].type) {
case UNKNOWN_VALUE:
case CONST_IMM:
return false;
default:
return true;
}
}
bpf, verifier: fix rejection of unaligned access checks for map_value_adj Currently, the verifier doesn't reject unaligned access for map_value_adj register types. Commit 484611357c19 ("bpf: allow access into map value arrays") added logic to check_ptr_alignment() extending it from PTR_TO_PACKET to also PTR_TO_MAP_VALUE_ADJ, but for PTR_TO_MAP_VALUE_ADJ no enforcement is in place, because reg->id for PTR_TO_MAP_VALUE_ADJ reg types is never non-zero, meaning, we can cause BPF_H/_W/_DW-based unaligned access for architectures not supporting efficient unaligned access, and thus worst case could raise exceptions on some archs that are unable to correct the unaligned access or perform a different memory access to the actual requested one and such. i) Unaligned load with !CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS on r0 (map_value_adj): 0: (bf) r2 = r10 1: (07) r2 += -8 2: (7a) *(u64 *)(r2 +0) = 0 3: (18) r1 = 0x42533a00 5: (85) call bpf_map_lookup_elem#1 6: (15) if r0 == 0x0 goto pc+11 R0=map_value(ks=8,vs=48,id=0),min_value=0,max_value=0 R10=fp 7: (61) r1 = *(u32 *)(r0 +0) 8: (35) if r1 >= 0xb goto pc+9 R0=map_value(ks=8,vs=48,id=0),min_value=0,max_value=0 R1=inv,min_value=0,max_value=10 R10=fp 9: (07) r0 += 3 10: (79) r7 = *(u64 *)(r0 +0) R0=map_value_adj(ks=8,vs=48,id=0),min_value=3,max_value=3 R1=inv,min_value=0,max_value=10 R10=fp 11: (79) r7 = *(u64 *)(r0 +2) R0=map_value_adj(ks=8,vs=48,id=0),min_value=3,max_value=3 R1=inv,min_value=0,max_value=10 R7=inv R10=fp [...] ii) Unaligned store with !CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS on r0 (map_value_adj): 0: (bf) r2 = r10 1: (07) r2 += -8 2: (7a) *(u64 *)(r2 +0) = 0 3: (18) r1 = 0x4df16a00 5: (85) call bpf_map_lookup_elem#1 6: (15) if r0 == 0x0 goto pc+19 R0=map_value(ks=8,vs=48,id=0),min_value=0,max_value=0 R10=fp 7: (07) r0 += 3 8: (7a) *(u64 *)(r0 +0) = 42 R0=map_value_adj(ks=8,vs=48,id=0),min_value=3,max_value=3 R10=fp 9: (7a) *(u64 *)(r0 +2) = 43 R0=map_value_adj(ks=8,vs=48,id=0),min_value=3,max_value=3 R10=fp 10: (7a) *(u64 *)(r0 -2) = 44 R0=map_value_adj(ks=8,vs=48,id=0),min_value=3,max_value=3 R10=fp [...] For the PTR_TO_PACKET type, reg->id is initially zero when skb->data was fetched, it later receives a reg->id from env->id_gen generator once another register with UNKNOWN_VALUE type was added to it via check_packet_ptr_add(). The purpose of this reg->id is twofold: i) it is used in find_good_pkt_pointers() for setting the allowed access range for regs with PTR_TO_PACKET of same id once verifier matched on data/data_end tests, and ii) for check_ptr_alignment() to determine that when not having efficient unaligned access and register with UNKNOWN_VALUE was added to PTR_TO_PACKET, that we're only allowed to access the content bytewise due to unknown unalignment. reg->id was never intended for PTR_TO_MAP_VALUE{,_ADJ} types and thus is always zero, the only marking is in PTR_TO_MAP_VALUE_OR_NULL that was added after 484611357c19 via 57a09bf0a416 ("bpf: Detect identical PTR_TO_MAP_VALUE_OR_NULL registers"). Above tests will fail for non-root environment due to prohibited pointer arithmetic. The fix splits register-type specific checks into their own helper instead of keeping them combined, so we don't run into a similar issue in future once we extend check_ptr_alignment() further and forget to add reg->type checks for some of the checks. Fixes: 484611357c19 ("bpf: allow access into map value arrays") Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Reviewed-by: Josef Bacik <jbacik@fb.com> Acked-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-03-31 02:24:03 +02:00
static int check_pkt_ptr_alignment(const struct bpf_reg_state *reg,
bpf: Track alignment of register values in the verifier. Currently if we add only constant values to pointers we can fully validate the alignment, and properly check if we need to reject the program on !CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS architectures. However, once an unknown value is introduced we only allow byte sized memory accesses which is too restrictive. Add logic to track the known minimum alignment of register values, and propagate this state into registers containing pointers. The most common paradigm that makes use of this new logic is computing the transport header using the IP header length field. For example: struct ethhdr *ep = skb->data; struct iphdr *iph = (struct iphdr *) (ep + 1); struct tcphdr *th; ... n = iph->ihl; th = ((void *)iph + (n * 4)); port = th->dest; The existing code will reject the load of th->dest because it cannot validate that the alignment is at least 2 once "n * 4" is added the the packet pointer. In the new code, the register holding "n * 4" will have a reg->min_align value of 4, because any value multiplied by 4 will be at least 4 byte aligned. (actually, the eBPF code emitted by the compiler in this case is most likely to use a shift left by 2, but the end result is identical) At the critical addition: th = ((void *)iph + (n * 4)); The register holding 'th' will start with reg->off value of 14. The pointer addition will transform that reg into something that looks like: reg->aux_off = 14 reg->aux_off_align = 4 Next, the verifier will look at the th->dest load, and it will see a load offset of 2, and first check: if (reg->aux_off_align % size) which will pass because aux_off_align is 4. reg_off will be computed: reg_off = reg->off; ... reg_off += reg->aux_off; plus we have off==2, and it will thus check: if ((NET_IP_ALIGN + reg_off + off) % size != 0) which evaluates to: if ((NET_IP_ALIGN + 14 + 2) % size != 0) On strict alignment architectures, NET_IP_ALIGN is 2, thus: if ((2 + 14 + 2) % size != 0) which passes. These pointer transformations and checks work regardless of whether the constant offset or the variable with known alignment is added first to the pointer register. Signed-off-by: David S. Miller <davem@davemloft.net> Acked-by: Daniel Borkmann <daniel@iogearbox.net>
2017-05-10 11:22:52 -07:00
int off, int size, bool strict)
bpf: direct packet access Extended BPF carried over two instructions from classic to access packet data: LD_ABS and LD_IND. They're highly optimized in JITs, but due to their design they have to do length check for every access. When BPF is processing 20M packets per second single LD_ABS after JIT is consuming 3% cpu. Hence the need to optimize it further by amortizing the cost of 'off < skb_headlen' over multiple packet accesses. One option is to introduce two new eBPF instructions LD_ABS_DW and LD_IND_DW with similar usage as skb_header_pointer(). The kernel part for interpreter and x64 JIT was implemented in [1], but such new insns behave like old ld_abs and abort the program with 'return 0' if access is beyond linear data. Such hidden control flow is hard to workaround plus changing JITs and rolling out new llvm is incovenient. Therefore allow cls_bpf/act_bpf program access skb->data directly: int bpf_prog(struct __sk_buff *skb) { struct iphdr *ip; if (skb->data + sizeof(struct iphdr) + ETH_HLEN > skb->data_end) /* packet too small */ return 0; ip = skb->data + ETH_HLEN; /* access IP header fields with direct loads */ if (ip->version != 4 || ip->saddr == 0x7f000001) return 1; [...] } This solution avoids introduction of new instructions. llvm stays the same and all JITs stay the same, but verifier has to work extra hard to prove safety of the above program. For XDP the direct store instructions can be allowed as well. The skb->data is NET_IP_ALIGNED, so for common cases the verifier can check the alignment. The complex packet parsers where packet pointer is adjusted incrementally cannot be tracked for alignment, so allow byte access in such cases and misaligned access on architectures that define efficient_unaligned_access [1] https://git.kernel.org/cgit/linux/kernel/git/ast/bpf.git/?h=ld_abs_dw Signed-off-by: Alexei Starovoitov <ast@kernel.org> Acked-by: Daniel Borkmann <daniel@iogearbox.net> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-05-05 19:49:10 -07:00
{
bpf: Track alignment of register values in the verifier. Currently if we add only constant values to pointers we can fully validate the alignment, and properly check if we need to reject the program on !CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS architectures. However, once an unknown value is introduced we only allow byte sized memory accesses which is too restrictive. Add logic to track the known minimum alignment of register values, and propagate this state into registers containing pointers. The most common paradigm that makes use of this new logic is computing the transport header using the IP header length field. For example: struct ethhdr *ep = skb->data; struct iphdr *iph = (struct iphdr *) (ep + 1); struct tcphdr *th; ... n = iph->ihl; th = ((void *)iph + (n * 4)); port = th->dest; The existing code will reject the load of th->dest because it cannot validate that the alignment is at least 2 once "n * 4" is added the the packet pointer. In the new code, the register holding "n * 4" will have a reg->min_align value of 4, because any value multiplied by 4 will be at least 4 byte aligned. (actually, the eBPF code emitted by the compiler in this case is most likely to use a shift left by 2, but the end result is identical) At the critical addition: th = ((void *)iph + (n * 4)); The register holding 'th' will start with reg->off value of 14. The pointer addition will transform that reg into something that looks like: reg->aux_off = 14 reg->aux_off_align = 4 Next, the verifier will look at the th->dest load, and it will see a load offset of 2, and first check: if (reg->aux_off_align % size) which will pass because aux_off_align is 4. reg_off will be computed: reg_off = reg->off; ... reg_off += reg->aux_off; plus we have off==2, and it will thus check: if ((NET_IP_ALIGN + reg_off + off) % size != 0) which evaluates to: if ((NET_IP_ALIGN + 14 + 2) % size != 0) On strict alignment architectures, NET_IP_ALIGN is 2, thus: if ((2 + 14 + 2) % size != 0) which passes. These pointer transformations and checks work regardless of whether the constant offset or the variable with known alignment is added first to the pointer register. Signed-off-by: David S. Miller <davem@davemloft.net> Acked-by: Daniel Borkmann <daniel@iogearbox.net>
2017-05-10 11:22:52 -07:00
int reg_off;
/* Byte size accesses are always allowed. */
if (!strict || size == 1)
return 0;
reg_off = reg->off;
if (reg->id) {
if (reg->aux_off_align % size) {
verbose("Packet access is only %u byte aligned, %d byte access not allowed\n",
reg->aux_off_align, size);
return -EACCES;
}
reg_off += reg->aux_off;
bpf: direct packet access Extended BPF carried over two instructions from classic to access packet data: LD_ABS and LD_IND. They're highly optimized in JITs, but due to their design they have to do length check for every access. When BPF is processing 20M packets per second single LD_ABS after JIT is consuming 3% cpu. Hence the need to optimize it further by amortizing the cost of 'off < skb_headlen' over multiple packet accesses. One option is to introduce two new eBPF instructions LD_ABS_DW and LD_IND_DW with similar usage as skb_header_pointer(). The kernel part for interpreter and x64 JIT was implemented in [1], but such new insns behave like old ld_abs and abort the program with 'return 0' if access is beyond linear data. Such hidden control flow is hard to workaround plus changing JITs and rolling out new llvm is incovenient. Therefore allow cls_bpf/act_bpf program access skb->data directly: int bpf_prog(struct __sk_buff *skb) { struct iphdr *ip; if (skb->data + sizeof(struct iphdr) + ETH_HLEN > skb->data_end) /* packet too small */ return 0; ip = skb->data + ETH_HLEN; /* access IP header fields with direct loads */ if (ip->version != 4 || ip->saddr == 0x7f000001) return 1; [...] } This solution avoids introduction of new instructions. llvm stays the same and all JITs stay the same, but verifier has to work extra hard to prove safety of the above program. For XDP the direct store instructions can be allowed as well. The skb->data is NET_IP_ALIGNED, so for common cases the verifier can check the alignment. The complex packet parsers where packet pointer is adjusted incrementally cannot be tracked for alignment, so allow byte access in such cases and misaligned access on architectures that define efficient_unaligned_access [1] https://git.kernel.org/cgit/linux/kernel/git/ast/bpf.git/?h=ld_abs_dw Signed-off-by: Alexei Starovoitov <ast@kernel.org> Acked-by: Daniel Borkmann <daniel@iogearbox.net> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-05-05 19:49:10 -07:00
}
/* skb->data is NET_IP_ALIGN-ed */
bpf: Track alignment of register values in the verifier. Currently if we add only constant values to pointers we can fully validate the alignment, and properly check if we need to reject the program on !CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS architectures. However, once an unknown value is introduced we only allow byte sized memory accesses which is too restrictive. Add logic to track the known minimum alignment of register values, and propagate this state into registers containing pointers. The most common paradigm that makes use of this new logic is computing the transport header using the IP header length field. For example: struct ethhdr *ep = skb->data; struct iphdr *iph = (struct iphdr *) (ep + 1); struct tcphdr *th; ... n = iph->ihl; th = ((void *)iph + (n * 4)); port = th->dest; The existing code will reject the load of th->dest because it cannot validate that the alignment is at least 2 once "n * 4" is added the the packet pointer. In the new code, the register holding "n * 4" will have a reg->min_align value of 4, because any value multiplied by 4 will be at least 4 byte aligned. (actually, the eBPF code emitted by the compiler in this case is most likely to use a shift left by 2, but the end result is identical) At the critical addition: th = ((void *)iph + (n * 4)); The register holding 'th' will start with reg->off value of 14. The pointer addition will transform that reg into something that looks like: reg->aux_off = 14 reg->aux_off_align = 4 Next, the verifier will look at the th->dest load, and it will see a load offset of 2, and first check: if (reg->aux_off_align % size) which will pass because aux_off_align is 4. reg_off will be computed: reg_off = reg->off; ... reg_off += reg->aux_off; plus we have off==2, and it will thus check: if ((NET_IP_ALIGN + reg_off + off) % size != 0) which evaluates to: if ((NET_IP_ALIGN + 14 + 2) % size != 0) On strict alignment architectures, NET_IP_ALIGN is 2, thus: if ((2 + 14 + 2) % size != 0) which passes. These pointer transformations and checks work regardless of whether the constant offset or the variable with known alignment is added first to the pointer register. Signed-off-by: David S. Miller <davem@davemloft.net> Acked-by: Daniel Borkmann <daniel@iogearbox.net>
2017-05-10 11:22:52 -07:00
if ((NET_IP_ALIGN + reg_off + off) % size != 0) {
bpf: direct packet access Extended BPF carried over two instructions from classic to access packet data: LD_ABS and LD_IND. They're highly optimized in JITs, but due to their design they have to do length check for every access. When BPF is processing 20M packets per second single LD_ABS after JIT is consuming 3% cpu. Hence the need to optimize it further by amortizing the cost of 'off < skb_headlen' over multiple packet accesses. One option is to introduce two new eBPF instructions LD_ABS_DW and LD_IND_DW with similar usage as skb_header_pointer(). The kernel part for interpreter and x64 JIT was implemented in [1], but such new insns behave like old ld_abs and abort the program with 'return 0' if access is beyond linear data. Such hidden control flow is hard to workaround plus changing JITs and rolling out new llvm is incovenient. Therefore allow cls_bpf/act_bpf program access skb->data directly: int bpf_prog(struct __sk_buff *skb) { struct iphdr *ip; if (skb->data + sizeof(struct iphdr) + ETH_HLEN > skb->data_end) /* packet too small */ return 0; ip = skb->data + ETH_HLEN; /* access IP header fields with direct loads */ if (ip->version != 4 || ip->saddr == 0x7f000001) return 1; [...] } This solution avoids introduction of new instructions. llvm stays the same and all JITs stay the same, but verifier has to work extra hard to prove safety of the above program. For XDP the direct store instructions can be allowed as well. The skb->data is NET_IP_ALIGNED, so for common cases the verifier can check the alignment. The complex packet parsers where packet pointer is adjusted incrementally cannot be tracked for alignment, so allow byte access in such cases and misaligned access on architectures that define efficient_unaligned_access [1] https://git.kernel.org/cgit/linux/kernel/git/ast/bpf.git/?h=ld_abs_dw Signed-off-by: Alexei Starovoitov <ast@kernel.org> Acked-by: Daniel Borkmann <daniel@iogearbox.net> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-05-05 19:49:10 -07:00
verbose("misaligned packet access off %d+%d+%d size %d\n",
bpf: Track alignment of register values in the verifier. Currently if we add only constant values to pointers we can fully validate the alignment, and properly check if we need to reject the program on !CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS architectures. However, once an unknown value is introduced we only allow byte sized memory accesses which is too restrictive. Add logic to track the known minimum alignment of register values, and propagate this state into registers containing pointers. The most common paradigm that makes use of this new logic is computing the transport header using the IP header length field. For example: struct ethhdr *ep = skb->data; struct iphdr *iph = (struct iphdr *) (ep + 1); struct tcphdr *th; ... n = iph->ihl; th = ((void *)iph + (n * 4)); port = th->dest; The existing code will reject the load of th->dest because it cannot validate that the alignment is at least 2 once "n * 4" is added the the packet pointer. In the new code, the register holding "n * 4" will have a reg->min_align value of 4, because any value multiplied by 4 will be at least 4 byte aligned. (actually, the eBPF code emitted by the compiler in this case is most likely to use a shift left by 2, but the end result is identical) At the critical addition: th = ((void *)iph + (n * 4)); The register holding 'th' will start with reg->off value of 14. The pointer addition will transform that reg into something that looks like: reg->aux_off = 14 reg->aux_off_align = 4 Next, the verifier will look at the th->dest load, and it will see a load offset of 2, and first check: if (reg->aux_off_align % size) which will pass because aux_off_align is 4. reg_off will be computed: reg_off = reg->off; ... reg_off += reg->aux_off; plus we have off==2, and it will thus check: if ((NET_IP_ALIGN + reg_off + off) % size != 0) which evaluates to: if ((NET_IP_ALIGN + 14 + 2) % size != 0) On strict alignment architectures, NET_IP_ALIGN is 2, thus: if ((2 + 14 + 2) % size != 0) which passes. These pointer transformations and checks work regardless of whether the constant offset or the variable with known alignment is added first to the pointer register. Signed-off-by: David S. Miller <davem@davemloft.net> Acked-by: Daniel Borkmann <daniel@iogearbox.net>
2017-05-10 11:22:52 -07:00
NET_IP_ALIGN, reg_off, off, size);
bpf: direct packet access Extended BPF carried over two instructions from classic to access packet data: LD_ABS and LD_IND. They're highly optimized in JITs, but due to their design they have to do length check for every access. When BPF is processing 20M packets per second single LD_ABS after JIT is consuming 3% cpu. Hence the need to optimize it further by amortizing the cost of 'off < skb_headlen' over multiple packet accesses. One option is to introduce two new eBPF instructions LD_ABS_DW and LD_IND_DW with similar usage as skb_header_pointer(). The kernel part for interpreter and x64 JIT was implemented in [1], but such new insns behave like old ld_abs and abort the program with 'return 0' if access is beyond linear data. Such hidden control flow is hard to workaround plus changing JITs and rolling out new llvm is incovenient. Therefore allow cls_bpf/act_bpf program access skb->data directly: int bpf_prog(struct __sk_buff *skb) { struct iphdr *ip; if (skb->data + sizeof(struct iphdr) + ETH_HLEN > skb->data_end) /* packet too small */ return 0; ip = skb->data + ETH_HLEN; /* access IP header fields with direct loads */ if (ip->version != 4 || ip->saddr == 0x7f000001) return 1; [...] } This solution avoids introduction of new instructions. llvm stays the same and all JITs stay the same, but verifier has to work extra hard to prove safety of the above program. For XDP the direct store instructions can be allowed as well. The skb->data is NET_IP_ALIGNED, so for common cases the verifier can check the alignment. The complex packet parsers where packet pointer is adjusted incrementally cannot be tracked for alignment, so allow byte access in such cases and misaligned access on architectures that define efficient_unaligned_access [1] https://git.kernel.org/cgit/linux/kernel/git/ast/bpf.git/?h=ld_abs_dw Signed-off-by: Alexei Starovoitov <ast@kernel.org> Acked-by: Daniel Borkmann <daniel@iogearbox.net> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-05-05 19:49:10 -07:00
return -EACCES;
}
bpf, verifier: fix rejection of unaligned access checks for map_value_adj Currently, the verifier doesn't reject unaligned access for map_value_adj register types. Commit 484611357c19 ("bpf: allow access into map value arrays") added logic to check_ptr_alignment() extending it from PTR_TO_PACKET to also PTR_TO_MAP_VALUE_ADJ, but for PTR_TO_MAP_VALUE_ADJ no enforcement is in place, because reg->id for PTR_TO_MAP_VALUE_ADJ reg types is never non-zero, meaning, we can cause BPF_H/_W/_DW-based unaligned access for architectures not supporting efficient unaligned access, and thus worst case could raise exceptions on some archs that are unable to correct the unaligned access or perform a different memory access to the actual requested one and such. i) Unaligned load with !CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS on r0 (map_value_adj): 0: (bf) r2 = r10 1: (07) r2 += -8 2: (7a) *(u64 *)(r2 +0) = 0 3: (18) r1 = 0x42533a00 5: (85) call bpf_map_lookup_elem#1 6: (15) if r0 == 0x0 goto pc+11 R0=map_value(ks=8,vs=48,id=0),min_value=0,max_value=0 R10=fp 7: (61) r1 = *(u32 *)(r0 +0) 8: (35) if r1 >= 0xb goto pc+9 R0=map_value(ks=8,vs=48,id=0),min_value=0,max_value=0 R1=inv,min_value=0,max_value=10 R10=fp 9: (07) r0 += 3 10: (79) r7 = *(u64 *)(r0 +0) R0=map_value_adj(ks=8,vs=48,id=0),min_value=3,max_value=3 R1=inv,min_value=0,max_value=10 R10=fp 11: (79) r7 = *(u64 *)(r0 +2) R0=map_value_adj(ks=8,vs=48,id=0),min_value=3,max_value=3 R1=inv,min_value=0,max_value=10 R7=inv R10=fp [...] ii) Unaligned store with !CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS on r0 (map_value_adj): 0: (bf) r2 = r10 1: (07) r2 += -8 2: (7a) *(u64 *)(r2 +0) = 0 3: (18) r1 = 0x4df16a00 5: (85) call bpf_map_lookup_elem#1 6: (15) if r0 == 0x0 goto pc+19 R0=map_value(ks=8,vs=48,id=0),min_value=0,max_value=0 R10=fp 7: (07) r0 += 3 8: (7a) *(u64 *)(r0 +0) = 42 R0=map_value_adj(ks=8,vs=48,id=0),min_value=3,max_value=3 R10=fp 9: (7a) *(u64 *)(r0 +2) = 43 R0=map_value_adj(ks=8,vs=48,id=0),min_value=3,max_value=3 R10=fp 10: (7a) *(u64 *)(r0 -2) = 44 R0=map_value_adj(ks=8,vs=48,id=0),min_value=3,max_value=3 R10=fp [...] For the PTR_TO_PACKET type, reg->id is initially zero when skb->data was fetched, it later receives a reg->id from env->id_gen generator once another register with UNKNOWN_VALUE type was added to it via check_packet_ptr_add(). The purpose of this reg->id is twofold: i) it is used in find_good_pkt_pointers() for setting the allowed access range for regs with PTR_TO_PACKET of same id once verifier matched on data/data_end tests, and ii) for check_ptr_alignment() to determine that when not having efficient unaligned access and register with UNKNOWN_VALUE was added to PTR_TO_PACKET, that we're only allowed to access the content bytewise due to unknown unalignment. reg->id was never intended for PTR_TO_MAP_VALUE{,_ADJ} types and thus is always zero, the only marking is in PTR_TO_MAP_VALUE_OR_NULL that was added after 484611357c19 via 57a09bf0a416 ("bpf: Detect identical PTR_TO_MAP_VALUE_OR_NULL registers"). Above tests will fail for non-root environment due to prohibited pointer arithmetic. The fix splits register-type specific checks into their own helper instead of keeping them combined, so we don't run into a similar issue in future once we extend check_ptr_alignment() further and forget to add reg->type checks for some of the checks. Fixes: 484611357c19 ("bpf: allow access into map value arrays") Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Reviewed-by: Josef Bacik <jbacik@fb.com> Acked-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-03-31 02:24:03 +02:00
bpf: direct packet access Extended BPF carried over two instructions from classic to access packet data: LD_ABS and LD_IND. They're highly optimized in JITs, but due to their design they have to do length check for every access. When BPF is processing 20M packets per second single LD_ABS after JIT is consuming 3% cpu. Hence the need to optimize it further by amortizing the cost of 'off < skb_headlen' over multiple packet accesses. One option is to introduce two new eBPF instructions LD_ABS_DW and LD_IND_DW with similar usage as skb_header_pointer(). The kernel part for interpreter and x64 JIT was implemented in [1], but such new insns behave like old ld_abs and abort the program with 'return 0' if access is beyond linear data. Such hidden control flow is hard to workaround plus changing JITs and rolling out new llvm is incovenient. Therefore allow cls_bpf/act_bpf program access skb->data directly: int bpf_prog(struct __sk_buff *skb) { struct iphdr *ip; if (skb->data + sizeof(struct iphdr) + ETH_HLEN > skb->data_end) /* packet too small */ return 0; ip = skb->data + ETH_HLEN; /* access IP header fields with direct loads */ if (ip->version != 4 || ip->saddr == 0x7f000001) return 1; [...] } This solution avoids introduction of new instructions. llvm stays the same and all JITs stay the same, but verifier has to work extra hard to prove safety of the above program. For XDP the direct store instructions can be allowed as well. The skb->data is NET_IP_ALIGNED, so for common cases the verifier can check the alignment. The complex packet parsers where packet pointer is adjusted incrementally cannot be tracked for alignment, so allow byte access in such cases and misaligned access on architectures that define efficient_unaligned_access [1] https://git.kernel.org/cgit/linux/kernel/git/ast/bpf.git/?h=ld_abs_dw Signed-off-by: Alexei Starovoitov <ast@kernel.org> Acked-by: Daniel Borkmann <daniel@iogearbox.net> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-05-05 19:49:10 -07:00
return 0;
}
bpf, verifier: fix rejection of unaligned access checks for map_value_adj Currently, the verifier doesn't reject unaligned access for map_value_adj register types. Commit 484611357c19 ("bpf: allow access into map value arrays") added logic to check_ptr_alignment() extending it from PTR_TO_PACKET to also PTR_TO_MAP_VALUE_ADJ, but for PTR_TO_MAP_VALUE_ADJ no enforcement is in place, because reg->id for PTR_TO_MAP_VALUE_ADJ reg types is never non-zero, meaning, we can cause BPF_H/_W/_DW-based unaligned access for architectures not supporting efficient unaligned access, and thus worst case could raise exceptions on some archs that are unable to correct the unaligned access or perform a different memory access to the actual requested one and such. i) Unaligned load with !CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS on r0 (map_value_adj): 0: (bf) r2 = r10 1: (07) r2 += -8 2: (7a) *(u64 *)(r2 +0) = 0 3: (18) r1 = 0x42533a00 5: (85) call bpf_map_lookup_elem#1 6: (15) if r0 == 0x0 goto pc+11 R0=map_value(ks=8,vs=48,id=0),min_value=0,max_value=0 R10=fp 7: (61) r1 = *(u32 *)(r0 +0) 8: (35) if r1 >= 0xb goto pc+9 R0=map_value(ks=8,vs=48,id=0),min_value=0,max_value=0 R1=inv,min_value=0,max_value=10 R10=fp 9: (07) r0 += 3 10: (79) r7 = *(u64 *)(r0 +0) R0=map_value_adj(ks=8,vs=48,id=0),min_value=3,max_value=3 R1=inv,min_value=0,max_value=10 R10=fp 11: (79) r7 = *(u64 *)(r0 +2) R0=map_value_adj(ks=8,vs=48,id=0),min_value=3,max_value=3 R1=inv,min_value=0,max_value=10 R7=inv R10=fp [...] ii) Unaligned store with !CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS on r0 (map_value_adj): 0: (bf) r2 = r10 1: (07) r2 += -8 2: (7a) *(u64 *)(r2 +0) = 0 3: (18) r1 = 0x4df16a00 5: (85) call bpf_map_lookup_elem#1 6: (15) if r0 == 0x0 goto pc+19 R0=map_value(ks=8,vs=48,id=0),min_value=0,max_value=0 R10=fp 7: (07) r0 += 3 8: (7a) *(u64 *)(r0 +0) = 42 R0=map_value_adj(ks=8,vs=48,id=0),min_value=3,max_value=3 R10=fp 9: (7a) *(u64 *)(r0 +2) = 43 R0=map_value_adj(ks=8,vs=48,id=0),min_value=3,max_value=3 R10=fp 10: (7a) *(u64 *)(r0 -2) = 44 R0=map_value_adj(ks=8,vs=48,id=0),min_value=3,max_value=3 R10=fp [...] For the PTR_TO_PACKET type, reg->id is initially zero when skb->data was fetched, it later receives a reg->id from env->id_gen generator once another register with UNKNOWN_VALUE type was added to it via check_packet_ptr_add(). The purpose of this reg->id is twofold: i) it is used in find_good_pkt_pointers() for setting the allowed access range for regs with PTR_TO_PACKET of same id once verifier matched on data/data_end tests, and ii) for check_ptr_alignment() to determine that when not having efficient unaligned access and register with UNKNOWN_VALUE was added to PTR_TO_PACKET, that we're only allowed to access the content bytewise due to unknown unalignment. reg->id was never intended for PTR_TO_MAP_VALUE{,_ADJ} types and thus is always zero, the only marking is in PTR_TO_MAP_VALUE_OR_NULL that was added after 484611357c19 via 57a09bf0a416 ("bpf: Detect identical PTR_TO_MAP_VALUE_OR_NULL registers"). Above tests will fail for non-root environment due to prohibited pointer arithmetic. The fix splits register-type specific checks into their own helper instead of keeping them combined, so we don't run into a similar issue in future once we extend check_ptr_alignment() further and forget to add reg->type checks for some of the checks. Fixes: 484611357c19 ("bpf: allow access into map value arrays") Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Reviewed-by: Josef Bacik <jbacik@fb.com> Acked-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-03-31 02:24:03 +02:00
static int check_val_ptr_alignment(const struct bpf_reg_state *reg,
bpf: Track alignment of register values in the verifier. Currently if we add only constant values to pointers we can fully validate the alignment, and properly check if we need to reject the program on !CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS architectures. However, once an unknown value is introduced we only allow byte sized memory accesses which is too restrictive. Add logic to track the known minimum alignment of register values, and propagate this state into registers containing pointers. The most common paradigm that makes use of this new logic is computing the transport header using the IP header length field. For example: struct ethhdr *ep = skb->data; struct iphdr *iph = (struct iphdr *) (ep + 1); struct tcphdr *th; ... n = iph->ihl; th = ((void *)iph + (n * 4)); port = th->dest; The existing code will reject the load of th->dest because it cannot validate that the alignment is at least 2 once "n * 4" is added the the packet pointer. In the new code, the register holding "n * 4" will have a reg->min_align value of 4, because any value multiplied by 4 will be at least 4 byte aligned. (actually, the eBPF code emitted by the compiler in this case is most likely to use a shift left by 2, but the end result is identical) At the critical addition: th = ((void *)iph + (n * 4)); The register holding 'th' will start with reg->off value of 14. The pointer addition will transform that reg into something that looks like: reg->aux_off = 14 reg->aux_off_align = 4 Next, the verifier will look at the th->dest load, and it will see a load offset of 2, and first check: if (reg->aux_off_align % size) which will pass because aux_off_align is 4. reg_off will be computed: reg_off = reg->off; ... reg_off += reg->aux_off; plus we have off==2, and it will thus check: if ((NET_IP_ALIGN + reg_off + off) % size != 0) which evaluates to: if ((NET_IP_ALIGN + 14 + 2) % size != 0) On strict alignment architectures, NET_IP_ALIGN is 2, thus: if ((2 + 14 + 2) % size != 0) which passes. These pointer transformations and checks work regardless of whether the constant offset or the variable with known alignment is added first to the pointer register. Signed-off-by: David S. Miller <davem@davemloft.net> Acked-by: Daniel Borkmann <daniel@iogearbox.net>
2017-05-10 11:22:52 -07:00
int size, bool strict)
bpf, verifier: fix rejection of unaligned access checks for map_value_adj Currently, the verifier doesn't reject unaligned access for map_value_adj register types. Commit 484611357c19 ("bpf: allow access into map value arrays") added logic to check_ptr_alignment() extending it from PTR_TO_PACKET to also PTR_TO_MAP_VALUE_ADJ, but for PTR_TO_MAP_VALUE_ADJ no enforcement is in place, because reg->id for PTR_TO_MAP_VALUE_ADJ reg types is never non-zero, meaning, we can cause BPF_H/_W/_DW-based unaligned access for architectures not supporting efficient unaligned access, and thus worst case could raise exceptions on some archs that are unable to correct the unaligned access or perform a different memory access to the actual requested one and such. i) Unaligned load with !CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS on r0 (map_value_adj): 0: (bf) r2 = r10 1: (07) r2 += -8 2: (7a) *(u64 *)(r2 +0) = 0 3: (18) r1 = 0x42533a00 5: (85) call bpf_map_lookup_elem#1 6: (15) if r0 == 0x0 goto pc+11 R0=map_value(ks=8,vs=48,id=0),min_value=0,max_value=0 R10=fp 7: (61) r1 = *(u32 *)(r0 +0) 8: (35) if r1 >= 0xb goto pc+9 R0=map_value(ks=8,vs=48,id=0),min_value=0,max_value=0 R1=inv,min_value=0,max_value=10 R10=fp 9: (07) r0 += 3 10: (79) r7 = *(u64 *)(r0 +0) R0=map_value_adj(ks=8,vs=48,id=0),min_value=3,max_value=3 R1=inv,min_value=0,max_value=10 R10=fp 11: (79) r7 = *(u64 *)(r0 +2) R0=map_value_adj(ks=8,vs=48,id=0),min_value=3,max_value=3 R1=inv,min_value=0,max_value=10 R7=inv R10=fp [...] ii) Unaligned store with !CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS on r0 (map_value_adj): 0: (bf) r2 = r10 1: (07) r2 += -8 2: (7a) *(u64 *)(r2 +0) = 0 3: (18) r1 = 0x4df16a00 5: (85) call bpf_map_lookup_elem#1 6: (15) if r0 == 0x0 goto pc+19 R0=map_value(ks=8,vs=48,id=0),min_value=0,max_value=0 R10=fp 7: (07) r0 += 3 8: (7a) *(u64 *)(r0 +0) = 42 R0=map_value_adj(ks=8,vs=48,id=0),min_value=3,max_value=3 R10=fp 9: (7a) *(u64 *)(r0 +2) = 43 R0=map_value_adj(ks=8,vs=48,id=0),min_value=3,max_value=3 R10=fp 10: (7a) *(u64 *)(r0 -2) = 44 R0=map_value_adj(ks=8,vs=48,id=0),min_value=3,max_value=3 R10=fp [...] For the PTR_TO_PACKET type, reg->id is initially zero when skb->data was fetched, it later receives a reg->id from env->id_gen generator once another register with UNKNOWN_VALUE type was added to it via check_packet_ptr_add(). The purpose of this reg->id is twofold: i) it is used in find_good_pkt_pointers() for setting the allowed access range for regs with PTR_TO_PACKET of same id once verifier matched on data/data_end tests, and ii) for check_ptr_alignment() to determine that when not having efficient unaligned access and register with UNKNOWN_VALUE was added to PTR_TO_PACKET, that we're only allowed to access the content bytewise due to unknown unalignment. reg->id was never intended for PTR_TO_MAP_VALUE{,_ADJ} types and thus is always zero, the only marking is in PTR_TO_MAP_VALUE_OR_NULL that was added after 484611357c19 via 57a09bf0a416 ("bpf: Detect identical PTR_TO_MAP_VALUE_OR_NULL registers"). Above tests will fail for non-root environment due to prohibited pointer arithmetic. The fix splits register-type specific checks into their own helper instead of keeping them combined, so we don't run into a similar issue in future once we extend check_ptr_alignment() further and forget to add reg->type checks for some of the checks. Fixes: 484611357c19 ("bpf: allow access into map value arrays") Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Reviewed-by: Josef Bacik <jbacik@fb.com> Acked-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-03-31 02:24:03 +02:00
{
bpf: Track alignment of register values in the verifier. Currently if we add only constant values to pointers we can fully validate the alignment, and properly check if we need to reject the program on !CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS architectures. However, once an unknown value is introduced we only allow byte sized memory accesses which is too restrictive. Add logic to track the known minimum alignment of register values, and propagate this state into registers containing pointers. The most common paradigm that makes use of this new logic is computing the transport header using the IP header length field. For example: struct ethhdr *ep = skb->data; struct iphdr *iph = (struct iphdr *) (ep + 1); struct tcphdr *th; ... n = iph->ihl; th = ((void *)iph + (n * 4)); port = th->dest; The existing code will reject the load of th->dest because it cannot validate that the alignment is at least 2 once "n * 4" is added the the packet pointer. In the new code, the register holding "n * 4" will have a reg->min_align value of 4, because any value multiplied by 4 will be at least 4 byte aligned. (actually, the eBPF code emitted by the compiler in this case is most likely to use a shift left by 2, but the end result is identical) At the critical addition: th = ((void *)iph + (n * 4)); The register holding 'th' will start with reg->off value of 14. The pointer addition will transform that reg into something that looks like: reg->aux_off = 14 reg->aux_off_align = 4 Next, the verifier will look at the th->dest load, and it will see a load offset of 2, and first check: if (reg->aux_off_align % size) which will pass because aux_off_align is 4. reg_off will be computed: reg_off = reg->off; ... reg_off += reg->aux_off; plus we have off==2, and it will thus check: if ((NET_IP_ALIGN + reg_off + off) % size != 0) which evaluates to: if ((NET_IP_ALIGN + 14 + 2) % size != 0) On strict alignment architectures, NET_IP_ALIGN is 2, thus: if ((2 + 14 + 2) % size != 0) which passes. These pointer transformations and checks work regardless of whether the constant offset or the variable with known alignment is added first to the pointer register. Signed-off-by: David S. Miller <davem@davemloft.net> Acked-by: Daniel Borkmann <daniel@iogearbox.net>
2017-05-10 11:22:52 -07:00
if (strict && size != 1) {
bpf, verifier: fix rejection of unaligned access checks for map_value_adj Currently, the verifier doesn't reject unaligned access for map_value_adj register types. Commit 484611357c19 ("bpf: allow access into map value arrays") added logic to check_ptr_alignment() extending it from PTR_TO_PACKET to also PTR_TO_MAP_VALUE_ADJ, but for PTR_TO_MAP_VALUE_ADJ no enforcement is in place, because reg->id for PTR_TO_MAP_VALUE_ADJ reg types is never non-zero, meaning, we can cause BPF_H/_W/_DW-based unaligned access for architectures not supporting efficient unaligned access, and thus worst case could raise exceptions on some archs that are unable to correct the unaligned access or perform a different memory access to the actual requested one and such. i) Unaligned load with !CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS on r0 (map_value_adj): 0: (bf) r2 = r10 1: (07) r2 += -8 2: (7a) *(u64 *)(r2 +0) = 0 3: (18) r1 = 0x42533a00 5: (85) call bpf_map_lookup_elem#1 6: (15) if r0 == 0x0 goto pc+11 R0=map_value(ks=8,vs=48,id=0),min_value=0,max_value=0 R10=fp 7: (61) r1 = *(u32 *)(r0 +0) 8: (35) if r1 >= 0xb goto pc+9 R0=map_value(ks=8,vs=48,id=0),min_value=0,max_value=0 R1=inv,min_value=0,max_value=10 R10=fp 9: (07) r0 += 3 10: (79) r7 = *(u64 *)(r0 +0) R0=map_value_adj(ks=8,vs=48,id=0),min_value=3,max_value=3 R1=inv,min_value=0,max_value=10 R10=fp 11: (79) r7 = *(u64 *)(r0 +2) R0=map_value_adj(ks=8,vs=48,id=0),min_value=3,max_value=3 R1=inv,min_value=0,max_value=10 R7=inv R10=fp [...] ii) Unaligned store with !CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS on r0 (map_value_adj): 0: (bf) r2 = r10 1: (07) r2 += -8 2: (7a) *(u64 *)(r2 +0) = 0 3: (18) r1 = 0x4df16a00 5: (85) call bpf_map_lookup_elem#1 6: (15) if r0 == 0x0 goto pc+19 R0=map_value(ks=8,vs=48,id=0),min_value=0,max_value=0 R10=fp 7: (07) r0 += 3 8: (7a) *(u64 *)(r0 +0) = 42 R0=map_value_adj(ks=8,vs=48,id=0),min_value=3,max_value=3 R10=fp 9: (7a) *(u64 *)(r0 +2) = 43 R0=map_value_adj(ks=8,vs=48,id=0),min_value=3,max_value=3 R10=fp 10: (7a) *(u64 *)(r0 -2) = 44 R0=map_value_adj(ks=8,vs=48,id=0),min_value=3,max_value=3 R10=fp [...] For the PTR_TO_PACKET type, reg->id is initially zero when skb->data was fetched, it later receives a reg->id from env->id_gen generator once another register with UNKNOWN_VALUE type was added to it via check_packet_ptr_add(). The purpose of this reg->id is twofold: i) it is used in find_good_pkt_pointers() for setting the allowed access range for regs with PTR_TO_PACKET of same id once verifier matched on data/data_end tests, and ii) for check_ptr_alignment() to determine that when not having efficient unaligned access and register with UNKNOWN_VALUE was added to PTR_TO_PACKET, that we're only allowed to access the content bytewise due to unknown unalignment. reg->id was never intended for PTR_TO_MAP_VALUE{,_ADJ} types and thus is always zero, the only marking is in PTR_TO_MAP_VALUE_OR_NULL that was added after 484611357c19 via 57a09bf0a416 ("bpf: Detect identical PTR_TO_MAP_VALUE_OR_NULL registers"). Above tests will fail for non-root environment due to prohibited pointer arithmetic. The fix splits register-type specific checks into their own helper instead of keeping them combined, so we don't run into a similar issue in future once we extend check_ptr_alignment() further and forget to add reg->type checks for some of the checks. Fixes: 484611357c19 ("bpf: allow access into map value arrays") Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Reviewed-by: Josef Bacik <jbacik@fb.com> Acked-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-03-31 02:24:03 +02:00
verbose("Unknown alignment. Only byte-sized access allowed in value access.\n");
return -EACCES;
}
bpf: direct packet access Extended BPF carried over two instructions from classic to access packet data: LD_ABS and LD_IND. They're highly optimized in JITs, but due to their design they have to do length check for every access. When BPF is processing 20M packets per second single LD_ABS after JIT is consuming 3% cpu. Hence the need to optimize it further by amortizing the cost of 'off < skb_headlen' over multiple packet accesses. One option is to introduce two new eBPF instructions LD_ABS_DW and LD_IND_DW with similar usage as skb_header_pointer(). The kernel part for interpreter and x64 JIT was implemented in [1], but such new insns behave like old ld_abs and abort the program with 'return 0' if access is beyond linear data. Such hidden control flow is hard to workaround plus changing JITs and rolling out new llvm is incovenient. Therefore allow cls_bpf/act_bpf program access skb->data directly: int bpf_prog(struct __sk_buff *skb) { struct iphdr *ip; if (skb->data + sizeof(struct iphdr) + ETH_HLEN > skb->data_end) /* packet too small */ return 0; ip = skb->data + ETH_HLEN; /* access IP header fields with direct loads */ if (ip->version != 4 || ip->saddr == 0x7f000001) return 1; [...] } This solution avoids introduction of new instructions. llvm stays the same and all JITs stay the same, but verifier has to work extra hard to prove safety of the above program. For XDP the direct store instructions can be allowed as well. The skb->data is NET_IP_ALIGNED, so for common cases the verifier can check the alignment. The complex packet parsers where packet pointer is adjusted incrementally cannot be tracked for alignment, so allow byte access in such cases and misaligned access on architectures that define efficient_unaligned_access [1] https://git.kernel.org/cgit/linux/kernel/git/ast/bpf.git/?h=ld_abs_dw Signed-off-by: Alexei Starovoitov <ast@kernel.org> Acked-by: Daniel Borkmann <daniel@iogearbox.net> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-05-05 19:49:10 -07:00
return 0;
}
bpf, verifier: fix rejection of unaligned access checks for map_value_adj Currently, the verifier doesn't reject unaligned access for map_value_adj register types. Commit 484611357c19 ("bpf: allow access into map value arrays") added logic to check_ptr_alignment() extending it from PTR_TO_PACKET to also PTR_TO_MAP_VALUE_ADJ, but for PTR_TO_MAP_VALUE_ADJ no enforcement is in place, because reg->id for PTR_TO_MAP_VALUE_ADJ reg types is never non-zero, meaning, we can cause BPF_H/_W/_DW-based unaligned access for architectures not supporting efficient unaligned access, and thus worst case could raise exceptions on some archs that are unable to correct the unaligned access or perform a different memory access to the actual requested one and such. i) Unaligned load with !CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS on r0 (map_value_adj): 0: (bf) r2 = r10 1: (07) r2 += -8 2: (7a) *(u64 *)(r2 +0) = 0 3: (18) r1 = 0x42533a00 5: (85) call bpf_map_lookup_elem#1 6: (15) if r0 == 0x0 goto pc+11 R0=map_value(ks=8,vs=48,id=0),min_value=0,max_value=0 R10=fp 7: (61) r1 = *(u32 *)(r0 +0) 8: (35) if r1 >= 0xb goto pc+9 R0=map_value(ks=8,vs=48,id=0),min_value=0,max_value=0 R1=inv,min_value=0,max_value=10 R10=fp 9: (07) r0 += 3 10: (79) r7 = *(u64 *)(r0 +0) R0=map_value_adj(ks=8,vs=48,id=0),min_value=3,max_value=3 R1=inv,min_value=0,max_value=10 R10=fp 11: (79) r7 = *(u64 *)(r0 +2) R0=map_value_adj(ks=8,vs=48,id=0),min_value=3,max_value=3 R1=inv,min_value=0,max_value=10 R7=inv R10=fp [...] ii) Unaligned store with !CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS on r0 (map_value_adj): 0: (bf) r2 = r10 1: (07) r2 += -8 2: (7a) *(u64 *)(r2 +0) = 0 3: (18) r1 = 0x4df16a00 5: (85) call bpf_map_lookup_elem#1 6: (15) if r0 == 0x0 goto pc+19 R0=map_value(ks=8,vs=48,id=0),min_value=0,max_value=0 R10=fp 7: (07) r0 += 3 8: (7a) *(u64 *)(r0 +0) = 42 R0=map_value_adj(ks=8,vs=48,id=0),min_value=3,max_value=3 R10=fp 9: (7a) *(u64 *)(r0 +2) = 43 R0=map_value_adj(ks=8,vs=48,id=0),min_value=3,max_value=3 R10=fp 10: (7a) *(u64 *)(r0 -2) = 44 R0=map_value_adj(ks=8,vs=48,id=0),min_value=3,max_value=3 R10=fp [...] For the PTR_TO_PACKET type, reg->id is initially zero when skb->data was fetched, it later receives a reg->id from env->id_gen generator once another register with UNKNOWN_VALUE type was added to it via check_packet_ptr_add(). The purpose of this reg->id is twofold: i) it is used in find_good_pkt_pointers() for setting the allowed access range for regs with PTR_TO_PACKET of same id once verifier matched on data/data_end tests, and ii) for check_ptr_alignment() to determine that when not having efficient unaligned access and register with UNKNOWN_VALUE was added to PTR_TO_PACKET, that we're only allowed to access the content bytewise due to unknown unalignment. reg->id was never intended for PTR_TO_MAP_VALUE{,_ADJ} types and thus is always zero, the only marking is in PTR_TO_MAP_VALUE_OR_NULL that was added after 484611357c19 via 57a09bf0a416 ("bpf: Detect identical PTR_TO_MAP_VALUE_OR_NULL registers"). Above tests will fail for non-root environment due to prohibited pointer arithmetic. The fix splits register-type specific checks into their own helper instead of keeping them combined, so we don't run into a similar issue in future once we extend check_ptr_alignment() further and forget to add reg->type checks for some of the checks. Fixes: 484611357c19 ("bpf: allow access into map value arrays") Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Reviewed-by: Josef Bacik <jbacik@fb.com> Acked-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-03-31 02:24:03 +02:00
static int check_ptr_alignment(const struct bpf_reg_state *reg,
int off, int size)
{
bpf: Track alignment of register values in the verifier. Currently if we add only constant values to pointers we can fully validate the alignment, and properly check if we need to reject the program on !CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS architectures. However, once an unknown value is introduced we only allow byte sized memory accesses which is too restrictive. Add logic to track the known minimum alignment of register values, and propagate this state into registers containing pointers. The most common paradigm that makes use of this new logic is computing the transport header using the IP header length field. For example: struct ethhdr *ep = skb->data; struct iphdr *iph = (struct iphdr *) (ep + 1); struct tcphdr *th; ... n = iph->ihl; th = ((void *)iph + (n * 4)); port = th->dest; The existing code will reject the load of th->dest because it cannot validate that the alignment is at least 2 once "n * 4" is added the the packet pointer. In the new code, the register holding "n * 4" will have a reg->min_align value of 4, because any value multiplied by 4 will be at least 4 byte aligned. (actually, the eBPF code emitted by the compiler in this case is most likely to use a shift left by 2, but the end result is identical) At the critical addition: th = ((void *)iph + (n * 4)); The register holding 'th' will start with reg->off value of 14. The pointer addition will transform that reg into something that looks like: reg->aux_off = 14 reg->aux_off_align = 4 Next, the verifier will look at the th->dest load, and it will see a load offset of 2, and first check: if (reg->aux_off_align % size) which will pass because aux_off_align is 4. reg_off will be computed: reg_off = reg->off; ... reg_off += reg->aux_off; plus we have off==2, and it will thus check: if ((NET_IP_ALIGN + reg_off + off) % size != 0) which evaluates to: if ((NET_IP_ALIGN + 14 + 2) % size != 0) On strict alignment architectures, NET_IP_ALIGN is 2, thus: if ((2 + 14 + 2) % size != 0) which passes. These pointer transformations and checks work regardless of whether the constant offset or the variable with known alignment is added first to the pointer register. Signed-off-by: David S. Miller <davem@davemloft.net> Acked-by: Daniel Borkmann <daniel@iogearbox.net>
2017-05-10 11:22:52 -07:00
bool strict = false;
if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS))
strict = true;
bpf, verifier: fix rejection of unaligned access checks for map_value_adj Currently, the verifier doesn't reject unaligned access for map_value_adj register types. Commit 484611357c19 ("bpf: allow access into map value arrays") added logic to check_ptr_alignment() extending it from PTR_TO_PACKET to also PTR_TO_MAP_VALUE_ADJ, but for PTR_TO_MAP_VALUE_ADJ no enforcement is in place, because reg->id for PTR_TO_MAP_VALUE_ADJ reg types is never non-zero, meaning, we can cause BPF_H/_W/_DW-based unaligned access for architectures not supporting efficient unaligned access, and thus worst case could raise exceptions on some archs that are unable to correct the unaligned access or perform a different memory access to the actual requested one and such. i) Unaligned load with !CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS on r0 (map_value_adj): 0: (bf) r2 = r10 1: (07) r2 += -8 2: (7a) *(u64 *)(r2 +0) = 0 3: (18) r1 = 0x42533a00 5: (85) call bpf_map_lookup_elem#1 6: (15) if r0 == 0x0 goto pc+11 R0=map_value(ks=8,vs=48,id=0),min_value=0,max_value=0 R10=fp 7: (61) r1 = *(u32 *)(r0 +0) 8: (35) if r1 >= 0xb goto pc+9 R0=map_value(ks=8,vs=48,id=0),min_value=0,max_value=0 R1=inv,min_value=0,max_value=10 R10=fp 9: (07) r0 += 3 10: (79) r7 = *(u64 *)(r0 +0) R0=map_value_adj(ks=8,vs=48,id=0),min_value=3,max_value=3 R1=inv,min_value=0,max_value=10 R10=fp 11: (79) r7 = *(u64 *)(r0 +2) R0=map_value_adj(ks=8,vs=48,id=0),min_value=3,max_value=3 R1=inv,min_value=0,max_value=10 R7=inv R10=fp [...] ii) Unaligned store with !CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS on r0 (map_value_adj): 0: (bf) r2 = r10 1: (07) r2 += -8 2: (7a) *(u64 *)(r2 +0) = 0 3: (18) r1 = 0x4df16a00 5: (85) call bpf_map_lookup_elem#1 6: (15) if r0 == 0x0 goto pc+19 R0=map_value(ks=8,vs=48,id=0),min_value=0,max_value=0 R10=fp 7: (07) r0 += 3 8: (7a) *(u64 *)(r0 +0) = 42 R0=map_value_adj(ks=8,vs=48,id=0),min_value=3,max_value=3 R10=fp 9: (7a) *(u64 *)(r0 +2) = 43 R0=map_value_adj(ks=8,vs=48,id=0),min_value=3,max_value=3 R10=fp 10: (7a) *(u64 *)(r0 -2) = 44 R0=map_value_adj(ks=8,vs=48,id=0),min_value=3,max_value=3 R10=fp [...] For the PTR_TO_PACKET type, reg->id is initially zero when skb->data was fetched, it later receives a reg->id from env->id_gen generator once another register with UNKNOWN_VALUE type was added to it via check_packet_ptr_add(). The purpose of this reg->id is twofold: i) it is used in find_good_pkt_pointers() for setting the allowed access range for regs with PTR_TO_PACKET of same id once verifier matched on data/data_end tests, and ii) for check_ptr_alignment() to determine that when not having efficient unaligned access and register with UNKNOWN_VALUE was added to PTR_TO_PACKET, that we're only allowed to access the content bytewise due to unknown unalignment. reg->id was never intended for PTR_TO_MAP_VALUE{,_ADJ} types and thus is always zero, the only marking is in PTR_TO_MAP_VALUE_OR_NULL that was added after 484611357c19 via 57a09bf0a416 ("bpf: Detect identical PTR_TO_MAP_VALUE_OR_NULL registers"). Above tests will fail for non-root environment due to prohibited pointer arithmetic. The fix splits register-type specific checks into their own helper instead of keeping them combined, so we don't run into a similar issue in future once we extend check_ptr_alignment() further and forget to add reg->type checks for some of the checks. Fixes: 484611357c19 ("bpf: allow access into map value arrays") Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Reviewed-by: Josef Bacik <jbacik@fb.com> Acked-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-03-31 02:24:03 +02:00
switch (reg->type) {
case PTR_TO_PACKET:
bpf: Track alignment of register values in the verifier. Currently if we add only constant values to pointers we can fully validate the alignment, and properly check if we need to reject the program on !CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS architectures. However, once an unknown value is introduced we only allow byte sized memory accesses which is too restrictive. Add logic to track the known minimum alignment of register values, and propagate this state into registers containing pointers. The most common paradigm that makes use of this new logic is computing the transport header using the IP header length field. For example: struct ethhdr *ep = skb->data; struct iphdr *iph = (struct iphdr *) (ep + 1); struct tcphdr *th; ... n = iph->ihl; th = ((void *)iph + (n * 4)); port = th->dest; The existing code will reject the load of th->dest because it cannot validate that the alignment is at least 2 once "n * 4" is added the the packet pointer. In the new code, the register holding "n * 4" will have a reg->min_align value of 4, because any value multiplied by 4 will be at least 4 byte aligned. (actually, the eBPF code emitted by the compiler in this case is most likely to use a shift left by 2, but the end result is identical) At the critical addition: th = ((void *)iph + (n * 4)); The register holding 'th' will start with reg->off value of 14. The pointer addition will transform that reg into something that looks like: reg->aux_off = 14 reg->aux_off_align = 4 Next, the verifier will look at the th->dest load, and it will see a load offset of 2, and first check: if (reg->aux_off_align % size) which will pass because aux_off_align is 4. reg_off will be computed: reg_off = reg->off; ... reg_off += reg->aux_off; plus we have off==2, and it will thus check: if ((NET_IP_ALIGN + reg_off + off) % size != 0) which evaluates to: if ((NET_IP_ALIGN + 14 + 2) % size != 0) On strict alignment architectures, NET_IP_ALIGN is 2, thus: if ((2 + 14 + 2) % size != 0) which passes. These pointer transformations and checks work regardless of whether the constant offset or the variable with known alignment is added first to the pointer register. Signed-off-by: David S. Miller <davem@davemloft.net> Acked-by: Daniel Borkmann <daniel@iogearbox.net>
2017-05-10 11:22:52 -07:00
return check_pkt_ptr_alignment(reg, off, size, strict);
bpf, verifier: fix rejection of unaligned access checks for map_value_adj Currently, the verifier doesn't reject unaligned access for map_value_adj register types. Commit 484611357c19 ("bpf: allow access into map value arrays") added logic to check_ptr_alignment() extending it from PTR_TO_PACKET to also PTR_TO_MAP_VALUE_ADJ, but for PTR_TO_MAP_VALUE_ADJ no enforcement is in place, because reg->id for PTR_TO_MAP_VALUE_ADJ reg types is never non-zero, meaning, we can cause BPF_H/_W/_DW-based unaligned access for architectures not supporting efficient unaligned access, and thus worst case could raise exceptions on some archs that are unable to correct the unaligned access or perform a different memory access to the actual requested one and such. i) Unaligned load with !CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS on r0 (map_value_adj): 0: (bf) r2 = r10 1: (07) r2 += -8 2: (7a) *(u64 *)(r2 +0) = 0 3: (18) r1 = 0x42533a00 5: (85) call bpf_map_lookup_elem#1 6: (15) if r0 == 0x0 goto pc+11 R0=map_value(ks=8,vs=48,id=0),min_value=0,max_value=0 R10=fp 7: (61) r1 = *(u32 *)(r0 +0) 8: (35) if r1 >= 0xb goto pc+9 R0=map_value(ks=8,vs=48,id=0),min_value=0,max_value=0 R1=inv,min_value=0,max_value=10 R10=fp 9: (07) r0 += 3 10: (79) r7 = *(u64 *)(r0 +0) R0=map_value_adj(ks=8,vs=48,id=0),min_value=3,max_value=3 R1=inv,min_value=0,max_value=10 R10=fp 11: (79) r7 = *(u64 *)(r0 +2) R0=map_value_adj(ks=8,vs=48,id=0),min_value=3,max_value=3 R1=inv,min_value=0,max_value=10 R7=inv R10=fp [...] ii) Unaligned store with !CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS on r0 (map_value_adj): 0: (bf) r2 = r10 1: (07) r2 += -8 2: (7a) *(u64 *)(r2 +0) = 0 3: (18) r1 = 0x4df16a00 5: (85) call bpf_map_lookup_elem#1 6: (15) if r0 == 0x0 goto pc+19 R0=map_value(ks=8,vs=48,id=0),min_value=0,max_value=0 R10=fp 7: (07) r0 += 3 8: (7a) *(u64 *)(r0 +0) = 42 R0=map_value_adj(ks=8,vs=48,id=0),min_value=3,max_value=3 R10=fp 9: (7a) *(u64 *)(r0 +2) = 43 R0=map_value_adj(ks=8,vs=48,id=0),min_value=3,max_value=3 R10=fp 10: (7a) *(u64 *)(r0 -2) = 44 R0=map_value_adj(ks=8,vs=48,id=0),min_value=3,max_value=3 R10=fp [...] For the PTR_TO_PACKET type, reg->id is initially zero when skb->data was fetched, it later receives a reg->id from env->id_gen generator once another register with UNKNOWN_VALUE type was added to it via check_packet_ptr_add(). The purpose of this reg->id is twofold: i) it is used in find_good_pkt_pointers() for setting the allowed access range for regs with PTR_TO_PACKET of same id once verifier matched on data/data_end tests, and ii) for check_ptr_alignment() to determine that when not having efficient unaligned access and register with UNKNOWN_VALUE was added to PTR_TO_PACKET, that we're only allowed to access the content bytewise due to unknown unalignment. reg->id was never intended for PTR_TO_MAP_VALUE{,_ADJ} types and thus is always zero, the only marking is in PTR_TO_MAP_VALUE_OR_NULL that was added after 484611357c19 via 57a09bf0a416 ("bpf: Detect identical PTR_TO_MAP_VALUE_OR_NULL registers"). Above tests will fail for non-root environment due to prohibited pointer arithmetic. The fix splits register-type specific checks into their own helper instead of keeping them combined, so we don't run into a similar issue in future once we extend check_ptr_alignment() further and forget to add reg->type checks for some of the checks. Fixes: 484611357c19 ("bpf: allow access into map value arrays") Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Reviewed-by: Josef Bacik <jbacik@fb.com> Acked-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-03-31 02:24:03 +02:00
case PTR_TO_MAP_VALUE_ADJ:
bpf: Track alignment of register values in the verifier. Currently if we add only constant values to pointers we can fully validate the alignment, and properly check if we need to reject the program on !CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS architectures. However, once an unknown value is introduced we only allow byte sized memory accesses which is too restrictive. Add logic to track the known minimum alignment of register values, and propagate this state into registers containing pointers. The most common paradigm that makes use of this new logic is computing the transport header using the IP header length field. For example: struct ethhdr *ep = skb->data; struct iphdr *iph = (struct iphdr *) (ep + 1); struct tcphdr *th; ... n = iph->ihl; th = ((void *)iph + (n * 4)); port = th->dest; The existing code will reject the load of th->dest because it cannot validate that the alignment is at least 2 once "n * 4" is added the the packet pointer. In the new code, the register holding "n * 4" will have a reg->min_align value of 4, because any value multiplied by 4 will be at least 4 byte aligned. (actually, the eBPF code emitted by the compiler in this case is most likely to use a shift left by 2, but the end result is identical) At the critical addition: th = ((void *)iph + (n * 4)); The register holding 'th' will start with reg->off value of 14. The pointer addition will transform that reg into something that looks like: reg->aux_off = 14 reg->aux_off_align = 4 Next, the verifier will look at the th->dest load, and it will see a load offset of 2, and first check: if (reg->aux_off_align % size) which will pass because aux_off_align is 4. reg_off will be computed: reg_off = reg->off; ... reg_off += reg->aux_off; plus we have off==2, and it will thus check: if ((NET_IP_ALIGN + reg_off + off) % size != 0) which evaluates to: if ((NET_IP_ALIGN + 14 + 2) % size != 0) On strict alignment architectures, NET_IP_ALIGN is 2, thus: if ((2 + 14 + 2) % size != 0) which passes. These pointer transformations and checks work regardless of whether the constant offset or the variable with known alignment is added first to the pointer register. Signed-off-by: David S. Miller <davem@davemloft.net> Acked-by: Daniel Borkmann <daniel@iogearbox.net>
2017-05-10 11:22:52 -07:00
return check_val_ptr_alignment(reg, size, strict);
bpf, verifier: fix rejection of unaligned access checks for map_value_adj Currently, the verifier doesn't reject unaligned access for map_value_adj register types. Commit 484611357c19 ("bpf: allow access into map value arrays") added logic to check_ptr_alignment() extending it from PTR_TO_PACKET to also PTR_TO_MAP_VALUE_ADJ, but for PTR_TO_MAP_VALUE_ADJ no enforcement is in place, because reg->id for PTR_TO_MAP_VALUE_ADJ reg types is never non-zero, meaning, we can cause BPF_H/_W/_DW-based unaligned access for architectures not supporting efficient unaligned access, and thus worst case could raise exceptions on some archs that are unable to correct the unaligned access or perform a different memory access to the actual requested one and such. i) Unaligned load with !CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS on r0 (map_value_adj): 0: (bf) r2 = r10 1: (07) r2 += -8 2: (7a) *(u64 *)(r2 +0) = 0 3: (18) r1 = 0x42533a00 5: (85) call bpf_map_lookup_elem#1 6: (15) if r0 == 0x0 goto pc+11 R0=map_value(ks=8,vs=48,id=0),min_value=0,max_value=0 R10=fp 7: (61) r1 = *(u32 *)(r0 +0) 8: (35) if r1 >= 0xb goto pc+9 R0=map_value(ks=8,vs=48,id=0),min_value=0,max_value=0 R1=inv,min_value=0,max_value=10 R10=fp 9: (07) r0 += 3 10: (79) r7 = *(u64 *)(r0 +0) R0=map_value_adj(ks=8,vs=48,id=0),min_value=3,max_value=3 R1=inv,min_value=0,max_value=10 R10=fp 11: (79) r7 = *(u64 *)(r0 +2) R0=map_value_adj(ks=8,vs=48,id=0),min_value=3,max_value=3 R1=inv,min_value=0,max_value=10 R7=inv R10=fp [...] ii) Unaligned store with !CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS on r0 (map_value_adj): 0: (bf) r2 = r10 1: (07) r2 += -8 2: (7a) *(u64 *)(r2 +0) = 0 3: (18) r1 = 0x4df16a00 5: (85) call bpf_map_lookup_elem#1 6: (15) if r0 == 0x0 goto pc+19 R0=map_value(ks=8,vs=48,id=0),min_value=0,max_value=0 R10=fp 7: (07) r0 += 3 8: (7a) *(u64 *)(r0 +0) = 42 R0=map_value_adj(ks=8,vs=48,id=0),min_value=3,max_value=3 R10=fp 9: (7a) *(u64 *)(r0 +2) = 43 R0=map_value_adj(ks=8,vs=48,id=0),min_value=3,max_value=3 R10=fp 10: (7a) *(u64 *)(r0 -2) = 44 R0=map_value_adj(ks=8,vs=48,id=0),min_value=3,max_value=3 R10=fp [...] For the PTR_TO_PACKET type, reg->id is initially zero when skb->data was fetched, it later receives a reg->id from env->id_gen generator once another register with UNKNOWN_VALUE type was added to it via check_packet_ptr_add(). The purpose of this reg->id is twofold: i) it is used in find_good_pkt_pointers() for setting the allowed access range for regs with PTR_TO_PACKET of same id once verifier matched on data/data_end tests, and ii) for check_ptr_alignment() to determine that when not having efficient unaligned access and register with UNKNOWN_VALUE was added to PTR_TO_PACKET, that we're only allowed to access the content bytewise due to unknown unalignment. reg->id was never intended for PTR_TO_MAP_VALUE{,_ADJ} types and thus is always zero, the only marking is in PTR_TO_MAP_VALUE_OR_NULL that was added after 484611357c19 via 57a09bf0a416 ("bpf: Detect identical PTR_TO_MAP_VALUE_OR_NULL registers"). Above tests will fail for non-root environment due to prohibited pointer arithmetic. The fix splits register-type specific checks into their own helper instead of keeping them combined, so we don't run into a similar issue in future once we extend check_ptr_alignment() further and forget to add reg->type checks for some of the checks. Fixes: 484611357c19 ("bpf: allow access into map value arrays") Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Reviewed-by: Josef Bacik <jbacik@fb.com> Acked-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-03-31 02:24:03 +02:00
default:
if (off % size != 0) {
verbose("misaligned access off %d size %d\n",
off, size);
return -EACCES;
}
return 0;
}
}
bpf: verifier (add verifier core) This patch adds verifier core which simulates execution of every insn and records the state of registers and program stack. Every branch instruction seen during simulation is pushed into state stack. When verifier reaches BPF_EXIT, it pops the state from the stack and continues until it reaches BPF_EXIT again. For program: 1: bpf_mov r1, xxx 2: if (r1 == 0) goto 5 3: bpf_mov r0, 1 4: goto 6 5: bpf_mov r0, 2 6: bpf_exit The verifier will walk insns: 1, 2, 3, 4, 6 then it will pop the state recorded at insn#2 and will continue: 5, 6 This way it walks all possible paths through the program and checks all possible values of registers. While doing so, it checks for: - invalid instructions - uninitialized register access - uninitialized stack access - misaligned stack access - out of range stack access - invalid calling convention - instruction encoding is not using reserved fields Kernel subsystem configures the verifier with two callbacks: - bool (*is_valid_access)(int off, int size, enum bpf_access_type type); that provides information to the verifer which fields of 'ctx' are accessible (remember 'ctx' is the first argument to eBPF program) - const struct bpf_func_proto *(*get_func_proto)(enum bpf_func_id func_id); returns argument constraints of kernel helper functions that eBPF program may call, so that verifier can checks that R1-R5 types match the prototype More details in Documentation/networking/filter.txt and in kernel/bpf/verifier.c Signed-off-by: Alexei Starovoitov <ast@plumgrid.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-09-26 00:17:06 -07:00
/* check whether memory at (regno + off) is accessible for t = (read | write)
* if t==write, value_regno is a register which value is stored into memory
* if t==read, value_regno is a register which will receive the value from memory
* if t==write && value_regno==-1, some unknown value is stored into memory
* if t==read && value_regno==-1, don't care what we read from memory
*/
static int check_mem_access(struct bpf_verifier_env *env, u32 regno, int off,
bpf: verifier (add verifier core) This patch adds verifier core which simulates execution of every insn and records the state of registers and program stack. Every branch instruction seen during simulation is pushed into state stack. When verifier reaches BPF_EXIT, it pops the state from the stack and continues until it reaches BPF_EXIT again. For program: 1: bpf_mov r1, xxx 2: if (r1 == 0) goto 5 3: bpf_mov r0, 1 4: goto 6 5: bpf_mov r0, 2 6: bpf_exit The verifier will walk insns: 1, 2, 3, 4, 6 then it will pop the state recorded at insn#2 and will continue: 5, 6 This way it walks all possible paths through the program and checks all possible values of registers. While doing so, it checks for: - invalid instructions - uninitialized register access - uninitialized stack access - misaligned stack access - out of range stack access - invalid calling convention - instruction encoding is not using reserved fields Kernel subsystem configures the verifier with two callbacks: - bool (*is_valid_access)(int off, int size, enum bpf_access_type type); that provides information to the verifer which fields of 'ctx' are accessible (remember 'ctx' is the first argument to eBPF program) - const struct bpf_func_proto *(*get_func_proto)(enum bpf_func_id func_id); returns argument constraints of kernel helper functions that eBPF program may call, so that verifier can checks that R1-R5 types match the prototype More details in Documentation/networking/filter.txt and in kernel/bpf/verifier.c Signed-off-by: Alexei Starovoitov <ast@plumgrid.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-09-26 00:17:06 -07:00
int bpf_size, enum bpf_access_type t,
int value_regno)
{
struct bpf_verifier_state *state = &env->cur_state;
struct bpf_reg_state *reg = &state->regs[regno];
bpf: verifier (add verifier core) This patch adds verifier core which simulates execution of every insn and records the state of registers and program stack. Every branch instruction seen during simulation is pushed into state stack. When verifier reaches BPF_EXIT, it pops the state from the stack and continues until it reaches BPF_EXIT again. For program: 1: bpf_mov r1, xxx 2: if (r1 == 0) goto 5 3: bpf_mov r0, 1 4: goto 6 5: bpf_mov r0, 2 6: bpf_exit The verifier will walk insns: 1, 2, 3, 4, 6 then it will pop the state recorded at insn#2 and will continue: 5, 6 This way it walks all possible paths through the program and checks all possible values of registers. While doing so, it checks for: - invalid instructions - uninitialized register access - uninitialized stack access - misaligned stack access - out of range stack access - invalid calling convention - instruction encoding is not using reserved fields Kernel subsystem configures the verifier with two callbacks: - bool (*is_valid_access)(int off, int size, enum bpf_access_type type); that provides information to the verifer which fields of 'ctx' are accessible (remember 'ctx' is the first argument to eBPF program) - const struct bpf_func_proto *(*get_func_proto)(enum bpf_func_id func_id); returns argument constraints of kernel helper functions that eBPF program may call, so that verifier can checks that R1-R5 types match the prototype More details in Documentation/networking/filter.txt and in kernel/bpf/verifier.c Signed-off-by: Alexei Starovoitov <ast@plumgrid.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-09-26 00:17:06 -07:00
int size, err = 0;
if (reg->type == PTR_TO_STACK)
off += reg->imm;
bpf: verifier (add verifier core) This patch adds verifier core which simulates execution of every insn and records the state of registers and program stack. Every branch instruction seen during simulation is pushed into state stack. When verifier reaches BPF_EXIT, it pops the state from the stack and continues until it reaches BPF_EXIT again. For program: 1: bpf_mov r1, xxx 2: if (r1 == 0) goto 5 3: bpf_mov r0, 1 4: goto 6 5: bpf_mov r0, 2 6: bpf_exit The verifier will walk insns: 1, 2, 3, 4, 6 then it will pop the state recorded at insn#2 and will continue: 5, 6 This way it walks all possible paths through the program and checks all possible values of registers. While doing so, it checks for: - invalid instructions - uninitialized register access - uninitialized stack access - misaligned stack access - out of range stack access - invalid calling convention - instruction encoding is not using reserved fields Kernel subsystem configures the verifier with two callbacks: - bool (*is_valid_access)(int off, int size, enum bpf_access_type type); that provides information to the verifer which fields of 'ctx' are accessible (remember 'ctx' is the first argument to eBPF program) - const struct bpf_func_proto *(*get_func_proto)(enum bpf_func_id func_id); returns argument constraints of kernel helper functions that eBPF program may call, so that verifier can checks that R1-R5 types match the prototype More details in Documentation/networking/filter.txt and in kernel/bpf/verifier.c Signed-off-by: Alexei Starovoitov <ast@plumgrid.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-09-26 00:17:06 -07:00
size = bpf_size_to_bytes(bpf_size);
if (size < 0)
return size;
bpf, verifier: fix rejection of unaligned access checks for map_value_adj Currently, the verifier doesn't reject unaligned access for map_value_adj register types. Commit 484611357c19 ("bpf: allow access into map value arrays") added logic to check_ptr_alignment() extending it from PTR_TO_PACKET to also PTR_TO_MAP_VALUE_ADJ, but for PTR_TO_MAP_VALUE_ADJ no enforcement is in place, because reg->id for PTR_TO_MAP_VALUE_ADJ reg types is never non-zero, meaning, we can cause BPF_H/_W/_DW-based unaligned access for architectures not supporting efficient unaligned access, and thus worst case could raise exceptions on some archs that are unable to correct the unaligned access or perform a different memory access to the actual requested one and such. i) Unaligned load with !CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS on r0 (map_value_adj): 0: (bf) r2 = r10 1: (07) r2 += -8 2: (7a) *(u64 *)(r2 +0) = 0 3: (18) r1 = 0x42533a00 5: (85) call bpf_map_lookup_elem#1 6: (15) if r0 == 0x0 goto pc+11 R0=map_value(ks=8,vs=48,id=0),min_value=0,max_value=0 R10=fp 7: (61) r1 = *(u32 *)(r0 +0) 8: (35) if r1 >= 0xb goto pc+9 R0=map_value(ks=8,vs=48,id=0),min_value=0,max_value=0 R1=inv,min_value=0,max_value=10 R10=fp 9: (07) r0 += 3 10: (79) r7 = *(u64 *)(r0 +0) R0=map_value_adj(ks=8,vs=48,id=0),min_value=3,max_value=3 R1=inv,min_value=0,max_value=10 R10=fp 11: (79) r7 = *(u64 *)(r0 +2) R0=map_value_adj(ks=8,vs=48,id=0),min_value=3,max_value=3 R1=inv,min_value=0,max_value=10 R7=inv R10=fp [...] ii) Unaligned store with !CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS on r0 (map_value_adj): 0: (bf) r2 = r10 1: (07) r2 += -8 2: (7a) *(u64 *)(r2 +0) = 0 3: (18) r1 = 0x4df16a00 5: (85) call bpf_map_lookup_elem#1 6: (15) if r0 == 0x0 goto pc+19 R0=map_value(ks=8,vs=48,id=0),min_value=0,max_value=0 R10=fp 7: (07) r0 += 3 8: (7a) *(u64 *)(r0 +0) = 42 R0=map_value_adj(ks=8,vs=48,id=0),min_value=3,max_value=3 R10=fp 9: (7a) *(u64 *)(r0 +2) = 43 R0=map_value_adj(ks=8,vs=48,id=0),min_value=3,max_value=3 R10=fp 10: (7a) *(u64 *)(r0 -2) = 44 R0=map_value_adj(ks=8,vs=48,id=0),min_value=3,max_value=3 R10=fp [...] For the PTR_TO_PACKET type, reg->id is initially zero when skb->data was fetched, it later receives a reg->id from env->id_gen generator once another register with UNKNOWN_VALUE type was added to it via check_packet_ptr_add(). The purpose of this reg->id is twofold: i) it is used in find_good_pkt_pointers() for setting the allowed access range for regs with PTR_TO_PACKET of same id once verifier matched on data/data_end tests, and ii) for check_ptr_alignment() to determine that when not having efficient unaligned access and register with UNKNOWN_VALUE was added to PTR_TO_PACKET, that we're only allowed to access the content bytewise due to unknown unalignment. reg->id was never intended for PTR_TO_MAP_VALUE{,_ADJ} types and thus is always zero, the only marking is in PTR_TO_MAP_VALUE_OR_NULL that was added after 484611357c19 via 57a09bf0a416 ("bpf: Detect identical PTR_TO_MAP_VALUE_OR_NULL registers"). Above tests will fail for non-root environment due to prohibited pointer arithmetic. The fix splits register-type specific checks into their own helper instead of keeping them combined, so we don't run into a similar issue in future once we extend check_ptr_alignment() further and forget to add reg->type checks for some of the checks. Fixes: 484611357c19 ("bpf: allow access into map value arrays") Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Reviewed-by: Josef Bacik <jbacik@fb.com> Acked-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-03-31 02:24:03 +02:00
err = check_ptr_alignment(reg, off, size);
bpf: direct packet access Extended BPF carried over two instructions from classic to access packet data: LD_ABS and LD_IND. They're highly optimized in JITs, but due to their design they have to do length check for every access. When BPF is processing 20M packets per second single LD_ABS after JIT is consuming 3% cpu. Hence the need to optimize it further by amortizing the cost of 'off < skb_headlen' over multiple packet accesses. One option is to introduce two new eBPF instructions LD_ABS_DW and LD_IND_DW with similar usage as skb_header_pointer(). The kernel part for interpreter and x64 JIT was implemented in [1], but such new insns behave like old ld_abs and abort the program with 'return 0' if access is beyond linear data. Such hidden control flow is hard to workaround plus changing JITs and rolling out new llvm is incovenient. Therefore allow cls_bpf/act_bpf program access skb->data directly: int bpf_prog(struct __sk_buff *skb) { struct iphdr *ip; if (skb->data + sizeof(struct iphdr) + ETH_HLEN > skb->data_end) /* packet too small */ return 0; ip = skb->data + ETH_HLEN; /* access IP header fields with direct loads */ if (ip->version != 4 || ip->saddr == 0x7f000001) return 1; [...] } This solution avoids introduction of new instructions. llvm stays the same and all JITs stay the same, but verifier has to work extra hard to prove safety of the above program. For XDP the direct store instructions can be allowed as well. The skb->data is NET_IP_ALIGNED, so for common cases the verifier can check the alignment. The complex packet parsers where packet pointer is adjusted incrementally cannot be tracked for alignment, so allow byte access in such cases and misaligned access on architectures that define efficient_unaligned_access [1] https://git.kernel.org/cgit/linux/kernel/git/ast/bpf.git/?h=ld_abs_dw Signed-off-by: Alexei Starovoitov <ast@kernel.org> Acked-by: Daniel Borkmann <daniel@iogearbox.net> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-05-05 19:49:10 -07:00
if (err)
return err;
bpf: verifier (add verifier core) This patch adds verifier core which simulates execution of every insn and records the state of registers and program stack. Every branch instruction seen during simulation is pushed into state stack. When verifier reaches BPF_EXIT, it pops the state from the stack and continues until it reaches BPF_EXIT again. For program: 1: bpf_mov r1, xxx 2: if (r1 == 0) goto 5 3: bpf_mov r0, 1 4: goto 6 5: bpf_mov r0, 2 6: bpf_exit The verifier will walk insns: 1, 2, 3, 4, 6 then it will pop the state recorded at insn#2 and will continue: 5, 6 This way it walks all possible paths through the program and checks all possible values of registers. While doing so, it checks for: - invalid instructions - uninitialized register access - uninitialized stack access - misaligned stack access - out of range stack access - invalid calling convention - instruction encoding is not using reserved fields Kernel subsystem configures the verifier with two callbacks: - bool (*is_valid_access)(int off, int size, enum bpf_access_type type); that provides information to the verifer which fields of 'ctx' are accessible (remember 'ctx' is the first argument to eBPF program) - const struct bpf_func_proto *(*get_func_proto)(enum bpf_func_id func_id); returns argument constraints of kernel helper functions that eBPF program may call, so that verifier can checks that R1-R5 types match the prototype More details in Documentation/networking/filter.txt and in kernel/bpf/verifier.c Signed-off-by: Alexei Starovoitov <ast@plumgrid.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-09-26 00:17:06 -07:00
if (reg->type == PTR_TO_MAP_VALUE ||
reg->type == PTR_TO_MAP_VALUE_ADJ) {
bpf: enable non-root eBPF programs In order to let unprivileged users load and execute eBPF programs teach verifier to prevent pointer leaks. Verifier will prevent - any arithmetic on pointers (except R10+Imm which is used to compute stack addresses) - comparison of pointers (except if (map_value_ptr == 0) ... ) - passing pointers to helper functions - indirectly passing pointers in stack to helper functions - returning pointer from bpf program - storing pointers into ctx or maps Spill/fill of pointers into stack is allowed, but mangling of pointers stored in the stack or reading them byte by byte is not. Within bpf programs the pointers do exist, since programs need to be able to access maps, pass skb pointer to LD_ABS insns, etc but programs cannot pass such pointer values to the outside or obfuscate them. Only allow BPF_PROG_TYPE_SOCKET_FILTER unprivileged programs, so that socket filters (tcpdump), af_packet (quic acceleration) and future kcm can use it. tracing and tc cls/act program types still require root permissions, since tracing actually needs to be able to see all kernel pointers and tc is for root only. For example, the following unprivileged socket filter program is allowed: int bpf_prog1(struct __sk_buff *skb) { u32 index = load_byte(skb, ETH_HLEN + offsetof(struct iphdr, protocol)); u64 *value = bpf_map_lookup_elem(&my_map, &index); if (value) *value += skb->len; return 0; } but the following program is not: int bpf_prog1(struct __sk_buff *skb) { u32 index = load_byte(skb, ETH_HLEN + offsetof(struct iphdr, protocol)); u64 *value = bpf_map_lookup_elem(&my_map, &index); if (value) *value += (u64) skb; return 0; } since it would leak the kernel address into the map. Unprivileged socket filter bpf programs have access to the following helper functions: - map lookup/update/delete (but they cannot store kernel pointers into them) - get_random (it's already exposed to unprivileged user space) - get_smp_processor_id - tail_call into another socket filter program - ktime_get_ns The feature is controlled by sysctl kernel.unprivileged_bpf_disabled. This toggle defaults to off (0), but can be set true (1). Once true, bpf programs and maps cannot be accessed from unprivileged process, and the toggle cannot be set back to false. Signed-off-by: Alexei Starovoitov <ast@plumgrid.com> Reviewed-by: Kees Cook <keescook@chromium.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2015-10-07 22:23:21 -07:00
if (t == BPF_WRITE && value_regno >= 0 &&
is_pointer_value(env, value_regno)) {
verbose("R%d leaks addr into map\n", value_regno);
return -EACCES;
}
if (reg->type == PTR_TO_MAP_VALUE_ADJ)
err = check_map_access_adj(env, regno, off, size);
else
err = check_map_access(env, regno, off, size);
bpf: verifier (add verifier core) This patch adds verifier core which simulates execution of every insn and records the state of registers and program stack. Every branch instruction seen during simulation is pushed into state stack. When verifier reaches BPF_EXIT, it pops the state from the stack and continues until it reaches BPF_EXIT again. For program: 1: bpf_mov r1, xxx 2: if (r1 == 0) goto 5 3: bpf_mov r0, 1 4: goto 6 5: bpf_mov r0, 2 6: bpf_exit The verifier will walk insns: 1, 2, 3, 4, 6 then it will pop the state recorded at insn#2 and will continue: 5, 6 This way it walks all possible paths through the program and checks all possible values of registers. While doing so, it checks for: - invalid instructions - uninitialized register access - uninitialized stack access - misaligned stack access - out of range stack access - invalid calling convention - instruction encoding is not using reserved fields Kernel subsystem configures the verifier with two callbacks: - bool (*is_valid_access)(int off, int size, enum bpf_access_type type); that provides information to the verifer which fields of 'ctx' are accessible (remember 'ctx' is the first argument to eBPF program) - const struct bpf_func_proto *(*get_func_proto)(enum bpf_func_id func_id); returns argument constraints of kernel helper functions that eBPF program may call, so that verifier can checks that R1-R5 types match the prototype More details in Documentation/networking/filter.txt and in kernel/bpf/verifier.c Signed-off-by: Alexei Starovoitov <ast@plumgrid.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-09-26 00:17:06 -07:00
if (!err && t == BPF_READ && value_regno >= 0)
mark_reg_unknown_value_and_range(state->regs,
value_regno);
bpf: verifier (add verifier core) This patch adds verifier core which simulates execution of every insn and records the state of registers and program stack. Every branch instruction seen during simulation is pushed into state stack. When verifier reaches BPF_EXIT, it pops the state from the stack and continues until it reaches BPF_EXIT again. For program: 1: bpf_mov r1, xxx 2: if (r1 == 0) goto 5 3: bpf_mov r0, 1 4: goto 6 5: bpf_mov r0, 2 6: bpf_exit The verifier will walk insns: 1, 2, 3, 4, 6 then it will pop the state recorded at insn#2 and will continue: 5, 6 This way it walks all possible paths through the program and checks all possible values of registers. While doing so, it checks for: - invalid instructions - uninitialized register access - uninitialized stack access - misaligned stack access - out of range stack access - invalid calling convention - instruction encoding is not using reserved fields Kernel subsystem configures the verifier with two callbacks: - bool (*is_valid_access)(int off, int size, enum bpf_access_type type); that provides information to the verifer which fields of 'ctx' are accessible (remember 'ctx' is the first argument to eBPF program) - const struct bpf_func_proto *(*get_func_proto)(enum bpf_func_id func_id); returns argument constraints of kernel helper functions that eBPF program may call, so that verifier can checks that R1-R5 types match the prototype More details in Documentation/networking/filter.txt and in kernel/bpf/verifier.c Signed-off-by: Alexei Starovoitov <ast@plumgrid.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-09-26 00:17:06 -07:00
} else if (reg->type == PTR_TO_CTX) {
enum bpf_reg_type reg_type = UNKNOWN_VALUE;
bpf: enable non-root eBPF programs In order to let unprivileged users load and execute eBPF programs teach verifier to prevent pointer leaks. Verifier will prevent - any arithmetic on pointers (except R10+Imm which is used to compute stack addresses) - comparison of pointers (except if (map_value_ptr == 0) ... ) - passing pointers to helper functions - indirectly passing pointers in stack to helper functions - returning pointer from bpf program - storing pointers into ctx or maps Spill/fill of pointers into stack is allowed, but mangling of pointers stored in the stack or reading them byte by byte is not. Within bpf programs the pointers do exist, since programs need to be able to access maps, pass skb pointer to LD_ABS insns, etc but programs cannot pass such pointer values to the outside or obfuscate them. Only allow BPF_PROG_TYPE_SOCKET_FILTER unprivileged programs, so that socket filters (tcpdump), af_packet (quic acceleration) and future kcm can use it. tracing and tc cls/act program types still require root permissions, since tracing actually needs to be able to see all kernel pointers and tc is for root only. For example, the following unprivileged socket filter program is allowed: int bpf_prog1(struct __sk_buff *skb) { u32 index = load_byte(skb, ETH_HLEN + offsetof(struct iphdr, protocol)); u64 *value = bpf_map_lookup_elem(&my_map, &index); if (value) *value += skb->len; return 0; } but the following program is not: int bpf_prog1(struct __sk_buff *skb) { u32 index = load_byte(skb, ETH_HLEN + offsetof(struct iphdr, protocol)); u64 *value = bpf_map_lookup_elem(&my_map, &index); if (value) *value += (u64) skb; return 0; } since it would leak the kernel address into the map. Unprivileged socket filter bpf programs have access to the following helper functions: - map lookup/update/delete (but they cannot store kernel pointers into them) - get_random (it's already exposed to unprivileged user space) - get_smp_processor_id - tail_call into another socket filter program - ktime_get_ns The feature is controlled by sysctl kernel.unprivileged_bpf_disabled. This toggle defaults to off (0), but can be set true (1). Once true, bpf programs and maps cannot be accessed from unprivileged process, and the toggle cannot be set back to false. Signed-off-by: Alexei Starovoitov <ast@plumgrid.com> Reviewed-by: Kees Cook <keescook@chromium.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2015-10-07 22:23:21 -07:00
if (t == BPF_WRITE && value_regno >= 0 &&
is_pointer_value(env, value_regno)) {
verbose("R%d leaks addr into ctx\n", value_regno);
return -EACCES;
}
err = check_ctx_access(env, off, size, t, &reg_type);
bpf: direct packet access Extended BPF carried over two instructions from classic to access packet data: LD_ABS and LD_IND. They're highly optimized in JITs, but due to their design they have to do length check for every access. When BPF is processing 20M packets per second single LD_ABS after JIT is consuming 3% cpu. Hence the need to optimize it further by amortizing the cost of 'off < skb_headlen' over multiple packet accesses. One option is to introduce two new eBPF instructions LD_ABS_DW and LD_IND_DW with similar usage as skb_header_pointer(). The kernel part for interpreter and x64 JIT was implemented in [1], but such new insns behave like old ld_abs and abort the program with 'return 0' if access is beyond linear data. Such hidden control flow is hard to workaround plus changing JITs and rolling out new llvm is incovenient. Therefore allow cls_bpf/act_bpf program access skb->data directly: int bpf_prog(struct __sk_buff *skb) { struct iphdr *ip; if (skb->data + sizeof(struct iphdr) + ETH_HLEN > skb->data_end) /* packet too small */ return 0; ip = skb->data + ETH_HLEN; /* access IP header fields with direct loads */ if (ip->version != 4 || ip->saddr == 0x7f000001) return 1; [...] } This solution avoids introduction of new instructions. llvm stays the same and all JITs stay the same, but verifier has to work extra hard to prove safety of the above program. For XDP the direct store instructions can be allowed as well. The skb->data is NET_IP_ALIGNED, so for common cases the verifier can check the alignment. The complex packet parsers where packet pointer is adjusted incrementally cannot be tracked for alignment, so allow byte access in such cases and misaligned access on architectures that define efficient_unaligned_access [1] https://git.kernel.org/cgit/linux/kernel/git/ast/bpf.git/?h=ld_abs_dw Signed-off-by: Alexei Starovoitov <ast@kernel.org> Acked-by: Daniel Borkmann <daniel@iogearbox.net> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-05-05 19:49:10 -07:00
if (!err && t == BPF_READ && value_regno >= 0) {
mark_reg_unknown_value_and_range(state->regs,
value_regno);
/* note that reg.[id|off|range] == 0 */
state->regs[value_regno].type = reg_type;
bpf: Track alignment of register values in the verifier. Currently if we add only constant values to pointers we can fully validate the alignment, and properly check if we need to reject the program on !CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS architectures. However, once an unknown value is introduced we only allow byte sized memory accesses which is too restrictive. Add logic to track the known minimum alignment of register values, and propagate this state into registers containing pointers. The most common paradigm that makes use of this new logic is computing the transport header using the IP header length field. For example: struct ethhdr *ep = skb->data; struct iphdr *iph = (struct iphdr *) (ep + 1); struct tcphdr *th; ... n = iph->ihl; th = ((void *)iph + (n * 4)); port = th->dest; The existing code will reject the load of th->dest because it cannot validate that the alignment is at least 2 once "n * 4" is added the the packet pointer. In the new code, the register holding "n * 4" will have a reg->min_align value of 4, because any value multiplied by 4 will be at least 4 byte aligned. (actually, the eBPF code emitted by the compiler in this case is most likely to use a shift left by 2, but the end result is identical) At the critical addition: th = ((void *)iph + (n * 4)); The register holding 'th' will start with reg->off value of 14. The pointer addition will transform that reg into something that looks like: reg->aux_off = 14 reg->aux_off_align = 4 Next, the verifier will look at the th->dest load, and it will see a load offset of 2, and first check: if (reg->aux_off_align % size) which will pass because aux_off_align is 4. reg_off will be computed: reg_off = reg->off; ... reg_off += reg->aux_off; plus we have off==2, and it will thus check: if ((NET_IP_ALIGN + reg_off + off) % size != 0) which evaluates to: if ((NET_IP_ALIGN + 14 + 2) % size != 0) On strict alignment architectures, NET_IP_ALIGN is 2, thus: if ((2 + 14 + 2) % size != 0) which passes. These pointer transformations and checks work regardless of whether the constant offset or the variable with known alignment is added first to the pointer register. Signed-off-by: David S. Miller <davem@davemloft.net> Acked-by: Daniel Borkmann <daniel@iogearbox.net>
2017-05-10 11:22:52 -07:00
state->regs[value_regno].aux_off = 0;
state->regs[value_regno].aux_off_align = 0;
bpf: direct packet access Extended BPF carried over two instructions from classic to access packet data: LD_ABS and LD_IND. They're highly optimized in JITs, but due to their design they have to do length check for every access. When BPF is processing 20M packets per second single LD_ABS after JIT is consuming 3% cpu. Hence the need to optimize it further by amortizing the cost of 'off < skb_headlen' over multiple packet accesses. One option is to introduce two new eBPF instructions LD_ABS_DW and LD_IND_DW with similar usage as skb_header_pointer(). The kernel part for interpreter and x64 JIT was implemented in [1], but such new insns behave like old ld_abs and abort the program with 'return 0' if access is beyond linear data. Such hidden control flow is hard to workaround plus changing JITs and rolling out new llvm is incovenient. Therefore allow cls_bpf/act_bpf program access skb->data directly: int bpf_prog(struct __sk_buff *skb) { struct iphdr *ip; if (skb->data + sizeof(struct iphdr) + ETH_HLEN > skb->data_end) /* packet too small */ return 0; ip = skb->data + ETH_HLEN; /* access IP header fields with direct loads */ if (ip->version != 4 || ip->saddr == 0x7f000001) return 1; [...] } This solution avoids introduction of new instructions. llvm stays the same and all JITs stay the same, but verifier has to work extra hard to prove safety of the above program. For XDP the direct store instructions can be allowed as well. The skb->data is NET_IP_ALIGNED, so for common cases the verifier can check the alignment. The complex packet parsers where packet pointer is adjusted incrementally cannot be tracked for alignment, so allow byte access in such cases and misaligned access on architectures that define efficient_unaligned_access [1] https://git.kernel.org/cgit/linux/kernel/git/ast/bpf.git/?h=ld_abs_dw Signed-off-by: Alexei Starovoitov <ast@kernel.org> Acked-by: Daniel Borkmann <daniel@iogearbox.net> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-05-05 19:49:10 -07:00
}
bpf: verifier (add verifier core) This patch adds verifier core which simulates execution of every insn and records the state of registers and program stack. Every branch instruction seen during simulation is pushed into state stack. When verifier reaches BPF_EXIT, it pops the state from the stack and continues until it reaches BPF_EXIT again. For program: 1: bpf_mov r1, xxx 2: if (r1 == 0) goto 5 3: bpf_mov r0, 1 4: goto 6 5: bpf_mov r0, 2 6: bpf_exit The verifier will walk insns: 1, 2, 3, 4, 6 then it will pop the state recorded at insn#2 and will continue: 5, 6 This way it walks all possible paths through the program and checks all possible values of registers. While doing so, it checks for: - invalid instructions - uninitialized register access - uninitialized stack access - misaligned stack access - out of range stack access - invalid calling convention - instruction encoding is not using reserved fields Kernel subsystem configures the verifier with two callbacks: - bool (*is_valid_access)(int off, int size, enum bpf_access_type type); that provides information to the verifer which fields of 'ctx' are accessible (remember 'ctx' is the first argument to eBPF program) - const struct bpf_func_proto *(*get_func_proto)(enum bpf_func_id func_id); returns argument constraints of kernel helper functions that eBPF program may call, so that verifier can checks that R1-R5 types match the prototype More details in Documentation/networking/filter.txt and in kernel/bpf/verifier.c Signed-off-by: Alexei Starovoitov <ast@plumgrid.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-09-26 00:17:06 -07:00
} else if (reg->type == FRAME_PTR || reg->type == PTR_TO_STACK) {
bpf: verifier (add verifier core) This patch adds verifier core which simulates execution of every insn and records the state of registers and program stack. Every branch instruction seen during simulation is pushed into state stack. When verifier reaches BPF_EXIT, it pops the state from the stack and continues until it reaches BPF_EXIT again. For program: 1: bpf_mov r1, xxx 2: if (r1 == 0) goto 5 3: bpf_mov r0, 1 4: goto 6 5: bpf_mov r0, 2 6: bpf_exit The verifier will walk insns: 1, 2, 3, 4, 6 then it will pop the state recorded at insn#2 and will continue: 5, 6 This way it walks all possible paths through the program and checks all possible values of registers. While doing so, it checks for: - invalid instructions - uninitialized register access - uninitialized stack access - misaligned stack access - out of range stack access - invalid calling convention - instruction encoding is not using reserved fields Kernel subsystem configures the verifier with two callbacks: - bool (*is_valid_access)(int off, int size, enum bpf_access_type type); that provides information to the verifer which fields of 'ctx' are accessible (remember 'ctx' is the first argument to eBPF program) - const struct bpf_func_proto *(*get_func_proto)(enum bpf_func_id func_id); returns argument constraints of kernel helper functions that eBPF program may call, so that verifier can checks that R1-R5 types match the prototype More details in Documentation/networking/filter.txt and in kernel/bpf/verifier.c Signed-off-by: Alexei Starovoitov <ast@plumgrid.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-09-26 00:17:06 -07:00
if (off >= 0 || off < -MAX_BPF_STACK) {
verbose("invalid stack off=%d size=%d\n", off, size);
return -EACCES;
}
bpf: enable non-root eBPF programs In order to let unprivileged users load and execute eBPF programs teach verifier to prevent pointer leaks. Verifier will prevent - any arithmetic on pointers (except R10+Imm which is used to compute stack addresses) - comparison of pointers (except if (map_value_ptr == 0) ... ) - passing pointers to helper functions - indirectly passing pointers in stack to helper functions - returning pointer from bpf program - storing pointers into ctx or maps Spill/fill of pointers into stack is allowed, but mangling of pointers stored in the stack or reading them byte by byte is not. Within bpf programs the pointers do exist, since programs need to be able to access maps, pass skb pointer to LD_ABS insns, etc but programs cannot pass such pointer values to the outside or obfuscate them. Only allow BPF_PROG_TYPE_SOCKET_FILTER unprivileged programs, so that socket filters (tcpdump), af_packet (quic acceleration) and future kcm can use it. tracing and tc cls/act program types still require root permissions, since tracing actually needs to be able to see all kernel pointers and tc is for root only. For example, the following unprivileged socket filter program is allowed: int bpf_prog1(struct __sk_buff *skb) { u32 index = load_byte(skb, ETH_HLEN + offsetof(struct iphdr, protocol)); u64 *value = bpf_map_lookup_elem(&my_map, &index); if (value) *value += skb->len; return 0; } but the following program is not: int bpf_prog1(struct __sk_buff *skb) { u32 index = load_byte(skb, ETH_HLEN + offsetof(struct iphdr, protocol)); u64 *value = bpf_map_lookup_elem(&my_map, &index); if (value) *value += (u64) skb; return 0; } since it would leak the kernel address into the map. Unprivileged socket filter bpf programs have access to the following helper functions: - map lookup/update/delete (but they cannot store kernel pointers into them) - get_random (it's already exposed to unprivileged user space) - get_smp_processor_id - tail_call into another socket filter program - ktime_get_ns The feature is controlled by sysctl kernel.unprivileged_bpf_disabled. This toggle defaults to off (0), but can be set true (1). Once true, bpf programs and maps cannot be accessed from unprivileged process, and the toggle cannot be set back to false. Signed-off-by: Alexei Starovoitov <ast@plumgrid.com> Reviewed-by: Kees Cook <keescook@chromium.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2015-10-07 22:23:21 -07:00
if (t == BPF_WRITE) {
if (!env->allow_ptr_leaks &&
state->stack_slot_type[MAX_BPF_STACK + off] == STACK_SPILL &&
size != BPF_REG_SIZE) {
verbose("attempt to corrupt spilled pointer on stack\n");
return -EACCES;
}
bpf: verifier (add verifier core) This patch adds verifier core which simulates execution of every insn and records the state of registers and program stack. Every branch instruction seen during simulation is pushed into state stack. When verifier reaches BPF_EXIT, it pops the state from the stack and continues until it reaches BPF_EXIT again. For program: 1: bpf_mov r1, xxx 2: if (r1 == 0) goto 5 3: bpf_mov r0, 1 4: goto 6 5: bpf_mov r0, 2 6: bpf_exit The verifier will walk insns: 1, 2, 3, 4, 6 then it will pop the state recorded at insn#2 and will continue: 5, 6 This way it walks all possible paths through the program and checks all possible values of registers. While doing so, it checks for: - invalid instructions - uninitialized register access - uninitialized stack access - misaligned stack access - out of range stack access - invalid calling convention - instruction encoding is not using reserved fields Kernel subsystem configures the verifier with two callbacks: - bool (*is_valid_access)(int off, int size, enum bpf_access_type type); that provides information to the verifer which fields of 'ctx' are accessible (remember 'ctx' is the first argument to eBPF program) - const struct bpf_func_proto *(*get_func_proto)(enum bpf_func_id func_id); returns argument constraints of kernel helper functions that eBPF program may call, so that verifier can checks that R1-R5 types match the prototype More details in Documentation/networking/filter.txt and in kernel/bpf/verifier.c Signed-off-by: Alexei Starovoitov <ast@plumgrid.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-09-26 00:17:06 -07:00
err = check_stack_write(state, off, size, value_regno);
bpf: enable non-root eBPF programs In order to let unprivileged users load and execute eBPF programs teach verifier to prevent pointer leaks. Verifier will prevent - any arithmetic on pointers (except R10+Imm which is used to compute stack addresses) - comparison of pointers (except if (map_value_ptr == 0) ... ) - passing pointers to helper functions - indirectly passing pointers in stack to helper functions - returning pointer from bpf program - storing pointers into ctx or maps Spill/fill of pointers into stack is allowed, but mangling of pointers stored in the stack or reading them byte by byte is not. Within bpf programs the pointers do exist, since programs need to be able to access maps, pass skb pointer to LD_ABS insns, etc but programs cannot pass such pointer values to the outside or obfuscate them. Only allow BPF_PROG_TYPE_SOCKET_FILTER unprivileged programs, so that socket filters (tcpdump), af_packet (quic acceleration) and future kcm can use it. tracing and tc cls/act program types still require root permissions, since tracing actually needs to be able to see all kernel pointers and tc is for root only. For example, the following unprivileged socket filter program is allowed: int bpf_prog1(struct __sk_buff *skb) { u32 index = load_byte(skb, ETH_HLEN + offsetof(struct iphdr, protocol)); u64 *value = bpf_map_lookup_elem(&my_map, &index); if (value) *value += skb->len; return 0; } but the following program is not: int bpf_prog1(struct __sk_buff *skb) { u32 index = load_byte(skb, ETH_HLEN + offsetof(struct iphdr, protocol)); u64 *value = bpf_map_lookup_elem(&my_map, &index); if (value) *value += (u64) skb; return 0; } since it would leak the kernel address into the map. Unprivileged socket filter bpf programs have access to the following helper functions: - map lookup/update/delete (but they cannot store kernel pointers into them) - get_random (it's already exposed to unprivileged user space) - get_smp_processor_id - tail_call into another socket filter program - ktime_get_ns The feature is controlled by sysctl kernel.unprivileged_bpf_disabled. This toggle defaults to off (0), but can be set true (1). Once true, bpf programs and maps cannot be accessed from unprivileged process, and the toggle cannot be set back to false. Signed-off-by: Alexei Starovoitov <ast@plumgrid.com> Reviewed-by: Kees Cook <keescook@chromium.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2015-10-07 22:23:21 -07:00
} else {
bpf: verifier (add verifier core) This patch adds verifier core which simulates execution of every insn and records the state of registers and program stack. Every branch instruction seen during simulation is pushed into state stack. When verifier reaches BPF_EXIT, it pops the state from the stack and continues until it reaches BPF_EXIT again. For program: 1: bpf_mov r1, xxx 2: if (r1 == 0) goto 5 3: bpf_mov r0, 1 4: goto 6 5: bpf_mov r0, 2 6: bpf_exit The verifier will walk insns: 1, 2, 3, 4, 6 then it will pop the state recorded at insn#2 and will continue: 5, 6 This way it walks all possible paths through the program and checks all possible values of registers. While doing so, it checks for: - invalid instructions - uninitialized register access - uninitialized stack access - misaligned stack access - out of range stack access - invalid calling convention - instruction encoding is not using reserved fields Kernel subsystem configures the verifier with two callbacks: - bool (*is_valid_access)(int off, int size, enum bpf_access_type type); that provides information to the verifer which fields of 'ctx' are accessible (remember 'ctx' is the first argument to eBPF program) - const struct bpf_func_proto *(*get_func_proto)(enum bpf_func_id func_id); returns argument constraints of kernel helper functions that eBPF program may call, so that verifier can checks that R1-R5 types match the prototype More details in Documentation/networking/filter.txt and in kernel/bpf/verifier.c Signed-off-by: Alexei Starovoitov <ast@plumgrid.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-09-26 00:17:06 -07:00
err = check_stack_read(state, off, size, value_regno);
bpf: enable non-root eBPF programs In order to let unprivileged users load and execute eBPF programs teach verifier to prevent pointer leaks. Verifier will prevent - any arithmetic on pointers (except R10+Imm which is used to compute stack addresses) - comparison of pointers (except if (map_value_ptr == 0) ... ) - passing pointers to helper functions - indirectly passing pointers in stack to helper functions - returning pointer from bpf program - storing pointers into ctx or maps Spill/fill of pointers into stack is allowed, but mangling of pointers stored in the stack or reading them byte by byte is not. Within bpf programs the pointers do exist, since programs need to be able to access maps, pass skb pointer to LD_ABS insns, etc but programs cannot pass such pointer values to the outside or obfuscate them. Only allow BPF_PROG_TYPE_SOCKET_FILTER unprivileged programs, so that socket filters (tcpdump), af_packet (quic acceleration) and future kcm can use it. tracing and tc cls/act program types still require root permissions, since tracing actually needs to be able to see all kernel pointers and tc is for root only. For example, the following unprivileged socket filter program is allowed: int bpf_prog1(struct __sk_buff *skb) { u32 index = load_byte(skb, ETH_HLEN + offsetof(struct iphdr, protocol)); u64 *value = bpf_map_lookup_elem(&my_map, &index); if (value) *value += skb->len; return 0; } but the following program is not: int bpf_prog1(struct __sk_buff *skb) { u32 index = load_byte(skb, ETH_HLEN + offsetof(struct iphdr, protocol)); u64 *value = bpf_map_lookup_elem(&my_map, &index); if (value) *value += (u64) skb; return 0; } since it would leak the kernel address into the map. Unprivileged socket filter bpf programs have access to the following helper functions: - map lookup/update/delete (but they cannot store kernel pointers into them) - get_random (it's already exposed to unprivileged user space) - get_smp_processor_id - tail_call into another socket filter program - ktime_get_ns The feature is controlled by sysctl kernel.unprivileged_bpf_disabled. This toggle defaults to off (0), but can be set true (1). Once true, bpf programs and maps cannot be accessed from unprivileged process, and the toggle cannot be set back to false. Signed-off-by: Alexei Starovoitov <ast@plumgrid.com> Reviewed-by: Kees Cook <keescook@chromium.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2015-10-07 22:23:21 -07:00
}
bpf: direct packet access Extended BPF carried over two instructions from classic to access packet data: LD_ABS and LD_IND. They're highly optimized in JITs, but due to their design they have to do length check for every access. When BPF is processing 20M packets per second single LD_ABS after JIT is consuming 3% cpu. Hence the need to optimize it further by amortizing the cost of 'off < skb_headlen' over multiple packet accesses. One option is to introduce two new eBPF instructions LD_ABS_DW and LD_IND_DW with similar usage as skb_header_pointer(). The kernel part for interpreter and x64 JIT was implemented in [1], but such new insns behave like old ld_abs and abort the program with 'return 0' if access is beyond linear data. Such hidden control flow is hard to workaround plus changing JITs and rolling out new llvm is incovenient. Therefore allow cls_bpf/act_bpf program access skb->data directly: int bpf_prog(struct __sk_buff *skb) { struct iphdr *ip; if (skb->data + sizeof(struct iphdr) + ETH_HLEN > skb->data_end) /* packet too small */ return 0; ip = skb->data + ETH_HLEN; /* access IP header fields with direct loads */ if (ip->version != 4 || ip->saddr == 0x7f000001) return 1; [...] } This solution avoids introduction of new instructions. llvm stays the same and all JITs stay the same, but verifier has to work extra hard to prove safety of the above program. For XDP the direct store instructions can be allowed as well. The skb->data is NET_IP_ALIGNED, so for common cases the verifier can check the alignment. The complex packet parsers where packet pointer is adjusted incrementally cannot be tracked for alignment, so allow byte access in such cases and misaligned access on architectures that define efficient_unaligned_access [1] https://git.kernel.org/cgit/linux/kernel/git/ast/bpf.git/?h=ld_abs_dw Signed-off-by: Alexei Starovoitov <ast@kernel.org> Acked-by: Daniel Borkmann <daniel@iogearbox.net> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-05-05 19:49:10 -07:00
} else if (state->regs[regno].type == PTR_TO_PACKET) {
if (t == BPF_WRITE && !may_access_direct_pkt_data(env, NULL, t)) {
bpf: direct packet access Extended BPF carried over two instructions from classic to access packet data: LD_ABS and LD_IND. They're highly optimized in JITs, but due to their design they have to do length check for every access. When BPF is processing 20M packets per second single LD_ABS after JIT is consuming 3% cpu. Hence the need to optimize it further by amortizing the cost of 'off < skb_headlen' over multiple packet accesses. One option is to introduce two new eBPF instructions LD_ABS_DW and LD_IND_DW with similar usage as skb_header_pointer(). The kernel part for interpreter and x64 JIT was implemented in [1], but such new insns behave like old ld_abs and abort the program with 'return 0' if access is beyond linear data. Such hidden control flow is hard to workaround plus changing JITs and rolling out new llvm is incovenient. Therefore allow cls_bpf/act_bpf program access skb->data directly: int bpf_prog(struct __sk_buff *skb) { struct iphdr *ip; if (skb->data + sizeof(struct iphdr) + ETH_HLEN > skb->data_end) /* packet too small */ return 0; ip = skb->data + ETH_HLEN; /* access IP header fields with direct loads */ if (ip->version != 4 || ip->saddr == 0x7f000001) return 1; [...] } This solution avoids introduction of new instructions. llvm stays the same and all JITs stay the same, but verifier has to work extra hard to prove safety of the above program. For XDP the direct store instructions can be allowed as well. The skb->data is NET_IP_ALIGNED, so for common cases the verifier can check the alignment. The complex packet parsers where packet pointer is adjusted incrementally cannot be tracked for alignment, so allow byte access in such cases and misaligned access on architectures that define efficient_unaligned_access [1] https://git.kernel.org/cgit/linux/kernel/git/ast/bpf.git/?h=ld_abs_dw Signed-off-by: Alexei Starovoitov <ast@kernel.org> Acked-by: Daniel Borkmann <daniel@iogearbox.net> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-05-05 19:49:10 -07:00
verbose("cannot write into packet\n");
return -EACCES;
}
if (t == BPF_WRITE && value_regno >= 0 &&
is_pointer_value(env, value_regno)) {
verbose("R%d leaks addr into packet\n", value_regno);
return -EACCES;
}
bpf: direct packet access Extended BPF carried over two instructions from classic to access packet data: LD_ABS and LD_IND. They're highly optimized in JITs, but due to their design they have to do length check for every access. When BPF is processing 20M packets per second single LD_ABS after JIT is consuming 3% cpu. Hence the need to optimize it further by amortizing the cost of 'off < skb_headlen' over multiple packet accesses. One option is to introduce two new eBPF instructions LD_ABS_DW and LD_IND_DW with similar usage as skb_header_pointer(). The kernel part for interpreter and x64 JIT was implemented in [1], but such new insns behave like old ld_abs and abort the program with 'return 0' if access is beyond linear data. Such hidden control flow is hard to workaround plus changing JITs and rolling out new llvm is incovenient. Therefore allow cls_bpf/act_bpf program access skb->data directly: int bpf_prog(struct __sk_buff *skb) { struct iphdr *ip; if (skb->data + sizeof(struct iphdr) + ETH_HLEN > skb->data_end) /* packet too small */ return 0; ip = skb->data + ETH_HLEN; /* access IP header fields with direct loads */ if (ip->version != 4 || ip->saddr == 0x7f000001) return 1; [...] } This solution avoids introduction of new instructions. llvm stays the same and all JITs stay the same, but verifier has to work extra hard to prove safety of the above program. For XDP the direct store instructions can be allowed as well. The skb->data is NET_IP_ALIGNED, so for common cases the verifier can check the alignment. The complex packet parsers where packet pointer is adjusted incrementally cannot be tracked for alignment, so allow byte access in such cases and misaligned access on architectures that define efficient_unaligned_access [1] https://git.kernel.org/cgit/linux/kernel/git/ast/bpf.git/?h=ld_abs_dw Signed-off-by: Alexei Starovoitov <ast@kernel.org> Acked-by: Daniel Borkmann <daniel@iogearbox.net> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-05-05 19:49:10 -07:00
err = check_packet_access(env, regno, off, size);
if (!err && t == BPF_READ && value_regno >= 0)
mark_reg_unknown_value_and_range(state->regs,
value_regno);
bpf: verifier (add verifier core) This patch adds verifier core which simulates execution of every insn and records the state of registers and program stack. Every branch instruction seen during simulation is pushed into state stack. When verifier reaches BPF_EXIT, it pops the state from the stack and continues until it reaches BPF_EXIT again. For program: 1: bpf_mov r1, xxx 2: if (r1 == 0) goto 5 3: bpf_mov r0, 1 4: goto 6 5: bpf_mov r0, 2 6: bpf_exit The verifier will walk insns: 1, 2, 3, 4, 6 then it will pop the state recorded at insn#2 and will continue: 5, 6 This way it walks all possible paths through the program and checks all possible values of registers. While doing so, it checks for: - invalid instructions - uninitialized register access - uninitialized stack access - misaligned stack access - out of range stack access - invalid calling convention - instruction encoding is not using reserved fields Kernel subsystem configures the verifier with two callbacks: - bool (*is_valid_access)(int off, int size, enum bpf_access_type type); that provides information to the verifer which fields of 'ctx' are accessible (remember 'ctx' is the first argument to eBPF program) - const struct bpf_func_proto *(*get_func_proto)(enum bpf_func_id func_id); returns argument constraints of kernel helper functions that eBPF program may call, so that verifier can checks that R1-R5 types match the prototype More details in Documentation/networking/filter.txt and in kernel/bpf/verifier.c Signed-off-by: Alexei Starovoitov <ast@plumgrid.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-09-26 00:17:06 -07:00
} else {
verbose("R%d invalid mem access '%s'\n",
regno, reg_type_str[reg->type]);
bpf: verifier (add verifier core) This patch adds verifier core which simulates execution of every insn and records the state of registers and program stack. Every branch instruction seen during simulation is pushed into state stack. When verifier reaches BPF_EXIT, it pops the state from the stack and continues until it reaches BPF_EXIT again. For program: 1: bpf_mov r1, xxx 2: if (r1 == 0) goto 5 3: bpf_mov r0, 1 4: goto 6 5: bpf_mov r0, 2 6: bpf_exit The verifier will walk insns: 1, 2, 3, 4, 6 then it will pop the state recorded at insn#2 and will continue: 5, 6 This way it walks all possible paths through the program and checks all possible values of registers. While doing so, it checks for: - invalid instructions - uninitialized register access - uninitialized stack access - misaligned stack access - out of range stack access - invalid calling convention - instruction encoding is not using reserved fields Kernel subsystem configures the verifier with two callbacks: - bool (*is_valid_access)(int off, int size, enum bpf_access_type type); that provides information to the verifer which fields of 'ctx' are accessible (remember 'ctx' is the first argument to eBPF program) - const struct bpf_func_proto *(*get_func_proto)(enum bpf_func_id func_id); returns argument constraints of kernel helper functions that eBPF program may call, so that verifier can checks that R1-R5 types match the prototype More details in Documentation/networking/filter.txt and in kernel/bpf/verifier.c Signed-off-by: Alexei Starovoitov <ast@plumgrid.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-09-26 00:17:06 -07:00
return -EACCES;
}
bpf: direct packet access Extended BPF carried over two instructions from classic to access packet data: LD_ABS and LD_IND. They're highly optimized in JITs, but due to their design they have to do length check for every access. When BPF is processing 20M packets per second single LD_ABS after JIT is consuming 3% cpu. Hence the need to optimize it further by amortizing the cost of 'off < skb_headlen' over multiple packet accesses. One option is to introduce two new eBPF instructions LD_ABS_DW and LD_IND_DW with similar usage as skb_header_pointer(). The kernel part for interpreter and x64 JIT was implemented in [1], but such new insns behave like old ld_abs and abort the program with 'return 0' if access is beyond linear data. Such hidden control flow is hard to workaround plus changing JITs and rolling out new llvm is incovenient. Therefore allow cls_bpf/act_bpf program access skb->data directly: int bpf_prog(struct __sk_buff *skb) { struct iphdr *ip; if (skb->data + sizeof(struct iphdr) + ETH_HLEN > skb->data_end) /* packet too small */ return 0; ip = skb->data + ETH_HLEN; /* access IP header fields with direct loads */ if (ip->version != 4 || ip->saddr == 0x7f000001) return 1; [...] } This solution avoids introduction of new instructions. llvm stays the same and all JITs stay the same, but verifier has to work extra hard to prove safety of the above program. For XDP the direct store instructions can be allowed as well. The skb->data is NET_IP_ALIGNED, so for common cases the verifier can check the alignment. The complex packet parsers where packet pointer is adjusted incrementally cannot be tracked for alignment, so allow byte access in such cases and misaligned access on architectures that define efficient_unaligned_access [1] https://git.kernel.org/cgit/linux/kernel/git/ast/bpf.git/?h=ld_abs_dw Signed-off-by: Alexei Starovoitov <ast@kernel.org> Acked-by: Daniel Borkmann <daniel@iogearbox.net> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-05-05 19:49:10 -07:00
if (!err && size <= 2 && value_regno >= 0 && env->allow_ptr_leaks &&
state->regs[value_regno].type == UNKNOWN_VALUE) {
/* 1 or 2 byte load zero-extends, determine the number of
* zero upper bits. Not doing it fo 4 byte load, since
* such values cannot be added to ptr_to_packet anyway.
*/
state->regs[value_regno].imm = 64 - size * 8;
}
bpf: verifier (add verifier core) This patch adds verifier core which simulates execution of every insn and records the state of registers and program stack. Every branch instruction seen during simulation is pushed into state stack. When verifier reaches BPF_EXIT, it pops the state from the stack and continues until it reaches BPF_EXIT again. For program: 1: bpf_mov r1, xxx 2: if (r1 == 0) goto 5 3: bpf_mov r0, 1 4: goto 6 5: bpf_mov r0, 2 6: bpf_exit The verifier will walk insns: 1, 2, 3, 4, 6 then it will pop the state recorded at insn#2 and will continue: 5, 6 This way it walks all possible paths through the program and checks all possible values of registers. While doing so, it checks for: - invalid instructions - uninitialized register access - uninitialized stack access - misaligned stack access - out of range stack access - invalid calling convention - instruction encoding is not using reserved fields Kernel subsystem configures the verifier with two callbacks: - bool (*is_valid_access)(int off, int size, enum bpf_access_type type); that provides information to the verifer which fields of 'ctx' are accessible (remember 'ctx' is the first argument to eBPF program) - const struct bpf_func_proto *(*get_func_proto)(enum bpf_func_id func_id); returns argument constraints of kernel helper functions that eBPF program may call, so that verifier can checks that R1-R5 types match the prototype More details in Documentation/networking/filter.txt and in kernel/bpf/verifier.c Signed-off-by: Alexei Starovoitov <ast@plumgrid.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-09-26 00:17:06 -07:00
return err;
}
static int check_xadd(struct bpf_verifier_env *env, struct bpf_insn *insn)
bpf: verifier (add verifier core) This patch adds verifier core which simulates execution of every insn and records the state of registers and program stack. Every branch instruction seen during simulation is pushed into state stack. When verifier reaches BPF_EXIT, it pops the state from the stack and continues until it reaches BPF_EXIT again. For program: 1: bpf_mov r1, xxx 2: if (r1 == 0) goto 5 3: bpf_mov r0, 1 4: goto 6 5: bpf_mov r0, 2 6: bpf_exit The verifier will walk insns: 1, 2, 3, 4, 6 then it will pop the state recorded at insn#2 and will continue: 5, 6 This way it walks all possible paths through the program and checks all possible values of registers. While doing so, it checks for: - invalid instructions - uninitialized register access - uninitialized stack access - misaligned stack access - out of range stack access - invalid calling convention - instruction encoding is not using reserved fields Kernel subsystem configures the verifier with two callbacks: - bool (*is_valid_access)(int off, int size, enum bpf_access_type type); that provides information to the verifer which fields of 'ctx' are accessible (remember 'ctx' is the first argument to eBPF program) - const struct bpf_func_proto *(*get_func_proto)(enum bpf_func_id func_id); returns argument constraints of kernel helper functions that eBPF program may call, so that verifier can checks that R1-R5 types match the prototype More details in Documentation/networking/filter.txt and in kernel/bpf/verifier.c Signed-off-by: Alexei Starovoitov <ast@plumgrid.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-09-26 00:17:06 -07:00
{
struct bpf_reg_state *regs = env->cur_state.regs;
bpf: verifier (add verifier core) This patch adds verifier core which simulates execution of every insn and records the state of registers and program stack. Every branch instruction seen during simulation is pushed into state stack. When verifier reaches BPF_EXIT, it pops the state from the stack and continues until it reaches BPF_EXIT again. For program: 1: bpf_mov r1, xxx 2: if (r1 == 0) goto 5 3: bpf_mov r0, 1 4: goto 6 5: bpf_mov r0, 2 6: bpf_exit The verifier will walk insns: 1, 2, 3, 4, 6 then it will pop the state recorded at insn#2 and will continue: 5, 6 This way it walks all possible paths through the program and checks all possible values of registers. While doing so, it checks for: - invalid instructions - uninitialized register access - uninitialized stack access - misaligned stack access - out of range stack access - invalid calling convention - instruction encoding is not using reserved fields Kernel subsystem configures the verifier with two callbacks: - bool (*is_valid_access)(int off, int size, enum bpf_access_type type); that provides information to the verifer which fields of 'ctx' are accessible (remember 'ctx' is the first argument to eBPF program) - const struct bpf_func_proto *(*get_func_proto)(enum bpf_func_id func_id); returns argument constraints of kernel helper functions that eBPF program may call, so that verifier can checks that R1-R5 types match the prototype More details in Documentation/networking/filter.txt and in kernel/bpf/verifier.c Signed-off-by: Alexei Starovoitov <ast@plumgrid.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-09-26 00:17:06 -07:00
int err;
if ((BPF_SIZE(insn->code) != BPF_W && BPF_SIZE(insn->code) != BPF_DW) ||
insn->imm != 0) {
verbose("BPF_XADD uses reserved fields\n");
return -EINVAL;
}
/* check src1 operand */
err = check_reg_arg(regs, insn->src_reg, SRC_OP);
if (err)
return err;
/* check src2 operand */
err = check_reg_arg(regs, insn->dst_reg, SRC_OP);
if (err)
return err;
/* check whether atomic_add can read the memory */
err = check_mem_access(env, insn->dst_reg, insn->off,
BPF_SIZE(insn->code), BPF_READ, -1);
if (err)
return err;
/* check whether atomic_add can write into the same memory */
return check_mem_access(env, insn->dst_reg, insn->off,
BPF_SIZE(insn->code), BPF_WRITE, -1);
}
/* when register 'regno' is passed into function that will read 'access_size'
* bytes from that pointer, make sure that it's within stack boundary
* and all elements of stack are initialized
*/
static int check_stack_boundary(struct bpf_verifier_env *env, int regno,
bpf, verifier: add ARG_PTR_TO_RAW_STACK type When passing buffers from eBPF stack space into a helper function, we have ARG_PTR_TO_STACK argument type for helpers available. The verifier makes sure that such buffers are initialized, within boundaries, etc. However, the downside with this is that we have a couple of helper functions such as bpf_skb_load_bytes() that fill out the passed buffer in the expected success case anyway, so zero initializing them prior to the helper call is unneeded/wasted instructions in the eBPF program that can be avoided. Therefore, add a new helper function argument type called ARG_PTR_TO_RAW_STACK. The idea is to skip the STACK_MISC check in check_stack_boundary() and color the related stack slots as STACK_MISC after we checked all call arguments. Helper functions using ARG_PTR_TO_RAW_STACK must make sure that every path of the helper function will fill the provided buffer area, so that we cannot leak any uninitialized stack memory. This f.e. means that error paths need to memset() the buffers, but the expected fast-path doesn't have to do this anymore. Since there's no such helper needing more than at most one ARG_PTR_TO_RAW_STACK argument, we can keep it simple and don't need to check for multiple areas. Should in future such a use-case really appear, we have check_raw_mode() that will make sure we implement support for it first. Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-04-13 00:10:51 +02:00
int access_size, bool zero_size_allowed,
struct bpf_call_arg_meta *meta)
bpf: verifier (add verifier core) This patch adds verifier core which simulates execution of every insn and records the state of registers and program stack. Every branch instruction seen during simulation is pushed into state stack. When verifier reaches BPF_EXIT, it pops the state from the stack and continues until it reaches BPF_EXIT again. For program: 1: bpf_mov r1, xxx 2: if (r1 == 0) goto 5 3: bpf_mov r0, 1 4: goto 6 5: bpf_mov r0, 2 6: bpf_exit The verifier will walk insns: 1, 2, 3, 4, 6 then it will pop the state recorded at insn#2 and will continue: 5, 6 This way it walks all possible paths through the program and checks all possible values of registers. While doing so, it checks for: - invalid instructions - uninitialized register access - uninitialized stack access - misaligned stack access - out of range stack access - invalid calling convention - instruction encoding is not using reserved fields Kernel subsystem configures the verifier with two callbacks: - bool (*is_valid_access)(int off, int size, enum bpf_access_type type); that provides information to the verifer which fields of 'ctx' are accessible (remember 'ctx' is the first argument to eBPF program) - const struct bpf_func_proto *(*get_func_proto)(enum bpf_func_id func_id); returns argument constraints of kernel helper functions that eBPF program may call, so that verifier can checks that R1-R5 types match the prototype More details in Documentation/networking/filter.txt and in kernel/bpf/verifier.c Signed-off-by: Alexei Starovoitov <ast@plumgrid.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-09-26 00:17:06 -07:00
{
struct bpf_verifier_state *state = &env->cur_state;
struct bpf_reg_state *regs = state->regs;
bpf: verifier (add verifier core) This patch adds verifier core which simulates execution of every insn and records the state of registers and program stack. Every branch instruction seen during simulation is pushed into state stack. When verifier reaches BPF_EXIT, it pops the state from the stack and continues until it reaches BPF_EXIT again. For program: 1: bpf_mov r1, xxx 2: if (r1 == 0) goto 5 3: bpf_mov r0, 1 4: goto 6 5: bpf_mov r0, 2 6: bpf_exit The verifier will walk insns: 1, 2, 3, 4, 6 then it will pop the state recorded at insn#2 and will continue: 5, 6 This way it walks all possible paths through the program and checks all possible values of registers. While doing so, it checks for: - invalid instructions - uninitialized register access - uninitialized stack access - misaligned stack access - out of range stack access - invalid calling convention - instruction encoding is not using reserved fields Kernel subsystem configures the verifier with two callbacks: - bool (*is_valid_access)(int off, int size, enum bpf_access_type type); that provides information to the verifer which fields of 'ctx' are accessible (remember 'ctx' is the first argument to eBPF program) - const struct bpf_func_proto *(*get_func_proto)(enum bpf_func_id func_id); returns argument constraints of kernel helper functions that eBPF program may call, so that verifier can checks that R1-R5 types match the prototype More details in Documentation/networking/filter.txt and in kernel/bpf/verifier.c Signed-off-by: Alexei Starovoitov <ast@plumgrid.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-09-26 00:17:06 -07:00
int off, i;
if (regs[regno].type != PTR_TO_STACK) {
if (zero_size_allowed && access_size == 0 &&
regs[regno].type == CONST_IMM &&
regs[regno].imm == 0)
return 0;
verbose("R%d type=%s expected=%s\n", regno,
reg_type_str[regs[regno].type],
reg_type_str[PTR_TO_STACK]);
bpf: verifier (add verifier core) This patch adds verifier core which simulates execution of every insn and records the state of registers and program stack. Every branch instruction seen during simulation is pushed into state stack. When verifier reaches BPF_EXIT, it pops the state from the stack and continues until it reaches BPF_EXIT again. For program: 1: bpf_mov r1, xxx 2: if (r1 == 0) goto 5 3: bpf_mov r0, 1 4: goto 6 5: bpf_mov r0, 2 6: bpf_exit The verifier will walk insns: 1, 2, 3, 4, 6 then it will pop the state recorded at insn#2 and will continue: 5, 6 This way it walks all possible paths through the program and checks all possible values of registers. While doing so, it checks for: - invalid instructions - uninitialized register access - uninitialized stack access - misaligned stack access - out of range stack access - invalid calling convention - instruction encoding is not using reserved fields Kernel subsystem configures the verifier with two callbacks: - bool (*is_valid_access)(int off, int size, enum bpf_access_type type); that provides information to the verifer which fields of 'ctx' are accessible (remember 'ctx' is the first argument to eBPF program) - const struct bpf_func_proto *(*get_func_proto)(enum bpf_func_id func_id); returns argument constraints of kernel helper functions that eBPF program may call, so that verifier can checks that R1-R5 types match the prototype More details in Documentation/networking/filter.txt and in kernel/bpf/verifier.c Signed-off-by: Alexei Starovoitov <ast@plumgrid.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-09-26 00:17:06 -07:00
return -EACCES;
}
bpf: verifier (add verifier core) This patch adds verifier core which simulates execution of every insn and records the state of registers and program stack. Every branch instruction seen during simulation is pushed into state stack. When verifier reaches BPF_EXIT, it pops the state from the stack and continues until it reaches BPF_EXIT again. For program: 1: bpf_mov r1, xxx 2: if (r1 == 0) goto 5 3: bpf_mov r0, 1 4: goto 6 5: bpf_mov r0, 2 6: bpf_exit The verifier will walk insns: 1, 2, 3, 4, 6 then it will pop the state recorded at insn#2 and will continue: 5, 6 This way it walks all possible paths through the program and checks all possible values of registers. While doing so, it checks for: - invalid instructions - uninitialized register access - uninitialized stack access - misaligned stack access - out of range stack access - invalid calling convention - instruction encoding is not using reserved fields Kernel subsystem configures the verifier with two callbacks: - bool (*is_valid_access)(int off, int size, enum bpf_access_type type); that provides information to the verifer which fields of 'ctx' are accessible (remember 'ctx' is the first argument to eBPF program) - const struct bpf_func_proto *(*get_func_proto)(enum bpf_func_id func_id); returns argument constraints of kernel helper functions that eBPF program may call, so that verifier can checks that R1-R5 types match the prototype More details in Documentation/networking/filter.txt and in kernel/bpf/verifier.c Signed-off-by: Alexei Starovoitov <ast@plumgrid.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-09-26 00:17:06 -07:00
off = regs[regno].imm;
if (off >= 0 || off < -MAX_BPF_STACK || off + access_size > 0 ||
access_size <= 0) {
verbose("invalid stack type R%d off=%d access_size=%d\n",
regno, off, access_size);
return -EACCES;
}
bpf, verifier: add ARG_PTR_TO_RAW_STACK type When passing buffers from eBPF stack space into a helper function, we have ARG_PTR_TO_STACK argument type for helpers available. The verifier makes sure that such buffers are initialized, within boundaries, etc. However, the downside with this is that we have a couple of helper functions such as bpf_skb_load_bytes() that fill out the passed buffer in the expected success case anyway, so zero initializing them prior to the helper call is unneeded/wasted instructions in the eBPF program that can be avoided. Therefore, add a new helper function argument type called ARG_PTR_TO_RAW_STACK. The idea is to skip the STACK_MISC check in check_stack_boundary() and color the related stack slots as STACK_MISC after we checked all call arguments. Helper functions using ARG_PTR_TO_RAW_STACK must make sure that every path of the helper function will fill the provided buffer area, so that we cannot leak any uninitialized stack memory. This f.e. means that error paths need to memset() the buffers, but the expected fast-path doesn't have to do this anymore. Since there's no such helper needing more than at most one ARG_PTR_TO_RAW_STACK argument, we can keep it simple and don't need to check for multiple areas. Should in future such a use-case really appear, we have check_raw_mode() that will make sure we implement support for it first. Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-04-13 00:10:51 +02:00
if (meta && meta->raw_mode) {
meta->access_size = access_size;
meta->regno = regno;
return 0;
}
bpf: verifier (add verifier core) This patch adds verifier core which simulates execution of every insn and records the state of registers and program stack. Every branch instruction seen during simulation is pushed into state stack. When verifier reaches BPF_EXIT, it pops the state from the stack and continues until it reaches BPF_EXIT again. For program: 1: bpf_mov r1, xxx 2: if (r1 == 0) goto 5 3: bpf_mov r0, 1 4: goto 6 5: bpf_mov r0, 2 6: bpf_exit The verifier will walk insns: 1, 2, 3, 4, 6 then it will pop the state recorded at insn#2 and will continue: 5, 6 This way it walks all possible paths through the program and checks all possible values of registers. While doing so, it checks for: - invalid instructions - uninitialized register access - uninitialized stack access - misaligned stack access - out of range stack access - invalid calling convention - instruction encoding is not using reserved fields Kernel subsystem configures the verifier with two callbacks: - bool (*is_valid_access)(int off, int size, enum bpf_access_type type); that provides information to the verifer which fields of 'ctx' are accessible (remember 'ctx' is the first argument to eBPF program) - const struct bpf_func_proto *(*get_func_proto)(enum bpf_func_id func_id); returns argument constraints of kernel helper functions that eBPF program may call, so that verifier can checks that R1-R5 types match the prototype More details in Documentation/networking/filter.txt and in kernel/bpf/verifier.c Signed-off-by: Alexei Starovoitov <ast@plumgrid.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-09-26 00:17:06 -07:00
for (i = 0; i < access_size; i++) {
if (state->stack_slot_type[MAX_BPF_STACK + off + i] != STACK_MISC) {
bpf: verifier (add verifier core) This patch adds verifier core which simulates execution of every insn and records the state of registers and program stack. Every branch instruction seen during simulation is pushed into state stack. When verifier reaches BPF_EXIT, it pops the state from the stack and continues until it reaches BPF_EXIT again. For program: 1: bpf_mov r1, xxx 2: if (r1 == 0) goto 5 3: bpf_mov r0, 1 4: goto 6 5: bpf_mov r0, 2 6: bpf_exit The verifier will walk insns: 1, 2, 3, 4, 6 then it will pop the state recorded at insn#2 and will continue: 5, 6 This way it walks all possible paths through the program and checks all possible values of registers. While doing so, it checks for: - invalid instructions - uninitialized register access - uninitialized stack access - misaligned stack access - out of range stack access - invalid calling convention - instruction encoding is not using reserved fields Kernel subsystem configures the verifier with two callbacks: - bool (*is_valid_access)(int off, int size, enum bpf_access_type type); that provides information to the verifer which fields of 'ctx' are accessible (remember 'ctx' is the first argument to eBPF program) - const struct bpf_func_proto *(*get_func_proto)(enum bpf_func_id func_id); returns argument constraints of kernel helper functions that eBPF program may call, so that verifier can checks that R1-R5 types match the prototype More details in Documentation/networking/filter.txt and in kernel/bpf/verifier.c Signed-off-by: Alexei Starovoitov <ast@plumgrid.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-09-26 00:17:06 -07:00
verbose("invalid indirect read from stack off %d+%d size %d\n",
off, i, access_size);
return -EACCES;
}
}
return 0;
}
bpf: allow helpers access to variable memory Currently, helpers that read and write from/to the stack can do so using a pair of arguments of type ARG_PTR_TO_STACK and ARG_CONST_STACK_SIZE. ARG_CONST_STACK_SIZE accepts a constant register of type CONST_IMM, so that the verifier can safely check the memory access. However, requiring the argument to be a constant can be limiting in some circumstances. Since the current logic keeps track of the minimum and maximum value of a register throughout the simulated execution, ARG_CONST_STACK_SIZE can be changed to also accept an UNKNOWN_VALUE register in case its boundaries have been set and the range doesn't cause invalid memory accesses. One common situation when this is useful: int len; char buf[BUFSIZE]; /* BUFSIZE is 128 */ if (some_condition) len = 42; else len = 84; some_helper(..., buf, len & (BUFSIZE - 1)); The compiler can often decide to assign the constant values 42 or 48 into a variable on the stack, instead of keeping it in a register. When the variable is then read back from stack into the register in order to be passed to the helper, the verifier will not be able to recognize the register as constant (the verifier is not currently tracking all constant writes into memory), and the program won't be valid. However, by allowing the helper to accept an UNKNOWN_VALUE register, this program will work because the bitwise AND operation will set the range of possible values for the UNKNOWN_VALUE register to [0, BUFSIZE), so the verifier can guarantee the helper call will be safe (assuming the argument is of type ARG_CONST_STACK_SIZE_OR_ZERO, otherwise one more check against 0 would be needed). Custom ranges can be set not only with ALU operations, but also by explicitly comparing the UNKNOWN_VALUE register with constants. Another very common example happens when intercepting system call arguments and accessing user-provided data of variable size using bpf_probe_read(). One can load at runtime the user-provided length in an UNKNOWN_VALUE register, and then read that exact amount of data up to a compile-time determined limit in order to fit into the proper local storage allocated on the stack, without having to guess a suboptimal access size at compile time. Also, in case the helpers accepting the UNKNOWN_VALUE register operate in raw mode, disable the raw mode so that the program is required to initialize all memory, since there is no guarantee the helper will fill it completely, leaving possibilities for data leak (just relevant when the memory used by the helper is the stack, not when using a pointer to map element value or packet). In other words, ARG_PTR_TO_RAW_STACK will be treated as ARG_PTR_TO_STACK. Signed-off-by: Gianluca Borello <g.borello@gmail.com> Acked-by: Daniel Borkmann <daniel@iogearbox.net> Signed-off-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-01-09 10:19:49 -08:00
static int check_helper_mem_access(struct bpf_verifier_env *env, int regno,
int access_size, bool zero_size_allowed,
struct bpf_call_arg_meta *meta)
{
struct bpf_reg_state *regs = env->cur_state.regs;
switch (regs[regno].type) {
case PTR_TO_PACKET:
return check_packet_access(env, regno, 0, access_size);
case PTR_TO_MAP_VALUE:
return check_map_access(env, regno, 0, access_size);
case PTR_TO_MAP_VALUE_ADJ:
return check_map_access_adj(env, regno, 0, access_size);
default: /* const_imm|ptr_to_stack or invalid ptr */
return check_stack_boundary(env, regno, access_size,
zero_size_allowed, meta);
}
}
static int check_func_arg(struct bpf_verifier_env *env, u32 regno,
enum bpf_arg_type arg_type,
struct bpf_call_arg_meta *meta)
bpf: verifier (add verifier core) This patch adds verifier core which simulates execution of every insn and records the state of registers and program stack. Every branch instruction seen during simulation is pushed into state stack. When verifier reaches BPF_EXIT, it pops the state from the stack and continues until it reaches BPF_EXIT again. For program: 1: bpf_mov r1, xxx 2: if (r1 == 0) goto 5 3: bpf_mov r0, 1 4: goto 6 5: bpf_mov r0, 2 6: bpf_exit The verifier will walk insns: 1, 2, 3, 4, 6 then it will pop the state recorded at insn#2 and will continue: 5, 6 This way it walks all possible paths through the program and checks all possible values of registers. While doing so, it checks for: - invalid instructions - uninitialized register access - uninitialized stack access - misaligned stack access - out of range stack access - invalid calling convention - instruction encoding is not using reserved fields Kernel subsystem configures the verifier with two callbacks: - bool (*is_valid_access)(int off, int size, enum bpf_access_type type); that provides information to the verifer which fields of 'ctx' are accessible (remember 'ctx' is the first argument to eBPF program) - const struct bpf_func_proto *(*get_func_proto)(enum bpf_func_id func_id); returns argument constraints of kernel helper functions that eBPF program may call, so that verifier can checks that R1-R5 types match the prototype More details in Documentation/networking/filter.txt and in kernel/bpf/verifier.c Signed-off-by: Alexei Starovoitov <ast@plumgrid.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-09-26 00:17:06 -07:00
{
struct bpf_reg_state *regs = env->cur_state.regs, *reg = &regs[regno];
enum bpf_reg_type expected_type, type = reg->type;
bpf: verifier (add verifier core) This patch adds verifier core which simulates execution of every insn and records the state of registers and program stack. Every branch instruction seen during simulation is pushed into state stack. When verifier reaches BPF_EXIT, it pops the state from the stack and continues until it reaches BPF_EXIT again. For program: 1: bpf_mov r1, xxx 2: if (r1 == 0) goto 5 3: bpf_mov r0, 1 4: goto 6 5: bpf_mov r0, 2 6: bpf_exit The verifier will walk insns: 1, 2, 3, 4, 6 then it will pop the state recorded at insn#2 and will continue: 5, 6 This way it walks all possible paths through the program and checks all possible values of registers. While doing so, it checks for: - invalid instructions - uninitialized register access - uninitialized stack access - misaligned stack access - out of range stack access - invalid calling convention - instruction encoding is not using reserved fields Kernel subsystem configures the verifier with two callbacks: - bool (*is_valid_access)(int off, int size, enum bpf_access_type type); that provides information to the verifer which fields of 'ctx' are accessible (remember 'ctx' is the first argument to eBPF program) - const struct bpf_func_proto *(*get_func_proto)(enum bpf_func_id func_id); returns argument constraints of kernel helper functions that eBPF program may call, so that verifier can checks that R1-R5 types match the prototype More details in Documentation/networking/filter.txt and in kernel/bpf/verifier.c Signed-off-by: Alexei Starovoitov <ast@plumgrid.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-09-26 00:17:06 -07:00
int err = 0;
if (arg_type == ARG_DONTCARE)
bpf: verifier (add verifier core) This patch adds verifier core which simulates execution of every insn and records the state of registers and program stack. Every branch instruction seen during simulation is pushed into state stack. When verifier reaches BPF_EXIT, it pops the state from the stack and continues until it reaches BPF_EXIT again. For program: 1: bpf_mov r1, xxx 2: if (r1 == 0) goto 5 3: bpf_mov r0, 1 4: goto 6 5: bpf_mov r0, 2 6: bpf_exit The verifier will walk insns: 1, 2, 3, 4, 6 then it will pop the state recorded at insn#2 and will continue: 5, 6 This way it walks all possible paths through the program and checks all possible values of registers. While doing so, it checks for: - invalid instructions - uninitialized register access - uninitialized stack access - misaligned stack access - out of range stack access - invalid calling convention - instruction encoding is not using reserved fields Kernel subsystem configures the verifier with two callbacks: - bool (*is_valid_access)(int off, int size, enum bpf_access_type type); that provides information to the verifer which fields of 'ctx' are accessible (remember 'ctx' is the first argument to eBPF program) - const struct bpf_func_proto *(*get_func_proto)(enum bpf_func_id func_id); returns argument constraints of kernel helper functions that eBPF program may call, so that verifier can checks that R1-R5 types match the prototype More details in Documentation/networking/filter.txt and in kernel/bpf/verifier.c Signed-off-by: Alexei Starovoitov <ast@plumgrid.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-09-26 00:17:06 -07:00
return 0;
if (type == NOT_INIT) {
bpf: verifier (add verifier core) This patch adds verifier core which simulates execution of every insn and records the state of registers and program stack. Every branch instruction seen during simulation is pushed into state stack. When verifier reaches BPF_EXIT, it pops the state from the stack and continues until it reaches BPF_EXIT again. For program: 1: bpf_mov r1, xxx 2: if (r1 == 0) goto 5 3: bpf_mov r0, 1 4: goto 6 5: bpf_mov r0, 2 6: bpf_exit The verifier will walk insns: 1, 2, 3, 4, 6 then it will pop the state recorded at insn#2 and will continue: 5, 6 This way it walks all possible paths through the program and checks all possible values of registers. While doing so, it checks for: - invalid instructions - uninitialized register access - uninitialized stack access - misaligned stack access - out of range stack access - invalid calling convention - instruction encoding is not using reserved fields Kernel subsystem configures the verifier with two callbacks: - bool (*is_valid_access)(int off, int size, enum bpf_access_type type); that provides information to the verifer which fields of 'ctx' are accessible (remember 'ctx' is the first argument to eBPF program) - const struct bpf_func_proto *(*get_func_proto)(enum bpf_func_id func_id); returns argument constraints of kernel helper functions that eBPF program may call, so that verifier can checks that R1-R5 types match the prototype More details in Documentation/networking/filter.txt and in kernel/bpf/verifier.c Signed-off-by: Alexei Starovoitov <ast@plumgrid.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-09-26 00:17:06 -07:00
verbose("R%d !read_ok\n", regno);
return -EACCES;
}
bpf: enable non-root eBPF programs In order to let unprivileged users load and execute eBPF programs teach verifier to prevent pointer leaks. Verifier will prevent - any arithmetic on pointers (except R10+Imm which is used to compute stack addresses) - comparison of pointers (except if (map_value_ptr == 0) ... ) - passing pointers to helper functions - indirectly passing pointers in stack to helper functions - returning pointer from bpf program - storing pointers into ctx or maps Spill/fill of pointers into stack is allowed, but mangling of pointers stored in the stack or reading them byte by byte is not. Within bpf programs the pointers do exist, since programs need to be able to access maps, pass skb pointer to LD_ABS insns, etc but programs cannot pass such pointer values to the outside or obfuscate them. Only allow BPF_PROG_TYPE_SOCKET_FILTER unprivileged programs, so that socket filters (tcpdump), af_packet (quic acceleration) and future kcm can use it. tracing and tc cls/act program types still require root permissions, since tracing actually needs to be able to see all kernel pointers and tc is for root only. For example, the following unprivileged socket filter program is allowed: int bpf_prog1(struct __sk_buff *skb) { u32 index = load_byte(skb, ETH_HLEN + offsetof(struct iphdr, protocol)); u64 *value = bpf_map_lookup_elem(&my_map, &index); if (value) *value += skb->len; return 0; } but the following program is not: int bpf_prog1(struct __sk_buff *skb) { u32 index = load_byte(skb, ETH_HLEN + offsetof(struct iphdr, protocol)); u64 *value = bpf_map_lookup_elem(&my_map, &index); if (value) *value += (u64) skb; return 0; } since it would leak the kernel address into the map. Unprivileged socket filter bpf programs have access to the following helper functions: - map lookup/update/delete (but they cannot store kernel pointers into them) - get_random (it's already exposed to unprivileged user space) - get_smp_processor_id - tail_call into another socket filter program - ktime_get_ns The feature is controlled by sysctl kernel.unprivileged_bpf_disabled. This toggle defaults to off (0), but can be set true (1). Once true, bpf programs and maps cannot be accessed from unprivileged process, and the toggle cannot be set back to false. Signed-off-by: Alexei Starovoitov <ast@plumgrid.com> Reviewed-by: Kees Cook <keescook@chromium.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2015-10-07 22:23:21 -07:00
if (arg_type == ARG_ANYTHING) {
if (is_pointer_value(env, regno)) {
verbose("R%d leaks addr into helper function\n", regno);
return -EACCES;
}
return 0;
bpf: enable non-root eBPF programs In order to let unprivileged users load and execute eBPF programs teach verifier to prevent pointer leaks. Verifier will prevent - any arithmetic on pointers (except R10+Imm which is used to compute stack addresses) - comparison of pointers (except if (map_value_ptr == 0) ... ) - passing pointers to helper functions - indirectly passing pointers in stack to helper functions - returning pointer from bpf program - storing pointers into ctx or maps Spill/fill of pointers into stack is allowed, but mangling of pointers stored in the stack or reading them byte by byte is not. Within bpf programs the pointers do exist, since programs need to be able to access maps, pass skb pointer to LD_ABS insns, etc but programs cannot pass such pointer values to the outside or obfuscate them. Only allow BPF_PROG_TYPE_SOCKET_FILTER unprivileged programs, so that socket filters (tcpdump), af_packet (quic acceleration) and future kcm can use it. tracing and tc cls/act program types still require root permissions, since tracing actually needs to be able to see all kernel pointers and tc is for root only. For example, the following unprivileged socket filter program is allowed: int bpf_prog1(struct __sk_buff *skb) { u32 index = load_byte(skb, ETH_HLEN + offsetof(struct iphdr, protocol)); u64 *value = bpf_map_lookup_elem(&my_map, &index); if (value) *value += skb->len; return 0; } but the following program is not: int bpf_prog1(struct __sk_buff *skb) { u32 index = load_byte(skb, ETH_HLEN + offsetof(struct iphdr, protocol)); u64 *value = bpf_map_lookup_elem(&my_map, &index); if (value) *value += (u64) skb; return 0; } since it would leak the kernel address into the map. Unprivileged socket filter bpf programs have access to the following helper functions: - map lookup/update/delete (but they cannot store kernel pointers into them) - get_random (it's already exposed to unprivileged user space) - get_smp_processor_id - tail_call into another socket filter program - ktime_get_ns The feature is controlled by sysctl kernel.unprivileged_bpf_disabled. This toggle defaults to off (0), but can be set true (1). Once true, bpf programs and maps cannot be accessed from unprivileged process, and the toggle cannot be set back to false. Signed-off-by: Alexei Starovoitov <ast@plumgrid.com> Reviewed-by: Kees Cook <keescook@chromium.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2015-10-07 22:23:21 -07:00
}
if (type == PTR_TO_PACKET &&
!may_access_direct_pkt_data(env, meta, BPF_READ)) {
bpf: direct packet write and access for helpers for clsact progs This work implements direct packet access for helpers and direct packet write in a similar fashion as already available for XDP types via commits 4acf6c0b84c9 ("bpf: enable direct packet data write for xdp progs") and 6841de8b0d03 ("bpf: allow helpers access the packet directly"), and as a complementary feature to the already available direct packet read for tc (cls/act) programs. For enabling this, we need to introduce two helpers, bpf_skb_pull_data() and bpf_csum_update(). The first is generally needed for both, read and write, because they would otherwise only be limited to the current linear skb head. Usually, when the data_end test fails, programs just bail out, or, in the direct read case, use bpf_skb_load_bytes() as an alternative to overcome this limitation. If such data sits in non-linear parts, we can just pull them in once with the new helper, retest and eventually access them. At the same time, this also makes sure the skb is uncloned, which is, of course, a necessary condition for direct write. As this needs to be an invariant for the write part only, the verifier detects writes and adds a prologue that is calling bpf_skb_pull_data() to effectively unclone the skb from the very beginning in case it is indeed cloned. The heuristic makes use of a similar trick that was done in 233577a22089 ("net: filter: constify detection of pkt_type_offset"). This comes at zero cost for other programs that do not use the direct write feature. Should a program use this feature only sparsely and has read access for the most parts with, for example, drop return codes, then such write action can be delegated to a tail called program for mitigating this cost of potential uncloning to a late point in time where it would have been paid similarly with the bpf_skb_store_bytes() as well. Advantage of direct write is that the writes are inlined whereas the helper cannot make any length assumptions and thus needs to generate a call to memcpy() also for small sizes, as well as cost of helper call itself with sanity checks are avoided. Plus, when direct read is already used, we don't need to cache or perform rechecks on the data boundaries (due to verifier invalidating previous checks for helpers that change skb->data), so more complex programs using rewrites can benefit from switching to direct read plus write. For direct packet access to helpers, we save the otherwise needed copy into a temp struct sitting on stack memory when use-case allows. Both facilities are enabled via may_access_direct_pkt_data() in verifier. For now, we limit this to map helpers and csum_diff, and can successively enable other helpers where we find it makes sense. Helpers that definitely cannot be allowed for this are those part of bpf_helper_changes_skb_data() since they can change underlying data, and those that write into memory as this could happen for packet typed args when still cloned. bpf_csum_update() helper accommodates for the fact that we need to fixup checksum_complete when using direct write instead of bpf_skb_store_bytes(), meaning the programs can use available helpers like bpf_csum_diff(), and implement csum_add(), csum_sub(), csum_block_add(), csum_block_sub() equivalents in eBPF together with the new helper. A usage example will be provided for iproute2's examples/bpf/ directory. Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-09-20 00:26:13 +02:00
verbose("helper access to the packet is not allowed\n");
return -EACCES;
}
if (arg_type == ARG_PTR_TO_MAP_KEY ||
bpf: verifier (add verifier core) This patch adds verifier core which simulates execution of every insn and records the state of registers and program stack. Every branch instruction seen during simulation is pushed into state stack. When verifier reaches BPF_EXIT, it pops the state from the stack and continues until it reaches BPF_EXIT again. For program: 1: bpf_mov r1, xxx 2: if (r1 == 0) goto 5 3: bpf_mov r0, 1 4: goto 6 5: bpf_mov r0, 2 6: bpf_exit The verifier will walk insns: 1, 2, 3, 4, 6 then it will pop the state recorded at insn#2 and will continue: 5, 6 This way it walks all possible paths through the program and checks all possible values of registers. While doing so, it checks for: - invalid instructions - uninitialized register access - uninitialized stack access - misaligned stack access - out of range stack access - invalid calling convention - instruction encoding is not using reserved fields Kernel subsystem configures the verifier with two callbacks: - bool (*is_valid_access)(int off, int size, enum bpf_access_type type); that provides information to the verifer which fields of 'ctx' are accessible (remember 'ctx' is the first argument to eBPF program) - const struct bpf_func_proto *(*get_func_proto)(enum bpf_func_id func_id); returns argument constraints of kernel helper functions that eBPF program may call, so that verifier can checks that R1-R5 types match the prototype More details in Documentation/networking/filter.txt and in kernel/bpf/verifier.c Signed-off-by: Alexei Starovoitov <ast@plumgrid.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-09-26 00:17:06 -07:00
arg_type == ARG_PTR_TO_MAP_VALUE) {
expected_type = PTR_TO_STACK;
if (type != PTR_TO_PACKET && type != expected_type)
goto err_type;
} else if (arg_type == ARG_CONST_SIZE ||
arg_type == ARG_CONST_SIZE_OR_ZERO) {
bpf: verifier (add verifier core) This patch adds verifier core which simulates execution of every insn and records the state of registers and program stack. Every branch instruction seen during simulation is pushed into state stack. When verifier reaches BPF_EXIT, it pops the state from the stack and continues until it reaches BPF_EXIT again. For program: 1: bpf_mov r1, xxx 2: if (r1 == 0) goto 5 3: bpf_mov r0, 1 4: goto 6 5: bpf_mov r0, 2 6: bpf_exit The verifier will walk insns: 1, 2, 3, 4, 6 then it will pop the state recorded at insn#2 and will continue: 5, 6 This way it walks all possible paths through the program and checks all possible values of registers. While doing so, it checks for: - invalid instructions - uninitialized register access - uninitialized stack access - misaligned stack access - out of range stack access - invalid calling convention - instruction encoding is not using reserved fields Kernel subsystem configures the verifier with two callbacks: - bool (*is_valid_access)(int off, int size, enum bpf_access_type type); that provides information to the verifer which fields of 'ctx' are accessible (remember 'ctx' is the first argument to eBPF program) - const struct bpf_func_proto *(*get_func_proto)(enum bpf_func_id func_id); returns argument constraints of kernel helper functions that eBPF program may call, so that verifier can checks that R1-R5 types match the prototype More details in Documentation/networking/filter.txt and in kernel/bpf/verifier.c Signed-off-by: Alexei Starovoitov <ast@plumgrid.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-09-26 00:17:06 -07:00
expected_type = CONST_IMM;
bpf: allow helpers access to variable memory Currently, helpers that read and write from/to the stack can do so using a pair of arguments of type ARG_PTR_TO_STACK and ARG_CONST_STACK_SIZE. ARG_CONST_STACK_SIZE accepts a constant register of type CONST_IMM, so that the verifier can safely check the memory access. However, requiring the argument to be a constant can be limiting in some circumstances. Since the current logic keeps track of the minimum and maximum value of a register throughout the simulated execution, ARG_CONST_STACK_SIZE can be changed to also accept an UNKNOWN_VALUE register in case its boundaries have been set and the range doesn't cause invalid memory accesses. One common situation when this is useful: int len; char buf[BUFSIZE]; /* BUFSIZE is 128 */ if (some_condition) len = 42; else len = 84; some_helper(..., buf, len & (BUFSIZE - 1)); The compiler can often decide to assign the constant values 42 or 48 into a variable on the stack, instead of keeping it in a register. When the variable is then read back from stack into the register in order to be passed to the helper, the verifier will not be able to recognize the register as constant (the verifier is not currently tracking all constant writes into memory), and the program won't be valid. However, by allowing the helper to accept an UNKNOWN_VALUE register, this program will work because the bitwise AND operation will set the range of possible values for the UNKNOWN_VALUE register to [0, BUFSIZE), so the verifier can guarantee the helper call will be safe (assuming the argument is of type ARG_CONST_STACK_SIZE_OR_ZERO, otherwise one more check against 0 would be needed). Custom ranges can be set not only with ALU operations, but also by explicitly comparing the UNKNOWN_VALUE register with constants. Another very common example happens when intercepting system call arguments and accessing user-provided data of variable size using bpf_probe_read(). One can load at runtime the user-provided length in an UNKNOWN_VALUE register, and then read that exact amount of data up to a compile-time determined limit in order to fit into the proper local storage allocated on the stack, without having to guess a suboptimal access size at compile time. Also, in case the helpers accepting the UNKNOWN_VALUE register operate in raw mode, disable the raw mode so that the program is required to initialize all memory, since there is no guarantee the helper will fill it completely, leaving possibilities for data leak (just relevant when the memory used by the helper is the stack, not when using a pointer to map element value or packet). In other words, ARG_PTR_TO_RAW_STACK will be treated as ARG_PTR_TO_STACK. Signed-off-by: Gianluca Borello <g.borello@gmail.com> Acked-by: Daniel Borkmann <daniel@iogearbox.net> Signed-off-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-01-09 10:19:49 -08:00
/* One exception. Allow UNKNOWN_VALUE registers when the
* boundaries are known and don't cause unsafe memory accesses
*/
if (type != UNKNOWN_VALUE && type != expected_type)
goto err_type;
bpf: verifier (add verifier core) This patch adds verifier core which simulates execution of every insn and records the state of registers and program stack. Every branch instruction seen during simulation is pushed into state stack. When verifier reaches BPF_EXIT, it pops the state from the stack and continues until it reaches BPF_EXIT again. For program: 1: bpf_mov r1, xxx 2: if (r1 == 0) goto 5 3: bpf_mov r0, 1 4: goto 6 5: bpf_mov r0, 2 6: bpf_exit The verifier will walk insns: 1, 2, 3, 4, 6 then it will pop the state recorded at insn#2 and will continue: 5, 6 This way it walks all possible paths through the program and checks all possible values of registers. While doing so, it checks for: - invalid instructions - uninitialized register access - uninitialized stack access - misaligned stack access - out of range stack access - invalid calling convention - instruction encoding is not using reserved fields Kernel subsystem configures the verifier with two callbacks: - bool (*is_valid_access)(int off, int size, enum bpf_access_type type); that provides information to the verifer which fields of 'ctx' are accessible (remember 'ctx' is the first argument to eBPF program) - const struct bpf_func_proto *(*get_func_proto)(enum bpf_func_id func_id); returns argument constraints of kernel helper functions that eBPF program may call, so that verifier can checks that R1-R5 types match the prototype More details in Documentation/networking/filter.txt and in kernel/bpf/verifier.c Signed-off-by: Alexei Starovoitov <ast@plumgrid.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-09-26 00:17:06 -07:00
} else if (arg_type == ARG_CONST_MAP_PTR) {
expected_type = CONST_PTR_TO_MAP;
if (type != expected_type)
goto err_type;
} else if (arg_type == ARG_PTR_TO_CTX) {
expected_type = PTR_TO_CTX;
if (type != expected_type)
goto err_type;
} else if (arg_type == ARG_PTR_TO_MEM ||
arg_type == ARG_PTR_TO_UNINIT_MEM) {
expected_type = PTR_TO_STACK;
/* One exception here. In case function allows for NULL to be
* passed in as argument, it's a CONST_IMM type. Final test
* happens during stack boundary checking.
*/
if (type == CONST_IMM && reg->imm == 0)
/* final test in check_stack_boundary() */;
bpf: allow helpers access to map element values Enable helpers to directly access a map element value by passing a register type PTR_TO_MAP_VALUE (or PTR_TO_MAP_VALUE_ADJ) to helper arguments ARG_PTR_TO_STACK or ARG_PTR_TO_RAW_STACK. This enables several use cases. For example, a typical tracing program might want to capture pathnames passed to sys_open() with: struct trace_data { char pathname[PATHLEN]; }; SEC("kprobe/sys_open") void bpf_sys_open(struct pt_regs *ctx) { struct trace_data data; bpf_probe_read(data.pathname, sizeof(data.pathname), ctx->di); /* consume data.pathname, for example via * bpf_trace_printk() or bpf_perf_event_output() */ } Such a program could easily hit the stack limit in case PATHLEN needs to be large or more local variables need to exist, both of which are quite common scenarios. Allowing direct helper access to map element values, one could do: struct bpf_map_def SEC("maps") scratch_map = { .type = BPF_MAP_TYPE_PERCPU_ARRAY, .key_size = sizeof(u32), .value_size = sizeof(struct trace_data), .max_entries = 1, }; SEC("kprobe/sys_open") int bpf_sys_open(struct pt_regs *ctx) { int id = 0; struct trace_data *p = bpf_map_lookup_elem(&scratch_map, &id); if (!p) return; bpf_probe_read(p->pathname, sizeof(p->pathname), ctx->di); /* consume p->pathname, for example via * bpf_trace_printk() or bpf_perf_event_output() */ } And wouldn't risk exhausting the stack. Code changes are loosely modeled after commit 6841de8b0d03 ("bpf: allow helpers access the packet directly"). Unlike with PTR_TO_PACKET, these changes just work with ARG_PTR_TO_STACK and ARG_PTR_TO_RAW_STACK (not ARG_PTR_TO_MAP_KEY, ARG_PTR_TO_MAP_VALUE, ...): adding those would be trivial, but since there is not currently a use case for that, it's reasonable to limit the set of changes. Also, add new tests to make sure accesses to map element values from helpers never go out of boundary, even when adjusted. Signed-off-by: Gianluca Borello <g.borello@gmail.com> Acked-by: Daniel Borkmann <daniel@iogearbox.net> Signed-off-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-01-09 10:19:47 -08:00
else if (type != PTR_TO_PACKET && type != PTR_TO_MAP_VALUE &&
type != PTR_TO_MAP_VALUE_ADJ && type != expected_type)
goto err_type;
meta->raw_mode = arg_type == ARG_PTR_TO_UNINIT_MEM;
bpf: verifier (add verifier core) This patch adds verifier core which simulates execution of every insn and records the state of registers and program stack. Every branch instruction seen during simulation is pushed into state stack. When verifier reaches BPF_EXIT, it pops the state from the stack and continues until it reaches BPF_EXIT again. For program: 1: bpf_mov r1, xxx 2: if (r1 == 0) goto 5 3: bpf_mov r0, 1 4: goto 6 5: bpf_mov r0, 2 6: bpf_exit The verifier will walk insns: 1, 2, 3, 4, 6 then it will pop the state recorded at insn#2 and will continue: 5, 6 This way it walks all possible paths through the program and checks all possible values of registers. While doing so, it checks for: - invalid instructions - uninitialized register access - uninitialized stack access - misaligned stack access - out of range stack access - invalid calling convention - instruction encoding is not using reserved fields Kernel subsystem configures the verifier with two callbacks: - bool (*is_valid_access)(int off, int size, enum bpf_access_type type); that provides information to the verifer which fields of 'ctx' are accessible (remember 'ctx' is the first argument to eBPF program) - const struct bpf_func_proto *(*get_func_proto)(enum bpf_func_id func_id); returns argument constraints of kernel helper functions that eBPF program may call, so that verifier can checks that R1-R5 types match the prototype More details in Documentation/networking/filter.txt and in kernel/bpf/verifier.c Signed-off-by: Alexei Starovoitov <ast@plumgrid.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-09-26 00:17:06 -07:00
} else {
verbose("unsupported arg_type %d\n", arg_type);
return -EFAULT;
}
if (arg_type == ARG_CONST_MAP_PTR) {
/* bpf_map_xxx(map_ptr) call: remember that map_ptr */
meta->map_ptr = reg->map_ptr;
bpf: verifier (add verifier core) This patch adds verifier core which simulates execution of every insn and records the state of registers and program stack. Every branch instruction seen during simulation is pushed into state stack. When verifier reaches BPF_EXIT, it pops the state from the stack and continues until it reaches BPF_EXIT again. For program: 1: bpf_mov r1, xxx 2: if (r1 == 0) goto 5 3: bpf_mov r0, 1 4: goto 6 5: bpf_mov r0, 2 6: bpf_exit The verifier will walk insns: 1, 2, 3, 4, 6 then it will pop the state recorded at insn#2 and will continue: 5, 6 This way it walks all possible paths through the program and checks all possible values of registers. While doing so, it checks for: - invalid instructions - uninitialized register access - uninitialized stack access - misaligned stack access - out of range stack access - invalid calling convention - instruction encoding is not using reserved fields Kernel subsystem configures the verifier with two callbacks: - bool (*is_valid_access)(int off, int size, enum bpf_access_type type); that provides information to the verifer which fields of 'ctx' are accessible (remember 'ctx' is the first argument to eBPF program) - const struct bpf_func_proto *(*get_func_proto)(enum bpf_func_id func_id); returns argument constraints of kernel helper functions that eBPF program may call, so that verifier can checks that R1-R5 types match the prototype More details in Documentation/networking/filter.txt and in kernel/bpf/verifier.c Signed-off-by: Alexei Starovoitov <ast@plumgrid.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-09-26 00:17:06 -07:00
} else if (arg_type == ARG_PTR_TO_MAP_KEY) {
/* bpf_map_xxx(..., map_ptr, ..., key) call:
* check that [key, key + map->key_size) are within
* stack limits and initialized
*/
if (!meta->map_ptr) {
bpf: verifier (add verifier core) This patch adds verifier core which simulates execution of every insn and records the state of registers and program stack. Every branch instruction seen during simulation is pushed into state stack. When verifier reaches BPF_EXIT, it pops the state from the stack and continues until it reaches BPF_EXIT again. For program: 1: bpf_mov r1, xxx 2: if (r1 == 0) goto 5 3: bpf_mov r0, 1 4: goto 6 5: bpf_mov r0, 2 6: bpf_exit The verifier will walk insns: 1, 2, 3, 4, 6 then it will pop the state recorded at insn#2 and will continue: 5, 6 This way it walks all possible paths through the program and checks all possible values of registers. While doing so, it checks for: - invalid instructions - uninitialized register access - uninitialized stack access - misaligned stack access - out of range stack access - invalid calling convention - instruction encoding is not using reserved fields Kernel subsystem configures the verifier with two callbacks: - bool (*is_valid_access)(int off, int size, enum bpf_access_type type); that provides information to the verifer which fields of 'ctx' are accessible (remember 'ctx' is the first argument to eBPF program) - const struct bpf_func_proto *(*get_func_proto)(enum bpf_func_id func_id); returns argument constraints of kernel helper functions that eBPF program may call, so that verifier can checks that R1-R5 types match the prototype More details in Documentation/networking/filter.txt and in kernel/bpf/verifier.c Signed-off-by: Alexei Starovoitov <ast@plumgrid.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-09-26 00:17:06 -07:00
/* in function declaration map_ptr must come before
* map_key, so that it's verified and known before
* we have to check map_key here. Otherwise it means
* that kernel subsystem misconfigured verifier
*/
verbose("invalid map_ptr to access map->key\n");
return -EACCES;
}
if (type == PTR_TO_PACKET)
err = check_packet_access(env, regno, 0,
meta->map_ptr->key_size);
else
err = check_stack_boundary(env, regno,
meta->map_ptr->key_size,
false, NULL);
bpf: verifier (add verifier core) This patch adds verifier core which simulates execution of every insn and records the state of registers and program stack. Every branch instruction seen during simulation is pushed into state stack. When verifier reaches BPF_EXIT, it pops the state from the stack and continues until it reaches BPF_EXIT again. For program: 1: bpf_mov r1, xxx 2: if (r1 == 0) goto 5 3: bpf_mov r0, 1 4: goto 6 5: bpf_mov r0, 2 6: bpf_exit The verifier will walk insns: 1, 2, 3, 4, 6 then it will pop the state recorded at insn#2 and will continue: 5, 6 This way it walks all possible paths through the program and checks all possible values of registers. While doing so, it checks for: - invalid instructions - uninitialized register access - uninitialized stack access - misaligned stack access - out of range stack access - invalid calling convention - instruction encoding is not using reserved fields Kernel subsystem configures the verifier with two callbacks: - bool (*is_valid_access)(int off, int size, enum bpf_access_type type); that provides information to the verifer which fields of 'ctx' are accessible (remember 'ctx' is the first argument to eBPF program) - const struct bpf_func_proto *(*get_func_proto)(enum bpf_func_id func_id); returns argument constraints of kernel helper functions that eBPF program may call, so that verifier can checks that R1-R5 types match the prototype More details in Documentation/networking/filter.txt and in kernel/bpf/verifier.c Signed-off-by: Alexei Starovoitov <ast@plumgrid.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-09-26 00:17:06 -07:00
} else if (arg_type == ARG_PTR_TO_MAP_VALUE) {
/* bpf_map_xxx(..., map_ptr, ..., value) call:
* check [value, value + map->value_size) validity
*/
if (!meta->map_ptr) {
bpf: verifier (add verifier core) This patch adds verifier core which simulates execution of every insn and records the state of registers and program stack. Every branch instruction seen during simulation is pushed into state stack. When verifier reaches BPF_EXIT, it pops the state from the stack and continues until it reaches BPF_EXIT again. For program: 1: bpf_mov r1, xxx 2: if (r1 == 0) goto 5 3: bpf_mov r0, 1 4: goto 6 5: bpf_mov r0, 2 6: bpf_exit The verifier will walk insns: 1, 2, 3, 4, 6 then it will pop the state recorded at insn#2 and will continue: 5, 6 This way it walks all possible paths through the program and checks all possible values of registers. While doing so, it checks for: - invalid instructions - uninitialized register access - uninitialized stack access - misaligned stack access - out of range stack access - invalid calling convention - instruction encoding is not using reserved fields Kernel subsystem configures the verifier with two callbacks: - bool (*is_valid_access)(int off, int size, enum bpf_access_type type); that provides information to the verifer which fields of 'ctx' are accessible (remember 'ctx' is the first argument to eBPF program) - const struct bpf_func_proto *(*get_func_proto)(enum bpf_func_id func_id); returns argument constraints of kernel helper functions that eBPF program may call, so that verifier can checks that R1-R5 types match the prototype More details in Documentation/networking/filter.txt and in kernel/bpf/verifier.c Signed-off-by: Alexei Starovoitov <ast@plumgrid.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-09-26 00:17:06 -07:00
/* kernel subsystem misconfigured verifier */
verbose("invalid map_ptr to access map->value\n");
return -EACCES;
}
if (type == PTR_TO_PACKET)
err = check_packet_access(env, regno, 0,
meta->map_ptr->value_size);
else
err = check_stack_boundary(env, regno,
meta->map_ptr->value_size,
false, NULL);
} else if (arg_type == ARG_CONST_SIZE ||
arg_type == ARG_CONST_SIZE_OR_ZERO) {
bool zero_size_allowed = (arg_type == ARG_CONST_SIZE_OR_ZERO);
bpf: verifier (add verifier core) This patch adds verifier core which simulates execution of every insn and records the state of registers and program stack. Every branch instruction seen during simulation is pushed into state stack. When verifier reaches BPF_EXIT, it pops the state from the stack and continues until it reaches BPF_EXIT again. For program: 1: bpf_mov r1, xxx 2: if (r1 == 0) goto 5 3: bpf_mov r0, 1 4: goto 6 5: bpf_mov r0, 2 6: bpf_exit The verifier will walk insns: 1, 2, 3, 4, 6 then it will pop the state recorded at insn#2 and will continue: 5, 6 This way it walks all possible paths through the program and checks all possible values of registers. While doing so, it checks for: - invalid instructions - uninitialized register access - uninitialized stack access - misaligned stack access - out of range stack access - invalid calling convention - instruction encoding is not using reserved fields Kernel subsystem configures the verifier with two callbacks: - bool (*is_valid_access)(int off, int size, enum bpf_access_type type); that provides information to the verifer which fields of 'ctx' are accessible (remember 'ctx' is the first argument to eBPF program) - const struct bpf_func_proto *(*get_func_proto)(enum bpf_func_id func_id); returns argument constraints of kernel helper functions that eBPF program may call, so that verifier can checks that R1-R5 types match the prototype More details in Documentation/networking/filter.txt and in kernel/bpf/verifier.c Signed-off-by: Alexei Starovoitov <ast@plumgrid.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-09-26 00:17:06 -07:00
/* bpf_xxx(..., buf, len) call will access 'len' bytes
* from stack pointer 'buf'. Check it
* note: regno == len, regno - 1 == buf
*/
if (regno == 0) {
/* kernel subsystem misconfigured verifier */
verbose("ARG_CONST_SIZE cannot be first argument\n");
bpf: verifier (add verifier core) This patch adds verifier core which simulates execution of every insn and records the state of registers and program stack. Every branch instruction seen during simulation is pushed into state stack. When verifier reaches BPF_EXIT, it pops the state from the stack and continues until it reaches BPF_EXIT again. For program: 1: bpf_mov r1, xxx 2: if (r1 == 0) goto 5 3: bpf_mov r0, 1 4: goto 6 5: bpf_mov r0, 2 6: bpf_exit The verifier will walk insns: 1, 2, 3, 4, 6 then it will pop the state recorded at insn#2 and will continue: 5, 6 This way it walks all possible paths through the program and checks all possible values of registers. While doing so, it checks for: - invalid instructions - uninitialized register access - uninitialized stack access - misaligned stack access - out of range stack access - invalid calling convention - instruction encoding is not using reserved fields Kernel subsystem configures the verifier with two callbacks: - bool (*is_valid_access)(int off, int size, enum bpf_access_type type); that provides information to the verifer which fields of 'ctx' are accessible (remember 'ctx' is the first argument to eBPF program) - const struct bpf_func_proto *(*get_func_proto)(enum bpf_func_id func_id); returns argument constraints of kernel helper functions that eBPF program may call, so that verifier can checks that R1-R5 types match the prototype More details in Documentation/networking/filter.txt and in kernel/bpf/verifier.c Signed-off-by: Alexei Starovoitov <ast@plumgrid.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-09-26 00:17:06 -07:00
return -EACCES;
}
bpf: allow helpers access to variable memory Currently, helpers that read and write from/to the stack can do so using a pair of arguments of type ARG_PTR_TO_STACK and ARG_CONST_STACK_SIZE. ARG_CONST_STACK_SIZE accepts a constant register of type CONST_IMM, so that the verifier can safely check the memory access. However, requiring the argument to be a constant can be limiting in some circumstances. Since the current logic keeps track of the minimum and maximum value of a register throughout the simulated execution, ARG_CONST_STACK_SIZE can be changed to also accept an UNKNOWN_VALUE register in case its boundaries have been set and the range doesn't cause invalid memory accesses. One common situation when this is useful: int len; char buf[BUFSIZE]; /* BUFSIZE is 128 */ if (some_condition) len = 42; else len = 84; some_helper(..., buf, len & (BUFSIZE - 1)); The compiler can often decide to assign the constant values 42 or 48 into a variable on the stack, instead of keeping it in a register. When the variable is then read back from stack into the register in order to be passed to the helper, the verifier will not be able to recognize the register as constant (the verifier is not currently tracking all constant writes into memory), and the program won't be valid. However, by allowing the helper to accept an UNKNOWN_VALUE register, this program will work because the bitwise AND operation will set the range of possible values for the UNKNOWN_VALUE register to [0, BUFSIZE), so the verifier can guarantee the helper call will be safe (assuming the argument is of type ARG_CONST_STACK_SIZE_OR_ZERO, otherwise one more check against 0 would be needed). Custom ranges can be set not only with ALU operations, but also by explicitly comparing the UNKNOWN_VALUE register with constants. Another very common example happens when intercepting system call arguments and accessing user-provided data of variable size using bpf_probe_read(). One can load at runtime the user-provided length in an UNKNOWN_VALUE register, and then read that exact amount of data up to a compile-time determined limit in order to fit into the proper local storage allocated on the stack, without having to guess a suboptimal access size at compile time. Also, in case the helpers accepting the UNKNOWN_VALUE register operate in raw mode, disable the raw mode so that the program is required to initialize all memory, since there is no guarantee the helper will fill it completely, leaving possibilities for data leak (just relevant when the memory used by the helper is the stack, not when using a pointer to map element value or packet). In other words, ARG_PTR_TO_RAW_STACK will be treated as ARG_PTR_TO_STACK. Signed-off-by: Gianluca Borello <g.borello@gmail.com> Acked-by: Daniel Borkmann <daniel@iogearbox.net> Signed-off-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-01-09 10:19:49 -08:00
/* If the register is UNKNOWN_VALUE, the access check happens
* using its boundaries. Otherwise, just use its imm
*/
if (type == UNKNOWN_VALUE) {
/* For unprivileged variable accesses, disable raw
* mode so that the program is required to
* initialize all the memory that the helper could
* just partially fill up.
*/
meta = NULL;
if (reg->min_value < 0) {
verbose("R%d min value is negative, either use unsigned or 'var &= const'\n",
regno);
return -EACCES;
}
if (reg->min_value == 0) {
err = check_helper_mem_access(env, regno - 1, 0,
zero_size_allowed,
meta);
if (err)
return err;
}
if (reg->max_value == BPF_REGISTER_MAX_RANGE) {
verbose("R%d unbounded memory access, use 'var &= const' or 'if (var < const)'\n",
regno);
return -EACCES;
}
err = check_helper_mem_access(env, regno - 1,
reg->max_value,
zero_size_allowed, meta);
if (err)
return err;
} else {
/* register is CONST_IMM */
err = check_helper_mem_access(env, regno - 1, reg->imm,
zero_size_allowed, meta);
}
bpf: verifier (add verifier core) This patch adds verifier core which simulates execution of every insn and records the state of registers and program stack. Every branch instruction seen during simulation is pushed into state stack. When verifier reaches BPF_EXIT, it pops the state from the stack and continues until it reaches BPF_EXIT again. For program: 1: bpf_mov r1, xxx 2: if (r1 == 0) goto 5 3: bpf_mov r0, 1 4: goto 6 5: bpf_mov r0, 2 6: bpf_exit The verifier will walk insns: 1, 2, 3, 4, 6 then it will pop the state recorded at insn#2 and will continue: 5, 6 This way it walks all possible paths through the program and checks all possible values of registers. While doing so, it checks for: - invalid instructions - uninitialized register access - uninitialized stack access - misaligned stack access - out of range stack access - invalid calling convention - instruction encoding is not using reserved fields Kernel subsystem configures the verifier with two callbacks: - bool (*is_valid_access)(int off, int size, enum bpf_access_type type); that provides information to the verifer which fields of 'ctx' are accessible (remember 'ctx' is the first argument to eBPF program) - const struct bpf_func_proto *(*get_func_proto)(enum bpf_func_id func_id); returns argument constraints of kernel helper functions that eBPF program may call, so that verifier can checks that R1-R5 types match the prototype More details in Documentation/networking/filter.txt and in kernel/bpf/verifier.c Signed-off-by: Alexei Starovoitov <ast@plumgrid.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-09-26 00:17:06 -07:00
}
return err;
err_type:
verbose("R%d type=%s expected=%s\n", regno,
reg_type_str[type], reg_type_str[expected_type]);
return -EACCES;
bpf: verifier (add verifier core) This patch adds verifier core which simulates execution of every insn and records the state of registers and program stack. Every branch instruction seen during simulation is pushed into state stack. When verifier reaches BPF_EXIT, it pops the state from the stack and continues until it reaches BPF_EXIT again. For program: 1: bpf_mov r1, xxx 2: if (r1 == 0) goto 5 3: bpf_mov r0, 1 4: goto 6 5: bpf_mov r0, 2 6: bpf_exit The verifier will walk insns: 1, 2, 3, 4, 6 then it will pop the state recorded at insn#2 and will continue: 5, 6 This way it walks all possible paths through the program and checks all possible values of registers. While doing so, it checks for: - invalid instructions - uninitialized register access - uninitialized stack access - misaligned stack access - out of range stack access - invalid calling convention - instruction encoding is not using reserved fields Kernel subsystem configures the verifier with two callbacks: - bool (*is_valid_access)(int off, int size, enum bpf_access_type type); that provides information to the verifer which fields of 'ctx' are accessible (remember 'ctx' is the first argument to eBPF program) - const struct bpf_func_proto *(*get_func_proto)(enum bpf_func_id func_id); returns argument constraints of kernel helper functions that eBPF program may call, so that verifier can checks that R1-R5 types match the prototype More details in Documentation/networking/filter.txt and in kernel/bpf/verifier.c Signed-off-by: Alexei Starovoitov <ast@plumgrid.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-09-26 00:17:06 -07:00
}
static int check_map_func_compatibility(struct bpf_map *map, int func_id)
{
if (!map)
return 0;
/* We need a two way check, first is from map perspective ... */
switch (map->map_type) {
case BPF_MAP_TYPE_PROG_ARRAY:
if (func_id != BPF_FUNC_tail_call)
goto error;
break;
case BPF_MAP_TYPE_PERF_EVENT_ARRAY:
if (func_id != BPF_FUNC_perf_event_read &&
func_id != BPF_FUNC_perf_event_output)
goto error;
break;
case BPF_MAP_TYPE_STACK_TRACE:
if (func_id != BPF_FUNC_get_stackid)
goto error;
break;
case BPF_MAP_TYPE_CGROUP_ARRAY:
if (func_id != BPF_FUNC_skb_under_cgroup &&
func_id != BPF_FUNC_current_task_under_cgroup)
goto error;
break;
bpf: Add array of maps support This patch adds a few helper funcs to enable map-in-map support (i.e. outer_map->inner_map). The first outer_map type BPF_MAP_TYPE_ARRAY_OF_MAPS is also added in this patch. The next patch will introduce a hash of maps type. Any bpf map type can be acted as an inner_map. The exception is BPF_MAP_TYPE_PROG_ARRAY because the extra level of indirection makes it harder to verify the owner_prog_type and owner_jited. Multi-level map-in-map is not supported (i.e. map->map is ok but not map->map->map). When adding an inner_map to an outer_map, it currently checks the map_type, key_size, value_size, map_flags, max_entries and ops. The verifier also uses those map's properties to do static analysis. map_flags is needed because we need to ensure BPF_PROG_TYPE_PERF_EVENT is using a preallocated hashtab for the inner_hash also. ops and max_entries are needed to generate inlined map-lookup instructions. For simplicity reason, a simple '==' test is used for both map_flags and max_entries. The equality of ops is implied by the equality of map_type. During outer_map creation time, an inner_map_fd is needed to create an outer_map. However, the inner_map_fd's life time does not depend on the outer_map. The inner_map_fd is merely used to initialize the inner_map_meta of the outer_map. Also, for the outer_map: * It allows element update and delete from syscall * It allows element lookup from bpf_prog The above is similar to the current fd_array pattern. Signed-off-by: Martin KaFai Lau <kafai@fb.com> Acked-by: Alexei Starovoitov <ast@kernel.org> Acked-by: Daniel Borkmann <daniel@iogearbox.net> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-03-22 10:00:33 -07:00
case BPF_MAP_TYPE_ARRAY_OF_MAPS:
case BPF_MAP_TYPE_HASH_OF_MAPS:
bpf: Add array of maps support This patch adds a few helper funcs to enable map-in-map support (i.e. outer_map->inner_map). The first outer_map type BPF_MAP_TYPE_ARRAY_OF_MAPS is also added in this patch. The next patch will introduce a hash of maps type. Any bpf map type can be acted as an inner_map. The exception is BPF_MAP_TYPE_PROG_ARRAY because the extra level of indirection makes it harder to verify the owner_prog_type and owner_jited. Multi-level map-in-map is not supported (i.e. map->map is ok but not map->map->map). When adding an inner_map to an outer_map, it currently checks the map_type, key_size, value_size, map_flags, max_entries and ops. The verifier also uses those map's properties to do static analysis. map_flags is needed because we need to ensure BPF_PROG_TYPE_PERF_EVENT is using a preallocated hashtab for the inner_hash also. ops and max_entries are needed to generate inlined map-lookup instructions. For simplicity reason, a simple '==' test is used for both map_flags and max_entries. The equality of ops is implied by the equality of map_type. During outer_map creation time, an inner_map_fd is needed to create an outer_map. However, the inner_map_fd's life time does not depend on the outer_map. The inner_map_fd is merely used to initialize the inner_map_meta of the outer_map. Also, for the outer_map: * It allows element update and delete from syscall * It allows element lookup from bpf_prog The above is similar to the current fd_array pattern. Signed-off-by: Martin KaFai Lau <kafai@fb.com> Acked-by: Alexei Starovoitov <ast@kernel.org> Acked-by: Daniel Borkmann <daniel@iogearbox.net> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-03-22 10:00:33 -07:00
if (func_id != BPF_FUNC_map_lookup_elem)
goto error;
default:
break;
}
/* ... and second from the function itself. */
switch (func_id) {
case BPF_FUNC_tail_call:
if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY)
goto error;
break;
case BPF_FUNC_perf_event_read:
case BPF_FUNC_perf_event_output:
if (map->map_type != BPF_MAP_TYPE_PERF_EVENT_ARRAY)
goto error;
break;
case BPF_FUNC_get_stackid:
if (map->map_type != BPF_MAP_TYPE_STACK_TRACE)
goto error;
break;
case BPF_FUNC_current_task_under_cgroup:
case BPF_FUNC_skb_under_cgroup:
if (map->map_type != BPF_MAP_TYPE_CGROUP_ARRAY)
goto error;
break;
default:
break;
}
return 0;
error:
verbose("cannot pass map_type %d into func %s#%d\n",
map->map_type, func_id_name(func_id), func_id);
return -EINVAL;
}
bpf, verifier: add ARG_PTR_TO_RAW_STACK type When passing buffers from eBPF stack space into a helper function, we have ARG_PTR_TO_STACK argument type for helpers available. The verifier makes sure that such buffers are initialized, within boundaries, etc. However, the downside with this is that we have a couple of helper functions such as bpf_skb_load_bytes() that fill out the passed buffer in the expected success case anyway, so zero initializing them prior to the helper call is unneeded/wasted instructions in the eBPF program that can be avoided. Therefore, add a new helper function argument type called ARG_PTR_TO_RAW_STACK. The idea is to skip the STACK_MISC check in check_stack_boundary() and color the related stack slots as STACK_MISC after we checked all call arguments. Helper functions using ARG_PTR_TO_RAW_STACK must make sure that every path of the helper function will fill the provided buffer area, so that we cannot leak any uninitialized stack memory. This f.e. means that error paths need to memset() the buffers, but the expected fast-path doesn't have to do this anymore. Since there's no such helper needing more than at most one ARG_PTR_TO_RAW_STACK argument, we can keep it simple and don't need to check for multiple areas. Should in future such a use-case really appear, we have check_raw_mode() that will make sure we implement support for it first. Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-04-13 00:10:51 +02:00
static int check_raw_mode(const struct bpf_func_proto *fn)
{
int count = 0;
if (fn->arg1_type == ARG_PTR_TO_UNINIT_MEM)
bpf, verifier: add ARG_PTR_TO_RAW_STACK type When passing buffers from eBPF stack space into a helper function, we have ARG_PTR_TO_STACK argument type for helpers available. The verifier makes sure that such buffers are initialized, within boundaries, etc. However, the downside with this is that we have a couple of helper functions such as bpf_skb_load_bytes() that fill out the passed buffer in the expected success case anyway, so zero initializing them prior to the helper call is unneeded/wasted instructions in the eBPF program that can be avoided. Therefore, add a new helper function argument type called ARG_PTR_TO_RAW_STACK. The idea is to skip the STACK_MISC check in check_stack_boundary() and color the related stack slots as STACK_MISC after we checked all call arguments. Helper functions using ARG_PTR_TO_RAW_STACK must make sure that every path of the helper function will fill the provided buffer area, so that we cannot leak any uninitialized stack memory. This f.e. means that error paths need to memset() the buffers, but the expected fast-path doesn't have to do this anymore. Since there's no such helper needing more than at most one ARG_PTR_TO_RAW_STACK argument, we can keep it simple and don't need to check for multiple areas. Should in future such a use-case really appear, we have check_raw_mode() that will make sure we implement support for it first. Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-04-13 00:10:51 +02:00
count++;
if (fn->arg2_type == ARG_PTR_TO_UNINIT_MEM)
bpf, verifier: add ARG_PTR_TO_RAW_STACK type When passing buffers from eBPF stack space into a helper function, we have ARG_PTR_TO_STACK argument type for helpers available. The verifier makes sure that such buffers are initialized, within boundaries, etc. However, the downside with this is that we have a couple of helper functions such as bpf_skb_load_bytes() that fill out the passed buffer in the expected success case anyway, so zero initializing them prior to the helper call is unneeded/wasted instructions in the eBPF program that can be avoided. Therefore, add a new helper function argument type called ARG_PTR_TO_RAW_STACK. The idea is to skip the STACK_MISC check in check_stack_boundary() and color the related stack slots as STACK_MISC after we checked all call arguments. Helper functions using ARG_PTR_TO_RAW_STACK must make sure that every path of the helper function will fill the provided buffer area, so that we cannot leak any uninitialized stack memory. This f.e. means that error paths need to memset() the buffers, but the expected fast-path doesn't have to do this anymore. Since there's no such helper needing more than at most one ARG_PTR_TO_RAW_STACK argument, we can keep it simple and don't need to check for multiple areas. Should in future such a use-case really appear, we have check_raw_mode() that will make sure we implement support for it first. Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-04-13 00:10:51 +02:00
count++;
if (fn->arg3_type == ARG_PTR_TO_UNINIT_MEM)
bpf, verifier: add ARG_PTR_TO_RAW_STACK type When passing buffers from eBPF stack space into a helper function, we have ARG_PTR_TO_STACK argument type for helpers available. The verifier makes sure that such buffers are initialized, within boundaries, etc. However, the downside with this is that we have a couple of helper functions such as bpf_skb_load_bytes() that fill out the passed buffer in the expected success case anyway, so zero initializing them prior to the helper call is unneeded/wasted instructions in the eBPF program that can be avoided. Therefore, add a new helper function argument type called ARG_PTR_TO_RAW_STACK. The idea is to skip the STACK_MISC check in check_stack_boundary() and color the related stack slots as STACK_MISC after we checked all call arguments. Helper functions using ARG_PTR_TO_RAW_STACK must make sure that every path of the helper function will fill the provided buffer area, so that we cannot leak any uninitialized stack memory. This f.e. means that error paths need to memset() the buffers, but the expected fast-path doesn't have to do this anymore. Since there's no such helper needing more than at most one ARG_PTR_TO_RAW_STACK argument, we can keep it simple and don't need to check for multiple areas. Should in future such a use-case really appear, we have check_raw_mode() that will make sure we implement support for it first. Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-04-13 00:10:51 +02:00
count++;
if (fn->arg4_type == ARG_PTR_TO_UNINIT_MEM)
bpf, verifier: add ARG_PTR_TO_RAW_STACK type When passing buffers from eBPF stack space into a helper function, we have ARG_PTR_TO_STACK argument type for helpers available. The verifier makes sure that such buffers are initialized, within boundaries, etc. However, the downside with this is that we have a couple of helper functions such as bpf_skb_load_bytes() that fill out the passed buffer in the expected success case anyway, so zero initializing them prior to the helper call is unneeded/wasted instructions in the eBPF program that can be avoided. Therefore, add a new helper function argument type called ARG_PTR_TO_RAW_STACK. The idea is to skip the STACK_MISC check in check_stack_boundary() and color the related stack slots as STACK_MISC after we checked all call arguments. Helper functions using ARG_PTR_TO_RAW_STACK must make sure that every path of the helper function will fill the provided buffer area, so that we cannot leak any uninitialized stack memory. This f.e. means that error paths need to memset() the buffers, but the expected fast-path doesn't have to do this anymore. Since there's no such helper needing more than at most one ARG_PTR_TO_RAW_STACK argument, we can keep it simple and don't need to check for multiple areas. Should in future such a use-case really appear, we have check_raw_mode() that will make sure we implement support for it first. Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-04-13 00:10:51 +02:00
count++;
if (fn->arg5_type == ARG_PTR_TO_UNINIT_MEM)
bpf, verifier: add ARG_PTR_TO_RAW_STACK type When passing buffers from eBPF stack space into a helper function, we have ARG_PTR_TO_STACK argument type for helpers available. The verifier makes sure that such buffers are initialized, within boundaries, etc. However, the downside with this is that we have a couple of helper functions such as bpf_skb_load_bytes() that fill out the passed buffer in the expected success case anyway, so zero initializing them prior to the helper call is unneeded/wasted instructions in the eBPF program that can be avoided. Therefore, add a new helper function argument type called ARG_PTR_TO_RAW_STACK. The idea is to skip the STACK_MISC check in check_stack_boundary() and color the related stack slots as STACK_MISC after we checked all call arguments. Helper functions using ARG_PTR_TO_RAW_STACK must make sure that every path of the helper function will fill the provided buffer area, so that we cannot leak any uninitialized stack memory. This f.e. means that error paths need to memset() the buffers, but the expected fast-path doesn't have to do this anymore. Since there's no such helper needing more than at most one ARG_PTR_TO_RAW_STACK argument, we can keep it simple and don't need to check for multiple areas. Should in future such a use-case really appear, we have check_raw_mode() that will make sure we implement support for it first. Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-04-13 00:10:51 +02:00
count++;
return count > 1 ? -EINVAL : 0;
}
static void clear_all_pkt_pointers(struct bpf_verifier_env *env)
bpf: direct packet access Extended BPF carried over two instructions from classic to access packet data: LD_ABS and LD_IND. They're highly optimized in JITs, but due to their design they have to do length check for every access. When BPF is processing 20M packets per second single LD_ABS after JIT is consuming 3% cpu. Hence the need to optimize it further by amortizing the cost of 'off < skb_headlen' over multiple packet accesses. One option is to introduce two new eBPF instructions LD_ABS_DW and LD_IND_DW with similar usage as skb_header_pointer(). The kernel part for interpreter and x64 JIT was implemented in [1], but such new insns behave like old ld_abs and abort the program with 'return 0' if access is beyond linear data. Such hidden control flow is hard to workaround plus changing JITs and rolling out new llvm is incovenient. Therefore allow cls_bpf/act_bpf program access skb->data directly: int bpf_prog(struct __sk_buff *skb) { struct iphdr *ip; if (skb->data + sizeof(struct iphdr) + ETH_HLEN > skb->data_end) /* packet too small */ return 0; ip = skb->data + ETH_HLEN; /* access IP header fields with direct loads */ if (ip->version != 4 || ip->saddr == 0x7f000001) return 1; [...] } This solution avoids introduction of new instructions. llvm stays the same and all JITs stay the same, but verifier has to work extra hard to prove safety of the above program. For XDP the direct store instructions can be allowed as well. The skb->data is NET_IP_ALIGNED, so for common cases the verifier can check the alignment. The complex packet parsers where packet pointer is adjusted incrementally cannot be tracked for alignment, so allow byte access in such cases and misaligned access on architectures that define efficient_unaligned_access [1] https://git.kernel.org/cgit/linux/kernel/git/ast/bpf.git/?h=ld_abs_dw Signed-off-by: Alexei Starovoitov <ast@kernel.org> Acked-by: Daniel Borkmann <daniel@iogearbox.net> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-05-05 19:49:10 -07:00
{
struct bpf_verifier_state *state = &env->cur_state;
struct bpf_reg_state *regs = state->regs, *reg;
bpf: direct packet access Extended BPF carried over two instructions from classic to access packet data: LD_ABS and LD_IND. They're highly optimized in JITs, but due to their design they have to do length check for every access. When BPF is processing 20M packets per second single LD_ABS after JIT is consuming 3% cpu. Hence the need to optimize it further by amortizing the cost of 'off < skb_headlen' over multiple packet accesses. One option is to introduce two new eBPF instructions LD_ABS_DW and LD_IND_DW with similar usage as skb_header_pointer(). The kernel part for interpreter and x64 JIT was implemented in [1], but such new insns behave like old ld_abs and abort the program with 'return 0' if access is beyond linear data. Such hidden control flow is hard to workaround plus changing JITs and rolling out new llvm is incovenient. Therefore allow cls_bpf/act_bpf program access skb->data directly: int bpf_prog(struct __sk_buff *skb) { struct iphdr *ip; if (skb->data + sizeof(struct iphdr) + ETH_HLEN > skb->data_end) /* packet too small */ return 0; ip = skb->data + ETH_HLEN; /* access IP header fields with direct loads */ if (ip->version != 4 || ip->saddr == 0x7f000001) return 1; [...] } This solution avoids introduction of new instructions. llvm stays the same and all JITs stay the same, but verifier has to work extra hard to prove safety of the above program. For XDP the direct store instructions can be allowed as well. The skb->data is NET_IP_ALIGNED, so for common cases the verifier can check the alignment. The complex packet parsers where packet pointer is adjusted incrementally cannot be tracked for alignment, so allow byte access in such cases and misaligned access on architectures that define efficient_unaligned_access [1] https://git.kernel.org/cgit/linux/kernel/git/ast/bpf.git/?h=ld_abs_dw Signed-off-by: Alexei Starovoitov <ast@kernel.org> Acked-by: Daniel Borkmann <daniel@iogearbox.net> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-05-05 19:49:10 -07:00
int i;
for (i = 0; i < MAX_BPF_REG; i++)
if (regs[i].type == PTR_TO_PACKET ||
regs[i].type == PTR_TO_PACKET_END)
mark_reg_unknown_value(regs, i);
for (i = 0; i < MAX_BPF_STACK; i += BPF_REG_SIZE) {
if (state->stack_slot_type[i] != STACK_SPILL)
continue;
reg = &state->spilled_regs[i / BPF_REG_SIZE];
if (reg->type != PTR_TO_PACKET &&
reg->type != PTR_TO_PACKET_END)
continue;
reg->type = UNKNOWN_VALUE;
reg->imm = 0;
}
}
static int check_call(struct bpf_verifier_env *env, int func_id, int insn_idx)
bpf: verifier (add verifier core) This patch adds verifier core which simulates execution of every insn and records the state of registers and program stack. Every branch instruction seen during simulation is pushed into state stack. When verifier reaches BPF_EXIT, it pops the state from the stack and continues until it reaches BPF_EXIT again. For program: 1: bpf_mov r1, xxx 2: if (r1 == 0) goto 5 3: bpf_mov r0, 1 4: goto 6 5: bpf_mov r0, 2 6: bpf_exit The verifier will walk insns: 1, 2, 3, 4, 6 then it will pop the state recorded at insn#2 and will continue: 5, 6 This way it walks all possible paths through the program and checks all possible values of registers. While doing so, it checks for: - invalid instructions - uninitialized register access - uninitialized stack access - misaligned stack access - out of range stack access - invalid calling convention - instruction encoding is not using reserved fields Kernel subsystem configures the verifier with two callbacks: - bool (*is_valid_access)(int off, int size, enum bpf_access_type type); that provides information to the verifer which fields of 'ctx' are accessible (remember 'ctx' is the first argument to eBPF program) - const struct bpf_func_proto *(*get_func_proto)(enum bpf_func_id func_id); returns argument constraints of kernel helper functions that eBPF program may call, so that verifier can checks that R1-R5 types match the prototype More details in Documentation/networking/filter.txt and in kernel/bpf/verifier.c Signed-off-by: Alexei Starovoitov <ast@plumgrid.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-09-26 00:17:06 -07:00
{
struct bpf_verifier_state *state = &env->cur_state;
bpf: verifier (add verifier core) This patch adds verifier core which simulates execution of every insn and records the state of registers and program stack. Every branch instruction seen during simulation is pushed into state stack. When verifier reaches BPF_EXIT, it pops the state from the stack and continues until it reaches BPF_EXIT again. For program: 1: bpf_mov r1, xxx 2: if (r1 == 0) goto 5 3: bpf_mov r0, 1 4: goto 6 5: bpf_mov r0, 2 6: bpf_exit The verifier will walk insns: 1, 2, 3, 4, 6 then it will pop the state recorded at insn#2 and will continue: 5, 6 This way it walks all possible paths through the program and checks all possible values of registers. While doing so, it checks for: - invalid instructions - uninitialized register access - uninitialized stack access - misaligned stack access - out of range stack access - invalid calling convention - instruction encoding is not using reserved fields Kernel subsystem configures the verifier with two callbacks: - bool (*is_valid_access)(int off, int size, enum bpf_access_type type); that provides information to the verifer which fields of 'ctx' are accessible (remember 'ctx' is the first argument to eBPF program) - const struct bpf_func_proto *(*get_func_proto)(enum bpf_func_id func_id); returns argument constraints of kernel helper functions that eBPF program may call, so that verifier can checks that R1-R5 types match the prototype More details in Documentation/networking/filter.txt and in kernel/bpf/verifier.c Signed-off-by: Alexei Starovoitov <ast@plumgrid.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-09-26 00:17:06 -07:00
const struct bpf_func_proto *fn = NULL;
struct bpf_reg_state *regs = state->regs;
struct bpf_reg_state *reg;
struct bpf_call_arg_meta meta;
bpf: direct packet access Extended BPF carried over two instructions from classic to access packet data: LD_ABS and LD_IND. They're highly optimized in JITs, but due to their design they have to do length check for every access. When BPF is processing 20M packets per second single LD_ABS after JIT is consuming 3% cpu. Hence the need to optimize it further by amortizing the cost of 'off < skb_headlen' over multiple packet accesses. One option is to introduce two new eBPF instructions LD_ABS_DW and LD_IND_DW with similar usage as skb_header_pointer(). The kernel part for interpreter and x64 JIT was implemented in [1], but such new insns behave like old ld_abs and abort the program with 'return 0' if access is beyond linear data. Such hidden control flow is hard to workaround plus changing JITs and rolling out new llvm is incovenient. Therefore allow cls_bpf/act_bpf program access skb->data directly: int bpf_prog(struct __sk_buff *skb) { struct iphdr *ip; if (skb->data + sizeof(struct iphdr) + ETH_HLEN > skb->data_end) /* packet too small */ return 0; ip = skb->data + ETH_HLEN; /* access IP header fields with direct loads */ if (ip->version != 4 || ip->saddr == 0x7f000001) return 1; [...] } This solution avoids introduction of new instructions. llvm stays the same and all JITs stay the same, but verifier has to work extra hard to prove safety of the above program. For XDP the direct store instructions can be allowed as well. The skb->data is NET_IP_ALIGNED, so for common cases the verifier can check the alignment. The complex packet parsers where packet pointer is adjusted incrementally cannot be tracked for alignment, so allow byte access in such cases and misaligned access on architectures that define efficient_unaligned_access [1] https://git.kernel.org/cgit/linux/kernel/git/ast/bpf.git/?h=ld_abs_dw Signed-off-by: Alexei Starovoitov <ast@kernel.org> Acked-by: Daniel Borkmann <daniel@iogearbox.net> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-05-05 19:49:10 -07:00
bool changes_data;
bpf: verifier (add verifier core) This patch adds verifier core which simulates execution of every insn and records the state of registers and program stack. Every branch instruction seen during simulation is pushed into state stack. When verifier reaches BPF_EXIT, it pops the state from the stack and continues until it reaches BPF_EXIT again. For program: 1: bpf_mov r1, xxx 2: if (r1 == 0) goto 5 3: bpf_mov r0, 1 4: goto 6 5: bpf_mov r0, 2 6: bpf_exit The verifier will walk insns: 1, 2, 3, 4, 6 then it will pop the state recorded at insn#2 and will continue: 5, 6 This way it walks all possible paths through the program and checks all possible values of registers. While doing so, it checks for: - invalid instructions - uninitialized register access - uninitialized stack access - misaligned stack access - out of range stack access - invalid calling convention - instruction encoding is not using reserved fields Kernel subsystem configures the verifier with two callbacks: - bool (*is_valid_access)(int off, int size, enum bpf_access_type type); that provides information to the verifer which fields of 'ctx' are accessible (remember 'ctx' is the first argument to eBPF program) - const struct bpf_func_proto *(*get_func_proto)(enum bpf_func_id func_id); returns argument constraints of kernel helper functions that eBPF program may call, so that verifier can checks that R1-R5 types match the prototype More details in Documentation/networking/filter.txt and in kernel/bpf/verifier.c Signed-off-by: Alexei Starovoitov <ast@plumgrid.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-09-26 00:17:06 -07:00
int i, err;
/* find function prototype */
if (func_id < 0 || func_id >= __BPF_FUNC_MAX_ID) {
verbose("invalid func %s#%d\n", func_id_name(func_id), func_id);
bpf: verifier (add verifier core) This patch adds verifier core which simulates execution of every insn and records the state of registers and program stack. Every branch instruction seen during simulation is pushed into state stack. When verifier reaches BPF_EXIT, it pops the state from the stack and continues until it reaches BPF_EXIT again. For program: 1: bpf_mov r1, xxx 2: if (r1 == 0) goto 5 3: bpf_mov r0, 1 4: goto 6 5: bpf_mov r0, 2 6: bpf_exit The verifier will walk insns: 1, 2, 3, 4, 6 then it will pop the state recorded at insn#2 and will continue: 5, 6 This way it walks all possible paths through the program and checks all possible values of registers. While doing so, it checks for: - invalid instructions - uninitialized register access - uninitialized stack access - misaligned stack access - out of range stack access - invalid calling convention - instruction encoding is not using reserved fields Kernel subsystem configures the verifier with two callbacks: - bool (*is_valid_access)(int off, int size, enum bpf_access_type type); that provides information to the verifer which fields of 'ctx' are accessible (remember 'ctx' is the first argument to eBPF program) - const struct bpf_func_proto *(*get_func_proto)(enum bpf_func_id func_id); returns argument constraints of kernel helper functions that eBPF program may call, so that verifier can checks that R1-R5 types match the prototype More details in Documentation/networking/filter.txt and in kernel/bpf/verifier.c Signed-off-by: Alexei Starovoitov <ast@plumgrid.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-09-26 00:17:06 -07:00
return -EINVAL;
}
if (env->prog->aux->ops->get_func_proto)
fn = env->prog->aux->ops->get_func_proto(func_id);
if (!fn) {
verbose("unknown func %s#%d\n", func_id_name(func_id), func_id);
bpf: verifier (add verifier core) This patch adds verifier core which simulates execution of every insn and records the state of registers and program stack. Every branch instruction seen during simulation is pushed into state stack. When verifier reaches BPF_EXIT, it pops the state from the stack and continues until it reaches BPF_EXIT again. For program: 1: bpf_mov r1, xxx 2: if (r1 == 0) goto 5 3: bpf_mov r0, 1 4: goto 6 5: bpf_mov r0, 2 6: bpf_exit The verifier will walk insns: 1, 2, 3, 4, 6 then it will pop the state recorded at insn#2 and will continue: 5, 6 This way it walks all possible paths through the program and checks all possible values of registers. While doing so, it checks for: - invalid instructions - uninitialized register access - uninitialized stack access - misaligned stack access - out of range stack access - invalid calling convention - instruction encoding is not using reserved fields Kernel subsystem configures the verifier with two callbacks: - bool (*is_valid_access)(int off, int size, enum bpf_access_type type); that provides information to the verifer which fields of 'ctx' are accessible (remember 'ctx' is the first argument to eBPF program) - const struct bpf_func_proto *(*get_func_proto)(enum bpf_func_id func_id); returns argument constraints of kernel helper functions that eBPF program may call, so that verifier can checks that R1-R5 types match the prototype More details in Documentation/networking/filter.txt and in kernel/bpf/verifier.c Signed-off-by: Alexei Starovoitov <ast@plumgrid.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-09-26 00:17:06 -07:00
return -EINVAL;
}
/* eBPF programs must be GPL compatible to use GPL-ed functions */
if (!env->prog->gpl_compatible && fn->gpl_only) {
bpf: verifier (add verifier core) This patch adds verifier core which simulates execution of every insn and records the state of registers and program stack. Every branch instruction seen during simulation is pushed into state stack. When verifier reaches BPF_EXIT, it pops the state from the stack and continues until it reaches BPF_EXIT again. For program: 1: bpf_mov r1, xxx 2: if (r1 == 0) goto 5 3: bpf_mov r0, 1 4: goto 6 5: bpf_mov r0, 2 6: bpf_exit The verifier will walk insns: 1, 2, 3, 4, 6 then it will pop the state recorded at insn#2 and will continue: 5, 6 This way it walks all possible paths through the program and checks all possible values of registers. While doing so, it checks for: - invalid instructions - uninitialized register access - uninitialized stack access - misaligned stack access - out of range stack access - invalid calling convention - instruction encoding is not using reserved fields Kernel subsystem configures the verifier with two callbacks: - bool (*is_valid_access)(int off, int size, enum bpf_access_type type); that provides information to the verifer which fields of 'ctx' are accessible (remember 'ctx' is the first argument to eBPF program) - const struct bpf_func_proto *(*get_func_proto)(enum bpf_func_id func_id); returns argument constraints of kernel helper functions that eBPF program may call, so that verifier can checks that R1-R5 types match the prototype More details in Documentation/networking/filter.txt and in kernel/bpf/verifier.c Signed-off-by: Alexei Starovoitov <ast@plumgrid.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-09-26 00:17:06 -07:00
verbose("cannot call GPL only function from proprietary program\n");
return -EINVAL;
}
changes_data = bpf_helper_changes_pkt_data(fn->func);
bpf: direct packet access Extended BPF carried over two instructions from classic to access packet data: LD_ABS and LD_IND. They're highly optimized in JITs, but due to their design they have to do length check for every access. When BPF is processing 20M packets per second single LD_ABS after JIT is consuming 3% cpu. Hence the need to optimize it further by amortizing the cost of 'off < skb_headlen' over multiple packet accesses. One option is to introduce two new eBPF instructions LD_ABS_DW and LD_IND_DW with similar usage as skb_header_pointer(). The kernel part for interpreter and x64 JIT was implemented in [1], but such new insns behave like old ld_abs and abort the program with 'return 0' if access is beyond linear data. Such hidden control flow is hard to workaround plus changing JITs and rolling out new llvm is incovenient. Therefore allow cls_bpf/act_bpf program access skb->data directly: int bpf_prog(struct __sk_buff *skb) { struct iphdr *ip; if (skb->data + sizeof(struct iphdr) + ETH_HLEN > skb->data_end) /* packet too small */ return 0; ip = skb->data + ETH_HLEN; /* access IP header fields with direct loads */ if (ip->version != 4 || ip->saddr == 0x7f000001) return 1; [...] } This solution avoids introduction of new instructions. llvm stays the same and all JITs stay the same, but verifier has to work extra hard to prove safety of the above program. For XDP the direct store instructions can be allowed as well. The skb->data is NET_IP_ALIGNED, so for common cases the verifier can check the alignment. The complex packet parsers where packet pointer is adjusted incrementally cannot be tracked for alignment, so allow byte access in such cases and misaligned access on architectures that define efficient_unaligned_access [1] https://git.kernel.org/cgit/linux/kernel/git/ast/bpf.git/?h=ld_abs_dw Signed-off-by: Alexei Starovoitov <ast@kernel.org> Acked-by: Daniel Borkmann <daniel@iogearbox.net> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-05-05 19:49:10 -07:00
memset(&meta, 0, sizeof(meta));
bpf: direct packet write and access for helpers for clsact progs This work implements direct packet access for helpers and direct packet write in a similar fashion as already available for XDP types via commits 4acf6c0b84c9 ("bpf: enable direct packet data write for xdp progs") and 6841de8b0d03 ("bpf: allow helpers access the packet directly"), and as a complementary feature to the already available direct packet read for tc (cls/act) programs. For enabling this, we need to introduce two helpers, bpf_skb_pull_data() and bpf_csum_update(). The first is generally needed for both, read and write, because they would otherwise only be limited to the current linear skb head. Usually, when the data_end test fails, programs just bail out, or, in the direct read case, use bpf_skb_load_bytes() as an alternative to overcome this limitation. If such data sits in non-linear parts, we can just pull them in once with the new helper, retest and eventually access them. At the same time, this also makes sure the skb is uncloned, which is, of course, a necessary condition for direct write. As this needs to be an invariant for the write part only, the verifier detects writes and adds a prologue that is calling bpf_skb_pull_data() to effectively unclone the skb from the very beginning in case it is indeed cloned. The heuristic makes use of a similar trick that was done in 233577a22089 ("net: filter: constify detection of pkt_type_offset"). This comes at zero cost for other programs that do not use the direct write feature. Should a program use this feature only sparsely and has read access for the most parts with, for example, drop return codes, then such write action can be delegated to a tail called program for mitigating this cost of potential uncloning to a late point in time where it would have been paid similarly with the bpf_skb_store_bytes() as well. Advantage of direct write is that the writes are inlined whereas the helper cannot make any length assumptions and thus needs to generate a call to memcpy() also for small sizes, as well as cost of helper call itself with sanity checks are avoided. Plus, when direct read is already used, we don't need to cache or perform rechecks on the data boundaries (due to verifier invalidating previous checks for helpers that change skb->data), so more complex programs using rewrites can benefit from switching to direct read plus write. For direct packet access to helpers, we save the otherwise needed copy into a temp struct sitting on stack memory when use-case allows. Both facilities are enabled via may_access_direct_pkt_data() in verifier. For now, we limit this to map helpers and csum_diff, and can successively enable other helpers where we find it makes sense. Helpers that definitely cannot be allowed for this are those part of bpf_helper_changes_skb_data() since they can change underlying data, and those that write into memory as this could happen for packet typed args when still cloned. bpf_csum_update() helper accommodates for the fact that we need to fixup checksum_complete when using direct write instead of bpf_skb_store_bytes(), meaning the programs can use available helpers like bpf_csum_diff(), and implement csum_add(), csum_sub(), csum_block_add(), csum_block_sub() equivalents in eBPF together with the new helper. A usage example will be provided for iproute2's examples/bpf/ directory. Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-09-20 00:26:13 +02:00
meta.pkt_access = fn->pkt_access;
bpf, verifier: add ARG_PTR_TO_RAW_STACK type When passing buffers from eBPF stack space into a helper function, we have ARG_PTR_TO_STACK argument type for helpers available. The verifier makes sure that such buffers are initialized, within boundaries, etc. However, the downside with this is that we have a couple of helper functions such as bpf_skb_load_bytes() that fill out the passed buffer in the expected success case anyway, so zero initializing them prior to the helper call is unneeded/wasted instructions in the eBPF program that can be avoided. Therefore, add a new helper function argument type called ARG_PTR_TO_RAW_STACK. The idea is to skip the STACK_MISC check in check_stack_boundary() and color the related stack slots as STACK_MISC after we checked all call arguments. Helper functions using ARG_PTR_TO_RAW_STACK must make sure that every path of the helper function will fill the provided buffer area, so that we cannot leak any uninitialized stack memory. This f.e. means that error paths need to memset() the buffers, but the expected fast-path doesn't have to do this anymore. Since there's no such helper needing more than at most one ARG_PTR_TO_RAW_STACK argument, we can keep it simple and don't need to check for multiple areas. Should in future such a use-case really appear, we have check_raw_mode() that will make sure we implement support for it first. Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-04-13 00:10:51 +02:00
/* We only support one arg being in raw mode at the moment, which
* is sufficient for the helper functions we have right now.
*/
err = check_raw_mode(fn);
if (err) {
verbose("kernel subsystem misconfigured func %s#%d\n",
func_id_name(func_id), func_id);
bpf, verifier: add ARG_PTR_TO_RAW_STACK type When passing buffers from eBPF stack space into a helper function, we have ARG_PTR_TO_STACK argument type for helpers available. The verifier makes sure that such buffers are initialized, within boundaries, etc. However, the downside with this is that we have a couple of helper functions such as bpf_skb_load_bytes() that fill out the passed buffer in the expected success case anyway, so zero initializing them prior to the helper call is unneeded/wasted instructions in the eBPF program that can be avoided. Therefore, add a new helper function argument type called ARG_PTR_TO_RAW_STACK. The idea is to skip the STACK_MISC check in check_stack_boundary() and color the related stack slots as STACK_MISC after we checked all call arguments. Helper functions using ARG_PTR_TO_RAW_STACK must make sure that every path of the helper function will fill the provided buffer area, so that we cannot leak any uninitialized stack memory. This f.e. means that error paths need to memset() the buffers, but the expected fast-path doesn't have to do this anymore. Since there's no such helper needing more than at most one ARG_PTR_TO_RAW_STACK argument, we can keep it simple and don't need to check for multiple areas. Should in future such a use-case really appear, we have check_raw_mode() that will make sure we implement support for it first. Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-04-13 00:10:51 +02:00
return err;
}
bpf: verifier (add verifier core) This patch adds verifier core which simulates execution of every insn and records the state of registers and program stack. Every branch instruction seen during simulation is pushed into state stack. When verifier reaches BPF_EXIT, it pops the state from the stack and continues until it reaches BPF_EXIT again. For program: 1: bpf_mov r1, xxx 2: if (r1 == 0) goto 5 3: bpf_mov r0, 1 4: goto 6 5: bpf_mov r0, 2 6: bpf_exit The verifier will walk insns: 1, 2, 3, 4, 6 then it will pop the state recorded at insn#2 and will continue: 5, 6 This way it walks all possible paths through the program and checks all possible values of registers. While doing so, it checks for: - invalid instructions - uninitialized register access - uninitialized stack access - misaligned stack access - out of range stack access - invalid calling convention - instruction encoding is not using reserved fields Kernel subsystem configures the verifier with two callbacks: - bool (*is_valid_access)(int off, int size, enum bpf_access_type type); that provides information to the verifer which fields of 'ctx' are accessible (remember 'ctx' is the first argument to eBPF program) - const struct bpf_func_proto *(*get_func_proto)(enum bpf_func_id func_id); returns argument constraints of kernel helper functions that eBPF program may call, so that verifier can checks that R1-R5 types match the prototype More details in Documentation/networking/filter.txt and in kernel/bpf/verifier.c Signed-off-by: Alexei Starovoitov <ast@plumgrid.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-09-26 00:17:06 -07:00
/* check args */
err = check_func_arg(env, BPF_REG_1, fn->arg1_type, &meta);
bpf: verifier (add verifier core) This patch adds verifier core which simulates execution of every insn and records the state of registers and program stack. Every branch instruction seen during simulation is pushed into state stack. When verifier reaches BPF_EXIT, it pops the state from the stack and continues until it reaches BPF_EXIT again. For program: 1: bpf_mov r1, xxx 2: if (r1 == 0) goto 5 3: bpf_mov r0, 1 4: goto 6 5: bpf_mov r0, 2 6: bpf_exit The verifier will walk insns: 1, 2, 3, 4, 6 then it will pop the state recorded at insn#2 and will continue: 5, 6 This way it walks all possible paths through the program and checks all possible values of registers. While doing so, it checks for: - invalid instructions - uninitialized register access - uninitialized stack access - misaligned stack access - out of range stack access - invalid calling convention - instruction encoding is not using reserved fields Kernel subsystem configures the verifier with two callbacks: - bool (*is_valid_access)(int off, int size, enum bpf_access_type type); that provides information to the verifer which fields of 'ctx' are accessible (remember 'ctx' is the first argument to eBPF program) - const struct bpf_func_proto *(*get_func_proto)(enum bpf_func_id func_id); returns argument constraints of kernel helper functions that eBPF program may call, so that verifier can checks that R1-R5 types match the prototype More details in Documentation/networking/filter.txt and in kernel/bpf/verifier.c Signed-off-by: Alexei Starovoitov <ast@plumgrid.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-09-26 00:17:06 -07:00
if (err)
return err;
err = check_func_arg(env, BPF_REG_2, fn->arg2_type, &meta);
bpf: verifier (add verifier core) This patch adds verifier core which simulates execution of every insn and records the state of registers and program stack. Every branch instruction seen during simulation is pushed into state stack. When verifier reaches BPF_EXIT, it pops the state from the stack and continues until it reaches BPF_EXIT again. For program: 1: bpf_mov r1, xxx 2: if (r1 == 0) goto 5 3: bpf_mov r0, 1 4: goto 6 5: bpf_mov r0, 2 6: bpf_exit The verifier will walk insns: 1, 2, 3, 4, 6 then it will pop the state recorded at insn#2 and will continue: 5, 6 This way it walks all possible paths through the program and checks all possible values of registers. While doing so, it checks for: - invalid instructions - uninitialized register access - uninitialized stack access - misaligned stack access - out of range stack access - invalid calling convention - instruction encoding is not using reserved fields Kernel subsystem configures the verifier with two callbacks: - bool (*is_valid_access)(int off, int size, enum bpf_access_type type); that provides information to the verifer which fields of 'ctx' are accessible (remember 'ctx' is the first argument to eBPF program) - const struct bpf_func_proto *(*get_func_proto)(enum bpf_func_id func_id); returns argument constraints of kernel helper functions that eBPF program may call, so that verifier can checks that R1-R5 types match the prototype More details in Documentation/networking/filter.txt and in kernel/bpf/verifier.c Signed-off-by: Alexei Starovoitov <ast@plumgrid.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-09-26 00:17:06 -07:00
if (err)
return err;
err = check_func_arg(env, BPF_REG_3, fn->arg3_type, &meta);
bpf: verifier (add verifier core) This patch adds verifier core which simulates execution of every insn and records the state of registers and program stack. Every branch instruction seen during simulation is pushed into state stack. When verifier reaches BPF_EXIT, it pops the state from the stack and continues until it reaches BPF_EXIT again. For program: 1: bpf_mov r1, xxx 2: if (r1 == 0) goto 5 3: bpf_mov r0, 1 4: goto 6 5: bpf_mov r0, 2 6: bpf_exit The verifier will walk insns: 1, 2, 3, 4, 6 then it will pop the state recorded at insn#2 and will continue: 5, 6 This way it walks all possible paths through the program and checks all possible values of registers. While doing so, it checks for: - invalid instructions - uninitialized register access - uninitialized stack access - misaligned stack access - out of range stack access - invalid calling convention - instruction encoding is not using reserved fields Kernel subsystem configures the verifier with two callbacks: - bool (*is_valid_access)(int off, int size, enum bpf_access_type type); that provides information to the verifer which fields of 'ctx' are accessible (remember 'ctx' is the first argument to eBPF program) - const struct bpf_func_proto *(*get_func_proto)(enum bpf_func_id func_id); returns argument constraints of kernel helper functions that eBPF program may call, so that verifier can checks that R1-R5 types match the prototype More details in Documentation/networking/filter.txt and in kernel/bpf/verifier.c Signed-off-by: Alexei Starovoitov <ast@plumgrid.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-09-26 00:17:06 -07:00
if (err)
return err;
err = check_func_arg(env, BPF_REG_4, fn->arg4_type, &meta);
bpf: verifier (add verifier core) This patch adds verifier core which simulates execution of every insn and records the state of registers and program stack. Every branch instruction seen during simulation is pushed into state stack. When verifier reaches BPF_EXIT, it pops the state from the stack and continues until it reaches BPF_EXIT again. For program: 1: bpf_mov r1, xxx 2: if (r1 == 0) goto 5 3: bpf_mov r0, 1 4: goto 6 5: bpf_mov r0, 2 6: bpf_exit The verifier will walk insns: 1, 2, 3, 4, 6 then it will pop the state recorded at insn#2 and will continue: 5, 6 This way it walks all possible paths through the program and checks all possible values of registers. While doing so, it checks for: - invalid instructions - uninitialized register access - uninitialized stack access - misaligned stack access - out of range stack access - invalid calling convention - instruction encoding is not using reserved fields Kernel subsystem configures the verifier with two callbacks: - bool (*is_valid_access)(int off, int size, enum bpf_access_type type); that provides information to the verifer which fields of 'ctx' are accessible (remember 'ctx' is the first argument to eBPF program) - const struct bpf_func_proto *(*get_func_proto)(enum bpf_func_id func_id); returns argument constraints of kernel helper functions that eBPF program may call, so that verifier can checks that R1-R5 types match the prototype More details in Documentation/networking/filter.txt and in kernel/bpf/verifier.c Signed-off-by: Alexei Starovoitov <ast@plumgrid.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-09-26 00:17:06 -07:00
if (err)
return err;
err = check_func_arg(env, BPF_REG_5, fn->arg5_type, &meta);
bpf: verifier (add verifier core) This patch adds verifier core which simulates execution of every insn and records the state of registers and program stack. Every branch instruction seen during simulation is pushed into state stack. When verifier reaches BPF_EXIT, it pops the state from the stack and continues until it reaches BPF_EXIT again. For program: 1: bpf_mov r1, xxx 2: if (r1 == 0) goto 5 3: bpf_mov r0, 1 4: goto 6 5: bpf_mov r0, 2 6: bpf_exit The verifier will walk insns: 1, 2, 3, 4, 6 then it will pop the state recorded at insn#2 and will continue: 5, 6 This way it walks all possible paths through the program and checks all possible values of registers. While doing so, it checks for: - invalid instructions - uninitialized register access - uninitialized stack access - misaligned stack access - out of range stack access - invalid calling convention - instruction encoding is not using reserved fields Kernel subsystem configures the verifier with two callbacks: - bool (*is_valid_access)(int off, int size, enum bpf_access_type type); that provides information to the verifer which fields of 'ctx' are accessible (remember 'ctx' is the first argument to eBPF program) - const struct bpf_func_proto *(*get_func_proto)(enum bpf_func_id func_id); returns argument constraints of kernel helper functions that eBPF program may call, so that verifier can checks that R1-R5 types match the prototype More details in Documentation/networking/filter.txt and in kernel/bpf/verifier.c Signed-off-by: Alexei Starovoitov <ast@plumgrid.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-09-26 00:17:06 -07:00
if (err)
return err;
bpf, verifier: add ARG_PTR_TO_RAW_STACK type When passing buffers from eBPF stack space into a helper function, we have ARG_PTR_TO_STACK argument type for helpers available. The verifier makes sure that such buffers are initialized, within boundaries, etc. However, the downside with this is that we have a couple of helper functions such as bpf_skb_load_bytes() that fill out the passed buffer in the expected success case anyway, so zero initializing them prior to the helper call is unneeded/wasted instructions in the eBPF program that can be avoided. Therefore, add a new helper function argument type called ARG_PTR_TO_RAW_STACK. The idea is to skip the STACK_MISC check in check_stack_boundary() and color the related stack slots as STACK_MISC after we checked all call arguments. Helper functions using ARG_PTR_TO_RAW_STACK must make sure that every path of the helper function will fill the provided buffer area, so that we cannot leak any uninitialized stack memory. This f.e. means that error paths need to memset() the buffers, but the expected fast-path doesn't have to do this anymore. Since there's no such helper needing more than at most one ARG_PTR_TO_RAW_STACK argument, we can keep it simple and don't need to check for multiple areas. Should in future such a use-case really appear, we have check_raw_mode() that will make sure we implement support for it first. Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-04-13 00:10:51 +02:00
/* Mark slots with STACK_MISC in case of raw mode, stack offset
* is inferred from register state.
*/
for (i = 0; i < meta.access_size; i++) {
err = check_mem_access(env, meta.regno, i, BPF_B, BPF_WRITE, -1);
if (err)
return err;
}
bpf: verifier (add verifier core) This patch adds verifier core which simulates execution of every insn and records the state of registers and program stack. Every branch instruction seen during simulation is pushed into state stack. When verifier reaches BPF_EXIT, it pops the state from the stack and continues until it reaches BPF_EXIT again. For program: 1: bpf_mov r1, xxx 2: if (r1 == 0) goto 5 3: bpf_mov r0, 1 4: goto 6 5: bpf_mov r0, 2 6: bpf_exit The verifier will walk insns: 1, 2, 3, 4, 6 then it will pop the state recorded at insn#2 and will continue: 5, 6 This way it walks all possible paths through the program and checks all possible values of registers. While doing so, it checks for: - invalid instructions - uninitialized register access - uninitialized stack access - misaligned stack access - out of range stack access - invalid calling convention - instruction encoding is not using reserved fields Kernel subsystem configures the verifier with two callbacks: - bool (*is_valid_access)(int off, int size, enum bpf_access_type type); that provides information to the verifer which fields of 'ctx' are accessible (remember 'ctx' is the first argument to eBPF program) - const struct bpf_func_proto *(*get_func_proto)(enum bpf_func_id func_id); returns argument constraints of kernel helper functions that eBPF program may call, so that verifier can checks that R1-R5 types match the prototype More details in Documentation/networking/filter.txt and in kernel/bpf/verifier.c Signed-off-by: Alexei Starovoitov <ast@plumgrid.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-09-26 00:17:06 -07:00
/* reset caller saved regs */
for (i = 0; i < CALLER_SAVED_REGS; i++) {
reg = regs + caller_saved[i];
reg->type = NOT_INIT;
reg->imm = 0;
}
/* update return register */
if (fn->ret_type == RET_INTEGER) {
regs[BPF_REG_0].type = UNKNOWN_VALUE;
} else if (fn->ret_type == RET_VOID) {
regs[BPF_REG_0].type = NOT_INIT;
} else if (fn->ret_type == RET_PTR_TO_MAP_VALUE_OR_NULL) {
struct bpf_insn_aux_data *insn_aux;
bpf: verifier (add verifier core) This patch adds verifier core which simulates execution of every insn and records the state of registers and program stack. Every branch instruction seen during simulation is pushed into state stack. When verifier reaches BPF_EXIT, it pops the state from the stack and continues until it reaches BPF_EXIT again. For program: 1: bpf_mov r1, xxx 2: if (r1 == 0) goto 5 3: bpf_mov r0, 1 4: goto 6 5: bpf_mov r0, 2 6: bpf_exit The verifier will walk insns: 1, 2, 3, 4, 6 then it will pop the state recorded at insn#2 and will continue: 5, 6 This way it walks all possible paths through the program and checks all possible values of registers. While doing so, it checks for: - invalid instructions - uninitialized register access - uninitialized stack access - misaligned stack access - out of range stack access - invalid calling convention - instruction encoding is not using reserved fields Kernel subsystem configures the verifier with two callbacks: - bool (*is_valid_access)(int off, int size, enum bpf_access_type type); that provides information to the verifer which fields of 'ctx' are accessible (remember 'ctx' is the first argument to eBPF program) - const struct bpf_func_proto *(*get_func_proto)(enum bpf_func_id func_id); returns argument constraints of kernel helper functions that eBPF program may call, so that verifier can checks that R1-R5 types match the prototype More details in Documentation/networking/filter.txt and in kernel/bpf/verifier.c Signed-off-by: Alexei Starovoitov <ast@plumgrid.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-09-26 00:17:06 -07:00
regs[BPF_REG_0].type = PTR_TO_MAP_VALUE_OR_NULL;
regs[BPF_REG_0].max_value = regs[BPF_REG_0].min_value = 0;
bpf: verifier (add verifier core) This patch adds verifier core which simulates execution of every insn and records the state of registers and program stack. Every branch instruction seen during simulation is pushed into state stack. When verifier reaches BPF_EXIT, it pops the state from the stack and continues until it reaches BPF_EXIT again. For program: 1: bpf_mov r1, xxx 2: if (r1 == 0) goto 5 3: bpf_mov r0, 1 4: goto 6 5: bpf_mov r0, 2 6: bpf_exit The verifier will walk insns: 1, 2, 3, 4, 6 then it will pop the state recorded at insn#2 and will continue: 5, 6 This way it walks all possible paths through the program and checks all possible values of registers. While doing so, it checks for: - invalid instructions - uninitialized register access - uninitialized stack access - misaligned stack access - out of range stack access - invalid calling convention - instruction encoding is not using reserved fields Kernel subsystem configures the verifier with two callbacks: - bool (*is_valid_access)(int off, int size, enum bpf_access_type type); that provides information to the verifer which fields of 'ctx' are accessible (remember 'ctx' is the first argument to eBPF program) - const struct bpf_func_proto *(*get_func_proto)(enum bpf_func_id func_id); returns argument constraints of kernel helper functions that eBPF program may call, so that verifier can checks that R1-R5 types match the prototype More details in Documentation/networking/filter.txt and in kernel/bpf/verifier.c Signed-off-by: Alexei Starovoitov <ast@plumgrid.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-09-26 00:17:06 -07:00
/* remember map_ptr, so that check_map_access()
* can check 'value_size' boundary of memory access
* to map element returned from bpf_map_lookup_elem()
*/
if (meta.map_ptr == NULL) {
bpf: verifier (add verifier core) This patch adds verifier core which simulates execution of every insn and records the state of registers and program stack. Every branch instruction seen during simulation is pushed into state stack. When verifier reaches BPF_EXIT, it pops the state from the stack and continues until it reaches BPF_EXIT again. For program: 1: bpf_mov r1, xxx 2: if (r1 == 0) goto 5 3: bpf_mov r0, 1 4: goto 6 5: bpf_mov r0, 2 6: bpf_exit The verifier will walk insns: 1, 2, 3, 4, 6 then it will pop the state recorded at insn#2 and will continue: 5, 6 This way it walks all possible paths through the program and checks all possible values of registers. While doing so, it checks for: - invalid instructions - uninitialized register access - uninitialized stack access - misaligned stack access - out of range stack access - invalid calling convention - instruction encoding is not using reserved fields Kernel subsystem configures the verifier with two callbacks: - bool (*is_valid_access)(int off, int size, enum bpf_access_type type); that provides information to the verifer which fields of 'ctx' are accessible (remember 'ctx' is the first argument to eBPF program) - const struct bpf_func_proto *(*get_func_proto)(enum bpf_func_id func_id); returns argument constraints of kernel helper functions that eBPF program may call, so that verifier can checks that R1-R5 types match the prototype More details in Documentation/networking/filter.txt and in kernel/bpf/verifier.c Signed-off-by: Alexei Starovoitov <ast@plumgrid.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-09-26 00:17:06 -07:00
verbose("kernel subsystem misconfigured verifier\n");
return -EINVAL;
}
regs[BPF_REG_0].map_ptr = meta.map_ptr;
regs[BPF_REG_0].id = ++env->id_gen;
insn_aux = &env->insn_aux_data[insn_idx];
if (!insn_aux->map_ptr)
insn_aux->map_ptr = meta.map_ptr;
else if (insn_aux->map_ptr != meta.map_ptr)
insn_aux->map_ptr = BPF_MAP_PTR_POISON;
bpf: verifier (add verifier core) This patch adds verifier core which simulates execution of every insn and records the state of registers and program stack. Every branch instruction seen during simulation is pushed into state stack. When verifier reaches BPF_EXIT, it pops the state from the stack and continues until it reaches BPF_EXIT again. For program: 1: bpf_mov r1, xxx 2: if (r1 == 0) goto 5 3: bpf_mov r0, 1 4: goto 6 5: bpf_mov r0, 2 6: bpf_exit The verifier will walk insns: 1, 2, 3, 4, 6 then it will pop the state recorded at insn#2 and will continue: 5, 6 This way it walks all possible paths through the program and checks all possible values of registers. While doing so, it checks for: - invalid instructions - uninitialized register access - uninitialized stack access - misaligned stack access - out of range stack access - invalid calling convention - instruction encoding is not using reserved fields Kernel subsystem configures the verifier with two callbacks: - bool (*is_valid_access)(int off, int size, enum bpf_access_type type); that provides information to the verifer which fields of 'ctx' are accessible (remember 'ctx' is the first argument to eBPF program) - const struct bpf_func_proto *(*get_func_proto)(enum bpf_func_id func_id); returns argument constraints of kernel helper functions that eBPF program may call, so that verifier can checks that R1-R5 types match the prototype More details in Documentation/networking/filter.txt and in kernel/bpf/verifier.c Signed-off-by: Alexei Starovoitov <ast@plumgrid.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-09-26 00:17:06 -07:00
} else {
verbose("unknown return type %d of func %s#%d\n",
fn->ret_type, func_id_name(func_id), func_id);
bpf: verifier (add verifier core) This patch adds verifier core which simulates execution of every insn and records the state of registers and program stack. Every branch instruction seen during simulation is pushed into state stack. When verifier reaches BPF_EXIT, it pops the state from the stack and continues until it reaches BPF_EXIT again. For program: 1: bpf_mov r1, xxx 2: if (r1 == 0) goto 5 3: bpf_mov r0, 1 4: goto 6 5: bpf_mov r0, 2 6: bpf_exit The verifier will walk insns: 1, 2, 3, 4, 6 then it will pop the state recorded at insn#2 and will continue: 5, 6 This way it walks all possible paths through the program and checks all possible values of registers. While doing so, it checks for: - invalid instructions - uninitialized register access - uninitialized stack access - misaligned stack access - out of range stack access - invalid calling convention - instruction encoding is not using reserved fields Kernel subsystem configures the verifier with two callbacks: - bool (*is_valid_access)(int off, int size, enum bpf_access_type type); that provides information to the verifer which fields of 'ctx' are accessible (remember 'ctx' is the first argument to eBPF program) - const struct bpf_func_proto *(*get_func_proto)(enum bpf_func_id func_id); returns argument constraints of kernel helper functions that eBPF program may call, so that verifier can checks that R1-R5 types match the prototype More details in Documentation/networking/filter.txt and in kernel/bpf/verifier.c Signed-off-by: Alexei Starovoitov <ast@plumgrid.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-09-26 00:17:06 -07:00
return -EINVAL;
}
bpf: allow bpf programs to tail-call other bpf programs introduce bpf_tail_call(ctx, &jmp_table, index) helper function which can be used from BPF programs like: int bpf_prog(struct pt_regs *ctx) { ... bpf_tail_call(ctx, &jmp_table, index); ... } that is roughly equivalent to: int bpf_prog(struct pt_regs *ctx) { ... if (jmp_table[index]) return (*jmp_table[index])(ctx); ... } The important detail that it's not a normal call, but a tail call. The kernel stack is precious, so this helper reuses the current stack frame and jumps into another BPF program without adding extra call frame. It's trivially done in interpreter and a bit trickier in JITs. In case of x64 JIT the bigger part of generated assembler prologue is common for all programs, so it is simply skipped while jumping. Other JITs can do similar prologue-skipping optimization or do stack unwind before jumping into the next program. bpf_tail_call() arguments: ctx - context pointer jmp_table - one of BPF_MAP_TYPE_PROG_ARRAY maps used as the jump table index - index in the jump table Since all BPF programs are idenitified by file descriptor, user space need to populate the jmp_table with FDs of other BPF programs. If jmp_table[index] is empty the bpf_tail_call() doesn't jump anywhere and program execution continues as normal. New BPF_MAP_TYPE_PROG_ARRAY map type is introduced so that user space can populate this jmp_table array with FDs of other bpf programs. Programs can share the same jmp_table array or use multiple jmp_tables. The chain of tail calls can form unpredictable dynamic loops therefore tail_call_cnt is used to limit the number of calls and currently is set to 32. Use cases: Acked-by: Daniel Borkmann <daniel@iogearbox.net> ========== - simplify complex programs by splitting them into a sequence of small programs - dispatch routine For tracing and future seccomp the program may be triggered on all system calls, but processing of syscall arguments will be different. It's more efficient to implement them as: int syscall_entry(struct seccomp_data *ctx) { bpf_tail_call(ctx, &syscall_jmp_table, ctx->nr /* syscall number */); ... default: process unknown syscall ... } int sys_write_event(struct seccomp_data *ctx) {...} int sys_read_event(struct seccomp_data *ctx) {...} syscall_jmp_table[__NR_write] = sys_write_event; syscall_jmp_table[__NR_read] = sys_read_event; For networking the program may call into different parsers depending on packet format, like: int packet_parser(struct __sk_buff *skb) { ... parse L2, L3 here ... __u8 ipproto = load_byte(skb, ... offsetof(struct iphdr, protocol)); bpf_tail_call(skb, &ipproto_jmp_table, ipproto); ... default: process unknown protocol ... } int parse_tcp(struct __sk_buff *skb) {...} int parse_udp(struct __sk_buff *skb) {...} ipproto_jmp_table[IPPROTO_TCP] = parse_tcp; ipproto_jmp_table[IPPROTO_UDP] = parse_udp; - for TC use case, bpf_tail_call() allows to implement reclassify-like logic - bpf_map_update_elem/delete calls into BPF_MAP_TYPE_PROG_ARRAY jump table are atomic, so user space can build chains of BPF programs on the fly Implementation details: ======================= - high performance of bpf_tail_call() is the goal. It could have been implemented without JIT changes as a wrapper on top of BPF_PROG_RUN() macro, but with two downsides: . all programs would have to pay performance penalty for this feature and tail call itself would be slower, since mandatory stack unwind, return, stack allocate would be done for every tailcall. . tailcall would be limited to programs running preempt_disabled, since generic 'void *ctx' doesn't have room for 'tail_call_cnt' and it would need to be either global per_cpu variable accessed by helper and by wrapper or global variable protected by locks. In this implementation x64 JIT bypasses stack unwind and jumps into the callee program after prologue. - bpf_prog_array_compatible() ensures that prog_type of callee and caller are the same and JITed/non-JITed flag is the same, since calling JITed program from non-JITed is invalid, since stack frames are different. Similarly calling kprobe type program from socket type program is invalid. - jump table is implemented as BPF_MAP_TYPE_PROG_ARRAY to reuse 'map' abstraction, its user space API and all of verifier logic. It's in the existing arraymap.c file, since several functions are shared with regular array map. Signed-off-by: Alexei Starovoitov <ast@plumgrid.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2015-05-19 16:59:03 -07:00
err = check_map_func_compatibility(meta.map_ptr, func_id);
if (err)
return err;
bpf: allow bpf programs to tail-call other bpf programs introduce bpf_tail_call(ctx, &jmp_table, index) helper function which can be used from BPF programs like: int bpf_prog(struct pt_regs *ctx) { ... bpf_tail_call(ctx, &jmp_table, index); ... } that is roughly equivalent to: int bpf_prog(struct pt_regs *ctx) { ... if (jmp_table[index]) return (*jmp_table[index])(ctx); ... } The important detail that it's not a normal call, but a tail call. The kernel stack is precious, so this helper reuses the current stack frame and jumps into another BPF program without adding extra call frame. It's trivially done in interpreter and a bit trickier in JITs. In case of x64 JIT the bigger part of generated assembler prologue is common for all programs, so it is simply skipped while jumping. Other JITs can do similar prologue-skipping optimization or do stack unwind before jumping into the next program. bpf_tail_call() arguments: ctx - context pointer jmp_table - one of BPF_MAP_TYPE_PROG_ARRAY maps used as the jump table index - index in the jump table Since all BPF programs are idenitified by file descriptor, user space need to populate the jmp_table with FDs of other BPF programs. If jmp_table[index] is empty the bpf_tail_call() doesn't jump anywhere and program execution continues as normal. New BPF_MAP_TYPE_PROG_ARRAY map type is introduced so that user space can populate this jmp_table array with FDs of other bpf programs. Programs can share the same jmp_table array or use multiple jmp_tables. The chain of tail calls can form unpredictable dynamic loops therefore tail_call_cnt is used to limit the number of calls and currently is set to 32. Use cases: Acked-by: Daniel Borkmann <daniel@iogearbox.net> ========== - simplify complex programs by splitting them into a sequence of small programs - dispatch routine For tracing and future seccomp the program may be triggered on all system calls, but processing of syscall arguments will be different. It's more efficient to implement them as: int syscall_entry(struct seccomp_data *ctx) { bpf_tail_call(ctx, &syscall_jmp_table, ctx->nr /* syscall number */); ... default: process unknown syscall ... } int sys_write_event(struct seccomp_data *ctx) {...} int sys_read_event(struct seccomp_data *ctx) {...} syscall_jmp_table[__NR_write] = sys_write_event; syscall_jmp_table[__NR_read] = sys_read_event; For networking the program may call into different parsers depending on packet format, like: int packet_parser(struct __sk_buff *skb) { ... parse L2, L3 here ... __u8 ipproto = load_byte(skb, ... offsetof(struct iphdr, protocol)); bpf_tail_call(skb, &ipproto_jmp_table, ipproto); ... default: process unknown protocol ... } int parse_tcp(struct __sk_buff *skb) {...} int parse_udp(struct __sk_buff *skb) {...} ipproto_jmp_table[IPPROTO_TCP] = parse_tcp; ipproto_jmp_table[IPPROTO_UDP] = parse_udp; - for TC use case, bpf_tail_call() allows to implement reclassify-like logic - bpf_map_update_elem/delete calls into BPF_MAP_TYPE_PROG_ARRAY jump table are atomic, so user space can build chains of BPF programs on the fly Implementation details: ======================= - high performance of bpf_tail_call() is the goal. It could have been implemented without JIT changes as a wrapper on top of BPF_PROG_RUN() macro, but with two downsides: . all programs would have to pay performance penalty for this feature and tail call itself would be slower, since mandatory stack unwind, return, stack allocate would be done for every tailcall. . tailcall would be limited to programs running preempt_disabled, since generic 'void *ctx' doesn't have room for 'tail_call_cnt' and it would need to be either global per_cpu variable accessed by helper and by wrapper or global variable protected by locks. In this implementation x64 JIT bypasses stack unwind and jumps into the callee program after prologue. - bpf_prog_array_compatible() ensures that prog_type of callee and caller are the same and JITed/non-JITed flag is the same, since calling JITed program from non-JITed is invalid, since stack frames are different. Similarly calling kprobe type program from socket type program is invalid. - jump table is implemented as BPF_MAP_TYPE_PROG_ARRAY to reuse 'map' abstraction, its user space API and all of verifier logic. It's in the existing arraymap.c file, since several functions are shared with regular array map. Signed-off-by: Alexei Starovoitov <ast@plumgrid.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2015-05-19 16:59:03 -07:00
bpf: direct packet access Extended BPF carried over two instructions from classic to access packet data: LD_ABS and LD_IND. They're highly optimized in JITs, but due to their design they have to do length check for every access. When BPF is processing 20M packets per second single LD_ABS after JIT is consuming 3% cpu. Hence the need to optimize it further by amortizing the cost of 'off < skb_headlen' over multiple packet accesses. One option is to introduce two new eBPF instructions LD_ABS_DW and LD_IND_DW with similar usage as skb_header_pointer(). The kernel part for interpreter and x64 JIT was implemented in [1], but such new insns behave like old ld_abs and abort the program with 'return 0' if access is beyond linear data. Such hidden control flow is hard to workaround plus changing JITs and rolling out new llvm is incovenient. Therefore allow cls_bpf/act_bpf program access skb->data directly: int bpf_prog(struct __sk_buff *skb) { struct iphdr *ip; if (skb->data + sizeof(struct iphdr) + ETH_HLEN > skb->data_end) /* packet too small */ return 0; ip = skb->data + ETH_HLEN; /* access IP header fields with direct loads */ if (ip->version != 4 || ip->saddr == 0x7f000001) return 1; [...] } This solution avoids introduction of new instructions. llvm stays the same and all JITs stay the same, but verifier has to work extra hard to prove safety of the above program. For XDP the direct store instructions can be allowed as well. The skb->data is NET_IP_ALIGNED, so for common cases the verifier can check the alignment. The complex packet parsers where packet pointer is adjusted incrementally cannot be tracked for alignment, so allow byte access in such cases and misaligned access on architectures that define efficient_unaligned_access [1] https://git.kernel.org/cgit/linux/kernel/git/ast/bpf.git/?h=ld_abs_dw Signed-off-by: Alexei Starovoitov <ast@kernel.org> Acked-by: Daniel Borkmann <daniel@iogearbox.net> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-05-05 19:49:10 -07:00
if (changes_data)
clear_all_pkt_pointers(env);
return 0;
}
static int check_packet_ptr_add(struct bpf_verifier_env *env,
struct bpf_insn *insn)
bpf: direct packet access Extended BPF carried over two instructions from classic to access packet data: LD_ABS and LD_IND. They're highly optimized in JITs, but due to their design they have to do length check for every access. When BPF is processing 20M packets per second single LD_ABS after JIT is consuming 3% cpu. Hence the need to optimize it further by amortizing the cost of 'off < skb_headlen' over multiple packet accesses. One option is to introduce two new eBPF instructions LD_ABS_DW and LD_IND_DW with similar usage as skb_header_pointer(). The kernel part for interpreter and x64 JIT was implemented in [1], but such new insns behave like old ld_abs and abort the program with 'return 0' if access is beyond linear data. Such hidden control flow is hard to workaround plus changing JITs and rolling out new llvm is incovenient. Therefore allow cls_bpf/act_bpf program access skb->data directly: int bpf_prog(struct __sk_buff *skb) { struct iphdr *ip; if (skb->data + sizeof(struct iphdr) + ETH_HLEN > skb->data_end) /* packet too small */ return 0; ip = skb->data + ETH_HLEN; /* access IP header fields with direct loads */ if (ip->version != 4 || ip->saddr == 0x7f000001) return 1; [...] } This solution avoids introduction of new instructions. llvm stays the same and all JITs stay the same, but verifier has to work extra hard to prove safety of the above program. For XDP the direct store instructions can be allowed as well. The skb->data is NET_IP_ALIGNED, so for common cases the verifier can check the alignment. The complex packet parsers where packet pointer is adjusted incrementally cannot be tracked for alignment, so allow byte access in such cases and misaligned access on architectures that define efficient_unaligned_access [1] https://git.kernel.org/cgit/linux/kernel/git/ast/bpf.git/?h=ld_abs_dw Signed-off-by: Alexei Starovoitov <ast@kernel.org> Acked-by: Daniel Borkmann <daniel@iogearbox.net> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-05-05 19:49:10 -07:00
{
struct bpf_reg_state *regs = env->cur_state.regs;
struct bpf_reg_state *dst_reg = &regs[insn->dst_reg];
struct bpf_reg_state *src_reg = &regs[insn->src_reg];
struct bpf_reg_state tmp_reg;
bpf: direct packet access Extended BPF carried over two instructions from classic to access packet data: LD_ABS and LD_IND. They're highly optimized in JITs, but due to their design they have to do length check for every access. When BPF is processing 20M packets per second single LD_ABS after JIT is consuming 3% cpu. Hence the need to optimize it further by amortizing the cost of 'off < skb_headlen' over multiple packet accesses. One option is to introduce two new eBPF instructions LD_ABS_DW and LD_IND_DW with similar usage as skb_header_pointer(). The kernel part for interpreter and x64 JIT was implemented in [1], but such new insns behave like old ld_abs and abort the program with 'return 0' if access is beyond linear data. Such hidden control flow is hard to workaround plus changing JITs and rolling out new llvm is incovenient. Therefore allow cls_bpf/act_bpf program access skb->data directly: int bpf_prog(struct __sk_buff *skb) { struct iphdr *ip; if (skb->data + sizeof(struct iphdr) + ETH_HLEN > skb->data_end) /* packet too small */ return 0; ip = skb->data + ETH_HLEN; /* access IP header fields with direct loads */ if (ip->version != 4 || ip->saddr == 0x7f000001) return 1; [...] } This solution avoids introduction of new instructions. llvm stays the same and all JITs stay the same, but verifier has to work extra hard to prove safety of the above program. For XDP the direct store instructions can be allowed as well. The skb->data is NET_IP_ALIGNED, so for common cases the verifier can check the alignment. The complex packet parsers where packet pointer is adjusted incrementally cannot be tracked for alignment, so allow byte access in such cases and misaligned access on architectures that define efficient_unaligned_access [1] https://git.kernel.org/cgit/linux/kernel/git/ast/bpf.git/?h=ld_abs_dw Signed-off-by: Alexei Starovoitov <ast@kernel.org> Acked-by: Daniel Borkmann <daniel@iogearbox.net> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-05-05 19:49:10 -07:00
s32 imm;
if (BPF_SRC(insn->code) == BPF_K) {
/* pkt_ptr += imm */
imm = insn->imm;
add_imm:
if (imm < 0) {
bpf: direct packet access Extended BPF carried over two instructions from classic to access packet data: LD_ABS and LD_IND. They're highly optimized in JITs, but due to their design they have to do length check for every access. When BPF is processing 20M packets per second single LD_ABS after JIT is consuming 3% cpu. Hence the need to optimize it further by amortizing the cost of 'off < skb_headlen' over multiple packet accesses. One option is to introduce two new eBPF instructions LD_ABS_DW and LD_IND_DW with similar usage as skb_header_pointer(). The kernel part for interpreter and x64 JIT was implemented in [1], but such new insns behave like old ld_abs and abort the program with 'return 0' if access is beyond linear data. Such hidden control flow is hard to workaround plus changing JITs and rolling out new llvm is incovenient. Therefore allow cls_bpf/act_bpf program access skb->data directly: int bpf_prog(struct __sk_buff *skb) { struct iphdr *ip; if (skb->data + sizeof(struct iphdr) + ETH_HLEN > skb->data_end) /* packet too small */ return 0; ip = skb->data + ETH_HLEN; /* access IP header fields with direct loads */ if (ip->version != 4 || ip->saddr == 0x7f000001) return 1; [...] } This solution avoids introduction of new instructions. llvm stays the same and all JITs stay the same, but verifier has to work extra hard to prove safety of the above program. For XDP the direct store instructions can be allowed as well. The skb->data is NET_IP_ALIGNED, so for common cases the verifier can check the alignment. The complex packet parsers where packet pointer is adjusted incrementally cannot be tracked for alignment, so allow byte access in such cases and misaligned access on architectures that define efficient_unaligned_access [1] https://git.kernel.org/cgit/linux/kernel/git/ast/bpf.git/?h=ld_abs_dw Signed-off-by: Alexei Starovoitov <ast@kernel.org> Acked-by: Daniel Borkmann <daniel@iogearbox.net> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-05-05 19:49:10 -07:00
verbose("addition of negative constant to packet pointer is not allowed\n");
return -EACCES;
}
if (imm >= MAX_PACKET_OFF ||
imm + dst_reg->off >= MAX_PACKET_OFF) {
verbose("constant %d is too large to add to packet pointer\n",
imm);
return -EACCES;
}
/* a constant was added to pkt_ptr.
* Remember it while keeping the same 'id'
*/
dst_reg->off += imm;
} else {
bpf: Track alignment of register values in the verifier. Currently if we add only constant values to pointers we can fully validate the alignment, and properly check if we need to reject the program on !CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS architectures. However, once an unknown value is introduced we only allow byte sized memory accesses which is too restrictive. Add logic to track the known minimum alignment of register values, and propagate this state into registers containing pointers. The most common paradigm that makes use of this new logic is computing the transport header using the IP header length field. For example: struct ethhdr *ep = skb->data; struct iphdr *iph = (struct iphdr *) (ep + 1); struct tcphdr *th; ... n = iph->ihl; th = ((void *)iph + (n * 4)); port = th->dest; The existing code will reject the load of th->dest because it cannot validate that the alignment is at least 2 once "n * 4" is added the the packet pointer. In the new code, the register holding "n * 4" will have a reg->min_align value of 4, because any value multiplied by 4 will be at least 4 byte aligned. (actually, the eBPF code emitted by the compiler in this case is most likely to use a shift left by 2, but the end result is identical) At the critical addition: th = ((void *)iph + (n * 4)); The register holding 'th' will start with reg->off value of 14. The pointer addition will transform that reg into something that looks like: reg->aux_off = 14 reg->aux_off_align = 4 Next, the verifier will look at the th->dest load, and it will see a load offset of 2, and first check: if (reg->aux_off_align % size) which will pass because aux_off_align is 4. reg_off will be computed: reg_off = reg->off; ... reg_off += reg->aux_off; plus we have off==2, and it will thus check: if ((NET_IP_ALIGN + reg_off + off) % size != 0) which evaluates to: if ((NET_IP_ALIGN + 14 + 2) % size != 0) On strict alignment architectures, NET_IP_ALIGN is 2, thus: if ((2 + 14 + 2) % size != 0) which passes. These pointer transformations and checks work regardless of whether the constant offset or the variable with known alignment is added first to the pointer register. Signed-off-by: David S. Miller <davem@davemloft.net> Acked-by: Daniel Borkmann <daniel@iogearbox.net>
2017-05-10 11:22:52 -07:00
bool had_id;
if (src_reg->type == PTR_TO_PACKET) {
/* R6=pkt(id=0,off=0,r=62) R7=imm22; r7 += r6 */
tmp_reg = *dst_reg; /* save r7 state */
*dst_reg = *src_reg; /* copy pkt_ptr state r6 into r7 */
src_reg = &tmp_reg; /* pretend it's src_reg state */
/* if the checks below reject it, the copy won't matter,
* since we're rejecting the whole program. If all ok,
* then imm22 state will be added to r7
* and r7 will be pkt(id=0,off=22,r=62) while
* r6 will stay as pkt(id=0,off=0,r=62)
*/
}
bpf: direct packet access Extended BPF carried over two instructions from classic to access packet data: LD_ABS and LD_IND. They're highly optimized in JITs, but due to their design they have to do length check for every access. When BPF is processing 20M packets per second single LD_ABS after JIT is consuming 3% cpu. Hence the need to optimize it further by amortizing the cost of 'off < skb_headlen' over multiple packet accesses. One option is to introduce two new eBPF instructions LD_ABS_DW and LD_IND_DW with similar usage as skb_header_pointer(). The kernel part for interpreter and x64 JIT was implemented in [1], but such new insns behave like old ld_abs and abort the program with 'return 0' if access is beyond linear data. Such hidden control flow is hard to workaround plus changing JITs and rolling out new llvm is incovenient. Therefore allow cls_bpf/act_bpf program access skb->data directly: int bpf_prog(struct __sk_buff *skb) { struct iphdr *ip; if (skb->data + sizeof(struct iphdr) + ETH_HLEN > skb->data_end) /* packet too small */ return 0; ip = skb->data + ETH_HLEN; /* access IP header fields with direct loads */ if (ip->version != 4 || ip->saddr == 0x7f000001) return 1; [...] } This solution avoids introduction of new instructions. llvm stays the same and all JITs stay the same, but verifier has to work extra hard to prove safety of the above program. For XDP the direct store instructions can be allowed as well. The skb->data is NET_IP_ALIGNED, so for common cases the verifier can check the alignment. The complex packet parsers where packet pointer is adjusted incrementally cannot be tracked for alignment, so allow byte access in such cases and misaligned access on architectures that define efficient_unaligned_access [1] https://git.kernel.org/cgit/linux/kernel/git/ast/bpf.git/?h=ld_abs_dw Signed-off-by: Alexei Starovoitov <ast@kernel.org> Acked-by: Daniel Borkmann <daniel@iogearbox.net> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-05-05 19:49:10 -07:00
if (src_reg->type == CONST_IMM) {
/* pkt_ptr += reg where reg is known constant */
imm = src_reg->imm;
goto add_imm;
}
/* disallow pkt_ptr += reg
* if reg is not uknown_value with guaranteed zero upper bits
* otherwise pkt_ptr may overflow and addition will become
* subtraction which is not allowed
*/
if (src_reg->type != UNKNOWN_VALUE) {
verbose("cannot add '%s' to ptr_to_packet\n",
reg_type_str[src_reg->type]);
return -EACCES;
}
if (src_reg->imm < 48) {
verbose("cannot add integer value with %lld upper zero bits to ptr_to_packet\n",
src_reg->imm);
return -EACCES;
}
bpf: Track alignment of register values in the verifier. Currently if we add only constant values to pointers we can fully validate the alignment, and properly check if we need to reject the program on !CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS architectures. However, once an unknown value is introduced we only allow byte sized memory accesses which is too restrictive. Add logic to track the known minimum alignment of register values, and propagate this state into registers containing pointers. The most common paradigm that makes use of this new logic is computing the transport header using the IP header length field. For example: struct ethhdr *ep = skb->data; struct iphdr *iph = (struct iphdr *) (ep + 1); struct tcphdr *th; ... n = iph->ihl; th = ((void *)iph + (n * 4)); port = th->dest; The existing code will reject the load of th->dest because it cannot validate that the alignment is at least 2 once "n * 4" is added the the packet pointer. In the new code, the register holding "n * 4" will have a reg->min_align value of 4, because any value multiplied by 4 will be at least 4 byte aligned. (actually, the eBPF code emitted by the compiler in this case is most likely to use a shift left by 2, but the end result is identical) At the critical addition: th = ((void *)iph + (n * 4)); The register holding 'th' will start with reg->off value of 14. The pointer addition will transform that reg into something that looks like: reg->aux_off = 14 reg->aux_off_align = 4 Next, the verifier will look at the th->dest load, and it will see a load offset of 2, and first check: if (reg->aux_off_align % size) which will pass because aux_off_align is 4. reg_off will be computed: reg_off = reg->off; ... reg_off += reg->aux_off; plus we have off==2, and it will thus check: if ((NET_IP_ALIGN + reg_off + off) % size != 0) which evaluates to: if ((NET_IP_ALIGN + 14 + 2) % size != 0) On strict alignment architectures, NET_IP_ALIGN is 2, thus: if ((2 + 14 + 2) % size != 0) which passes. These pointer transformations and checks work regardless of whether the constant offset or the variable with known alignment is added first to the pointer register. Signed-off-by: David S. Miller <davem@davemloft.net> Acked-by: Daniel Borkmann <daniel@iogearbox.net>
2017-05-10 11:22:52 -07:00
had_id = (dst_reg->id != 0);
bpf: direct packet access Extended BPF carried over two instructions from classic to access packet data: LD_ABS and LD_IND. They're highly optimized in JITs, but due to their design they have to do length check for every access. When BPF is processing 20M packets per second single LD_ABS after JIT is consuming 3% cpu. Hence the need to optimize it further by amortizing the cost of 'off < skb_headlen' over multiple packet accesses. One option is to introduce two new eBPF instructions LD_ABS_DW and LD_IND_DW with similar usage as skb_header_pointer(). The kernel part for interpreter and x64 JIT was implemented in [1], but such new insns behave like old ld_abs and abort the program with 'return 0' if access is beyond linear data. Such hidden control flow is hard to workaround plus changing JITs and rolling out new llvm is incovenient. Therefore allow cls_bpf/act_bpf program access skb->data directly: int bpf_prog(struct __sk_buff *skb) { struct iphdr *ip; if (skb->data + sizeof(struct iphdr) + ETH_HLEN > skb->data_end) /* packet too small */ return 0; ip = skb->data + ETH_HLEN; /* access IP header fields with direct loads */ if (ip->version != 4 || ip->saddr == 0x7f000001) return 1; [...] } This solution avoids introduction of new instructions. llvm stays the same and all JITs stay the same, but verifier has to work extra hard to prove safety of the above program. For XDP the direct store instructions can be allowed as well. The skb->data is NET_IP_ALIGNED, so for common cases the verifier can check the alignment. The complex packet parsers where packet pointer is adjusted incrementally cannot be tracked for alignment, so allow byte access in such cases and misaligned access on architectures that define efficient_unaligned_access [1] https://git.kernel.org/cgit/linux/kernel/git/ast/bpf.git/?h=ld_abs_dw Signed-off-by: Alexei Starovoitov <ast@kernel.org> Acked-by: Daniel Borkmann <daniel@iogearbox.net> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-05-05 19:49:10 -07:00
/* dst_reg stays as pkt_ptr type and since some positive
* integer value was added to the pointer, increment its 'id'
*/
2016-08-02 16:12:14 +01:00
dst_reg->id = ++env->id_gen;
bpf: direct packet access Extended BPF carried over two instructions from classic to access packet data: LD_ABS and LD_IND. They're highly optimized in JITs, but due to their design they have to do length check for every access. When BPF is processing 20M packets per second single LD_ABS after JIT is consuming 3% cpu. Hence the need to optimize it further by amortizing the cost of 'off < skb_headlen' over multiple packet accesses. One option is to introduce two new eBPF instructions LD_ABS_DW and LD_IND_DW with similar usage as skb_header_pointer(). The kernel part for interpreter and x64 JIT was implemented in [1], but such new insns behave like old ld_abs and abort the program with 'return 0' if access is beyond linear data. Such hidden control flow is hard to workaround plus changing JITs and rolling out new llvm is incovenient. Therefore allow cls_bpf/act_bpf program access skb->data directly: int bpf_prog(struct __sk_buff *skb) { struct iphdr *ip; if (skb->data + sizeof(struct iphdr) + ETH_HLEN > skb->data_end) /* packet too small */ return 0; ip = skb->data + ETH_HLEN; /* access IP header fields with direct loads */ if (ip->version != 4 || ip->saddr == 0x7f000001) return 1; [...] } This solution avoids introduction of new instructions. llvm stays the same and all JITs stay the same, but verifier has to work extra hard to prove safety of the above program. For XDP the direct store instructions can be allowed as well. The skb->data is NET_IP_ALIGNED, so for common cases the verifier can check the alignment. The complex packet parsers where packet pointer is adjusted incrementally cannot be tracked for alignment, so allow byte access in such cases and misaligned access on architectures that define efficient_unaligned_access [1] https://git.kernel.org/cgit/linux/kernel/git/ast/bpf.git/?h=ld_abs_dw Signed-off-by: Alexei Starovoitov <ast@kernel.org> Acked-by: Daniel Borkmann <daniel@iogearbox.net> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-05-05 19:49:10 -07:00
bpf: Track alignment of register values in the verifier. Currently if we add only constant values to pointers we can fully validate the alignment, and properly check if we need to reject the program on !CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS architectures. However, once an unknown value is introduced we only allow byte sized memory accesses which is too restrictive. Add logic to track the known minimum alignment of register values, and propagate this state into registers containing pointers. The most common paradigm that makes use of this new logic is computing the transport header using the IP header length field. For example: struct ethhdr *ep = skb->data; struct iphdr *iph = (struct iphdr *) (ep + 1); struct tcphdr *th; ... n = iph->ihl; th = ((void *)iph + (n * 4)); port = th->dest; The existing code will reject the load of th->dest because it cannot validate that the alignment is at least 2 once "n * 4" is added the the packet pointer. In the new code, the register holding "n * 4" will have a reg->min_align value of 4, because any value multiplied by 4 will be at least 4 byte aligned. (actually, the eBPF code emitted by the compiler in this case is most likely to use a shift left by 2, but the end result is identical) At the critical addition: th = ((void *)iph + (n * 4)); The register holding 'th' will start with reg->off value of 14. The pointer addition will transform that reg into something that looks like: reg->aux_off = 14 reg->aux_off_align = 4 Next, the verifier will look at the th->dest load, and it will see a load offset of 2, and first check: if (reg->aux_off_align % size) which will pass because aux_off_align is 4. reg_off will be computed: reg_off = reg->off; ... reg_off += reg->aux_off; plus we have off==2, and it will thus check: if ((NET_IP_ALIGN + reg_off + off) % size != 0) which evaluates to: if ((NET_IP_ALIGN + 14 + 2) % size != 0) On strict alignment architectures, NET_IP_ALIGN is 2, thus: if ((2 + 14 + 2) % size != 0) which passes. These pointer transformations and checks work regardless of whether the constant offset or the variable with known alignment is added first to the pointer register. Signed-off-by: David S. Miller <davem@davemloft.net> Acked-by: Daniel Borkmann <daniel@iogearbox.net>
2017-05-10 11:22:52 -07:00
/* something was added to pkt_ptr, set range to zero */
dst_reg->aux_off = dst_reg->off;
bpf: direct packet access Extended BPF carried over two instructions from classic to access packet data: LD_ABS and LD_IND. They're highly optimized in JITs, but due to their design they have to do length check for every access. When BPF is processing 20M packets per second single LD_ABS after JIT is consuming 3% cpu. Hence the need to optimize it further by amortizing the cost of 'off < skb_headlen' over multiple packet accesses. One option is to introduce two new eBPF instructions LD_ABS_DW and LD_IND_DW with similar usage as skb_header_pointer(). The kernel part for interpreter and x64 JIT was implemented in [1], but such new insns behave like old ld_abs and abort the program with 'return 0' if access is beyond linear data. Such hidden control flow is hard to workaround plus changing JITs and rolling out new llvm is incovenient. Therefore allow cls_bpf/act_bpf program access skb->data directly: int bpf_prog(struct __sk_buff *skb) { struct iphdr *ip; if (skb->data + sizeof(struct iphdr) + ETH_HLEN > skb->data_end) /* packet too small */ return 0; ip = skb->data + ETH_HLEN; /* access IP header fields with direct loads */ if (ip->version != 4 || ip->saddr == 0x7f000001) return 1; [...] } This solution avoids introduction of new instructions. llvm stays the same and all JITs stay the same, but verifier has to work extra hard to prove safety of the above program. For XDP the direct store instructions can be allowed as well. The skb->data is NET_IP_ALIGNED, so for common cases the verifier can check the alignment. The complex packet parsers where packet pointer is adjusted incrementally cannot be tracked for alignment, so allow byte access in such cases and misaligned access on architectures that define efficient_unaligned_access [1] https://git.kernel.org/cgit/linux/kernel/git/ast/bpf.git/?h=ld_abs_dw Signed-off-by: Alexei Starovoitov <ast@kernel.org> Acked-by: Daniel Borkmann <daniel@iogearbox.net> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-05-05 19:49:10 -07:00
dst_reg->off = 0;
dst_reg->range = 0;
bpf: Track alignment of register values in the verifier. Currently if we add only constant values to pointers we can fully validate the alignment, and properly check if we need to reject the program on !CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS architectures. However, once an unknown value is introduced we only allow byte sized memory accesses which is too restrictive. Add logic to track the known minimum alignment of register values, and propagate this state into registers containing pointers. The most common paradigm that makes use of this new logic is computing the transport header using the IP header length field. For example: struct ethhdr *ep = skb->data; struct iphdr *iph = (struct iphdr *) (ep + 1); struct tcphdr *th; ... n = iph->ihl; th = ((void *)iph + (n * 4)); port = th->dest; The existing code will reject the load of th->dest because it cannot validate that the alignment is at least 2 once "n * 4" is added the the packet pointer. In the new code, the register holding "n * 4" will have a reg->min_align value of 4, because any value multiplied by 4 will be at least 4 byte aligned. (actually, the eBPF code emitted by the compiler in this case is most likely to use a shift left by 2, but the end result is identical) At the critical addition: th = ((void *)iph + (n * 4)); The register holding 'th' will start with reg->off value of 14. The pointer addition will transform that reg into something that looks like: reg->aux_off = 14 reg->aux_off_align = 4 Next, the verifier will look at the th->dest load, and it will see a load offset of 2, and first check: if (reg->aux_off_align % size) which will pass because aux_off_align is 4. reg_off will be computed: reg_off = reg->off; ... reg_off += reg->aux_off; plus we have off==2, and it will thus check: if ((NET_IP_ALIGN + reg_off + off) % size != 0) which evaluates to: if ((NET_IP_ALIGN + 14 + 2) % size != 0) On strict alignment architectures, NET_IP_ALIGN is 2, thus: if ((2 + 14 + 2) % size != 0) which passes. These pointer transformations and checks work regardless of whether the constant offset or the variable with known alignment is added first to the pointer register. Signed-off-by: David S. Miller <davem@davemloft.net> Acked-by: Daniel Borkmann <daniel@iogearbox.net>
2017-05-10 11:22:52 -07:00
if (had_id)
dst_reg->aux_off_align = min(dst_reg->aux_off_align,
src_reg->min_align);
else
dst_reg->aux_off_align = src_reg->min_align;
bpf: direct packet access Extended BPF carried over two instructions from classic to access packet data: LD_ABS and LD_IND. They're highly optimized in JITs, but due to their design they have to do length check for every access. When BPF is processing 20M packets per second single LD_ABS after JIT is consuming 3% cpu. Hence the need to optimize it further by amortizing the cost of 'off < skb_headlen' over multiple packet accesses. One option is to introduce two new eBPF instructions LD_ABS_DW and LD_IND_DW with similar usage as skb_header_pointer(). The kernel part for interpreter and x64 JIT was implemented in [1], but such new insns behave like old ld_abs and abort the program with 'return 0' if access is beyond linear data. Such hidden control flow is hard to workaround plus changing JITs and rolling out new llvm is incovenient. Therefore allow cls_bpf/act_bpf program access skb->data directly: int bpf_prog(struct __sk_buff *skb) { struct iphdr *ip; if (skb->data + sizeof(struct iphdr) + ETH_HLEN > skb->data_end) /* packet too small */ return 0; ip = skb->data + ETH_HLEN; /* access IP header fields with direct loads */ if (ip->version != 4 || ip->saddr == 0x7f000001) return 1; [...] } This solution avoids introduction of new instructions. llvm stays the same and all JITs stay the same, but verifier has to work extra hard to prove safety of the above program. For XDP the direct store instructions can be allowed as well. The skb->data is NET_IP_ALIGNED, so for common cases the verifier can check the alignment. The complex packet parsers where packet pointer is adjusted incrementally cannot be tracked for alignment, so allow byte access in such cases and misaligned access on architectures that define efficient_unaligned_access [1] https://git.kernel.org/cgit/linux/kernel/git/ast/bpf.git/?h=ld_abs_dw Signed-off-by: Alexei Starovoitov <ast@kernel.org> Acked-by: Daniel Borkmann <daniel@iogearbox.net> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-05-05 19:49:10 -07:00
}
return 0;
}
static int evaluate_reg_alu(struct bpf_verifier_env *env, struct bpf_insn *insn)
bpf: direct packet access Extended BPF carried over two instructions from classic to access packet data: LD_ABS and LD_IND. They're highly optimized in JITs, but due to their design they have to do length check for every access. When BPF is processing 20M packets per second single LD_ABS after JIT is consuming 3% cpu. Hence the need to optimize it further by amortizing the cost of 'off < skb_headlen' over multiple packet accesses. One option is to introduce two new eBPF instructions LD_ABS_DW and LD_IND_DW with similar usage as skb_header_pointer(). The kernel part for interpreter and x64 JIT was implemented in [1], but such new insns behave like old ld_abs and abort the program with 'return 0' if access is beyond linear data. Such hidden control flow is hard to workaround plus changing JITs and rolling out new llvm is incovenient. Therefore allow cls_bpf/act_bpf program access skb->data directly: int bpf_prog(struct __sk_buff *skb) { struct iphdr *ip; if (skb->data + sizeof(struct iphdr) + ETH_HLEN > skb->data_end) /* packet too small */ return 0; ip = skb->data + ETH_HLEN; /* access IP header fields with direct loads */ if (ip->version != 4 || ip->saddr == 0x7f000001) return 1; [...] } This solution avoids introduction of new instructions. llvm stays the same and all JITs stay the same, but verifier has to work extra hard to prove safety of the above program. For XDP the direct store instructions can be allowed as well. The skb->data is NET_IP_ALIGNED, so for common cases the verifier can check the alignment. The complex packet parsers where packet pointer is adjusted incrementally cannot be tracked for alignment, so allow byte access in such cases and misaligned access on architectures that define efficient_unaligned_access [1] https://git.kernel.org/cgit/linux/kernel/git/ast/bpf.git/?h=ld_abs_dw Signed-off-by: Alexei Starovoitov <ast@kernel.org> Acked-by: Daniel Borkmann <daniel@iogearbox.net> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-05-05 19:49:10 -07:00
{
struct bpf_reg_state *regs = env->cur_state.regs;
struct bpf_reg_state *dst_reg = &regs[insn->dst_reg];
bpf: direct packet access Extended BPF carried over two instructions from classic to access packet data: LD_ABS and LD_IND. They're highly optimized in JITs, but due to their design they have to do length check for every access. When BPF is processing 20M packets per second single LD_ABS after JIT is consuming 3% cpu. Hence the need to optimize it further by amortizing the cost of 'off < skb_headlen' over multiple packet accesses. One option is to introduce two new eBPF instructions LD_ABS_DW and LD_IND_DW with similar usage as skb_header_pointer(). The kernel part for interpreter and x64 JIT was implemented in [1], but such new insns behave like old ld_abs and abort the program with 'return 0' if access is beyond linear data. Such hidden control flow is hard to workaround plus changing JITs and rolling out new llvm is incovenient. Therefore allow cls_bpf/act_bpf program access skb->data directly: int bpf_prog(struct __sk_buff *skb) { struct iphdr *ip; if (skb->data + sizeof(struct iphdr) + ETH_HLEN > skb->data_end) /* packet too small */ return 0; ip = skb->data + ETH_HLEN; /* access IP header fields with direct loads */ if (ip->version != 4 || ip->saddr == 0x7f000001) return 1; [...] } This solution avoids introduction of new instructions. llvm stays the same and all JITs stay the same, but verifier has to work extra hard to prove safety of the above program. For XDP the direct store instructions can be allowed as well. The skb->data is NET_IP_ALIGNED, so for common cases the verifier can check the alignment. The complex packet parsers where packet pointer is adjusted incrementally cannot be tracked for alignment, so allow byte access in such cases and misaligned access on architectures that define efficient_unaligned_access [1] https://git.kernel.org/cgit/linux/kernel/git/ast/bpf.git/?h=ld_abs_dw Signed-off-by: Alexei Starovoitov <ast@kernel.org> Acked-by: Daniel Borkmann <daniel@iogearbox.net> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-05-05 19:49:10 -07:00
u8 opcode = BPF_OP(insn->code);
s64 imm_log2;
/* for type == UNKNOWN_VALUE:
* imm > 0 -> number of zero upper bits
* imm == 0 -> don't track which is the same as all bits can be non-zero
*/
if (BPF_SRC(insn->code) == BPF_X) {
struct bpf_reg_state *src_reg = &regs[insn->src_reg];
bpf: direct packet access Extended BPF carried over two instructions from classic to access packet data: LD_ABS and LD_IND. They're highly optimized in JITs, but due to their design they have to do length check for every access. When BPF is processing 20M packets per second single LD_ABS after JIT is consuming 3% cpu. Hence the need to optimize it further by amortizing the cost of 'off < skb_headlen' over multiple packet accesses. One option is to introduce two new eBPF instructions LD_ABS_DW and LD_IND_DW with similar usage as skb_header_pointer(). The kernel part for interpreter and x64 JIT was implemented in [1], but such new insns behave like old ld_abs and abort the program with 'return 0' if access is beyond linear data. Such hidden control flow is hard to workaround plus changing JITs and rolling out new llvm is incovenient. Therefore allow cls_bpf/act_bpf program access skb->data directly: int bpf_prog(struct __sk_buff *skb) { struct iphdr *ip; if (skb->data + sizeof(struct iphdr) + ETH_HLEN > skb->data_end) /* packet too small */ return 0; ip = skb->data + ETH_HLEN; /* access IP header fields with direct loads */ if (ip->version != 4 || ip->saddr == 0x7f000001) return 1; [...] } This solution avoids introduction of new instructions. llvm stays the same and all JITs stay the same, but verifier has to work extra hard to prove safety of the above program. For XDP the direct store instructions can be allowed as well. The skb->data is NET_IP_ALIGNED, so for common cases the verifier can check the alignment. The complex packet parsers where packet pointer is adjusted incrementally cannot be tracked for alignment, so allow byte access in such cases and misaligned access on architectures that define efficient_unaligned_access [1] https://git.kernel.org/cgit/linux/kernel/git/ast/bpf.git/?h=ld_abs_dw Signed-off-by: Alexei Starovoitov <ast@kernel.org> Acked-by: Daniel Borkmann <daniel@iogearbox.net> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-05-05 19:49:10 -07:00
if (src_reg->type == UNKNOWN_VALUE && src_reg->imm > 0 &&
dst_reg->imm && opcode == BPF_ADD) {
/* dreg += sreg
* where both have zero upper bits. Adding them
* can only result making one more bit non-zero
* in the larger value.
* Ex. 0xffff (imm=48) + 1 (imm=63) = 0x10000 (imm=47)
* 0xffff (imm=48) + 0xffff = 0x1fffe (imm=47)
*/
dst_reg->imm = min(dst_reg->imm, src_reg->imm);
dst_reg->imm--;
return 0;
}
if (src_reg->type == CONST_IMM && src_reg->imm > 0 &&
dst_reg->imm && opcode == BPF_ADD) {
/* dreg += sreg
* where dreg has zero upper bits and sreg is const.
* Adding them can only result making one more bit
* non-zero in the larger value.
*/
imm_log2 = __ilog2_u64((long long)src_reg->imm);
dst_reg->imm = min(dst_reg->imm, 63 - imm_log2);
dst_reg->imm--;
return 0;
}
/* all other cases non supported yet, just mark dst_reg */
dst_reg->imm = 0;
return 0;
}
/* sign extend 32-bit imm into 64-bit to make sure that
* negative values occupy bit 63. Note ilog2() would have
* been incorrect, since sizeof(insn->imm) == 4
*/
imm_log2 = __ilog2_u64((long long)insn->imm);
if (dst_reg->imm && opcode == BPF_LSH) {
/* reg <<= imm
* if reg was a result of 2 byte load, then its imm == 48
* which means that upper 48 bits are zero and shifting this reg
* left by 4 would mean that upper 44 bits are still zero
*/
dst_reg->imm -= insn->imm;
} else if (dst_reg->imm && opcode == BPF_MUL) {
/* reg *= imm
* if multiplying by 14 subtract 4
* This is conservative calculation of upper zero bits.
* It's not trying to special case insn->imm == 1 or 0 cases
*/
dst_reg->imm -= imm_log2 + 1;
} else if (opcode == BPF_AND) {
/* reg &= imm */
dst_reg->imm = 63 - imm_log2;
} else if (dst_reg->imm && opcode == BPF_ADD) {
/* reg += imm */
dst_reg->imm = min(dst_reg->imm, 63 - imm_log2);
dst_reg->imm--;
} else if (opcode == BPF_RSH) {
/* reg >>= imm
* which means that after right shift, upper bits will be zero
* note that verifier already checked that
* 0 <= imm < 64 for shift insn
*/
dst_reg->imm += insn->imm;
if (unlikely(dst_reg->imm > 64))
/* some dumb code did:
* r2 = *(u32 *)mem;
* r2 >>= 32;
* and all bits are zero now */
dst_reg->imm = 64;
} else {
/* all other alu ops, means that we don't know what will
* happen to the value, mark it with unknown number of zero bits
*/
dst_reg->imm = 0;
}
if (dst_reg->imm < 0) {
/* all 64 bits of the register can contain non-zero bits
* and such value cannot be added to ptr_to_packet, since it
* may overflow, mark it as unknown to avoid further eval
*/
dst_reg->imm = 0;
}
return 0;
}
static int evaluate_reg_imm_alu(struct bpf_verifier_env *env,
struct bpf_insn *insn)
bpf: direct packet access Extended BPF carried over two instructions from classic to access packet data: LD_ABS and LD_IND. They're highly optimized in JITs, but due to their design they have to do length check for every access. When BPF is processing 20M packets per second single LD_ABS after JIT is consuming 3% cpu. Hence the need to optimize it further by amortizing the cost of 'off < skb_headlen' over multiple packet accesses. One option is to introduce two new eBPF instructions LD_ABS_DW and LD_IND_DW with similar usage as skb_header_pointer(). The kernel part for interpreter and x64 JIT was implemented in [1], but such new insns behave like old ld_abs and abort the program with 'return 0' if access is beyond linear data. Such hidden control flow is hard to workaround plus changing JITs and rolling out new llvm is incovenient. Therefore allow cls_bpf/act_bpf program access skb->data directly: int bpf_prog(struct __sk_buff *skb) { struct iphdr *ip; if (skb->data + sizeof(struct iphdr) + ETH_HLEN > skb->data_end) /* packet too small */ return 0; ip = skb->data + ETH_HLEN; /* access IP header fields with direct loads */ if (ip->version != 4 || ip->saddr == 0x7f000001) return 1; [...] } This solution avoids introduction of new instructions. llvm stays the same and all JITs stay the same, but verifier has to work extra hard to prove safety of the above program. For XDP the direct store instructions can be allowed as well. The skb->data is NET_IP_ALIGNED, so for common cases the verifier can check the alignment. The complex packet parsers where packet pointer is adjusted incrementally cannot be tracked for alignment, so allow byte access in such cases and misaligned access on architectures that define efficient_unaligned_access [1] https://git.kernel.org/cgit/linux/kernel/git/ast/bpf.git/?h=ld_abs_dw Signed-off-by: Alexei Starovoitov <ast@kernel.org> Acked-by: Daniel Borkmann <daniel@iogearbox.net> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-05-05 19:49:10 -07:00
{
struct bpf_reg_state *regs = env->cur_state.regs;
struct bpf_reg_state *dst_reg = &regs[insn->dst_reg];
struct bpf_reg_state *src_reg = &regs[insn->src_reg];
bpf: direct packet access Extended BPF carried over two instructions from classic to access packet data: LD_ABS and LD_IND. They're highly optimized in JITs, but due to their design they have to do length check for every access. When BPF is processing 20M packets per second single LD_ABS after JIT is consuming 3% cpu. Hence the need to optimize it further by amortizing the cost of 'off < skb_headlen' over multiple packet accesses. One option is to introduce two new eBPF instructions LD_ABS_DW and LD_IND_DW with similar usage as skb_header_pointer(). The kernel part for interpreter and x64 JIT was implemented in [1], but such new insns behave like old ld_abs and abort the program with 'return 0' if access is beyond linear data. Such hidden control flow is hard to workaround plus changing JITs and rolling out new llvm is incovenient. Therefore allow cls_bpf/act_bpf program access skb->data directly: int bpf_prog(struct __sk_buff *skb) { struct iphdr *ip; if (skb->data + sizeof(struct iphdr) + ETH_HLEN > skb->data_end) /* packet too small */ return 0; ip = skb->data + ETH_HLEN; /* access IP header fields with direct loads */ if (ip->version != 4 || ip->saddr == 0x7f000001) return 1; [...] } This solution avoids introduction of new instructions. llvm stays the same and all JITs stay the same, but verifier has to work extra hard to prove safety of the above program. For XDP the direct store instructions can be allowed as well. The skb->data is NET_IP_ALIGNED, so for common cases the verifier can check the alignment. The complex packet parsers where packet pointer is adjusted incrementally cannot be tracked for alignment, so allow byte access in such cases and misaligned access on architectures that define efficient_unaligned_access [1] https://git.kernel.org/cgit/linux/kernel/git/ast/bpf.git/?h=ld_abs_dw Signed-off-by: Alexei Starovoitov <ast@kernel.org> Acked-by: Daniel Borkmann <daniel@iogearbox.net> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-05-05 19:49:10 -07:00
u8 opcode = BPF_OP(insn->code);
bpf: enable verifier to better track const alu ops William reported couple of issues in relation to direct packet access. Typical scheme is to check for data + [off] <= data_end, where [off] can be either immediate or coming from a tracked register that contains an immediate, depending on the branch, we can then access the data. However, in case of calculating [off] for either the mentioned test itself or for access after the test in a more "complex" way, then the verifier will stop tracking the CONST_IMM marked register and will mark it as UNKNOWN_VALUE one. Adding that UNKNOWN_VALUE typed register to a pkt() marked register, the verifier then bails out in check_packet_ptr_add() as it finds the registers imm value below 48. In the first below example, that is due to evaluate_reg_imm_alu() not handling right shifts and thus marking the register as UNKNOWN_VALUE via helper __mark_reg_unknown_value() that resets imm to 0. In the second case the same happens at the time when r4 is set to r4 &= r5, where it transitions to UNKNOWN_VALUE from evaluate_reg_imm_alu(). Later on r4 we shift right by 3 inside evaluate_reg_alu(), where the register's imm turns into 3. That is, for registers with type UNKNOWN_VALUE, imm of 0 means that we don't know what value the register has, and for imm > 0 it means that the value has [imm] upper zero bits. F.e. when shifting an UNKNOWN_VALUE register by 3 to the right, no matter what value it had, we know that the 3 upper most bits must be zero now. This is to make sure that ALU operations with unknown registers don't overflow. Meaning, once we know that we have more than 48 upper zero bits, or, in other words cannot go beyond 0xffff offset with ALU ops, such an addition will track the target register as a new pkt() register with a new id, but 0 offset and 0 range, so for that a new data/data_end test will be required. Is the source register a CONST_IMM one that is to be added to the pkt() register, or the source instruction is an add instruction with immediate value, then it will get added if it stays within max 0xffff bounds. >From there, pkt() type, can be accessed should reg->off + imm be within the access range of pkt(). [...] from 28 to 30: R0=imm1,min_value=1,max_value=1 R1=pkt(id=0,off=0,r=22) R2=pkt_end R3=imm144,min_value=144,max_value=144 R4=imm0,min_value=0,max_value=0 R5=inv48,min_value=2054,max_value=2054 R10=fp 30: (bf) r5 = r3 31: (07) r5 += 23 32: (77) r5 >>= 3 33: (bf) r6 = r1 34: (0f) r6 += r5 cannot add integer value with 0 upper zero bits to ptr_to_packet [...] from 52 to 80: R0=imm1,min_value=1,max_value=1 R1=pkt(id=0,off=0,r=34) R2=pkt_end R3=inv R4=imm272 R5=inv56,min_value=17,max_value=17 R6=pkt(id=0,off=26,r=34) R10=fp 80: (07) r4 += 71 81: (18) r5 = 0xfffffff8 83: (5f) r4 &= r5 84: (77) r4 >>= 3 85: (0f) r1 += r4 cannot add integer value with 3 upper zero bits to ptr_to_packet Thus to get above use-cases working, evaluate_reg_imm_alu() has been extended for further ALU ops. This is fine, because we only operate strictly within realm of CONST_IMM types, so here we don't care about overflows as they will happen in the simulated but also real execution and interaction with pkt() in check_packet_ptr_add() will check actual imm value once added to pkt(), but it's irrelevant before. With regards to 06c1c049721a ("bpf: allow helpers access to variable memory") that works on UNKNOWN_VALUE registers, the verifier becomes now a bit smarter as it can better resolve ALU ops, so we need to adapt two test cases there, as min/max bound tracking only becomes necessary when registers were spilled to stack. So while mask was set before to track upper bound for UNKNOWN_VALUE case, it's now resolved directly as CONST_IMM, and such contructs are only necessary when f.e. registers are spilled. For commit 6b17387307ba ("bpf: recognize 64bit immediate loads as consts") that initially enabled dw load tracking only for nfp jit/ analyzer, I did couple of tests on large, complex programs and we don't increase complexity badly (my tests were in ~3% range on avg). I've added a couple of tests similar to affected code above, and it works fine with verifier now. Reported-by: William Tu <u9012063@gmail.com> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Cc: Gianluca Borello <g.borello@gmail.com> Cc: William Tu <u9012063@gmail.com> Acked-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-01-24 01:06:30 +01:00
u64 dst_imm = dst_reg->imm;
bpf: direct packet access Extended BPF carried over two instructions from classic to access packet data: LD_ABS and LD_IND. They're highly optimized in JITs, but due to their design they have to do length check for every access. When BPF is processing 20M packets per second single LD_ABS after JIT is consuming 3% cpu. Hence the need to optimize it further by amortizing the cost of 'off < skb_headlen' over multiple packet accesses. One option is to introduce two new eBPF instructions LD_ABS_DW and LD_IND_DW with similar usage as skb_header_pointer(). The kernel part for interpreter and x64 JIT was implemented in [1], but such new insns behave like old ld_abs and abort the program with 'return 0' if access is beyond linear data. Such hidden control flow is hard to workaround plus changing JITs and rolling out new llvm is incovenient. Therefore allow cls_bpf/act_bpf program access skb->data directly: int bpf_prog(struct __sk_buff *skb) { struct iphdr *ip; if (skb->data + sizeof(struct iphdr) + ETH_HLEN > skb->data_end) /* packet too small */ return 0; ip = skb->data + ETH_HLEN; /* access IP header fields with direct loads */ if (ip->version != 4 || ip->saddr == 0x7f000001) return 1; [...] } This solution avoids introduction of new instructions. llvm stays the same and all JITs stay the same, but verifier has to work extra hard to prove safety of the above program. For XDP the direct store instructions can be allowed as well. The skb->data is NET_IP_ALIGNED, so for common cases the verifier can check the alignment. The complex packet parsers where packet pointer is adjusted incrementally cannot be tracked for alignment, so allow byte access in such cases and misaligned access on architectures that define efficient_unaligned_access [1] https://git.kernel.org/cgit/linux/kernel/git/ast/bpf.git/?h=ld_abs_dw Signed-off-by: Alexei Starovoitov <ast@kernel.org> Acked-by: Daniel Borkmann <daniel@iogearbox.net> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-05-05 19:49:10 -07:00
bpf: enable verifier to better track const alu ops William reported couple of issues in relation to direct packet access. Typical scheme is to check for data + [off] <= data_end, where [off] can be either immediate or coming from a tracked register that contains an immediate, depending on the branch, we can then access the data. However, in case of calculating [off] for either the mentioned test itself or for access after the test in a more "complex" way, then the verifier will stop tracking the CONST_IMM marked register and will mark it as UNKNOWN_VALUE one. Adding that UNKNOWN_VALUE typed register to a pkt() marked register, the verifier then bails out in check_packet_ptr_add() as it finds the registers imm value below 48. In the first below example, that is due to evaluate_reg_imm_alu() not handling right shifts and thus marking the register as UNKNOWN_VALUE via helper __mark_reg_unknown_value() that resets imm to 0. In the second case the same happens at the time when r4 is set to r4 &= r5, where it transitions to UNKNOWN_VALUE from evaluate_reg_imm_alu(). Later on r4 we shift right by 3 inside evaluate_reg_alu(), where the register's imm turns into 3. That is, for registers with type UNKNOWN_VALUE, imm of 0 means that we don't know what value the register has, and for imm > 0 it means that the value has [imm] upper zero bits. F.e. when shifting an UNKNOWN_VALUE register by 3 to the right, no matter what value it had, we know that the 3 upper most bits must be zero now. This is to make sure that ALU operations with unknown registers don't overflow. Meaning, once we know that we have more than 48 upper zero bits, or, in other words cannot go beyond 0xffff offset with ALU ops, such an addition will track the target register as a new pkt() register with a new id, but 0 offset and 0 range, so for that a new data/data_end test will be required. Is the source register a CONST_IMM one that is to be added to the pkt() register, or the source instruction is an add instruction with immediate value, then it will get added if it stays within max 0xffff bounds. >From there, pkt() type, can be accessed should reg->off + imm be within the access range of pkt(). [...] from 28 to 30: R0=imm1,min_value=1,max_value=1 R1=pkt(id=0,off=0,r=22) R2=pkt_end R3=imm144,min_value=144,max_value=144 R4=imm0,min_value=0,max_value=0 R5=inv48,min_value=2054,max_value=2054 R10=fp 30: (bf) r5 = r3 31: (07) r5 += 23 32: (77) r5 >>= 3 33: (bf) r6 = r1 34: (0f) r6 += r5 cannot add integer value with 0 upper zero bits to ptr_to_packet [...] from 52 to 80: R0=imm1,min_value=1,max_value=1 R1=pkt(id=0,off=0,r=34) R2=pkt_end R3=inv R4=imm272 R5=inv56,min_value=17,max_value=17 R6=pkt(id=0,off=26,r=34) R10=fp 80: (07) r4 += 71 81: (18) r5 = 0xfffffff8 83: (5f) r4 &= r5 84: (77) r4 >>= 3 85: (0f) r1 += r4 cannot add integer value with 3 upper zero bits to ptr_to_packet Thus to get above use-cases working, evaluate_reg_imm_alu() has been extended for further ALU ops. This is fine, because we only operate strictly within realm of CONST_IMM types, so here we don't care about overflows as they will happen in the simulated but also real execution and interaction with pkt() in check_packet_ptr_add() will check actual imm value once added to pkt(), but it's irrelevant before. With regards to 06c1c049721a ("bpf: allow helpers access to variable memory") that works on UNKNOWN_VALUE registers, the verifier becomes now a bit smarter as it can better resolve ALU ops, so we need to adapt two test cases there, as min/max bound tracking only becomes necessary when registers were spilled to stack. So while mask was set before to track upper bound for UNKNOWN_VALUE case, it's now resolved directly as CONST_IMM, and such contructs are only necessary when f.e. registers are spilled. For commit 6b17387307ba ("bpf: recognize 64bit immediate loads as consts") that initially enabled dw load tracking only for nfp jit/ analyzer, I did couple of tests on large, complex programs and we don't increase complexity badly (my tests were in ~3% range on avg). I've added a couple of tests similar to affected code above, and it works fine with verifier now. Reported-by: William Tu <u9012063@gmail.com> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Cc: Gianluca Borello <g.borello@gmail.com> Cc: William Tu <u9012063@gmail.com> Acked-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-01-24 01:06:30 +01:00
/* dst_reg->type == CONST_IMM here. Simulate execution of insns
* containing ALU ops. Don't care about overflow or negative
* values, just add/sub/... them; registers are in u64.
bpf: direct packet access Extended BPF carried over two instructions from classic to access packet data: LD_ABS and LD_IND. They're highly optimized in JITs, but due to their design they have to do length check for every access. When BPF is processing 20M packets per second single LD_ABS after JIT is consuming 3% cpu. Hence the need to optimize it further by amortizing the cost of 'off < skb_headlen' over multiple packet accesses. One option is to introduce two new eBPF instructions LD_ABS_DW and LD_IND_DW with similar usage as skb_header_pointer(). The kernel part for interpreter and x64 JIT was implemented in [1], but such new insns behave like old ld_abs and abort the program with 'return 0' if access is beyond linear data. Such hidden control flow is hard to workaround plus changing JITs and rolling out new llvm is incovenient. Therefore allow cls_bpf/act_bpf program access skb->data directly: int bpf_prog(struct __sk_buff *skb) { struct iphdr *ip; if (skb->data + sizeof(struct iphdr) + ETH_HLEN > skb->data_end) /* packet too small */ return 0; ip = skb->data + ETH_HLEN; /* access IP header fields with direct loads */ if (ip->version != 4 || ip->saddr == 0x7f000001) return 1; [...] } This solution avoids introduction of new instructions. llvm stays the same and all JITs stay the same, but verifier has to work extra hard to prove safety of the above program. For XDP the direct store instructions can be allowed as well. The skb->data is NET_IP_ALIGNED, so for common cases the verifier can check the alignment. The complex packet parsers where packet pointer is adjusted incrementally cannot be tracked for alignment, so allow byte access in such cases and misaligned access on architectures that define efficient_unaligned_access [1] https://git.kernel.org/cgit/linux/kernel/git/ast/bpf.git/?h=ld_abs_dw Signed-off-by: Alexei Starovoitov <ast@kernel.org> Acked-by: Daniel Borkmann <daniel@iogearbox.net> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-05-05 19:49:10 -07:00
*/
bpf: enable verifier to better track const alu ops William reported couple of issues in relation to direct packet access. Typical scheme is to check for data + [off] <= data_end, where [off] can be either immediate or coming from a tracked register that contains an immediate, depending on the branch, we can then access the data. However, in case of calculating [off] for either the mentioned test itself or for access after the test in a more "complex" way, then the verifier will stop tracking the CONST_IMM marked register and will mark it as UNKNOWN_VALUE one. Adding that UNKNOWN_VALUE typed register to a pkt() marked register, the verifier then bails out in check_packet_ptr_add() as it finds the registers imm value below 48. In the first below example, that is due to evaluate_reg_imm_alu() not handling right shifts and thus marking the register as UNKNOWN_VALUE via helper __mark_reg_unknown_value() that resets imm to 0. In the second case the same happens at the time when r4 is set to r4 &= r5, where it transitions to UNKNOWN_VALUE from evaluate_reg_imm_alu(). Later on r4 we shift right by 3 inside evaluate_reg_alu(), where the register's imm turns into 3. That is, for registers with type UNKNOWN_VALUE, imm of 0 means that we don't know what value the register has, and for imm > 0 it means that the value has [imm] upper zero bits. F.e. when shifting an UNKNOWN_VALUE register by 3 to the right, no matter what value it had, we know that the 3 upper most bits must be zero now. This is to make sure that ALU operations with unknown registers don't overflow. Meaning, once we know that we have more than 48 upper zero bits, or, in other words cannot go beyond 0xffff offset with ALU ops, such an addition will track the target register as a new pkt() register with a new id, but 0 offset and 0 range, so for that a new data/data_end test will be required. Is the source register a CONST_IMM one that is to be added to the pkt() register, or the source instruction is an add instruction with immediate value, then it will get added if it stays within max 0xffff bounds. >From there, pkt() type, can be accessed should reg->off + imm be within the access range of pkt(). [...] from 28 to 30: R0=imm1,min_value=1,max_value=1 R1=pkt(id=0,off=0,r=22) R2=pkt_end R3=imm144,min_value=144,max_value=144 R4=imm0,min_value=0,max_value=0 R5=inv48,min_value=2054,max_value=2054 R10=fp 30: (bf) r5 = r3 31: (07) r5 += 23 32: (77) r5 >>= 3 33: (bf) r6 = r1 34: (0f) r6 += r5 cannot add integer value with 0 upper zero bits to ptr_to_packet [...] from 52 to 80: R0=imm1,min_value=1,max_value=1 R1=pkt(id=0,off=0,r=34) R2=pkt_end R3=inv R4=imm272 R5=inv56,min_value=17,max_value=17 R6=pkt(id=0,off=26,r=34) R10=fp 80: (07) r4 += 71 81: (18) r5 = 0xfffffff8 83: (5f) r4 &= r5 84: (77) r4 >>= 3 85: (0f) r1 += r4 cannot add integer value with 3 upper zero bits to ptr_to_packet Thus to get above use-cases working, evaluate_reg_imm_alu() has been extended for further ALU ops. This is fine, because we only operate strictly within realm of CONST_IMM types, so here we don't care about overflows as they will happen in the simulated but also real execution and interaction with pkt() in check_packet_ptr_add() will check actual imm value once added to pkt(), but it's irrelevant before. With regards to 06c1c049721a ("bpf: allow helpers access to variable memory") that works on UNKNOWN_VALUE registers, the verifier becomes now a bit smarter as it can better resolve ALU ops, so we need to adapt two test cases there, as min/max bound tracking only becomes necessary when registers were spilled to stack. So while mask was set before to track upper bound for UNKNOWN_VALUE case, it's now resolved directly as CONST_IMM, and such contructs are only necessary when f.e. registers are spilled. For commit 6b17387307ba ("bpf: recognize 64bit immediate loads as consts") that initially enabled dw load tracking only for nfp jit/ analyzer, I did couple of tests on large, complex programs and we don't increase complexity badly (my tests were in ~3% range on avg). I've added a couple of tests similar to affected code above, and it works fine with verifier now. Reported-by: William Tu <u9012063@gmail.com> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Cc: Gianluca Borello <g.borello@gmail.com> Cc: William Tu <u9012063@gmail.com> Acked-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-01-24 01:06:30 +01:00
if (opcode == BPF_ADD && BPF_SRC(insn->code) == BPF_K) {
dst_imm += insn->imm;
} else if (opcode == BPF_ADD && BPF_SRC(insn->code) == BPF_X &&
src_reg->type == CONST_IMM) {
dst_imm += src_reg->imm;
} else if (opcode == BPF_SUB && BPF_SRC(insn->code) == BPF_K) {
dst_imm -= insn->imm;
} else if (opcode == BPF_SUB && BPF_SRC(insn->code) == BPF_X &&
src_reg->type == CONST_IMM) {
dst_imm -= src_reg->imm;
} else if (opcode == BPF_MUL && BPF_SRC(insn->code) == BPF_K) {
dst_imm *= insn->imm;
} else if (opcode == BPF_MUL && BPF_SRC(insn->code) == BPF_X &&
src_reg->type == CONST_IMM) {
dst_imm *= src_reg->imm;
} else if (opcode == BPF_OR && BPF_SRC(insn->code) == BPF_K) {
dst_imm |= insn->imm;
} else if (opcode == BPF_OR && BPF_SRC(insn->code) == BPF_X &&
src_reg->type == CONST_IMM) {
dst_imm |= src_reg->imm;
} else if (opcode == BPF_AND && BPF_SRC(insn->code) == BPF_K) {
dst_imm &= insn->imm;
} else if (opcode == BPF_AND && BPF_SRC(insn->code) == BPF_X &&
src_reg->type == CONST_IMM) {
dst_imm &= src_reg->imm;
} else if (opcode == BPF_RSH && BPF_SRC(insn->code) == BPF_K) {
dst_imm >>= insn->imm;
} else if (opcode == BPF_RSH && BPF_SRC(insn->code) == BPF_X &&
src_reg->type == CONST_IMM) {
dst_imm >>= src_reg->imm;
} else if (opcode == BPF_LSH && BPF_SRC(insn->code) == BPF_K) {
dst_imm <<= insn->imm;
} else if (opcode == BPF_LSH && BPF_SRC(insn->code) == BPF_X &&
src_reg->type == CONST_IMM) {
dst_imm <<= src_reg->imm;
} else {
bpf: direct packet access Extended BPF carried over two instructions from classic to access packet data: LD_ABS and LD_IND. They're highly optimized in JITs, but due to their design they have to do length check for every access. When BPF is processing 20M packets per second single LD_ABS after JIT is consuming 3% cpu. Hence the need to optimize it further by amortizing the cost of 'off < skb_headlen' over multiple packet accesses. One option is to introduce two new eBPF instructions LD_ABS_DW and LD_IND_DW with similar usage as skb_header_pointer(). The kernel part for interpreter and x64 JIT was implemented in [1], but such new insns behave like old ld_abs and abort the program with 'return 0' if access is beyond linear data. Such hidden control flow is hard to workaround plus changing JITs and rolling out new llvm is incovenient. Therefore allow cls_bpf/act_bpf program access skb->data directly: int bpf_prog(struct __sk_buff *skb) { struct iphdr *ip; if (skb->data + sizeof(struct iphdr) + ETH_HLEN > skb->data_end) /* packet too small */ return 0; ip = skb->data + ETH_HLEN; /* access IP header fields with direct loads */ if (ip->version != 4 || ip->saddr == 0x7f000001) return 1; [...] } This solution avoids introduction of new instructions. llvm stays the same and all JITs stay the same, but verifier has to work extra hard to prove safety of the above program. For XDP the direct store instructions can be allowed as well. The skb->data is NET_IP_ALIGNED, so for common cases the verifier can check the alignment. The complex packet parsers where packet pointer is adjusted incrementally cannot be tracked for alignment, so allow byte access in such cases and misaligned access on architectures that define efficient_unaligned_access [1] https://git.kernel.org/cgit/linux/kernel/git/ast/bpf.git/?h=ld_abs_dw Signed-off-by: Alexei Starovoitov <ast@kernel.org> Acked-by: Daniel Borkmann <daniel@iogearbox.net> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-05-05 19:49:10 -07:00
mark_reg_unknown_value(regs, insn->dst_reg);
bpf: enable verifier to better track const alu ops William reported couple of issues in relation to direct packet access. Typical scheme is to check for data + [off] <= data_end, where [off] can be either immediate or coming from a tracked register that contains an immediate, depending on the branch, we can then access the data. However, in case of calculating [off] for either the mentioned test itself or for access after the test in a more "complex" way, then the verifier will stop tracking the CONST_IMM marked register and will mark it as UNKNOWN_VALUE one. Adding that UNKNOWN_VALUE typed register to a pkt() marked register, the verifier then bails out in check_packet_ptr_add() as it finds the registers imm value below 48. In the first below example, that is due to evaluate_reg_imm_alu() not handling right shifts and thus marking the register as UNKNOWN_VALUE via helper __mark_reg_unknown_value() that resets imm to 0. In the second case the same happens at the time when r4 is set to r4 &= r5, where it transitions to UNKNOWN_VALUE from evaluate_reg_imm_alu(). Later on r4 we shift right by 3 inside evaluate_reg_alu(), where the register's imm turns into 3. That is, for registers with type UNKNOWN_VALUE, imm of 0 means that we don't know what value the register has, and for imm > 0 it means that the value has [imm] upper zero bits. F.e. when shifting an UNKNOWN_VALUE register by 3 to the right, no matter what value it had, we know that the 3 upper most bits must be zero now. This is to make sure that ALU operations with unknown registers don't overflow. Meaning, once we know that we have more than 48 upper zero bits, or, in other words cannot go beyond 0xffff offset with ALU ops, such an addition will track the target register as a new pkt() register with a new id, but 0 offset and 0 range, so for that a new data/data_end test will be required. Is the source register a CONST_IMM one that is to be added to the pkt() register, or the source instruction is an add instruction with immediate value, then it will get added if it stays within max 0xffff bounds. >From there, pkt() type, can be accessed should reg->off + imm be within the access range of pkt(). [...] from 28 to 30: R0=imm1,min_value=1,max_value=1 R1=pkt(id=0,off=0,r=22) R2=pkt_end R3=imm144,min_value=144,max_value=144 R4=imm0,min_value=0,max_value=0 R5=inv48,min_value=2054,max_value=2054 R10=fp 30: (bf) r5 = r3 31: (07) r5 += 23 32: (77) r5 >>= 3 33: (bf) r6 = r1 34: (0f) r6 += r5 cannot add integer value with 0 upper zero bits to ptr_to_packet [...] from 52 to 80: R0=imm1,min_value=1,max_value=1 R1=pkt(id=0,off=0,r=34) R2=pkt_end R3=inv R4=imm272 R5=inv56,min_value=17,max_value=17 R6=pkt(id=0,off=26,r=34) R10=fp 80: (07) r4 += 71 81: (18) r5 = 0xfffffff8 83: (5f) r4 &= r5 84: (77) r4 >>= 3 85: (0f) r1 += r4 cannot add integer value with 3 upper zero bits to ptr_to_packet Thus to get above use-cases working, evaluate_reg_imm_alu() has been extended for further ALU ops. This is fine, because we only operate strictly within realm of CONST_IMM types, so here we don't care about overflows as they will happen in the simulated but also real execution and interaction with pkt() in check_packet_ptr_add() will check actual imm value once added to pkt(), but it's irrelevant before. With regards to 06c1c049721a ("bpf: allow helpers access to variable memory") that works on UNKNOWN_VALUE registers, the verifier becomes now a bit smarter as it can better resolve ALU ops, so we need to adapt two test cases there, as min/max bound tracking only becomes necessary when registers were spilled to stack. So while mask was set before to track upper bound for UNKNOWN_VALUE case, it's now resolved directly as CONST_IMM, and such contructs are only necessary when f.e. registers are spilled. For commit 6b17387307ba ("bpf: recognize 64bit immediate loads as consts") that initially enabled dw load tracking only for nfp jit/ analyzer, I did couple of tests on large, complex programs and we don't increase complexity badly (my tests were in ~3% range on avg). I've added a couple of tests similar to affected code above, and it works fine with verifier now. Reported-by: William Tu <u9012063@gmail.com> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Cc: Gianluca Borello <g.borello@gmail.com> Cc: William Tu <u9012063@gmail.com> Acked-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-01-24 01:06:30 +01:00
goto out;
}
dst_reg->imm = dst_imm;
out:
bpf: verifier (add verifier core) This patch adds verifier core which simulates execution of every insn and records the state of registers and program stack. Every branch instruction seen during simulation is pushed into state stack. When verifier reaches BPF_EXIT, it pops the state from the stack and continues until it reaches BPF_EXIT again. For program: 1: bpf_mov r1, xxx 2: if (r1 == 0) goto 5 3: bpf_mov r0, 1 4: goto 6 5: bpf_mov r0, 2 6: bpf_exit The verifier will walk insns: 1, 2, 3, 4, 6 then it will pop the state recorded at insn#2 and will continue: 5, 6 This way it walks all possible paths through the program and checks all possible values of registers. While doing so, it checks for: - invalid instructions - uninitialized register access - uninitialized stack access - misaligned stack access - out of range stack access - invalid calling convention - instruction encoding is not using reserved fields Kernel subsystem configures the verifier with two callbacks: - bool (*is_valid_access)(int off, int size, enum bpf_access_type type); that provides information to the verifer which fields of 'ctx' are accessible (remember 'ctx' is the first argument to eBPF program) - const struct bpf_func_proto *(*get_func_proto)(enum bpf_func_id func_id); returns argument constraints of kernel helper functions that eBPF program may call, so that verifier can checks that R1-R5 types match the prototype More details in Documentation/networking/filter.txt and in kernel/bpf/verifier.c Signed-off-by: Alexei Starovoitov <ast@plumgrid.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-09-26 00:17:06 -07:00
return 0;
}
static void check_reg_overflow(struct bpf_reg_state *reg)
{
if (reg->max_value > BPF_REGISTER_MAX_RANGE)
reg->max_value = BPF_REGISTER_MAX_RANGE;
if (reg->min_value < BPF_REGISTER_MIN_RANGE ||
reg->min_value > BPF_REGISTER_MAX_RANGE)
reg->min_value = BPF_REGISTER_MIN_RANGE;
}
bpf: Track alignment of register values in the verifier. Currently if we add only constant values to pointers we can fully validate the alignment, and properly check if we need to reject the program on !CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS architectures. However, once an unknown value is introduced we only allow byte sized memory accesses which is too restrictive. Add logic to track the known minimum alignment of register values, and propagate this state into registers containing pointers. The most common paradigm that makes use of this new logic is computing the transport header using the IP header length field. For example: struct ethhdr *ep = skb->data; struct iphdr *iph = (struct iphdr *) (ep + 1); struct tcphdr *th; ... n = iph->ihl; th = ((void *)iph + (n * 4)); port = th->dest; The existing code will reject the load of th->dest because it cannot validate that the alignment is at least 2 once "n * 4" is added the the packet pointer. In the new code, the register holding "n * 4" will have a reg->min_align value of 4, because any value multiplied by 4 will be at least 4 byte aligned. (actually, the eBPF code emitted by the compiler in this case is most likely to use a shift left by 2, but the end result is identical) At the critical addition: th = ((void *)iph + (n * 4)); The register holding 'th' will start with reg->off value of 14. The pointer addition will transform that reg into something that looks like: reg->aux_off = 14 reg->aux_off_align = 4 Next, the verifier will look at the th->dest load, and it will see a load offset of 2, and first check: if (reg->aux_off_align % size) which will pass because aux_off_align is 4. reg_off will be computed: reg_off = reg->off; ... reg_off += reg->aux_off; plus we have off==2, and it will thus check: if ((NET_IP_ALIGN + reg_off + off) % size != 0) which evaluates to: if ((NET_IP_ALIGN + 14 + 2) % size != 0) On strict alignment architectures, NET_IP_ALIGN is 2, thus: if ((2 + 14 + 2) % size != 0) which passes. These pointer transformations and checks work regardless of whether the constant offset or the variable with known alignment is added first to the pointer register. Signed-off-by: David S. Miller <davem@davemloft.net> Acked-by: Daniel Borkmann <daniel@iogearbox.net>
2017-05-10 11:22:52 -07:00
static u32 calc_align(u32 imm)
{
if (!imm)
return 1U << 31;
return imm - ((imm - 1) & imm);
}
static void adjust_reg_min_max_vals(struct bpf_verifier_env *env,
struct bpf_insn *insn)
{
struct bpf_reg_state *regs = env->cur_state.regs, *dst_reg;
s64 min_val = BPF_REGISTER_MIN_RANGE;
u64 max_val = BPF_REGISTER_MAX_RANGE;
u8 opcode = BPF_OP(insn->code);
bpf: Track alignment of register values in the verifier. Currently if we add only constant values to pointers we can fully validate the alignment, and properly check if we need to reject the program on !CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS architectures. However, once an unknown value is introduced we only allow byte sized memory accesses which is too restrictive. Add logic to track the known minimum alignment of register values, and propagate this state into registers containing pointers. The most common paradigm that makes use of this new logic is computing the transport header using the IP header length field. For example: struct ethhdr *ep = skb->data; struct iphdr *iph = (struct iphdr *) (ep + 1); struct tcphdr *th; ... n = iph->ihl; th = ((void *)iph + (n * 4)); port = th->dest; The existing code will reject the load of th->dest because it cannot validate that the alignment is at least 2 once "n * 4" is added the the packet pointer. In the new code, the register holding "n * 4" will have a reg->min_align value of 4, because any value multiplied by 4 will be at least 4 byte aligned. (actually, the eBPF code emitted by the compiler in this case is most likely to use a shift left by 2, but the end result is identical) At the critical addition: th = ((void *)iph + (n * 4)); The register holding 'th' will start with reg->off value of 14. The pointer addition will transform that reg into something that looks like: reg->aux_off = 14 reg->aux_off_align = 4 Next, the verifier will look at the th->dest load, and it will see a load offset of 2, and first check: if (reg->aux_off_align % size) which will pass because aux_off_align is 4. reg_off will be computed: reg_off = reg->off; ... reg_off += reg->aux_off; plus we have off==2, and it will thus check: if ((NET_IP_ALIGN + reg_off + off) % size != 0) which evaluates to: if ((NET_IP_ALIGN + 14 + 2) % size != 0) On strict alignment architectures, NET_IP_ALIGN is 2, thus: if ((2 + 14 + 2) % size != 0) which passes. These pointer transformations and checks work regardless of whether the constant offset or the variable with known alignment is added first to the pointer register. Signed-off-by: David S. Miller <davem@davemloft.net> Acked-by: Daniel Borkmann <daniel@iogearbox.net>
2017-05-10 11:22:52 -07:00
u32 dst_align, src_align;
dst_reg = &regs[insn->dst_reg];
bpf: Track alignment of register values in the verifier. Currently if we add only constant values to pointers we can fully validate the alignment, and properly check if we need to reject the program on !CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS architectures. However, once an unknown value is introduced we only allow byte sized memory accesses which is too restrictive. Add logic to track the known minimum alignment of register values, and propagate this state into registers containing pointers. The most common paradigm that makes use of this new logic is computing the transport header using the IP header length field. For example: struct ethhdr *ep = skb->data; struct iphdr *iph = (struct iphdr *) (ep + 1); struct tcphdr *th; ... n = iph->ihl; th = ((void *)iph + (n * 4)); port = th->dest; The existing code will reject the load of th->dest because it cannot validate that the alignment is at least 2 once "n * 4" is added the the packet pointer. In the new code, the register holding "n * 4" will have a reg->min_align value of 4, because any value multiplied by 4 will be at least 4 byte aligned. (actually, the eBPF code emitted by the compiler in this case is most likely to use a shift left by 2, but the end result is identical) At the critical addition: th = ((void *)iph + (n * 4)); The register holding 'th' will start with reg->off value of 14. The pointer addition will transform that reg into something that looks like: reg->aux_off = 14 reg->aux_off_align = 4 Next, the verifier will look at the th->dest load, and it will see a load offset of 2, and first check: if (reg->aux_off_align % size) which will pass because aux_off_align is 4. reg_off will be computed: reg_off = reg->off; ... reg_off += reg->aux_off; plus we have off==2, and it will thus check: if ((NET_IP_ALIGN + reg_off + off) % size != 0) which evaluates to: if ((NET_IP_ALIGN + 14 + 2) % size != 0) On strict alignment architectures, NET_IP_ALIGN is 2, thus: if ((2 + 14 + 2) % size != 0) which passes. These pointer transformations and checks work regardless of whether the constant offset or the variable with known alignment is added first to the pointer register. Signed-off-by: David S. Miller <davem@davemloft.net> Acked-by: Daniel Borkmann <daniel@iogearbox.net>
2017-05-10 11:22:52 -07:00
src_align = 0;
if (BPF_SRC(insn->code) == BPF_X) {
check_reg_overflow(&regs[insn->src_reg]);
min_val = regs[insn->src_reg].min_value;
max_val = regs[insn->src_reg].max_value;
/* If the source register is a random pointer then the
* min_value/max_value values represent the range of the known
* accesses into that value, not the actual min/max value of the
* register itself. In this case we have to reset the reg range
* values so we know it is not safe to look at.
*/
if (regs[insn->src_reg].type != CONST_IMM &&
regs[insn->src_reg].type != UNKNOWN_VALUE) {
min_val = BPF_REGISTER_MIN_RANGE;
max_val = BPF_REGISTER_MAX_RANGE;
bpf: Track alignment of register values in the verifier. Currently if we add only constant values to pointers we can fully validate the alignment, and properly check if we need to reject the program on !CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS architectures. However, once an unknown value is introduced we only allow byte sized memory accesses which is too restrictive. Add logic to track the known minimum alignment of register values, and propagate this state into registers containing pointers. The most common paradigm that makes use of this new logic is computing the transport header using the IP header length field. For example: struct ethhdr *ep = skb->data; struct iphdr *iph = (struct iphdr *) (ep + 1); struct tcphdr *th; ... n = iph->ihl; th = ((void *)iph + (n * 4)); port = th->dest; The existing code will reject the load of th->dest because it cannot validate that the alignment is at least 2 once "n * 4" is added the the packet pointer. In the new code, the register holding "n * 4" will have a reg->min_align value of 4, because any value multiplied by 4 will be at least 4 byte aligned. (actually, the eBPF code emitted by the compiler in this case is most likely to use a shift left by 2, but the end result is identical) At the critical addition: th = ((void *)iph + (n * 4)); The register holding 'th' will start with reg->off value of 14. The pointer addition will transform that reg into something that looks like: reg->aux_off = 14 reg->aux_off_align = 4 Next, the verifier will look at the th->dest load, and it will see a load offset of 2, and first check: if (reg->aux_off_align % size) which will pass because aux_off_align is 4. reg_off will be computed: reg_off = reg->off; ... reg_off += reg->aux_off; plus we have off==2, and it will thus check: if ((NET_IP_ALIGN + reg_off + off) % size != 0) which evaluates to: if ((NET_IP_ALIGN + 14 + 2) % size != 0) On strict alignment architectures, NET_IP_ALIGN is 2, thus: if ((2 + 14 + 2) % size != 0) which passes. These pointer transformations and checks work regardless of whether the constant offset or the variable with known alignment is added first to the pointer register. Signed-off-by: David S. Miller <davem@davemloft.net> Acked-by: Daniel Borkmann <daniel@iogearbox.net>
2017-05-10 11:22:52 -07:00
src_align = 0;
} else {
src_align = regs[insn->src_reg].min_align;
}
} else if (insn->imm < BPF_REGISTER_MAX_RANGE &&
(s64)insn->imm > BPF_REGISTER_MIN_RANGE) {
min_val = max_val = insn->imm;
bpf: Track alignment of register values in the verifier. Currently if we add only constant values to pointers we can fully validate the alignment, and properly check if we need to reject the program on !CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS architectures. However, once an unknown value is introduced we only allow byte sized memory accesses which is too restrictive. Add logic to track the known minimum alignment of register values, and propagate this state into registers containing pointers. The most common paradigm that makes use of this new logic is computing the transport header using the IP header length field. For example: struct ethhdr *ep = skb->data; struct iphdr *iph = (struct iphdr *) (ep + 1); struct tcphdr *th; ... n = iph->ihl; th = ((void *)iph + (n * 4)); port = th->dest; The existing code will reject the load of th->dest because it cannot validate that the alignment is at least 2 once "n * 4" is added the the packet pointer. In the new code, the register holding "n * 4" will have a reg->min_align value of 4, because any value multiplied by 4 will be at least 4 byte aligned. (actually, the eBPF code emitted by the compiler in this case is most likely to use a shift left by 2, but the end result is identical) At the critical addition: th = ((void *)iph + (n * 4)); The register holding 'th' will start with reg->off value of 14. The pointer addition will transform that reg into something that looks like: reg->aux_off = 14 reg->aux_off_align = 4 Next, the verifier will look at the th->dest load, and it will see a load offset of 2, and first check: if (reg->aux_off_align % size) which will pass because aux_off_align is 4. reg_off will be computed: reg_off = reg->off; ... reg_off += reg->aux_off; plus we have off==2, and it will thus check: if ((NET_IP_ALIGN + reg_off + off) % size != 0) which evaluates to: if ((NET_IP_ALIGN + 14 + 2) % size != 0) On strict alignment architectures, NET_IP_ALIGN is 2, thus: if ((2 + 14 + 2) % size != 0) which passes. These pointer transformations and checks work regardless of whether the constant offset or the variable with known alignment is added first to the pointer register. Signed-off-by: David S. Miller <davem@davemloft.net> Acked-by: Daniel Borkmann <daniel@iogearbox.net>
2017-05-10 11:22:52 -07:00
src_align = calc_align(insn->imm);
}
bpf: Track alignment of register values in the verifier. Currently if we add only constant values to pointers we can fully validate the alignment, and properly check if we need to reject the program on !CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS architectures. However, once an unknown value is introduced we only allow byte sized memory accesses which is too restrictive. Add logic to track the known minimum alignment of register values, and propagate this state into registers containing pointers. The most common paradigm that makes use of this new logic is computing the transport header using the IP header length field. For example: struct ethhdr *ep = skb->data; struct iphdr *iph = (struct iphdr *) (ep + 1); struct tcphdr *th; ... n = iph->ihl; th = ((void *)iph + (n * 4)); port = th->dest; The existing code will reject the load of th->dest because it cannot validate that the alignment is at least 2 once "n * 4" is added the the packet pointer. In the new code, the register holding "n * 4" will have a reg->min_align value of 4, because any value multiplied by 4 will be at least 4 byte aligned. (actually, the eBPF code emitted by the compiler in this case is most likely to use a shift left by 2, but the end result is identical) At the critical addition: th = ((void *)iph + (n * 4)); The register holding 'th' will start with reg->off value of 14. The pointer addition will transform that reg into something that looks like: reg->aux_off = 14 reg->aux_off_align = 4 Next, the verifier will look at the th->dest load, and it will see a load offset of 2, and first check: if (reg->aux_off_align % size) which will pass because aux_off_align is 4. reg_off will be computed: reg_off = reg->off; ... reg_off += reg->aux_off; plus we have off==2, and it will thus check: if ((NET_IP_ALIGN + reg_off + off) % size != 0) which evaluates to: if ((NET_IP_ALIGN + 14 + 2) % size != 0) On strict alignment architectures, NET_IP_ALIGN is 2, thus: if ((2 + 14 + 2) % size != 0) which passes. These pointer transformations and checks work regardless of whether the constant offset or the variable with known alignment is added first to the pointer register. Signed-off-by: David S. Miller <davem@davemloft.net> Acked-by: Daniel Borkmann <daniel@iogearbox.net>
2017-05-10 11:22:52 -07:00
dst_align = dst_reg->min_align;
/* We don't know anything about what was done to this register, mark it
* as unknown.
*/
if (min_val == BPF_REGISTER_MIN_RANGE &&
max_val == BPF_REGISTER_MAX_RANGE) {
reset_reg_range_values(regs, insn->dst_reg);
return;
}
/* If one of our values was at the end of our ranges then we can't just
* do our normal operations to the register, we need to set the values
* to the min/max since they are undefined.
*/
if (min_val == BPF_REGISTER_MIN_RANGE)
dst_reg->min_value = BPF_REGISTER_MIN_RANGE;
if (max_val == BPF_REGISTER_MAX_RANGE)
dst_reg->max_value = BPF_REGISTER_MAX_RANGE;
switch (opcode) {
case BPF_ADD:
if (dst_reg->min_value != BPF_REGISTER_MIN_RANGE)
dst_reg->min_value += min_val;
if (dst_reg->max_value != BPF_REGISTER_MAX_RANGE)
dst_reg->max_value += max_val;
bpf: Track alignment of register values in the verifier. Currently if we add only constant values to pointers we can fully validate the alignment, and properly check if we need to reject the program on !CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS architectures. However, once an unknown value is introduced we only allow byte sized memory accesses which is too restrictive. Add logic to track the known minimum alignment of register values, and propagate this state into registers containing pointers. The most common paradigm that makes use of this new logic is computing the transport header using the IP header length field. For example: struct ethhdr *ep = skb->data; struct iphdr *iph = (struct iphdr *) (ep + 1); struct tcphdr *th; ... n = iph->ihl; th = ((void *)iph + (n * 4)); port = th->dest; The existing code will reject the load of th->dest because it cannot validate that the alignment is at least 2 once "n * 4" is added the the packet pointer. In the new code, the register holding "n * 4" will have a reg->min_align value of 4, because any value multiplied by 4 will be at least 4 byte aligned. (actually, the eBPF code emitted by the compiler in this case is most likely to use a shift left by 2, but the end result is identical) At the critical addition: th = ((void *)iph + (n * 4)); The register holding 'th' will start with reg->off value of 14. The pointer addition will transform that reg into something that looks like: reg->aux_off = 14 reg->aux_off_align = 4 Next, the verifier will look at the th->dest load, and it will see a load offset of 2, and first check: if (reg->aux_off_align % size) which will pass because aux_off_align is 4. reg_off will be computed: reg_off = reg->off; ... reg_off += reg->aux_off; plus we have off==2, and it will thus check: if ((NET_IP_ALIGN + reg_off + off) % size != 0) which evaluates to: if ((NET_IP_ALIGN + 14 + 2) % size != 0) On strict alignment architectures, NET_IP_ALIGN is 2, thus: if ((2 + 14 + 2) % size != 0) which passes. These pointer transformations and checks work regardless of whether the constant offset or the variable with known alignment is added first to the pointer register. Signed-off-by: David S. Miller <davem@davemloft.net> Acked-by: Daniel Borkmann <daniel@iogearbox.net>
2017-05-10 11:22:52 -07:00
dst_reg->min_align = min(src_align, dst_align);
break;
case BPF_SUB:
if (dst_reg->min_value != BPF_REGISTER_MIN_RANGE)
dst_reg->min_value -= min_val;
if (dst_reg->max_value != BPF_REGISTER_MAX_RANGE)
dst_reg->max_value -= max_val;
bpf: Track alignment of register values in the verifier. Currently if we add only constant values to pointers we can fully validate the alignment, and properly check if we need to reject the program on !CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS architectures. However, once an unknown value is introduced we only allow byte sized memory accesses which is too restrictive. Add logic to track the known minimum alignment of register values, and propagate this state into registers containing pointers. The most common paradigm that makes use of this new logic is computing the transport header using the IP header length field. For example: struct ethhdr *ep = skb->data; struct iphdr *iph = (struct iphdr *) (ep + 1); struct tcphdr *th; ... n = iph->ihl; th = ((void *)iph + (n * 4)); port = th->dest; The existing code will reject the load of th->dest because it cannot validate that the alignment is at least 2 once "n * 4" is added the the packet pointer. In the new code, the register holding "n * 4" will have a reg->min_align value of 4, because any value multiplied by 4 will be at least 4 byte aligned. (actually, the eBPF code emitted by the compiler in this case is most likely to use a shift left by 2, but the end result is identical) At the critical addition: th = ((void *)iph + (n * 4)); The register holding 'th' will start with reg->off value of 14. The pointer addition will transform that reg into something that looks like: reg->aux_off = 14 reg->aux_off_align = 4 Next, the verifier will look at the th->dest load, and it will see a load offset of 2, and first check: if (reg->aux_off_align % size) which will pass because aux_off_align is 4. reg_off will be computed: reg_off = reg->off; ... reg_off += reg->aux_off; plus we have off==2, and it will thus check: if ((NET_IP_ALIGN + reg_off + off) % size != 0) which evaluates to: if ((NET_IP_ALIGN + 14 + 2) % size != 0) On strict alignment architectures, NET_IP_ALIGN is 2, thus: if ((2 + 14 + 2) % size != 0) which passes. These pointer transformations and checks work regardless of whether the constant offset or the variable with known alignment is added first to the pointer register. Signed-off-by: David S. Miller <davem@davemloft.net> Acked-by: Daniel Borkmann <daniel@iogearbox.net>
2017-05-10 11:22:52 -07:00
dst_reg->min_align = min(src_align, dst_align);
break;
case BPF_MUL:
if (dst_reg->min_value != BPF_REGISTER_MIN_RANGE)
dst_reg->min_value *= min_val;
if (dst_reg->max_value != BPF_REGISTER_MAX_RANGE)
dst_reg->max_value *= max_val;
bpf: Track alignment of register values in the verifier. Currently if we add only constant values to pointers we can fully validate the alignment, and properly check if we need to reject the program on !CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS architectures. However, once an unknown value is introduced we only allow byte sized memory accesses which is too restrictive. Add logic to track the known minimum alignment of register values, and propagate this state into registers containing pointers. The most common paradigm that makes use of this new logic is computing the transport header using the IP header length field. For example: struct ethhdr *ep = skb->data; struct iphdr *iph = (struct iphdr *) (ep + 1); struct tcphdr *th; ... n = iph->ihl; th = ((void *)iph + (n * 4)); port = th->dest; The existing code will reject the load of th->dest because it cannot validate that the alignment is at least 2 once "n * 4" is added the the packet pointer. In the new code, the register holding "n * 4" will have a reg->min_align value of 4, because any value multiplied by 4 will be at least 4 byte aligned. (actually, the eBPF code emitted by the compiler in this case is most likely to use a shift left by 2, but the end result is identical) At the critical addition: th = ((void *)iph + (n * 4)); The register holding 'th' will start with reg->off value of 14. The pointer addition will transform that reg into something that looks like: reg->aux_off = 14 reg->aux_off_align = 4 Next, the verifier will look at the th->dest load, and it will see a load offset of 2, and first check: if (reg->aux_off_align % size) which will pass because aux_off_align is 4. reg_off will be computed: reg_off = reg->off; ... reg_off += reg->aux_off; plus we have off==2, and it will thus check: if ((NET_IP_ALIGN + reg_off + off) % size != 0) which evaluates to: if ((NET_IP_ALIGN + 14 + 2) % size != 0) On strict alignment architectures, NET_IP_ALIGN is 2, thus: if ((2 + 14 + 2) % size != 0) which passes. These pointer transformations and checks work regardless of whether the constant offset or the variable with known alignment is added first to the pointer register. Signed-off-by: David S. Miller <davem@davemloft.net> Acked-by: Daniel Borkmann <daniel@iogearbox.net>
2017-05-10 11:22:52 -07:00
dst_reg->min_align = max(src_align, dst_align);
break;
case BPF_AND:
/* Disallow AND'ing of negative numbers, ain't nobody got time
* for that. Otherwise the minimum is 0 and the max is the max
* value we could AND against.
*/
if (min_val < 0)
dst_reg->min_value = BPF_REGISTER_MIN_RANGE;
else
dst_reg->min_value = 0;
dst_reg->max_value = max_val;
bpf: Track alignment of register values in the verifier. Currently if we add only constant values to pointers we can fully validate the alignment, and properly check if we need to reject the program on !CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS architectures. However, once an unknown value is introduced we only allow byte sized memory accesses which is too restrictive. Add logic to track the known minimum alignment of register values, and propagate this state into registers containing pointers. The most common paradigm that makes use of this new logic is computing the transport header using the IP header length field. For example: struct ethhdr *ep = skb->data; struct iphdr *iph = (struct iphdr *) (ep + 1); struct tcphdr *th; ... n = iph->ihl; th = ((void *)iph + (n * 4)); port = th->dest; The existing code will reject the load of th->dest because it cannot validate that the alignment is at least 2 once "n * 4" is added the the packet pointer. In the new code, the register holding "n * 4" will have a reg->min_align value of 4, because any value multiplied by 4 will be at least 4 byte aligned. (actually, the eBPF code emitted by the compiler in this case is most likely to use a shift left by 2, but the end result is identical) At the critical addition: th = ((void *)iph + (n * 4)); The register holding 'th' will start with reg->off value of 14. The pointer addition will transform that reg into something that looks like: reg->aux_off = 14 reg->aux_off_align = 4 Next, the verifier will look at the th->dest load, and it will see a load offset of 2, and first check: if (reg->aux_off_align % size) which will pass because aux_off_align is 4. reg_off will be computed: reg_off = reg->off; ... reg_off += reg->aux_off; plus we have off==2, and it will thus check: if ((NET_IP_ALIGN + reg_off + off) % size != 0) which evaluates to: if ((NET_IP_ALIGN + 14 + 2) % size != 0) On strict alignment architectures, NET_IP_ALIGN is 2, thus: if ((2 + 14 + 2) % size != 0) which passes. These pointer transformations and checks work regardless of whether the constant offset or the variable with known alignment is added first to the pointer register. Signed-off-by: David S. Miller <davem@davemloft.net> Acked-by: Daniel Borkmann <daniel@iogearbox.net>
2017-05-10 11:22:52 -07:00
dst_reg->min_align = max(src_align, dst_align);
break;
case BPF_LSH:
/* Gotta have special overflow logic here, if we're shifting
* more than MAX_RANGE then just assume we have an invalid
* range.
*/
bpf: Track alignment of register values in the verifier. Currently if we add only constant values to pointers we can fully validate the alignment, and properly check if we need to reject the program on !CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS architectures. However, once an unknown value is introduced we only allow byte sized memory accesses which is too restrictive. Add logic to track the known minimum alignment of register values, and propagate this state into registers containing pointers. The most common paradigm that makes use of this new logic is computing the transport header using the IP header length field. For example: struct ethhdr *ep = skb->data; struct iphdr *iph = (struct iphdr *) (ep + 1); struct tcphdr *th; ... n = iph->ihl; th = ((void *)iph + (n * 4)); port = th->dest; The existing code will reject the load of th->dest because it cannot validate that the alignment is at least 2 once "n * 4" is added the the packet pointer. In the new code, the register holding "n * 4" will have a reg->min_align value of 4, because any value multiplied by 4 will be at least 4 byte aligned. (actually, the eBPF code emitted by the compiler in this case is most likely to use a shift left by 2, but the end result is identical) At the critical addition: th = ((void *)iph + (n * 4)); The register holding 'th' will start with reg->off value of 14. The pointer addition will transform that reg into something that looks like: reg->aux_off = 14 reg->aux_off_align = 4 Next, the verifier will look at the th->dest load, and it will see a load offset of 2, and first check: if (reg->aux_off_align % size) which will pass because aux_off_align is 4. reg_off will be computed: reg_off = reg->off; ... reg_off += reg->aux_off; plus we have off==2, and it will thus check: if ((NET_IP_ALIGN + reg_off + off) % size != 0) which evaluates to: if ((NET_IP_ALIGN + 14 + 2) % size != 0) On strict alignment architectures, NET_IP_ALIGN is 2, thus: if ((2 + 14 + 2) % size != 0) which passes. These pointer transformations and checks work regardless of whether the constant offset or the variable with known alignment is added first to the pointer register. Signed-off-by: David S. Miller <davem@davemloft.net> Acked-by: Daniel Borkmann <daniel@iogearbox.net>
2017-05-10 11:22:52 -07:00
if (min_val > ilog2(BPF_REGISTER_MAX_RANGE)) {
dst_reg->min_value = BPF_REGISTER_MIN_RANGE;
bpf: Track alignment of register values in the verifier. Currently if we add only constant values to pointers we can fully validate the alignment, and properly check if we need to reject the program on !CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS architectures. However, once an unknown value is introduced we only allow byte sized memory accesses which is too restrictive. Add logic to track the known minimum alignment of register values, and propagate this state into registers containing pointers. The most common paradigm that makes use of this new logic is computing the transport header using the IP header length field. For example: struct ethhdr *ep = skb->data; struct iphdr *iph = (struct iphdr *) (ep + 1); struct tcphdr *th; ... n = iph->ihl; th = ((void *)iph + (n * 4)); port = th->dest; The existing code will reject the load of th->dest because it cannot validate that the alignment is at least 2 once "n * 4" is added the the packet pointer. In the new code, the register holding "n * 4" will have a reg->min_align value of 4, because any value multiplied by 4 will be at least 4 byte aligned. (actually, the eBPF code emitted by the compiler in this case is most likely to use a shift left by 2, but the end result is identical) At the critical addition: th = ((void *)iph + (n * 4)); The register holding 'th' will start with reg->off value of 14. The pointer addition will transform that reg into something that looks like: reg->aux_off = 14 reg->aux_off_align = 4 Next, the verifier will look at the th->dest load, and it will see a load offset of 2, and first check: if (reg->aux_off_align % size) which will pass because aux_off_align is 4. reg_off will be computed: reg_off = reg->off; ... reg_off += reg->aux_off; plus we have off==2, and it will thus check: if ((NET_IP_ALIGN + reg_off + off) % size != 0) which evaluates to: if ((NET_IP_ALIGN + 14 + 2) % size != 0) On strict alignment architectures, NET_IP_ALIGN is 2, thus: if ((2 + 14 + 2) % size != 0) which passes. These pointer transformations and checks work regardless of whether the constant offset or the variable with known alignment is added first to the pointer register. Signed-off-by: David S. Miller <davem@davemloft.net> Acked-by: Daniel Borkmann <daniel@iogearbox.net>
2017-05-10 11:22:52 -07:00
dst_reg->min_align = 1;
} else {
if (dst_reg->min_value != BPF_REGISTER_MIN_RANGE)
dst_reg->min_value <<= min_val;
if (!dst_reg->min_align)
dst_reg->min_align = 1;
dst_reg->min_align <<= min_val;
}
if (max_val > ilog2(BPF_REGISTER_MAX_RANGE))
dst_reg->max_value = BPF_REGISTER_MAX_RANGE;
else if (dst_reg->max_value != BPF_REGISTER_MAX_RANGE)
dst_reg->max_value <<= max_val;
break;
case BPF_RSH:
/* RSH by a negative number is undefined, and the BPF_RSH is an
* unsigned shift, so make the appropriate casts.
*/
bpf: Track alignment of register values in the verifier. Currently if we add only constant values to pointers we can fully validate the alignment, and properly check if we need to reject the program on !CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS architectures. However, once an unknown value is introduced we only allow byte sized memory accesses which is too restrictive. Add logic to track the known minimum alignment of register values, and propagate this state into registers containing pointers. The most common paradigm that makes use of this new logic is computing the transport header using the IP header length field. For example: struct ethhdr *ep = skb->data; struct iphdr *iph = (struct iphdr *) (ep + 1); struct tcphdr *th; ... n = iph->ihl; th = ((void *)iph + (n * 4)); port = th->dest; The existing code will reject the load of th->dest because it cannot validate that the alignment is at least 2 once "n * 4" is added the the packet pointer. In the new code, the register holding "n * 4" will have a reg->min_align value of 4, because any value multiplied by 4 will be at least 4 byte aligned. (actually, the eBPF code emitted by the compiler in this case is most likely to use a shift left by 2, but the end result is identical) At the critical addition: th = ((void *)iph + (n * 4)); The register holding 'th' will start with reg->off value of 14. The pointer addition will transform that reg into something that looks like: reg->aux_off = 14 reg->aux_off_align = 4 Next, the verifier will look at the th->dest load, and it will see a load offset of 2, and first check: if (reg->aux_off_align % size) which will pass because aux_off_align is 4. reg_off will be computed: reg_off = reg->off; ... reg_off += reg->aux_off; plus we have off==2, and it will thus check: if ((NET_IP_ALIGN + reg_off + off) % size != 0) which evaluates to: if ((NET_IP_ALIGN + 14 + 2) % size != 0) On strict alignment architectures, NET_IP_ALIGN is 2, thus: if ((2 + 14 + 2) % size != 0) which passes. These pointer transformations and checks work regardless of whether the constant offset or the variable with known alignment is added first to the pointer register. Signed-off-by: David S. Miller <davem@davemloft.net> Acked-by: Daniel Borkmann <daniel@iogearbox.net>
2017-05-10 11:22:52 -07:00
if (min_val < 0 || dst_reg->min_value < 0) {
dst_reg->min_value = BPF_REGISTER_MIN_RANGE;
bpf: Track alignment of register values in the verifier. Currently if we add only constant values to pointers we can fully validate the alignment, and properly check if we need to reject the program on !CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS architectures. However, once an unknown value is introduced we only allow byte sized memory accesses which is too restrictive. Add logic to track the known minimum alignment of register values, and propagate this state into registers containing pointers. The most common paradigm that makes use of this new logic is computing the transport header using the IP header length field. For example: struct ethhdr *ep = skb->data; struct iphdr *iph = (struct iphdr *) (ep + 1); struct tcphdr *th; ... n = iph->ihl; th = ((void *)iph + (n * 4)); port = th->dest; The existing code will reject the load of th->dest because it cannot validate that the alignment is at least 2 once "n * 4" is added the the packet pointer. In the new code, the register holding "n * 4" will have a reg->min_align value of 4, because any value multiplied by 4 will be at least 4 byte aligned. (actually, the eBPF code emitted by the compiler in this case is most likely to use a shift left by 2, but the end result is identical) At the critical addition: th = ((void *)iph + (n * 4)); The register holding 'th' will start with reg->off value of 14. The pointer addition will transform that reg into something that looks like: reg->aux_off = 14 reg->aux_off_align = 4 Next, the verifier will look at the th->dest load, and it will see a load offset of 2, and first check: if (reg->aux_off_align % size) which will pass because aux_off_align is 4. reg_off will be computed: reg_off = reg->off; ... reg_off += reg->aux_off; plus we have off==2, and it will thus check: if ((NET_IP_ALIGN + reg_off + off) % size != 0) which evaluates to: if ((NET_IP_ALIGN + 14 + 2) % size != 0) On strict alignment architectures, NET_IP_ALIGN is 2, thus: if ((2 + 14 + 2) % size != 0) which passes. These pointer transformations and checks work regardless of whether the constant offset or the variable with known alignment is added first to the pointer register. Signed-off-by: David S. Miller <davem@davemloft.net> Acked-by: Daniel Borkmann <daniel@iogearbox.net>
2017-05-10 11:22:52 -07:00
} else {
dst_reg->min_value =
(u64)(dst_reg->min_value) >> min_val;
bpf: Track alignment of register values in the verifier. Currently if we add only constant values to pointers we can fully validate the alignment, and properly check if we need to reject the program on !CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS architectures. However, once an unknown value is introduced we only allow byte sized memory accesses which is too restrictive. Add logic to track the known minimum alignment of register values, and propagate this state into registers containing pointers. The most common paradigm that makes use of this new logic is computing the transport header using the IP header length field. For example: struct ethhdr *ep = skb->data; struct iphdr *iph = (struct iphdr *) (ep + 1); struct tcphdr *th; ... n = iph->ihl; th = ((void *)iph + (n * 4)); port = th->dest; The existing code will reject the load of th->dest because it cannot validate that the alignment is at least 2 once "n * 4" is added the the packet pointer. In the new code, the register holding "n * 4" will have a reg->min_align value of 4, because any value multiplied by 4 will be at least 4 byte aligned. (actually, the eBPF code emitted by the compiler in this case is most likely to use a shift left by 2, but the end result is identical) At the critical addition: th = ((void *)iph + (n * 4)); The register holding 'th' will start with reg->off value of 14. The pointer addition will transform that reg into something that looks like: reg->aux_off = 14 reg->aux_off_align = 4 Next, the verifier will look at the th->dest load, and it will see a load offset of 2, and first check: if (reg->aux_off_align % size) which will pass because aux_off_align is 4. reg_off will be computed: reg_off = reg->off; ... reg_off += reg->aux_off; plus we have off==2, and it will thus check: if ((NET_IP_ALIGN + reg_off + off) % size != 0) which evaluates to: if ((NET_IP_ALIGN + 14 + 2) % size != 0) On strict alignment architectures, NET_IP_ALIGN is 2, thus: if ((2 + 14 + 2) % size != 0) which passes. These pointer transformations and checks work regardless of whether the constant offset or the variable with known alignment is added first to the pointer register. Signed-off-by: David S. Miller <davem@davemloft.net> Acked-by: Daniel Borkmann <daniel@iogearbox.net>
2017-05-10 11:22:52 -07:00
}
if (min_val < 0) {
dst_reg->min_align = 1;
} else {
dst_reg->min_align >>= (u64) min_val;
if (!dst_reg->min_align)
dst_reg->min_align = 1;
}
if (dst_reg->max_value != BPF_REGISTER_MAX_RANGE)
dst_reg->max_value >>= max_val;
break;
default:
reset_reg_range_values(regs, insn->dst_reg);
break;
}
check_reg_overflow(dst_reg);
}
bpf: verifier (add verifier core) This patch adds verifier core which simulates execution of every insn and records the state of registers and program stack. Every branch instruction seen during simulation is pushed into state stack. When verifier reaches BPF_EXIT, it pops the state from the stack and continues until it reaches BPF_EXIT again. For program: 1: bpf_mov r1, xxx 2: if (r1 == 0) goto 5 3: bpf_mov r0, 1 4: goto 6 5: bpf_mov r0, 2 6: bpf_exit The verifier will walk insns: 1, 2, 3, 4, 6 then it will pop the state recorded at insn#2 and will continue: 5, 6 This way it walks all possible paths through the program and checks all possible values of registers. While doing so, it checks for: - invalid instructions - uninitialized register access - uninitialized stack access - misaligned stack access - out of range stack access - invalid calling convention - instruction encoding is not using reserved fields Kernel subsystem configures the verifier with two callbacks: - bool (*is_valid_access)(int off, int size, enum bpf_access_type type); that provides information to the verifer which fields of 'ctx' are accessible (remember 'ctx' is the first argument to eBPF program) - const struct bpf_func_proto *(*get_func_proto)(enum bpf_func_id func_id); returns argument constraints of kernel helper functions that eBPF program may call, so that verifier can checks that R1-R5 types match the prototype More details in Documentation/networking/filter.txt and in kernel/bpf/verifier.c Signed-off-by: Alexei Starovoitov <ast@plumgrid.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-09-26 00:17:06 -07:00
/* check validity of 32-bit and 64-bit arithmetic operations */
static int check_alu_op(struct bpf_verifier_env *env, struct bpf_insn *insn)
bpf: verifier (add verifier core) This patch adds verifier core which simulates execution of every insn and records the state of registers and program stack. Every branch instruction seen during simulation is pushed into state stack. When verifier reaches BPF_EXIT, it pops the state from the stack and continues until it reaches BPF_EXIT again. For program: 1: bpf_mov r1, xxx 2: if (r1 == 0) goto 5 3: bpf_mov r0, 1 4: goto 6 5: bpf_mov r0, 2 6: bpf_exit The verifier will walk insns: 1, 2, 3, 4, 6 then it will pop the state recorded at insn#2 and will continue: 5, 6 This way it walks all possible paths through the program and checks all possible values of registers. While doing so, it checks for: - invalid instructions - uninitialized register access - uninitialized stack access - misaligned stack access - out of range stack access - invalid calling convention - instruction encoding is not using reserved fields Kernel subsystem configures the verifier with two callbacks: - bool (*is_valid_access)(int off, int size, enum bpf_access_type type); that provides information to the verifer which fields of 'ctx' are accessible (remember 'ctx' is the first argument to eBPF program) - const struct bpf_func_proto *(*get_func_proto)(enum bpf_func_id func_id); returns argument constraints of kernel helper functions that eBPF program may call, so that verifier can checks that R1-R5 types match the prototype More details in Documentation/networking/filter.txt and in kernel/bpf/verifier.c Signed-off-by: Alexei Starovoitov <ast@plumgrid.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-09-26 00:17:06 -07:00
{
struct bpf_reg_state *regs = env->cur_state.regs, *dst_reg;
bpf: verifier (add verifier core) This patch adds verifier core which simulates execution of every insn and records the state of registers and program stack. Every branch instruction seen during simulation is pushed into state stack. When verifier reaches BPF_EXIT, it pops the state from the stack and continues until it reaches BPF_EXIT again. For program: 1: bpf_mov r1, xxx 2: if (r1 == 0) goto 5 3: bpf_mov r0, 1 4: goto 6 5: bpf_mov r0, 2 6: bpf_exit The verifier will walk insns: 1, 2, 3, 4, 6 then it will pop the state recorded at insn#2 and will continue: 5, 6 This way it walks all possible paths through the program and checks all possible values of registers. While doing so, it checks for: - invalid instructions - uninitialized register access - uninitialized stack access - misaligned stack access - out of range stack access - invalid calling convention - instruction encoding is not using reserved fields Kernel subsystem configures the verifier with two callbacks: - bool (*is_valid_access)(int off, int size, enum bpf_access_type type); that provides information to the verifer which fields of 'ctx' are accessible (remember 'ctx' is the first argument to eBPF program) - const struct bpf_func_proto *(*get_func_proto)(enum bpf_func_id func_id); returns argument constraints of kernel helper functions that eBPF program may call, so that verifier can checks that R1-R5 types match the prototype More details in Documentation/networking/filter.txt and in kernel/bpf/verifier.c Signed-off-by: Alexei Starovoitov <ast@plumgrid.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-09-26 00:17:06 -07:00
u8 opcode = BPF_OP(insn->code);
int err;
if (opcode == BPF_END || opcode == BPF_NEG) {
if (opcode == BPF_NEG) {
if (BPF_SRC(insn->code) != 0 ||
insn->src_reg != BPF_REG_0 ||
insn->off != 0 || insn->imm != 0) {
verbose("BPF_NEG uses reserved fields\n");
return -EINVAL;
}
} else {
if (insn->src_reg != BPF_REG_0 || insn->off != 0 ||
(insn->imm != 16 && insn->imm != 32 && insn->imm != 64)) {
verbose("BPF_END uses reserved fields\n");
return -EINVAL;
}
}
/* check src operand */
err = check_reg_arg(regs, insn->dst_reg, SRC_OP);
if (err)
return err;
bpf: enable non-root eBPF programs In order to let unprivileged users load and execute eBPF programs teach verifier to prevent pointer leaks. Verifier will prevent - any arithmetic on pointers (except R10+Imm which is used to compute stack addresses) - comparison of pointers (except if (map_value_ptr == 0) ... ) - passing pointers to helper functions - indirectly passing pointers in stack to helper functions - returning pointer from bpf program - storing pointers into ctx or maps Spill/fill of pointers into stack is allowed, but mangling of pointers stored in the stack or reading them byte by byte is not. Within bpf programs the pointers do exist, since programs need to be able to access maps, pass skb pointer to LD_ABS insns, etc but programs cannot pass such pointer values to the outside or obfuscate them. Only allow BPF_PROG_TYPE_SOCKET_FILTER unprivileged programs, so that socket filters (tcpdump), af_packet (quic acceleration) and future kcm can use it. tracing and tc cls/act program types still require root permissions, since tracing actually needs to be able to see all kernel pointers and tc is for root only. For example, the following unprivileged socket filter program is allowed: int bpf_prog1(struct __sk_buff *skb) { u32 index = load_byte(skb, ETH_HLEN + offsetof(struct iphdr, protocol)); u64 *value = bpf_map_lookup_elem(&my_map, &index); if (value) *value += skb->len; return 0; } but the following program is not: int bpf_prog1(struct __sk_buff *skb) { u32 index = load_byte(skb, ETH_HLEN + offsetof(struct iphdr, protocol)); u64 *value = bpf_map_lookup_elem(&my_map, &index); if (value) *value += (u64) skb; return 0; } since it would leak the kernel address into the map. Unprivileged socket filter bpf programs have access to the following helper functions: - map lookup/update/delete (but they cannot store kernel pointers into them) - get_random (it's already exposed to unprivileged user space) - get_smp_processor_id - tail_call into another socket filter program - ktime_get_ns The feature is controlled by sysctl kernel.unprivileged_bpf_disabled. This toggle defaults to off (0), but can be set true (1). Once true, bpf programs and maps cannot be accessed from unprivileged process, and the toggle cannot be set back to false. Signed-off-by: Alexei Starovoitov <ast@plumgrid.com> Reviewed-by: Kees Cook <keescook@chromium.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2015-10-07 22:23:21 -07:00
if (is_pointer_value(env, insn->dst_reg)) {
verbose("R%d pointer arithmetic prohibited\n",
insn->dst_reg);
return -EACCES;
}
bpf: verifier (add verifier core) This patch adds verifier core which simulates execution of every insn and records the state of registers and program stack. Every branch instruction seen during simulation is pushed into state stack. When verifier reaches BPF_EXIT, it pops the state from the stack and continues until it reaches BPF_EXIT again. For program: 1: bpf_mov r1, xxx 2: if (r1 == 0) goto 5 3: bpf_mov r0, 1 4: goto 6 5: bpf_mov r0, 2 6: bpf_exit The verifier will walk insns: 1, 2, 3, 4, 6 then it will pop the state recorded at insn#2 and will continue: 5, 6 This way it walks all possible paths through the program and checks all possible values of registers. While doing so, it checks for: - invalid instructions - uninitialized register access - uninitialized stack access - misaligned stack access - out of range stack access - invalid calling convention - instruction encoding is not using reserved fields Kernel subsystem configures the verifier with two callbacks: - bool (*is_valid_access)(int off, int size, enum bpf_access_type type); that provides information to the verifer which fields of 'ctx' are accessible (remember 'ctx' is the first argument to eBPF program) - const struct bpf_func_proto *(*get_func_proto)(enum bpf_func_id func_id); returns argument constraints of kernel helper functions that eBPF program may call, so that verifier can checks that R1-R5 types match the prototype More details in Documentation/networking/filter.txt and in kernel/bpf/verifier.c Signed-off-by: Alexei Starovoitov <ast@plumgrid.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-09-26 00:17:06 -07:00
/* check dest operand */
err = check_reg_arg(regs, insn->dst_reg, DST_OP);
if (err)
return err;
} else if (opcode == BPF_MOV) {
if (BPF_SRC(insn->code) == BPF_X) {
if (insn->imm != 0 || insn->off != 0) {
verbose("BPF_MOV uses reserved fields\n");
return -EINVAL;
}
/* check src operand */
err = check_reg_arg(regs, insn->src_reg, SRC_OP);
if (err)
return err;
} else {
if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
verbose("BPF_MOV uses reserved fields\n");
return -EINVAL;
}
}
/* check dest operand */
err = check_reg_arg(regs, insn->dst_reg, DST_OP);
if (err)
return err;
/* we are setting our register to something new, we need to
* reset its range values.
*/
reset_reg_range_values(regs, insn->dst_reg);
bpf: verifier (add verifier core) This patch adds verifier core which simulates execution of every insn and records the state of registers and program stack. Every branch instruction seen during simulation is pushed into state stack. When verifier reaches BPF_EXIT, it pops the state from the stack and continues until it reaches BPF_EXIT again. For program: 1: bpf_mov r1, xxx 2: if (r1 == 0) goto 5 3: bpf_mov r0, 1 4: goto 6 5: bpf_mov r0, 2 6: bpf_exit The verifier will walk insns: 1, 2, 3, 4, 6 then it will pop the state recorded at insn#2 and will continue: 5, 6 This way it walks all possible paths through the program and checks all possible values of registers. While doing so, it checks for: - invalid instructions - uninitialized register access - uninitialized stack access - misaligned stack access - out of range stack access - invalid calling convention - instruction encoding is not using reserved fields Kernel subsystem configures the verifier with two callbacks: - bool (*is_valid_access)(int off, int size, enum bpf_access_type type); that provides information to the verifer which fields of 'ctx' are accessible (remember 'ctx' is the first argument to eBPF program) - const struct bpf_func_proto *(*get_func_proto)(enum bpf_func_id func_id); returns argument constraints of kernel helper functions that eBPF program may call, so that verifier can checks that R1-R5 types match the prototype More details in Documentation/networking/filter.txt and in kernel/bpf/verifier.c Signed-off-by: Alexei Starovoitov <ast@plumgrid.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-09-26 00:17:06 -07:00
if (BPF_SRC(insn->code) == BPF_X) {
if (BPF_CLASS(insn->code) == BPF_ALU64) {
/* case: R1 = R2
* copy register state to dest reg
*/
regs[insn->dst_reg] = regs[insn->src_reg];
} else {
bpf: enable non-root eBPF programs In order to let unprivileged users load and execute eBPF programs teach verifier to prevent pointer leaks. Verifier will prevent - any arithmetic on pointers (except R10+Imm which is used to compute stack addresses) - comparison of pointers (except if (map_value_ptr == 0) ... ) - passing pointers to helper functions - indirectly passing pointers in stack to helper functions - returning pointer from bpf program - storing pointers into ctx or maps Spill/fill of pointers into stack is allowed, but mangling of pointers stored in the stack or reading them byte by byte is not. Within bpf programs the pointers do exist, since programs need to be able to access maps, pass skb pointer to LD_ABS insns, etc but programs cannot pass such pointer values to the outside or obfuscate them. Only allow BPF_PROG_TYPE_SOCKET_FILTER unprivileged programs, so that socket filters (tcpdump), af_packet (quic acceleration) and future kcm can use it. tracing and tc cls/act program types still require root permissions, since tracing actually needs to be able to see all kernel pointers and tc is for root only. For example, the following unprivileged socket filter program is allowed: int bpf_prog1(struct __sk_buff *skb) { u32 index = load_byte(skb, ETH_HLEN + offsetof(struct iphdr, protocol)); u64 *value = bpf_map_lookup_elem(&my_map, &index); if (value) *value += skb->len; return 0; } but the following program is not: int bpf_prog1(struct __sk_buff *skb) { u32 index = load_byte(skb, ETH_HLEN + offsetof(struct iphdr, protocol)); u64 *value = bpf_map_lookup_elem(&my_map, &index); if (value) *value += (u64) skb; return 0; } since it would leak the kernel address into the map. Unprivileged socket filter bpf programs have access to the following helper functions: - map lookup/update/delete (but they cannot store kernel pointers into them) - get_random (it's already exposed to unprivileged user space) - get_smp_processor_id - tail_call into another socket filter program - ktime_get_ns The feature is controlled by sysctl kernel.unprivileged_bpf_disabled. This toggle defaults to off (0), but can be set true (1). Once true, bpf programs and maps cannot be accessed from unprivileged process, and the toggle cannot be set back to false. Signed-off-by: Alexei Starovoitov <ast@plumgrid.com> Reviewed-by: Kees Cook <keescook@chromium.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2015-10-07 22:23:21 -07:00
if (is_pointer_value(env, insn->src_reg)) {
verbose("R%d partial copy of pointer\n",
insn->src_reg);
return -EACCES;
}
mark_reg_unknown_value(regs, insn->dst_reg);
bpf: verifier (add verifier core) This patch adds verifier core which simulates execution of every insn and records the state of registers and program stack. Every branch instruction seen during simulation is pushed into state stack. When verifier reaches BPF_EXIT, it pops the state from the stack and continues until it reaches BPF_EXIT again. For program: 1: bpf_mov r1, xxx 2: if (r1 == 0) goto 5 3: bpf_mov r0, 1 4: goto 6 5: bpf_mov r0, 2 6: bpf_exit The verifier will walk insns: 1, 2, 3, 4, 6 then it will pop the state recorded at insn#2 and will continue: 5, 6 This way it walks all possible paths through the program and checks all possible values of registers. While doing so, it checks for: - invalid instructions - uninitialized register access - uninitialized stack access - misaligned stack access - out of range stack access - invalid calling convention - instruction encoding is not using reserved fields Kernel subsystem configures the verifier with two callbacks: - bool (*is_valid_access)(int off, int size, enum bpf_access_type type); that provides information to the verifer which fields of 'ctx' are accessible (remember 'ctx' is the first argument to eBPF program) - const struct bpf_func_proto *(*get_func_proto)(enum bpf_func_id func_id); returns argument constraints of kernel helper functions that eBPF program may call, so that verifier can checks that R1-R5 types match the prototype More details in Documentation/networking/filter.txt and in kernel/bpf/verifier.c Signed-off-by: Alexei Starovoitov <ast@plumgrid.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-09-26 00:17:06 -07:00
}
} else {
/* case: R = imm
* remember the value we stored into this reg
*/
regs[insn->dst_reg].type = CONST_IMM;
regs[insn->dst_reg].imm = insn->imm;
regs[insn->dst_reg].max_value = insn->imm;
regs[insn->dst_reg].min_value = insn->imm;
bpf: Track alignment of register values in the verifier. Currently if we add only constant values to pointers we can fully validate the alignment, and properly check if we need to reject the program on !CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS architectures. However, once an unknown value is introduced we only allow byte sized memory accesses which is too restrictive. Add logic to track the known minimum alignment of register values, and propagate this state into registers containing pointers. The most common paradigm that makes use of this new logic is computing the transport header using the IP header length field. For example: struct ethhdr *ep = skb->data; struct iphdr *iph = (struct iphdr *) (ep + 1); struct tcphdr *th; ... n = iph->ihl; th = ((void *)iph + (n * 4)); port = th->dest; The existing code will reject the load of th->dest because it cannot validate that the alignment is at least 2 once "n * 4" is added the the packet pointer. In the new code, the register holding "n * 4" will have a reg->min_align value of 4, because any value multiplied by 4 will be at least 4 byte aligned. (actually, the eBPF code emitted by the compiler in this case is most likely to use a shift left by 2, but the end result is identical) At the critical addition: th = ((void *)iph + (n * 4)); The register holding 'th' will start with reg->off value of 14. The pointer addition will transform that reg into something that looks like: reg->aux_off = 14 reg->aux_off_align = 4 Next, the verifier will look at the th->dest load, and it will see a load offset of 2, and first check: if (reg->aux_off_align % size) which will pass because aux_off_align is 4. reg_off will be computed: reg_off = reg->off; ... reg_off += reg->aux_off; plus we have off==2, and it will thus check: if ((NET_IP_ALIGN + reg_off + off) % size != 0) which evaluates to: if ((NET_IP_ALIGN + 14 + 2) % size != 0) On strict alignment architectures, NET_IP_ALIGN is 2, thus: if ((2 + 14 + 2) % size != 0) which passes. These pointer transformations and checks work regardless of whether the constant offset or the variable with known alignment is added first to the pointer register. Signed-off-by: David S. Miller <davem@davemloft.net> Acked-by: Daniel Borkmann <daniel@iogearbox.net>
2017-05-10 11:22:52 -07:00
regs[insn->dst_reg].min_align = calc_align(insn->imm);
bpf: verifier (add verifier core) This patch adds verifier core which simulates execution of every insn and records the state of registers and program stack. Every branch instruction seen during simulation is pushed into state stack. When verifier reaches BPF_EXIT, it pops the state from the stack and continues until it reaches BPF_EXIT again. For program: 1: bpf_mov r1, xxx 2: if (r1 == 0) goto 5 3: bpf_mov r0, 1 4: goto 6 5: bpf_mov r0, 2 6: bpf_exit The verifier will walk insns: 1, 2, 3, 4, 6 then it will pop the state recorded at insn#2 and will continue: 5, 6 This way it walks all possible paths through the program and checks all possible values of registers. While doing so, it checks for: - invalid instructions - uninitialized register access - uninitialized stack access - misaligned stack access - out of range stack access - invalid calling convention - instruction encoding is not using reserved fields Kernel subsystem configures the verifier with two callbacks: - bool (*is_valid_access)(int off, int size, enum bpf_access_type type); that provides information to the verifer which fields of 'ctx' are accessible (remember 'ctx' is the first argument to eBPF program) - const struct bpf_func_proto *(*get_func_proto)(enum bpf_func_id func_id); returns argument constraints of kernel helper functions that eBPF program may call, so that verifier can checks that R1-R5 types match the prototype More details in Documentation/networking/filter.txt and in kernel/bpf/verifier.c Signed-off-by: Alexei Starovoitov <ast@plumgrid.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-09-26 00:17:06 -07:00
}
} else if (opcode > BPF_END) {
verbose("invalid BPF_ALU opcode %x\n", opcode);
return -EINVAL;
} else { /* all other ALU ops: and, sub, xor, add, ... */
if (BPF_SRC(insn->code) == BPF_X) {
if (insn->imm != 0 || insn->off != 0) {
verbose("BPF_ALU uses reserved fields\n");
return -EINVAL;
}
/* check src1 operand */
err = check_reg_arg(regs, insn->src_reg, SRC_OP);
if (err)
return err;
} else {
if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
verbose("BPF_ALU uses reserved fields\n");
return -EINVAL;
}
}
/* check src2 operand */
err = check_reg_arg(regs, insn->dst_reg, SRC_OP);
if (err)
return err;
if ((opcode == BPF_MOD || opcode == BPF_DIV) &&
BPF_SRC(insn->code) == BPF_K && insn->imm == 0) {
verbose("div by zero\n");
return -EINVAL;
}
if ((opcode == BPF_LSH || opcode == BPF_RSH ||
opcode == BPF_ARSH) && BPF_SRC(insn->code) == BPF_K) {
int size = BPF_CLASS(insn->code) == BPF_ALU64 ? 64 : 32;
if (insn->imm < 0 || insn->imm >= size) {
verbose("invalid shift %d\n", insn->imm);
return -EINVAL;
}
}
/* check dest operand */
err = check_reg_arg(regs, insn->dst_reg, DST_OP_NO_MARK);
if (err)
return err;
dst_reg = &regs[insn->dst_reg];
/* first we want to adjust our ranges. */
adjust_reg_min_max_vals(env, insn);
bpf: verifier (add verifier core) This patch adds verifier core which simulates execution of every insn and records the state of registers and program stack. Every branch instruction seen during simulation is pushed into state stack. When verifier reaches BPF_EXIT, it pops the state from the stack and continues until it reaches BPF_EXIT again. For program: 1: bpf_mov r1, xxx 2: if (r1 == 0) goto 5 3: bpf_mov r0, 1 4: goto 6 5: bpf_mov r0, 2 6: bpf_exit The verifier will walk insns: 1, 2, 3, 4, 6 then it will pop the state recorded at insn#2 and will continue: 5, 6 This way it walks all possible paths through the program and checks all possible values of registers. While doing so, it checks for: - invalid instructions - uninitialized register access - uninitialized stack access - misaligned stack access - out of range stack access - invalid calling convention - instruction encoding is not using reserved fields Kernel subsystem configures the verifier with two callbacks: - bool (*is_valid_access)(int off, int size, enum bpf_access_type type); that provides information to the verifer which fields of 'ctx' are accessible (remember 'ctx' is the first argument to eBPF program) - const struct bpf_func_proto *(*get_func_proto)(enum bpf_func_id func_id); returns argument constraints of kernel helper functions that eBPF program may call, so that verifier can checks that R1-R5 types match the prototype More details in Documentation/networking/filter.txt and in kernel/bpf/verifier.c Signed-off-by: Alexei Starovoitov <ast@plumgrid.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-09-26 00:17:06 -07:00
/* pattern match 'bpf_add Rx, imm' instruction */
if (opcode == BPF_ADD && BPF_CLASS(insn->code) == BPF_ALU64 &&
dst_reg->type == FRAME_PTR && BPF_SRC(insn->code) == BPF_K) {
dst_reg->type = PTR_TO_STACK;
dst_reg->imm = insn->imm;
return 0;
} else if (opcode == BPF_ADD &&
BPF_CLASS(insn->code) == BPF_ALU64 &&
dst_reg->type == PTR_TO_STACK &&
((BPF_SRC(insn->code) == BPF_X &&
regs[insn->src_reg].type == CONST_IMM) ||
BPF_SRC(insn->code) == BPF_K)) {
if (BPF_SRC(insn->code) == BPF_X)
dst_reg->imm += regs[insn->src_reg].imm;
else
dst_reg->imm += insn->imm;
return 0;
bpf: direct packet access Extended BPF carried over two instructions from classic to access packet data: LD_ABS and LD_IND. They're highly optimized in JITs, but due to their design they have to do length check for every access. When BPF is processing 20M packets per second single LD_ABS after JIT is consuming 3% cpu. Hence the need to optimize it further by amortizing the cost of 'off < skb_headlen' over multiple packet accesses. One option is to introduce two new eBPF instructions LD_ABS_DW and LD_IND_DW with similar usage as skb_header_pointer(). The kernel part for interpreter and x64 JIT was implemented in [1], but such new insns behave like old ld_abs and abort the program with 'return 0' if access is beyond linear data. Such hidden control flow is hard to workaround plus changing JITs and rolling out new llvm is incovenient. Therefore allow cls_bpf/act_bpf program access skb->data directly: int bpf_prog(struct __sk_buff *skb) { struct iphdr *ip; if (skb->data + sizeof(struct iphdr) + ETH_HLEN > skb->data_end) /* packet too small */ return 0; ip = skb->data + ETH_HLEN; /* access IP header fields with direct loads */ if (ip->version != 4 || ip->saddr == 0x7f000001) return 1; [...] } This solution avoids introduction of new instructions. llvm stays the same and all JITs stay the same, but verifier has to work extra hard to prove safety of the above program. For XDP the direct store instructions can be allowed as well. The skb->data is NET_IP_ALIGNED, so for common cases the verifier can check the alignment. The complex packet parsers where packet pointer is adjusted incrementally cannot be tracked for alignment, so allow byte access in such cases and misaligned access on architectures that define efficient_unaligned_access [1] https://git.kernel.org/cgit/linux/kernel/git/ast/bpf.git/?h=ld_abs_dw Signed-off-by: Alexei Starovoitov <ast@kernel.org> Acked-by: Daniel Borkmann <daniel@iogearbox.net> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-05-05 19:49:10 -07:00
} else if (opcode == BPF_ADD &&
BPF_CLASS(insn->code) == BPF_ALU64 &&
(dst_reg->type == PTR_TO_PACKET ||
(BPF_SRC(insn->code) == BPF_X &&
regs[insn->src_reg].type == PTR_TO_PACKET))) {
bpf: direct packet access Extended BPF carried over two instructions from classic to access packet data: LD_ABS and LD_IND. They're highly optimized in JITs, but due to their design they have to do length check for every access. When BPF is processing 20M packets per second single LD_ABS after JIT is consuming 3% cpu. Hence the need to optimize it further by amortizing the cost of 'off < skb_headlen' over multiple packet accesses. One option is to introduce two new eBPF instructions LD_ABS_DW and LD_IND_DW with similar usage as skb_header_pointer(). The kernel part for interpreter and x64 JIT was implemented in [1], but such new insns behave like old ld_abs and abort the program with 'return 0' if access is beyond linear data. Such hidden control flow is hard to workaround plus changing JITs and rolling out new llvm is incovenient. Therefore allow cls_bpf/act_bpf program access skb->data directly: int bpf_prog(struct __sk_buff *skb) { struct iphdr *ip; if (skb->data + sizeof(struct iphdr) + ETH_HLEN > skb->data_end) /* packet too small */ return 0; ip = skb->data + ETH_HLEN; /* access IP header fields with direct loads */ if (ip->version != 4 || ip->saddr == 0x7f000001) return 1; [...] } This solution avoids introduction of new instructions. llvm stays the same and all JITs stay the same, but verifier has to work extra hard to prove safety of the above program. For XDP the direct store instructions can be allowed as well. The skb->data is NET_IP_ALIGNED, so for common cases the verifier can check the alignment. The complex packet parsers where packet pointer is adjusted incrementally cannot be tracked for alignment, so allow byte access in such cases and misaligned access on architectures that define efficient_unaligned_access [1] https://git.kernel.org/cgit/linux/kernel/git/ast/bpf.git/?h=ld_abs_dw Signed-off-by: Alexei Starovoitov <ast@kernel.org> Acked-by: Daniel Borkmann <daniel@iogearbox.net> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-05-05 19:49:10 -07:00
/* ptr_to_packet += K|X */
return check_packet_ptr_add(env, insn);
} else if (BPF_CLASS(insn->code) == BPF_ALU64 &&
dst_reg->type == UNKNOWN_VALUE &&
env->allow_ptr_leaks) {
/* unknown += K|X */
return evaluate_reg_alu(env, insn);
} else if (BPF_CLASS(insn->code) == BPF_ALU64 &&
dst_reg->type == CONST_IMM &&
env->allow_ptr_leaks) {
/* reg_imm += K|X */
return evaluate_reg_imm_alu(env, insn);
bpf: enable non-root eBPF programs In order to let unprivileged users load and execute eBPF programs teach verifier to prevent pointer leaks. Verifier will prevent - any arithmetic on pointers (except R10+Imm which is used to compute stack addresses) - comparison of pointers (except if (map_value_ptr == 0) ... ) - passing pointers to helper functions - indirectly passing pointers in stack to helper functions - returning pointer from bpf program - storing pointers into ctx or maps Spill/fill of pointers into stack is allowed, but mangling of pointers stored in the stack or reading them byte by byte is not. Within bpf programs the pointers do exist, since programs need to be able to access maps, pass skb pointer to LD_ABS insns, etc but programs cannot pass such pointer values to the outside or obfuscate them. Only allow BPF_PROG_TYPE_SOCKET_FILTER unprivileged programs, so that socket filters (tcpdump), af_packet (quic acceleration) and future kcm can use it. tracing and tc cls/act program types still require root permissions, since tracing actually needs to be able to see all kernel pointers and tc is for root only. For example, the following unprivileged socket filter program is allowed: int bpf_prog1(struct __sk_buff *skb) { u32 index = load_byte(skb, ETH_HLEN + offsetof(struct iphdr, protocol)); u64 *value = bpf_map_lookup_elem(&my_map, &index); if (value) *value += skb->len; return 0; } but the following program is not: int bpf_prog1(struct __sk_buff *skb) { u32 index = load_byte(skb, ETH_HLEN + offsetof(struct iphdr, protocol)); u64 *value = bpf_map_lookup_elem(&my_map, &index); if (value) *value += (u64) skb; return 0; } since it would leak the kernel address into the map. Unprivileged socket filter bpf programs have access to the following helper functions: - map lookup/update/delete (but they cannot store kernel pointers into them) - get_random (it's already exposed to unprivileged user space) - get_smp_processor_id - tail_call into another socket filter program - ktime_get_ns The feature is controlled by sysctl kernel.unprivileged_bpf_disabled. This toggle defaults to off (0), but can be set true (1). Once true, bpf programs and maps cannot be accessed from unprivileged process, and the toggle cannot be set back to false. Signed-off-by: Alexei Starovoitov <ast@plumgrid.com> Reviewed-by: Kees Cook <keescook@chromium.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2015-10-07 22:23:21 -07:00
} else if (is_pointer_value(env, insn->dst_reg)) {
verbose("R%d pointer arithmetic prohibited\n",
insn->dst_reg);
return -EACCES;
} else if (BPF_SRC(insn->code) == BPF_X &&
is_pointer_value(env, insn->src_reg)) {
verbose("R%d pointer arithmetic prohibited\n",
insn->src_reg);
return -EACCES;
}
bpf: verifier (add verifier core) This patch adds verifier core which simulates execution of every insn and records the state of registers and program stack. Every branch instruction seen during simulation is pushed into state stack. When verifier reaches BPF_EXIT, it pops the state from the stack and continues until it reaches BPF_EXIT again. For program: 1: bpf_mov r1, xxx 2: if (r1 == 0) goto 5 3: bpf_mov r0, 1 4: goto 6 5: bpf_mov r0, 2 6: bpf_exit The verifier will walk insns: 1, 2, 3, 4, 6 then it will pop the state recorded at insn#2 and will continue: 5, 6 This way it walks all possible paths through the program and checks all possible values of registers. While doing so, it checks for: - invalid instructions - uninitialized register access - uninitialized stack access - misaligned stack access - out of range stack access - invalid calling convention - instruction encoding is not using reserved fields Kernel subsystem configures the verifier with two callbacks: - bool (*is_valid_access)(int off, int size, enum bpf_access_type type); that provides information to the verifer which fields of 'ctx' are accessible (remember 'ctx' is the first argument to eBPF program) - const struct bpf_func_proto *(*get_func_proto)(enum bpf_func_id func_id); returns argument constraints of kernel helper functions that eBPF program may call, so that verifier can checks that R1-R5 types match the prototype More details in Documentation/networking/filter.txt and in kernel/bpf/verifier.c Signed-off-by: Alexei Starovoitov <ast@plumgrid.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-09-26 00:17:06 -07:00
/* If we did pointer math on a map value then just set it to our
* PTR_TO_MAP_VALUE_ADJ type so we can deal with any stores or
* loads to this register appropriately, otherwise just mark the
* register as unknown.
*/
if (env->allow_ptr_leaks &&
bpf, verifier: fix alu ops against map_value{, _adj} register types While looking into map_value_adj, I noticed that alu operations directly on the map_value() resp. map_value_adj() register (any alu operation on a map_value() register will turn it into a map_value_adj() typed register) are not sufficiently protected against some of the operations. Two non-exhaustive examples are provided that the verifier needs to reject: i) BPF_AND on r0 (map_value_adj): 0: (bf) r2 = r10 1: (07) r2 += -8 2: (7a) *(u64 *)(r2 +0) = 0 3: (18) r1 = 0xbf842a00 5: (85) call bpf_map_lookup_elem#1 6: (15) if r0 == 0x0 goto pc+2 R0=map_value(ks=8,vs=48,id=0),min_value=0,max_value=0 R10=fp 7: (57) r0 &= 8 8: (7a) *(u64 *)(r0 +0) = 22 R0=map_value_adj(ks=8,vs=48,id=0),min_value=0,max_value=8 R10=fp 9: (95) exit from 6 to 9: R0=inv,min_value=0,max_value=0 R10=fp 9: (95) exit processed 10 insns ii) BPF_ADD in 32 bit mode on r0 (map_value_adj): 0: (bf) r2 = r10 1: (07) r2 += -8 2: (7a) *(u64 *)(r2 +0) = 0 3: (18) r1 = 0xc24eee00 5: (85) call bpf_map_lookup_elem#1 6: (15) if r0 == 0x0 goto pc+2 R0=map_value(ks=8,vs=48,id=0),min_value=0,max_value=0 R10=fp 7: (04) (u32) r0 += (u32) 0 8: (7a) *(u64 *)(r0 +0) = 22 R0=map_value_adj(ks=8,vs=48,id=0),min_value=0,max_value=0 R10=fp 9: (95) exit from 6 to 9: R0=inv,min_value=0,max_value=0 R10=fp 9: (95) exit processed 10 insns Issue is, while min_value / max_value boundaries for the access are adjusted appropriately, we change the pointer value in a way that cannot be sufficiently tracked anymore from its origin. Operations like BPF_{AND,OR,DIV,MUL,etc} on a destination register that is PTR_TO_MAP_VALUE{,_ADJ} was probably unintended, in fact, all the test cases coming with 484611357c19 ("bpf: allow access into map value arrays") perform BPF_ADD only on the destination register that is PTR_TO_MAP_VALUE_ADJ. Only for UNKNOWN_VALUE register types such operations make sense, f.e. with unknown memory content fetched initially from a constant offset from the map value memory into a register. That register is then later tested against lower / upper bounds, so that the verifier can then do the tracking of min_value / max_value, and properly check once that UNKNOWN_VALUE register is added to the destination register with type PTR_TO_MAP_VALUE{,_ADJ}. This is also what the original use-case is solving. Note, tracking on what is being added is done through adjust_reg_min_max_vals() and later access to the map value enforced with these boundaries and the given offset from the insn through check_map_access_adj(). Tests will fail for non-root environment due to prohibited pointer arithmetic, in particular in check_alu_op(), we bail out on the is_pointer_value() check on the dst_reg (which is false in root case as we allow for pointer arithmetic via env->allow_ptr_leaks). Similarly to PTR_TO_PACKET, one way to fix it is to restrict the allowed operations on PTR_TO_MAP_VALUE{,_ADJ} registers to 64 bit mode BPF_ADD. The test_verifier suite runs fine after the patch and it also rejects mentioned test cases. Fixes: 484611357c19 ("bpf: allow access into map value arrays") Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Reviewed-by: Josef Bacik <jbacik@fb.com> Acked-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-03-31 02:24:02 +02:00
BPF_CLASS(insn->code) == BPF_ALU64 && opcode == BPF_ADD &&
(dst_reg->type == PTR_TO_MAP_VALUE ||
dst_reg->type == PTR_TO_MAP_VALUE_ADJ))
dst_reg->type = PTR_TO_MAP_VALUE_ADJ;
else
mark_reg_unknown_value(regs, insn->dst_reg);
bpf: verifier (add verifier core) This patch adds verifier core which simulates execution of every insn and records the state of registers and program stack. Every branch instruction seen during simulation is pushed into state stack. When verifier reaches BPF_EXIT, it pops the state from the stack and continues until it reaches BPF_EXIT again. For program: 1: bpf_mov r1, xxx 2: if (r1 == 0) goto 5 3: bpf_mov r0, 1 4: goto 6 5: bpf_mov r0, 2 6: bpf_exit The verifier will walk insns: 1, 2, 3, 4, 6 then it will pop the state recorded at insn#2 and will continue: 5, 6 This way it walks all possible paths through the program and checks all possible values of registers. While doing so, it checks for: - invalid instructions - uninitialized register access - uninitialized stack access - misaligned stack access - out of range stack access - invalid calling convention - instruction encoding is not using reserved fields Kernel subsystem configures the verifier with two callbacks: - bool (*is_valid_access)(int off, int size, enum bpf_access_type type); that provides information to the verifer which fields of 'ctx' are accessible (remember 'ctx' is the first argument to eBPF program) - const struct bpf_func_proto *(*get_func_proto)(enum bpf_func_id func_id); returns argument constraints of kernel helper functions that eBPF program may call, so that verifier can checks that R1-R5 types match the prototype More details in Documentation/networking/filter.txt and in kernel/bpf/verifier.c Signed-off-by: Alexei Starovoitov <ast@plumgrid.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-09-26 00:17:06 -07:00
}
return 0;
}
static void find_good_pkt_pointers(struct bpf_verifier_state *state,
struct bpf_reg_state *dst_reg)
bpf: direct packet access Extended BPF carried over two instructions from classic to access packet data: LD_ABS and LD_IND. They're highly optimized in JITs, but due to their design they have to do length check for every access. When BPF is processing 20M packets per second single LD_ABS after JIT is consuming 3% cpu. Hence the need to optimize it further by amortizing the cost of 'off < skb_headlen' over multiple packet accesses. One option is to introduce two new eBPF instructions LD_ABS_DW and LD_IND_DW with similar usage as skb_header_pointer(). The kernel part for interpreter and x64 JIT was implemented in [1], but such new insns behave like old ld_abs and abort the program with 'return 0' if access is beyond linear data. Such hidden control flow is hard to workaround plus changing JITs and rolling out new llvm is incovenient. Therefore allow cls_bpf/act_bpf program access skb->data directly: int bpf_prog(struct __sk_buff *skb) { struct iphdr *ip; if (skb->data + sizeof(struct iphdr) + ETH_HLEN > skb->data_end) /* packet too small */ return 0; ip = skb->data + ETH_HLEN; /* access IP header fields with direct loads */ if (ip->version != 4 || ip->saddr == 0x7f000001) return 1; [...] } This solution avoids introduction of new instructions. llvm stays the same and all JITs stay the same, but verifier has to work extra hard to prove safety of the above program. For XDP the direct store instructions can be allowed as well. The skb->data is NET_IP_ALIGNED, so for common cases the verifier can check the alignment. The complex packet parsers where packet pointer is adjusted incrementally cannot be tracked for alignment, so allow byte access in such cases and misaligned access on architectures that define efficient_unaligned_access [1] https://git.kernel.org/cgit/linux/kernel/git/ast/bpf.git/?h=ld_abs_dw Signed-off-by: Alexei Starovoitov <ast@kernel.org> Acked-by: Daniel Borkmann <daniel@iogearbox.net> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-05-05 19:49:10 -07:00
{
struct bpf_reg_state *regs = state->regs, *reg;
bpf: direct packet access Extended BPF carried over two instructions from classic to access packet data: LD_ABS and LD_IND. They're highly optimized in JITs, but due to their design they have to do length check for every access. When BPF is processing 20M packets per second single LD_ABS after JIT is consuming 3% cpu. Hence the need to optimize it further by amortizing the cost of 'off < skb_headlen' over multiple packet accesses. One option is to introduce two new eBPF instructions LD_ABS_DW and LD_IND_DW with similar usage as skb_header_pointer(). The kernel part for interpreter and x64 JIT was implemented in [1], but such new insns behave like old ld_abs and abort the program with 'return 0' if access is beyond linear data. Such hidden control flow is hard to workaround plus changing JITs and rolling out new llvm is incovenient. Therefore allow cls_bpf/act_bpf program access skb->data directly: int bpf_prog(struct __sk_buff *skb) { struct iphdr *ip; if (skb->data + sizeof(struct iphdr) + ETH_HLEN > skb->data_end) /* packet too small */ return 0; ip = skb->data + ETH_HLEN; /* access IP header fields with direct loads */ if (ip->version != 4 || ip->saddr == 0x7f000001) return 1; [...] } This solution avoids introduction of new instructions. llvm stays the same and all JITs stay the same, but verifier has to work extra hard to prove safety of the above program. For XDP the direct store instructions can be allowed as well. The skb->data is NET_IP_ALIGNED, so for common cases the verifier can check the alignment. The complex packet parsers where packet pointer is adjusted incrementally cannot be tracked for alignment, so allow byte access in such cases and misaligned access on architectures that define efficient_unaligned_access [1] https://git.kernel.org/cgit/linux/kernel/git/ast/bpf.git/?h=ld_abs_dw Signed-off-by: Alexei Starovoitov <ast@kernel.org> Acked-by: Daniel Borkmann <daniel@iogearbox.net> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-05-05 19:49:10 -07:00
int i;
bpf: fix range propagation on direct packet access LLVM can generate code that tests for direct packet access via skb->data/data_end in a way that currently gets rejected by the verifier, example: [...] 7: (61) r3 = *(u32 *)(r6 +80) 8: (61) r9 = *(u32 *)(r6 +76) 9: (bf) r2 = r9 10: (07) r2 += 54 11: (3d) if r3 >= r2 goto pc+12 R1=inv R2=pkt(id=0,off=54,r=0) R3=pkt_end R4=inv R6=ctx R9=pkt(id=0,off=0,r=0) R10=fp 12: (18) r4 = 0xffffff7a 14: (05) goto pc+430 [...] from 11 to 24: R1=inv R2=pkt(id=0,off=54,r=0) R3=pkt_end R4=inv R6=ctx R9=pkt(id=0,off=0,r=0) R10=fp 24: (7b) *(u64 *)(r10 -40) = r1 25: (b7) r1 = 0 26: (63) *(u32 *)(r6 +56) = r1 27: (b7) r2 = 40 28: (71) r8 = *(u8 *)(r9 +20) invalid access to packet, off=20 size=1, R9(id=0,off=0,r=0) The reason why this gets rejected despite a proper test is that we currently call find_good_pkt_pointers() only in case where we detect tests like rX > pkt_end, where rX is of type pkt(id=Y,off=Z,r=0) and derived, for example, from a register of type pkt(id=Y,off=0,r=0) pointing to skb->data. find_good_pkt_pointers() then fills the range in the current branch to pkt(id=Y,off=0,r=Z) on success. For above case, we need to extend that to recognize pkt_end >= rX pattern and mark the other branch that is taken on success with the appropriate pkt(id=Y,off=0,r=Z) type via find_good_pkt_pointers(). Since eBPF operates on BPF_JGT (>) and BPF_JGE (>=), these are the only two practical options to test for from what LLVM could have generated, since there's no such thing as BPF_JLT (<) or BPF_JLE (<=) that we would need to take into account as well. After the fix: [...] 7: (61) r3 = *(u32 *)(r6 +80) 8: (61) r9 = *(u32 *)(r6 +76) 9: (bf) r2 = r9 10: (07) r2 += 54 11: (3d) if r3 >= r2 goto pc+12 R1=inv R2=pkt(id=0,off=54,r=0) R3=pkt_end R4=inv R6=ctx R9=pkt(id=0,off=0,r=0) R10=fp 12: (18) r4 = 0xffffff7a 14: (05) goto pc+430 [...] from 11 to 24: R1=inv R2=pkt(id=0,off=54,r=54) R3=pkt_end R4=inv R6=ctx R9=pkt(id=0,off=0,r=54) R10=fp 24: (7b) *(u64 *)(r10 -40) = r1 25: (b7) r1 = 0 26: (63) *(u32 *)(r6 +56) = r1 27: (b7) r2 = 40 28: (71) r8 = *(u8 *)(r9 +20) 29: (bf) r1 = r8 30: (25) if r8 > 0x3c goto pc+47 R1=inv56 R2=imm40 R3=pkt_end R4=inv R6=ctx R8=inv56 R9=pkt(id=0,off=0,r=54) R10=fp 31: (b7) r1 = 1 [...] Verifier test cases are also added in this work, one that demonstrates the mentioned example here and one that tries a bad packet access for the current/fall-through branch (the one with types pkt(id=X,off=Y,r=0), pkt(id=X,off=0,r=0)), then a case with good and bad accesses, and two with both test variants (>, >=). Fixes: 969bf05eb3ce ("bpf: direct packet access") Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-09-08 01:03:42 +02:00
/* LLVM can generate two kind of checks:
*
* Type 1:
*
* r2 = r3;
* r2 += 8;
* if (r2 > pkt_end) goto <handle exception>
* <access okay>
*
* Where:
* r2 == dst_reg, pkt_end == src_reg
* r2=pkt(id=n,off=8,r=0)
* r3=pkt(id=n,off=0,r=0)
*
* Type 2:
*
* r2 = r3;
* r2 += 8;
* if (pkt_end >= r2) goto <access okay>
* <handle exception>
*
* Where:
* pkt_end == dst_reg, r2 == src_reg
* r2=pkt(id=n,off=8,r=0)
* r3=pkt(id=n,off=0,r=0)
*
* Find register r3 and mark its range as r3=pkt(id=n,off=0,r=8)
* so that range of bytes [r3, r3 + 8) is safe to access.
bpf: direct packet access Extended BPF carried over two instructions from classic to access packet data: LD_ABS and LD_IND. They're highly optimized in JITs, but due to their design they have to do length check for every access. When BPF is processing 20M packets per second single LD_ABS after JIT is consuming 3% cpu. Hence the need to optimize it further by amortizing the cost of 'off < skb_headlen' over multiple packet accesses. One option is to introduce two new eBPF instructions LD_ABS_DW and LD_IND_DW with similar usage as skb_header_pointer(). The kernel part for interpreter and x64 JIT was implemented in [1], but such new insns behave like old ld_abs and abort the program with 'return 0' if access is beyond linear data. Such hidden control flow is hard to workaround plus changing JITs and rolling out new llvm is incovenient. Therefore allow cls_bpf/act_bpf program access skb->data directly: int bpf_prog(struct __sk_buff *skb) { struct iphdr *ip; if (skb->data + sizeof(struct iphdr) + ETH_HLEN > skb->data_end) /* packet too small */ return 0; ip = skb->data + ETH_HLEN; /* access IP header fields with direct loads */ if (ip->version != 4 || ip->saddr == 0x7f000001) return 1; [...] } This solution avoids introduction of new instructions. llvm stays the same and all JITs stay the same, but verifier has to work extra hard to prove safety of the above program. For XDP the direct store instructions can be allowed as well. The skb->data is NET_IP_ALIGNED, so for common cases the verifier can check the alignment. The complex packet parsers where packet pointer is adjusted incrementally cannot be tracked for alignment, so allow byte access in such cases and misaligned access on architectures that define efficient_unaligned_access [1] https://git.kernel.org/cgit/linux/kernel/git/ast/bpf.git/?h=ld_abs_dw Signed-off-by: Alexei Starovoitov <ast@kernel.org> Acked-by: Daniel Borkmann <daniel@iogearbox.net> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-05-05 19:49:10 -07:00
*/
bpf: fix range propagation on direct packet access LLVM can generate code that tests for direct packet access via skb->data/data_end in a way that currently gets rejected by the verifier, example: [...] 7: (61) r3 = *(u32 *)(r6 +80) 8: (61) r9 = *(u32 *)(r6 +76) 9: (bf) r2 = r9 10: (07) r2 += 54 11: (3d) if r3 >= r2 goto pc+12 R1=inv R2=pkt(id=0,off=54,r=0) R3=pkt_end R4=inv R6=ctx R9=pkt(id=0,off=0,r=0) R10=fp 12: (18) r4 = 0xffffff7a 14: (05) goto pc+430 [...] from 11 to 24: R1=inv R2=pkt(id=0,off=54,r=0) R3=pkt_end R4=inv R6=ctx R9=pkt(id=0,off=0,r=0) R10=fp 24: (7b) *(u64 *)(r10 -40) = r1 25: (b7) r1 = 0 26: (63) *(u32 *)(r6 +56) = r1 27: (b7) r2 = 40 28: (71) r8 = *(u8 *)(r9 +20) invalid access to packet, off=20 size=1, R9(id=0,off=0,r=0) The reason why this gets rejected despite a proper test is that we currently call find_good_pkt_pointers() only in case where we detect tests like rX > pkt_end, where rX is of type pkt(id=Y,off=Z,r=0) and derived, for example, from a register of type pkt(id=Y,off=0,r=0) pointing to skb->data. find_good_pkt_pointers() then fills the range in the current branch to pkt(id=Y,off=0,r=Z) on success. For above case, we need to extend that to recognize pkt_end >= rX pattern and mark the other branch that is taken on success with the appropriate pkt(id=Y,off=0,r=Z) type via find_good_pkt_pointers(). Since eBPF operates on BPF_JGT (>) and BPF_JGE (>=), these are the only two practical options to test for from what LLVM could have generated, since there's no such thing as BPF_JLT (<) or BPF_JLE (<=) that we would need to take into account as well. After the fix: [...] 7: (61) r3 = *(u32 *)(r6 +80) 8: (61) r9 = *(u32 *)(r6 +76) 9: (bf) r2 = r9 10: (07) r2 += 54 11: (3d) if r3 >= r2 goto pc+12 R1=inv R2=pkt(id=0,off=54,r=0) R3=pkt_end R4=inv R6=ctx R9=pkt(id=0,off=0,r=0) R10=fp 12: (18) r4 = 0xffffff7a 14: (05) goto pc+430 [...] from 11 to 24: R1=inv R2=pkt(id=0,off=54,r=54) R3=pkt_end R4=inv R6=ctx R9=pkt(id=0,off=0,r=54) R10=fp 24: (7b) *(u64 *)(r10 -40) = r1 25: (b7) r1 = 0 26: (63) *(u32 *)(r6 +56) = r1 27: (b7) r2 = 40 28: (71) r8 = *(u8 *)(r9 +20) 29: (bf) r1 = r8 30: (25) if r8 > 0x3c goto pc+47 R1=inv56 R2=imm40 R3=pkt_end R4=inv R6=ctx R8=inv56 R9=pkt(id=0,off=0,r=54) R10=fp 31: (b7) r1 = 1 [...] Verifier test cases are also added in this work, one that demonstrates the mentioned example here and one that tries a bad packet access for the current/fall-through branch (the one with types pkt(id=X,off=Y,r=0), pkt(id=X,off=0,r=0)), then a case with good and bad accesses, and two with both test variants (>, >=). Fixes: 969bf05eb3ce ("bpf: direct packet access") Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-09-08 01:03:42 +02:00
bpf: direct packet access Extended BPF carried over two instructions from classic to access packet data: LD_ABS and LD_IND. They're highly optimized in JITs, but due to their design they have to do length check for every access. When BPF is processing 20M packets per second single LD_ABS after JIT is consuming 3% cpu. Hence the need to optimize it further by amortizing the cost of 'off < skb_headlen' over multiple packet accesses. One option is to introduce two new eBPF instructions LD_ABS_DW and LD_IND_DW with similar usage as skb_header_pointer(). The kernel part for interpreter and x64 JIT was implemented in [1], but such new insns behave like old ld_abs and abort the program with 'return 0' if access is beyond linear data. Such hidden control flow is hard to workaround plus changing JITs and rolling out new llvm is incovenient. Therefore allow cls_bpf/act_bpf program access skb->data directly: int bpf_prog(struct __sk_buff *skb) { struct iphdr *ip; if (skb->data + sizeof(struct iphdr) + ETH_HLEN > skb->data_end) /* packet too small */ return 0; ip = skb->data + ETH_HLEN; /* access IP header fields with direct loads */ if (ip->version != 4 || ip->saddr == 0x7f000001) return 1; [...] } This solution avoids introduction of new instructions. llvm stays the same and all JITs stay the same, but verifier has to work extra hard to prove safety of the above program. For XDP the direct store instructions can be allowed as well. The skb->data is NET_IP_ALIGNED, so for common cases the verifier can check the alignment. The complex packet parsers where packet pointer is adjusted incrementally cannot be tracked for alignment, so allow byte access in such cases and misaligned access on architectures that define efficient_unaligned_access [1] https://git.kernel.org/cgit/linux/kernel/git/ast/bpf.git/?h=ld_abs_dw Signed-off-by: Alexei Starovoitov <ast@kernel.org> Acked-by: Daniel Borkmann <daniel@iogearbox.net> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-05-05 19:49:10 -07:00
for (i = 0; i < MAX_BPF_REG; i++)
if (regs[i].type == PTR_TO_PACKET && regs[i].id == dst_reg->id)
/* keep the maximum range already checked */
regs[i].range = max(regs[i].range, dst_reg->off);
bpf: direct packet access Extended BPF carried over two instructions from classic to access packet data: LD_ABS and LD_IND. They're highly optimized in JITs, but due to their design they have to do length check for every access. When BPF is processing 20M packets per second single LD_ABS after JIT is consuming 3% cpu. Hence the need to optimize it further by amortizing the cost of 'off < skb_headlen' over multiple packet accesses. One option is to introduce two new eBPF instructions LD_ABS_DW and LD_IND_DW with similar usage as skb_header_pointer(). The kernel part for interpreter and x64 JIT was implemented in [1], but such new insns behave like old ld_abs and abort the program with 'return 0' if access is beyond linear data. Such hidden control flow is hard to workaround plus changing JITs and rolling out new llvm is incovenient. Therefore allow cls_bpf/act_bpf program access skb->data directly: int bpf_prog(struct __sk_buff *skb) { struct iphdr *ip; if (skb->data + sizeof(struct iphdr) + ETH_HLEN > skb->data_end) /* packet too small */ return 0; ip = skb->data + ETH_HLEN; /* access IP header fields with direct loads */ if (ip->version != 4 || ip->saddr == 0x7f000001) return 1; [...] } This solution avoids introduction of new instructions. llvm stays the same and all JITs stay the same, but verifier has to work extra hard to prove safety of the above program. For XDP the direct store instructions can be allowed as well. The skb->data is NET_IP_ALIGNED, so for common cases the verifier can check the alignment. The complex packet parsers where packet pointer is adjusted incrementally cannot be tracked for alignment, so allow byte access in such cases and misaligned access on architectures that define efficient_unaligned_access [1] https://git.kernel.org/cgit/linux/kernel/git/ast/bpf.git/?h=ld_abs_dw Signed-off-by: Alexei Starovoitov <ast@kernel.org> Acked-by: Daniel Borkmann <daniel@iogearbox.net> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-05-05 19:49:10 -07:00
for (i = 0; i < MAX_BPF_STACK; i += BPF_REG_SIZE) {
if (state->stack_slot_type[i] != STACK_SPILL)
continue;
reg = &state->spilled_regs[i / BPF_REG_SIZE];
if (reg->type == PTR_TO_PACKET && reg->id == dst_reg->id)
reg->range = max(reg->range, dst_reg->off);
bpf: direct packet access Extended BPF carried over two instructions from classic to access packet data: LD_ABS and LD_IND. They're highly optimized in JITs, but due to their design they have to do length check for every access. When BPF is processing 20M packets per second single LD_ABS after JIT is consuming 3% cpu. Hence the need to optimize it further by amortizing the cost of 'off < skb_headlen' over multiple packet accesses. One option is to introduce two new eBPF instructions LD_ABS_DW and LD_IND_DW with similar usage as skb_header_pointer(). The kernel part for interpreter and x64 JIT was implemented in [1], but such new insns behave like old ld_abs and abort the program with 'return 0' if access is beyond linear data. Such hidden control flow is hard to workaround plus changing JITs and rolling out new llvm is incovenient. Therefore allow cls_bpf/act_bpf program access skb->data directly: int bpf_prog(struct __sk_buff *skb) { struct iphdr *ip; if (skb->data + sizeof(struct iphdr) + ETH_HLEN > skb->data_end) /* packet too small */ return 0; ip = skb->data + ETH_HLEN; /* access IP header fields with direct loads */ if (ip->version != 4 || ip->saddr == 0x7f000001) return 1; [...] } This solution avoids introduction of new instructions. llvm stays the same and all JITs stay the same, but verifier has to work extra hard to prove safety of the above program. For XDP the direct store instructions can be allowed as well. The skb->data is NET_IP_ALIGNED, so for common cases the verifier can check the alignment. The complex packet parsers where packet pointer is adjusted incrementally cannot be tracked for alignment, so allow byte access in such cases and misaligned access on architectures that define efficient_unaligned_access [1] https://git.kernel.org/cgit/linux/kernel/git/ast/bpf.git/?h=ld_abs_dw Signed-off-by: Alexei Starovoitov <ast@kernel.org> Acked-by: Daniel Borkmann <daniel@iogearbox.net> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-05-05 19:49:10 -07:00
}
}
/* Adjusts the register min/max values in the case that the dst_reg is the
* variable register that we are working on, and src_reg is a constant or we're
* simply doing a BPF_K check.
*/
static void reg_set_min_max(struct bpf_reg_state *true_reg,
struct bpf_reg_state *false_reg, u64 val,
u8 opcode)
{
switch (opcode) {
case BPF_JEQ:
/* If this is false then we know nothing Jon Snow, but if it is
* true then we know for sure.
*/
true_reg->max_value = true_reg->min_value = val;
break;
case BPF_JNE:
/* If this is true we know nothing Jon Snow, but if it is false
* we know the value for sure;
*/
false_reg->max_value = false_reg->min_value = val;
break;
case BPF_JGT:
/* Unsigned comparison, the minimum value is 0. */
false_reg->min_value = 0;
bpf: reduce compiler warnings by adding fallthrough comments Fixes the following warnings: kernel/bpf/verifier.c: In function ‘may_access_direct_pkt_data’: kernel/bpf/verifier.c:702:6: warning: this statement may fall through [-Wimplicit-fallthrough=] if (t == BPF_WRITE) ^ kernel/bpf/verifier.c:704:2: note: here case BPF_PROG_TYPE_SCHED_CLS: ^~~~ kernel/bpf/verifier.c: In function ‘reg_set_min_max_inv’: kernel/bpf/verifier.c:2057:23: warning: this statement may fall through [-Wimplicit-fallthrough=] true_reg->min_value = 0; ~~~~~~~~~~~~~~~~~~~~^~~ kernel/bpf/verifier.c:2058:2: note: here case BPF_JSGT: ^~~~ kernel/bpf/verifier.c:2068:23: warning: this statement may fall through [-Wimplicit-fallthrough=] true_reg->min_value = 0; ~~~~~~~~~~~~~~~~~~~~^~~ kernel/bpf/verifier.c:2069:2: note: here case BPF_JSGE: ^~~~ kernel/bpf/verifier.c: In function ‘reg_set_min_max’: kernel/bpf/verifier.c:2009:24: warning: this statement may fall through [-Wimplicit-fallthrough=] false_reg->min_value = 0; ~~~~~~~~~~~~~~~~~~~~~^~~ kernel/bpf/verifier.c:2010:2: note: here case BPF_JSGT: ^~~~ kernel/bpf/verifier.c:2019:24: warning: this statement may fall through [-Wimplicit-fallthrough=] false_reg->min_value = 0; ~~~~~~~~~~~~~~~~~~~~~^~~ kernel/bpf/verifier.c:2020:2: note: here case BPF_JSGE: ^~~~ Reported-by: David Binderman <dcb314@hotmail.com> Signed-off-by: Alexander Alemayhu <alexander@alemayhu.com> Acked-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-02-14 00:02:35 +01:00
/* fallthrough */
case BPF_JSGT:
/* If this is false then we know the maximum val is val,
* otherwise we know the min val is val+1.
*/
false_reg->max_value = val;
true_reg->min_value = val + 1;
break;
case BPF_JGE:
/* Unsigned comparison, the minimum value is 0. */
false_reg->min_value = 0;
bpf: reduce compiler warnings by adding fallthrough comments Fixes the following warnings: kernel/bpf/verifier.c: In function ‘may_access_direct_pkt_data’: kernel/bpf/verifier.c:702:6: warning: this statement may fall through [-Wimplicit-fallthrough=] if (t == BPF_WRITE) ^ kernel/bpf/verifier.c:704:2: note: here case BPF_PROG_TYPE_SCHED_CLS: ^~~~ kernel/bpf/verifier.c: In function ‘reg_set_min_max_inv’: kernel/bpf/verifier.c:2057:23: warning: this statement may fall through [-Wimplicit-fallthrough=] true_reg->min_value = 0; ~~~~~~~~~~~~~~~~~~~~^~~ kernel/bpf/verifier.c:2058:2: note: here case BPF_JSGT: ^~~~ kernel/bpf/verifier.c:2068:23: warning: this statement may fall through [-Wimplicit-fallthrough=] true_reg->min_value = 0; ~~~~~~~~~~~~~~~~~~~~^~~ kernel/bpf/verifier.c:2069:2: note: here case BPF_JSGE: ^~~~ kernel/bpf/verifier.c: In function ‘reg_set_min_max’: kernel/bpf/verifier.c:2009:24: warning: this statement may fall through [-Wimplicit-fallthrough=] false_reg->min_value = 0; ~~~~~~~~~~~~~~~~~~~~~^~~ kernel/bpf/verifier.c:2010:2: note: here case BPF_JSGT: ^~~~ kernel/bpf/verifier.c:2019:24: warning: this statement may fall through [-Wimplicit-fallthrough=] false_reg->min_value = 0; ~~~~~~~~~~~~~~~~~~~~~^~~ kernel/bpf/verifier.c:2020:2: note: here case BPF_JSGE: ^~~~ Reported-by: David Binderman <dcb314@hotmail.com> Signed-off-by: Alexander Alemayhu <alexander@alemayhu.com> Acked-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-02-14 00:02:35 +01:00
/* fallthrough */
case BPF_JSGE:
/* If this is false then we know the maximum value is val - 1,
* otherwise we know the mimimum value is val.
*/
false_reg->max_value = val - 1;
true_reg->min_value = val;
break;
default:
break;
}
check_reg_overflow(false_reg);
check_reg_overflow(true_reg);
}
/* Same as above, but for the case that dst_reg is a CONST_IMM reg and src_reg
* is the variable reg.
*/
static void reg_set_min_max_inv(struct bpf_reg_state *true_reg,
struct bpf_reg_state *false_reg, u64 val,
u8 opcode)
{
switch (opcode) {
case BPF_JEQ:
/* If this is false then we know nothing Jon Snow, but if it is
* true then we know for sure.
*/
true_reg->max_value = true_reg->min_value = val;
break;
case BPF_JNE:
/* If this is true we know nothing Jon Snow, but if it is false
* we know the value for sure;
*/
false_reg->max_value = false_reg->min_value = val;
break;
case BPF_JGT:
/* Unsigned comparison, the minimum value is 0. */
true_reg->min_value = 0;
bpf: reduce compiler warnings by adding fallthrough comments Fixes the following warnings: kernel/bpf/verifier.c: In function ‘may_access_direct_pkt_data’: kernel/bpf/verifier.c:702:6: warning: this statement may fall through [-Wimplicit-fallthrough=] if (t == BPF_WRITE) ^ kernel/bpf/verifier.c:704:2: note: here case BPF_PROG_TYPE_SCHED_CLS: ^~~~ kernel/bpf/verifier.c: In function ‘reg_set_min_max_inv’: kernel/bpf/verifier.c:2057:23: warning: this statement may fall through [-Wimplicit-fallthrough=] true_reg->min_value = 0; ~~~~~~~~~~~~~~~~~~~~^~~ kernel/bpf/verifier.c:2058:2: note: here case BPF_JSGT: ^~~~ kernel/bpf/verifier.c:2068:23: warning: this statement may fall through [-Wimplicit-fallthrough=] true_reg->min_value = 0; ~~~~~~~~~~~~~~~~~~~~^~~ kernel/bpf/verifier.c:2069:2: note: here case BPF_JSGE: ^~~~ kernel/bpf/verifier.c: In function ‘reg_set_min_max’: kernel/bpf/verifier.c:2009:24: warning: this statement may fall through [-Wimplicit-fallthrough=] false_reg->min_value = 0; ~~~~~~~~~~~~~~~~~~~~~^~~ kernel/bpf/verifier.c:2010:2: note: here case BPF_JSGT: ^~~~ kernel/bpf/verifier.c:2019:24: warning: this statement may fall through [-Wimplicit-fallthrough=] false_reg->min_value = 0; ~~~~~~~~~~~~~~~~~~~~~^~~ kernel/bpf/verifier.c:2020:2: note: here case BPF_JSGE: ^~~~ Reported-by: David Binderman <dcb314@hotmail.com> Signed-off-by: Alexander Alemayhu <alexander@alemayhu.com> Acked-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-02-14 00:02:35 +01:00
/* fallthrough */
case BPF_JSGT:
/*
* If this is false, then the val is <= the register, if it is
* true the register <= to the val.
*/
false_reg->min_value = val;
true_reg->max_value = val - 1;
break;
case BPF_JGE:
/* Unsigned comparison, the minimum value is 0. */
true_reg->min_value = 0;
bpf: reduce compiler warnings by adding fallthrough comments Fixes the following warnings: kernel/bpf/verifier.c: In function ‘may_access_direct_pkt_data’: kernel/bpf/verifier.c:702:6: warning: this statement may fall through [-Wimplicit-fallthrough=] if (t == BPF_WRITE) ^ kernel/bpf/verifier.c:704:2: note: here case BPF_PROG_TYPE_SCHED_CLS: ^~~~ kernel/bpf/verifier.c: In function ‘reg_set_min_max_inv’: kernel/bpf/verifier.c:2057:23: warning: this statement may fall through [-Wimplicit-fallthrough=] true_reg->min_value = 0; ~~~~~~~~~~~~~~~~~~~~^~~ kernel/bpf/verifier.c:2058:2: note: here case BPF_JSGT: ^~~~ kernel/bpf/verifier.c:2068:23: warning: this statement may fall through [-Wimplicit-fallthrough=] true_reg->min_value = 0; ~~~~~~~~~~~~~~~~~~~~^~~ kernel/bpf/verifier.c:2069:2: note: here case BPF_JSGE: ^~~~ kernel/bpf/verifier.c: In function ‘reg_set_min_max’: kernel/bpf/verifier.c:2009:24: warning: this statement may fall through [-Wimplicit-fallthrough=] false_reg->min_value = 0; ~~~~~~~~~~~~~~~~~~~~~^~~ kernel/bpf/verifier.c:2010:2: note: here case BPF_JSGT: ^~~~ kernel/bpf/verifier.c:2019:24: warning: this statement may fall through [-Wimplicit-fallthrough=] false_reg->min_value = 0; ~~~~~~~~~~~~~~~~~~~~~^~~ kernel/bpf/verifier.c:2020:2: note: here case BPF_JSGE: ^~~~ Reported-by: David Binderman <dcb314@hotmail.com> Signed-off-by: Alexander Alemayhu <alexander@alemayhu.com> Acked-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-02-14 00:02:35 +01:00
/* fallthrough */
case BPF_JSGE:
/* If this is false then constant < register, if it is true then
* the register < constant.
*/
false_reg->min_value = val + 1;
true_reg->max_value = val;
break;
default:
break;
}
check_reg_overflow(false_reg);
check_reg_overflow(true_reg);
}
static void mark_map_reg(struct bpf_reg_state *regs, u32 regno, u32 id,
enum bpf_reg_type type)
{
struct bpf_reg_state *reg = &regs[regno];
if (reg->type == PTR_TO_MAP_VALUE_OR_NULL && reg->id == id) {
bpf: Add array of maps support This patch adds a few helper funcs to enable map-in-map support (i.e. outer_map->inner_map). The first outer_map type BPF_MAP_TYPE_ARRAY_OF_MAPS is also added in this patch. The next patch will introduce a hash of maps type. Any bpf map type can be acted as an inner_map. The exception is BPF_MAP_TYPE_PROG_ARRAY because the extra level of indirection makes it harder to verify the owner_prog_type and owner_jited. Multi-level map-in-map is not supported (i.e. map->map is ok but not map->map->map). When adding an inner_map to an outer_map, it currently checks the map_type, key_size, value_size, map_flags, max_entries and ops. The verifier also uses those map's properties to do static analysis. map_flags is needed because we need to ensure BPF_PROG_TYPE_PERF_EVENT is using a preallocated hashtab for the inner_hash also. ops and max_entries are needed to generate inlined map-lookup instructions. For simplicity reason, a simple '==' test is used for both map_flags and max_entries. The equality of ops is implied by the equality of map_type. During outer_map creation time, an inner_map_fd is needed to create an outer_map. However, the inner_map_fd's life time does not depend on the outer_map. The inner_map_fd is merely used to initialize the inner_map_meta of the outer_map. Also, for the outer_map: * It allows element update and delete from syscall * It allows element lookup from bpf_prog The above is similar to the current fd_array pattern. Signed-off-by: Martin KaFai Lau <kafai@fb.com> Acked-by: Alexei Starovoitov <ast@kernel.org> Acked-by: Daniel Borkmann <daniel@iogearbox.net> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-03-22 10:00:33 -07:00
if (type == UNKNOWN_VALUE) {
__mark_reg_unknown_value(regs, regno);
} else if (reg->map_ptr->inner_map_meta) {
reg->type = CONST_PTR_TO_MAP;
reg->map_ptr = reg->map_ptr->inner_map_meta;
} else {
reg->type = type;
}
bpf: fix regression on verifier pruning wrt map lookups Commit 57a09bf0a416 ("bpf: Detect identical PTR_TO_MAP_VALUE_OR_NULL registers") introduced a regression where existing programs stopped loading due to reaching the verifier's maximum complexity limit, whereas prior to this commit they were loading just fine; the affected program has roughly 2k instructions. What was found is that state pruning couldn't be performed effectively anymore due to mismatches of the verifier's register state, in particular in the id tracking. It doesn't mean that 57a09bf0a416 is incorrect per se, but rather that verifier needs to perform a lot more work for the same program with regards to involved map lookups. Since commit 57a09bf0a416 is only about tracking registers with type PTR_TO_MAP_VALUE_OR_NULL, the id is only needed to follow registers until they are promoted through pattern matching with a NULL check to either PTR_TO_MAP_VALUE or UNKNOWN_VALUE type. After that point, the id becomes irrelevant for the transitioned types. For UNKNOWN_VALUE, id is already reset to 0 via mark_reg_unknown_value(), but not so for PTR_TO_MAP_VALUE where id is becoming stale. It's even transferred further into other types that don't make use of it. Among others, one example is where UNKNOWN_VALUE is set on function call return with RET_INTEGER return type. states_equal() will then fall through the memcmp() on register state; note that the second memcmp() uses offsetofend(), so the id is part of that since d2a4dd37f6b4 ("bpf: fix state equivalence"). But the bisect pointed already to 57a09bf0a416, where we really reach beyond complexity limit. What I found was that states_equal() often failed in this case due to id mismatches in spilled regs with registers in type PTR_TO_MAP_VALUE. Unlike non-spilled regs, spilled regs just perform a memcmp() on their reg state and don't have any other optimizations in place, therefore also id was relevant in this case for making a pruning decision. We can safely reset id to 0 as well when converting to PTR_TO_MAP_VALUE. For the affected program, it resulted in a ~17 fold reduction of complexity and let the program load fine again. Selftest suite also runs fine. The only other place where env->id_gen is used currently is through direct packet access, but for these cases id is long living, thus a different scenario. Also, the current logic in mark_map_regs() is not fully correct when marking NULL branch with UNKNOWN_VALUE. We need to cache the destination reg's id in any case. Otherwise, once we marked that reg as UNKNOWN_VALUE, it's id is reset and any subsequent registers that hold the original id and are of type PTR_TO_MAP_VALUE_OR_NULL won't be marked UNKNOWN_VALUE anymore, since mark_map_reg() reuses the uncached regs[regno].id that was just overridden. Note, we don't need to cache it outside of mark_map_regs(), since it's called once on this_branch and the other time on other_branch, which are both two independent verifier states. A test case for this is added here, too. Fixes: 57a09bf0a416 ("bpf: Detect identical PTR_TO_MAP_VALUE_OR_NULL registers") Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Thomas Graf <tgraf@suug.ch> Acked-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-12-15 01:30:06 +01:00
/* We don't need id from this point onwards anymore, thus we
* should better reset it, so that state pruning has chances
* to take effect.
*/
reg->id = 0;
}
}
/* The logic is similar to find_good_pkt_pointers(), both could eventually
* be folded together at some point.
*/
static void mark_map_regs(struct bpf_verifier_state *state, u32 regno,
enum bpf_reg_type type)
{
struct bpf_reg_state *regs = state->regs;
bpf: fix regression on verifier pruning wrt map lookups Commit 57a09bf0a416 ("bpf: Detect identical PTR_TO_MAP_VALUE_OR_NULL registers") introduced a regression where existing programs stopped loading due to reaching the verifier's maximum complexity limit, whereas prior to this commit they were loading just fine; the affected program has roughly 2k instructions. What was found is that state pruning couldn't be performed effectively anymore due to mismatches of the verifier's register state, in particular in the id tracking. It doesn't mean that 57a09bf0a416 is incorrect per se, but rather that verifier needs to perform a lot more work for the same program with regards to involved map lookups. Since commit 57a09bf0a416 is only about tracking registers with type PTR_TO_MAP_VALUE_OR_NULL, the id is only needed to follow registers until they are promoted through pattern matching with a NULL check to either PTR_TO_MAP_VALUE or UNKNOWN_VALUE type. After that point, the id becomes irrelevant for the transitioned types. For UNKNOWN_VALUE, id is already reset to 0 via mark_reg_unknown_value(), but not so for PTR_TO_MAP_VALUE where id is becoming stale. It's even transferred further into other types that don't make use of it. Among others, one example is where UNKNOWN_VALUE is set on function call return with RET_INTEGER return type. states_equal() will then fall through the memcmp() on register state; note that the second memcmp() uses offsetofend(), so the id is part of that since d2a4dd37f6b4 ("bpf: fix state equivalence"). But the bisect pointed already to 57a09bf0a416, where we really reach beyond complexity limit. What I found was that states_equal() often failed in this case due to id mismatches in spilled regs with registers in type PTR_TO_MAP_VALUE. Unlike non-spilled regs, spilled regs just perform a memcmp() on their reg state and don't have any other optimizations in place, therefore also id was relevant in this case for making a pruning decision. We can safely reset id to 0 as well when converting to PTR_TO_MAP_VALUE. For the affected program, it resulted in a ~17 fold reduction of complexity and let the program load fine again. Selftest suite also runs fine. The only other place where env->id_gen is used currently is through direct packet access, but for these cases id is long living, thus a different scenario. Also, the current logic in mark_map_regs() is not fully correct when marking NULL branch with UNKNOWN_VALUE. We need to cache the destination reg's id in any case. Otherwise, once we marked that reg as UNKNOWN_VALUE, it's id is reset and any subsequent registers that hold the original id and are of type PTR_TO_MAP_VALUE_OR_NULL won't be marked UNKNOWN_VALUE anymore, since mark_map_reg() reuses the uncached regs[regno].id that was just overridden. Note, we don't need to cache it outside of mark_map_regs(), since it's called once on this_branch and the other time on other_branch, which are both two independent verifier states. A test case for this is added here, too. Fixes: 57a09bf0a416 ("bpf: Detect identical PTR_TO_MAP_VALUE_OR_NULL registers") Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Thomas Graf <tgraf@suug.ch> Acked-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-12-15 01:30:06 +01:00
u32 id = regs[regno].id;
int i;
for (i = 0; i < MAX_BPF_REG; i++)
bpf: fix regression on verifier pruning wrt map lookups Commit 57a09bf0a416 ("bpf: Detect identical PTR_TO_MAP_VALUE_OR_NULL registers") introduced a regression where existing programs stopped loading due to reaching the verifier's maximum complexity limit, whereas prior to this commit they were loading just fine; the affected program has roughly 2k instructions. What was found is that state pruning couldn't be performed effectively anymore due to mismatches of the verifier's register state, in particular in the id tracking. It doesn't mean that 57a09bf0a416 is incorrect per se, but rather that verifier needs to perform a lot more work for the same program with regards to involved map lookups. Since commit 57a09bf0a416 is only about tracking registers with type PTR_TO_MAP_VALUE_OR_NULL, the id is only needed to follow registers until they are promoted through pattern matching with a NULL check to either PTR_TO_MAP_VALUE or UNKNOWN_VALUE type. After that point, the id becomes irrelevant for the transitioned types. For UNKNOWN_VALUE, id is already reset to 0 via mark_reg_unknown_value(), but not so for PTR_TO_MAP_VALUE where id is becoming stale. It's even transferred further into other types that don't make use of it. Among others, one example is where UNKNOWN_VALUE is set on function call return with RET_INTEGER return type. states_equal() will then fall through the memcmp() on register state; note that the second memcmp() uses offsetofend(), so the id is part of that since d2a4dd37f6b4 ("bpf: fix state equivalence"). But the bisect pointed already to 57a09bf0a416, where we really reach beyond complexity limit. What I found was that states_equal() often failed in this case due to id mismatches in spilled regs with registers in type PTR_TO_MAP_VALUE. Unlike non-spilled regs, spilled regs just perform a memcmp() on their reg state and don't have any other optimizations in place, therefore also id was relevant in this case for making a pruning decision. We can safely reset id to 0 as well when converting to PTR_TO_MAP_VALUE. For the affected program, it resulted in a ~17 fold reduction of complexity and let the program load fine again. Selftest suite also runs fine. The only other place where env->id_gen is used currently is through direct packet access, but for these cases id is long living, thus a different scenario. Also, the current logic in mark_map_regs() is not fully correct when marking NULL branch with UNKNOWN_VALUE. We need to cache the destination reg's id in any case. Otherwise, once we marked that reg as UNKNOWN_VALUE, it's id is reset and any subsequent registers that hold the original id and are of type PTR_TO_MAP_VALUE_OR_NULL won't be marked UNKNOWN_VALUE anymore, since mark_map_reg() reuses the uncached regs[regno].id that was just overridden. Note, we don't need to cache it outside of mark_map_regs(), since it's called once on this_branch and the other time on other_branch, which are both two independent verifier states. A test case for this is added here, too. Fixes: 57a09bf0a416 ("bpf: Detect identical PTR_TO_MAP_VALUE_OR_NULL registers") Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Thomas Graf <tgraf@suug.ch> Acked-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-12-15 01:30:06 +01:00
mark_map_reg(regs, i, id, type);
for (i = 0; i < MAX_BPF_STACK; i += BPF_REG_SIZE) {
if (state->stack_slot_type[i] != STACK_SPILL)
continue;
bpf: fix regression on verifier pruning wrt map lookups Commit 57a09bf0a416 ("bpf: Detect identical PTR_TO_MAP_VALUE_OR_NULL registers") introduced a regression where existing programs stopped loading due to reaching the verifier's maximum complexity limit, whereas prior to this commit they were loading just fine; the affected program has roughly 2k instructions. What was found is that state pruning couldn't be performed effectively anymore due to mismatches of the verifier's register state, in particular in the id tracking. It doesn't mean that 57a09bf0a416 is incorrect per se, but rather that verifier needs to perform a lot more work for the same program with regards to involved map lookups. Since commit 57a09bf0a416 is only about tracking registers with type PTR_TO_MAP_VALUE_OR_NULL, the id is only needed to follow registers until they are promoted through pattern matching with a NULL check to either PTR_TO_MAP_VALUE or UNKNOWN_VALUE type. After that point, the id becomes irrelevant for the transitioned types. For UNKNOWN_VALUE, id is already reset to 0 via mark_reg_unknown_value(), but not so for PTR_TO_MAP_VALUE where id is becoming stale. It's even transferred further into other types that don't make use of it. Among others, one example is where UNKNOWN_VALUE is set on function call return with RET_INTEGER return type. states_equal() will then fall through the memcmp() on register state; note that the second memcmp() uses offsetofend(), so the id is part of that since d2a4dd37f6b4 ("bpf: fix state equivalence"). But the bisect pointed already to 57a09bf0a416, where we really reach beyond complexity limit. What I found was that states_equal() often failed in this case due to id mismatches in spilled regs with registers in type PTR_TO_MAP_VALUE. Unlike non-spilled regs, spilled regs just perform a memcmp() on their reg state and don't have any other optimizations in place, therefore also id was relevant in this case for making a pruning decision. We can safely reset id to 0 as well when converting to PTR_TO_MAP_VALUE. For the affected program, it resulted in a ~17 fold reduction of complexity and let the program load fine again. Selftest suite also runs fine. The only other place where env->id_gen is used currently is through direct packet access, but for these cases id is long living, thus a different scenario. Also, the current logic in mark_map_regs() is not fully correct when marking NULL branch with UNKNOWN_VALUE. We need to cache the destination reg's id in any case. Otherwise, once we marked that reg as UNKNOWN_VALUE, it's id is reset and any subsequent registers that hold the original id and are of type PTR_TO_MAP_VALUE_OR_NULL won't be marked UNKNOWN_VALUE anymore, since mark_map_reg() reuses the uncached regs[regno].id that was just overridden. Note, we don't need to cache it outside of mark_map_regs(), since it's called once on this_branch and the other time on other_branch, which are both two independent verifier states. A test case for this is added here, too. Fixes: 57a09bf0a416 ("bpf: Detect identical PTR_TO_MAP_VALUE_OR_NULL registers") Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Thomas Graf <tgraf@suug.ch> Acked-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-12-15 01:30:06 +01:00
mark_map_reg(state->spilled_regs, i / BPF_REG_SIZE, id, type);
}
}
static int check_cond_jmp_op(struct bpf_verifier_env *env,
bpf: verifier (add verifier core) This patch adds verifier core which simulates execution of every insn and records the state of registers and program stack. Every branch instruction seen during simulation is pushed into state stack. When verifier reaches BPF_EXIT, it pops the state from the stack and continues until it reaches BPF_EXIT again. For program: 1: bpf_mov r1, xxx 2: if (r1 == 0) goto 5 3: bpf_mov r0, 1 4: goto 6 5: bpf_mov r0, 2 6: bpf_exit The verifier will walk insns: 1, 2, 3, 4, 6 then it will pop the state recorded at insn#2 and will continue: 5, 6 This way it walks all possible paths through the program and checks all possible values of registers. While doing so, it checks for: - invalid instructions - uninitialized register access - uninitialized stack access - misaligned stack access - out of range stack access - invalid calling convention - instruction encoding is not using reserved fields Kernel subsystem configures the verifier with two callbacks: - bool (*is_valid_access)(int off, int size, enum bpf_access_type type); that provides information to the verifer which fields of 'ctx' are accessible (remember 'ctx' is the first argument to eBPF program) - const struct bpf_func_proto *(*get_func_proto)(enum bpf_func_id func_id); returns argument constraints of kernel helper functions that eBPF program may call, so that verifier can checks that R1-R5 types match the prototype More details in Documentation/networking/filter.txt and in kernel/bpf/verifier.c Signed-off-by: Alexei Starovoitov <ast@plumgrid.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-09-26 00:17:06 -07:00
struct bpf_insn *insn, int *insn_idx)
{
struct bpf_verifier_state *other_branch, *this_branch = &env->cur_state;
struct bpf_reg_state *regs = this_branch->regs, *dst_reg;
bpf: verifier (add verifier core) This patch adds verifier core which simulates execution of every insn and records the state of registers and program stack. Every branch instruction seen during simulation is pushed into state stack. When verifier reaches BPF_EXIT, it pops the state from the stack and continues until it reaches BPF_EXIT again. For program: 1: bpf_mov r1, xxx 2: if (r1 == 0) goto 5 3: bpf_mov r0, 1 4: goto 6 5: bpf_mov r0, 2 6: bpf_exit The verifier will walk insns: 1, 2, 3, 4, 6 then it will pop the state recorded at insn#2 and will continue: 5, 6 This way it walks all possible paths through the program and checks all possible values of registers. While doing so, it checks for: - invalid instructions - uninitialized register access - uninitialized stack access - misaligned stack access - out of range stack access - invalid calling convention - instruction encoding is not using reserved fields Kernel subsystem configures the verifier with two callbacks: - bool (*is_valid_access)(int off, int size, enum bpf_access_type type); that provides information to the verifer which fields of 'ctx' are accessible (remember 'ctx' is the first argument to eBPF program) - const struct bpf_func_proto *(*get_func_proto)(enum bpf_func_id func_id); returns argument constraints of kernel helper functions that eBPF program may call, so that verifier can checks that R1-R5 types match the prototype More details in Documentation/networking/filter.txt and in kernel/bpf/verifier.c Signed-off-by: Alexei Starovoitov <ast@plumgrid.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-09-26 00:17:06 -07:00
u8 opcode = BPF_OP(insn->code);
int err;
if (opcode > BPF_EXIT) {
verbose("invalid BPF_JMP opcode %x\n", opcode);
return -EINVAL;
}
if (BPF_SRC(insn->code) == BPF_X) {
if (insn->imm != 0) {
verbose("BPF_JMP uses reserved fields\n");
return -EINVAL;
}
/* check src1 operand */
err = check_reg_arg(regs, insn->src_reg, SRC_OP);
if (err)
return err;
bpf: enable non-root eBPF programs In order to let unprivileged users load and execute eBPF programs teach verifier to prevent pointer leaks. Verifier will prevent - any arithmetic on pointers (except R10+Imm which is used to compute stack addresses) - comparison of pointers (except if (map_value_ptr == 0) ... ) - passing pointers to helper functions - indirectly passing pointers in stack to helper functions - returning pointer from bpf program - storing pointers into ctx or maps Spill/fill of pointers into stack is allowed, but mangling of pointers stored in the stack or reading them byte by byte is not. Within bpf programs the pointers do exist, since programs need to be able to access maps, pass skb pointer to LD_ABS insns, etc but programs cannot pass such pointer values to the outside or obfuscate them. Only allow BPF_PROG_TYPE_SOCKET_FILTER unprivileged programs, so that socket filters (tcpdump), af_packet (quic acceleration) and future kcm can use it. tracing and tc cls/act program types still require root permissions, since tracing actually needs to be able to see all kernel pointers and tc is for root only. For example, the following unprivileged socket filter program is allowed: int bpf_prog1(struct __sk_buff *skb) { u32 index = load_byte(skb, ETH_HLEN + offsetof(struct iphdr, protocol)); u64 *value = bpf_map_lookup_elem(&my_map, &index); if (value) *value += skb->len; return 0; } but the following program is not: int bpf_prog1(struct __sk_buff *skb) { u32 index = load_byte(skb, ETH_HLEN + offsetof(struct iphdr, protocol)); u64 *value = bpf_map_lookup_elem(&my_map, &index); if (value) *value += (u64) skb; return 0; } since it would leak the kernel address into the map. Unprivileged socket filter bpf programs have access to the following helper functions: - map lookup/update/delete (but they cannot store kernel pointers into them) - get_random (it's already exposed to unprivileged user space) - get_smp_processor_id - tail_call into another socket filter program - ktime_get_ns The feature is controlled by sysctl kernel.unprivileged_bpf_disabled. This toggle defaults to off (0), but can be set true (1). Once true, bpf programs and maps cannot be accessed from unprivileged process, and the toggle cannot be set back to false. Signed-off-by: Alexei Starovoitov <ast@plumgrid.com> Reviewed-by: Kees Cook <keescook@chromium.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2015-10-07 22:23:21 -07:00
if (is_pointer_value(env, insn->src_reg)) {
verbose("R%d pointer comparison prohibited\n",
insn->src_reg);
return -EACCES;
}
bpf: verifier (add verifier core) This patch adds verifier core which simulates execution of every insn and records the state of registers and program stack. Every branch instruction seen during simulation is pushed into state stack. When verifier reaches BPF_EXIT, it pops the state from the stack and continues until it reaches BPF_EXIT again. For program: 1: bpf_mov r1, xxx 2: if (r1 == 0) goto 5 3: bpf_mov r0, 1 4: goto 6 5: bpf_mov r0, 2 6: bpf_exit The verifier will walk insns: 1, 2, 3, 4, 6 then it will pop the state recorded at insn#2 and will continue: 5, 6 This way it walks all possible paths through the program and checks all possible values of registers. While doing so, it checks for: - invalid instructions - uninitialized register access - uninitialized stack access - misaligned stack access - out of range stack access - invalid calling convention - instruction encoding is not using reserved fields Kernel subsystem configures the verifier with two callbacks: - bool (*is_valid_access)(int off, int size, enum bpf_access_type type); that provides information to the verifer which fields of 'ctx' are accessible (remember 'ctx' is the first argument to eBPF program) - const struct bpf_func_proto *(*get_func_proto)(enum bpf_func_id func_id); returns argument constraints of kernel helper functions that eBPF program may call, so that verifier can checks that R1-R5 types match the prototype More details in Documentation/networking/filter.txt and in kernel/bpf/verifier.c Signed-off-by: Alexei Starovoitov <ast@plumgrid.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-09-26 00:17:06 -07:00
} else {
if (insn->src_reg != BPF_REG_0) {
verbose("BPF_JMP uses reserved fields\n");
return -EINVAL;
}
}
/* check src2 operand */
err = check_reg_arg(regs, insn->dst_reg, SRC_OP);
if (err)
return err;
dst_reg = &regs[insn->dst_reg];
bpf: verifier (add verifier core) This patch adds verifier core which simulates execution of every insn and records the state of registers and program stack. Every branch instruction seen during simulation is pushed into state stack. When verifier reaches BPF_EXIT, it pops the state from the stack and continues until it reaches BPF_EXIT again. For program: 1: bpf_mov r1, xxx 2: if (r1 == 0) goto 5 3: bpf_mov r0, 1 4: goto 6 5: bpf_mov r0, 2 6: bpf_exit The verifier will walk insns: 1, 2, 3, 4, 6 then it will pop the state recorded at insn#2 and will continue: 5, 6 This way it walks all possible paths through the program and checks all possible values of registers. While doing so, it checks for: - invalid instructions - uninitialized register access - uninitialized stack access - misaligned stack access - out of range stack access - invalid calling convention - instruction encoding is not using reserved fields Kernel subsystem configures the verifier with two callbacks: - bool (*is_valid_access)(int off, int size, enum bpf_access_type type); that provides information to the verifer which fields of 'ctx' are accessible (remember 'ctx' is the first argument to eBPF program) - const struct bpf_func_proto *(*get_func_proto)(enum bpf_func_id func_id); returns argument constraints of kernel helper functions that eBPF program may call, so that verifier can checks that R1-R5 types match the prototype More details in Documentation/networking/filter.txt and in kernel/bpf/verifier.c Signed-off-by: Alexei Starovoitov <ast@plumgrid.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-09-26 00:17:06 -07:00
/* detect if R == 0 where R was initialized to zero earlier */
if (BPF_SRC(insn->code) == BPF_K &&
(opcode == BPF_JEQ || opcode == BPF_JNE) &&
dst_reg->type == CONST_IMM && dst_reg->imm == insn->imm) {
bpf: verifier (add verifier core) This patch adds verifier core which simulates execution of every insn and records the state of registers and program stack. Every branch instruction seen during simulation is pushed into state stack. When verifier reaches BPF_EXIT, it pops the state from the stack and continues until it reaches BPF_EXIT again. For program: 1: bpf_mov r1, xxx 2: if (r1 == 0) goto 5 3: bpf_mov r0, 1 4: goto 6 5: bpf_mov r0, 2 6: bpf_exit The verifier will walk insns: 1, 2, 3, 4, 6 then it will pop the state recorded at insn#2 and will continue: 5, 6 This way it walks all possible paths through the program and checks all possible values of registers. While doing so, it checks for: - invalid instructions - uninitialized register access - uninitialized stack access - misaligned stack access - out of range stack access - invalid calling convention - instruction encoding is not using reserved fields Kernel subsystem configures the verifier with two callbacks: - bool (*is_valid_access)(int off, int size, enum bpf_access_type type); that provides information to the verifer which fields of 'ctx' are accessible (remember 'ctx' is the first argument to eBPF program) - const struct bpf_func_proto *(*get_func_proto)(enum bpf_func_id func_id); returns argument constraints of kernel helper functions that eBPF program may call, so that verifier can checks that R1-R5 types match the prototype More details in Documentation/networking/filter.txt and in kernel/bpf/verifier.c Signed-off-by: Alexei Starovoitov <ast@plumgrid.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-09-26 00:17:06 -07:00
if (opcode == BPF_JEQ) {
/* if (imm == imm) goto pc+off;
* only follow the goto, ignore fall-through
*/
*insn_idx += insn->off;
return 0;
} else {
/* if (imm != imm) goto pc+off;
* only follow fall-through branch, since
* that's where the program will go
*/
return 0;
}
}
other_branch = push_stack(env, *insn_idx + insn->off + 1, *insn_idx);
if (!other_branch)
return -EFAULT;
/* detect if we are comparing against a constant value so we can adjust
* our min/max values for our dst register.
*/
if (BPF_SRC(insn->code) == BPF_X) {
if (regs[insn->src_reg].type == CONST_IMM)
reg_set_min_max(&other_branch->regs[insn->dst_reg],
dst_reg, regs[insn->src_reg].imm,
opcode);
else if (dst_reg->type == CONST_IMM)
reg_set_min_max_inv(&other_branch->regs[insn->src_reg],
&regs[insn->src_reg], dst_reg->imm,
opcode);
} else {
reg_set_min_max(&other_branch->regs[insn->dst_reg],
dst_reg, insn->imm, opcode);
}
/* detect if R == 0 where R is returned from bpf_map_lookup_elem() */
bpf: verifier (add verifier core) This patch adds verifier core which simulates execution of every insn and records the state of registers and program stack. Every branch instruction seen during simulation is pushed into state stack. When verifier reaches BPF_EXIT, it pops the state from the stack and continues until it reaches BPF_EXIT again. For program: 1: bpf_mov r1, xxx 2: if (r1 == 0) goto 5 3: bpf_mov r0, 1 4: goto 6 5: bpf_mov r0, 2 6: bpf_exit The verifier will walk insns: 1, 2, 3, 4, 6 then it will pop the state recorded at insn#2 and will continue: 5, 6 This way it walks all possible paths through the program and checks all possible values of registers. While doing so, it checks for: - invalid instructions - uninitialized register access - uninitialized stack access - misaligned stack access - out of range stack access - invalid calling convention - instruction encoding is not using reserved fields Kernel subsystem configures the verifier with two callbacks: - bool (*is_valid_access)(int off, int size, enum bpf_access_type type); that provides information to the verifer which fields of 'ctx' are accessible (remember 'ctx' is the first argument to eBPF program) - const struct bpf_func_proto *(*get_func_proto)(enum bpf_func_id func_id); returns argument constraints of kernel helper functions that eBPF program may call, so that verifier can checks that R1-R5 types match the prototype More details in Documentation/networking/filter.txt and in kernel/bpf/verifier.c Signed-off-by: Alexei Starovoitov <ast@plumgrid.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-09-26 00:17:06 -07:00
if (BPF_SRC(insn->code) == BPF_K &&
insn->imm == 0 && (opcode == BPF_JEQ || opcode == BPF_JNE) &&
dst_reg->type == PTR_TO_MAP_VALUE_OR_NULL) {
/* Mark all identical map registers in each branch as either
* safe or unknown depending R == 0 or R != 0 conditional.
*/
mark_map_regs(this_branch, insn->dst_reg,
opcode == BPF_JEQ ? PTR_TO_MAP_VALUE : UNKNOWN_VALUE);
mark_map_regs(other_branch, insn->dst_reg,
opcode == BPF_JEQ ? UNKNOWN_VALUE : PTR_TO_MAP_VALUE);
bpf: direct packet access Extended BPF carried over two instructions from classic to access packet data: LD_ABS and LD_IND. They're highly optimized in JITs, but due to their design they have to do length check for every access. When BPF is processing 20M packets per second single LD_ABS after JIT is consuming 3% cpu. Hence the need to optimize it further by amortizing the cost of 'off < skb_headlen' over multiple packet accesses. One option is to introduce two new eBPF instructions LD_ABS_DW and LD_IND_DW with similar usage as skb_header_pointer(). The kernel part for interpreter and x64 JIT was implemented in [1], but such new insns behave like old ld_abs and abort the program with 'return 0' if access is beyond linear data. Such hidden control flow is hard to workaround plus changing JITs and rolling out new llvm is incovenient. Therefore allow cls_bpf/act_bpf program access skb->data directly: int bpf_prog(struct __sk_buff *skb) { struct iphdr *ip; if (skb->data + sizeof(struct iphdr) + ETH_HLEN > skb->data_end) /* packet too small */ return 0; ip = skb->data + ETH_HLEN; /* access IP header fields with direct loads */ if (ip->version != 4 || ip->saddr == 0x7f000001) return 1; [...] } This solution avoids introduction of new instructions. llvm stays the same and all JITs stay the same, but verifier has to work extra hard to prove safety of the above program. For XDP the direct store instructions can be allowed as well. The skb->data is NET_IP_ALIGNED, so for common cases the verifier can check the alignment. The complex packet parsers where packet pointer is adjusted incrementally cannot be tracked for alignment, so allow byte access in such cases and misaligned access on architectures that define efficient_unaligned_access [1] https://git.kernel.org/cgit/linux/kernel/git/ast/bpf.git/?h=ld_abs_dw Signed-off-by: Alexei Starovoitov <ast@kernel.org> Acked-by: Daniel Borkmann <daniel@iogearbox.net> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-05-05 19:49:10 -07:00
} else if (BPF_SRC(insn->code) == BPF_X && opcode == BPF_JGT &&
dst_reg->type == PTR_TO_PACKET &&
regs[insn->src_reg].type == PTR_TO_PACKET_END) {
bpf: fix range propagation on direct packet access LLVM can generate code that tests for direct packet access via skb->data/data_end in a way that currently gets rejected by the verifier, example: [...] 7: (61) r3 = *(u32 *)(r6 +80) 8: (61) r9 = *(u32 *)(r6 +76) 9: (bf) r2 = r9 10: (07) r2 += 54 11: (3d) if r3 >= r2 goto pc+12 R1=inv R2=pkt(id=0,off=54,r=0) R3=pkt_end R4=inv R6=ctx R9=pkt(id=0,off=0,r=0) R10=fp 12: (18) r4 = 0xffffff7a 14: (05) goto pc+430 [...] from 11 to 24: R1=inv R2=pkt(id=0,off=54,r=0) R3=pkt_end R4=inv R6=ctx R9=pkt(id=0,off=0,r=0) R10=fp 24: (7b) *(u64 *)(r10 -40) = r1 25: (b7) r1 = 0 26: (63) *(u32 *)(r6 +56) = r1 27: (b7) r2 = 40 28: (71) r8 = *(u8 *)(r9 +20) invalid access to packet, off=20 size=1, R9(id=0,off=0,r=0) The reason why this gets rejected despite a proper test is that we currently call find_good_pkt_pointers() only in case where we detect tests like rX > pkt_end, where rX is of type pkt(id=Y,off=Z,r=0) and derived, for example, from a register of type pkt(id=Y,off=0,r=0) pointing to skb->data. find_good_pkt_pointers() then fills the range in the current branch to pkt(id=Y,off=0,r=Z) on success. For above case, we need to extend that to recognize pkt_end >= rX pattern and mark the other branch that is taken on success with the appropriate pkt(id=Y,off=0,r=Z) type via find_good_pkt_pointers(). Since eBPF operates on BPF_JGT (>) and BPF_JGE (>=), these are the only two practical options to test for from what LLVM could have generated, since there's no such thing as BPF_JLT (<) or BPF_JLE (<=) that we would need to take into account as well. After the fix: [...] 7: (61) r3 = *(u32 *)(r6 +80) 8: (61) r9 = *(u32 *)(r6 +76) 9: (bf) r2 = r9 10: (07) r2 += 54 11: (3d) if r3 >= r2 goto pc+12 R1=inv R2=pkt(id=0,off=54,r=0) R3=pkt_end R4=inv R6=ctx R9=pkt(id=0,off=0,r=0) R10=fp 12: (18) r4 = 0xffffff7a 14: (05) goto pc+430 [...] from 11 to 24: R1=inv R2=pkt(id=0,off=54,r=54) R3=pkt_end R4=inv R6=ctx R9=pkt(id=0,off=0,r=54) R10=fp 24: (7b) *(u64 *)(r10 -40) = r1 25: (b7) r1 = 0 26: (63) *(u32 *)(r6 +56) = r1 27: (b7) r2 = 40 28: (71) r8 = *(u8 *)(r9 +20) 29: (bf) r1 = r8 30: (25) if r8 > 0x3c goto pc+47 R1=inv56 R2=imm40 R3=pkt_end R4=inv R6=ctx R8=inv56 R9=pkt(id=0,off=0,r=54) R10=fp 31: (b7) r1 = 1 [...] Verifier test cases are also added in this work, one that demonstrates the mentioned example here and one that tries a bad packet access for the current/fall-through branch (the one with types pkt(id=X,off=Y,r=0), pkt(id=X,off=0,r=0)), then a case with good and bad accesses, and two with both test variants (>, >=). Fixes: 969bf05eb3ce ("bpf: direct packet access") Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-09-08 01:03:42 +02:00
find_good_pkt_pointers(this_branch, dst_reg);
} else if (BPF_SRC(insn->code) == BPF_X && opcode == BPF_JGE &&
dst_reg->type == PTR_TO_PACKET_END &&
regs[insn->src_reg].type == PTR_TO_PACKET) {
find_good_pkt_pointers(other_branch, &regs[insn->src_reg]);
bpf: enable non-root eBPF programs In order to let unprivileged users load and execute eBPF programs teach verifier to prevent pointer leaks. Verifier will prevent - any arithmetic on pointers (except R10+Imm which is used to compute stack addresses) - comparison of pointers (except if (map_value_ptr == 0) ... ) - passing pointers to helper functions - indirectly passing pointers in stack to helper functions - returning pointer from bpf program - storing pointers into ctx or maps Spill/fill of pointers into stack is allowed, but mangling of pointers stored in the stack or reading them byte by byte is not. Within bpf programs the pointers do exist, since programs need to be able to access maps, pass skb pointer to LD_ABS insns, etc but programs cannot pass such pointer values to the outside or obfuscate them. Only allow BPF_PROG_TYPE_SOCKET_FILTER unprivileged programs, so that socket filters (tcpdump), af_packet (quic acceleration) and future kcm can use it. tracing and tc cls/act program types still require root permissions, since tracing actually needs to be able to see all kernel pointers and tc is for root only. For example, the following unprivileged socket filter program is allowed: int bpf_prog1(struct __sk_buff *skb) { u32 index = load_byte(skb, ETH_HLEN + offsetof(struct iphdr, protocol)); u64 *value = bpf_map_lookup_elem(&my_map, &index); if (value) *value += skb->len; return 0; } but the following program is not: int bpf_prog1(struct __sk_buff *skb) { u32 index = load_byte(skb, ETH_HLEN + offsetof(struct iphdr, protocol)); u64 *value = bpf_map_lookup_elem(&my_map, &index); if (value) *value += (u64) skb; return 0; } since it would leak the kernel address into the map. Unprivileged socket filter bpf programs have access to the following helper functions: - map lookup/update/delete (but they cannot store kernel pointers into them) - get_random (it's already exposed to unprivileged user space) - get_smp_processor_id - tail_call into another socket filter program - ktime_get_ns The feature is controlled by sysctl kernel.unprivileged_bpf_disabled. This toggle defaults to off (0), but can be set true (1). Once true, bpf programs and maps cannot be accessed from unprivileged process, and the toggle cannot be set back to false. Signed-off-by: Alexei Starovoitov <ast@plumgrid.com> Reviewed-by: Kees Cook <keescook@chromium.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2015-10-07 22:23:21 -07:00
} else if (is_pointer_value(env, insn->dst_reg)) {
verbose("R%d pointer comparison prohibited\n", insn->dst_reg);
return -EACCES;
bpf: verifier (add verifier core) This patch adds verifier core which simulates execution of every insn and records the state of registers and program stack. Every branch instruction seen during simulation is pushed into state stack. When verifier reaches BPF_EXIT, it pops the state from the stack and continues until it reaches BPF_EXIT again. For program: 1: bpf_mov r1, xxx 2: if (r1 == 0) goto 5 3: bpf_mov r0, 1 4: goto 6 5: bpf_mov r0, 2 6: bpf_exit The verifier will walk insns: 1, 2, 3, 4, 6 then it will pop the state recorded at insn#2 and will continue: 5, 6 This way it walks all possible paths through the program and checks all possible values of registers. While doing so, it checks for: - invalid instructions - uninitialized register access - uninitialized stack access - misaligned stack access - out of range stack access - invalid calling convention - instruction encoding is not using reserved fields Kernel subsystem configures the verifier with two callbacks: - bool (*is_valid_access)(int off, int size, enum bpf_access_type type); that provides information to the verifer which fields of 'ctx' are accessible (remember 'ctx' is the first argument to eBPF program) - const struct bpf_func_proto *(*get_func_proto)(enum bpf_func_id func_id); returns argument constraints of kernel helper functions that eBPF program may call, so that verifier can checks that R1-R5 types match the prototype More details in Documentation/networking/filter.txt and in kernel/bpf/verifier.c Signed-off-by: Alexei Starovoitov <ast@plumgrid.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-09-26 00:17:06 -07:00
}
if (log_level)
bpf: fix range propagation on direct packet access LLVM can generate code that tests for direct packet access via skb->data/data_end in a way that currently gets rejected by the verifier, example: [...] 7: (61) r3 = *(u32 *)(r6 +80) 8: (61) r9 = *(u32 *)(r6 +76) 9: (bf) r2 = r9 10: (07) r2 += 54 11: (3d) if r3 >= r2 goto pc+12 R1=inv R2=pkt(id=0,off=54,r=0) R3=pkt_end R4=inv R6=ctx R9=pkt(id=0,off=0,r=0) R10=fp 12: (18) r4 = 0xffffff7a 14: (05) goto pc+430 [...] from 11 to 24: R1=inv R2=pkt(id=0,off=54,r=0) R3=pkt_end R4=inv R6=ctx R9=pkt(id=0,off=0,r=0) R10=fp 24: (7b) *(u64 *)(r10 -40) = r1 25: (b7) r1 = 0 26: (63) *(u32 *)(r6 +56) = r1 27: (b7) r2 = 40 28: (71) r8 = *(u8 *)(r9 +20) invalid access to packet, off=20 size=1, R9(id=0,off=0,r=0) The reason why this gets rejected despite a proper test is that we currently call find_good_pkt_pointers() only in case where we detect tests like rX > pkt_end, where rX is of type pkt(id=Y,off=Z,r=0) and derived, for example, from a register of type pkt(id=Y,off=0,r=0) pointing to skb->data. find_good_pkt_pointers() then fills the range in the current branch to pkt(id=Y,off=0,r=Z) on success. For above case, we need to extend that to recognize pkt_end >= rX pattern and mark the other branch that is taken on success with the appropriate pkt(id=Y,off=0,r=Z) type via find_good_pkt_pointers(). Since eBPF operates on BPF_JGT (>) and BPF_JGE (>=), these are the only two practical options to test for from what LLVM could have generated, since there's no such thing as BPF_JLT (<) or BPF_JLE (<=) that we would need to take into account as well. After the fix: [...] 7: (61) r3 = *(u32 *)(r6 +80) 8: (61) r9 = *(u32 *)(r6 +76) 9: (bf) r2 = r9 10: (07) r2 += 54 11: (3d) if r3 >= r2 goto pc+12 R1=inv R2=pkt(id=0,off=54,r=0) R3=pkt_end R4=inv R6=ctx R9=pkt(id=0,off=0,r=0) R10=fp 12: (18) r4 = 0xffffff7a 14: (05) goto pc+430 [...] from 11 to 24: R1=inv R2=pkt(id=0,off=54,r=54) R3=pkt_end R4=inv R6=ctx R9=pkt(id=0,off=0,r=54) R10=fp 24: (7b) *(u64 *)(r10 -40) = r1 25: (b7) r1 = 0 26: (63) *(u32 *)(r6 +56) = r1 27: (b7) r2 = 40 28: (71) r8 = *(u8 *)(r9 +20) 29: (bf) r1 = r8 30: (25) if r8 > 0x3c goto pc+47 R1=inv56 R2=imm40 R3=pkt_end R4=inv R6=ctx R8=inv56 R9=pkt(id=0,off=0,r=54) R10=fp 31: (b7) r1 = 1 [...] Verifier test cases are also added in this work, one that demonstrates the mentioned example here and one that tries a bad packet access for the current/fall-through branch (the one with types pkt(id=X,off=Y,r=0), pkt(id=X,off=0,r=0)), then a case with good and bad accesses, and two with both test variants (>, >=). Fixes: 969bf05eb3ce ("bpf: direct packet access") Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-09-08 01:03:42 +02:00
print_verifier_state(this_branch);
bpf: verifier (add verifier core) This patch adds verifier core which simulates execution of every insn and records the state of registers and program stack. Every branch instruction seen during simulation is pushed into state stack. When verifier reaches BPF_EXIT, it pops the state from the stack and continues until it reaches BPF_EXIT again. For program: 1: bpf_mov r1, xxx 2: if (r1 == 0) goto 5 3: bpf_mov r0, 1 4: goto 6 5: bpf_mov r0, 2 6: bpf_exit The verifier will walk insns: 1, 2, 3, 4, 6 then it will pop the state recorded at insn#2 and will continue: 5, 6 This way it walks all possible paths through the program and checks all possible values of registers. While doing so, it checks for: - invalid instructions - uninitialized register access - uninitialized stack access - misaligned stack access - out of range stack access - invalid calling convention - instruction encoding is not using reserved fields Kernel subsystem configures the verifier with two callbacks: - bool (*is_valid_access)(int off, int size, enum bpf_access_type type); that provides information to the verifer which fields of 'ctx' are accessible (remember 'ctx' is the first argument to eBPF program) - const struct bpf_func_proto *(*get_func_proto)(enum bpf_func_id func_id); returns argument constraints of kernel helper functions that eBPF program may call, so that verifier can checks that R1-R5 types match the prototype More details in Documentation/networking/filter.txt and in kernel/bpf/verifier.c Signed-off-by: Alexei Starovoitov <ast@plumgrid.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-09-26 00:17:06 -07:00
return 0;
}
/* return the map pointer stored inside BPF_LD_IMM64 instruction */
static struct bpf_map *ld_imm64_to_map_ptr(struct bpf_insn *insn)
{
u64 imm64 = ((u64) (u32) insn[0].imm) | ((u64) (u32) insn[1].imm) << 32;
return (struct bpf_map *) (unsigned long) imm64;
}
bpf: verifier (add verifier core) This patch adds verifier core which simulates execution of every insn and records the state of registers and program stack. Every branch instruction seen during simulation is pushed into state stack. When verifier reaches BPF_EXIT, it pops the state from the stack and continues until it reaches BPF_EXIT again. For program: 1: bpf_mov r1, xxx 2: if (r1 == 0) goto 5 3: bpf_mov r0, 1 4: goto 6 5: bpf_mov r0, 2 6: bpf_exit The verifier will walk insns: 1, 2, 3, 4, 6 then it will pop the state recorded at insn#2 and will continue: 5, 6 This way it walks all possible paths through the program and checks all possible values of registers. While doing so, it checks for: - invalid instructions - uninitialized register access - uninitialized stack access - misaligned stack access - out of range stack access - invalid calling convention - instruction encoding is not using reserved fields Kernel subsystem configures the verifier with two callbacks: - bool (*is_valid_access)(int off, int size, enum bpf_access_type type); that provides information to the verifer which fields of 'ctx' are accessible (remember 'ctx' is the first argument to eBPF program) - const struct bpf_func_proto *(*get_func_proto)(enum bpf_func_id func_id); returns argument constraints of kernel helper functions that eBPF program may call, so that verifier can checks that R1-R5 types match the prototype More details in Documentation/networking/filter.txt and in kernel/bpf/verifier.c Signed-off-by: Alexei Starovoitov <ast@plumgrid.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-09-26 00:17:06 -07:00
/* verify BPF_LD_IMM64 instruction */
static int check_ld_imm(struct bpf_verifier_env *env, struct bpf_insn *insn)
bpf: verifier (add verifier core) This patch adds verifier core which simulates execution of every insn and records the state of registers and program stack. Every branch instruction seen during simulation is pushed into state stack. When verifier reaches BPF_EXIT, it pops the state from the stack and continues until it reaches BPF_EXIT again. For program: 1: bpf_mov r1, xxx 2: if (r1 == 0) goto 5 3: bpf_mov r0, 1 4: goto 6 5: bpf_mov r0, 2 6: bpf_exit The verifier will walk insns: 1, 2, 3, 4, 6 then it will pop the state recorded at insn#2 and will continue: 5, 6 This way it walks all possible paths through the program and checks all possible values of registers. While doing so, it checks for: - invalid instructions - uninitialized register access - uninitialized stack access - misaligned stack access - out of range stack access - invalid calling convention - instruction encoding is not using reserved fields Kernel subsystem configures the verifier with two callbacks: - bool (*is_valid_access)(int off, int size, enum bpf_access_type type); that provides information to the verifer which fields of 'ctx' are accessible (remember 'ctx' is the first argument to eBPF program) - const struct bpf_func_proto *(*get_func_proto)(enum bpf_func_id func_id); returns argument constraints of kernel helper functions that eBPF program may call, so that verifier can checks that R1-R5 types match the prototype More details in Documentation/networking/filter.txt and in kernel/bpf/verifier.c Signed-off-by: Alexei Starovoitov <ast@plumgrid.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-09-26 00:17:06 -07:00
{
struct bpf_reg_state *regs = env->cur_state.regs;
bpf: verifier (add verifier core) This patch adds verifier core which simulates execution of every insn and records the state of registers and program stack. Every branch instruction seen during simulation is pushed into state stack. When verifier reaches BPF_EXIT, it pops the state from the stack and continues until it reaches BPF_EXIT again. For program: 1: bpf_mov r1, xxx 2: if (r1 == 0) goto 5 3: bpf_mov r0, 1 4: goto 6 5: bpf_mov r0, 2 6: bpf_exit The verifier will walk insns: 1, 2, 3, 4, 6 then it will pop the state recorded at insn#2 and will continue: 5, 6 This way it walks all possible paths through the program and checks all possible values of registers. While doing so, it checks for: - invalid instructions - uninitialized register access - uninitialized stack access - misaligned stack access - out of range stack access - invalid calling convention - instruction encoding is not using reserved fields Kernel subsystem configures the verifier with two callbacks: - bool (*is_valid_access)(int off, int size, enum bpf_access_type type); that provides information to the verifer which fields of 'ctx' are accessible (remember 'ctx' is the first argument to eBPF program) - const struct bpf_func_proto *(*get_func_proto)(enum bpf_func_id func_id); returns argument constraints of kernel helper functions that eBPF program may call, so that verifier can checks that R1-R5 types match the prototype More details in Documentation/networking/filter.txt and in kernel/bpf/verifier.c Signed-off-by: Alexei Starovoitov <ast@plumgrid.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-09-26 00:17:06 -07:00
int err;
if (BPF_SIZE(insn->code) != BPF_DW) {
verbose("invalid BPF_LD_IMM insn\n");
return -EINVAL;
}
if (insn->off != 0) {
verbose("BPF_LD_IMM64 uses reserved fields\n");
return -EINVAL;
}
err = check_reg_arg(regs, insn->dst_reg, DST_OP);
if (err)
return err;
if (insn->src_reg == 0) {
u64 imm = ((u64)(insn + 1)->imm << 32) | (u32)insn->imm;
regs[insn->dst_reg].type = CONST_IMM;
regs[insn->dst_reg].imm = imm;
bpf: verifier (add verifier core) This patch adds verifier core which simulates execution of every insn and records the state of registers and program stack. Every branch instruction seen during simulation is pushed into state stack. When verifier reaches BPF_EXIT, it pops the state from the stack and continues until it reaches BPF_EXIT again. For program: 1: bpf_mov r1, xxx 2: if (r1 == 0) goto 5 3: bpf_mov r0, 1 4: goto 6 5: bpf_mov r0, 2 6: bpf_exit The verifier will walk insns: 1, 2, 3, 4, 6 then it will pop the state recorded at insn#2 and will continue: 5, 6 This way it walks all possible paths through the program and checks all possible values of registers. While doing so, it checks for: - invalid instructions - uninitialized register access - uninitialized stack access - misaligned stack access - out of range stack access - invalid calling convention - instruction encoding is not using reserved fields Kernel subsystem configures the verifier with two callbacks: - bool (*is_valid_access)(int off, int size, enum bpf_access_type type); that provides information to the verifer which fields of 'ctx' are accessible (remember 'ctx' is the first argument to eBPF program) - const struct bpf_func_proto *(*get_func_proto)(enum bpf_func_id func_id); returns argument constraints of kernel helper functions that eBPF program may call, so that verifier can checks that R1-R5 types match the prototype More details in Documentation/networking/filter.txt and in kernel/bpf/verifier.c Signed-off-by: Alexei Starovoitov <ast@plumgrid.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-09-26 00:17:06 -07:00
return 0;
}
bpf: verifier (add verifier core) This patch adds verifier core which simulates execution of every insn and records the state of registers and program stack. Every branch instruction seen during simulation is pushed into state stack. When verifier reaches BPF_EXIT, it pops the state from the stack and continues until it reaches BPF_EXIT again. For program: 1: bpf_mov r1, xxx 2: if (r1 == 0) goto 5 3: bpf_mov r0, 1 4: goto 6 5: bpf_mov r0, 2 6: bpf_exit The verifier will walk insns: 1, 2, 3, 4, 6 then it will pop the state recorded at insn#2 and will continue: 5, 6 This way it walks all possible paths through the program and checks all possible values of registers. While doing so, it checks for: - invalid instructions - uninitialized register access - uninitialized stack access - misaligned stack access - out of range stack access - invalid calling convention - instruction encoding is not using reserved fields Kernel subsystem configures the verifier with two callbacks: - bool (*is_valid_access)(int off, int size, enum bpf_access_type type); that provides information to the verifer which fields of 'ctx' are accessible (remember 'ctx' is the first argument to eBPF program) - const struct bpf_func_proto *(*get_func_proto)(enum bpf_func_id func_id); returns argument constraints of kernel helper functions that eBPF program may call, so that verifier can checks that R1-R5 types match the prototype More details in Documentation/networking/filter.txt and in kernel/bpf/verifier.c Signed-off-by: Alexei Starovoitov <ast@plumgrid.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-09-26 00:17:06 -07:00
/* replace_map_fd_with_map_ptr() should have caught bad ld_imm64 */
BUG_ON(insn->src_reg != BPF_PSEUDO_MAP_FD);
regs[insn->dst_reg].type = CONST_PTR_TO_MAP;
regs[insn->dst_reg].map_ptr = ld_imm64_to_map_ptr(insn);
return 0;
}
static bool may_access_skb(enum bpf_prog_type type)
{
switch (type) {
case BPF_PROG_TYPE_SOCKET_FILTER:
case BPF_PROG_TYPE_SCHED_CLS:
case BPF_PROG_TYPE_SCHED_ACT:
return true;
default:
return false;
}
}
/* verify safety of LD_ABS|LD_IND instructions:
* - they can only appear in the programs where ctx == skb
* - since they are wrappers of function calls, they scratch R1-R5 registers,
* preserve R6-R9, and store return value into R0
*
* Implicit input:
* ctx == skb == R6 == CTX
*
* Explicit input:
* SRC == any register
* IMM == 32-bit immediate
*
* Output:
* R0 - 8/16/32-bit skb data converted to cpu endianness
*/
static int check_ld_abs(struct bpf_verifier_env *env, struct bpf_insn *insn)
{
struct bpf_reg_state *regs = env->cur_state.regs;
u8 mode = BPF_MODE(insn->code);
struct bpf_reg_state *reg;
int i, err;
if (!may_access_skb(env->prog->type)) {
verbose("BPF_LD_[ABS|IND] instructions not allowed for this program type\n");
return -EINVAL;
}
if (insn->dst_reg != BPF_REG_0 || insn->off != 0 ||
BPF_SIZE(insn->code) == BPF_DW ||
(mode == BPF_ABS && insn->src_reg != BPF_REG_0)) {
verbose("BPF_LD_[ABS|IND] uses reserved fields\n");
return -EINVAL;
}
/* check whether implicit source operand (register R6) is readable */
err = check_reg_arg(regs, BPF_REG_6, SRC_OP);
if (err)
return err;
if (regs[BPF_REG_6].type != PTR_TO_CTX) {
verbose("at the time of BPF_LD_ABS|IND R6 != pointer to skb\n");
return -EINVAL;
}
if (mode == BPF_IND) {
/* check explicit source operand */
err = check_reg_arg(regs, insn->src_reg, SRC_OP);
if (err)
return err;
}
/* reset caller saved regs to unreadable */
for (i = 0; i < CALLER_SAVED_REGS; i++) {
reg = regs + caller_saved[i];
reg->type = NOT_INIT;
reg->imm = 0;
}
/* mark destination R0 register as readable, since it contains
* the value fetched from the packet
*/
regs[BPF_REG_0].type = UNKNOWN_VALUE;
return 0;
}
/* non-recursive DFS pseudo code
* 1 procedure DFS-iterative(G,v):
* 2 label v as discovered
* 3 let S be a stack
* 4 S.push(v)
* 5 while S is not empty
* 6 t <- S.pop()
* 7 if t is what we're looking for:
* 8 return t
* 9 for all edges e in G.adjacentEdges(t) do
* 10 if edge e is already labelled
* 11 continue with the next edge
* 12 w <- G.adjacentVertex(t,e)
* 13 if vertex w is not discovered and not explored
* 14 label e as tree-edge
* 15 label w as discovered
* 16 S.push(w)
* 17 continue at 5
* 18 else if vertex w is discovered
* 19 label e as back-edge
* 20 else
* 21 // vertex w is explored
* 22 label e as forward- or cross-edge
* 23 label t as explored
* 24 S.pop()
*
* convention:
* 0x10 - discovered
* 0x11 - discovered and fall-through edge labelled
* 0x12 - discovered and fall-through and branch edges labelled
* 0x20 - explored
*/
enum {
DISCOVERED = 0x10,
EXPLORED = 0x20,
FALLTHROUGH = 1,
BRANCH = 2,
};
#define STATE_LIST_MARK ((struct bpf_verifier_state_list *) -1L)
bpf: add search pruning optimization to verifier consider C program represented in eBPF: int filter(int arg) { int a, b, c, *ptr; if (arg == 1) ptr = &a; else if (arg == 2) ptr = &b; else ptr = &c; *ptr = 0; return 0; } eBPF verifier has to follow all possible paths through the program to recognize that '*ptr = 0' instruction would be safe to execute in all situations. It's doing it by picking a path towards the end and observes changes to registers and stack at every insn until it reaches bpf_exit. Then it comes back to one of the previous branches and goes towards the end again with potentially different values in registers. When program has a lot of branches, the number of possible combinations of branches is huge, so verifer has a hard limit of walking no more than 32k instructions. This limit can be reached and complex (but valid) programs could be rejected. Therefore it's important to recognize equivalent verifier states to prune this depth first search. Basic idea can be illustrated by the program (where .. are some eBPF insns): 1: .. 2: if (rX == rY) goto 4 3: .. 4: .. 5: .. 6: bpf_exit In the first pass towards bpf_exit the verifier will walk insns: 1, 2, 3, 4, 5, 6 Since insn#2 is a branch the verifier will remember its state in verifier stack to come back to it later. Since insn#4 is marked as 'branch target', the verifier will remember its state in explored_states[4] linked list. Once it reaches insn#6 successfully it will pop the state recorded at insn#2 and will continue. Without search pruning optimization verifier would have to walk 4, 5, 6 again, effectively simulating execution of insns 1, 2, 4, 5, 6 With search pruning it will check whether state at #4 after jumping from #2 is equivalent to one recorded in explored_states[4] during first pass. If there is an equivalent state, verifier can prune the search at #4 and declare this path to be safe as well. In other words two states at #4 are equivalent if execution of 1, 2, 3, 4 insns and 1, 2, 4 insns produces equivalent registers and stack. Signed-off-by: Alexei Starovoitov <ast@plumgrid.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-09-29 18:50:01 -07:00
static int *insn_stack; /* stack of insns to process */
static int cur_stack; /* current stack index */
static int *insn_state;
/* t, w, e - match pseudo-code above:
* t - index of current instruction
* w - next instruction
* e - edge
*/
static int push_insn(int t, int w, int e, struct bpf_verifier_env *env)
{
if (e == FALLTHROUGH && insn_state[t] >= (DISCOVERED | FALLTHROUGH))
return 0;
if (e == BRANCH && insn_state[t] >= (DISCOVERED | BRANCH))
return 0;
if (w < 0 || w >= env->prog->len) {
verbose("jump out of range from insn %d to %d\n", t, w);
return -EINVAL;
}
bpf: add search pruning optimization to verifier consider C program represented in eBPF: int filter(int arg) { int a, b, c, *ptr; if (arg == 1) ptr = &a; else if (arg == 2) ptr = &b; else ptr = &c; *ptr = 0; return 0; } eBPF verifier has to follow all possible paths through the program to recognize that '*ptr = 0' instruction would be safe to execute in all situations. It's doing it by picking a path towards the end and observes changes to registers and stack at every insn until it reaches bpf_exit. Then it comes back to one of the previous branches and goes towards the end again with potentially different values in registers. When program has a lot of branches, the number of possible combinations of branches is huge, so verifer has a hard limit of walking no more than 32k instructions. This limit can be reached and complex (but valid) programs could be rejected. Therefore it's important to recognize equivalent verifier states to prune this depth first search. Basic idea can be illustrated by the program (where .. are some eBPF insns): 1: .. 2: if (rX == rY) goto 4 3: .. 4: .. 5: .. 6: bpf_exit In the first pass towards bpf_exit the verifier will walk insns: 1, 2, 3, 4, 5, 6 Since insn#2 is a branch the verifier will remember its state in verifier stack to come back to it later. Since insn#4 is marked as 'branch target', the verifier will remember its state in explored_states[4] linked list. Once it reaches insn#6 successfully it will pop the state recorded at insn#2 and will continue. Without search pruning optimization verifier would have to walk 4, 5, 6 again, effectively simulating execution of insns 1, 2, 4, 5, 6 With search pruning it will check whether state at #4 after jumping from #2 is equivalent to one recorded in explored_states[4] during first pass. If there is an equivalent state, verifier can prune the search at #4 and declare this path to be safe as well. In other words two states at #4 are equivalent if execution of 1, 2, 3, 4 insns and 1, 2, 4 insns produces equivalent registers and stack. Signed-off-by: Alexei Starovoitov <ast@plumgrid.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-09-29 18:50:01 -07:00
if (e == BRANCH)
/* mark branch target for state pruning */
env->explored_states[w] = STATE_LIST_MARK;
if (insn_state[w] == 0) {
/* tree-edge */
insn_state[t] = DISCOVERED | e;
insn_state[w] = DISCOVERED;
if (cur_stack >= env->prog->len)
return -E2BIG;
insn_stack[cur_stack++] = w;
return 1;
} else if ((insn_state[w] & 0xF0) == DISCOVERED) {
verbose("back-edge from insn %d to %d\n", t, w);
return -EINVAL;
} else if (insn_state[w] == EXPLORED) {
/* forward- or cross-edge */
insn_state[t] = DISCOVERED | e;
} else {
verbose("insn state internal bug\n");
return -EFAULT;
}
return 0;
}
/* non-recursive depth-first-search to detect loops in BPF program
* loop == back-edge in directed graph
*/
static int check_cfg(struct bpf_verifier_env *env)
{
struct bpf_insn *insns = env->prog->insnsi;
int insn_cnt = env->prog->len;
int ret = 0;
int i, t;
insn_state = kcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
if (!insn_state)
return -ENOMEM;
insn_stack = kcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
if (!insn_stack) {
kfree(insn_state);
return -ENOMEM;
}
insn_state[0] = DISCOVERED; /* mark 1st insn as discovered */
insn_stack[0] = 0; /* 0 is the first instruction */
cur_stack = 1;
peek_stack:
if (cur_stack == 0)
goto check_state;
t = insn_stack[cur_stack - 1];
if (BPF_CLASS(insns[t].code) == BPF_JMP) {
u8 opcode = BPF_OP(insns[t].code);
if (opcode == BPF_EXIT) {
goto mark_explored;
} else if (opcode == BPF_CALL) {
ret = push_insn(t, t + 1, FALLTHROUGH, env);
if (ret == 1)
goto peek_stack;
else if (ret < 0)
goto err_free;
bpf, verifier: further improve search pruning The verifier needs to go through every path of the program in order to check that it terminates safely, which can be quite a lot of instructions that need to be processed f.e. in cases with more branchy programs. With search pruning from f1bca824dabb ("bpf: add search pruning optimization to verifier") the search space can already be reduced significantly when the verifier detects that a previously walked path with same register and stack contents terminated already (see verifier's states_equal()), so the search can skip walking those states. When working with larger programs of > ~2000 (out of max 4096) insns, we found that the current limit of 32k instructions is easily hit. For example, a case we ran into is that the search space cannot be pruned due to branches at the beginning of the program that make use of certain stack space slots (STACK_MISC), which are never used in the remaining program (STACK_INVALID). Therefore, the verifier needs to walk paths for the slots in STACK_INVALID state, but also all remaining paths with a stack structure, where the slots are in STACK_MISC, which can nearly double the search space needed. After various experiments, we find that a limit of 64k processed insns is a more reasonable choice when dealing with larger programs in practice. This still allows to reject extreme crafted cases that can have a much higher complexity (f.e. > ~300k) within the 4096 insns limit due to search pruning not being able to take effect. Furthermore, we found that a lot of states can be pruned after a call instruction, f.e. we were able to reduce the search state by ~35% in some cases with this heuristic, trade-off is to keep a bit more states in env->explored_states. Usually, call instructions have a number of preceding register assignments and/or stack stores, where search pruning has a better chance to suceed in states_equal() test. The current code marks the branch targets with STATE_LIST_MARK in case of conditional jumps, and the next (t + 1) instruction in case of unconditional jump so that f.e. a backjump will walk it. We also did experiments with using t + insns[t].off + 1 as a marker in the unconditionally jump case instead of t + 1 with the rationale that these two branches of execution that converge after the label might have more potential of pruning. We found that it was a bit better, but not necessarily significantly better than the current state, perhaps also due to clang not generating back jumps often. Hence, we left that as is for now. Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-04-05 22:33:17 +02:00
if (t + 1 < insn_cnt)
env->explored_states[t + 1] = STATE_LIST_MARK;
} else if (opcode == BPF_JA) {
if (BPF_SRC(insns[t].code) != BPF_K) {
ret = -EINVAL;
goto err_free;
}
/* unconditional jump with single edge */
ret = push_insn(t, t + insns[t].off + 1,
FALLTHROUGH, env);
if (ret == 1)
goto peek_stack;
else if (ret < 0)
goto err_free;
bpf: add search pruning optimization to verifier consider C program represented in eBPF: int filter(int arg) { int a, b, c, *ptr; if (arg == 1) ptr = &a; else if (arg == 2) ptr = &b; else ptr = &c; *ptr = 0; return 0; } eBPF verifier has to follow all possible paths through the program to recognize that '*ptr = 0' instruction would be safe to execute in all situations. It's doing it by picking a path towards the end and observes changes to registers and stack at every insn until it reaches bpf_exit. Then it comes back to one of the previous branches and goes towards the end again with potentially different values in registers. When program has a lot of branches, the number of possible combinations of branches is huge, so verifer has a hard limit of walking no more than 32k instructions. This limit can be reached and complex (but valid) programs could be rejected. Therefore it's important to recognize equivalent verifier states to prune this depth first search. Basic idea can be illustrated by the program (where .. are some eBPF insns): 1: .. 2: if (rX == rY) goto 4 3: .. 4: .. 5: .. 6: bpf_exit In the first pass towards bpf_exit the verifier will walk insns: 1, 2, 3, 4, 5, 6 Since insn#2 is a branch the verifier will remember its state in verifier stack to come back to it later. Since insn#4 is marked as 'branch target', the verifier will remember its state in explored_states[4] linked list. Once it reaches insn#6 successfully it will pop the state recorded at insn#2 and will continue. Without search pruning optimization verifier would have to walk 4, 5, 6 again, effectively simulating execution of insns 1, 2, 4, 5, 6 With search pruning it will check whether state at #4 after jumping from #2 is equivalent to one recorded in explored_states[4] during first pass. If there is an equivalent state, verifier can prune the search at #4 and declare this path to be safe as well. In other words two states at #4 are equivalent if execution of 1, 2, 3, 4 insns and 1, 2, 4 insns produces equivalent registers and stack. Signed-off-by: Alexei Starovoitov <ast@plumgrid.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-09-29 18:50:01 -07:00
/* tell verifier to check for equivalent states
* after every call and jump
*/
if (t + 1 < insn_cnt)
env->explored_states[t + 1] = STATE_LIST_MARK;
} else {
/* conditional jump with two edges */
ret = push_insn(t, t + 1, FALLTHROUGH, env);
if (ret == 1)
goto peek_stack;
else if (ret < 0)
goto err_free;
ret = push_insn(t, t + insns[t].off + 1, BRANCH, env);
if (ret == 1)
goto peek_stack;
else if (ret < 0)
goto err_free;
}
} else {
/* all other non-branch instructions with single
* fall-through edge
*/
ret = push_insn(t, t + 1, FALLTHROUGH, env);
if (ret == 1)
goto peek_stack;
else if (ret < 0)
goto err_free;
}
mark_explored:
insn_state[t] = EXPLORED;
if (cur_stack-- <= 0) {
verbose("pop stack internal bug\n");
ret = -EFAULT;
goto err_free;
}
goto peek_stack;
check_state:
for (i = 0; i < insn_cnt; i++) {
if (insn_state[i] != EXPLORED) {
verbose("unreachable insn %d\n", i);
ret = -EINVAL;
goto err_free;
}
}
ret = 0; /* cfg looks good */
err_free:
kfree(insn_state);
kfree(insn_stack);
return ret;
}
bpf: direct packet access Extended BPF carried over two instructions from classic to access packet data: LD_ABS and LD_IND. They're highly optimized in JITs, but due to their design they have to do length check for every access. When BPF is processing 20M packets per second single LD_ABS after JIT is consuming 3% cpu. Hence the need to optimize it further by amortizing the cost of 'off < skb_headlen' over multiple packet accesses. One option is to introduce two new eBPF instructions LD_ABS_DW and LD_IND_DW with similar usage as skb_header_pointer(). The kernel part for interpreter and x64 JIT was implemented in [1], but such new insns behave like old ld_abs and abort the program with 'return 0' if access is beyond linear data. Such hidden control flow is hard to workaround plus changing JITs and rolling out new llvm is incovenient. Therefore allow cls_bpf/act_bpf program access skb->data directly: int bpf_prog(struct __sk_buff *skb) { struct iphdr *ip; if (skb->data + sizeof(struct iphdr) + ETH_HLEN > skb->data_end) /* packet too small */ return 0; ip = skb->data + ETH_HLEN; /* access IP header fields with direct loads */ if (ip->version != 4 || ip->saddr == 0x7f000001) return 1; [...] } This solution avoids introduction of new instructions. llvm stays the same and all JITs stay the same, but verifier has to work extra hard to prove safety of the above program. For XDP the direct store instructions can be allowed as well. The skb->data is NET_IP_ALIGNED, so for common cases the verifier can check the alignment. The complex packet parsers where packet pointer is adjusted incrementally cannot be tracked for alignment, so allow byte access in such cases and misaligned access on architectures that define efficient_unaligned_access [1] https://git.kernel.org/cgit/linux/kernel/git/ast/bpf.git/?h=ld_abs_dw Signed-off-by: Alexei Starovoitov <ast@kernel.org> Acked-by: Daniel Borkmann <daniel@iogearbox.net> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-05-05 19:49:10 -07:00
/* the following conditions reduce the number of explored insns
* from ~140k to ~80k for ultra large programs that use a lot of ptr_to_packet
*/
static bool compare_ptrs_to_packet(struct bpf_reg_state *old,
struct bpf_reg_state *cur)
bpf: direct packet access Extended BPF carried over two instructions from classic to access packet data: LD_ABS and LD_IND. They're highly optimized in JITs, but due to their design they have to do length check for every access. When BPF is processing 20M packets per second single LD_ABS after JIT is consuming 3% cpu. Hence the need to optimize it further by amortizing the cost of 'off < skb_headlen' over multiple packet accesses. One option is to introduce two new eBPF instructions LD_ABS_DW and LD_IND_DW with similar usage as skb_header_pointer(). The kernel part for interpreter and x64 JIT was implemented in [1], but such new insns behave like old ld_abs and abort the program with 'return 0' if access is beyond linear data. Such hidden control flow is hard to workaround plus changing JITs and rolling out new llvm is incovenient. Therefore allow cls_bpf/act_bpf program access skb->data directly: int bpf_prog(struct __sk_buff *skb) { struct iphdr *ip; if (skb->data + sizeof(struct iphdr) + ETH_HLEN > skb->data_end) /* packet too small */ return 0; ip = skb->data + ETH_HLEN; /* access IP header fields with direct loads */ if (ip->version != 4 || ip->saddr == 0x7f000001) return 1; [...] } This solution avoids introduction of new instructions. llvm stays the same and all JITs stay the same, but verifier has to work extra hard to prove safety of the above program. For XDP the direct store instructions can be allowed as well. The skb->data is NET_IP_ALIGNED, so for common cases the verifier can check the alignment. The complex packet parsers where packet pointer is adjusted incrementally cannot be tracked for alignment, so allow byte access in such cases and misaligned access on architectures that define efficient_unaligned_access [1] https://git.kernel.org/cgit/linux/kernel/git/ast/bpf.git/?h=ld_abs_dw Signed-off-by: Alexei Starovoitov <ast@kernel.org> Acked-by: Daniel Borkmann <daniel@iogearbox.net> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-05-05 19:49:10 -07:00
{
if (old->id != cur->id)
return false;
/* old ptr_to_packet is more conservative, since it allows smaller
* range. Ex:
* old(off=0,r=10) is equal to cur(off=0,r=20), because
* old(off=0,r=10) means that with range=10 the verifier proceeded
* further and found no issues with the program. Now we're in the same
* spot with cur(off=0,r=20), so we're safe too, since anything further
* will only be looking at most 10 bytes after this pointer.
*/
if (old->off == cur->off && old->range < cur->range)
return true;
/* old(off=20,r=10) is equal to cur(off=22,re=22 or 5 or 0)
* since both cannot be used for packet access and safe(old)
* pointer has smaller off that could be used for further
* 'if (ptr > data_end)' check
* Ex:
* old(off=20,r=10) and cur(off=22,r=22) and cur(off=22,r=0) mean
* that we cannot access the packet.
* The safe range is:
* [ptr, ptr + range - off)
* so whenever off >=range, it means no safe bytes from this pointer.
* When comparing old->off <= cur->off, it means that older code
* went with smaller offset and that offset was later
* used to figure out the safe range after 'if (ptr > data_end)' check
* Say, 'old' state was explored like:
* ... R3(off=0, r=0)
* R4 = R3 + 20
* ... now R4(off=20,r=0) <-- here
* if (R4 > data_end)
* ... R4(off=20,r=20), R3(off=0,r=20) and R3 can be used to access.
* ... the code further went all the way to bpf_exit.
* Now the 'cur' state at the mark 'here' has R4(off=30,r=0).
* old_R4(off=20,r=0) equal to cur_R4(off=30,r=0), since if the verifier
* goes further, such cur_R4 will give larger safe packet range after
* 'if (R4 > data_end)' and all further insn were already good with r=20,
* so they will be good with r=30 and we can prune the search.
*/
if (old->off <= cur->off &&
old->off >= old->range && cur->off >= cur->range)
return true;
return false;
}
bpf: add search pruning optimization to verifier consider C program represented in eBPF: int filter(int arg) { int a, b, c, *ptr; if (arg == 1) ptr = &a; else if (arg == 2) ptr = &b; else ptr = &c; *ptr = 0; return 0; } eBPF verifier has to follow all possible paths through the program to recognize that '*ptr = 0' instruction would be safe to execute in all situations. It's doing it by picking a path towards the end and observes changes to registers and stack at every insn until it reaches bpf_exit. Then it comes back to one of the previous branches and goes towards the end again with potentially different values in registers. When program has a lot of branches, the number of possible combinations of branches is huge, so verifer has a hard limit of walking no more than 32k instructions. This limit can be reached and complex (but valid) programs could be rejected. Therefore it's important to recognize equivalent verifier states to prune this depth first search. Basic idea can be illustrated by the program (where .. are some eBPF insns): 1: .. 2: if (rX == rY) goto 4 3: .. 4: .. 5: .. 6: bpf_exit In the first pass towards bpf_exit the verifier will walk insns: 1, 2, 3, 4, 5, 6 Since insn#2 is a branch the verifier will remember its state in verifier stack to come back to it later. Since insn#4 is marked as 'branch target', the verifier will remember its state in explored_states[4] linked list. Once it reaches insn#6 successfully it will pop the state recorded at insn#2 and will continue. Without search pruning optimization verifier would have to walk 4, 5, 6 again, effectively simulating execution of insns 1, 2, 4, 5, 6 With search pruning it will check whether state at #4 after jumping from #2 is equivalent to one recorded in explored_states[4] during first pass. If there is an equivalent state, verifier can prune the search at #4 and declare this path to be safe as well. In other words two states at #4 are equivalent if execution of 1, 2, 3, 4 insns and 1, 2, 4 insns produces equivalent registers and stack. Signed-off-by: Alexei Starovoitov <ast@plumgrid.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-09-29 18:50:01 -07:00
/* compare two verifier states
*
* all states stored in state_list are known to be valid, since
* verifier reached 'bpf_exit' instruction through them
*
* this function is called when verifier exploring different branches of
* execution popped from the state stack. If it sees an old state that has
* more strict register state and more strict stack state then this execution
* branch doesn't need to be explored further, since verifier already
* concluded that more strict state leads to valid finish.
*
* Therefore two states are equivalent if register state is more conservative
* and explored stack state is more conservative than the current one.
* Example:
* explored current
* (slot1=INV slot2=MISC) == (slot1=MISC slot2=MISC)
* (slot1=MISC slot2=MISC) != (slot1=INV slot2=MISC)
*
* In other words if current stack state (one being explored) has more
* valid slots than old one that already passed validation, it means
* the verifier can stop exploring and conclude that current state is valid too
*
* Similarly with registers. If explored state has register type as invalid
* whereas register type in current state is meaningful, it means that
* the current state will reach 'bpf_exit' instruction safely
*/
static bool states_equal(struct bpf_verifier_env *env,
struct bpf_verifier_state *old,
struct bpf_verifier_state *cur)
bpf: add search pruning optimization to verifier consider C program represented in eBPF: int filter(int arg) { int a, b, c, *ptr; if (arg == 1) ptr = &a; else if (arg == 2) ptr = &b; else ptr = &c; *ptr = 0; return 0; } eBPF verifier has to follow all possible paths through the program to recognize that '*ptr = 0' instruction would be safe to execute in all situations. It's doing it by picking a path towards the end and observes changes to registers and stack at every insn until it reaches bpf_exit. Then it comes back to one of the previous branches and goes towards the end again with potentially different values in registers. When program has a lot of branches, the number of possible combinations of branches is huge, so verifer has a hard limit of walking no more than 32k instructions. This limit can be reached and complex (but valid) programs could be rejected. Therefore it's important to recognize equivalent verifier states to prune this depth first search. Basic idea can be illustrated by the program (where .. are some eBPF insns): 1: .. 2: if (rX == rY) goto 4 3: .. 4: .. 5: .. 6: bpf_exit In the first pass towards bpf_exit the verifier will walk insns: 1, 2, 3, 4, 5, 6 Since insn#2 is a branch the verifier will remember its state in verifier stack to come back to it later. Since insn#4 is marked as 'branch target', the verifier will remember its state in explored_states[4] linked list. Once it reaches insn#6 successfully it will pop the state recorded at insn#2 and will continue. Without search pruning optimization verifier would have to walk 4, 5, 6 again, effectively simulating execution of insns 1, 2, 4, 5, 6 With search pruning it will check whether state at #4 after jumping from #2 is equivalent to one recorded in explored_states[4] during first pass. If there is an equivalent state, verifier can prune the search at #4 and declare this path to be safe as well. In other words two states at #4 are equivalent if execution of 1, 2, 3, 4 insns and 1, 2, 4 insns produces equivalent registers and stack. Signed-off-by: Alexei Starovoitov <ast@plumgrid.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-09-29 18:50:01 -07:00
{
bool varlen_map_access = env->varlen_map_value_access;
struct bpf_reg_state *rold, *rcur;
bpf: add search pruning optimization to verifier consider C program represented in eBPF: int filter(int arg) { int a, b, c, *ptr; if (arg == 1) ptr = &a; else if (arg == 2) ptr = &b; else ptr = &c; *ptr = 0; return 0; } eBPF verifier has to follow all possible paths through the program to recognize that '*ptr = 0' instruction would be safe to execute in all situations. It's doing it by picking a path towards the end and observes changes to registers and stack at every insn until it reaches bpf_exit. Then it comes back to one of the previous branches and goes towards the end again with potentially different values in registers. When program has a lot of branches, the number of possible combinations of branches is huge, so verifer has a hard limit of walking no more than 32k instructions. This limit can be reached and complex (but valid) programs could be rejected. Therefore it's important to recognize equivalent verifier states to prune this depth first search. Basic idea can be illustrated by the program (where .. are some eBPF insns): 1: .. 2: if (rX == rY) goto 4 3: .. 4: .. 5: .. 6: bpf_exit In the first pass towards bpf_exit the verifier will walk insns: 1, 2, 3, 4, 5, 6 Since insn#2 is a branch the verifier will remember its state in verifier stack to come back to it later. Since insn#4 is marked as 'branch target', the verifier will remember its state in explored_states[4] linked list. Once it reaches insn#6 successfully it will pop the state recorded at insn#2 and will continue. Without search pruning optimization verifier would have to walk 4, 5, 6 again, effectively simulating execution of insns 1, 2, 4, 5, 6 With search pruning it will check whether state at #4 after jumping from #2 is equivalent to one recorded in explored_states[4] during first pass. If there is an equivalent state, verifier can prune the search at #4 and declare this path to be safe as well. In other words two states at #4 are equivalent if execution of 1, 2, 3, 4 insns and 1, 2, 4 insns produces equivalent registers and stack. Signed-off-by: Alexei Starovoitov <ast@plumgrid.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-09-29 18:50:01 -07:00
int i;
for (i = 0; i < MAX_BPF_REG; i++) {
rold = &old->regs[i];
rcur = &cur->regs[i];
if (memcmp(rold, rcur, sizeof(*rold)) == 0)
continue;
/* If the ranges were not the same, but everything else was and
* we didn't do a variable access into a map then we are a-ok.
*/
if (!varlen_map_access &&
memcmp(rold, rcur, offsetofend(struct bpf_reg_state, id)) == 0)
continue;
/* If we didn't map access then again we don't care about the
* mismatched range values and it's ok if our old type was
* UNKNOWN and we didn't go to a NOT_INIT'ed reg.
*/
if (rold->type == NOT_INIT ||
(!varlen_map_access && rold->type == UNKNOWN_VALUE &&
rcur->type != NOT_INIT))
continue;
bpf: direct packet access Extended BPF carried over two instructions from classic to access packet data: LD_ABS and LD_IND. They're highly optimized in JITs, but due to their design they have to do length check for every access. When BPF is processing 20M packets per second single LD_ABS after JIT is consuming 3% cpu. Hence the need to optimize it further by amortizing the cost of 'off < skb_headlen' over multiple packet accesses. One option is to introduce two new eBPF instructions LD_ABS_DW and LD_IND_DW with similar usage as skb_header_pointer(). The kernel part for interpreter and x64 JIT was implemented in [1], but such new insns behave like old ld_abs and abort the program with 'return 0' if access is beyond linear data. Such hidden control flow is hard to workaround plus changing JITs and rolling out new llvm is incovenient. Therefore allow cls_bpf/act_bpf program access skb->data directly: int bpf_prog(struct __sk_buff *skb) { struct iphdr *ip; if (skb->data + sizeof(struct iphdr) + ETH_HLEN > skb->data_end) /* packet too small */ return 0; ip = skb->data + ETH_HLEN; /* access IP header fields with direct loads */ if (ip->version != 4 || ip->saddr == 0x7f000001) return 1; [...] } This solution avoids introduction of new instructions. llvm stays the same and all JITs stay the same, but verifier has to work extra hard to prove safety of the above program. For XDP the direct store instructions can be allowed as well. The skb->data is NET_IP_ALIGNED, so for common cases the verifier can check the alignment. The complex packet parsers where packet pointer is adjusted incrementally cannot be tracked for alignment, so allow byte access in such cases and misaligned access on architectures that define efficient_unaligned_access [1] https://git.kernel.org/cgit/linux/kernel/git/ast/bpf.git/?h=ld_abs_dw Signed-off-by: Alexei Starovoitov <ast@kernel.org> Acked-by: Daniel Borkmann <daniel@iogearbox.net> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-05-05 19:49:10 -07:00
if (rold->type == PTR_TO_PACKET && rcur->type == PTR_TO_PACKET &&
compare_ptrs_to_packet(rold, rcur))
continue;
return false;
bpf: add search pruning optimization to verifier consider C program represented in eBPF: int filter(int arg) { int a, b, c, *ptr; if (arg == 1) ptr = &a; else if (arg == 2) ptr = &b; else ptr = &c; *ptr = 0; return 0; } eBPF verifier has to follow all possible paths through the program to recognize that '*ptr = 0' instruction would be safe to execute in all situations. It's doing it by picking a path towards the end and observes changes to registers and stack at every insn until it reaches bpf_exit. Then it comes back to one of the previous branches and goes towards the end again with potentially different values in registers. When program has a lot of branches, the number of possible combinations of branches is huge, so verifer has a hard limit of walking no more than 32k instructions. This limit can be reached and complex (but valid) programs could be rejected. Therefore it's important to recognize equivalent verifier states to prune this depth first search. Basic idea can be illustrated by the program (where .. are some eBPF insns): 1: .. 2: if (rX == rY) goto 4 3: .. 4: .. 5: .. 6: bpf_exit In the first pass towards bpf_exit the verifier will walk insns: 1, 2, 3, 4, 5, 6 Since insn#2 is a branch the verifier will remember its state in verifier stack to come back to it later. Since insn#4 is marked as 'branch target', the verifier will remember its state in explored_states[4] linked list. Once it reaches insn#6 successfully it will pop the state recorded at insn#2 and will continue. Without search pruning optimization verifier would have to walk 4, 5, 6 again, effectively simulating execution of insns 1, 2, 4, 5, 6 With search pruning it will check whether state at #4 after jumping from #2 is equivalent to one recorded in explored_states[4] during first pass. If there is an equivalent state, verifier can prune the search at #4 and declare this path to be safe as well. In other words two states at #4 are equivalent if execution of 1, 2, 3, 4 insns and 1, 2, 4 insns produces equivalent registers and stack. Signed-off-by: Alexei Starovoitov <ast@plumgrid.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-09-29 18:50:01 -07:00
}
for (i = 0; i < MAX_BPF_STACK; i++) {
if (old->stack_slot_type[i] == STACK_INVALID)
continue;
if (old->stack_slot_type[i] != cur->stack_slot_type[i])
/* Ex: old explored (safe) state has STACK_SPILL in
* this stack slot, but current has has STACK_MISC ->
* this verifier states are not equivalent,
* return false to continue verification of this path
*/
bpf: add search pruning optimization to verifier consider C program represented in eBPF: int filter(int arg) { int a, b, c, *ptr; if (arg == 1) ptr = &a; else if (arg == 2) ptr = &b; else ptr = &c; *ptr = 0; return 0; } eBPF verifier has to follow all possible paths through the program to recognize that '*ptr = 0' instruction would be safe to execute in all situations. It's doing it by picking a path towards the end and observes changes to registers and stack at every insn until it reaches bpf_exit. Then it comes back to one of the previous branches and goes towards the end again with potentially different values in registers. When program has a lot of branches, the number of possible combinations of branches is huge, so verifer has a hard limit of walking no more than 32k instructions. This limit can be reached and complex (but valid) programs could be rejected. Therefore it's important to recognize equivalent verifier states to prune this depth first search. Basic idea can be illustrated by the program (where .. are some eBPF insns): 1: .. 2: if (rX == rY) goto 4 3: .. 4: .. 5: .. 6: bpf_exit In the first pass towards bpf_exit the verifier will walk insns: 1, 2, 3, 4, 5, 6 Since insn#2 is a branch the verifier will remember its state in verifier stack to come back to it later. Since insn#4 is marked as 'branch target', the verifier will remember its state in explored_states[4] linked list. Once it reaches insn#6 successfully it will pop the state recorded at insn#2 and will continue. Without search pruning optimization verifier would have to walk 4, 5, 6 again, effectively simulating execution of insns 1, 2, 4, 5, 6 With search pruning it will check whether state at #4 after jumping from #2 is equivalent to one recorded in explored_states[4] during first pass. If there is an equivalent state, verifier can prune the search at #4 and declare this path to be safe as well. In other words two states at #4 are equivalent if execution of 1, 2, 3, 4 insns and 1, 2, 4 insns produces equivalent registers and stack. Signed-off-by: Alexei Starovoitov <ast@plumgrid.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-09-29 18:50:01 -07:00
return false;
if (i % BPF_REG_SIZE)
continue;
if (memcmp(&old->spilled_regs[i / BPF_REG_SIZE],
&cur->spilled_regs[i / BPF_REG_SIZE],
sizeof(old->spilled_regs[0])))
/* when explored and current stack slot types are
* the same, check that stored pointers types
* are the same as well.
* Ex: explored safe path could have stored
* (bpf_reg_state) {.type = PTR_TO_STACK, .imm = -8}
* but current path has stored:
* (bpf_reg_state) {.type = PTR_TO_STACK, .imm = -16}
* such verifier states are not equivalent.
* return false to continue verification of this path
*/
return false;
else
continue;
bpf: add search pruning optimization to verifier consider C program represented in eBPF: int filter(int arg) { int a, b, c, *ptr; if (arg == 1) ptr = &a; else if (arg == 2) ptr = &b; else ptr = &c; *ptr = 0; return 0; } eBPF verifier has to follow all possible paths through the program to recognize that '*ptr = 0' instruction would be safe to execute in all situations. It's doing it by picking a path towards the end and observes changes to registers and stack at every insn until it reaches bpf_exit. Then it comes back to one of the previous branches and goes towards the end again with potentially different values in registers. When program has a lot of branches, the number of possible combinations of branches is huge, so verifer has a hard limit of walking no more than 32k instructions. This limit can be reached and complex (but valid) programs could be rejected. Therefore it's important to recognize equivalent verifier states to prune this depth first search. Basic idea can be illustrated by the program (where .. are some eBPF insns): 1: .. 2: if (rX == rY) goto 4 3: .. 4: .. 5: .. 6: bpf_exit In the first pass towards bpf_exit the verifier will walk insns: 1, 2, 3, 4, 5, 6 Since insn#2 is a branch the verifier will remember its state in verifier stack to come back to it later. Since insn#4 is marked as 'branch target', the verifier will remember its state in explored_states[4] linked list. Once it reaches insn#6 successfully it will pop the state recorded at insn#2 and will continue. Without search pruning optimization verifier would have to walk 4, 5, 6 again, effectively simulating execution of insns 1, 2, 4, 5, 6 With search pruning it will check whether state at #4 after jumping from #2 is equivalent to one recorded in explored_states[4] during first pass. If there is an equivalent state, verifier can prune the search at #4 and declare this path to be safe as well. In other words two states at #4 are equivalent if execution of 1, 2, 3, 4 insns and 1, 2, 4 insns produces equivalent registers and stack. Signed-off-by: Alexei Starovoitov <ast@plumgrid.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-09-29 18:50:01 -07:00
}
return true;
}
static int is_state_visited(struct bpf_verifier_env *env, int insn_idx)
bpf: add search pruning optimization to verifier consider C program represented in eBPF: int filter(int arg) { int a, b, c, *ptr; if (arg == 1) ptr = &a; else if (arg == 2) ptr = &b; else ptr = &c; *ptr = 0; return 0; } eBPF verifier has to follow all possible paths through the program to recognize that '*ptr = 0' instruction would be safe to execute in all situations. It's doing it by picking a path towards the end and observes changes to registers and stack at every insn until it reaches bpf_exit. Then it comes back to one of the previous branches and goes towards the end again with potentially different values in registers. When program has a lot of branches, the number of possible combinations of branches is huge, so verifer has a hard limit of walking no more than 32k instructions. This limit can be reached and complex (but valid) programs could be rejected. Therefore it's important to recognize equivalent verifier states to prune this depth first search. Basic idea can be illustrated by the program (where .. are some eBPF insns): 1: .. 2: if (rX == rY) goto 4 3: .. 4: .. 5: .. 6: bpf_exit In the first pass towards bpf_exit the verifier will walk insns: 1, 2, 3, 4, 5, 6 Since insn#2 is a branch the verifier will remember its state in verifier stack to come back to it later. Since insn#4 is marked as 'branch target', the verifier will remember its state in explored_states[4] linked list. Once it reaches insn#6 successfully it will pop the state recorded at insn#2 and will continue. Without search pruning optimization verifier would have to walk 4, 5, 6 again, effectively simulating execution of insns 1, 2, 4, 5, 6 With search pruning it will check whether state at #4 after jumping from #2 is equivalent to one recorded in explored_states[4] during first pass. If there is an equivalent state, verifier can prune the search at #4 and declare this path to be safe as well. In other words two states at #4 are equivalent if execution of 1, 2, 3, 4 insns and 1, 2, 4 insns produces equivalent registers and stack. Signed-off-by: Alexei Starovoitov <ast@plumgrid.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-09-29 18:50:01 -07:00
{
struct bpf_verifier_state_list *new_sl;
struct bpf_verifier_state_list *sl;
bpf: add search pruning optimization to verifier consider C program represented in eBPF: int filter(int arg) { int a, b, c, *ptr; if (arg == 1) ptr = &a; else if (arg == 2) ptr = &b; else ptr = &c; *ptr = 0; return 0; } eBPF verifier has to follow all possible paths through the program to recognize that '*ptr = 0' instruction would be safe to execute in all situations. It's doing it by picking a path towards the end and observes changes to registers and stack at every insn until it reaches bpf_exit. Then it comes back to one of the previous branches and goes towards the end again with potentially different values in registers. When program has a lot of branches, the number of possible combinations of branches is huge, so verifer has a hard limit of walking no more than 32k instructions. This limit can be reached and complex (but valid) programs could be rejected. Therefore it's important to recognize equivalent verifier states to prune this depth first search. Basic idea can be illustrated by the program (where .. are some eBPF insns): 1: .. 2: if (rX == rY) goto 4 3: .. 4: .. 5: .. 6: bpf_exit In the first pass towards bpf_exit the verifier will walk insns: 1, 2, 3, 4, 5, 6 Since insn#2 is a branch the verifier will remember its state in verifier stack to come back to it later. Since insn#4 is marked as 'branch target', the verifier will remember its state in explored_states[4] linked list. Once it reaches insn#6 successfully it will pop the state recorded at insn#2 and will continue. Without search pruning optimization verifier would have to walk 4, 5, 6 again, effectively simulating execution of insns 1, 2, 4, 5, 6 With search pruning it will check whether state at #4 after jumping from #2 is equivalent to one recorded in explored_states[4] during first pass. If there is an equivalent state, verifier can prune the search at #4 and declare this path to be safe as well. In other words two states at #4 are equivalent if execution of 1, 2, 3, 4 insns and 1, 2, 4 insns produces equivalent registers and stack. Signed-off-by: Alexei Starovoitov <ast@plumgrid.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-09-29 18:50:01 -07:00
sl = env->explored_states[insn_idx];
if (!sl)
/* this 'insn_idx' instruction wasn't marked, so we will not
* be doing state search here
*/
return 0;
while (sl != STATE_LIST_MARK) {
if (states_equal(env, &sl->state, &env->cur_state))
bpf: add search pruning optimization to verifier consider C program represented in eBPF: int filter(int arg) { int a, b, c, *ptr; if (arg == 1) ptr = &a; else if (arg == 2) ptr = &b; else ptr = &c; *ptr = 0; return 0; } eBPF verifier has to follow all possible paths through the program to recognize that '*ptr = 0' instruction would be safe to execute in all situations. It's doing it by picking a path towards the end and observes changes to registers and stack at every insn until it reaches bpf_exit. Then it comes back to one of the previous branches and goes towards the end again with potentially different values in registers. When program has a lot of branches, the number of possible combinations of branches is huge, so verifer has a hard limit of walking no more than 32k instructions. This limit can be reached and complex (but valid) programs could be rejected. Therefore it's important to recognize equivalent verifier states to prune this depth first search. Basic idea can be illustrated by the program (where .. are some eBPF insns): 1: .. 2: if (rX == rY) goto 4 3: .. 4: .. 5: .. 6: bpf_exit In the first pass towards bpf_exit the verifier will walk insns: 1, 2, 3, 4, 5, 6 Since insn#2 is a branch the verifier will remember its state in verifier stack to come back to it later. Since insn#4 is marked as 'branch target', the verifier will remember its state in explored_states[4] linked list. Once it reaches insn#6 successfully it will pop the state recorded at insn#2 and will continue. Without search pruning optimization verifier would have to walk 4, 5, 6 again, effectively simulating execution of insns 1, 2, 4, 5, 6 With search pruning it will check whether state at #4 after jumping from #2 is equivalent to one recorded in explored_states[4] during first pass. If there is an equivalent state, verifier can prune the search at #4 and declare this path to be safe as well. In other words two states at #4 are equivalent if execution of 1, 2, 3, 4 insns and 1, 2, 4 insns produces equivalent registers and stack. Signed-off-by: Alexei Starovoitov <ast@plumgrid.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-09-29 18:50:01 -07:00
/* reached equivalent register/stack state,
* prune the search
*/
return 1;
sl = sl->next;
}
/* there were no equivalent states, remember current one.
* technically the current state is not proven to be safe yet,
* but it will either reach bpf_exit (which means it's safe) or
* it will be rejected. Since there are no loops, we won't be
* seeing this 'insn_idx' instruction again on the way to bpf_exit
*/
new_sl = kmalloc(sizeof(struct bpf_verifier_state_list), GFP_USER);
bpf: add search pruning optimization to verifier consider C program represented in eBPF: int filter(int arg) { int a, b, c, *ptr; if (arg == 1) ptr = &a; else if (arg == 2) ptr = &b; else ptr = &c; *ptr = 0; return 0; } eBPF verifier has to follow all possible paths through the program to recognize that '*ptr = 0' instruction would be safe to execute in all situations. It's doing it by picking a path towards the end and observes changes to registers and stack at every insn until it reaches bpf_exit. Then it comes back to one of the previous branches and goes towards the end again with potentially different values in registers. When program has a lot of branches, the number of possible combinations of branches is huge, so verifer has a hard limit of walking no more than 32k instructions. This limit can be reached and complex (but valid) programs could be rejected. Therefore it's important to recognize equivalent verifier states to prune this depth first search. Basic idea can be illustrated by the program (where .. are some eBPF insns): 1: .. 2: if (rX == rY) goto 4 3: .. 4: .. 5: .. 6: bpf_exit In the first pass towards bpf_exit the verifier will walk insns: 1, 2, 3, 4, 5, 6 Since insn#2 is a branch the verifier will remember its state in verifier stack to come back to it later. Since insn#4 is marked as 'branch target', the verifier will remember its state in explored_states[4] linked list. Once it reaches insn#6 successfully it will pop the state recorded at insn#2 and will continue. Without search pruning optimization verifier would have to walk 4, 5, 6 again, effectively simulating execution of insns 1, 2, 4, 5, 6 With search pruning it will check whether state at #4 after jumping from #2 is equivalent to one recorded in explored_states[4] during first pass. If there is an equivalent state, verifier can prune the search at #4 and declare this path to be safe as well. In other words two states at #4 are equivalent if execution of 1, 2, 3, 4 insns and 1, 2, 4 insns produces equivalent registers and stack. Signed-off-by: Alexei Starovoitov <ast@plumgrid.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-09-29 18:50:01 -07:00
if (!new_sl)
return -ENOMEM;
/* add new state to the head of linked list */
memcpy(&new_sl->state, &env->cur_state, sizeof(env->cur_state));
new_sl->next = env->explored_states[insn_idx];
env->explored_states[insn_idx] = new_sl;
return 0;
}
static int ext_analyzer_insn_hook(struct bpf_verifier_env *env,
int insn_idx, int prev_insn_idx)
{
if (!env->analyzer_ops || !env->analyzer_ops->insn_hook)
return 0;
return env->analyzer_ops->insn_hook(env, insn_idx, prev_insn_idx);
}
static int do_check(struct bpf_verifier_env *env)
bpf: verifier (add verifier core) This patch adds verifier core which simulates execution of every insn and records the state of registers and program stack. Every branch instruction seen during simulation is pushed into state stack. When verifier reaches BPF_EXIT, it pops the state from the stack and continues until it reaches BPF_EXIT again. For program: 1: bpf_mov r1, xxx 2: if (r1 == 0) goto 5 3: bpf_mov r0, 1 4: goto 6 5: bpf_mov r0, 2 6: bpf_exit The verifier will walk insns: 1, 2, 3, 4, 6 then it will pop the state recorded at insn#2 and will continue: 5, 6 This way it walks all possible paths through the program and checks all possible values of registers. While doing so, it checks for: - invalid instructions - uninitialized register access - uninitialized stack access - misaligned stack access - out of range stack access - invalid calling convention - instruction encoding is not using reserved fields Kernel subsystem configures the verifier with two callbacks: - bool (*is_valid_access)(int off, int size, enum bpf_access_type type); that provides information to the verifer which fields of 'ctx' are accessible (remember 'ctx' is the first argument to eBPF program) - const struct bpf_func_proto *(*get_func_proto)(enum bpf_func_id func_id); returns argument constraints of kernel helper functions that eBPF program may call, so that verifier can checks that R1-R5 types match the prototype More details in Documentation/networking/filter.txt and in kernel/bpf/verifier.c Signed-off-by: Alexei Starovoitov <ast@plumgrid.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-09-26 00:17:06 -07:00
{
struct bpf_verifier_state *state = &env->cur_state;
bpf: verifier (add verifier core) This patch adds verifier core which simulates execution of every insn and records the state of registers and program stack. Every branch instruction seen during simulation is pushed into state stack. When verifier reaches BPF_EXIT, it pops the state from the stack and continues until it reaches BPF_EXIT again. For program: 1: bpf_mov r1, xxx 2: if (r1 == 0) goto 5 3: bpf_mov r0, 1 4: goto 6 5: bpf_mov r0, 2 6: bpf_exit The verifier will walk insns: 1, 2, 3, 4, 6 then it will pop the state recorded at insn#2 and will continue: 5, 6 This way it walks all possible paths through the program and checks all possible values of registers. While doing so, it checks for: - invalid instructions - uninitialized register access - uninitialized stack access - misaligned stack access - out of range stack access - invalid calling convention - instruction encoding is not using reserved fields Kernel subsystem configures the verifier with two callbacks: - bool (*is_valid_access)(int off, int size, enum bpf_access_type type); that provides information to the verifer which fields of 'ctx' are accessible (remember 'ctx' is the first argument to eBPF program) - const struct bpf_func_proto *(*get_func_proto)(enum bpf_func_id func_id); returns argument constraints of kernel helper functions that eBPF program may call, so that verifier can checks that R1-R5 types match the prototype More details in Documentation/networking/filter.txt and in kernel/bpf/verifier.c Signed-off-by: Alexei Starovoitov <ast@plumgrid.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-09-26 00:17:06 -07:00
struct bpf_insn *insns = env->prog->insnsi;
struct bpf_reg_state *regs = state->regs;
bpf: verifier (add verifier core) This patch adds verifier core which simulates execution of every insn and records the state of registers and program stack. Every branch instruction seen during simulation is pushed into state stack. When verifier reaches BPF_EXIT, it pops the state from the stack and continues until it reaches BPF_EXIT again. For program: 1: bpf_mov r1, xxx 2: if (r1 == 0) goto 5 3: bpf_mov r0, 1 4: goto 6 5: bpf_mov r0, 2 6: bpf_exit The verifier will walk insns: 1, 2, 3, 4, 6 then it will pop the state recorded at insn#2 and will continue: 5, 6 This way it walks all possible paths through the program and checks all possible values of registers. While doing so, it checks for: - invalid instructions - uninitialized register access - uninitialized stack access - misaligned stack access - out of range stack access - invalid calling convention - instruction encoding is not using reserved fields Kernel subsystem configures the verifier with two callbacks: - bool (*is_valid_access)(int off, int size, enum bpf_access_type type); that provides information to the verifer which fields of 'ctx' are accessible (remember 'ctx' is the first argument to eBPF program) - const struct bpf_func_proto *(*get_func_proto)(enum bpf_func_id func_id); returns argument constraints of kernel helper functions that eBPF program may call, so that verifier can checks that R1-R5 types match the prototype More details in Documentation/networking/filter.txt and in kernel/bpf/verifier.c Signed-off-by: Alexei Starovoitov <ast@plumgrid.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-09-26 00:17:06 -07:00
int insn_cnt = env->prog->len;
int insn_idx, prev_insn_idx = 0;
int insn_processed = 0;
bool do_print_state = false;
init_reg_state(regs);
insn_idx = 0;
env->varlen_map_value_access = false;
bpf: verifier (add verifier core) This patch adds verifier core which simulates execution of every insn and records the state of registers and program stack. Every branch instruction seen during simulation is pushed into state stack. When verifier reaches BPF_EXIT, it pops the state from the stack and continues until it reaches BPF_EXIT again. For program: 1: bpf_mov r1, xxx 2: if (r1 == 0) goto 5 3: bpf_mov r0, 1 4: goto 6 5: bpf_mov r0, 2 6: bpf_exit The verifier will walk insns: 1, 2, 3, 4, 6 then it will pop the state recorded at insn#2 and will continue: 5, 6 This way it walks all possible paths through the program and checks all possible values of registers. While doing so, it checks for: - invalid instructions - uninitialized register access - uninitialized stack access - misaligned stack access - out of range stack access - invalid calling convention - instruction encoding is not using reserved fields Kernel subsystem configures the verifier with two callbacks: - bool (*is_valid_access)(int off, int size, enum bpf_access_type type); that provides information to the verifer which fields of 'ctx' are accessible (remember 'ctx' is the first argument to eBPF program) - const struct bpf_func_proto *(*get_func_proto)(enum bpf_func_id func_id); returns argument constraints of kernel helper functions that eBPF program may call, so that verifier can checks that R1-R5 types match the prototype More details in Documentation/networking/filter.txt and in kernel/bpf/verifier.c Signed-off-by: Alexei Starovoitov <ast@plumgrid.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-09-26 00:17:06 -07:00
for (;;) {
struct bpf_insn *insn;
u8 class;
int err;
if (insn_idx >= insn_cnt) {
verbose("invalid insn idx %d insn_cnt %d\n",
insn_idx, insn_cnt);
return -EFAULT;
}
insn = &insns[insn_idx];
class = BPF_CLASS(insn->code);
bpf, verifier: further improve search pruning The verifier needs to go through every path of the program in order to check that it terminates safely, which can be quite a lot of instructions that need to be processed f.e. in cases with more branchy programs. With search pruning from f1bca824dabb ("bpf: add search pruning optimization to verifier") the search space can already be reduced significantly when the verifier detects that a previously walked path with same register and stack contents terminated already (see verifier's states_equal()), so the search can skip walking those states. When working with larger programs of > ~2000 (out of max 4096) insns, we found that the current limit of 32k instructions is easily hit. For example, a case we ran into is that the search space cannot be pruned due to branches at the beginning of the program that make use of certain stack space slots (STACK_MISC), which are never used in the remaining program (STACK_INVALID). Therefore, the verifier needs to walk paths for the slots in STACK_INVALID state, but also all remaining paths with a stack structure, where the slots are in STACK_MISC, which can nearly double the search space needed. After various experiments, we find that a limit of 64k processed insns is a more reasonable choice when dealing with larger programs in practice. This still allows to reject extreme crafted cases that can have a much higher complexity (f.e. > ~300k) within the 4096 insns limit due to search pruning not being able to take effect. Furthermore, we found that a lot of states can be pruned after a call instruction, f.e. we were able to reduce the search state by ~35% in some cases with this heuristic, trade-off is to keep a bit more states in env->explored_states. Usually, call instructions have a number of preceding register assignments and/or stack stores, where search pruning has a better chance to suceed in states_equal() test. The current code marks the branch targets with STATE_LIST_MARK in case of conditional jumps, and the next (t + 1) instruction in case of unconditional jump so that f.e. a backjump will walk it. We also did experiments with using t + insns[t].off + 1 as a marker in the unconditionally jump case instead of t + 1 with the rationale that these two branches of execution that converge after the label might have more potential of pruning. We found that it was a bit better, but not necessarily significantly better than the current state, perhaps also due to clang not generating back jumps often. Hence, we left that as is for now. Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-04-05 22:33:17 +02:00
if (++insn_processed > BPF_COMPLEXITY_LIMIT_INSNS) {
verbose("BPF program is too large. Processed %d insn\n",
bpf: verifier (add verifier core) This patch adds verifier core which simulates execution of every insn and records the state of registers and program stack. Every branch instruction seen during simulation is pushed into state stack. When verifier reaches BPF_EXIT, it pops the state from the stack and continues until it reaches BPF_EXIT again. For program: 1: bpf_mov r1, xxx 2: if (r1 == 0) goto 5 3: bpf_mov r0, 1 4: goto 6 5: bpf_mov r0, 2 6: bpf_exit The verifier will walk insns: 1, 2, 3, 4, 6 then it will pop the state recorded at insn#2 and will continue: 5, 6 This way it walks all possible paths through the program and checks all possible values of registers. While doing so, it checks for: - invalid instructions - uninitialized register access - uninitialized stack access - misaligned stack access - out of range stack access - invalid calling convention - instruction encoding is not using reserved fields Kernel subsystem configures the verifier with two callbacks: - bool (*is_valid_access)(int off, int size, enum bpf_access_type type); that provides information to the verifer which fields of 'ctx' are accessible (remember 'ctx' is the first argument to eBPF program) - const struct bpf_func_proto *(*get_func_proto)(enum bpf_func_id func_id); returns argument constraints of kernel helper functions that eBPF program may call, so that verifier can checks that R1-R5 types match the prototype More details in Documentation/networking/filter.txt and in kernel/bpf/verifier.c Signed-off-by: Alexei Starovoitov <ast@plumgrid.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-09-26 00:17:06 -07:00
insn_processed);
return -E2BIG;
}
bpf: add search pruning optimization to verifier consider C program represented in eBPF: int filter(int arg) { int a, b, c, *ptr; if (arg == 1) ptr = &a; else if (arg == 2) ptr = &b; else ptr = &c; *ptr = 0; return 0; } eBPF verifier has to follow all possible paths through the program to recognize that '*ptr = 0' instruction would be safe to execute in all situations. It's doing it by picking a path towards the end and observes changes to registers and stack at every insn until it reaches bpf_exit. Then it comes back to one of the previous branches and goes towards the end again with potentially different values in registers. When program has a lot of branches, the number of possible combinations of branches is huge, so verifer has a hard limit of walking no more than 32k instructions. This limit can be reached and complex (but valid) programs could be rejected. Therefore it's important to recognize equivalent verifier states to prune this depth first search. Basic idea can be illustrated by the program (where .. are some eBPF insns): 1: .. 2: if (rX == rY) goto 4 3: .. 4: .. 5: .. 6: bpf_exit In the first pass towards bpf_exit the verifier will walk insns: 1, 2, 3, 4, 5, 6 Since insn#2 is a branch the verifier will remember its state in verifier stack to come back to it later. Since insn#4 is marked as 'branch target', the verifier will remember its state in explored_states[4] linked list. Once it reaches insn#6 successfully it will pop the state recorded at insn#2 and will continue. Without search pruning optimization verifier would have to walk 4, 5, 6 again, effectively simulating execution of insns 1, 2, 4, 5, 6 With search pruning it will check whether state at #4 after jumping from #2 is equivalent to one recorded in explored_states[4] during first pass. If there is an equivalent state, verifier can prune the search at #4 and declare this path to be safe as well. In other words two states at #4 are equivalent if execution of 1, 2, 3, 4 insns and 1, 2, 4 insns produces equivalent registers and stack. Signed-off-by: Alexei Starovoitov <ast@plumgrid.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-09-29 18:50:01 -07:00
err = is_state_visited(env, insn_idx);
if (err < 0)
return err;
if (err == 1) {
/* found equivalent state, can prune the search */
if (log_level) {
if (do_print_state)
verbose("\nfrom %d to %d: safe\n",
prev_insn_idx, insn_idx);
else
verbose("%d: safe\n", insn_idx);
}
goto process_bpf_exit;
}
if (log_level > 1 || (log_level && do_print_state)) {
if (log_level > 1)
verbose("%d:", insn_idx);
else
verbose("\nfrom %d to %d:",
prev_insn_idx, insn_idx);
print_verifier_state(&env->cur_state);
bpf: verifier (add verifier core) This patch adds verifier core which simulates execution of every insn and records the state of registers and program stack. Every branch instruction seen during simulation is pushed into state stack. When verifier reaches BPF_EXIT, it pops the state from the stack and continues until it reaches BPF_EXIT again. For program: 1: bpf_mov r1, xxx 2: if (r1 == 0) goto 5 3: bpf_mov r0, 1 4: goto 6 5: bpf_mov r0, 2 6: bpf_exit The verifier will walk insns: 1, 2, 3, 4, 6 then it will pop the state recorded at insn#2 and will continue: 5, 6 This way it walks all possible paths through the program and checks all possible values of registers. While doing so, it checks for: - invalid instructions - uninitialized register access - uninitialized stack access - misaligned stack access - out of range stack access - invalid calling convention - instruction encoding is not using reserved fields Kernel subsystem configures the verifier with two callbacks: - bool (*is_valid_access)(int off, int size, enum bpf_access_type type); that provides information to the verifer which fields of 'ctx' are accessible (remember 'ctx' is the first argument to eBPF program) - const struct bpf_func_proto *(*get_func_proto)(enum bpf_func_id func_id); returns argument constraints of kernel helper functions that eBPF program may call, so that verifier can checks that R1-R5 types match the prototype More details in Documentation/networking/filter.txt and in kernel/bpf/verifier.c Signed-off-by: Alexei Starovoitov <ast@plumgrid.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-09-26 00:17:06 -07:00
do_print_state = false;
}
if (log_level) {
verbose("%d: ", insn_idx);
print_bpf_insn(env, insn);
bpf: verifier (add verifier core) This patch adds verifier core which simulates execution of every insn and records the state of registers and program stack. Every branch instruction seen during simulation is pushed into state stack. When verifier reaches BPF_EXIT, it pops the state from the stack and continues until it reaches BPF_EXIT again. For program: 1: bpf_mov r1, xxx 2: if (r1 == 0) goto 5 3: bpf_mov r0, 1 4: goto 6 5: bpf_mov r0, 2 6: bpf_exit The verifier will walk insns: 1, 2, 3, 4, 6 then it will pop the state recorded at insn#2 and will continue: 5, 6 This way it walks all possible paths through the program and checks all possible values of registers. While doing so, it checks for: - invalid instructions - uninitialized register access - uninitialized stack access - misaligned stack access - out of range stack access - invalid calling convention - instruction encoding is not using reserved fields Kernel subsystem configures the verifier with two callbacks: - bool (*is_valid_access)(int off, int size, enum bpf_access_type type); that provides information to the verifer which fields of 'ctx' are accessible (remember 'ctx' is the first argument to eBPF program) - const struct bpf_func_proto *(*get_func_proto)(enum bpf_func_id func_id); returns argument constraints of kernel helper functions that eBPF program may call, so that verifier can checks that R1-R5 types match the prototype More details in Documentation/networking/filter.txt and in kernel/bpf/verifier.c Signed-off-by: Alexei Starovoitov <ast@plumgrid.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-09-26 00:17:06 -07:00
}
err = ext_analyzer_insn_hook(env, insn_idx, prev_insn_idx);
if (err)
return err;
bpf: verifier (add verifier core) This patch adds verifier core which simulates execution of every insn and records the state of registers and program stack. Every branch instruction seen during simulation is pushed into state stack. When verifier reaches BPF_EXIT, it pops the state from the stack and continues until it reaches BPF_EXIT again. For program: 1: bpf_mov r1, xxx 2: if (r1 == 0) goto 5 3: bpf_mov r0, 1 4: goto 6 5: bpf_mov r0, 2 6: bpf_exit The verifier will walk insns: 1, 2, 3, 4, 6 then it will pop the state recorded at insn#2 and will continue: 5, 6 This way it walks all possible paths through the program and checks all possible values of registers. While doing so, it checks for: - invalid instructions - uninitialized register access - uninitialized stack access - misaligned stack access - out of range stack access - invalid calling convention - instruction encoding is not using reserved fields Kernel subsystem configures the verifier with two callbacks: - bool (*is_valid_access)(int off, int size, enum bpf_access_type type); that provides information to the verifer which fields of 'ctx' are accessible (remember 'ctx' is the first argument to eBPF program) - const struct bpf_func_proto *(*get_func_proto)(enum bpf_func_id func_id); returns argument constraints of kernel helper functions that eBPF program may call, so that verifier can checks that R1-R5 types match the prototype More details in Documentation/networking/filter.txt and in kernel/bpf/verifier.c Signed-off-by: Alexei Starovoitov <ast@plumgrid.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-09-26 00:17:06 -07:00
if (class == BPF_ALU || class == BPF_ALU64) {
bpf: enable non-root eBPF programs In order to let unprivileged users load and execute eBPF programs teach verifier to prevent pointer leaks. Verifier will prevent - any arithmetic on pointers (except R10+Imm which is used to compute stack addresses) - comparison of pointers (except if (map_value_ptr == 0) ... ) - passing pointers to helper functions - indirectly passing pointers in stack to helper functions - returning pointer from bpf program - storing pointers into ctx or maps Spill/fill of pointers into stack is allowed, but mangling of pointers stored in the stack or reading them byte by byte is not. Within bpf programs the pointers do exist, since programs need to be able to access maps, pass skb pointer to LD_ABS insns, etc but programs cannot pass such pointer values to the outside or obfuscate them. Only allow BPF_PROG_TYPE_SOCKET_FILTER unprivileged programs, so that socket filters (tcpdump), af_packet (quic acceleration) and future kcm can use it. tracing and tc cls/act program types still require root permissions, since tracing actually needs to be able to see all kernel pointers and tc is for root only. For example, the following unprivileged socket filter program is allowed: int bpf_prog1(struct __sk_buff *skb) { u32 index = load_byte(skb, ETH_HLEN + offsetof(struct iphdr, protocol)); u64 *value = bpf_map_lookup_elem(&my_map, &index); if (value) *value += skb->len; return 0; } but the following program is not: int bpf_prog1(struct __sk_buff *skb) { u32 index = load_byte(skb, ETH_HLEN + offsetof(struct iphdr, protocol)); u64 *value = bpf_map_lookup_elem(&my_map, &index); if (value) *value += (u64) skb; return 0; } since it would leak the kernel address into the map. Unprivileged socket filter bpf programs have access to the following helper functions: - map lookup/update/delete (but they cannot store kernel pointers into them) - get_random (it's already exposed to unprivileged user space) - get_smp_processor_id - tail_call into another socket filter program - ktime_get_ns The feature is controlled by sysctl kernel.unprivileged_bpf_disabled. This toggle defaults to off (0), but can be set true (1). Once true, bpf programs and maps cannot be accessed from unprivileged process, and the toggle cannot be set back to false. Signed-off-by: Alexei Starovoitov <ast@plumgrid.com> Reviewed-by: Kees Cook <keescook@chromium.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2015-10-07 22:23:21 -07:00
err = check_alu_op(env, insn);
bpf: verifier (add verifier core) This patch adds verifier core which simulates execution of every insn and records the state of registers and program stack. Every branch instruction seen during simulation is pushed into state stack. When verifier reaches BPF_EXIT, it pops the state from the stack and continues until it reaches BPF_EXIT again. For program: 1: bpf_mov r1, xxx 2: if (r1 == 0) goto 5 3: bpf_mov r0, 1 4: goto 6 5: bpf_mov r0, 2 6: bpf_exit The verifier will walk insns: 1, 2, 3, 4, 6 then it will pop the state recorded at insn#2 and will continue: 5, 6 This way it walks all possible paths through the program and checks all possible values of registers. While doing so, it checks for: - invalid instructions - uninitialized register access - uninitialized stack access - misaligned stack access - out of range stack access - invalid calling convention - instruction encoding is not using reserved fields Kernel subsystem configures the verifier with two callbacks: - bool (*is_valid_access)(int off, int size, enum bpf_access_type type); that provides information to the verifer which fields of 'ctx' are accessible (remember 'ctx' is the first argument to eBPF program) - const struct bpf_func_proto *(*get_func_proto)(enum bpf_func_id func_id); returns argument constraints of kernel helper functions that eBPF program may call, so that verifier can checks that R1-R5 types match the prototype More details in Documentation/networking/filter.txt and in kernel/bpf/verifier.c Signed-off-by: Alexei Starovoitov <ast@plumgrid.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-09-26 00:17:06 -07:00
if (err)
return err;
} else if (class == BPF_LDX) {
enum bpf_reg_type *prev_src_type, src_reg_type;
/* check for reserved fields is already done */
bpf: verifier (add verifier core) This patch adds verifier core which simulates execution of every insn and records the state of registers and program stack. Every branch instruction seen during simulation is pushed into state stack. When verifier reaches BPF_EXIT, it pops the state from the stack and continues until it reaches BPF_EXIT again. For program: 1: bpf_mov r1, xxx 2: if (r1 == 0) goto 5 3: bpf_mov r0, 1 4: goto 6 5: bpf_mov r0, 2 6: bpf_exit The verifier will walk insns: 1, 2, 3, 4, 6 then it will pop the state recorded at insn#2 and will continue: 5, 6 This way it walks all possible paths through the program and checks all possible values of registers. While doing so, it checks for: - invalid instructions - uninitialized register access - uninitialized stack access - misaligned stack access - out of range stack access - invalid calling convention - instruction encoding is not using reserved fields Kernel subsystem configures the verifier with two callbacks: - bool (*is_valid_access)(int off, int size, enum bpf_access_type type); that provides information to the verifer which fields of 'ctx' are accessible (remember 'ctx' is the first argument to eBPF program) - const struct bpf_func_proto *(*get_func_proto)(enum bpf_func_id func_id); returns argument constraints of kernel helper functions that eBPF program may call, so that verifier can checks that R1-R5 types match the prototype More details in Documentation/networking/filter.txt and in kernel/bpf/verifier.c Signed-off-by: Alexei Starovoitov <ast@plumgrid.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-09-26 00:17:06 -07:00
/* check src operand */
err = check_reg_arg(regs, insn->src_reg, SRC_OP);
if (err)
return err;
err = check_reg_arg(regs, insn->dst_reg, DST_OP_NO_MARK);
if (err)
return err;
src_reg_type = regs[insn->src_reg].type;
bpf: verifier (add verifier core) This patch adds verifier core which simulates execution of every insn and records the state of registers and program stack. Every branch instruction seen during simulation is pushed into state stack. When verifier reaches BPF_EXIT, it pops the state from the stack and continues until it reaches BPF_EXIT again. For program: 1: bpf_mov r1, xxx 2: if (r1 == 0) goto 5 3: bpf_mov r0, 1 4: goto 6 5: bpf_mov r0, 2 6: bpf_exit The verifier will walk insns: 1, 2, 3, 4, 6 then it will pop the state recorded at insn#2 and will continue: 5, 6 This way it walks all possible paths through the program and checks all possible values of registers. While doing so, it checks for: - invalid instructions - uninitialized register access - uninitialized stack access - misaligned stack access - out of range stack access - invalid calling convention - instruction encoding is not using reserved fields Kernel subsystem configures the verifier with two callbacks: - bool (*is_valid_access)(int off, int size, enum bpf_access_type type); that provides information to the verifer which fields of 'ctx' are accessible (remember 'ctx' is the first argument to eBPF program) - const struct bpf_func_proto *(*get_func_proto)(enum bpf_func_id func_id); returns argument constraints of kernel helper functions that eBPF program may call, so that verifier can checks that R1-R5 types match the prototype More details in Documentation/networking/filter.txt and in kernel/bpf/verifier.c Signed-off-by: Alexei Starovoitov <ast@plumgrid.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-09-26 00:17:06 -07:00
/* check that memory (src_reg + off) is readable,
* the state of dst_reg will be updated by this func
*/
err = check_mem_access(env, insn->src_reg, insn->off,
BPF_SIZE(insn->code), BPF_READ,
insn->dst_reg);
if (err)
return err;
if (BPF_SIZE(insn->code) != BPF_W &&
BPF_SIZE(insn->code) != BPF_DW) {
insn_idx++;
continue;
}
prev_src_type = &env->insn_aux_data[insn_idx].ptr_type;
if (*prev_src_type == NOT_INIT) {
/* saw a valid insn
* dst_reg = *(u32 *)(src_reg + off)
* save type to validate intersecting paths
*/
*prev_src_type = src_reg_type;
} else if (src_reg_type != *prev_src_type &&
(src_reg_type == PTR_TO_CTX ||
*prev_src_type == PTR_TO_CTX)) {
/* ABuser program is trying to use the same insn
* dst_reg = *(u32*) (src_reg + off)
* with different pointer types:
* src_reg == ctx in one branch and
* src_reg == stack|map in some other branch.
* Reject it.
*/
verbose("same insn cannot be used with different pointers\n");
return -EINVAL;
}
bpf: verifier (add verifier core) This patch adds verifier core which simulates execution of every insn and records the state of registers and program stack. Every branch instruction seen during simulation is pushed into state stack. When verifier reaches BPF_EXIT, it pops the state from the stack and continues until it reaches BPF_EXIT again. For program: 1: bpf_mov r1, xxx 2: if (r1 == 0) goto 5 3: bpf_mov r0, 1 4: goto 6 5: bpf_mov r0, 2 6: bpf_exit The verifier will walk insns: 1, 2, 3, 4, 6 then it will pop the state recorded at insn#2 and will continue: 5, 6 This way it walks all possible paths through the program and checks all possible values of registers. While doing so, it checks for: - invalid instructions - uninitialized register access - uninitialized stack access - misaligned stack access - out of range stack access - invalid calling convention - instruction encoding is not using reserved fields Kernel subsystem configures the verifier with two callbacks: - bool (*is_valid_access)(int off, int size, enum bpf_access_type type); that provides information to the verifer which fields of 'ctx' are accessible (remember 'ctx' is the first argument to eBPF program) - const struct bpf_func_proto *(*get_func_proto)(enum bpf_func_id func_id); returns argument constraints of kernel helper functions that eBPF program may call, so that verifier can checks that R1-R5 types match the prototype More details in Documentation/networking/filter.txt and in kernel/bpf/verifier.c Signed-off-by: Alexei Starovoitov <ast@plumgrid.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-09-26 00:17:06 -07:00
} else if (class == BPF_STX) {
enum bpf_reg_type *prev_dst_type, dst_reg_type;
bpf: verifier (add verifier core) This patch adds verifier core which simulates execution of every insn and records the state of registers and program stack. Every branch instruction seen during simulation is pushed into state stack. When verifier reaches BPF_EXIT, it pops the state from the stack and continues until it reaches BPF_EXIT again. For program: 1: bpf_mov r1, xxx 2: if (r1 == 0) goto 5 3: bpf_mov r0, 1 4: goto 6 5: bpf_mov r0, 2 6: bpf_exit The verifier will walk insns: 1, 2, 3, 4, 6 then it will pop the state recorded at insn#2 and will continue: 5, 6 This way it walks all possible paths through the program and checks all possible values of registers. While doing so, it checks for: - invalid instructions - uninitialized register access - uninitialized stack access - misaligned stack access - out of range stack access - invalid calling convention - instruction encoding is not using reserved fields Kernel subsystem configures the verifier with two callbacks: - bool (*is_valid_access)(int off, int size, enum bpf_access_type type); that provides information to the verifer which fields of 'ctx' are accessible (remember 'ctx' is the first argument to eBPF program) - const struct bpf_func_proto *(*get_func_proto)(enum bpf_func_id func_id); returns argument constraints of kernel helper functions that eBPF program may call, so that verifier can checks that R1-R5 types match the prototype More details in Documentation/networking/filter.txt and in kernel/bpf/verifier.c Signed-off-by: Alexei Starovoitov <ast@plumgrid.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-09-26 00:17:06 -07:00
if (BPF_MODE(insn->code) == BPF_XADD) {
err = check_xadd(env, insn);
if (err)
return err;
insn_idx++;
continue;
}
/* check src1 operand */
err = check_reg_arg(regs, insn->src_reg, SRC_OP);
if (err)
return err;
/* check src2 operand */
err = check_reg_arg(regs, insn->dst_reg, SRC_OP);
if (err)
return err;
dst_reg_type = regs[insn->dst_reg].type;
bpf: verifier (add verifier core) This patch adds verifier core which simulates execution of every insn and records the state of registers and program stack. Every branch instruction seen during simulation is pushed into state stack. When verifier reaches BPF_EXIT, it pops the state from the stack and continues until it reaches BPF_EXIT again. For program: 1: bpf_mov r1, xxx 2: if (r1 == 0) goto 5 3: bpf_mov r0, 1 4: goto 6 5: bpf_mov r0, 2 6: bpf_exit The verifier will walk insns: 1, 2, 3, 4, 6 then it will pop the state recorded at insn#2 and will continue: 5, 6 This way it walks all possible paths through the program and checks all possible values of registers. While doing so, it checks for: - invalid instructions - uninitialized register access - uninitialized stack access - misaligned stack access - out of range stack access - invalid calling convention - instruction encoding is not using reserved fields Kernel subsystem configures the verifier with two callbacks: - bool (*is_valid_access)(int off, int size, enum bpf_access_type type); that provides information to the verifer which fields of 'ctx' are accessible (remember 'ctx' is the first argument to eBPF program) - const struct bpf_func_proto *(*get_func_proto)(enum bpf_func_id func_id); returns argument constraints of kernel helper functions that eBPF program may call, so that verifier can checks that R1-R5 types match the prototype More details in Documentation/networking/filter.txt and in kernel/bpf/verifier.c Signed-off-by: Alexei Starovoitov <ast@plumgrid.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-09-26 00:17:06 -07:00
/* check that memory (dst_reg + off) is writeable */
err = check_mem_access(env, insn->dst_reg, insn->off,
BPF_SIZE(insn->code), BPF_WRITE,
insn->src_reg);
if (err)
return err;
prev_dst_type = &env->insn_aux_data[insn_idx].ptr_type;
if (*prev_dst_type == NOT_INIT) {
*prev_dst_type = dst_reg_type;
} else if (dst_reg_type != *prev_dst_type &&
(dst_reg_type == PTR_TO_CTX ||
*prev_dst_type == PTR_TO_CTX)) {
verbose("same insn cannot be used with different pointers\n");
return -EINVAL;
}
bpf: verifier (add verifier core) This patch adds verifier core which simulates execution of every insn and records the state of registers and program stack. Every branch instruction seen during simulation is pushed into state stack. When verifier reaches BPF_EXIT, it pops the state from the stack and continues until it reaches BPF_EXIT again. For program: 1: bpf_mov r1, xxx 2: if (r1 == 0) goto 5 3: bpf_mov r0, 1 4: goto 6 5: bpf_mov r0, 2 6: bpf_exit The verifier will walk insns: 1, 2, 3, 4, 6 then it will pop the state recorded at insn#2 and will continue: 5, 6 This way it walks all possible paths through the program and checks all possible values of registers. While doing so, it checks for: - invalid instructions - uninitialized register access - uninitialized stack access - misaligned stack access - out of range stack access - invalid calling convention - instruction encoding is not using reserved fields Kernel subsystem configures the verifier with two callbacks: - bool (*is_valid_access)(int off, int size, enum bpf_access_type type); that provides information to the verifer which fields of 'ctx' are accessible (remember 'ctx' is the first argument to eBPF program) - const struct bpf_func_proto *(*get_func_proto)(enum bpf_func_id func_id); returns argument constraints of kernel helper functions that eBPF program may call, so that verifier can checks that R1-R5 types match the prototype More details in Documentation/networking/filter.txt and in kernel/bpf/verifier.c Signed-off-by: Alexei Starovoitov <ast@plumgrid.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-09-26 00:17:06 -07:00
} else if (class == BPF_ST) {
if (BPF_MODE(insn->code) != BPF_MEM ||
insn->src_reg != BPF_REG_0) {
verbose("BPF_ST uses reserved fields\n");
return -EINVAL;
}
/* check src operand */
err = check_reg_arg(regs, insn->dst_reg, SRC_OP);
if (err)
return err;
/* check that memory (dst_reg + off) is writeable */
err = check_mem_access(env, insn->dst_reg, insn->off,
BPF_SIZE(insn->code), BPF_WRITE,
-1);
if (err)
return err;
} else if (class == BPF_JMP) {
u8 opcode = BPF_OP(insn->code);
if (opcode == BPF_CALL) {
if (BPF_SRC(insn->code) != BPF_K ||
insn->off != 0 ||
insn->src_reg != BPF_REG_0 ||
insn->dst_reg != BPF_REG_0) {
verbose("BPF_CALL uses reserved fields\n");
return -EINVAL;
}
err = check_call(env, insn->imm, insn_idx);
bpf: verifier (add verifier core) This patch adds verifier core which simulates execution of every insn and records the state of registers and program stack. Every branch instruction seen during simulation is pushed into state stack. When verifier reaches BPF_EXIT, it pops the state from the stack and continues until it reaches BPF_EXIT again. For program: 1: bpf_mov r1, xxx 2: if (r1 == 0) goto 5 3: bpf_mov r0, 1 4: goto 6 5: bpf_mov r0, 2 6: bpf_exit The verifier will walk insns: 1, 2, 3, 4, 6 then it will pop the state recorded at insn#2 and will continue: 5, 6 This way it walks all possible paths through the program and checks all possible values of registers. While doing so, it checks for: - invalid instructions - uninitialized register access - uninitialized stack access - misaligned stack access - out of range stack access - invalid calling convention - instruction encoding is not using reserved fields Kernel subsystem configures the verifier with two callbacks: - bool (*is_valid_access)(int off, int size, enum bpf_access_type type); that provides information to the verifer which fields of 'ctx' are accessible (remember 'ctx' is the first argument to eBPF program) - const struct bpf_func_proto *(*get_func_proto)(enum bpf_func_id func_id); returns argument constraints of kernel helper functions that eBPF program may call, so that verifier can checks that R1-R5 types match the prototype More details in Documentation/networking/filter.txt and in kernel/bpf/verifier.c Signed-off-by: Alexei Starovoitov <ast@plumgrid.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-09-26 00:17:06 -07:00
if (err)
return err;
} else if (opcode == BPF_JA) {
if (BPF_SRC(insn->code) != BPF_K ||
insn->imm != 0 ||
insn->src_reg != BPF_REG_0 ||
insn->dst_reg != BPF_REG_0) {
verbose("BPF_JA uses reserved fields\n");
return -EINVAL;
}
insn_idx += insn->off + 1;
continue;
} else if (opcode == BPF_EXIT) {
if (BPF_SRC(insn->code) != BPF_K ||
insn->imm != 0 ||
insn->src_reg != BPF_REG_0 ||
insn->dst_reg != BPF_REG_0) {
verbose("BPF_EXIT uses reserved fields\n");
return -EINVAL;
}
/* eBPF calling convetion is such that R0 is used
* to return the value from eBPF program.
* Make sure that it's readable at this time
* of bpf_exit, which means that program wrote
* something into it earlier
*/
err = check_reg_arg(regs, BPF_REG_0, SRC_OP);
if (err)
return err;
bpf: enable non-root eBPF programs In order to let unprivileged users load and execute eBPF programs teach verifier to prevent pointer leaks. Verifier will prevent - any arithmetic on pointers (except R10+Imm which is used to compute stack addresses) - comparison of pointers (except if (map_value_ptr == 0) ... ) - passing pointers to helper functions - indirectly passing pointers in stack to helper functions - returning pointer from bpf program - storing pointers into ctx or maps Spill/fill of pointers into stack is allowed, but mangling of pointers stored in the stack or reading them byte by byte is not. Within bpf programs the pointers do exist, since programs need to be able to access maps, pass skb pointer to LD_ABS insns, etc but programs cannot pass such pointer values to the outside or obfuscate them. Only allow BPF_PROG_TYPE_SOCKET_FILTER unprivileged programs, so that socket filters (tcpdump), af_packet (quic acceleration) and future kcm can use it. tracing and tc cls/act program types still require root permissions, since tracing actually needs to be able to see all kernel pointers and tc is for root only. For example, the following unprivileged socket filter program is allowed: int bpf_prog1(struct __sk_buff *skb) { u32 index = load_byte(skb, ETH_HLEN + offsetof(struct iphdr, protocol)); u64 *value = bpf_map_lookup_elem(&my_map, &index); if (value) *value += skb->len; return 0; } but the following program is not: int bpf_prog1(struct __sk_buff *skb) { u32 index = load_byte(skb, ETH_HLEN + offsetof(struct iphdr, protocol)); u64 *value = bpf_map_lookup_elem(&my_map, &index); if (value) *value += (u64) skb; return 0; } since it would leak the kernel address into the map. Unprivileged socket filter bpf programs have access to the following helper functions: - map lookup/update/delete (but they cannot store kernel pointers into them) - get_random (it's already exposed to unprivileged user space) - get_smp_processor_id - tail_call into another socket filter program - ktime_get_ns The feature is controlled by sysctl kernel.unprivileged_bpf_disabled. This toggle defaults to off (0), but can be set true (1). Once true, bpf programs and maps cannot be accessed from unprivileged process, and the toggle cannot be set back to false. Signed-off-by: Alexei Starovoitov <ast@plumgrid.com> Reviewed-by: Kees Cook <keescook@chromium.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2015-10-07 22:23:21 -07:00
if (is_pointer_value(env, BPF_REG_0)) {
verbose("R0 leaks addr as return value\n");
return -EACCES;
}
bpf: add search pruning optimization to verifier consider C program represented in eBPF: int filter(int arg) { int a, b, c, *ptr; if (arg == 1) ptr = &a; else if (arg == 2) ptr = &b; else ptr = &c; *ptr = 0; return 0; } eBPF verifier has to follow all possible paths through the program to recognize that '*ptr = 0' instruction would be safe to execute in all situations. It's doing it by picking a path towards the end and observes changes to registers and stack at every insn until it reaches bpf_exit. Then it comes back to one of the previous branches and goes towards the end again with potentially different values in registers. When program has a lot of branches, the number of possible combinations of branches is huge, so verifer has a hard limit of walking no more than 32k instructions. This limit can be reached and complex (but valid) programs could be rejected. Therefore it's important to recognize equivalent verifier states to prune this depth first search. Basic idea can be illustrated by the program (where .. are some eBPF insns): 1: .. 2: if (rX == rY) goto 4 3: .. 4: .. 5: .. 6: bpf_exit In the first pass towards bpf_exit the verifier will walk insns: 1, 2, 3, 4, 5, 6 Since insn#2 is a branch the verifier will remember its state in verifier stack to come back to it later. Since insn#4 is marked as 'branch target', the verifier will remember its state in explored_states[4] linked list. Once it reaches insn#6 successfully it will pop the state recorded at insn#2 and will continue. Without search pruning optimization verifier would have to walk 4, 5, 6 again, effectively simulating execution of insns 1, 2, 4, 5, 6 With search pruning it will check whether state at #4 after jumping from #2 is equivalent to one recorded in explored_states[4] during first pass. If there is an equivalent state, verifier can prune the search at #4 and declare this path to be safe as well. In other words two states at #4 are equivalent if execution of 1, 2, 3, 4 insns and 1, 2, 4 insns produces equivalent registers and stack. Signed-off-by: Alexei Starovoitov <ast@plumgrid.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-09-29 18:50:01 -07:00
process_bpf_exit:
bpf: verifier (add verifier core) This patch adds verifier core which simulates execution of every insn and records the state of registers and program stack. Every branch instruction seen during simulation is pushed into state stack. When verifier reaches BPF_EXIT, it pops the state from the stack and continues until it reaches BPF_EXIT again. For program: 1: bpf_mov r1, xxx 2: if (r1 == 0) goto 5 3: bpf_mov r0, 1 4: goto 6 5: bpf_mov r0, 2 6: bpf_exit The verifier will walk insns: 1, 2, 3, 4, 6 then it will pop the state recorded at insn#2 and will continue: 5, 6 This way it walks all possible paths through the program and checks all possible values of registers. While doing so, it checks for: - invalid instructions - uninitialized register access - uninitialized stack access - misaligned stack access - out of range stack access - invalid calling convention - instruction encoding is not using reserved fields Kernel subsystem configures the verifier with two callbacks: - bool (*is_valid_access)(int off, int size, enum bpf_access_type type); that provides information to the verifer which fields of 'ctx' are accessible (remember 'ctx' is the first argument to eBPF program) - const struct bpf_func_proto *(*get_func_proto)(enum bpf_func_id func_id); returns argument constraints of kernel helper functions that eBPF program may call, so that verifier can checks that R1-R5 types match the prototype More details in Documentation/networking/filter.txt and in kernel/bpf/verifier.c Signed-off-by: Alexei Starovoitov <ast@plumgrid.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-09-26 00:17:06 -07:00
insn_idx = pop_stack(env, &prev_insn_idx);
if (insn_idx < 0) {
break;
} else {
do_print_state = true;
continue;
}
} else {
err = check_cond_jmp_op(env, insn, &insn_idx);
if (err)
return err;
}
} else if (class == BPF_LD) {
u8 mode = BPF_MODE(insn->code);
if (mode == BPF_ABS || mode == BPF_IND) {
err = check_ld_abs(env, insn);
if (err)
return err;
bpf: verifier (add verifier core) This patch adds verifier core which simulates execution of every insn and records the state of registers and program stack. Every branch instruction seen during simulation is pushed into state stack. When verifier reaches BPF_EXIT, it pops the state from the stack and continues until it reaches BPF_EXIT again. For program: 1: bpf_mov r1, xxx 2: if (r1 == 0) goto 5 3: bpf_mov r0, 1 4: goto 6 5: bpf_mov r0, 2 6: bpf_exit The verifier will walk insns: 1, 2, 3, 4, 6 then it will pop the state recorded at insn#2 and will continue: 5, 6 This way it walks all possible paths through the program and checks all possible values of registers. While doing so, it checks for: - invalid instructions - uninitialized register access - uninitialized stack access - misaligned stack access - out of range stack access - invalid calling convention - instruction encoding is not using reserved fields Kernel subsystem configures the verifier with two callbacks: - bool (*is_valid_access)(int off, int size, enum bpf_access_type type); that provides information to the verifer which fields of 'ctx' are accessible (remember 'ctx' is the first argument to eBPF program) - const struct bpf_func_proto *(*get_func_proto)(enum bpf_func_id func_id); returns argument constraints of kernel helper functions that eBPF program may call, so that verifier can checks that R1-R5 types match the prototype More details in Documentation/networking/filter.txt and in kernel/bpf/verifier.c Signed-off-by: Alexei Starovoitov <ast@plumgrid.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-09-26 00:17:06 -07:00
} else if (mode == BPF_IMM) {
err = check_ld_imm(env, insn);
if (err)
return err;
insn_idx++;
} else {
verbose("invalid BPF_LD mode\n");
return -EINVAL;
}
reset_reg_range_values(regs, insn->dst_reg);
bpf: verifier (add verifier core) This patch adds verifier core which simulates execution of every insn and records the state of registers and program stack. Every branch instruction seen during simulation is pushed into state stack. When verifier reaches BPF_EXIT, it pops the state from the stack and continues until it reaches BPF_EXIT again. For program: 1: bpf_mov r1, xxx 2: if (r1 == 0) goto 5 3: bpf_mov r0, 1 4: goto 6 5: bpf_mov r0, 2 6: bpf_exit The verifier will walk insns: 1, 2, 3, 4, 6 then it will pop the state recorded at insn#2 and will continue: 5, 6 This way it walks all possible paths through the program and checks all possible values of registers. While doing so, it checks for: - invalid instructions - uninitialized register access - uninitialized stack access - misaligned stack access - out of range stack access - invalid calling convention - instruction encoding is not using reserved fields Kernel subsystem configures the verifier with two callbacks: - bool (*is_valid_access)(int off, int size, enum bpf_access_type type); that provides information to the verifer which fields of 'ctx' are accessible (remember 'ctx' is the first argument to eBPF program) - const struct bpf_func_proto *(*get_func_proto)(enum bpf_func_id func_id); returns argument constraints of kernel helper functions that eBPF program may call, so that verifier can checks that R1-R5 types match the prototype More details in Documentation/networking/filter.txt and in kernel/bpf/verifier.c Signed-off-by: Alexei Starovoitov <ast@plumgrid.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-09-26 00:17:06 -07:00
} else {
verbose("unknown insn class %d\n", class);
return -EINVAL;
}
insn_idx++;
}
verbose("processed %d insns\n", insn_processed);
bpf: verifier (add verifier core) This patch adds verifier core which simulates execution of every insn and records the state of registers and program stack. Every branch instruction seen during simulation is pushed into state stack. When verifier reaches BPF_EXIT, it pops the state from the stack and continues until it reaches BPF_EXIT again. For program: 1: bpf_mov r1, xxx 2: if (r1 == 0) goto 5 3: bpf_mov r0, 1 4: goto 6 5: bpf_mov r0, 2 6: bpf_exit The verifier will walk insns: 1, 2, 3, 4, 6 then it will pop the state recorded at insn#2 and will continue: 5, 6 This way it walks all possible paths through the program and checks all possible values of registers. While doing so, it checks for: - invalid instructions - uninitialized register access - uninitialized stack access - misaligned stack access - out of range stack access - invalid calling convention - instruction encoding is not using reserved fields Kernel subsystem configures the verifier with two callbacks: - bool (*is_valid_access)(int off, int size, enum bpf_access_type type); that provides information to the verifer which fields of 'ctx' are accessible (remember 'ctx' is the first argument to eBPF program) - const struct bpf_func_proto *(*get_func_proto)(enum bpf_func_id func_id); returns argument constraints of kernel helper functions that eBPF program may call, so that verifier can checks that R1-R5 types match the prototype More details in Documentation/networking/filter.txt and in kernel/bpf/verifier.c Signed-off-by: Alexei Starovoitov <ast@plumgrid.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-09-26 00:17:06 -07:00
return 0;
}
bpf: Add array of maps support This patch adds a few helper funcs to enable map-in-map support (i.e. outer_map->inner_map). The first outer_map type BPF_MAP_TYPE_ARRAY_OF_MAPS is also added in this patch. The next patch will introduce a hash of maps type. Any bpf map type can be acted as an inner_map. The exception is BPF_MAP_TYPE_PROG_ARRAY because the extra level of indirection makes it harder to verify the owner_prog_type and owner_jited. Multi-level map-in-map is not supported (i.e. map->map is ok but not map->map->map). When adding an inner_map to an outer_map, it currently checks the map_type, key_size, value_size, map_flags, max_entries and ops. The verifier also uses those map's properties to do static analysis. map_flags is needed because we need to ensure BPF_PROG_TYPE_PERF_EVENT is using a preallocated hashtab for the inner_hash also. ops and max_entries are needed to generate inlined map-lookup instructions. For simplicity reason, a simple '==' test is used for both map_flags and max_entries. The equality of ops is implied by the equality of map_type. During outer_map creation time, an inner_map_fd is needed to create an outer_map. However, the inner_map_fd's life time does not depend on the outer_map. The inner_map_fd is merely used to initialize the inner_map_meta of the outer_map. Also, for the outer_map: * It allows element update and delete from syscall * It allows element lookup from bpf_prog The above is similar to the current fd_array pattern. Signed-off-by: Martin KaFai Lau <kafai@fb.com> Acked-by: Alexei Starovoitov <ast@kernel.org> Acked-by: Daniel Borkmann <daniel@iogearbox.net> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-03-22 10:00:33 -07:00
static int check_map_prealloc(struct bpf_map *map)
{
return (map->map_type != BPF_MAP_TYPE_HASH &&
map->map_type != BPF_MAP_TYPE_PERCPU_HASH &&
map->map_type != BPF_MAP_TYPE_HASH_OF_MAPS) ||
bpf: Add array of maps support This patch adds a few helper funcs to enable map-in-map support (i.e. outer_map->inner_map). The first outer_map type BPF_MAP_TYPE_ARRAY_OF_MAPS is also added in this patch. The next patch will introduce a hash of maps type. Any bpf map type can be acted as an inner_map. The exception is BPF_MAP_TYPE_PROG_ARRAY because the extra level of indirection makes it harder to verify the owner_prog_type and owner_jited. Multi-level map-in-map is not supported (i.e. map->map is ok but not map->map->map). When adding an inner_map to an outer_map, it currently checks the map_type, key_size, value_size, map_flags, max_entries and ops. The verifier also uses those map's properties to do static analysis. map_flags is needed because we need to ensure BPF_PROG_TYPE_PERF_EVENT is using a preallocated hashtab for the inner_hash also. ops and max_entries are needed to generate inlined map-lookup instructions. For simplicity reason, a simple '==' test is used for both map_flags and max_entries. The equality of ops is implied by the equality of map_type. During outer_map creation time, an inner_map_fd is needed to create an outer_map. However, the inner_map_fd's life time does not depend on the outer_map. The inner_map_fd is merely used to initialize the inner_map_meta of the outer_map. Also, for the outer_map: * It allows element update and delete from syscall * It allows element lookup from bpf_prog The above is similar to the current fd_array pattern. Signed-off-by: Martin KaFai Lau <kafai@fb.com> Acked-by: Alexei Starovoitov <ast@kernel.org> Acked-by: Daniel Borkmann <daniel@iogearbox.net> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-03-22 10:00:33 -07:00
!(map->map_flags & BPF_F_NO_PREALLOC);
}
static int check_map_prog_compatibility(struct bpf_map *map,
struct bpf_prog *prog)
{
bpf: Add array of maps support This patch adds a few helper funcs to enable map-in-map support (i.e. outer_map->inner_map). The first outer_map type BPF_MAP_TYPE_ARRAY_OF_MAPS is also added in this patch. The next patch will introduce a hash of maps type. Any bpf map type can be acted as an inner_map. The exception is BPF_MAP_TYPE_PROG_ARRAY because the extra level of indirection makes it harder to verify the owner_prog_type and owner_jited. Multi-level map-in-map is not supported (i.e. map->map is ok but not map->map->map). When adding an inner_map to an outer_map, it currently checks the map_type, key_size, value_size, map_flags, max_entries and ops. The verifier also uses those map's properties to do static analysis. map_flags is needed because we need to ensure BPF_PROG_TYPE_PERF_EVENT is using a preallocated hashtab for the inner_hash also. ops and max_entries are needed to generate inlined map-lookup instructions. For simplicity reason, a simple '==' test is used for both map_flags and max_entries. The equality of ops is implied by the equality of map_type. During outer_map creation time, an inner_map_fd is needed to create an outer_map. However, the inner_map_fd's life time does not depend on the outer_map. The inner_map_fd is merely used to initialize the inner_map_meta of the outer_map. Also, for the outer_map: * It allows element update and delete from syscall * It allows element lookup from bpf_prog The above is similar to the current fd_array pattern. Signed-off-by: Martin KaFai Lau <kafai@fb.com> Acked-by: Alexei Starovoitov <ast@kernel.org> Acked-by: Daniel Borkmann <daniel@iogearbox.net> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-03-22 10:00:33 -07:00
/* Make sure that BPF_PROG_TYPE_PERF_EVENT programs only use
* preallocated hash maps, since doing memory allocation
* in overflow_handler can crash depending on where nmi got
* triggered.
*/
if (prog->type == BPF_PROG_TYPE_PERF_EVENT) {
if (!check_map_prealloc(map)) {
verbose("perf_event programs can only use preallocated hash map\n");
return -EINVAL;
}
if (map->inner_map_meta &&
!check_map_prealloc(map->inner_map_meta)) {
verbose("perf_event programs can only use preallocated inner hash map\n");
return -EINVAL;
}
}
return 0;
}
/* look for pseudo eBPF instructions that access map FDs and
* replace them with actual map pointers
*/
static int replace_map_fd_with_map_ptr(struct bpf_verifier_env *env)
{
struct bpf_insn *insn = env->prog->insnsi;
int insn_cnt = env->prog->len;
int i, j, err;
bpf: rework prog_digest into prog_tag Commit 7bd509e311f4 ("bpf: add prog_digest and expose it via fdinfo/netlink") was recently discussed, partially due to admittedly suboptimal name of "prog_digest" in combination with sha1 hash usage, thus inevitably and rightfully concerns about its security in terms of collision resistance were raised with regards to use-cases. The intended use cases are for debugging resp. introspection only for providing a stable "tag" over the instruction sequence that both kernel and user space can calculate independently. It's not usable at all for making a security relevant decision. So collisions where two different instruction sequences generate the same tag can happen, but ideally at a rather low rate. The "tag" will be dumped in hex and is short enough to introspect in tracepoints or kallsyms output along with other data such as stack trace, etc. Thus, this patch performs a rename into prog_tag and truncates the tag to a short output (64 bits) to make it obvious it's not collision-free. Should in future a hash or facility be needed with a security relevant focus, then we can think about requirements, constraints, etc that would fit to that situation. For now, rework the exposed parts for the current use cases as long as nothing has been released yet. Tested on x86_64 and s390x. Fixes: 7bd509e311f4 ("bpf: add prog_digest and expose it via fdinfo/netlink") Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Alexei Starovoitov <ast@kernel.org> Cc: Andy Lutomirski <luto@kernel.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-01-13 23:38:15 +01:00
err = bpf_prog_calc_tag(env->prog);
if (err)
return err;
for (i = 0; i < insn_cnt; i++, insn++) {
if (BPF_CLASS(insn->code) == BPF_LDX &&
(BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0)) {
verbose("BPF_LDX uses reserved fields\n");
return -EINVAL;
}
if (BPF_CLASS(insn->code) == BPF_STX &&
((BPF_MODE(insn->code) != BPF_MEM &&
BPF_MODE(insn->code) != BPF_XADD) || insn->imm != 0)) {
verbose("BPF_STX uses reserved fields\n");
return -EINVAL;
}
if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW)) {
struct bpf_map *map;
struct fd f;
if (i == insn_cnt - 1 || insn[1].code != 0 ||
insn[1].dst_reg != 0 || insn[1].src_reg != 0 ||
insn[1].off != 0) {
verbose("invalid bpf_ld_imm64 insn\n");
return -EINVAL;
}
if (insn->src_reg == 0)
/* valid generic load 64-bit imm */
goto next_insn;
if (insn->src_reg != BPF_PSEUDO_MAP_FD) {
verbose("unrecognized bpf_ld_imm64 insn\n");
return -EINVAL;
}
f = fdget(insn->imm);
map = __bpf_map_get(f);
if (IS_ERR(map)) {
verbose("fd %d is not pointing to valid bpf_map\n",
insn->imm);
return PTR_ERR(map);
}
err = check_map_prog_compatibility(map, env->prog);
if (err) {
fdput(f);
return err;
}
/* store map pointer inside BPF_LD_IMM64 instruction */
insn[0].imm = (u32) (unsigned long) map;
insn[1].imm = ((u64) (unsigned long) map) >> 32;
/* check whether we recorded this map already */
for (j = 0; j < env->used_map_cnt; j++)
if (env->used_maps[j] == map) {
fdput(f);
goto next_insn;
}
if (env->used_map_cnt >= MAX_USED_MAPS) {
fdput(f);
return -E2BIG;
}
/* hold the map. If the program is rejected by verifier,
* the map will be released by release_maps() or it
* will be used by the valid program until it's unloaded
* and all maps are released in free_bpf_prog_info()
*/
map = bpf_map_inc(map, false);
if (IS_ERR(map)) {
fdput(f);
return PTR_ERR(map);
}
env->used_maps[env->used_map_cnt++] = map;
fdput(f);
next_insn:
insn++;
i++;
}
}
/* now all pseudo BPF_LD_IMM64 instructions load valid
* 'struct bpf_map *' into a register instead of user map_fd.
* These pointers will be used later by verifier to validate map access.
*/
return 0;
}
/* drop refcnt of maps used by the rejected program */
static void release_maps(struct bpf_verifier_env *env)
{
int i;
for (i = 0; i < env->used_map_cnt; i++)
bpf_map_put(env->used_maps[i]);
}
/* convert pseudo BPF_LD_IMM64 into generic BPF_LD_IMM64 */
static void convert_pseudo_ld_imm64(struct bpf_verifier_env *env)
{
struct bpf_insn *insn = env->prog->insnsi;
int insn_cnt = env->prog->len;
int i;
for (i = 0; i < insn_cnt; i++, insn++)
if (insn->code == (BPF_LD | BPF_IMM | BPF_DW))
insn->src_reg = 0;
}
/* single env->prog->insni[off] instruction was replaced with the range
* insni[off, off + cnt). Adjust corresponding insn_aux_data by copying
* [0, off) and [off, end) to new locations, so the patched range stays zero
*/
static int adjust_insn_aux_data(struct bpf_verifier_env *env, u32 prog_len,
u32 off, u32 cnt)
{
struct bpf_insn_aux_data *new_data, *old_data = env->insn_aux_data;
if (cnt == 1)
return 0;
new_data = vzalloc(sizeof(struct bpf_insn_aux_data) * prog_len);
if (!new_data)
return -ENOMEM;
memcpy(new_data, old_data, sizeof(struct bpf_insn_aux_data) * off);
memcpy(new_data + off + cnt - 1, old_data + off,
sizeof(struct bpf_insn_aux_data) * (prog_len - off - cnt + 1));
env->insn_aux_data = new_data;
vfree(old_data);
return 0;
}
static struct bpf_prog *bpf_patch_insn_data(struct bpf_verifier_env *env, u32 off,
const struct bpf_insn *patch, u32 len)
{
struct bpf_prog *new_prog;
new_prog = bpf_patch_insn_single(env->prog, off, patch, len);
if (!new_prog)
return NULL;
if (adjust_insn_aux_data(env, new_prog->len, off, len))
return NULL;
return new_prog;
}
/* convert load instructions that access fields of 'struct __sk_buff'
* into sequence of instructions that access fields of 'struct sk_buff'
*/
static int convert_ctx_accesses(struct bpf_verifier_env *env)
{
bpf: direct packet write and access for helpers for clsact progs This work implements direct packet access for helpers and direct packet write in a similar fashion as already available for XDP types via commits 4acf6c0b84c9 ("bpf: enable direct packet data write for xdp progs") and 6841de8b0d03 ("bpf: allow helpers access the packet directly"), and as a complementary feature to the already available direct packet read for tc (cls/act) programs. For enabling this, we need to introduce two helpers, bpf_skb_pull_data() and bpf_csum_update(). The first is generally needed for both, read and write, because they would otherwise only be limited to the current linear skb head. Usually, when the data_end test fails, programs just bail out, or, in the direct read case, use bpf_skb_load_bytes() as an alternative to overcome this limitation. If such data sits in non-linear parts, we can just pull them in once with the new helper, retest and eventually access them. At the same time, this also makes sure the skb is uncloned, which is, of course, a necessary condition for direct write. As this needs to be an invariant for the write part only, the verifier detects writes and adds a prologue that is calling bpf_skb_pull_data() to effectively unclone the skb from the very beginning in case it is indeed cloned. The heuristic makes use of a similar trick that was done in 233577a22089 ("net: filter: constify detection of pkt_type_offset"). This comes at zero cost for other programs that do not use the direct write feature. Should a program use this feature only sparsely and has read access for the most parts with, for example, drop return codes, then such write action can be delegated to a tail called program for mitigating this cost of potential uncloning to a late point in time where it would have been paid similarly with the bpf_skb_store_bytes() as well. Advantage of direct write is that the writes are inlined whereas the helper cannot make any length assumptions and thus needs to generate a call to memcpy() also for small sizes, as well as cost of helper call itself with sanity checks are avoided. Plus, when direct read is already used, we don't need to cache or perform rechecks on the data boundaries (due to verifier invalidating previous checks for helpers that change skb->data), so more complex programs using rewrites can benefit from switching to direct read plus write. For direct packet access to helpers, we save the otherwise needed copy into a temp struct sitting on stack memory when use-case allows. Both facilities are enabled via may_access_direct_pkt_data() in verifier. For now, we limit this to map helpers and csum_diff, and can successively enable other helpers where we find it makes sense. Helpers that definitely cannot be allowed for this are those part of bpf_helper_changes_skb_data() since they can change underlying data, and those that write into memory as this could happen for packet typed args when still cloned. bpf_csum_update() helper accommodates for the fact that we need to fixup checksum_complete when using direct write instead of bpf_skb_store_bytes(), meaning the programs can use available helpers like bpf_csum_diff(), and implement csum_add(), csum_sub(), csum_block_add(), csum_block_sub() equivalents in eBPF together with the new helper. A usage example will be provided for iproute2's examples/bpf/ directory. Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-09-20 00:26:13 +02:00
const struct bpf_verifier_ops *ops = env->prog->aux->ops;
const int insn_cnt = env->prog->len;
bpf: direct packet write and access for helpers for clsact progs This work implements direct packet access for helpers and direct packet write in a similar fashion as already available for XDP types via commits 4acf6c0b84c9 ("bpf: enable direct packet data write for xdp progs") and 6841de8b0d03 ("bpf: allow helpers access the packet directly"), and as a complementary feature to the already available direct packet read for tc (cls/act) programs. For enabling this, we need to introduce two helpers, bpf_skb_pull_data() and bpf_csum_update(). The first is generally needed for both, read and write, because they would otherwise only be limited to the current linear skb head. Usually, when the data_end test fails, programs just bail out, or, in the direct read case, use bpf_skb_load_bytes() as an alternative to overcome this limitation. If such data sits in non-linear parts, we can just pull them in once with the new helper, retest and eventually access them. At the same time, this also makes sure the skb is uncloned, which is, of course, a necessary condition for direct write. As this needs to be an invariant for the write part only, the verifier detects writes and adds a prologue that is calling bpf_skb_pull_data() to effectively unclone the skb from the very beginning in case it is indeed cloned. The heuristic makes use of a similar trick that was done in 233577a22089 ("net: filter: constify detection of pkt_type_offset"). This comes at zero cost for other programs that do not use the direct write feature. Should a program use this feature only sparsely and has read access for the most parts with, for example, drop return codes, then such write action can be delegated to a tail called program for mitigating this cost of potential uncloning to a late point in time where it would have been paid similarly with the bpf_skb_store_bytes() as well. Advantage of direct write is that the writes are inlined whereas the helper cannot make any length assumptions and thus needs to generate a call to memcpy() also for small sizes, as well as cost of helper call itself with sanity checks are avoided. Plus, when direct read is already used, we don't need to cache or perform rechecks on the data boundaries (due to verifier invalidating previous checks for helpers that change skb->data), so more complex programs using rewrites can benefit from switching to direct read plus write. For direct packet access to helpers, we save the otherwise needed copy into a temp struct sitting on stack memory when use-case allows. Both facilities are enabled via may_access_direct_pkt_data() in verifier. For now, we limit this to map helpers and csum_diff, and can successively enable other helpers where we find it makes sense. Helpers that definitely cannot be allowed for this are those part of bpf_helper_changes_skb_data() since they can change underlying data, and those that write into memory as this could happen for packet typed args when still cloned. bpf_csum_update() helper accommodates for the fact that we need to fixup checksum_complete when using direct write instead of bpf_skb_store_bytes(), meaning the programs can use available helpers like bpf_csum_diff(), and implement csum_add(), csum_sub(), csum_block_add(), csum_block_sub() equivalents in eBPF together with the new helper. A usage example will be provided for iproute2's examples/bpf/ directory. Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-09-20 00:26:13 +02:00
struct bpf_insn insn_buf[16], *insn;
struct bpf_prog *new_prog;
enum bpf_access_type type;
int i, cnt, delta = 0;
bpf: direct packet write and access for helpers for clsact progs This work implements direct packet access for helpers and direct packet write in a similar fashion as already available for XDP types via commits 4acf6c0b84c9 ("bpf: enable direct packet data write for xdp progs") and 6841de8b0d03 ("bpf: allow helpers access the packet directly"), and as a complementary feature to the already available direct packet read for tc (cls/act) programs. For enabling this, we need to introduce two helpers, bpf_skb_pull_data() and bpf_csum_update(). The first is generally needed for both, read and write, because they would otherwise only be limited to the current linear skb head. Usually, when the data_end test fails, programs just bail out, or, in the direct read case, use bpf_skb_load_bytes() as an alternative to overcome this limitation. If such data sits in non-linear parts, we can just pull them in once with the new helper, retest and eventually access them. At the same time, this also makes sure the skb is uncloned, which is, of course, a necessary condition for direct write. As this needs to be an invariant for the write part only, the verifier detects writes and adds a prologue that is calling bpf_skb_pull_data() to effectively unclone the skb from the very beginning in case it is indeed cloned. The heuristic makes use of a similar trick that was done in 233577a22089 ("net: filter: constify detection of pkt_type_offset"). This comes at zero cost for other programs that do not use the direct write feature. Should a program use this feature only sparsely and has read access for the most parts with, for example, drop return codes, then such write action can be delegated to a tail called program for mitigating this cost of potential uncloning to a late point in time where it would have been paid similarly with the bpf_skb_store_bytes() as well. Advantage of direct write is that the writes are inlined whereas the helper cannot make any length assumptions and thus needs to generate a call to memcpy() also for small sizes, as well as cost of helper call itself with sanity checks are avoided. Plus, when direct read is already used, we don't need to cache or perform rechecks on the data boundaries (due to verifier invalidating previous checks for helpers that change skb->data), so more complex programs using rewrites can benefit from switching to direct read plus write. For direct packet access to helpers, we save the otherwise needed copy into a temp struct sitting on stack memory when use-case allows. Both facilities are enabled via may_access_direct_pkt_data() in verifier. For now, we limit this to map helpers and csum_diff, and can successively enable other helpers where we find it makes sense. Helpers that definitely cannot be allowed for this are those part of bpf_helper_changes_skb_data() since they can change underlying data, and those that write into memory as this could happen for packet typed args when still cloned. bpf_csum_update() helper accommodates for the fact that we need to fixup checksum_complete when using direct write instead of bpf_skb_store_bytes(), meaning the programs can use available helpers like bpf_csum_diff(), and implement csum_add(), csum_sub(), csum_block_add(), csum_block_sub() equivalents in eBPF together with the new helper. A usage example will be provided for iproute2's examples/bpf/ directory. Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-09-20 00:26:13 +02:00
if (ops->gen_prologue) {
cnt = ops->gen_prologue(insn_buf, env->seen_direct_write,
env->prog);
if (cnt >= ARRAY_SIZE(insn_buf)) {
verbose("bpf verifier is misconfigured\n");
return -EINVAL;
} else if (cnt) {
new_prog = bpf_patch_insn_data(env, 0, insn_buf, cnt);
bpf: direct packet write and access for helpers for clsact progs This work implements direct packet access for helpers and direct packet write in a similar fashion as already available for XDP types via commits 4acf6c0b84c9 ("bpf: enable direct packet data write for xdp progs") and 6841de8b0d03 ("bpf: allow helpers access the packet directly"), and as a complementary feature to the already available direct packet read for tc (cls/act) programs. For enabling this, we need to introduce two helpers, bpf_skb_pull_data() and bpf_csum_update(). The first is generally needed for both, read and write, because they would otherwise only be limited to the current linear skb head. Usually, when the data_end test fails, programs just bail out, or, in the direct read case, use bpf_skb_load_bytes() as an alternative to overcome this limitation. If such data sits in non-linear parts, we can just pull them in once with the new helper, retest and eventually access them. At the same time, this also makes sure the skb is uncloned, which is, of course, a necessary condition for direct write. As this needs to be an invariant for the write part only, the verifier detects writes and adds a prologue that is calling bpf_skb_pull_data() to effectively unclone the skb from the very beginning in case it is indeed cloned. The heuristic makes use of a similar trick that was done in 233577a22089 ("net: filter: constify detection of pkt_type_offset"). This comes at zero cost for other programs that do not use the direct write feature. Should a program use this feature only sparsely and has read access for the most parts with, for example, drop return codes, then such write action can be delegated to a tail called program for mitigating this cost of potential uncloning to a late point in time where it would have been paid similarly with the bpf_skb_store_bytes() as well. Advantage of direct write is that the writes are inlined whereas the helper cannot make any length assumptions and thus needs to generate a call to memcpy() also for small sizes, as well as cost of helper call itself with sanity checks are avoided. Plus, when direct read is already used, we don't need to cache or perform rechecks on the data boundaries (due to verifier invalidating previous checks for helpers that change skb->data), so more complex programs using rewrites can benefit from switching to direct read plus write. For direct packet access to helpers, we save the otherwise needed copy into a temp struct sitting on stack memory when use-case allows. Both facilities are enabled via may_access_direct_pkt_data() in verifier. For now, we limit this to map helpers and csum_diff, and can successively enable other helpers where we find it makes sense. Helpers that definitely cannot be allowed for this are those part of bpf_helper_changes_skb_data() since they can change underlying data, and those that write into memory as this could happen for packet typed args when still cloned. bpf_csum_update() helper accommodates for the fact that we need to fixup checksum_complete when using direct write instead of bpf_skb_store_bytes(), meaning the programs can use available helpers like bpf_csum_diff(), and implement csum_add(), csum_sub(), csum_block_add(), csum_block_sub() equivalents in eBPF together with the new helper. A usage example will be provided for iproute2's examples/bpf/ directory. Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-09-20 00:26:13 +02:00
if (!new_prog)
return -ENOMEM;
bpf: direct packet write and access for helpers for clsact progs This work implements direct packet access for helpers and direct packet write in a similar fashion as already available for XDP types via commits 4acf6c0b84c9 ("bpf: enable direct packet data write for xdp progs") and 6841de8b0d03 ("bpf: allow helpers access the packet directly"), and as a complementary feature to the already available direct packet read for tc (cls/act) programs. For enabling this, we need to introduce two helpers, bpf_skb_pull_data() and bpf_csum_update(). The first is generally needed for both, read and write, because they would otherwise only be limited to the current linear skb head. Usually, when the data_end test fails, programs just bail out, or, in the direct read case, use bpf_skb_load_bytes() as an alternative to overcome this limitation. If such data sits in non-linear parts, we can just pull them in once with the new helper, retest and eventually access them. At the same time, this also makes sure the skb is uncloned, which is, of course, a necessary condition for direct write. As this needs to be an invariant for the write part only, the verifier detects writes and adds a prologue that is calling bpf_skb_pull_data() to effectively unclone the skb from the very beginning in case it is indeed cloned. The heuristic makes use of a similar trick that was done in 233577a22089 ("net: filter: constify detection of pkt_type_offset"). This comes at zero cost for other programs that do not use the direct write feature. Should a program use this feature only sparsely and has read access for the most parts with, for example, drop return codes, then such write action can be delegated to a tail called program for mitigating this cost of potential uncloning to a late point in time where it would have been paid similarly with the bpf_skb_store_bytes() as well. Advantage of direct write is that the writes are inlined whereas the helper cannot make any length assumptions and thus needs to generate a call to memcpy() also for small sizes, as well as cost of helper call itself with sanity checks are avoided. Plus, when direct read is already used, we don't need to cache or perform rechecks on the data boundaries (due to verifier invalidating previous checks for helpers that change skb->data), so more complex programs using rewrites can benefit from switching to direct read plus write. For direct packet access to helpers, we save the otherwise needed copy into a temp struct sitting on stack memory when use-case allows. Both facilities are enabled via may_access_direct_pkt_data() in verifier. For now, we limit this to map helpers and csum_diff, and can successively enable other helpers where we find it makes sense. Helpers that definitely cannot be allowed for this are those part of bpf_helper_changes_skb_data() since they can change underlying data, and those that write into memory as this could happen for packet typed args when still cloned. bpf_csum_update() helper accommodates for the fact that we need to fixup checksum_complete when using direct write instead of bpf_skb_store_bytes(), meaning the programs can use available helpers like bpf_csum_diff(), and implement csum_add(), csum_sub(), csum_block_add(), csum_block_sub() equivalents in eBPF together with the new helper. A usage example will be provided for iproute2's examples/bpf/ directory. Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-09-20 00:26:13 +02:00
env->prog = new_prog;
delta += cnt - 1;
bpf: direct packet write and access for helpers for clsact progs This work implements direct packet access for helpers and direct packet write in a similar fashion as already available for XDP types via commits 4acf6c0b84c9 ("bpf: enable direct packet data write for xdp progs") and 6841de8b0d03 ("bpf: allow helpers access the packet directly"), and as a complementary feature to the already available direct packet read for tc (cls/act) programs. For enabling this, we need to introduce two helpers, bpf_skb_pull_data() and bpf_csum_update(). The first is generally needed for both, read and write, because they would otherwise only be limited to the current linear skb head. Usually, when the data_end test fails, programs just bail out, or, in the direct read case, use bpf_skb_load_bytes() as an alternative to overcome this limitation. If such data sits in non-linear parts, we can just pull them in once with the new helper, retest and eventually access them. At the same time, this also makes sure the skb is uncloned, which is, of course, a necessary condition for direct write. As this needs to be an invariant for the write part only, the verifier detects writes and adds a prologue that is calling bpf_skb_pull_data() to effectively unclone the skb from the very beginning in case it is indeed cloned. The heuristic makes use of a similar trick that was done in 233577a22089 ("net: filter: constify detection of pkt_type_offset"). This comes at zero cost for other programs that do not use the direct write feature. Should a program use this feature only sparsely and has read access for the most parts with, for example, drop return codes, then such write action can be delegated to a tail called program for mitigating this cost of potential uncloning to a late point in time where it would have been paid similarly with the bpf_skb_store_bytes() as well. Advantage of direct write is that the writes are inlined whereas the helper cannot make any length assumptions and thus needs to generate a call to memcpy() also for small sizes, as well as cost of helper call itself with sanity checks are avoided. Plus, when direct read is already used, we don't need to cache or perform rechecks on the data boundaries (due to verifier invalidating previous checks for helpers that change skb->data), so more complex programs using rewrites can benefit from switching to direct read plus write. For direct packet access to helpers, we save the otherwise needed copy into a temp struct sitting on stack memory when use-case allows. Both facilities are enabled via may_access_direct_pkt_data() in verifier. For now, we limit this to map helpers and csum_diff, and can successively enable other helpers where we find it makes sense. Helpers that definitely cannot be allowed for this are those part of bpf_helper_changes_skb_data() since they can change underlying data, and those that write into memory as this could happen for packet typed args when still cloned. bpf_csum_update() helper accommodates for the fact that we need to fixup checksum_complete when using direct write instead of bpf_skb_store_bytes(), meaning the programs can use available helpers like bpf_csum_diff(), and implement csum_add(), csum_sub(), csum_block_add(), csum_block_sub() equivalents in eBPF together with the new helper. A usage example will be provided for iproute2's examples/bpf/ directory. Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-09-20 00:26:13 +02:00
}
}
if (!ops->convert_ctx_access)
return 0;
insn = env->prog->insnsi + delta;
bpf: direct packet write and access for helpers for clsact progs This work implements direct packet access for helpers and direct packet write in a similar fashion as already available for XDP types via commits 4acf6c0b84c9 ("bpf: enable direct packet data write for xdp progs") and 6841de8b0d03 ("bpf: allow helpers access the packet directly"), and as a complementary feature to the already available direct packet read for tc (cls/act) programs. For enabling this, we need to introduce two helpers, bpf_skb_pull_data() and bpf_csum_update(). The first is generally needed for both, read and write, because they would otherwise only be limited to the current linear skb head. Usually, when the data_end test fails, programs just bail out, or, in the direct read case, use bpf_skb_load_bytes() as an alternative to overcome this limitation. If such data sits in non-linear parts, we can just pull them in once with the new helper, retest and eventually access them. At the same time, this also makes sure the skb is uncloned, which is, of course, a necessary condition for direct write. As this needs to be an invariant for the write part only, the verifier detects writes and adds a prologue that is calling bpf_skb_pull_data() to effectively unclone the skb from the very beginning in case it is indeed cloned. The heuristic makes use of a similar trick that was done in 233577a22089 ("net: filter: constify detection of pkt_type_offset"). This comes at zero cost for other programs that do not use the direct write feature. Should a program use this feature only sparsely and has read access for the most parts with, for example, drop return codes, then such write action can be delegated to a tail called program for mitigating this cost of potential uncloning to a late point in time where it would have been paid similarly with the bpf_skb_store_bytes() as well. Advantage of direct write is that the writes are inlined whereas the helper cannot make any length assumptions and thus needs to generate a call to memcpy() also for small sizes, as well as cost of helper call itself with sanity checks are avoided. Plus, when direct read is already used, we don't need to cache or perform rechecks on the data boundaries (due to verifier invalidating previous checks for helpers that change skb->data), so more complex programs using rewrites can benefit from switching to direct read plus write. For direct packet access to helpers, we save the otherwise needed copy into a temp struct sitting on stack memory when use-case allows. Both facilities are enabled via may_access_direct_pkt_data() in verifier. For now, we limit this to map helpers and csum_diff, and can successively enable other helpers where we find it makes sense. Helpers that definitely cannot be allowed for this are those part of bpf_helper_changes_skb_data() since they can change underlying data, and those that write into memory as this could happen for packet typed args when still cloned. bpf_csum_update() helper accommodates for the fact that we need to fixup checksum_complete when using direct write instead of bpf_skb_store_bytes(), meaning the programs can use available helpers like bpf_csum_diff(), and implement csum_add(), csum_sub(), csum_block_add(), csum_block_sub() equivalents in eBPF together with the new helper. A usage example will be provided for iproute2's examples/bpf/ directory. Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-09-20 00:26:13 +02:00
for (i = 0; i < insn_cnt; i++, insn++) {
if (insn->code == (BPF_LDX | BPF_MEM | BPF_B) ||
insn->code == (BPF_LDX | BPF_MEM | BPF_H) ||
insn->code == (BPF_LDX | BPF_MEM | BPF_W) ||
insn->code == (BPF_LDX | BPF_MEM | BPF_DW))
type = BPF_READ;
else if (insn->code == (BPF_STX | BPF_MEM | BPF_B) ||
insn->code == (BPF_STX | BPF_MEM | BPF_H) ||
insn->code == (BPF_STX | BPF_MEM | BPF_W) ||
insn->code == (BPF_STX | BPF_MEM | BPF_DW))
type = BPF_WRITE;
else
continue;
if (env->insn_aux_data[i + delta].ptr_type != PTR_TO_CTX)
continue;
cnt = ops->convert_ctx_access(type, insn, insn_buf, env->prog);
if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) {
verbose("bpf verifier is misconfigured\n");
return -EINVAL;
}
new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
if (!new_prog)
return -ENOMEM;
delta += cnt - 1;
/* keep walking new program and skip insns we just inserted */
env->prog = new_prog;
insn = new_prog->insnsi + i + delta;
}
return 0;
}
/* fixup insn->imm field of bpf_call instructions
* and inline eligible helpers as explicit sequence of BPF instructions
*
* this function is called after eBPF program passed verification
*/
static int fixup_bpf_calls(struct bpf_verifier_env *env)
{
struct bpf_prog *prog = env->prog;
struct bpf_insn *insn = prog->insnsi;
const struct bpf_func_proto *fn;
const int insn_cnt = prog->len;
struct bpf_insn insn_buf[16];
struct bpf_prog *new_prog;
struct bpf_map *map_ptr;
int i, cnt, delta = 0;
for (i = 0; i < insn_cnt; i++, insn++) {
if (insn->code != (BPF_JMP | BPF_CALL))
continue;
if (insn->imm == BPF_FUNC_get_route_realm)
prog->dst_needed = 1;
if (insn->imm == BPF_FUNC_get_prandom_u32)
bpf_user_rnd_init_once();
if (insn->imm == BPF_FUNC_tail_call) {
/* If we tail call into other programs, we
* cannot make any assumptions since they can
* be replaced dynamically during runtime in
* the program array.
*/
prog->cb_access = 1;
/* mark bpf_tail_call as different opcode to avoid
* conditional branch in the interpeter for every normal
* call and to prevent accidental JITing by JIT compiler
* that doesn't support bpf_tail_call yet
*/
insn->imm = 0;
insn->code |= BPF_X;
continue;
}
if (ebpf_jit_enabled() && insn->imm == BPF_FUNC_map_lookup_elem) {
map_ptr = env->insn_aux_data[i + delta].map_ptr;
if (map_ptr == BPF_MAP_PTR_POISON ||
!map_ptr->ops->map_gen_lookup)
goto patch_call_imm;
cnt = map_ptr->ops->map_gen_lookup(map_ptr, insn_buf);
if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) {
verbose("bpf verifier is misconfigured\n");
return -EINVAL;
}
new_prog = bpf_patch_insn_data(env, i + delta, insn_buf,
cnt);
if (!new_prog)
return -ENOMEM;
delta += cnt - 1;
/* keep walking new program and skip insns we just inserted */
env->prog = prog = new_prog;
insn = new_prog->insnsi + i + delta;
continue;
}
patch_call_imm:
fn = prog->aux->ops->get_func_proto(insn->imm);
/* all functions that have prototype and verifier allowed
* programs to call them, must be real in-kernel functions
*/
if (!fn->func) {
verbose("kernel subsystem misconfigured func %s#%d\n",
func_id_name(insn->imm), insn->imm);
return -EFAULT;
}
insn->imm = fn->func - __bpf_call_base;
}
return 0;
}
static void free_states(struct bpf_verifier_env *env)
bpf: add search pruning optimization to verifier consider C program represented in eBPF: int filter(int arg) { int a, b, c, *ptr; if (arg == 1) ptr = &a; else if (arg == 2) ptr = &b; else ptr = &c; *ptr = 0; return 0; } eBPF verifier has to follow all possible paths through the program to recognize that '*ptr = 0' instruction would be safe to execute in all situations. It's doing it by picking a path towards the end and observes changes to registers and stack at every insn until it reaches bpf_exit. Then it comes back to one of the previous branches and goes towards the end again with potentially different values in registers. When program has a lot of branches, the number of possible combinations of branches is huge, so verifer has a hard limit of walking no more than 32k instructions. This limit can be reached and complex (but valid) programs could be rejected. Therefore it's important to recognize equivalent verifier states to prune this depth first search. Basic idea can be illustrated by the program (where .. are some eBPF insns): 1: .. 2: if (rX == rY) goto 4 3: .. 4: .. 5: .. 6: bpf_exit In the first pass towards bpf_exit the verifier will walk insns: 1, 2, 3, 4, 5, 6 Since insn#2 is a branch the verifier will remember its state in verifier stack to come back to it later. Since insn#4 is marked as 'branch target', the verifier will remember its state in explored_states[4] linked list. Once it reaches insn#6 successfully it will pop the state recorded at insn#2 and will continue. Without search pruning optimization verifier would have to walk 4, 5, 6 again, effectively simulating execution of insns 1, 2, 4, 5, 6 With search pruning it will check whether state at #4 after jumping from #2 is equivalent to one recorded in explored_states[4] during first pass. If there is an equivalent state, verifier can prune the search at #4 and declare this path to be safe as well. In other words two states at #4 are equivalent if execution of 1, 2, 3, 4 insns and 1, 2, 4 insns produces equivalent registers and stack. Signed-off-by: Alexei Starovoitov <ast@plumgrid.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-09-29 18:50:01 -07:00
{
struct bpf_verifier_state_list *sl, *sln;
bpf: add search pruning optimization to verifier consider C program represented in eBPF: int filter(int arg) { int a, b, c, *ptr; if (arg == 1) ptr = &a; else if (arg == 2) ptr = &b; else ptr = &c; *ptr = 0; return 0; } eBPF verifier has to follow all possible paths through the program to recognize that '*ptr = 0' instruction would be safe to execute in all situations. It's doing it by picking a path towards the end and observes changes to registers and stack at every insn until it reaches bpf_exit. Then it comes back to one of the previous branches and goes towards the end again with potentially different values in registers. When program has a lot of branches, the number of possible combinations of branches is huge, so verifer has a hard limit of walking no more than 32k instructions. This limit can be reached and complex (but valid) programs could be rejected. Therefore it's important to recognize equivalent verifier states to prune this depth first search. Basic idea can be illustrated by the program (where .. are some eBPF insns): 1: .. 2: if (rX == rY) goto 4 3: .. 4: .. 5: .. 6: bpf_exit In the first pass towards bpf_exit the verifier will walk insns: 1, 2, 3, 4, 5, 6 Since insn#2 is a branch the verifier will remember its state in verifier stack to come back to it later. Since insn#4 is marked as 'branch target', the verifier will remember its state in explored_states[4] linked list. Once it reaches insn#6 successfully it will pop the state recorded at insn#2 and will continue. Without search pruning optimization verifier would have to walk 4, 5, 6 again, effectively simulating execution of insns 1, 2, 4, 5, 6 With search pruning it will check whether state at #4 after jumping from #2 is equivalent to one recorded in explored_states[4] during first pass. If there is an equivalent state, verifier can prune the search at #4 and declare this path to be safe as well. In other words two states at #4 are equivalent if execution of 1, 2, 3, 4 insns and 1, 2, 4 insns produces equivalent registers and stack. Signed-off-by: Alexei Starovoitov <ast@plumgrid.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-09-29 18:50:01 -07:00
int i;
if (!env->explored_states)
return;
for (i = 0; i < env->prog->len; i++) {
sl = env->explored_states[i];
if (sl)
while (sl != STATE_LIST_MARK) {
sln = sl->next;
kfree(sl);
sl = sln;
}
}
kfree(env->explored_states);
}
int bpf_check(struct bpf_prog **prog, union bpf_attr *attr)
{
char __user *log_ubuf = NULL;
struct bpf_verifier_env *env;
int ret = -EINVAL;
/* 'struct bpf_verifier_env' can be global, but since it's not small,
* allocate/free it every time bpf_check() is called
*/
env = kzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL);
if (!env)
return -ENOMEM;
env->insn_aux_data = vzalloc(sizeof(struct bpf_insn_aux_data) *
(*prog)->len);
ret = -ENOMEM;
if (!env->insn_aux_data)
goto err_free_env;
env->prog = *prog;
/* grab the mutex to protect few globals used by verifier */
mutex_lock(&bpf_verifier_lock);
if (attr->log_level || attr->log_buf || attr->log_size) {
/* user requested verbose verifier output
* and supplied buffer to store the verification trace
*/
log_level = attr->log_level;
log_ubuf = (char __user *) (unsigned long) attr->log_buf;
log_size = attr->log_size;
log_len = 0;
ret = -EINVAL;
/* log_* values have to be sane */
if (log_size < 128 || log_size > UINT_MAX >> 8 ||
log_level == 0 || log_ubuf == NULL)
goto err_unlock;
ret = -ENOMEM;
log_buf = vmalloc(log_size);
if (!log_buf)
goto err_unlock;
} else {
log_level = 0;
}
ret = replace_map_fd_with_map_ptr(env);
if (ret < 0)
goto skip_full_check;
env->explored_states = kcalloc(env->prog->len,
sizeof(struct bpf_verifier_state_list *),
bpf: add search pruning optimization to verifier consider C program represented in eBPF: int filter(int arg) { int a, b, c, *ptr; if (arg == 1) ptr = &a; else if (arg == 2) ptr = &b; else ptr = &c; *ptr = 0; return 0; } eBPF verifier has to follow all possible paths through the program to recognize that '*ptr = 0' instruction would be safe to execute in all situations. It's doing it by picking a path towards the end and observes changes to registers and stack at every insn until it reaches bpf_exit. Then it comes back to one of the previous branches and goes towards the end again with potentially different values in registers. When program has a lot of branches, the number of possible combinations of branches is huge, so verifer has a hard limit of walking no more than 32k instructions. This limit can be reached and complex (but valid) programs could be rejected. Therefore it's important to recognize equivalent verifier states to prune this depth first search. Basic idea can be illustrated by the program (where .. are some eBPF insns): 1: .. 2: if (rX == rY) goto 4 3: .. 4: .. 5: .. 6: bpf_exit In the first pass towards bpf_exit the verifier will walk insns: 1, 2, 3, 4, 5, 6 Since insn#2 is a branch the verifier will remember its state in verifier stack to come back to it later. Since insn#4 is marked as 'branch target', the verifier will remember its state in explored_states[4] linked list. Once it reaches insn#6 successfully it will pop the state recorded at insn#2 and will continue. Without search pruning optimization verifier would have to walk 4, 5, 6 again, effectively simulating execution of insns 1, 2, 4, 5, 6 With search pruning it will check whether state at #4 after jumping from #2 is equivalent to one recorded in explored_states[4] during first pass. If there is an equivalent state, verifier can prune the search at #4 and declare this path to be safe as well. In other words two states at #4 are equivalent if execution of 1, 2, 3, 4 insns and 1, 2, 4 insns produces equivalent registers and stack. Signed-off-by: Alexei Starovoitov <ast@plumgrid.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-09-29 18:50:01 -07:00
GFP_USER);
ret = -ENOMEM;
if (!env->explored_states)
goto skip_full_check;
ret = check_cfg(env);
if (ret < 0)
goto skip_full_check;
bpf: enable non-root eBPF programs In order to let unprivileged users load and execute eBPF programs teach verifier to prevent pointer leaks. Verifier will prevent - any arithmetic on pointers (except R10+Imm which is used to compute stack addresses) - comparison of pointers (except if (map_value_ptr == 0) ... ) - passing pointers to helper functions - indirectly passing pointers in stack to helper functions - returning pointer from bpf program - storing pointers into ctx or maps Spill/fill of pointers into stack is allowed, but mangling of pointers stored in the stack or reading them byte by byte is not. Within bpf programs the pointers do exist, since programs need to be able to access maps, pass skb pointer to LD_ABS insns, etc but programs cannot pass such pointer values to the outside or obfuscate them. Only allow BPF_PROG_TYPE_SOCKET_FILTER unprivileged programs, so that socket filters (tcpdump), af_packet (quic acceleration) and future kcm can use it. tracing and tc cls/act program types still require root permissions, since tracing actually needs to be able to see all kernel pointers and tc is for root only. For example, the following unprivileged socket filter program is allowed: int bpf_prog1(struct __sk_buff *skb) { u32 index = load_byte(skb, ETH_HLEN + offsetof(struct iphdr, protocol)); u64 *value = bpf_map_lookup_elem(&my_map, &index); if (value) *value += skb->len; return 0; } but the following program is not: int bpf_prog1(struct __sk_buff *skb) { u32 index = load_byte(skb, ETH_HLEN + offsetof(struct iphdr, protocol)); u64 *value = bpf_map_lookup_elem(&my_map, &index); if (value) *value += (u64) skb; return 0; } since it would leak the kernel address into the map. Unprivileged socket filter bpf programs have access to the following helper functions: - map lookup/update/delete (but they cannot store kernel pointers into them) - get_random (it's already exposed to unprivileged user space) - get_smp_processor_id - tail_call into another socket filter program - ktime_get_ns The feature is controlled by sysctl kernel.unprivileged_bpf_disabled. This toggle defaults to off (0), but can be set true (1). Once true, bpf programs and maps cannot be accessed from unprivileged process, and the toggle cannot be set back to false. Signed-off-by: Alexei Starovoitov <ast@plumgrid.com> Reviewed-by: Kees Cook <keescook@chromium.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2015-10-07 22:23:21 -07:00
env->allow_ptr_leaks = capable(CAP_SYS_ADMIN);
bpf: verifier (add verifier core) This patch adds verifier core which simulates execution of every insn and records the state of registers and program stack. Every branch instruction seen during simulation is pushed into state stack. When verifier reaches BPF_EXIT, it pops the state from the stack and continues until it reaches BPF_EXIT again. For program: 1: bpf_mov r1, xxx 2: if (r1 == 0) goto 5 3: bpf_mov r0, 1 4: goto 6 5: bpf_mov r0, 2 6: bpf_exit The verifier will walk insns: 1, 2, 3, 4, 6 then it will pop the state recorded at insn#2 and will continue: 5, 6 This way it walks all possible paths through the program and checks all possible values of registers. While doing so, it checks for: - invalid instructions - uninitialized register access - uninitialized stack access - misaligned stack access - out of range stack access - invalid calling convention - instruction encoding is not using reserved fields Kernel subsystem configures the verifier with two callbacks: - bool (*is_valid_access)(int off, int size, enum bpf_access_type type); that provides information to the verifer which fields of 'ctx' are accessible (remember 'ctx' is the first argument to eBPF program) - const struct bpf_func_proto *(*get_func_proto)(enum bpf_func_id func_id); returns argument constraints of kernel helper functions that eBPF program may call, so that verifier can checks that R1-R5 types match the prototype More details in Documentation/networking/filter.txt and in kernel/bpf/verifier.c Signed-off-by: Alexei Starovoitov <ast@plumgrid.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-09-26 00:17:06 -07:00
ret = do_check(env);
skip_full_check:
bpf: verifier (add verifier core) This patch adds verifier core which simulates execution of every insn and records the state of registers and program stack. Every branch instruction seen during simulation is pushed into state stack. When verifier reaches BPF_EXIT, it pops the state from the stack and continues until it reaches BPF_EXIT again. For program: 1: bpf_mov r1, xxx 2: if (r1 == 0) goto 5 3: bpf_mov r0, 1 4: goto 6 5: bpf_mov r0, 2 6: bpf_exit The verifier will walk insns: 1, 2, 3, 4, 6 then it will pop the state recorded at insn#2 and will continue: 5, 6 This way it walks all possible paths through the program and checks all possible values of registers. While doing so, it checks for: - invalid instructions - uninitialized register access - uninitialized stack access - misaligned stack access - out of range stack access - invalid calling convention - instruction encoding is not using reserved fields Kernel subsystem configures the verifier with two callbacks: - bool (*is_valid_access)(int off, int size, enum bpf_access_type type); that provides information to the verifer which fields of 'ctx' are accessible (remember 'ctx' is the first argument to eBPF program) - const struct bpf_func_proto *(*get_func_proto)(enum bpf_func_id func_id); returns argument constraints of kernel helper functions that eBPF program may call, so that verifier can checks that R1-R5 types match the prototype More details in Documentation/networking/filter.txt and in kernel/bpf/verifier.c Signed-off-by: Alexei Starovoitov <ast@plumgrid.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-09-26 00:17:06 -07:00
while (pop_stack(env, NULL) >= 0);
bpf: add search pruning optimization to verifier consider C program represented in eBPF: int filter(int arg) { int a, b, c, *ptr; if (arg == 1) ptr = &a; else if (arg == 2) ptr = &b; else ptr = &c; *ptr = 0; return 0; } eBPF verifier has to follow all possible paths through the program to recognize that '*ptr = 0' instruction would be safe to execute in all situations. It's doing it by picking a path towards the end and observes changes to registers and stack at every insn until it reaches bpf_exit. Then it comes back to one of the previous branches and goes towards the end again with potentially different values in registers. When program has a lot of branches, the number of possible combinations of branches is huge, so verifer has a hard limit of walking no more than 32k instructions. This limit can be reached and complex (but valid) programs could be rejected. Therefore it's important to recognize equivalent verifier states to prune this depth first search. Basic idea can be illustrated by the program (where .. are some eBPF insns): 1: .. 2: if (rX == rY) goto 4 3: .. 4: .. 5: .. 6: bpf_exit In the first pass towards bpf_exit the verifier will walk insns: 1, 2, 3, 4, 5, 6 Since insn#2 is a branch the verifier will remember its state in verifier stack to come back to it later. Since insn#4 is marked as 'branch target', the verifier will remember its state in explored_states[4] linked list. Once it reaches insn#6 successfully it will pop the state recorded at insn#2 and will continue. Without search pruning optimization verifier would have to walk 4, 5, 6 again, effectively simulating execution of insns 1, 2, 4, 5, 6 With search pruning it will check whether state at #4 after jumping from #2 is equivalent to one recorded in explored_states[4] during first pass. If there is an equivalent state, verifier can prune the search at #4 and declare this path to be safe as well. In other words two states at #4 are equivalent if execution of 1, 2, 3, 4 insns and 1, 2, 4 insns produces equivalent registers and stack. Signed-off-by: Alexei Starovoitov <ast@plumgrid.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-09-29 18:50:01 -07:00
free_states(env);
if (ret == 0)
/* program is valid, convert *(u32*)(ctx + off) accesses */
ret = convert_ctx_accesses(env);
if (ret == 0)
ret = fixup_bpf_calls(env);
if (log_level && log_len >= log_size - 1) {
BUG_ON(log_len >= log_size);
/* verifier log exceeded user supplied buffer */
ret = -ENOSPC;
/* fall through to return what was recorded */
}
/* copy verifier log back to user space including trailing zero */
if (log_level && copy_to_user(log_ubuf, log_buf, log_len + 1) != 0) {
ret = -EFAULT;
goto free_log_buf;
}
if (ret == 0 && env->used_map_cnt) {
/* if program passed verifier, update used_maps in bpf_prog_info */
env->prog->aux->used_maps = kmalloc_array(env->used_map_cnt,
sizeof(env->used_maps[0]),
GFP_KERNEL);
if (!env->prog->aux->used_maps) {
ret = -ENOMEM;
goto free_log_buf;
}
memcpy(env->prog->aux->used_maps, env->used_maps,
sizeof(env->used_maps[0]) * env->used_map_cnt);
env->prog->aux->used_map_cnt = env->used_map_cnt;
/* program is valid. Convert pseudo bpf_ld_imm64 into generic
* bpf_ld_imm64 instructions
*/
convert_pseudo_ld_imm64(env);
}
free_log_buf:
if (log_level)
vfree(log_buf);
if (!env->prog->aux->used_maps)
/* if we didn't copy map pointers into bpf_prog_info, release
* them now. Otherwise free_bpf_prog_info() will release them.
*/
release_maps(env);
*prog = env->prog;
err_unlock:
mutex_unlock(&bpf_verifier_lock);
vfree(env->insn_aux_data);
err_free_env:
kfree(env);
return ret;
}
int bpf_analyzer(struct bpf_prog *prog, const struct bpf_ext_analyzer_ops *ops,
void *priv)
{
struct bpf_verifier_env *env;
int ret;
env = kzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL);
if (!env)
return -ENOMEM;
env->insn_aux_data = vzalloc(sizeof(struct bpf_insn_aux_data) *
prog->len);
ret = -ENOMEM;
if (!env->insn_aux_data)
goto err_free_env;
env->prog = prog;
env->analyzer_ops = ops;
env->analyzer_priv = priv;
/* grab the mutex to protect few globals used by verifier */
mutex_lock(&bpf_verifier_lock);
log_level = 0;
env->explored_states = kcalloc(env->prog->len,
sizeof(struct bpf_verifier_state_list *),
GFP_KERNEL);
ret = -ENOMEM;
if (!env->explored_states)
goto skip_full_check;
ret = check_cfg(env);
if (ret < 0)
goto skip_full_check;
env->allow_ptr_leaks = capable(CAP_SYS_ADMIN);
ret = do_check(env);
skip_full_check:
while (pop_stack(env, NULL) >= 0);
free_states(env);
mutex_unlock(&bpf_verifier_lock);
vfree(env->insn_aux_data);
err_free_env:
kfree(env);
return ret;
}
EXPORT_SYMBOL_GPL(bpf_analyzer);