linux/net/ipv4/tcp_ipv4.c

3347 lines
88 KiB
C
Raw Normal View History

// SPDX-License-Identifier: GPL-2.0-or-later
/*
* INET An implementation of the TCP/IP protocol suite for the LINUX
* operating system. INET is implemented using the BSD Socket
* interface as the means of communication with the user level.
*
* Implementation of the Transmission Control Protocol(TCP).
*
* IPv4 specific functions
*
* code split from:
* linux/ipv4/tcp.c
* linux/ipv4/tcp_input.c
* linux/ipv4/tcp_output.c
*
* See tcp.c for author information
*/
/*
* Changes:
* David S. Miller : New socket lookup architecture.
* This code is dedicated to John Dyson.
* David S. Miller : Change semantics of established hash,
* half is devoted to TIME_WAIT sockets
* and the rest go in the other half.
* Andi Kleen : Add support for syncookies and fixed
* some bugs: ip options weren't passed to
* the TCP layer, missed a check for an
* ACK bit.
* Andi Kleen : Implemented fast path mtu discovery.
* Fixed many serious bugs in the
* request_sock handling and moved
* most of it into the af independent code.
* Added tail drop and some other bugfixes.
* Added new listen semantics.
* Mike McLagan : Routing by source
* Juan Jose Ciarlante: ip_dynaddr bits
* Andi Kleen: various fixes.
* Vitaly E. Lavrov : Transparent proxy revived after year
* coma.
* Andi Kleen : Fix new listen.
* Andi Kleen : Fix accept error reporting.
* YOSHIFUJI Hideaki @USAGI and: Support IPV6_V6ONLY socket option, which
* Alexey Kuznetsov allow both IPv4 and IPv6 sockets to bind
* a single port at the same time.
*/
#define pr_fmt(fmt) "TCP: " fmt
#include <linux/bottom_half.h>
#include <linux/types.h>
#include <linux/fcntl.h>
#include <linux/module.h>
#include <linux/random.h>
#include <linux/cache.h>
#include <linux/jhash.h>
#include <linux/init.h>
#include <linux/times.h>
include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit slab.h inclusion from percpu.h percpu.h is included by sched.h and module.h and thus ends up being included when building most .c files. percpu.h includes slab.h which in turn includes gfp.h making everything defined by the two files universally available and complicating inclusion dependencies. percpu.h -> slab.h dependency is about to be removed. Prepare for this change by updating users of gfp and slab facilities include those headers directly instead of assuming availability. As this conversion needs to touch large number of source files, the following script is used as the basis of conversion. http://userweb.kernel.org/~tj/misc/slabh-sweep.py The script does the followings. * Scan files for gfp and slab usages and update includes such that only the necessary includes are there. ie. if only gfp is used, gfp.h, if slab is used, slab.h. * When the script inserts a new include, it looks at the include blocks and try to put the new include such that its order conforms to its surrounding. It's put in the include block which contains core kernel includes, in the same order that the rest are ordered - alphabetical, Christmas tree, rev-Xmas-tree or at the end if there doesn't seem to be any matching order. * If the script can't find a place to put a new include (mostly because the file doesn't have fitting include block), it prints out an error message indicating which .h file needs to be added to the file. The conversion was done in the following steps. 1. The initial automatic conversion of all .c files updated slightly over 4000 files, deleting around 700 includes and adding ~480 gfp.h and ~3000 slab.h inclusions. The script emitted errors for ~400 files. 2. Each error was manually checked. Some didn't need the inclusion, some needed manual addition while adding it to implementation .h or embedding .c file was more appropriate for others. This step added inclusions to around 150 files. 3. The script was run again and the output was compared to the edits from #2 to make sure no file was left behind. 4. Several build tests were done and a couple of problems were fixed. e.g. lib/decompress_*.c used malloc/free() wrappers around slab APIs requiring slab.h to be added manually. 5. The script was run on all .h files but without automatically editing them as sprinkling gfp.h and slab.h inclusions around .h files could easily lead to inclusion dependency hell. Most gfp.h inclusion directives were ignored as stuff from gfp.h was usually wildly available and often used in preprocessor macros. Each slab.h inclusion directive was examined and added manually as necessary. 6. percpu.h was updated not to include slab.h. 7. Build test were done on the following configurations and failures were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my distributed build env didn't work with gcov compiles) and a few more options had to be turned off depending on archs to make things build (like ipr on powerpc/64 which failed due to missing writeq). * x86 and x86_64 UP and SMP allmodconfig and a custom test config. * powerpc and powerpc64 SMP allmodconfig * sparc and sparc64 SMP allmodconfig * ia64 SMP allmodconfig * s390 SMP allmodconfig * alpha SMP allmodconfig * um on x86_64 SMP allmodconfig 8. percpu.h modifications were reverted so that it could be applied as a separate patch and serve as bisection point. Given the fact that I had only a couple of failures from tests on step 6, I'm fairly confident about the coverage of this conversion patch. If there is a breakage, it's likely to be something in one of the arch headers which should be easily discoverable easily on most builds of the specific arch. Signed-off-by: Tejun Heo <tj@kernel.org> Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
2010-03-24 11:04:11 +03:00
#include <linux/slab.h>
#include <net/net_namespace.h>
#include <net/icmp.h>
#include <net/inet_hashtables.h>
#include <net/tcp.h>
#include <net/transp_v6.h>
#include <net/ipv6.h>
#include <net/inet_common.h>
#include <net/timewait_sock.h>
#include <net/xfrm.h>
#include <net/secure_seq.h>
#include <net/busy_poll.h>
#include <linux/inet.h>
#include <linux/ipv6.h>
#include <linux/stddef.h>
#include <linux/proc_fs.h>
#include <linux/seq_file.h>
#include <linux/inetdevice.h>
#include <linux/btf_ids.h>
#include <crypto/hash.h>
#include <linux/scatterlist.h>
#include <trace/events/tcp.h>
#ifdef CONFIG_TCP_MD5SIG
static int tcp_v4_md5_hash_hdr(char *md5_hash, const struct tcp_md5sig_key *key,
__be32 daddr, __be32 saddr, const struct tcphdr *th);
#endif
struct inet_hashinfo tcp_hashinfo;
EXPORT_SYMBOL(tcp_hashinfo);
static DEFINE_PER_CPU(struct sock *, ipv4_tcp_sk);
static u32 tcp_v4_init_seq(const struct sk_buff *skb)
{
return secure_tcp_seq(ip_hdr(skb)->daddr,
ip_hdr(skb)->saddr,
tcp_hdr(skb)->dest,
tcp_hdr(skb)->source);
}
static u32 tcp_v4_init_ts_off(const struct net *net, const struct sk_buff *skb)
{
return secure_tcp_ts_off(net, ip_hdr(skb)->daddr, ip_hdr(skb)->saddr);
}
int tcp_twsk_unique(struct sock *sk, struct sock *sktw, void *twp)
{
int reuse = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_tw_reuse);
net-tcp: extend tcp_tw_reuse sysctl to enable loopback only optimization This changes the /proc/sys/net/ipv4/tcp_tw_reuse from a boolean to an integer. It now takes the values 0, 1 and 2, where 0 and 1 behave as before, while 2 enables timewait socket reuse only for sockets that we can prove are loopback connections: ie. bound to 'lo' interface or where one of source or destination IPs is 127.0.0.0/8, ::ffff:127.0.0.0/104 or ::1. This enables quicker reuse of ephemeral ports for loopback connections - where tcp_tw_reuse is 100% safe from a protocol perspective (this assumes no artificially induced packet loss on 'lo'). This also makes estblishing many loopback connections *much* faster (allocating ports out of the first half of the ephemeral port range is significantly faster, then allocating from the second half) Without this change in a 32K ephemeral port space my sample program (it just establishes and closes [::1]:ephemeral -> [::1]:server_port connections in a tight loop) fails after 32765 connections in 24 seconds. With it enabled 50000 connections only take 4.7 seconds. This is particularly problematic for IPv6 where we only have one local address and cannot play tricks with varying source IP from 127.0.0.0/8 pool. Signed-off-by: Maciej Żenczykowski <maze@google.com> Cc: Neal Cardwell <ncardwell@google.com> Cc: Yuchung Cheng <ycheng@google.com> Cc: Wei Wang <weiwan@google.com> Change-Id: I0377961749979d0301b7b62871a32a4b34b654e1 Signed-off-by: Eric Dumazet <edumazet@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2018-06-03 20:41:17 +03:00
const struct inet_timewait_sock *tw = inet_twsk(sktw);
const struct tcp_timewait_sock *tcptw = tcp_twsk(sktw);
struct tcp_sock *tp = tcp_sk(sk);
net-tcp: extend tcp_tw_reuse sysctl to enable loopback only optimization This changes the /proc/sys/net/ipv4/tcp_tw_reuse from a boolean to an integer. It now takes the values 0, 1 and 2, where 0 and 1 behave as before, while 2 enables timewait socket reuse only for sockets that we can prove are loopback connections: ie. bound to 'lo' interface or where one of source or destination IPs is 127.0.0.0/8, ::ffff:127.0.0.0/104 or ::1. This enables quicker reuse of ephemeral ports for loopback connections - where tcp_tw_reuse is 100% safe from a protocol perspective (this assumes no artificially induced packet loss on 'lo'). This also makes estblishing many loopback connections *much* faster (allocating ports out of the first half of the ephemeral port range is significantly faster, then allocating from the second half) Without this change in a 32K ephemeral port space my sample program (it just establishes and closes [::1]:ephemeral -> [::1]:server_port connections in a tight loop) fails after 32765 connections in 24 seconds. With it enabled 50000 connections only take 4.7 seconds. This is particularly problematic for IPv6 where we only have one local address and cannot play tricks with varying source IP from 127.0.0.0/8 pool. Signed-off-by: Maciej Żenczykowski <maze@google.com> Cc: Neal Cardwell <ncardwell@google.com> Cc: Yuchung Cheng <ycheng@google.com> Cc: Wei Wang <weiwan@google.com> Change-Id: I0377961749979d0301b7b62871a32a4b34b654e1 Signed-off-by: Eric Dumazet <edumazet@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2018-06-03 20:41:17 +03:00
if (reuse == 2) {
/* Still does not detect *everything* that goes through
* lo, since we require a loopback src or dst address
* or direct binding to 'lo' interface.
*/
bool loopback = false;
if (tw->tw_bound_dev_if == LOOPBACK_IFINDEX)
loopback = true;
#if IS_ENABLED(CONFIG_IPV6)
if (tw->tw_family == AF_INET6) {
if (ipv6_addr_loopback(&tw->tw_v6_daddr) ||
ipv6_addr_v4mapped_loopback(&tw->tw_v6_daddr) ||
net-tcp: extend tcp_tw_reuse sysctl to enable loopback only optimization This changes the /proc/sys/net/ipv4/tcp_tw_reuse from a boolean to an integer. It now takes the values 0, 1 and 2, where 0 and 1 behave as before, while 2 enables timewait socket reuse only for sockets that we can prove are loopback connections: ie. bound to 'lo' interface or where one of source or destination IPs is 127.0.0.0/8, ::ffff:127.0.0.0/104 or ::1. This enables quicker reuse of ephemeral ports for loopback connections - where tcp_tw_reuse is 100% safe from a protocol perspective (this assumes no artificially induced packet loss on 'lo'). This also makes estblishing many loopback connections *much* faster (allocating ports out of the first half of the ephemeral port range is significantly faster, then allocating from the second half) Without this change in a 32K ephemeral port space my sample program (it just establishes and closes [::1]:ephemeral -> [::1]:server_port connections in a tight loop) fails after 32765 connections in 24 seconds. With it enabled 50000 connections only take 4.7 seconds. This is particularly problematic for IPv6 where we only have one local address and cannot play tricks with varying source IP from 127.0.0.0/8 pool. Signed-off-by: Maciej Żenczykowski <maze@google.com> Cc: Neal Cardwell <ncardwell@google.com> Cc: Yuchung Cheng <ycheng@google.com> Cc: Wei Wang <weiwan@google.com> Change-Id: I0377961749979d0301b7b62871a32a4b34b654e1 Signed-off-by: Eric Dumazet <edumazet@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2018-06-03 20:41:17 +03:00
ipv6_addr_loopback(&tw->tw_v6_rcv_saddr) ||
ipv6_addr_v4mapped_loopback(&tw->tw_v6_rcv_saddr))
net-tcp: extend tcp_tw_reuse sysctl to enable loopback only optimization This changes the /proc/sys/net/ipv4/tcp_tw_reuse from a boolean to an integer. It now takes the values 0, 1 and 2, where 0 and 1 behave as before, while 2 enables timewait socket reuse only for sockets that we can prove are loopback connections: ie. bound to 'lo' interface or where one of source or destination IPs is 127.0.0.0/8, ::ffff:127.0.0.0/104 or ::1. This enables quicker reuse of ephemeral ports for loopback connections - where tcp_tw_reuse is 100% safe from a protocol perspective (this assumes no artificially induced packet loss on 'lo'). This also makes estblishing many loopback connections *much* faster (allocating ports out of the first half of the ephemeral port range is significantly faster, then allocating from the second half) Without this change in a 32K ephemeral port space my sample program (it just establishes and closes [::1]:ephemeral -> [::1]:server_port connections in a tight loop) fails after 32765 connections in 24 seconds. With it enabled 50000 connections only take 4.7 seconds. This is particularly problematic for IPv6 where we only have one local address and cannot play tricks with varying source IP from 127.0.0.0/8 pool. Signed-off-by: Maciej Żenczykowski <maze@google.com> Cc: Neal Cardwell <ncardwell@google.com> Cc: Yuchung Cheng <ycheng@google.com> Cc: Wei Wang <weiwan@google.com> Change-Id: I0377961749979d0301b7b62871a32a4b34b654e1 Signed-off-by: Eric Dumazet <edumazet@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2018-06-03 20:41:17 +03:00
loopback = true;
} else
#endif
{
if (ipv4_is_loopback(tw->tw_daddr) ||
ipv4_is_loopback(tw->tw_rcv_saddr))
loopback = true;
}
if (!loopback)
reuse = 0;
}
/* With PAWS, it is safe from the viewpoint
of data integrity. Even without PAWS it is safe provided sequence
spaces do not overlap i.e. at data rates <= 80Mbit/sec.
Actually, the idea is close to VJ's one, only timestamp cache is
held not per host, but per port pair and TW bucket is used as state
holder.
If TW bucket has been already destroyed we fall back to VJ's scheme
and use initial timestamp retrieved from peer table.
*/
if (tcptw->tw_ts_recent_stamp &&
(!twp || (reuse && time_after32(ktime_get_seconds(),
tcptw->tw_ts_recent_stamp)))) {
/* In case of repair and re-using TIME-WAIT sockets we still
* want to be sure that it is safe as above but honor the
* sequence numbers and time stamps set as part of the repair
* process.
*
* Without this check re-using a TIME-WAIT socket with TCP
* repair would accumulate a -1 on the repair assigned
* sequence number. The first time it is reused the sequence
* is -1, the second time -2, etc. This fixes that issue
* without appearing to create any others.
*/
if (likely(!tp->repair)) {
u32 seq = tcptw->tw_snd_nxt + 65535 + 2;
if (!seq)
seq = 1;
WRITE_ONCE(tp->write_seq, seq);
tp->rx_opt.ts_recent = tcptw->tw_ts_recent;
tp->rx_opt.ts_recent_stamp = tcptw->tw_ts_recent_stamp;
}
sock_hold(sktw);
return 1;
}
return 0;
}
EXPORT_SYMBOL_GPL(tcp_twsk_unique);
bpf: Hooks for sys_connect == The problem == See description of the problem in the initial patch of this patch set. == The solution == The patch provides much more reliable in-kernel solution for the 2nd part of the problem: making outgoing connecttion from desired IP. It adds new attach types `BPF_CGROUP_INET4_CONNECT` and `BPF_CGROUP_INET6_CONNECT` for program type `BPF_PROG_TYPE_CGROUP_SOCK_ADDR` that can be used to override both source and destination of a connection at connect(2) time. Local end of connection can be bound to desired IP using newly introduced BPF-helper `bpf_bind()`. It allows to bind to only IP though, and doesn't support binding to port, i.e. leverages `IP_BIND_ADDRESS_NO_PORT` socket option. There are two reasons for this: * looking for a free port is expensive and can affect performance significantly; * there is no use-case for port. As for remote end (`struct sockaddr *` passed by user), both parts of it can be overridden, remote IP and remote port. It's useful if an application inside cgroup wants to connect to another application inside same cgroup or to itself, but knows nothing about IP assigned to the cgroup. Support is added for IPv4 and IPv6, for TCP and UDP. IPv4 and IPv6 have separate attach types for same reason as sys_bind hooks, i.e. to prevent reading from / writing to e.g. user_ip6 fields when user passes sockaddr_in since it'd be out-of-bound. == Implementation notes == The patch introduces new field in `struct proto`: `pre_connect` that is a pointer to a function with same signature as `connect` but is called before it. The reason is in some cases BPF hooks should be called way before control is passed to `sk->sk_prot->connect`. Specifically `inet_dgram_connect` autobinds socket before calling `sk->sk_prot->connect` and there is no way to call `bpf_bind()` from hooks from e.g. `ip4_datagram_connect` or `ip6_datagram_connect` since it'd cause double-bind. On the other hand `proto.pre_connect` provides a flexible way to add BPF hooks for connect only for necessary `proto` and call them at desired time before `connect`. Since `bpf_bind()` is allowed to bind only to IP and autobind in `inet_dgram_connect` binds only port there is no chance of double-bind. bpf_bind() sets `force_bind_address_no_port` to bind to only IP despite of value of `bind_address_no_port` socket field. bpf_bind() sets `with_lock` to `false` when calling to __inet_bind() and __inet6_bind() since all call-sites, where bpf_bind() is called, already hold socket lock. Signed-off-by: Andrey Ignatov <rdna@fb.com> Signed-off-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
2018-03-31 01:08:05 +03:00
static int tcp_v4_pre_connect(struct sock *sk, struct sockaddr *uaddr,
int addr_len)
{
/* This check is replicated from tcp_v4_connect() and intended to
* prevent BPF program called below from accessing bytes that are out
* of the bound specified by user in addr_len.
*/
if (addr_len < sizeof(struct sockaddr_in))
return -EINVAL;
sock_owned_by_me(sk);
return BPF_CGROUP_RUN_PROG_INET4_CONNECT(sk, uaddr);
}
/* This will initiate an outgoing connection. */
int tcp_v4_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len)
{
struct sockaddr_in *usin = (struct sockaddr_in *)uaddr;
struct inet_timewait_death_row *tcp_death_row;
struct inet_sock *inet = inet_sk(sk);
struct tcp_sock *tp = tcp_sk(sk);
struct ip_options_rcu *inet_opt;
struct net *net = sock_net(sk);
__be16 orig_sport, orig_dport;
__be32 daddr, nexthop;
struct flowi4 *fl4;
struct rtable *rt;
int err;
if (addr_len < sizeof(struct sockaddr_in))
return -EINVAL;
if (usin->sin_family != AF_INET)
return -EAFNOSUPPORT;
nexthop = daddr = usin->sin_addr.s_addr;
inet_opt = rcu_dereference_protected(inet->inet_opt,
lockdep_sock_is_held(sk));
if (inet_opt && inet_opt->opt.srr) {
if (!daddr)
return -EINVAL;
nexthop = inet_opt->opt.faddr;
}
orig_sport = inet->inet_sport;
orig_dport = usin->sin_port;
fl4 = &inet->cork.fl.u.ip4;
rt = ip_route_connect(fl4, nexthop, inet->inet_saddr,
ipv4: Avoid using RTO_ONLINK with ip_route_connect(). Now that ip_rt_fix_tos() doesn't reset ->flowi4_scope unconditionally, we don't have to rely on the RTO_ONLINK bit to properly set the scope of a flowi4 structure. We can just set ->flowi4_scope explicitly and avoid using RTO_ONLINK in ->flowi4_tos. This patch converts callers of ip_route_connect(). Instead of setting the tos parameter with RT_CONN_FLAGS(sk), as all callers do, we can: 1- Drop the tos parameter from ip_route_connect(): its value was entirely based on sk, which is also passed as parameter. 2- Set ->flowi4_scope depending on the SOCK_LOCALROUTE socket option instead of always initialising it with RT_SCOPE_UNIVERSE (let's define ip_sock_rt_scope() for this purpose). 3- Avoid overloading ->flowi4_tos with RTO_ONLINK: since the scope is now properly initialised, we don't need to tell ip_rt_fix_tos() to adjust ->flowi4_scope for us. So let's define ip_sock_rt_tos(), which is the same as RT_CONN_FLAGS() but without the RTO_ONLINK bit overload. Note: In the original ip_route_connect() code, __ip_route_output_key() might clear the RTO_ONLINK bit of fl4->flowi4_tos (because of ip_rt_fix_tos()). Therefore flowi4_update_output() had to reuse the original tos variable. Now that we don't set RTO_ONLINK any more, this is not a problem and we can use fl4->flowi4_tos in flowi4_update_output(). Signed-off-by: Guillaume Nault <gnault@redhat.com> Reviewed-by: David Ahern <dsahern@kernel.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2022-04-21 02:21:33 +03:00
sk->sk_bound_dev_if, IPPROTO_TCP, orig_sport,
orig_dport, sk);
if (IS_ERR(rt)) {
err = PTR_ERR(rt);
if (err == -ENETUNREACH)
IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES);
return err;
}
if (rt->rt_flags & (RTCF_MULTICAST | RTCF_BROADCAST)) {
ip_rt_put(rt);
return -ENETUNREACH;
}
if (!inet_opt || !inet_opt->opt.srr)
daddr = fl4->daddr;
tcp_death_row = &sock_net(sk)->ipv4.tcp_death_row;
net: Add a bhash2 table hashed by port and address The current bind hashtable (bhash) is hashed by port only. In the socket bind path, we have to check for bind conflicts by traversing the specified port's inet_bind_bucket while holding the hashbucket's spinlock (see inet_csk_get_port() and inet_csk_bind_conflict()). In instances where there are tons of sockets hashed to the same port at different addresses, the bind conflict check is time-intensive and can cause softirq cpu lockups, as well as stops new tcp connections since __inet_inherit_port() also contests for the spinlock. This patch adds a second bind table, bhash2, that hashes by port and sk->sk_rcv_saddr (ipv4) and sk->sk_v6_rcv_saddr (ipv6). Searching the bhash2 table leads to significantly faster conflict resolution and less time holding the hashbucket spinlock. Please note a few things: * There can be the case where the a socket's address changes after it has been bound. There are two cases where this happens: 1) The case where there is a bind() call on INADDR_ANY (ipv4) or IPV6_ADDR_ANY (ipv6) and then a connect() call. The kernel will assign the socket an address when it handles the connect() 2) In inet_sk_reselect_saddr(), which is called when rebuilding the sk header and a few pre-conditions are met (eg rerouting fails). In these two cases, we need to update the bhash2 table by removing the entry for the old address, and add a new entry reflecting the updated address. * The bhash2 table must have its own lock, even though concurrent accesses on the same port are protected by the bhash lock. Bhash2 must have its own lock to protect against cases where sockets on different ports hash to different bhash hashbuckets but to the same bhash2 hashbucket. This brings up a few stipulations: 1) When acquiring both the bhash and the bhash2 lock, the bhash2 lock will always be acquired after the bhash lock and released before the bhash lock is released. 2) There are no nested bhash2 hashbucket locks. A bhash2 lock is always acquired+released before another bhash2 lock is acquired+released. * The bhash table cannot be superseded by the bhash2 table because for bind requests on INADDR_ANY (ipv4) or IPV6_ADDR_ANY (ipv6), every socket bound to that port must be checked for a potential conflict. The bhash table is the only source of port->socket associations. Signed-off-by: Joanne Koong <joannelkoong@gmail.com> Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2022-08-22 21:10:21 +03:00
if (!inet->inet_saddr) {
err = inet_bhash2_update_saddr(sk, &fl4->saddr, AF_INET);
net: Add a bhash2 table hashed by port and address The current bind hashtable (bhash) is hashed by port only. In the socket bind path, we have to check for bind conflicts by traversing the specified port's inet_bind_bucket while holding the hashbucket's spinlock (see inet_csk_get_port() and inet_csk_bind_conflict()). In instances where there are tons of sockets hashed to the same port at different addresses, the bind conflict check is time-intensive and can cause softirq cpu lockups, as well as stops new tcp connections since __inet_inherit_port() also contests for the spinlock. This patch adds a second bind table, bhash2, that hashes by port and sk->sk_rcv_saddr (ipv4) and sk->sk_v6_rcv_saddr (ipv6). Searching the bhash2 table leads to significantly faster conflict resolution and less time holding the hashbucket spinlock. Please note a few things: * There can be the case where the a socket's address changes after it has been bound. There are two cases where this happens: 1) The case where there is a bind() call on INADDR_ANY (ipv4) or IPV6_ADDR_ANY (ipv6) and then a connect() call. The kernel will assign the socket an address when it handles the connect() 2) In inet_sk_reselect_saddr(), which is called when rebuilding the sk header and a few pre-conditions are met (eg rerouting fails). In these two cases, we need to update the bhash2 table by removing the entry for the old address, and add a new entry reflecting the updated address. * The bhash2 table must have its own lock, even though concurrent accesses on the same port are protected by the bhash lock. Bhash2 must have its own lock to protect against cases where sockets on different ports hash to different bhash hashbuckets but to the same bhash2 hashbucket. This brings up a few stipulations: 1) When acquiring both the bhash and the bhash2 lock, the bhash2 lock will always be acquired after the bhash lock and released before the bhash lock is released. 2) There are no nested bhash2 hashbucket locks. A bhash2 lock is always acquired+released before another bhash2 lock is acquired+released. * The bhash table cannot be superseded by the bhash2 table because for bind requests on INADDR_ANY (ipv4) or IPV6_ADDR_ANY (ipv6), every socket bound to that port must be checked for a potential conflict. The bhash table is the only source of port->socket associations. Signed-off-by: Joanne Koong <joannelkoong@gmail.com> Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2022-08-22 21:10:21 +03:00
if (err) {
ip_rt_put(rt);
return err;
}
} else {
sk_rcv_saddr_set(sk, inet->inet_saddr);
net: Add a bhash2 table hashed by port and address The current bind hashtable (bhash) is hashed by port only. In the socket bind path, we have to check for bind conflicts by traversing the specified port's inet_bind_bucket while holding the hashbucket's spinlock (see inet_csk_get_port() and inet_csk_bind_conflict()). In instances where there are tons of sockets hashed to the same port at different addresses, the bind conflict check is time-intensive and can cause softirq cpu lockups, as well as stops new tcp connections since __inet_inherit_port() also contests for the spinlock. This patch adds a second bind table, bhash2, that hashes by port and sk->sk_rcv_saddr (ipv4) and sk->sk_v6_rcv_saddr (ipv6). Searching the bhash2 table leads to significantly faster conflict resolution and less time holding the hashbucket spinlock. Please note a few things: * There can be the case where the a socket's address changes after it has been bound. There are two cases where this happens: 1) The case where there is a bind() call on INADDR_ANY (ipv4) or IPV6_ADDR_ANY (ipv6) and then a connect() call. The kernel will assign the socket an address when it handles the connect() 2) In inet_sk_reselect_saddr(), which is called when rebuilding the sk header and a few pre-conditions are met (eg rerouting fails). In these two cases, we need to update the bhash2 table by removing the entry for the old address, and add a new entry reflecting the updated address. * The bhash2 table must have its own lock, even though concurrent accesses on the same port are protected by the bhash lock. Bhash2 must have its own lock to protect against cases where sockets on different ports hash to different bhash hashbuckets but to the same bhash2 hashbucket. This brings up a few stipulations: 1) When acquiring both the bhash and the bhash2 lock, the bhash2 lock will always be acquired after the bhash lock and released before the bhash lock is released. 2) There are no nested bhash2 hashbucket locks. A bhash2 lock is always acquired+released before another bhash2 lock is acquired+released. * The bhash table cannot be superseded by the bhash2 table because for bind requests on INADDR_ANY (ipv4) or IPV6_ADDR_ANY (ipv6), every socket bound to that port must be checked for a potential conflict. The bhash table is the only source of port->socket associations. Signed-off-by: Joanne Koong <joannelkoong@gmail.com> Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2022-08-22 21:10:21 +03:00
}
if (tp->rx_opt.ts_recent_stamp && inet->inet_daddr != daddr) {
/* Reset inherited state */
tp->rx_opt.ts_recent = 0;
tp->rx_opt.ts_recent_stamp = 0;
if (likely(!tp->repair))
WRITE_ONCE(tp->write_seq, 0);
}
inet->inet_dport = usin->sin_port;
sk_daddr_set(sk, daddr);
inet_csk(sk)->icsk_ext_hdr_len = 0;
if (inet_opt)
inet_csk(sk)->icsk_ext_hdr_len = inet_opt->opt.optlen;
tp->rx_opt.mss_clamp = TCP_MSS_DEFAULT;
/* Socket identity is still unknown (sport may be zero).
* However we set state to SYN-SENT and not releasing socket
* lock select source port, enter ourselves into the hash tables and
* complete initialization after this.
*/
tcp_set_state(sk, TCP_SYN_SENT);
err = inet_hash_connect(tcp_death_row, sk);
if (err)
goto failure;
sk_set_txhash(sk);
rt = ip_route_newports(fl4, rt, orig_sport, orig_dport,
inet->inet_sport, inet->inet_dport, sk);
if (IS_ERR(rt)) {
err = PTR_ERR(rt);
rt = NULL;
goto failure;
}
/* OK, now commit destination to socket. */
sk->sk_gso_type = SKB_GSO_TCPV4;
sk_setup_caps(sk, &rt->dst);
net/tcp-fastopen: Add new API support This patch adds a new socket option, TCP_FASTOPEN_CONNECT, as an alternative way to perform Fast Open on the active side (client). Prior to this patch, a client needs to replace the connect() call with sendto(MSG_FASTOPEN). This can be cumbersome for applications who want to use Fast Open: these socket operations are often done in lower layer libraries used by many other applications. Changing these libraries and/or the socket call sequences are not trivial. A more convenient approach is to perform Fast Open by simply enabling a socket option when the socket is created w/o changing other socket calls sequence: s = socket() create a new socket setsockopt(s, IPPROTO_TCP, TCP_FASTOPEN_CONNECT …); newly introduced sockopt If set, new functionality described below will be used. Return ENOTSUPP if TFO is not supported or not enabled in the kernel. connect() With cookie present, return 0 immediately. With no cookie, initiate 3WHS with TFO cookie-request option and return -1 with errno = EINPROGRESS. write()/sendmsg() With cookie present, send out SYN with data and return the number of bytes buffered. With no cookie, and 3WHS not yet completed, return -1 with errno = EINPROGRESS. No MSG_FASTOPEN flag is needed. read() Return -1 with errno = EWOULDBLOCK/EAGAIN if connect() is called but write() is not called yet. Return -1 with errno = EWOULDBLOCK/EAGAIN if connection is established but no msg is received yet. Return number of bytes read if socket is established and there is msg received. The new API simplifies life for applications that always perform a write() immediately after a successful connect(). Such applications can now take advantage of Fast Open by merely making one new setsockopt() call at the time of creating the socket. Nothing else about the application's socket call sequence needs to change. Signed-off-by: Wei Wang <weiwan@google.com> Acked-by: Eric Dumazet <edumazet@google.com> Acked-by: Yuchung Cheng <ycheng@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-01-23 21:59:22 +03:00
rt = NULL;
if (likely(!tp->repair)) {
if (!tp->write_seq)
WRITE_ONCE(tp->write_seq,
secure_tcp_seq(inet->inet_saddr,
inet->inet_daddr,
inet->inet_sport,
usin->sin_port));
tp->tsoffset = secure_tcp_ts_off(net, inet->inet_saddr,
inet->inet_daddr);
}
treewide: use get_random_{u8,u16}() when possible, part 1 Rather than truncate a 32-bit value to a 16-bit value or an 8-bit value, simply use the get_random_{u8,u16}() functions, which are faster than wasting the additional bytes from a 32-bit value. This was done mechanically with this coccinelle script: @@ expression E; identifier get_random_u32 =~ "get_random_int|prandom_u32|get_random_u32"; typedef u16; typedef __be16; typedef __le16; typedef u8; @@ ( - (get_random_u32() & 0xffff) + get_random_u16() | - (get_random_u32() & 0xff) + get_random_u8() | - (get_random_u32() % 65536) + get_random_u16() | - (get_random_u32() % 256) + get_random_u8() | - (get_random_u32() >> 16) + get_random_u16() | - (get_random_u32() >> 24) + get_random_u8() | - (u16)get_random_u32() + get_random_u16() | - (u8)get_random_u32() + get_random_u8() | - (__be16)get_random_u32() + (__be16)get_random_u16() | - (__le16)get_random_u32() + (__le16)get_random_u16() | - prandom_u32_max(65536) + get_random_u16() | - prandom_u32_max(256) + get_random_u8() | - E->inet_id = get_random_u32() + E->inet_id = get_random_u16() ) @@ identifier get_random_u32 =~ "get_random_int|prandom_u32|get_random_u32"; typedef u16; identifier v; @@ - u16 v = get_random_u32(); + u16 v = get_random_u16(); @@ identifier get_random_u32 =~ "get_random_int|prandom_u32|get_random_u32"; typedef u8; identifier v; @@ - u8 v = get_random_u32(); + u8 v = get_random_u8(); @@ identifier get_random_u32 =~ "get_random_int|prandom_u32|get_random_u32"; typedef u16; u16 v; @@ - v = get_random_u32(); + v = get_random_u16(); @@ identifier get_random_u32 =~ "get_random_int|prandom_u32|get_random_u32"; typedef u8; u8 v; @@ - v = get_random_u32(); + v = get_random_u8(); // Find a potential literal @literal_mask@ expression LITERAL; type T; identifier get_random_u32 =~ "get_random_int|prandom_u32|get_random_u32"; position p; @@ ((T)get_random_u32()@p & (LITERAL)) // Examine limits @script:python add_one@ literal << literal_mask.LITERAL; RESULT; @@ value = None if literal.startswith('0x'): value = int(literal, 16) elif literal[0] in '123456789': value = int(literal, 10) if value is None: print("I don't know how to handle %s" % (literal)) cocci.include_match(False) elif value < 256: coccinelle.RESULT = cocci.make_ident("get_random_u8") elif value < 65536: coccinelle.RESULT = cocci.make_ident("get_random_u16") else: print("Skipping large mask of %s" % (literal)) cocci.include_match(False) // Replace the literal mask with the calculated result. @plus_one@ expression literal_mask.LITERAL; position literal_mask.p; identifier add_one.RESULT; identifier FUNC; @@ - (FUNC()@p & (LITERAL)) + (RESULT() & LITERAL) Reviewed-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Reviewed-by: Kees Cook <keescook@chromium.org> Reviewed-by: Yury Norov <yury.norov@gmail.com> Acked-by: Jakub Kicinski <kuba@kernel.org> Acked-by: Toke Høiland-Jørgensen <toke@toke.dk> # for sch_cake Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
2022-10-05 18:23:53 +03:00
inet->inet_id = get_random_u16();
net/tcp-fastopen: Add new API support This patch adds a new socket option, TCP_FASTOPEN_CONNECT, as an alternative way to perform Fast Open on the active side (client). Prior to this patch, a client needs to replace the connect() call with sendto(MSG_FASTOPEN). This can be cumbersome for applications who want to use Fast Open: these socket operations are often done in lower layer libraries used by many other applications. Changing these libraries and/or the socket call sequences are not trivial. A more convenient approach is to perform Fast Open by simply enabling a socket option when the socket is created w/o changing other socket calls sequence: s = socket() create a new socket setsockopt(s, IPPROTO_TCP, TCP_FASTOPEN_CONNECT …); newly introduced sockopt If set, new functionality described below will be used. Return ENOTSUPP if TFO is not supported or not enabled in the kernel. connect() With cookie present, return 0 immediately. With no cookie, initiate 3WHS with TFO cookie-request option and return -1 with errno = EINPROGRESS. write()/sendmsg() With cookie present, send out SYN with data and return the number of bytes buffered. With no cookie, and 3WHS not yet completed, return -1 with errno = EINPROGRESS. No MSG_FASTOPEN flag is needed. read() Return -1 with errno = EWOULDBLOCK/EAGAIN if connect() is called but write() is not called yet. Return -1 with errno = EWOULDBLOCK/EAGAIN if connection is established but no msg is received yet. Return number of bytes read if socket is established and there is msg received. The new API simplifies life for applications that always perform a write() immediately after a successful connect(). Such applications can now take advantage of Fast Open by merely making one new setsockopt() call at the time of creating the socket. Nothing else about the application's socket call sequence needs to change. Signed-off-by: Wei Wang <weiwan@google.com> Acked-by: Eric Dumazet <edumazet@google.com> Acked-by: Yuchung Cheng <ycheng@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-01-23 21:59:22 +03:00
if (tcp_fastopen_defer_connect(sk, &err))
return err;
if (err)
goto failure;
err = tcp_connect(sk);
if (err)
goto failure;
return 0;
failure:
/*
* This unhashes the socket and releases the local port,
* if necessary.
*/
tcp_set_state(sk, TCP_CLOSE);
dccp/tcp: Fixup bhash2 bucket when connect() fails. If a socket bound to a wildcard address fails to connect(), we only reset saddr and keep the port. Then, we have to fix up the bhash2 bucket; otherwise, the bucket has an inconsistent address in the list. Also, listen() for such a socket will fire the WARN_ON() in inet_csk_get_port(). [0] Note that when a system runs out of memory, we give up fixing the bucket and unlink sk from bhash and bhash2 by inet_put_port(). [0]: WARNING: CPU: 0 PID: 207 at net/ipv4/inet_connection_sock.c:548 inet_csk_get_port (net/ipv4/inet_connection_sock.c:548 (discriminator 1)) Modules linked in: CPU: 0 PID: 207 Comm: bhash2_prev_rep Not tainted 6.1.0-rc3-00799-gc8421681c845 #63 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.16.0-1.amzn2022.0.1 04/01/2014 RIP: 0010:inet_csk_get_port (net/ipv4/inet_connection_sock.c:548 (discriminator 1)) Code: 74 a7 eb 93 48 8b 54 24 18 0f b7 cb 4c 89 e6 4c 89 ff e8 48 b2 ff ff 49 8b 87 18 04 00 00 e9 32 ff ff ff 0f 0b e9 34 ff ff ff <0f> 0b e9 42 ff ff ff 41 8b 7f 50 41 8b 4f 54 89 fe 81 f6 00 00 ff RSP: 0018:ffffc900003d7e50 EFLAGS: 00010202 RAX: ffff8881047fb500 RBX: 0000000000004e20 RCX: 0000000000000000 RDX: 000000000000000a RSI: 00000000fffffe00 RDI: 00000000ffffffff RBP: ffffffff8324dc00 R08: 0000000000000001 R09: 0000000000000001 R10: 0000000000000001 R11: 0000000000000001 R12: 0000000000000000 R13: 0000000000000001 R14: 0000000000004e20 R15: ffff8881054e1280 FS: 00007f8ac04dc740(0000) GS:ffff88842fc00000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 0000000020001540 CR3: 00000001055fa003 CR4: 0000000000770ef0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 PKRU: 55555554 Call Trace: <TASK> inet_csk_listen_start (net/ipv4/inet_connection_sock.c:1205) inet_listen (net/ipv4/af_inet.c:228) __sys_listen (net/socket.c:1810) __x64_sys_listen (net/socket.c:1819 net/socket.c:1817 net/socket.c:1817) do_syscall_64 (arch/x86/entry/common.c:50 arch/x86/entry/common.c:80) entry_SYSCALL_64_after_hwframe (arch/x86/entry/entry_64.S:120) RIP: 0033:0x7f8ac051de5d Code: ff c3 66 2e 0f 1f 84 00 00 00 00 00 90 f3 0f 1e fa 48 89 f8 48 89 f7 48 89 d6 48 89 ca 4d 89 c2 4d 89 c8 4c 8b 4c 24 08 0f 05 <48> 3d 01 f0 ff ff 73 01 c3 48 8b 0d 93 af 1b 00 f7 d8 64 89 01 48 RSP: 002b:00007ffc1c177248 EFLAGS: 00000206 ORIG_RAX: 0000000000000032 RAX: ffffffffffffffda RBX: 0000000020001550 RCX: 00007f8ac051de5d RDX: ffffffffffffff80 RSI: 0000000000000000 RDI: 0000000000000004 RBP: 00007ffc1c177270 R08: 0000000000000018 R09: 0000000000000007 R10: 0000000020001540 R11: 0000000000000206 R12: 00007ffc1c177388 R13: 0000000000401169 R14: 0000000000403e18 R15: 00007f8ac0723000 </TASK> Fixes: 28044fc1d495 ("net: Add a bhash2 table hashed by port and address") Reported-by: syzbot <syzkaller@googlegroups.com> Reported-by: Mat Martineau <mathew.j.martineau@linux.intel.com> Signed-off-by: Kuniyuki Iwashima <kuniyu@amazon.com> Acked-by: Joanne Koong <joannelkoong@gmail.com> Reviewed-by: Eric Dumazet <edumazet@google.com> Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2022-11-19 04:49:14 +03:00
inet_bhash2_reset_saddr(sk);
ip_rt_put(rt);
sk->sk_route_caps = 0;
inet->inet_dport = 0;
return err;
}
EXPORT_SYMBOL(tcp_v4_connect);
/*
* This routine reacts to ICMP_FRAG_NEEDED mtu indications as defined in RFC1191.
* It can be called through tcp_release_cb() if socket was owned by user
* at the time tcp_v4_err() was called to handle ICMP message.
*/
void tcp_v4_mtu_reduced(struct sock *sk)
{
struct inet_sock *inet = inet_sk(sk);
struct dst_entry *dst;
u32 mtu;
if ((1 << sk->sk_state) & (TCPF_LISTEN | TCPF_CLOSE))
return;
mtu = READ_ONCE(tcp_sk(sk)->mtu_info);
dst = inet_csk_update_pmtu(sk, mtu);
if (!dst)
return;
/* Something is about to be wrong... Remember soft error
* for the case, if this connection will not able to recover.
*/
if (mtu < dst_mtu(dst) && ip_dont_fragment(sk, dst))
sk->sk_err_soft = EMSGSIZE;
mtu = dst_mtu(dst);
if (inet->pmtudisc != IP_PMTUDISC_DONT &&
ipv4: introduce new IP_MTU_DISCOVER mode IP_PMTUDISC_INTERFACE Sockets marked with IP_PMTUDISC_INTERFACE won't do path mtu discovery, their sockets won't accept and install new path mtu information and they will always use the interface mtu for outgoing packets. It is guaranteed that the packet is not fragmented locally. But we won't set the DF-Flag on the outgoing frames. Florian Weimer had the idea to use this flag to ensure DNS servers are never generating outgoing fragments. They may well be fragmented on the path, but the server never stores or usees path mtu values, which could well be forged in an attack. (The root of the problem with path MTU discovery is that there is no reliable way to authenticate ICMP Fragmentation Needed But DF Set messages because they are sent from intermediate routers with their source addresses, and the IMCP payload will not always contain sufficient information to identify a flow.) Recent research in the DNS community showed that it is possible to implement an attack where DNS cache poisoning is feasible by spoofing fragments. This work was done by Amir Herzberg and Haya Shulman: <https://sites.google.com/site/hayashulman/files/fragmentation-poisoning.pdf> This issue was previously discussed among the DNS community, e.g. <http://www.ietf.org/mail-archive/web/dnsext/current/msg01204.html>, without leading to fixes. This patch depends on the patch "ipv4: fix DO and PROBE pmtu mode regarding local fragmentation with UFO/CORK" for the enforcement of the non-fragmentable checks. If other users than ip_append_page/data should use this semantic too, we have to add a new flag to IPCB(skb)->flags to suppress local fragmentation and check for this in ip_finish_output. Many thanks to Florian Weimer for the idea and feedback while implementing this patch. Cc: David S. Miller <davem@davemloft.net> Suggested-by: Florian Weimer <fweimer@redhat.com> Signed-off-by: Hannes Frederic Sowa <hannes@stressinduktion.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2013-11-05 05:24:17 +04:00
ip_sk_accept_pmtu(sk) &&
inet_csk(sk)->icsk_pmtu_cookie > mtu) {
tcp_sync_mss(sk, mtu);
/* Resend the TCP packet because it's
* clear that the old packet has been
* dropped. This is the new "fast" path mtu
* discovery.
*/
tcp_simple_retransmit(sk);
} /* else let the usual retransmit timer handle it */
}
EXPORT_SYMBOL(tcp_v4_mtu_reduced);
static void do_redirect(struct sk_buff *skb, struct sock *sk)
{
struct dst_entry *dst = __sk_dst_check(sk, 0);
if (dst)
dst->ops->redirect(dst, sk, skb);
}
/* handle ICMP messages on TCP_NEW_SYN_RECV request sockets */
void tcp_req_err(struct sock *sk, u32 seq, bool abort)
{
struct request_sock *req = inet_reqsk(sk);
struct net *net = sock_net(sk);
/* ICMPs are not backlogged, hence we cannot get
* an established socket here.
*/
if (seq != tcp_rsk(req)->snt_isn) {
__NET_INC_STATS(net, LINUX_MIB_OUTOFWINDOWICMPS);
} else if (abort) {
/*
* Still in SYN_RECV, just remove it silently.
* There is no good way to pass the error to the newly
* created socket, and POSIX does not want network
* errors returned from accept().
*/
inet: fix double request socket freeing Eric Hugne reported following error : I'm hitting this warning on latest net-next when i try to SSH into a machine with eth0 added to a bridge (but i think the problem is older than that) Steps to reproduce: node2 ~ # brctl addif br0 eth0 [ 223.758785] device eth0 entered promiscuous mode node2 ~ # ip link set br0 up [ 244.503614] br0: port 1(eth0) entered forwarding state [ 244.505108] br0: port 1(eth0) entered forwarding state node2 ~ # [ 251.160159] ------------[ cut here ]------------ [ 251.160831] WARNING: CPU: 0 PID: 3 at include/net/request_sock.h:102 tcp_v4_err+0x6b1/0x720() [ 251.162077] Modules linked in: [ 251.162496] CPU: 0 PID: 3 Comm: ksoftirqd/0 Not tainted 4.0.0-rc3+ #18 [ 251.163334] Hardware name: Bochs Bochs, BIOS Bochs 01/01/2011 [ 251.164078] ffffffff81a8365c ffff880038a6ba18 ffffffff8162ace4 0000000000009898 [ 251.165084] 0000000000000000 ffff880038a6ba58 ffffffff8104da85 ffff88003fa437c0 [ 251.166195] ffff88003fa437c0 ffff88003fa74e00 ffff88003fa43bb8 ffff88003fad99a0 [ 251.167203] Call Trace: [ 251.167533] [<ffffffff8162ace4>] dump_stack+0x45/0x57 [ 251.168206] [<ffffffff8104da85>] warn_slowpath_common+0x85/0xc0 [ 251.169239] [<ffffffff8104db65>] warn_slowpath_null+0x15/0x20 [ 251.170271] [<ffffffff81559d51>] tcp_v4_err+0x6b1/0x720 [ 251.171408] [<ffffffff81630d03>] ? _raw_read_lock_irq+0x3/0x10 [ 251.172589] [<ffffffff81534e20>] ? inet_del_offload+0x40/0x40 [ 251.173366] [<ffffffff81569295>] icmp_socket_deliver+0x65/0xb0 [ 251.174134] [<ffffffff815693a2>] icmp_unreach+0xc2/0x280 [ 251.174820] [<ffffffff8156a82d>] icmp_rcv+0x2bd/0x3a0 [ 251.175473] [<ffffffff81534ea2>] ip_local_deliver_finish+0x82/0x1e0 [ 251.176282] [<ffffffff815354d8>] ip_local_deliver+0x88/0x90 [ 251.177004] [<ffffffff815350f0>] ip_rcv_finish+0xf0/0x310 [ 251.177693] [<ffffffff815357bc>] ip_rcv+0x2dc/0x390 [ 251.178336] [<ffffffff814f5da3>] __netif_receive_skb_core+0x713/0xa20 [ 251.179170] [<ffffffff814f7fca>] __netif_receive_skb+0x1a/0x80 [ 251.179922] [<ffffffff814f97d4>] process_backlog+0x94/0x120 [ 251.180639] [<ffffffff814f9612>] net_rx_action+0x1e2/0x310 [ 251.181356] [<ffffffff81051267>] __do_softirq+0xa7/0x290 [ 251.182046] [<ffffffff81051469>] run_ksoftirqd+0x19/0x30 [ 251.182726] [<ffffffff8106cc23>] smpboot_thread_fn+0x153/0x1d0 [ 251.183485] [<ffffffff8106cad0>] ? SyS_setgroups+0x130/0x130 [ 251.184228] [<ffffffff8106935e>] kthread+0xee/0x110 [ 251.184871] [<ffffffff81069270>] ? kthread_create_on_node+0x1b0/0x1b0 [ 251.185690] [<ffffffff81631108>] ret_from_fork+0x58/0x90 [ 251.186385] [<ffffffff81069270>] ? kthread_create_on_node+0x1b0/0x1b0 [ 251.187216] ---[ end trace c947fc7b24e42ea1 ]--- [ 259.542268] br0: port 1(eth0) entered forwarding state Remove the double calls to reqsk_put() [edumazet] : I got confused because reqsk_timer_handler() _has_ to call reqsk_put(req) after calling inet_csk_reqsk_queue_drop(), as the timer handler holds a reference on req. Signed-off-by: Fan Du <fan.du@intel.com> Signed-off-by: Eric Dumazet <edumazet@google.com> Reported-by: Erik Hugne <erik.hugne@ericsson.com> Fixes: fa76ce7328b2 ("inet: get rid of central tcp/dccp listener timer") Signed-off-by: David S. Miller <davem@davemloft.net>
2015-03-24 01:00:41 +03:00
inet_csk_reqsk_queue_drop(req->rsk_listener, req);
tcp_listendrop(req->rsk_listener);
}
reqsk_put(req);
}
EXPORT_SYMBOL(tcp_req_err);
/* TCP-LD (RFC 6069) logic */
void tcp_ld_RTO_revert(struct sock *sk, u32 seq)
{
struct inet_connection_sock *icsk = inet_csk(sk);
struct tcp_sock *tp = tcp_sk(sk);
struct sk_buff *skb;
s32 remaining;
u32 delta_us;
if (sock_owned_by_user(sk))
return;
if (seq != tp->snd_una || !icsk->icsk_retransmits ||
!icsk->icsk_backoff)
return;
skb = tcp_rtx_queue_head(sk);
if (WARN_ON_ONCE(!skb))
return;
icsk->icsk_backoff--;
icsk->icsk_rto = tp->srtt_us ? __tcp_set_rto(tp) : TCP_TIMEOUT_INIT;
icsk->icsk_rto = inet_csk_rto_backoff(icsk, TCP_RTO_MAX);
tcp_mstamp_refresh(tp);
delta_us = (u32)(tp->tcp_mstamp - tcp_skb_timestamp_us(skb));
remaining = icsk->icsk_rto - usecs_to_jiffies(delta_us);
if (remaining > 0) {
inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
remaining, TCP_RTO_MAX);
} else {
/* RTO revert clocked out retransmission.
* Will retransmit now.
*/
tcp_retransmit_timer(sk);
}
}
EXPORT_SYMBOL(tcp_ld_RTO_revert);
/*
* This routine is called by the ICMP module when it gets some
* sort of error condition. If err < 0 then the socket should
* be closed and the error returned to the user. If err > 0
* it's just the icmp type << 8 | icmp code. After adjustment
* header points to the first 8 bytes of the tcp header. We need
* to find the appropriate port.
*
* The locking strategy used here is very "optimistic". When
* someone else accesses the socket the ICMP is just dropped
* and for some paths there is no check at all.
* A more general error queue to queue errors for later handling
* is probably better.
*
*/
int tcp_v4_err(struct sk_buff *skb, u32 info)
{
const struct iphdr *iph = (const struct iphdr *)skb->data;
struct tcphdr *th = (struct tcphdr *)(skb->data + (iph->ihl << 2));
struct tcp_sock *tp;
struct inet_sock *inet;
const int type = icmp_hdr(skb)->type;
const int code = icmp_hdr(skb)->code;
struct sock *sk;
struct request_sock *fastopen;
u32 seq, snd_una;
int err;
struct net *net = dev_net(skb->dev);
sk = __inet_lookup_established(net, net->ipv4.tcp_death_row.hashinfo,
iph->daddr, th->dest, iph->saddr,
ntohs(th->source), inet_iif(skb), 0);
if (!sk) {
__ICMP_INC_STATS(net, ICMP_MIB_INERRORS);
return -ENOENT;
}
if (sk->sk_state == TCP_TIME_WAIT) {
inet_twsk_put(inet_twsk(sk));
return 0;
}
seq = ntohl(th->seq);
if (sk->sk_state == TCP_NEW_SYN_RECV) {
tcp_req_err(sk, seq, type == ICMP_PARAMETERPROB ||
type == ICMP_TIME_EXCEEDED ||
(type == ICMP_DEST_UNREACH &&
(code == ICMP_NET_UNREACH ||
code == ICMP_HOST_UNREACH)));
return 0;
}
bh_lock_sock(sk);
/* If too many ICMPs get dropped on busy
* servers this needs to be solved differently.
* We do take care of PMTU discovery (RFC1191) special case :
* we can receive locally generated ICMP messages while socket is held.
*/
if (sock_owned_by_user(sk)) {
if (!(type == ICMP_DEST_UNREACH && code == ICMP_FRAG_NEEDED))
__NET_INC_STATS(net, LINUX_MIB_LOCKDROPPEDICMPS);
}
if (sk->sk_state == TCP_CLOSE)
goto out;
if (static_branch_unlikely(&ip4_min_ttl)) {
/* min_ttl can be changed concurrently from do_ip_setsockopt() */
if (unlikely(iph->ttl < READ_ONCE(inet_sk(sk)->min_ttl))) {
__NET_INC_STATS(net, LINUX_MIB_TCPMINTTLDROP);
goto out;
}
}
tp = tcp_sk(sk);
/* XXX (TFO) - tp->snd_una should be ISN (tcp_create_openreq_child() */
fastopen = rcu_dereference(tp->fastopen_rsk);
snd_una = fastopen ? tcp_rsk(fastopen)->snt_isn : tp->snd_una;
if (sk->sk_state != TCP_LISTEN &&
!between(seq, snd_una, tp->snd_nxt)) {
__NET_INC_STATS(net, LINUX_MIB_OUTOFWINDOWICMPS);
goto out;
}
switch (type) {
case ICMP_REDIRECT:
dccp/tcp: fix routing redirect race As Eric Dumazet pointed out this also needs to be fixed in IPv6. v2: Contains the IPv6 tcp/Ipv6 dccp patches as well. We have seen a few incidents lately where a dst_enty has been freed with a dangling TCP socket reference (sk->sk_dst_cache) pointing to that dst_entry. If the conditions/timings are right a crash then ensues when the freed dst_entry is referenced later on. A Common crashing back trace is: #8 [] page_fault at ffffffff8163e648 [exception RIP: __tcp_ack_snd_check+74] . . #9 [] tcp_rcv_established at ffffffff81580b64 #10 [] tcp_v4_do_rcv at ffffffff8158b54a #11 [] tcp_v4_rcv at ffffffff8158cd02 #12 [] ip_local_deliver_finish at ffffffff815668f4 #13 [] ip_local_deliver at ffffffff81566bd9 #14 [] ip_rcv_finish at ffffffff8156656d #15 [] ip_rcv at ffffffff81566f06 #16 [] __netif_receive_skb_core at ffffffff8152b3a2 #17 [] __netif_receive_skb at ffffffff8152b608 #18 [] netif_receive_skb at ffffffff8152b690 #19 [] vmxnet3_rq_rx_complete at ffffffffa015eeaf [vmxnet3] #20 [] vmxnet3_poll_rx_only at ffffffffa015f32a [vmxnet3] #21 [] net_rx_action at ffffffff8152bac2 #22 [] __do_softirq at ffffffff81084b4f #23 [] call_softirq at ffffffff8164845c #24 [] do_softirq at ffffffff81016fc5 #25 [] irq_exit at ffffffff81084ee5 #26 [] do_IRQ at ffffffff81648ff8 Of course it may happen with other NIC drivers as well. It's found the freed dst_entry here: 224 static bool tcp_in_quickack_mode(struct sock *sk)↩ 225 {↩ 226 ▹ const struct inet_connection_sock *icsk = inet_csk(sk);↩ 227 ▹ const struct dst_entry *dst = __sk_dst_get(sk);↩ 228 ↩ 229 ▹ return (dst && dst_metric(dst, RTAX_QUICKACK)) ||↩ 230 ▹ ▹ (icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong);↩ 231 }↩ But there are other backtraces attributed to the same freed dst_entry in netfilter code as well. All the vmcores showed 2 significant clues: - Remote hosts behind the default gateway had always been redirected to a different gateway. A rtable/dst_entry will be added for that host. Making more dst_entrys with lower reference counts. Making this more probable. - All vmcores showed a postitive LockDroppedIcmps value, e.g: LockDroppedIcmps 267 A closer look at the tcp_v4_err() handler revealed that do_redirect() will run regardless of whether user space has the socket locked. This can result in a race condition where the same dst_entry cached in sk->sk_dst_entry can be decremented twice for the same socket via: do_redirect()->__sk_dst_check()-> dst_release(). Which leads to the dst_entry being prematurely freed with another socket pointing to it via sk->sk_dst_cache and a subsequent crash. To fix this skip do_redirect() if usespace has the socket locked. Instead let the redirect take place later when user space does not have the socket locked. The dccp/IPv6 code is very similar in this respect, so fixing it there too. As Eric Garver pointed out the following commit now invalidates routes. Which can set the dst->obsolete flag so that ipv4_dst_check() returns null and triggers the dst_release(). Fixes: ceb3320610d6 ("ipv4: Kill routes during PMTU/redirect updates.") Cc: Eric Garver <egarver@redhat.com> Cc: Hannes Sowa <hsowa@redhat.com> Signed-off-by: Jon Maxwell <jmaxwell37@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-03-10 08:40:33 +03:00
if (!sock_owned_by_user(sk))
do_redirect(skb, sk);
goto out;
case ICMP_SOURCE_QUENCH:
/* Just silently ignore these. */
goto out;
case ICMP_PARAMETERPROB:
err = EPROTO;
break;
case ICMP_DEST_UNREACH:
if (code > NR_ICMP_UNREACH)
goto out;
if (code == ICMP_FRAG_NEEDED) { /* PMTU discovery (RFC1191) */
/* We are not interested in TCP_LISTEN and open_requests
* (SYN-ACKs send out by Linux are always <576bytes so
* they should go through unfragmented).
*/
if (sk->sk_state == TCP_LISTEN)
goto out;
WRITE_ONCE(tp->mtu_info, info);
tcp: fix possible socket refcount problem Commit 6f458dfb40 (tcp: improve latencies of timer triggered events) added bug leading to following trace : [ 2866.131281] IPv4: Attempt to release TCP socket in state 1 ffff880019ec0000 [ 2866.131726] [ 2866.132188] ========================= [ 2866.132281] [ BUG: held lock freed! ] [ 2866.132281] 3.6.0-rc1+ #622 Not tainted [ 2866.132281] ------------------------- [ 2866.132281] kworker/0:1/652 is freeing memory ffff880019ec0000-ffff880019ec0a1f, with a lock still held there! [ 2866.132281] (sk_lock-AF_INET-RPC){+.+...}, at: [<ffffffff81903619>] tcp_sendmsg+0x29/0xcc6 [ 2866.132281] 4 locks held by kworker/0:1/652: [ 2866.132281] #0: (rpciod){.+.+.+}, at: [<ffffffff81083567>] process_one_work+0x1de/0x47f [ 2866.132281] #1: ((&task->u.tk_work)){+.+.+.}, at: [<ffffffff81083567>] process_one_work+0x1de/0x47f [ 2866.132281] #2: (sk_lock-AF_INET-RPC){+.+...}, at: [<ffffffff81903619>] tcp_sendmsg+0x29/0xcc6 [ 2866.132281] #3: (&icsk->icsk_retransmit_timer){+.-...}, at: [<ffffffff81078017>] run_timer_softirq+0x1ad/0x35f [ 2866.132281] [ 2866.132281] stack backtrace: [ 2866.132281] Pid: 652, comm: kworker/0:1 Not tainted 3.6.0-rc1+ #622 [ 2866.132281] Call Trace: [ 2866.132281] <IRQ> [<ffffffff810bc527>] debug_check_no_locks_freed+0x112/0x159 [ 2866.132281] [<ffffffff818a0839>] ? __sk_free+0xfd/0x114 [ 2866.132281] [<ffffffff811549fa>] kmem_cache_free+0x6b/0x13a [ 2866.132281] [<ffffffff818a0839>] __sk_free+0xfd/0x114 [ 2866.132281] [<ffffffff818a08c0>] sk_free+0x1c/0x1e [ 2866.132281] [<ffffffff81911e1c>] tcp_write_timer+0x51/0x56 [ 2866.132281] [<ffffffff81078082>] run_timer_softirq+0x218/0x35f [ 2866.132281] [<ffffffff81078017>] ? run_timer_softirq+0x1ad/0x35f [ 2866.132281] [<ffffffff810f5831>] ? rb_commit+0x58/0x85 [ 2866.132281] [<ffffffff81911dcb>] ? tcp_write_timer_handler+0x148/0x148 [ 2866.132281] [<ffffffff81070bd6>] __do_softirq+0xcb/0x1f9 [ 2866.132281] [<ffffffff81a0a00c>] ? _raw_spin_unlock+0x29/0x2e [ 2866.132281] [<ffffffff81a1227c>] call_softirq+0x1c/0x30 [ 2866.132281] [<ffffffff81039f38>] do_softirq+0x4a/0xa6 [ 2866.132281] [<ffffffff81070f2b>] irq_exit+0x51/0xad [ 2866.132281] [<ffffffff81a129cd>] do_IRQ+0x9d/0xb4 [ 2866.132281] [<ffffffff81a0a3ef>] common_interrupt+0x6f/0x6f [ 2866.132281] <EOI> [<ffffffff8109d006>] ? sched_clock_cpu+0x58/0xd1 [ 2866.132281] [<ffffffff81a0a172>] ? _raw_spin_unlock_irqrestore+0x4c/0x56 [ 2866.132281] [<ffffffff81078692>] mod_timer+0x178/0x1a9 [ 2866.132281] [<ffffffff818a00aa>] sk_reset_timer+0x19/0x26 [ 2866.132281] [<ffffffff8190b2cc>] tcp_rearm_rto+0x99/0xa4 [ 2866.132281] [<ffffffff8190dfba>] tcp_event_new_data_sent+0x6e/0x70 [ 2866.132281] [<ffffffff8190f7ea>] tcp_write_xmit+0x7de/0x8e4 [ 2866.132281] [<ffffffff818a565d>] ? __alloc_skb+0xa0/0x1a1 [ 2866.132281] [<ffffffff8190f952>] __tcp_push_pending_frames+0x2e/0x8a [ 2866.132281] [<ffffffff81904122>] tcp_sendmsg+0xb32/0xcc6 [ 2866.132281] [<ffffffff819229c2>] inet_sendmsg+0xaa/0xd5 [ 2866.132281] [<ffffffff81922918>] ? inet_autobind+0x5f/0x5f [ 2866.132281] [<ffffffff810ee7f1>] ? trace_clock_local+0x9/0xb [ 2866.132281] [<ffffffff8189adab>] sock_sendmsg+0xa3/0xc4 [ 2866.132281] [<ffffffff810f5de6>] ? rb_reserve_next_event+0x26f/0x2d5 [ 2866.132281] [<ffffffff8103e6a9>] ? native_sched_clock+0x29/0x6f [ 2866.132281] [<ffffffff8103e6f8>] ? sched_clock+0x9/0xd [ 2866.132281] [<ffffffff810ee7f1>] ? trace_clock_local+0x9/0xb [ 2866.132281] [<ffffffff8189ae03>] kernel_sendmsg+0x37/0x43 [ 2866.132281] [<ffffffff8199ce49>] xs_send_kvec+0x77/0x80 [ 2866.132281] [<ffffffff8199cec1>] xs_sendpages+0x6f/0x1a0 [ 2866.132281] [<ffffffff8107826d>] ? try_to_del_timer_sync+0x55/0x61 [ 2866.132281] [<ffffffff8199d0d2>] xs_tcp_send_request+0x55/0xf1 [ 2866.132281] [<ffffffff8199bb90>] xprt_transmit+0x89/0x1db [ 2866.132281] [<ffffffff81999bcd>] ? call_connect+0x3c/0x3c [ 2866.132281] [<ffffffff81999d92>] call_transmit+0x1c5/0x20e [ 2866.132281] [<ffffffff819a0d55>] __rpc_execute+0x6f/0x225 [ 2866.132281] [<ffffffff81999bcd>] ? call_connect+0x3c/0x3c [ 2866.132281] [<ffffffff819a0f33>] rpc_async_schedule+0x28/0x34 [ 2866.132281] [<ffffffff810835d6>] process_one_work+0x24d/0x47f [ 2866.132281] [<ffffffff81083567>] ? process_one_work+0x1de/0x47f [ 2866.132281] [<ffffffff819a0f0b>] ? __rpc_execute+0x225/0x225 [ 2866.132281] [<ffffffff81083a6d>] worker_thread+0x236/0x317 [ 2866.132281] [<ffffffff81083837>] ? process_scheduled_works+0x2f/0x2f [ 2866.132281] [<ffffffff8108b7b8>] kthread+0x9a/0xa2 [ 2866.132281] [<ffffffff81a12184>] kernel_thread_helper+0x4/0x10 [ 2866.132281] [<ffffffff81a0a4b0>] ? retint_restore_args+0x13/0x13 [ 2866.132281] [<ffffffff8108b71e>] ? __init_kthread_worker+0x5a/0x5a [ 2866.132281] [<ffffffff81a12180>] ? gs_change+0x13/0x13 [ 2866.308506] IPv4: Attempt to release TCP socket in state 1 ffff880019ec0000 [ 2866.309689] ============================================================================= [ 2866.310254] BUG TCP (Not tainted): Object already free [ 2866.310254] ----------------------------------------------------------------------------- [ 2866.310254] The bug comes from the fact that timer set in sk_reset_timer() can run before we actually do the sock_hold(). socket refcount reaches zero and we free the socket too soon. timer handler is not allowed to reduce socket refcnt if socket is owned by the user, or we need to change sk_reset_timer() implementation. We should take a reference on the socket in case TCP_DELACK_TIMER_DEFERRED or TCP_DELACK_TIMER_DEFERRED bit are set in tsq_flags Also fix a typo in tcp_delack_timer(), where TCP_WRITE_TIMER_DEFERRED was used instead of TCP_DELACK_TIMER_DEFERRED. For consistency, use same socket refcount change for TCP_MTU_REDUCED_DEFERRED, even if not fired from a timer. Reported-by: Fengguang Wu <fengguang.wu@intel.com> Tested-by: Fengguang Wu <fengguang.wu@intel.com> Signed-off-by: Eric Dumazet <edumazet@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2012-08-20 04:22:46 +04:00
if (!sock_owned_by_user(sk)) {
tcp_v4_mtu_reduced(sk);
tcp: fix possible socket refcount problem Commit 6f458dfb40 (tcp: improve latencies of timer triggered events) added bug leading to following trace : [ 2866.131281] IPv4: Attempt to release TCP socket in state 1 ffff880019ec0000 [ 2866.131726] [ 2866.132188] ========================= [ 2866.132281] [ BUG: held lock freed! ] [ 2866.132281] 3.6.0-rc1+ #622 Not tainted [ 2866.132281] ------------------------- [ 2866.132281] kworker/0:1/652 is freeing memory ffff880019ec0000-ffff880019ec0a1f, with a lock still held there! [ 2866.132281] (sk_lock-AF_INET-RPC){+.+...}, at: [<ffffffff81903619>] tcp_sendmsg+0x29/0xcc6 [ 2866.132281] 4 locks held by kworker/0:1/652: [ 2866.132281] #0: (rpciod){.+.+.+}, at: [<ffffffff81083567>] process_one_work+0x1de/0x47f [ 2866.132281] #1: ((&task->u.tk_work)){+.+.+.}, at: [<ffffffff81083567>] process_one_work+0x1de/0x47f [ 2866.132281] #2: (sk_lock-AF_INET-RPC){+.+...}, at: [<ffffffff81903619>] tcp_sendmsg+0x29/0xcc6 [ 2866.132281] #3: (&icsk->icsk_retransmit_timer){+.-...}, at: [<ffffffff81078017>] run_timer_softirq+0x1ad/0x35f [ 2866.132281] [ 2866.132281] stack backtrace: [ 2866.132281] Pid: 652, comm: kworker/0:1 Not tainted 3.6.0-rc1+ #622 [ 2866.132281] Call Trace: [ 2866.132281] <IRQ> [<ffffffff810bc527>] debug_check_no_locks_freed+0x112/0x159 [ 2866.132281] [<ffffffff818a0839>] ? __sk_free+0xfd/0x114 [ 2866.132281] [<ffffffff811549fa>] kmem_cache_free+0x6b/0x13a [ 2866.132281] [<ffffffff818a0839>] __sk_free+0xfd/0x114 [ 2866.132281] [<ffffffff818a08c0>] sk_free+0x1c/0x1e [ 2866.132281] [<ffffffff81911e1c>] tcp_write_timer+0x51/0x56 [ 2866.132281] [<ffffffff81078082>] run_timer_softirq+0x218/0x35f [ 2866.132281] [<ffffffff81078017>] ? run_timer_softirq+0x1ad/0x35f [ 2866.132281] [<ffffffff810f5831>] ? rb_commit+0x58/0x85 [ 2866.132281] [<ffffffff81911dcb>] ? tcp_write_timer_handler+0x148/0x148 [ 2866.132281] [<ffffffff81070bd6>] __do_softirq+0xcb/0x1f9 [ 2866.132281] [<ffffffff81a0a00c>] ? _raw_spin_unlock+0x29/0x2e [ 2866.132281] [<ffffffff81a1227c>] call_softirq+0x1c/0x30 [ 2866.132281] [<ffffffff81039f38>] do_softirq+0x4a/0xa6 [ 2866.132281] [<ffffffff81070f2b>] irq_exit+0x51/0xad [ 2866.132281] [<ffffffff81a129cd>] do_IRQ+0x9d/0xb4 [ 2866.132281] [<ffffffff81a0a3ef>] common_interrupt+0x6f/0x6f [ 2866.132281] <EOI> [<ffffffff8109d006>] ? sched_clock_cpu+0x58/0xd1 [ 2866.132281] [<ffffffff81a0a172>] ? _raw_spin_unlock_irqrestore+0x4c/0x56 [ 2866.132281] [<ffffffff81078692>] mod_timer+0x178/0x1a9 [ 2866.132281] [<ffffffff818a00aa>] sk_reset_timer+0x19/0x26 [ 2866.132281] [<ffffffff8190b2cc>] tcp_rearm_rto+0x99/0xa4 [ 2866.132281] [<ffffffff8190dfba>] tcp_event_new_data_sent+0x6e/0x70 [ 2866.132281] [<ffffffff8190f7ea>] tcp_write_xmit+0x7de/0x8e4 [ 2866.132281] [<ffffffff818a565d>] ? __alloc_skb+0xa0/0x1a1 [ 2866.132281] [<ffffffff8190f952>] __tcp_push_pending_frames+0x2e/0x8a [ 2866.132281] [<ffffffff81904122>] tcp_sendmsg+0xb32/0xcc6 [ 2866.132281] [<ffffffff819229c2>] inet_sendmsg+0xaa/0xd5 [ 2866.132281] [<ffffffff81922918>] ? inet_autobind+0x5f/0x5f [ 2866.132281] [<ffffffff810ee7f1>] ? trace_clock_local+0x9/0xb [ 2866.132281] [<ffffffff8189adab>] sock_sendmsg+0xa3/0xc4 [ 2866.132281] [<ffffffff810f5de6>] ? rb_reserve_next_event+0x26f/0x2d5 [ 2866.132281] [<ffffffff8103e6a9>] ? native_sched_clock+0x29/0x6f [ 2866.132281] [<ffffffff8103e6f8>] ? sched_clock+0x9/0xd [ 2866.132281] [<ffffffff810ee7f1>] ? trace_clock_local+0x9/0xb [ 2866.132281] [<ffffffff8189ae03>] kernel_sendmsg+0x37/0x43 [ 2866.132281] [<ffffffff8199ce49>] xs_send_kvec+0x77/0x80 [ 2866.132281] [<ffffffff8199cec1>] xs_sendpages+0x6f/0x1a0 [ 2866.132281] [<ffffffff8107826d>] ? try_to_del_timer_sync+0x55/0x61 [ 2866.132281] [<ffffffff8199d0d2>] xs_tcp_send_request+0x55/0xf1 [ 2866.132281] [<ffffffff8199bb90>] xprt_transmit+0x89/0x1db [ 2866.132281] [<ffffffff81999bcd>] ? call_connect+0x3c/0x3c [ 2866.132281] [<ffffffff81999d92>] call_transmit+0x1c5/0x20e [ 2866.132281] [<ffffffff819a0d55>] __rpc_execute+0x6f/0x225 [ 2866.132281] [<ffffffff81999bcd>] ? call_connect+0x3c/0x3c [ 2866.132281] [<ffffffff819a0f33>] rpc_async_schedule+0x28/0x34 [ 2866.132281] [<ffffffff810835d6>] process_one_work+0x24d/0x47f [ 2866.132281] [<ffffffff81083567>] ? process_one_work+0x1de/0x47f [ 2866.132281] [<ffffffff819a0f0b>] ? __rpc_execute+0x225/0x225 [ 2866.132281] [<ffffffff81083a6d>] worker_thread+0x236/0x317 [ 2866.132281] [<ffffffff81083837>] ? process_scheduled_works+0x2f/0x2f [ 2866.132281] [<ffffffff8108b7b8>] kthread+0x9a/0xa2 [ 2866.132281] [<ffffffff81a12184>] kernel_thread_helper+0x4/0x10 [ 2866.132281] [<ffffffff81a0a4b0>] ? retint_restore_args+0x13/0x13 [ 2866.132281] [<ffffffff8108b71e>] ? __init_kthread_worker+0x5a/0x5a [ 2866.132281] [<ffffffff81a12180>] ? gs_change+0x13/0x13 [ 2866.308506] IPv4: Attempt to release TCP socket in state 1 ffff880019ec0000 [ 2866.309689] ============================================================================= [ 2866.310254] BUG TCP (Not tainted): Object already free [ 2866.310254] ----------------------------------------------------------------------------- [ 2866.310254] The bug comes from the fact that timer set in sk_reset_timer() can run before we actually do the sock_hold(). socket refcount reaches zero and we free the socket too soon. timer handler is not allowed to reduce socket refcnt if socket is owned by the user, or we need to change sk_reset_timer() implementation. We should take a reference on the socket in case TCP_DELACK_TIMER_DEFERRED or TCP_DELACK_TIMER_DEFERRED bit are set in tsq_flags Also fix a typo in tcp_delack_timer(), where TCP_WRITE_TIMER_DEFERRED was used instead of TCP_DELACK_TIMER_DEFERRED. For consistency, use same socket refcount change for TCP_MTU_REDUCED_DEFERRED, even if not fired from a timer. Reported-by: Fengguang Wu <fengguang.wu@intel.com> Tested-by: Fengguang Wu <fengguang.wu@intel.com> Signed-off-by: Eric Dumazet <edumazet@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2012-08-20 04:22:46 +04:00
} else {
if (!test_and_set_bit(TCP_MTU_REDUCED_DEFERRED, &sk->sk_tsq_flags))
tcp: fix possible socket refcount problem Commit 6f458dfb40 (tcp: improve latencies of timer triggered events) added bug leading to following trace : [ 2866.131281] IPv4: Attempt to release TCP socket in state 1 ffff880019ec0000 [ 2866.131726] [ 2866.132188] ========================= [ 2866.132281] [ BUG: held lock freed! ] [ 2866.132281] 3.6.0-rc1+ #622 Not tainted [ 2866.132281] ------------------------- [ 2866.132281] kworker/0:1/652 is freeing memory ffff880019ec0000-ffff880019ec0a1f, with a lock still held there! [ 2866.132281] (sk_lock-AF_INET-RPC){+.+...}, at: [<ffffffff81903619>] tcp_sendmsg+0x29/0xcc6 [ 2866.132281] 4 locks held by kworker/0:1/652: [ 2866.132281] #0: (rpciod){.+.+.+}, at: [<ffffffff81083567>] process_one_work+0x1de/0x47f [ 2866.132281] #1: ((&task->u.tk_work)){+.+.+.}, at: [<ffffffff81083567>] process_one_work+0x1de/0x47f [ 2866.132281] #2: (sk_lock-AF_INET-RPC){+.+...}, at: [<ffffffff81903619>] tcp_sendmsg+0x29/0xcc6 [ 2866.132281] #3: (&icsk->icsk_retransmit_timer){+.-...}, at: [<ffffffff81078017>] run_timer_softirq+0x1ad/0x35f [ 2866.132281] [ 2866.132281] stack backtrace: [ 2866.132281] Pid: 652, comm: kworker/0:1 Not tainted 3.6.0-rc1+ #622 [ 2866.132281] Call Trace: [ 2866.132281] <IRQ> [<ffffffff810bc527>] debug_check_no_locks_freed+0x112/0x159 [ 2866.132281] [<ffffffff818a0839>] ? __sk_free+0xfd/0x114 [ 2866.132281] [<ffffffff811549fa>] kmem_cache_free+0x6b/0x13a [ 2866.132281] [<ffffffff818a0839>] __sk_free+0xfd/0x114 [ 2866.132281] [<ffffffff818a08c0>] sk_free+0x1c/0x1e [ 2866.132281] [<ffffffff81911e1c>] tcp_write_timer+0x51/0x56 [ 2866.132281] [<ffffffff81078082>] run_timer_softirq+0x218/0x35f [ 2866.132281] [<ffffffff81078017>] ? run_timer_softirq+0x1ad/0x35f [ 2866.132281] [<ffffffff810f5831>] ? rb_commit+0x58/0x85 [ 2866.132281] [<ffffffff81911dcb>] ? tcp_write_timer_handler+0x148/0x148 [ 2866.132281] [<ffffffff81070bd6>] __do_softirq+0xcb/0x1f9 [ 2866.132281] [<ffffffff81a0a00c>] ? _raw_spin_unlock+0x29/0x2e [ 2866.132281] [<ffffffff81a1227c>] call_softirq+0x1c/0x30 [ 2866.132281] [<ffffffff81039f38>] do_softirq+0x4a/0xa6 [ 2866.132281] [<ffffffff81070f2b>] irq_exit+0x51/0xad [ 2866.132281] [<ffffffff81a129cd>] do_IRQ+0x9d/0xb4 [ 2866.132281] [<ffffffff81a0a3ef>] common_interrupt+0x6f/0x6f [ 2866.132281] <EOI> [<ffffffff8109d006>] ? sched_clock_cpu+0x58/0xd1 [ 2866.132281] [<ffffffff81a0a172>] ? _raw_spin_unlock_irqrestore+0x4c/0x56 [ 2866.132281] [<ffffffff81078692>] mod_timer+0x178/0x1a9 [ 2866.132281] [<ffffffff818a00aa>] sk_reset_timer+0x19/0x26 [ 2866.132281] [<ffffffff8190b2cc>] tcp_rearm_rto+0x99/0xa4 [ 2866.132281] [<ffffffff8190dfba>] tcp_event_new_data_sent+0x6e/0x70 [ 2866.132281] [<ffffffff8190f7ea>] tcp_write_xmit+0x7de/0x8e4 [ 2866.132281] [<ffffffff818a565d>] ? __alloc_skb+0xa0/0x1a1 [ 2866.132281] [<ffffffff8190f952>] __tcp_push_pending_frames+0x2e/0x8a [ 2866.132281] [<ffffffff81904122>] tcp_sendmsg+0xb32/0xcc6 [ 2866.132281] [<ffffffff819229c2>] inet_sendmsg+0xaa/0xd5 [ 2866.132281] [<ffffffff81922918>] ? inet_autobind+0x5f/0x5f [ 2866.132281] [<ffffffff810ee7f1>] ? trace_clock_local+0x9/0xb [ 2866.132281] [<ffffffff8189adab>] sock_sendmsg+0xa3/0xc4 [ 2866.132281] [<ffffffff810f5de6>] ? rb_reserve_next_event+0x26f/0x2d5 [ 2866.132281] [<ffffffff8103e6a9>] ? native_sched_clock+0x29/0x6f [ 2866.132281] [<ffffffff8103e6f8>] ? sched_clock+0x9/0xd [ 2866.132281] [<ffffffff810ee7f1>] ? trace_clock_local+0x9/0xb [ 2866.132281] [<ffffffff8189ae03>] kernel_sendmsg+0x37/0x43 [ 2866.132281] [<ffffffff8199ce49>] xs_send_kvec+0x77/0x80 [ 2866.132281] [<ffffffff8199cec1>] xs_sendpages+0x6f/0x1a0 [ 2866.132281] [<ffffffff8107826d>] ? try_to_del_timer_sync+0x55/0x61 [ 2866.132281] [<ffffffff8199d0d2>] xs_tcp_send_request+0x55/0xf1 [ 2866.132281] [<ffffffff8199bb90>] xprt_transmit+0x89/0x1db [ 2866.132281] [<ffffffff81999bcd>] ? call_connect+0x3c/0x3c [ 2866.132281] [<ffffffff81999d92>] call_transmit+0x1c5/0x20e [ 2866.132281] [<ffffffff819a0d55>] __rpc_execute+0x6f/0x225 [ 2866.132281] [<ffffffff81999bcd>] ? call_connect+0x3c/0x3c [ 2866.132281] [<ffffffff819a0f33>] rpc_async_schedule+0x28/0x34 [ 2866.132281] [<ffffffff810835d6>] process_one_work+0x24d/0x47f [ 2866.132281] [<ffffffff81083567>] ? process_one_work+0x1de/0x47f [ 2866.132281] [<ffffffff819a0f0b>] ? __rpc_execute+0x225/0x225 [ 2866.132281] [<ffffffff81083a6d>] worker_thread+0x236/0x317 [ 2866.132281] [<ffffffff81083837>] ? process_scheduled_works+0x2f/0x2f [ 2866.132281] [<ffffffff8108b7b8>] kthread+0x9a/0xa2 [ 2866.132281] [<ffffffff81a12184>] kernel_thread_helper+0x4/0x10 [ 2866.132281] [<ffffffff81a0a4b0>] ? retint_restore_args+0x13/0x13 [ 2866.132281] [<ffffffff8108b71e>] ? __init_kthread_worker+0x5a/0x5a [ 2866.132281] [<ffffffff81a12180>] ? gs_change+0x13/0x13 [ 2866.308506] IPv4: Attempt to release TCP socket in state 1 ffff880019ec0000 [ 2866.309689] ============================================================================= [ 2866.310254] BUG TCP (Not tainted): Object already free [ 2866.310254] ----------------------------------------------------------------------------- [ 2866.310254] The bug comes from the fact that timer set in sk_reset_timer() can run before we actually do the sock_hold(). socket refcount reaches zero and we free the socket too soon. timer handler is not allowed to reduce socket refcnt if socket is owned by the user, or we need to change sk_reset_timer() implementation. We should take a reference on the socket in case TCP_DELACK_TIMER_DEFERRED or TCP_DELACK_TIMER_DEFERRED bit are set in tsq_flags Also fix a typo in tcp_delack_timer(), where TCP_WRITE_TIMER_DEFERRED was used instead of TCP_DELACK_TIMER_DEFERRED. For consistency, use same socket refcount change for TCP_MTU_REDUCED_DEFERRED, even if not fired from a timer. Reported-by: Fengguang Wu <fengguang.wu@intel.com> Tested-by: Fengguang Wu <fengguang.wu@intel.com> Signed-off-by: Eric Dumazet <edumazet@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2012-08-20 04:22:46 +04:00
sock_hold(sk);
}
goto out;
}
err = icmp_err_convert[code].errno;
/* check if this ICMP message allows revert of backoff.
* (see RFC 6069)
*/
if (!fastopen &&
(code == ICMP_NET_UNREACH || code == ICMP_HOST_UNREACH))
tcp_ld_RTO_revert(sk, seq);
break;
case ICMP_TIME_EXCEEDED:
err = EHOSTUNREACH;
break;
default:
goto out;
}
switch (sk->sk_state) {
case TCP_SYN_SENT:
case TCP_SYN_RECV:
/* Only in fast or simultaneous open. If a fast open socket is
* already accepted it is treated as a connected one below.
*/
if (fastopen && !fastopen->sk)
break;
ip_icmp_error(sk, skb, err, th->dest, info, (u8 *)th);
tcp: allow traceroute -Mtcp for unpriv users Unpriv users can use traceroute over plain UDP sockets, but not TCP ones. $ traceroute -Mtcp 8.8.8.8 You do not have enough privileges to use this traceroute method. $ traceroute -n -Mudp 8.8.8.8 traceroute to 8.8.8.8 (8.8.8.8), 30 hops max, 60 byte packets 1 192.168.86.1 3.631 ms 3.512 ms 3.405 ms 2 10.1.10.1 4.183 ms 4.125 ms 4.072 ms 3 96.120.88.125 20.621 ms 19.462 ms 20.553 ms 4 96.110.177.65 24.271 ms 25.351 ms 25.250 ms 5 69.139.199.197 44.492 ms 43.075 ms 44.346 ms 6 68.86.143.93 27.969 ms 25.184 ms 25.092 ms 7 96.112.146.18 25.323 ms 96.112.146.22 25.583 ms 96.112.146.26 24.502 ms 8 72.14.239.204 24.405 ms 74.125.37.224 16.326 ms 17.194 ms 9 209.85.251.9 18.154 ms 209.85.247.55 14.449 ms 209.85.251.9 26.296 ms^C We can easily support traceroute over TCP, by queueing an error message into socket error queue. Note that applications need to set IP_RECVERR/IPV6_RECVERR option to enable this feature, and that the error message is only queued while in SYN_SNT state. socket(AF_INET6, SOCK_STREAM, IPPROTO_IP) = 3 setsockopt(3, SOL_IPV6, IPV6_RECVERR, [1], 4) = 0 setsockopt(3, SOL_SOCKET, SO_TIMESTAMP_OLD, [1], 4) = 0 setsockopt(3, SOL_IPV6, IPV6_UNICAST_HOPS, [5], 4) = 0 connect(3, {sa_family=AF_INET6, sin6_port=htons(8787), sin6_flowinfo=htonl(0), inet_pton(AF_INET6, "2002:a05:6608:297::", &sin6_addr), sin6_scope_id=0}, 28) = -1 EHOSTUNREACH (No route to host) recvmsg(3, {msg_name={sa_family=AF_INET6, sin6_port=htons(8787), sin6_flowinfo=htonl(0), inet_pton(AF_INET6, "2002:a05:6608:297::", &sin6_addr), sin6_scope_id=0}, msg_namelen=1024->28, msg_iov=[{iov_base="`\r\337\320\0004\6\1&\7\370\260\200\231\16\27\0\0\0\0\0\0\0\0 \2\n\5f\10\2\227"..., iov_len=1024}], msg_iovlen=1, msg_control=[{cmsg_len=32, cmsg_level=SOL_SOCKET, cmsg_type=SO_TIMESTAMP_OLD, cmsg_data={tv_sec=1590340680, tv_usec=272424}}, {cmsg_len=60, cmsg_level=SOL_IPV6, cmsg_type=IPV6_RECVERR}], msg_controllen=96, msg_flags=MSG_ERRQUEUE}, MSG_ERRQUEUE) = 144 Suggested-by: Maciej Żenczykowski <maze@google.com Signed-off-by: Eric Dumazet <edumazet@google.com> Cc: Willem de Bruijn <willemb@google.com> Reviewed-by: Maciej Żenczykowski <maze@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2020-05-24 21:00:02 +03:00
if (!sock_owned_by_user(sk)) {
sk->sk_err = err;
sk_error_report(sk);
tcp_done(sk);
} else {
sk->sk_err_soft = err;
}
goto out;
}
/* If we've already connected we will keep trying
* until we time out, or the user gives up.
*
* rfc1122 4.2.3.9 allows to consider as hard errors
* only PROTO_UNREACH and PORT_UNREACH (well, FRAG_FAILED too,
* but it is obsoleted by pmtu discovery).
*
* Note, that in modern internet, where routing is unreliable
* and in each dark corner broken firewalls sit, sending random
* errors ordered by their masters even this two messages finally lose
* their original sense (even Linux sends invalid PORT_UNREACHs)
*
* Now we are in compliance with RFCs.
* --ANK (980905)
*/
inet = inet_sk(sk);
if (!sock_owned_by_user(sk) && inet->recverr) {
sk->sk_err = err;
sk_error_report(sk);
} else { /* Only an error on timeout */
sk->sk_err_soft = err;
}
out:
bh_unlock_sock(sk);
sock_put(sk);
return 0;
}
void __tcp_v4_send_check(struct sk_buff *skb, __be32 saddr, __be32 daddr)
{
struct tcphdr *th = tcp_hdr(skb);
th->check = ~tcp_v4_check(skb->len, saddr, daddr, 0);
skb->csum_start = skb_transport_header(skb) - skb->head;
skb->csum_offset = offsetof(struct tcphdr, check);
}
/* This routine computes an IPv4 TCP checksum. */
void tcp_v4_send_check(struct sock *sk, struct sk_buff *skb)
{
const struct inet_sock *inet = inet_sk(sk);
__tcp_v4_send_check(skb, inet->inet_saddr, inet->inet_daddr);
}
EXPORT_SYMBOL(tcp_v4_send_check);
/*
* This routine will send an RST to the other tcp.
*
* Someone asks: why I NEVER use socket parameters (TOS, TTL etc.)
* for reset.
* Answer: if a packet caused RST, it is not for a socket
* existing in our system, if it is matched to a socket,
* it is just duplicate segment or bug in other side's TCP.
* So that we build reply only basing on parameters
* arrived with segment.
* Exception: precedence violation. We do not implement it in any case.
*/
#ifdef CONFIG_TCP_MD5SIG
#define OPTION_BYTES TCPOLEN_MD5SIG_ALIGNED
#else
#define OPTION_BYTES sizeof(__be32)
#endif
static void tcp_v4_send_reset(const struct sock *sk, struct sk_buff *skb)
{
const struct tcphdr *th = tcp_hdr(skb);
struct {
struct tcphdr th;
__be32 opt[OPTION_BYTES / sizeof(__be32)];
} rep;
struct ip_reply_arg arg;
#ifdef CONFIG_TCP_MD5SIG
struct tcp_md5sig_key *key = NULL;
const __u8 *hash_location = NULL;
unsigned char newhash[16];
int genhash;
struct sock *sk1 = NULL;
#endif
u64 transmit_time = 0;
struct sock *ctl_sk;
struct net *net;
/* Never send a reset in response to a reset. */
if (th->rst)
return;
/* If sk not NULL, it means we did a successful lookup and incoming
* route had to be correct. prequeue might have dropped our dst.
*/
if (!sk && skb_rtable(skb)->rt_type != RTN_LOCAL)
return;
/* Swap the send and the receive. */
memset(&rep, 0, sizeof(rep));
rep.th.dest = th->source;
rep.th.source = th->dest;
rep.th.doff = sizeof(struct tcphdr) / 4;
rep.th.rst = 1;
if (th->ack) {
rep.th.seq = th->ack_seq;
} else {
rep.th.ack = 1;
rep.th.ack_seq = htonl(ntohl(th->seq) + th->syn + th->fin +
skb->len - (th->doff << 2));
}
memset(&arg, 0, sizeof(arg));
arg.iov[0].iov_base = (unsigned char *)&rep;
arg.iov[0].iov_len = sizeof(rep.th);
net = sk ? sock_net(sk) : dev_net(skb_dst(skb)->dev);
#ifdef CONFIG_TCP_MD5SIG
rcu_read_lock();
hash_location = tcp_parse_md5sig_option(th);
if (sk && sk_fullsock(sk)) {
const union tcp_md5_addr *addr;
int l3index;
/* sdif set, means packet ingressed via a device
* in an L3 domain and inet_iif is set to it.
*/
l3index = tcp_v4_sdif(skb) ? inet_iif(skb) : 0;
addr = (union tcp_md5_addr *)&ip_hdr(skb)->saddr;
key = tcp_md5_do_lookup(sk, l3index, addr, AF_INET);
} else if (hash_location) {
const union tcp_md5_addr *addr;
int sdif = tcp_v4_sdif(skb);
int dif = inet_iif(skb);
int l3index;
/*
* active side is lost. Try to find listening socket through
* source port, and then find md5 key through listening socket.
* we are not loose security here:
* Incoming packet is checked with md5 hash with finding key,
* no RST generated if md5 hash doesn't match.
*/
sk1 = __inet_lookup_listener(net, net->ipv4.tcp_death_row.hashinfo,
NULL, 0, ip_hdr(skb)->saddr,
th->source, ip_hdr(skb)->daddr,
ntohs(th->source), dif, sdif);
/* don't send rst if it can't find key */
if (!sk1)
goto out;
/* sdif set, means packet ingressed via a device
* in an L3 domain and dif is set to it.
*/
l3index = sdif ? dif : 0;
addr = (union tcp_md5_addr *)&ip_hdr(skb)->saddr;
key = tcp_md5_do_lookup(sk1, l3index, addr, AF_INET);
if (!key)
goto out;
genhash = tcp_v4_md5_hash_skb(newhash, key, NULL, skb);
if (genhash || memcmp(hash_location, newhash, 16) != 0)
goto out;
}
if (key) {
rep.opt[0] = htonl((TCPOPT_NOP << 24) |
(TCPOPT_NOP << 16) |
(TCPOPT_MD5SIG << 8) |
TCPOLEN_MD5SIG);
/* Update length and the length the header thinks exists */
arg.iov[0].iov_len += TCPOLEN_MD5SIG_ALIGNED;
rep.th.doff = arg.iov[0].iov_len / 4;
tcp_v4_md5_hash_hdr((__u8 *) &rep.opt[1],
key, ip_hdr(skb)->saddr,
ip_hdr(skb)->daddr, &rep.th);
}
#endif
/* Can't co-exist with TCPMD5, hence check rep.opt[0] */
if (rep.opt[0] == 0) {
__be32 mrst = mptcp_reset_option(skb);
if (mrst) {
rep.opt[0] = mrst;
arg.iov[0].iov_len += sizeof(mrst);
rep.th.doff = arg.iov[0].iov_len / 4;
}
}
arg.csum = csum_tcpudp_nofold(ip_hdr(skb)->daddr,
ip_hdr(skb)->saddr, /* XXX */
arg.iov[0].iov_len, IPPROTO_TCP, 0);
arg.csumoffset = offsetof(struct tcphdr, check) / 2;
arg.flags = (sk && inet_sk_transparent(sk)) ? IP_REPLY_ARG_NOSRCCHECK : 0;
/* When socket is gone, all binding information is lost.
* routing might fail in this case. No choice here, if we choose to force
* input interface, we will misroute in case of asymmetric route.
*/
if (sk) {
arg.bound_dev_if = sk->sk_bound_dev_if;
if (sk_fullsock(sk))
trace_tcp_send_reset(sk, skb);
}
BUILD_BUG_ON(offsetof(struct sock, sk_bound_dev_if) !=
offsetof(struct inet_timewait_sock, tw_bound_dev_if));
arg.tos = ip_hdr(skb)->tos;
arg.uid = sock_net_uid(net, sk && sk_fullsock(sk) ? sk : NULL);
local_bh_disable();
ctl_sk = this_cpu_read(ipv4_tcp_sk);
sock_net_set(ctl_sk, net);
tcp: add optional per socket transmit delay Adding delays to TCP flows is crucial for studying behavior of TCP stacks, including congestion control modules. Linux offers netem module, but it has unpractical constraints : - Need root access to change qdisc - Hard to setup on egress if combined with non trivial qdisc like FQ - Single delay for all flows. EDT (Earliest Departure Time) adoption in TCP stack allows us to enable a per socket delay at a very small cost. Networking tools can now establish thousands of flows, each of them with a different delay, simulating real world conditions. This requires FQ packet scheduler or a EDT-enabled NIC. This patchs adds TCP_TX_DELAY socket option, to set a delay in usec units. unsigned int tx_delay = 10000; /* 10 msec */ setsockopt(fd, SOL_TCP, TCP_TX_DELAY, &tx_delay, sizeof(tx_delay)); Note that FQ packet scheduler limits might need some tweaking : man tc-fq PARAMETERS limit Hard limit on the real queue size. When this limit is reached, new packets are dropped. If the value is lowered, packets are dropped so that the new limit is met. Default is 10000 packets. flow_limit Hard limit on the maximum number of packets queued per flow. Default value is 100. Use of TCP_TX_DELAY option will increase number of skbs in FQ qdisc, so packets would be dropped if any of the previous limit is hit. Use of a jump label makes this support runtime-free, for hosts never using the option. Also note that TSQ (TCP Small Queues) limits are slightly changed with this patch : we need to account that skbs artificially delayed wont stop us providind more skbs to feed the pipe (netem uses skb_orphan_partial() for this purpose, but FQ can not use this trick) Because of that, using big delays might very well trigger old bugs in TSO auto defer logic and/or sndbuf limited detection. Signed-off-by: Eric Dumazet <edumazet@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-06-12 21:57:25 +03:00
if (sk) {
ctl_sk->sk_mark = (sk->sk_state == TCP_TIME_WAIT) ?
inet_twsk(sk)->tw_mark : sk->sk_mark;
ctl_sk->sk_priority = (sk->sk_state == TCP_TIME_WAIT) ?
inet_twsk(sk)->tw_priority : sk->sk_priority;
transmit_time = tcp_transmit_time(sk);
net: Find dst with sk's xfrm policy not ctl_sk If we set XFRM security policy by calling setsockopt with option IPV6_XFRM_POLICY, the policy will be stored in 'sock_policy' in 'sock' struct. However tcp_v6_send_response doesn't look up dst_entry with the actual socket but looks up with tcp control socket. This may cause a problem that a RST packet is sent without ESP encryption & peer's TCP socket can't receive it. This patch will make the function look up dest_entry with actual socket, if the socket has XFRM policy(sock_policy), so that the TCP response packet via this function can be encrypted, & aligned on the encrypted TCP socket. Tested: We encountered this problem when a TCP socket which is encrypted in ESP transport mode encryption, receives challenge ACK at SYN_SENT state. After receiving challenge ACK, TCP needs to send RST to establish the socket at next SYN try. But the RST was not encrypted & peer TCP socket still remains on ESTABLISHED state. So we verified this with test step as below. [Test step] 1. Making a TCP state mismatch between client(IDLE) & server(ESTABLISHED). 2. Client tries a new connection on the same TCP ports(src & dst). 3. Server will return challenge ACK instead of SYN,ACK. 4. Client will send RST to server to clear the SOCKET. 5. Client will retransmit SYN to server on the same TCP ports. [Expected result] The TCP connection should be established. Cc: Maciej Żenczykowski <maze@google.com> Cc: Eric Dumazet <edumazet@google.com> Cc: Steffen Klassert <steffen.klassert@secunet.com> Cc: Sehee Lee <seheele@google.com> Signed-off-by: Sewook Seo <sewookseo@google.com> Reviewed-by: Eric Dumazet <edumazet@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2022-07-07 13:01:39 +03:00
xfrm_sk_clone_policy(ctl_sk, sk);
tcp: add optional per socket transmit delay Adding delays to TCP flows is crucial for studying behavior of TCP stacks, including congestion control modules. Linux offers netem module, but it has unpractical constraints : - Need root access to change qdisc - Hard to setup on egress if combined with non trivial qdisc like FQ - Single delay for all flows. EDT (Earliest Departure Time) adoption in TCP stack allows us to enable a per socket delay at a very small cost. Networking tools can now establish thousands of flows, each of them with a different delay, simulating real world conditions. This requires FQ packet scheduler or a EDT-enabled NIC. This patchs adds TCP_TX_DELAY socket option, to set a delay in usec units. unsigned int tx_delay = 10000; /* 10 msec */ setsockopt(fd, SOL_TCP, TCP_TX_DELAY, &tx_delay, sizeof(tx_delay)); Note that FQ packet scheduler limits might need some tweaking : man tc-fq PARAMETERS limit Hard limit on the real queue size. When this limit is reached, new packets are dropped. If the value is lowered, packets are dropped so that the new limit is met. Default is 10000 packets. flow_limit Hard limit on the maximum number of packets queued per flow. Default value is 100. Use of TCP_TX_DELAY option will increase number of skbs in FQ qdisc, so packets would be dropped if any of the previous limit is hit. Use of a jump label makes this support runtime-free, for hosts never using the option. Also note that TSQ (TCP Small Queues) limits are slightly changed with this patch : we need to account that skbs artificially delayed wont stop us providind more skbs to feed the pipe (netem uses skb_orphan_partial() for this purpose, but FQ can not use this trick) Because of that, using big delays might very well trigger old bugs in TSO auto defer logic and/or sndbuf limited detection. Signed-off-by: Eric Dumazet <edumazet@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-06-12 21:57:25 +03:00
}
ip_send_unicast_reply(ctl_sk,
skb, &TCP_SKB_CB(skb)->header.h4.opt,
ip_hdr(skb)->saddr, ip_hdr(skb)->daddr,
&arg, arg.iov[0].iov_len,
transmit_time);
ctl_sk->sk_mark = 0;
net: Find dst with sk's xfrm policy not ctl_sk If we set XFRM security policy by calling setsockopt with option IPV6_XFRM_POLICY, the policy will be stored in 'sock_policy' in 'sock' struct. However tcp_v6_send_response doesn't look up dst_entry with the actual socket but looks up with tcp control socket. This may cause a problem that a RST packet is sent without ESP encryption & peer's TCP socket can't receive it. This patch will make the function look up dest_entry with actual socket, if the socket has XFRM policy(sock_policy), so that the TCP response packet via this function can be encrypted, & aligned on the encrypted TCP socket. Tested: We encountered this problem when a TCP socket which is encrypted in ESP transport mode encryption, receives challenge ACK at SYN_SENT state. After receiving challenge ACK, TCP needs to send RST to establish the socket at next SYN try. But the RST was not encrypted & peer TCP socket still remains on ESTABLISHED state. So we verified this with test step as below. [Test step] 1. Making a TCP state mismatch between client(IDLE) & server(ESTABLISHED). 2. Client tries a new connection on the same TCP ports(src & dst). 3. Server will return challenge ACK instead of SYN,ACK. 4. Client will send RST to server to clear the SOCKET. 5. Client will retransmit SYN to server on the same TCP ports. [Expected result] The TCP connection should be established. Cc: Maciej Żenczykowski <maze@google.com> Cc: Eric Dumazet <edumazet@google.com> Cc: Steffen Klassert <steffen.klassert@secunet.com> Cc: Sehee Lee <seheele@google.com> Signed-off-by: Sewook Seo <sewookseo@google.com> Reviewed-by: Eric Dumazet <edumazet@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2022-07-07 13:01:39 +03:00
xfrm_sk_free_policy(ctl_sk);
sock_net_set(ctl_sk, &init_net);
__TCP_INC_STATS(net, TCP_MIB_OUTSEGS);
__TCP_INC_STATS(net, TCP_MIB_OUTRSTS);
local_bh_enable();
#ifdef CONFIG_TCP_MD5SIG
out:
rcu_read_unlock();
#endif
}
/* The code following below sending ACKs in SYN-RECV and TIME-WAIT states
outside socket context is ugly, certainly. What can I do?
*/
static void tcp_v4_send_ack(const struct sock *sk,
tcp: fix NULL deref in tcp_v4_send_ack() Neal reported crashes with this stack trace : RIP: 0010:[<ffffffff8c57231b>] tcp_v4_send_ack+0x41/0x20f ... CR2: 0000000000000018 CR3: 000000044005c000 CR4: 00000000001427e0 ... [<ffffffff8c57258e>] tcp_v4_reqsk_send_ack+0xa5/0xb4 [<ffffffff8c1a7caa>] tcp_check_req+0x2ea/0x3e0 [<ffffffff8c19e420>] tcp_rcv_state_process+0x850/0x2500 [<ffffffff8c1a6d21>] tcp_v4_do_rcv+0x141/0x330 [<ffffffff8c56cdb2>] sk_backlog_rcv+0x21/0x30 [<ffffffff8c098bbd>] tcp_recvmsg+0x75d/0xf90 [<ffffffff8c0a8700>] inet_recvmsg+0x80/0xa0 [<ffffffff8c17623e>] sock_aio_read+0xee/0x110 [<ffffffff8c066fcf>] do_sync_read+0x6f/0xa0 [<ffffffff8c0673a1>] SyS_read+0x1e1/0x290 [<ffffffff8c5ca262>] system_call_fastpath+0x16/0x1b The problem here is the skb we provide to tcp_v4_send_ack() had to be parked in the backlog of a new TCP fastopen child because this child was owned by the user at the time an out of window packet arrived. Before queuing a packet, TCP has to set skb->dev to NULL as the device could disappear before packet is removed from the queue. Fix this issue by using the net pointer provided by the socket (being a timewait or a request socket). IPv6 is immune to the bug : tcp_v6_send_response() already gets the net pointer from the socket if provided. Fixes: 168a8f58059a ("tcp: TCP Fast Open Server - main code path") Reported-by: Neal Cardwell <ncardwell@google.com> Signed-off-by: Eric Dumazet <edumazet@google.com> Cc: Jerry Chu <hkchu@google.com> Cc: Yuchung Cheng <ycheng@google.com> Acked-by: Neal Cardwell <ncardwell@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-01-21 19:02:54 +03:00
struct sk_buff *skb, u32 seq, u32 ack,
u32 win, u32 tsval, u32 tsecr, int oif,
struct tcp_md5sig_key *key,
int reply_flags, u8 tos)
{
const struct tcphdr *th = tcp_hdr(skb);
struct {
struct tcphdr th;
__be32 opt[(TCPOLEN_TSTAMP_ALIGNED >> 2)
#ifdef CONFIG_TCP_MD5SIG
+ (TCPOLEN_MD5SIG_ALIGNED >> 2)
#endif
];
} rep;
struct net *net = sock_net(sk);
struct ip_reply_arg arg;
struct sock *ctl_sk;
u64 transmit_time;
memset(&rep.th, 0, sizeof(struct tcphdr));
memset(&arg, 0, sizeof(arg));
arg.iov[0].iov_base = (unsigned char *)&rep;
arg.iov[0].iov_len = sizeof(rep.th);
if (tsecr) {
rep.opt[0] = htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) |
(TCPOPT_TIMESTAMP << 8) |
TCPOLEN_TIMESTAMP);
rep.opt[1] = htonl(tsval);
rep.opt[2] = htonl(tsecr);
arg.iov[0].iov_len += TCPOLEN_TSTAMP_ALIGNED;
}
/* Swap the send and the receive. */
rep.th.dest = th->source;
rep.th.source = th->dest;
rep.th.doff = arg.iov[0].iov_len / 4;
rep.th.seq = htonl(seq);
rep.th.ack_seq = htonl(ack);
rep.th.ack = 1;
rep.th.window = htons(win);
#ifdef CONFIG_TCP_MD5SIG
if (key) {
int offset = (tsecr) ? 3 : 0;
rep.opt[offset++] = htonl((TCPOPT_NOP << 24) |
(TCPOPT_NOP << 16) |
(TCPOPT_MD5SIG << 8) |
TCPOLEN_MD5SIG);
arg.iov[0].iov_len += TCPOLEN_MD5SIG_ALIGNED;
rep.th.doff = arg.iov[0].iov_len/4;
tcp_v4_md5_hash_hdr((__u8 *) &rep.opt[offset],
key, ip_hdr(skb)->saddr,
ip_hdr(skb)->daddr, &rep.th);
}
#endif
arg.flags = reply_flags;
arg.csum = csum_tcpudp_nofold(ip_hdr(skb)->daddr,
ip_hdr(skb)->saddr, /* XXX */
arg.iov[0].iov_len, IPPROTO_TCP, 0);
arg.csumoffset = offsetof(struct tcphdr, check) / 2;
if (oif)
arg.bound_dev_if = oif;
arg.tos = tos;
arg.uid = sock_net_uid(net, sk_fullsock(sk) ? sk : NULL);
local_bh_disable();
ctl_sk = this_cpu_read(ipv4_tcp_sk);
sock_net_set(ctl_sk, net);
tcp: add optional per socket transmit delay Adding delays to TCP flows is crucial for studying behavior of TCP stacks, including congestion control modules. Linux offers netem module, but it has unpractical constraints : - Need root access to change qdisc - Hard to setup on egress if combined with non trivial qdisc like FQ - Single delay for all flows. EDT (Earliest Departure Time) adoption in TCP stack allows us to enable a per socket delay at a very small cost. Networking tools can now establish thousands of flows, each of them with a different delay, simulating real world conditions. This requires FQ packet scheduler or a EDT-enabled NIC. This patchs adds TCP_TX_DELAY socket option, to set a delay in usec units. unsigned int tx_delay = 10000; /* 10 msec */ setsockopt(fd, SOL_TCP, TCP_TX_DELAY, &tx_delay, sizeof(tx_delay)); Note that FQ packet scheduler limits might need some tweaking : man tc-fq PARAMETERS limit Hard limit on the real queue size. When this limit is reached, new packets are dropped. If the value is lowered, packets are dropped so that the new limit is met. Default is 10000 packets. flow_limit Hard limit on the maximum number of packets queued per flow. Default value is 100. Use of TCP_TX_DELAY option will increase number of skbs in FQ qdisc, so packets would be dropped if any of the previous limit is hit. Use of a jump label makes this support runtime-free, for hosts never using the option. Also note that TSQ (TCP Small Queues) limits are slightly changed with this patch : we need to account that skbs artificially delayed wont stop us providind more skbs to feed the pipe (netem uses skb_orphan_partial() for this purpose, but FQ can not use this trick) Because of that, using big delays might very well trigger old bugs in TSO auto defer logic and/or sndbuf limited detection. Signed-off-by: Eric Dumazet <edumazet@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-06-12 21:57:25 +03:00
ctl_sk->sk_mark = (sk->sk_state == TCP_TIME_WAIT) ?
inet_twsk(sk)->tw_mark : sk->sk_mark;
ctl_sk->sk_priority = (sk->sk_state == TCP_TIME_WAIT) ?
inet_twsk(sk)->tw_priority : sk->sk_priority;
transmit_time = tcp_transmit_time(sk);
ip_send_unicast_reply(ctl_sk,
skb, &TCP_SKB_CB(skb)->header.h4.opt,
ip_hdr(skb)->saddr, ip_hdr(skb)->daddr,
&arg, arg.iov[0].iov_len,
transmit_time);
ctl_sk->sk_mark = 0;
sock_net_set(ctl_sk, &init_net);
__TCP_INC_STATS(net, TCP_MIB_OUTSEGS);
local_bh_enable();
}
static void tcp_v4_timewait_ack(struct sock *sk, struct sk_buff *skb)
{
struct inet_timewait_sock *tw = inet_twsk(sk);
struct tcp_timewait_sock *tcptw = tcp_twsk(sk);
tcp_v4_send_ack(sk, skb,
tcp: fix NULL deref in tcp_v4_send_ack() Neal reported crashes with this stack trace : RIP: 0010:[<ffffffff8c57231b>] tcp_v4_send_ack+0x41/0x20f ... CR2: 0000000000000018 CR3: 000000044005c000 CR4: 00000000001427e0 ... [<ffffffff8c57258e>] tcp_v4_reqsk_send_ack+0xa5/0xb4 [<ffffffff8c1a7caa>] tcp_check_req+0x2ea/0x3e0 [<ffffffff8c19e420>] tcp_rcv_state_process+0x850/0x2500 [<ffffffff8c1a6d21>] tcp_v4_do_rcv+0x141/0x330 [<ffffffff8c56cdb2>] sk_backlog_rcv+0x21/0x30 [<ffffffff8c098bbd>] tcp_recvmsg+0x75d/0xf90 [<ffffffff8c0a8700>] inet_recvmsg+0x80/0xa0 [<ffffffff8c17623e>] sock_aio_read+0xee/0x110 [<ffffffff8c066fcf>] do_sync_read+0x6f/0xa0 [<ffffffff8c0673a1>] SyS_read+0x1e1/0x290 [<ffffffff8c5ca262>] system_call_fastpath+0x16/0x1b The problem here is the skb we provide to tcp_v4_send_ack() had to be parked in the backlog of a new TCP fastopen child because this child was owned by the user at the time an out of window packet arrived. Before queuing a packet, TCP has to set skb->dev to NULL as the device could disappear before packet is removed from the queue. Fix this issue by using the net pointer provided by the socket (being a timewait or a request socket). IPv6 is immune to the bug : tcp_v6_send_response() already gets the net pointer from the socket if provided. Fixes: 168a8f58059a ("tcp: TCP Fast Open Server - main code path") Reported-by: Neal Cardwell <ncardwell@google.com> Signed-off-by: Eric Dumazet <edumazet@google.com> Cc: Jerry Chu <hkchu@google.com> Cc: Yuchung Cheng <ycheng@google.com> Acked-by: Neal Cardwell <ncardwell@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-01-21 19:02:54 +03:00
tcptw->tw_snd_nxt, tcptw->tw_rcv_nxt,
tcptw->tw_rcv_wnd >> tw->tw_rcv_wscale,
tcp_time_stamp_raw() + tcptw->tw_ts_offset,
tcptw->tw_ts_recent,
tw->tw_bound_dev_if,
tcp_twsk_md5_key(tcptw),
tw->tw_transparent ? IP_REPLY_ARG_NOSRCCHECK : 0,
tw->tw_tos
);
inet_twsk_put(tw);
}
static void tcp_v4_reqsk_send_ack(const struct sock *sk, struct sk_buff *skb,
struct request_sock *req)
{
const union tcp_md5_addr *addr;
int l3index;
/* sk->sk_state == TCP_LISTEN -> for regular TCP_SYN_RECV
* sk->sk_state == TCP_SYN_RECV -> for Fast Open.
*/
tcp: fix NULL deref in tcp_v4_send_ack() Neal reported crashes with this stack trace : RIP: 0010:[<ffffffff8c57231b>] tcp_v4_send_ack+0x41/0x20f ... CR2: 0000000000000018 CR3: 000000044005c000 CR4: 00000000001427e0 ... [<ffffffff8c57258e>] tcp_v4_reqsk_send_ack+0xa5/0xb4 [<ffffffff8c1a7caa>] tcp_check_req+0x2ea/0x3e0 [<ffffffff8c19e420>] tcp_rcv_state_process+0x850/0x2500 [<ffffffff8c1a6d21>] tcp_v4_do_rcv+0x141/0x330 [<ffffffff8c56cdb2>] sk_backlog_rcv+0x21/0x30 [<ffffffff8c098bbd>] tcp_recvmsg+0x75d/0xf90 [<ffffffff8c0a8700>] inet_recvmsg+0x80/0xa0 [<ffffffff8c17623e>] sock_aio_read+0xee/0x110 [<ffffffff8c066fcf>] do_sync_read+0x6f/0xa0 [<ffffffff8c0673a1>] SyS_read+0x1e1/0x290 [<ffffffff8c5ca262>] system_call_fastpath+0x16/0x1b The problem here is the skb we provide to tcp_v4_send_ack() had to be parked in the backlog of a new TCP fastopen child because this child was owned by the user at the time an out of window packet arrived. Before queuing a packet, TCP has to set skb->dev to NULL as the device could disappear before packet is removed from the queue. Fix this issue by using the net pointer provided by the socket (being a timewait or a request socket). IPv6 is immune to the bug : tcp_v6_send_response() already gets the net pointer from the socket if provided. Fixes: 168a8f58059a ("tcp: TCP Fast Open Server - main code path") Reported-by: Neal Cardwell <ncardwell@google.com> Signed-off-by: Eric Dumazet <edumazet@google.com> Cc: Jerry Chu <hkchu@google.com> Cc: Yuchung Cheng <ycheng@google.com> Acked-by: Neal Cardwell <ncardwell@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-01-21 19:02:54 +03:00
u32 seq = (sk->sk_state == TCP_LISTEN) ? tcp_rsk(req)->snt_isn + 1 :
tcp_sk(sk)->snd_nxt;
/* RFC 7323 2.3
* The window field (SEG.WND) of every outgoing segment, with the
* exception of <SYN> segments, MUST be right-shifted by
* Rcv.Wind.Shift bits:
*/
addr = (union tcp_md5_addr *)&ip_hdr(skb)->saddr;
l3index = tcp_v4_sdif(skb) ? inet_iif(skb) : 0;
tcp_v4_send_ack(sk, skb, seq,
tcp_rsk(req)->rcv_nxt,
req->rsk_rcv_wnd >> inet_rsk(req)->rcv_wscale,
tcp_time_stamp_raw() + tcp_rsk(req)->ts_off,
req->ts_recent,
0,
tcp_md5_do_lookup(sk, l3index, addr, AF_INET),
inet_rsk(req)->no_srccheck ? IP_REPLY_ARG_NOSRCCHECK : 0,
ip_hdr(skb)->tos);
}
/*
* Send a SYN-ACK after having received a SYN.
* This still operates on a request_sock only, not on a big
* socket.
*/
static int tcp_v4_send_synack(const struct sock *sk, struct dst_entry *dst,
struct flowi *fl,
struct request_sock *req,
struct tcp_fastopen_cookie *foc,
bpf: tcp: Add bpf_skops_hdr_opt_len() and bpf_skops_write_hdr_opt() The bpf prog needs to parse the SYN header to learn what options have been sent by the peer's bpf-prog before writing its options into SYNACK. This patch adds a "syn_skb" arg to tcp_make_synack() and send_synack(). This syn_skb will eventually be made available (as read-only) to the bpf prog. This will be the only SYN packet available to the bpf prog during syncookie. For other regular cases, the bpf prog can also use the saved_syn. When writing options, the bpf prog will first be called to tell the kernel its required number of bytes. It is done by the new bpf_skops_hdr_opt_len(). The bpf prog will only be called when the new BPF_SOCK_OPS_WRITE_HDR_OPT_CB_FLAG is set in tp->bpf_sock_ops_cb_flags. When the bpf prog returns, the kernel will know how many bytes are needed and then update the "*remaining" arg accordingly. 4 byte alignment will be included in the "*remaining" before this function returns. The 4 byte aligned number of bytes will also be stored into the opts->bpf_opt_len. "bpf_opt_len" is a newly added member to the struct tcp_out_options. Then the new bpf_skops_write_hdr_opt() will call the bpf prog to write the header options. The bpf prog is only called if it has reserved spaces before (opts->bpf_opt_len > 0). The bpf prog is the last one getting a chance to reserve header space and writing the header option. These two functions are half implemented to highlight the changes in TCP stack. The actual codes preparing the bpf running context and invoking the bpf prog will be added in the later patch with other necessary bpf pieces. Signed-off-by: Martin KaFai Lau <kafai@fb.com> Signed-off-by: Alexei Starovoitov <ast@kernel.org> Reviewed-by: Eric Dumazet <edumazet@google.com> Link: https://lore.kernel.org/bpf/20200820190052.2885316-1-kafai@fb.com
2020-08-20 22:00:52 +03:00
enum tcp_synack_type synack_type,
struct sk_buff *syn_skb)
{
const struct inet_request_sock *ireq = inet_rsk(req);
struct flowi4 fl4;
int err = -1;
struct sk_buff *skb;
u8 tos;
/* First, grab a route. */
if (!dst && (dst = inet_csk_route_req(sk, &fl4, req)) == NULL)
return -1;
bpf: tcp: Add bpf_skops_hdr_opt_len() and bpf_skops_write_hdr_opt() The bpf prog needs to parse the SYN header to learn what options have been sent by the peer's bpf-prog before writing its options into SYNACK. This patch adds a "syn_skb" arg to tcp_make_synack() and send_synack(). This syn_skb will eventually be made available (as read-only) to the bpf prog. This will be the only SYN packet available to the bpf prog during syncookie. For other regular cases, the bpf prog can also use the saved_syn. When writing options, the bpf prog will first be called to tell the kernel its required number of bytes. It is done by the new bpf_skops_hdr_opt_len(). The bpf prog will only be called when the new BPF_SOCK_OPS_WRITE_HDR_OPT_CB_FLAG is set in tp->bpf_sock_ops_cb_flags. When the bpf prog returns, the kernel will know how many bytes are needed and then update the "*remaining" arg accordingly. 4 byte alignment will be included in the "*remaining" before this function returns. The 4 byte aligned number of bytes will also be stored into the opts->bpf_opt_len. "bpf_opt_len" is a newly added member to the struct tcp_out_options. Then the new bpf_skops_write_hdr_opt() will call the bpf prog to write the header options. The bpf prog is only called if it has reserved spaces before (opts->bpf_opt_len > 0). The bpf prog is the last one getting a chance to reserve header space and writing the header option. These two functions are half implemented to highlight the changes in TCP stack. The actual codes preparing the bpf running context and invoking the bpf prog will be added in the later patch with other necessary bpf pieces. Signed-off-by: Martin KaFai Lau <kafai@fb.com> Signed-off-by: Alexei Starovoitov <ast@kernel.org> Reviewed-by: Eric Dumazet <edumazet@google.com> Link: https://lore.kernel.org/bpf/20200820190052.2885316-1-kafai@fb.com
2020-08-20 22:00:52 +03:00
skb = tcp_make_synack(sk, dst, req, foc, synack_type, syn_skb);
if (skb) {
__tcp_v4_send_check(skb, ireq->ir_loc_addr, ireq->ir_rmt_addr);
tos = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_reflect_tos) ?
(tcp_rsk(req)->syn_tos & ~INET_ECN_MASK) |
(inet_sk(sk)->tos & INET_ECN_MASK) :
inet_sk(sk)->tos;
if (!INET_ECN_is_capable(tos) &&
tcp_bpf_ca_needs_ecn((struct sock *)req))
tos |= INET_ECN_ECT_0;
rcu_read_lock();
err = ip_build_and_send_pkt(skb, sk, ireq->ir_loc_addr,
ireq->ir_rmt_addr,
rcu_dereference(ireq->ireq_opt),
tos);
rcu_read_unlock();
err = net_xmit_eval(err);
}
return err;
}
/*
* IPv4 request_sock destructor.
*/
static void tcp_v4_reqsk_destructor(struct request_sock *req)
{
tcp/dccp: fix ireq->opt races syzkaller found another bug in DCCP/TCP stacks [1] For the reasons explained in commit ce1050089c96 ("tcp/dccp: fix ireq->pktopts race"), we need to make sure we do not access ireq->opt unless we own the request sock. Note the opt field is renamed to ireq_opt to ease grep games. [1] BUG: KASAN: use-after-free in ip_queue_xmit+0x1687/0x18e0 net/ipv4/ip_output.c:474 Read of size 1 at addr ffff8801c951039c by task syz-executor5/3295 CPU: 1 PID: 3295 Comm: syz-executor5 Not tainted 4.14.0-rc4+ #80 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 01/01/2011 Call Trace: __dump_stack lib/dump_stack.c:16 [inline] dump_stack+0x194/0x257 lib/dump_stack.c:52 print_address_description+0x73/0x250 mm/kasan/report.c:252 kasan_report_error mm/kasan/report.c:351 [inline] kasan_report+0x25b/0x340 mm/kasan/report.c:409 __asan_report_load1_noabort+0x14/0x20 mm/kasan/report.c:427 ip_queue_xmit+0x1687/0x18e0 net/ipv4/ip_output.c:474 tcp_transmit_skb+0x1ab7/0x3840 net/ipv4/tcp_output.c:1135 tcp_send_ack.part.37+0x3bb/0x650 net/ipv4/tcp_output.c:3587 tcp_send_ack+0x49/0x60 net/ipv4/tcp_output.c:3557 __tcp_ack_snd_check+0x2c6/0x4b0 net/ipv4/tcp_input.c:5072 tcp_ack_snd_check net/ipv4/tcp_input.c:5085 [inline] tcp_rcv_state_process+0x2eff/0x4850 net/ipv4/tcp_input.c:6071 tcp_child_process+0x342/0x990 net/ipv4/tcp_minisocks.c:816 tcp_v4_rcv+0x1827/0x2f80 net/ipv4/tcp_ipv4.c:1682 ip_local_deliver_finish+0x2e2/0xba0 net/ipv4/ip_input.c:216 NF_HOOK include/linux/netfilter.h:249 [inline] ip_local_deliver+0x1ce/0x6e0 net/ipv4/ip_input.c:257 dst_input include/net/dst.h:464 [inline] ip_rcv_finish+0x887/0x19a0 net/ipv4/ip_input.c:397 NF_HOOK include/linux/netfilter.h:249 [inline] ip_rcv+0xc3f/0x1820 net/ipv4/ip_input.c:493 __netif_receive_skb_core+0x1a3e/0x34b0 net/core/dev.c:4476 __netif_receive_skb+0x2c/0x1b0 net/core/dev.c:4514 netif_receive_skb_internal+0x10b/0x670 net/core/dev.c:4587 netif_receive_skb+0xae/0x390 net/core/dev.c:4611 tun_rx_batched.isra.50+0x5ed/0x860 drivers/net/tun.c:1372 tun_get_user+0x249c/0x36d0 drivers/net/tun.c:1766 tun_chr_write_iter+0xbf/0x160 drivers/net/tun.c:1792 call_write_iter include/linux/fs.h:1770 [inline] new_sync_write fs/read_write.c:468 [inline] __vfs_write+0x68a/0x970 fs/read_write.c:481 vfs_write+0x18f/0x510 fs/read_write.c:543 SYSC_write fs/read_write.c:588 [inline] SyS_write+0xef/0x220 fs/read_write.c:580 entry_SYSCALL_64_fastpath+0x1f/0xbe RIP: 0033:0x40c341 RSP: 002b:00007f469523ec10 EFLAGS: 00000293 ORIG_RAX: 0000000000000001 RAX: ffffffffffffffda RBX: 0000000000718000 RCX: 000000000040c341 RDX: 0000000000000037 RSI: 0000000020004000 RDI: 0000000000000015 RBP: 0000000000000086 R08: 0000000000000000 R09: 0000000000000000 R10: 00000000000f4240 R11: 0000000000000293 R12: 00000000004b7fd1 R13: 00000000ffffffff R14: 0000000020000000 R15: 0000000000025000 Allocated by task 3295: save_stack_trace+0x16/0x20 arch/x86/kernel/stacktrace.c:59 save_stack+0x43/0xd0 mm/kasan/kasan.c:447 set_track mm/kasan/kasan.c:459 [inline] kasan_kmalloc+0xad/0xe0 mm/kasan/kasan.c:551 __do_kmalloc mm/slab.c:3725 [inline] __kmalloc+0x162/0x760 mm/slab.c:3734 kmalloc include/linux/slab.h:498 [inline] tcp_v4_save_options include/net/tcp.h:1962 [inline] tcp_v4_init_req+0x2d3/0x3e0 net/ipv4/tcp_ipv4.c:1271 tcp_conn_request+0xf6d/0x3410 net/ipv4/tcp_input.c:6283 tcp_v4_conn_request+0x157/0x210 net/ipv4/tcp_ipv4.c:1313 tcp_rcv_state_process+0x8ea/0x4850 net/ipv4/tcp_input.c:5857 tcp_v4_do_rcv+0x55c/0x7d0 net/ipv4/tcp_ipv4.c:1482 tcp_v4_rcv+0x2d10/0x2f80 net/ipv4/tcp_ipv4.c:1711 ip_local_deliver_finish+0x2e2/0xba0 net/ipv4/ip_input.c:216 NF_HOOK include/linux/netfilter.h:249 [inline] ip_local_deliver+0x1ce/0x6e0 net/ipv4/ip_input.c:257 dst_input include/net/dst.h:464 [inline] ip_rcv_finish+0x887/0x19a0 net/ipv4/ip_input.c:397 NF_HOOK include/linux/netfilter.h:249 [inline] ip_rcv+0xc3f/0x1820 net/ipv4/ip_input.c:493 __netif_receive_skb_core+0x1a3e/0x34b0 net/core/dev.c:4476 __netif_receive_skb+0x2c/0x1b0 net/core/dev.c:4514 netif_receive_skb_internal+0x10b/0x670 net/core/dev.c:4587 netif_receive_skb+0xae/0x390 net/core/dev.c:4611 tun_rx_batched.isra.50+0x5ed/0x860 drivers/net/tun.c:1372 tun_get_user+0x249c/0x36d0 drivers/net/tun.c:1766 tun_chr_write_iter+0xbf/0x160 drivers/net/tun.c:1792 call_write_iter include/linux/fs.h:1770 [inline] new_sync_write fs/read_write.c:468 [inline] __vfs_write+0x68a/0x970 fs/read_write.c:481 vfs_write+0x18f/0x510 fs/read_write.c:543 SYSC_write fs/read_write.c:588 [inline] SyS_write+0xef/0x220 fs/read_write.c:580 entry_SYSCALL_64_fastpath+0x1f/0xbe Freed by task 3306: save_stack_trace+0x16/0x20 arch/x86/kernel/stacktrace.c:59 save_stack+0x43/0xd0 mm/kasan/kasan.c:447 set_track mm/kasan/kasan.c:459 [inline] kasan_slab_free+0x71/0xc0 mm/kasan/kasan.c:524 __cache_free mm/slab.c:3503 [inline] kfree+0xca/0x250 mm/slab.c:3820 inet_sock_destruct+0x59d/0x950 net/ipv4/af_inet.c:157 __sk_destruct+0xfd/0x910 net/core/sock.c:1560 sk_destruct+0x47/0x80 net/core/sock.c:1595 __sk_free+0x57/0x230 net/core/sock.c:1603 sk_free+0x2a/0x40 net/core/sock.c:1614 sock_put include/net/sock.h:1652 [inline] inet_csk_complete_hashdance+0xd5/0xf0 net/ipv4/inet_connection_sock.c:959 tcp_check_req+0xf4d/0x1620 net/ipv4/tcp_minisocks.c:765 tcp_v4_rcv+0x17f6/0x2f80 net/ipv4/tcp_ipv4.c:1675 ip_local_deliver_finish+0x2e2/0xba0 net/ipv4/ip_input.c:216 NF_HOOK include/linux/netfilter.h:249 [inline] ip_local_deliver+0x1ce/0x6e0 net/ipv4/ip_input.c:257 dst_input include/net/dst.h:464 [inline] ip_rcv_finish+0x887/0x19a0 net/ipv4/ip_input.c:397 NF_HOOK include/linux/netfilter.h:249 [inline] ip_rcv+0xc3f/0x1820 net/ipv4/ip_input.c:493 __netif_receive_skb_core+0x1a3e/0x34b0 net/core/dev.c:4476 __netif_receive_skb+0x2c/0x1b0 net/core/dev.c:4514 netif_receive_skb_internal+0x10b/0x670 net/core/dev.c:4587 netif_receive_skb+0xae/0x390 net/core/dev.c:4611 tun_rx_batched.isra.50+0x5ed/0x860 drivers/net/tun.c:1372 tun_get_user+0x249c/0x36d0 drivers/net/tun.c:1766 tun_chr_write_iter+0xbf/0x160 drivers/net/tun.c:1792 call_write_iter include/linux/fs.h:1770 [inline] new_sync_write fs/read_write.c:468 [inline] __vfs_write+0x68a/0x970 fs/read_write.c:481 vfs_write+0x18f/0x510 fs/read_write.c:543 SYSC_write fs/read_write.c:588 [inline] SyS_write+0xef/0x220 fs/read_write.c:580 entry_SYSCALL_64_fastpath+0x1f/0xbe Fixes: e994b2f0fb92 ("tcp: do not lock listener to process SYN packets") Fixes: 079096f103fa ("tcp/dccp: install syn_recv requests into ehash table") Signed-off-by: Eric Dumazet <edumazet@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-10-20 19:04:13 +03:00
kfree(rcu_dereference_protected(inet_rsk(req)->ireq_opt, 1));
}
#ifdef CONFIG_TCP_MD5SIG
/*
* RFC2385 MD5 checksumming requires a mapping of
* IP address->MD5 Key.
* We need to maintain these in the sk structure.
*/
DEFINE_STATIC_KEY_FALSE(tcp_md5_needed);
EXPORT_SYMBOL(tcp_md5_needed);
static bool better_md5_match(struct tcp_md5sig_key *old, struct tcp_md5sig_key *new)
{
if (!old)
return true;
/* l3index always overrides non-l3index */
if (old->l3index && new->l3index == 0)
return false;
if (old->l3index == 0 && new->l3index)
return true;
return old->prefixlen < new->prefixlen;
}
/* Find the Key structure for an address. */
struct tcp_md5sig_key *__tcp_md5_do_lookup(const struct sock *sk, int l3index,
const union tcp_md5_addr *addr,
int family)
{
const struct tcp_sock *tp = tcp_sk(sk);
struct tcp_md5sig_key *key;
const struct tcp_md5sig_info *md5sig;
__be32 mask;
struct tcp_md5sig_key *best_match = NULL;
bool match;
/* caller either holds rcu_read_lock() or socket lock */
md5sig = rcu_dereference_check(tp->md5sig_info,
lockdep_sock_is_held(sk));
if (!md5sig)
return NULL;
hlist_for_each_entry_rcu(key, &md5sig->head, node,
lockdep_sock_is_held(sk)) {
if (key->family != family)
continue;
if (key->flags & TCP_MD5SIG_FLAG_IFINDEX && key->l3index != l3index)
continue;
if (family == AF_INET) {
mask = inet_make_mask(key->prefixlen);
match = (key->addr.a4.s_addr & mask) ==
(addr->a4.s_addr & mask);
#if IS_ENABLED(CONFIG_IPV6)
} else if (family == AF_INET6) {
match = ipv6_prefix_equal(&key->addr.a6, &addr->a6,
key->prefixlen);
#endif
} else {
match = false;
}
if (match && better_md5_match(best_match, key))
best_match = key;
}
return best_match;
}
EXPORT_SYMBOL(__tcp_md5_do_lookup);
static struct tcp_md5sig_key *tcp_md5_do_lookup_exact(const struct sock *sk,
const union tcp_md5_addr *addr,
int family, u8 prefixlen,
int l3index, u8 flags)
{
const struct tcp_sock *tp = tcp_sk(sk);
struct tcp_md5sig_key *key;
unsigned int size = sizeof(struct in_addr);
const struct tcp_md5sig_info *md5sig;
/* caller either holds rcu_read_lock() or socket lock */
md5sig = rcu_dereference_check(tp->md5sig_info,
lockdep_sock_is_held(sk));
if (!md5sig)
return NULL;
#if IS_ENABLED(CONFIG_IPV6)
if (family == AF_INET6)
size = sizeof(struct in6_addr);
#endif
hlist_for_each_entry_rcu(key, &md5sig->head, node,
lockdep_sock_is_held(sk)) {
if (key->family != family)
continue;
if ((key->flags & TCP_MD5SIG_FLAG_IFINDEX) != (flags & TCP_MD5SIG_FLAG_IFINDEX))
continue;
if (key->l3index != l3index)
continue;
if (!memcmp(&key->addr, addr, size) &&
key->prefixlen == prefixlen)
return key;
}
return NULL;
}
struct tcp_md5sig_key *tcp_v4_md5_lookup(const struct sock *sk,
const struct sock *addr_sk)
{
const union tcp_md5_addr *addr;
int l3index;
l3index = l3mdev_master_ifindex_by_index(sock_net(sk),
addr_sk->sk_bound_dev_if);
addr = (const union tcp_md5_addr *)&addr_sk->sk_daddr;
return tcp_md5_do_lookup(sk, l3index, addr, AF_INET);
}
EXPORT_SYMBOL(tcp_v4_md5_lookup);
/* This can be called on a newly created socket, from other files */
int tcp_md5_do_add(struct sock *sk, const union tcp_md5_addr *addr,
int family, u8 prefixlen, int l3index, u8 flags,
const u8 *newkey, u8 newkeylen, gfp_t gfp)
{
/* Add Key to the list */
struct tcp_md5sig_key *key;
struct tcp_sock *tp = tcp_sk(sk);
struct tcp_md5sig_info *md5sig;
key = tcp_md5_do_lookup_exact(sk, addr, family, prefixlen, l3index, flags);
if (key) {
/* Pre-existing entry - just update that one.
* Note that the key might be used concurrently.
* data_race() is telling kcsan that we do not care of
* key mismatches, since changing MD5 key on live flows
* can lead to packet drops.
*/
data_race(memcpy(key->key, newkey, newkeylen));
/* Pairs with READ_ONCE() in tcp_md5_hash_key().
* Also note that a reader could catch new key->keylen value
* but old key->key[], this is the reason we use __GFP_ZERO
* at sock_kmalloc() time below these lines.
*/
WRITE_ONCE(key->keylen, newkeylen);
return 0;
}
md5sig = rcu_dereference_protected(tp->md5sig_info,
lockdep_sock_is_held(sk));
if (!md5sig) {
md5sig = kmalloc(sizeof(*md5sig), gfp);
if (!md5sig)
return -ENOMEM;
sk_gso_disable(sk);
INIT_HLIST_HEAD(&md5sig->head);
rcu_assign_pointer(tp->md5sig_info, md5sig);
}
key = sock_kmalloc(sk, sizeof(*key), gfp | __GFP_ZERO);
if (!key)
return -ENOMEM;
if (!tcp_alloc_md5sig_pool()) {
sock_kfree_s(sk, key, sizeof(*key));
return -ENOMEM;
}
memcpy(key->key, newkey, newkeylen);
key->keylen = newkeylen;
key->family = family;
key->prefixlen = prefixlen;
key->l3index = l3index;
key->flags = flags;
memcpy(&key->addr, addr,
(IS_ENABLED(CONFIG_IPV6) && family == AF_INET6) ? sizeof(struct in6_addr) :
sizeof(struct in_addr));
hlist_add_head_rcu(&key->node, &md5sig->head);
return 0;
}
EXPORT_SYMBOL(tcp_md5_do_add);
int tcp_md5_do_del(struct sock *sk, const union tcp_md5_addr *addr, int family,
u8 prefixlen, int l3index, u8 flags)
{
struct tcp_md5sig_key *key;
key = tcp_md5_do_lookup_exact(sk, addr, family, prefixlen, l3index, flags);
if (!key)
return -ENOENT;
hlist_del_rcu(&key->node);
atomic_sub(sizeof(*key), &sk->sk_omem_alloc);
kfree_rcu(key, rcu);
return 0;
}
EXPORT_SYMBOL(tcp_md5_do_del);
static void tcp_clear_md5_list(struct sock *sk)
{
struct tcp_sock *tp = tcp_sk(sk);
struct tcp_md5sig_key *key;
hlist: drop the node parameter from iterators I'm not sure why, but the hlist for each entry iterators were conceived list_for_each_entry(pos, head, member) The hlist ones were greedy and wanted an extra parameter: hlist_for_each_entry(tpos, pos, head, member) Why did they need an extra pos parameter? I'm not quite sure. Not only they don't really need it, it also prevents the iterator from looking exactly like the list iterator, which is unfortunate. Besides the semantic patch, there was some manual work required: - Fix up the actual hlist iterators in linux/list.h - Fix up the declaration of other iterators based on the hlist ones. - A very small amount of places were using the 'node' parameter, this was modified to use 'obj->member' instead. - Coccinelle didn't handle the hlist_for_each_entry_safe iterator properly, so those had to be fixed up manually. The semantic patch which is mostly the work of Peter Senna Tschudin is here: @@ iterator name hlist_for_each_entry, hlist_for_each_entry_continue, hlist_for_each_entry_from, hlist_for_each_entry_rcu, hlist_for_each_entry_rcu_bh, hlist_for_each_entry_continue_rcu_bh, for_each_busy_worker, ax25_uid_for_each, ax25_for_each, inet_bind_bucket_for_each, sctp_for_each_hentry, sk_for_each, sk_for_each_rcu, sk_for_each_from, sk_for_each_safe, sk_for_each_bound, hlist_for_each_entry_safe, hlist_for_each_entry_continue_rcu, nr_neigh_for_each, nr_neigh_for_each_safe, nr_node_for_each, nr_node_for_each_safe, for_each_gfn_indirect_valid_sp, for_each_gfn_sp, for_each_host; type T; expression a,c,d,e; identifier b; statement S; @@ -T b; <+... when != b ( hlist_for_each_entry(a, - b, c, d) S | hlist_for_each_entry_continue(a, - b, c) S | hlist_for_each_entry_from(a, - b, c) S | hlist_for_each_entry_rcu(a, - b, c, d) S | hlist_for_each_entry_rcu_bh(a, - b, c, d) S | hlist_for_each_entry_continue_rcu_bh(a, - b, c) S | for_each_busy_worker(a, c, - b, d) S | ax25_uid_for_each(a, - b, c) S | ax25_for_each(a, - b, c) S | inet_bind_bucket_for_each(a, - b, c) S | sctp_for_each_hentry(a, - b, c) S | sk_for_each(a, - b, c) S | sk_for_each_rcu(a, - b, c) S | sk_for_each_from -(a, b) +(a) S + sk_for_each_from(a) S | sk_for_each_safe(a, - b, c, d) S | sk_for_each_bound(a, - b, c) S | hlist_for_each_entry_safe(a, - b, c, d, e) S | hlist_for_each_entry_continue_rcu(a, - b, c) S | nr_neigh_for_each(a, - b, c) S | nr_neigh_for_each_safe(a, - b, c, d) S | nr_node_for_each(a, - b, c) S | nr_node_for_each_safe(a, - b, c, d) S | - for_each_gfn_sp(a, c, d, b) S + for_each_gfn_sp(a, c, d) S | - for_each_gfn_indirect_valid_sp(a, c, d, b) S + for_each_gfn_indirect_valid_sp(a, c, d) S | for_each_host(a, - b, c) S | for_each_host_safe(a, - b, c, d) S | for_each_mesh_entry(a, - b, c, d) S ) ...+> [akpm@linux-foundation.org: drop bogus change from net/ipv4/raw.c] [akpm@linux-foundation.org: drop bogus hunk from net/ipv6/raw.c] [akpm@linux-foundation.org: checkpatch fixes] [akpm@linux-foundation.org: fix warnings] [akpm@linux-foudnation.org: redo intrusive kvm changes] Tested-by: Peter Senna Tschudin <peter.senna@gmail.com> Acked-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Signed-off-by: Sasha Levin <sasha.levin@oracle.com> Cc: Wu Fengguang <fengguang.wu@intel.com> Cc: Marcelo Tosatti <mtosatti@redhat.com> Cc: Gleb Natapov <gleb@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-02-28 05:06:00 +04:00
struct hlist_node *n;
struct tcp_md5sig_info *md5sig;
md5sig = rcu_dereference_protected(tp->md5sig_info, 1);
hlist: drop the node parameter from iterators I'm not sure why, but the hlist for each entry iterators were conceived list_for_each_entry(pos, head, member) The hlist ones were greedy and wanted an extra parameter: hlist_for_each_entry(tpos, pos, head, member) Why did they need an extra pos parameter? I'm not quite sure. Not only they don't really need it, it also prevents the iterator from looking exactly like the list iterator, which is unfortunate. Besides the semantic patch, there was some manual work required: - Fix up the actual hlist iterators in linux/list.h - Fix up the declaration of other iterators based on the hlist ones. - A very small amount of places were using the 'node' parameter, this was modified to use 'obj->member' instead. - Coccinelle didn't handle the hlist_for_each_entry_safe iterator properly, so those had to be fixed up manually. The semantic patch which is mostly the work of Peter Senna Tschudin is here: @@ iterator name hlist_for_each_entry, hlist_for_each_entry_continue, hlist_for_each_entry_from, hlist_for_each_entry_rcu, hlist_for_each_entry_rcu_bh, hlist_for_each_entry_continue_rcu_bh, for_each_busy_worker, ax25_uid_for_each, ax25_for_each, inet_bind_bucket_for_each, sctp_for_each_hentry, sk_for_each, sk_for_each_rcu, sk_for_each_from, sk_for_each_safe, sk_for_each_bound, hlist_for_each_entry_safe, hlist_for_each_entry_continue_rcu, nr_neigh_for_each, nr_neigh_for_each_safe, nr_node_for_each, nr_node_for_each_safe, for_each_gfn_indirect_valid_sp, for_each_gfn_sp, for_each_host; type T; expression a,c,d,e; identifier b; statement S; @@ -T b; <+... when != b ( hlist_for_each_entry(a, - b, c, d) S | hlist_for_each_entry_continue(a, - b, c) S | hlist_for_each_entry_from(a, - b, c) S | hlist_for_each_entry_rcu(a, - b, c, d) S | hlist_for_each_entry_rcu_bh(a, - b, c, d) S | hlist_for_each_entry_continue_rcu_bh(a, - b, c) S | for_each_busy_worker(a, c, - b, d) S | ax25_uid_for_each(a, - b, c) S | ax25_for_each(a, - b, c) S | inet_bind_bucket_for_each(a, - b, c) S | sctp_for_each_hentry(a, - b, c) S | sk_for_each(a, - b, c) S | sk_for_each_rcu(a, - b, c) S | sk_for_each_from -(a, b) +(a) S + sk_for_each_from(a) S | sk_for_each_safe(a, - b, c, d) S | sk_for_each_bound(a, - b, c) S | hlist_for_each_entry_safe(a, - b, c, d, e) S | hlist_for_each_entry_continue_rcu(a, - b, c) S | nr_neigh_for_each(a, - b, c) S | nr_neigh_for_each_safe(a, - b, c, d) S | nr_node_for_each(a, - b, c) S | nr_node_for_each_safe(a, - b, c, d) S | - for_each_gfn_sp(a, c, d, b) S + for_each_gfn_sp(a, c, d) S | - for_each_gfn_indirect_valid_sp(a, c, d, b) S + for_each_gfn_indirect_valid_sp(a, c, d) S | for_each_host(a, - b, c) S | for_each_host_safe(a, - b, c, d) S | for_each_mesh_entry(a, - b, c, d) S ) ...+> [akpm@linux-foundation.org: drop bogus change from net/ipv4/raw.c] [akpm@linux-foundation.org: drop bogus hunk from net/ipv6/raw.c] [akpm@linux-foundation.org: checkpatch fixes] [akpm@linux-foundation.org: fix warnings] [akpm@linux-foudnation.org: redo intrusive kvm changes] Tested-by: Peter Senna Tschudin <peter.senna@gmail.com> Acked-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Signed-off-by: Sasha Levin <sasha.levin@oracle.com> Cc: Wu Fengguang <fengguang.wu@intel.com> Cc: Marcelo Tosatti <mtosatti@redhat.com> Cc: Gleb Natapov <gleb@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-02-28 05:06:00 +04:00
hlist_for_each_entry_safe(key, n, &md5sig->head, node) {
hlist_del_rcu(&key->node);
atomic_sub(sizeof(*key), &sk->sk_omem_alloc);
kfree_rcu(key, rcu);
}
}
static int tcp_v4_parse_md5_keys(struct sock *sk, int optname,
sockptr_t optval, int optlen)
{
struct tcp_md5sig cmd;
struct sockaddr_in *sin = (struct sockaddr_in *)&cmd.tcpm_addr;
const union tcp_md5_addr *addr;
u8 prefixlen = 32;
int l3index = 0;
u8 flags;
if (optlen < sizeof(cmd))
return -EINVAL;
if (copy_from_sockptr(&cmd, optval, sizeof(cmd)))
return -EFAULT;
if (sin->sin_family != AF_INET)
return -EINVAL;
flags = cmd.tcpm_flags & TCP_MD5SIG_FLAG_IFINDEX;
if (optname == TCP_MD5SIG_EXT &&
cmd.tcpm_flags & TCP_MD5SIG_FLAG_PREFIX) {
prefixlen = cmd.tcpm_prefixlen;
if (prefixlen > 32)
return -EINVAL;
}
if (optname == TCP_MD5SIG_EXT && cmd.tcpm_ifindex &&
cmd.tcpm_flags & TCP_MD5SIG_FLAG_IFINDEX) {
struct net_device *dev;
rcu_read_lock();
dev = dev_get_by_index_rcu(sock_net(sk), cmd.tcpm_ifindex);
if (dev && netif_is_l3_master(dev))
l3index = dev->ifindex;
rcu_read_unlock();
/* ok to reference set/not set outside of rcu;
* right now device MUST be an L3 master
*/
if (!dev || !l3index)
return -EINVAL;
}
addr = (union tcp_md5_addr *)&sin->sin_addr.s_addr;
if (!cmd.tcpm_keylen)
return tcp_md5_do_del(sk, addr, AF_INET, prefixlen, l3index, flags);
if (cmd.tcpm_keylen > TCP_MD5SIG_MAXKEYLEN)
return -EINVAL;
return tcp_md5_do_add(sk, addr, AF_INET, prefixlen, l3index, flags,
cmd.tcpm_key, cmd.tcpm_keylen, GFP_KERNEL);
}
static int tcp_v4_md5_hash_headers(struct tcp_md5sig_pool *hp,
__be32 daddr, __be32 saddr,
const struct tcphdr *th, int nbytes)
{
struct tcp4_pseudohdr *bp;
struct scatterlist sg;
struct tcphdr *_th;
bp = hp->scratch;
bp->saddr = saddr;
bp->daddr = daddr;
bp->pad = 0;
bp->protocol = IPPROTO_TCP;
bp->len = cpu_to_be16(nbytes);
_th = (struct tcphdr *)(bp + 1);
memcpy(_th, th, sizeof(*th));
_th->check = 0;
sg_init_one(&sg, bp, sizeof(*bp) + sizeof(*th));
ahash_request_set_crypt(hp->md5_req, &sg, NULL,
sizeof(*bp) + sizeof(*th));
return crypto_ahash_update(hp->md5_req);
}
static int tcp_v4_md5_hash_hdr(char *md5_hash, const struct tcp_md5sig_key *key,
__be32 daddr, __be32 saddr, const struct tcphdr *th)
{
struct tcp_md5sig_pool *hp;
struct ahash_request *req;
hp = tcp_get_md5sig_pool();
if (!hp)
goto clear_hash_noput;
req = hp->md5_req;
if (crypto_ahash_init(req))
goto clear_hash;
if (tcp_v4_md5_hash_headers(hp, daddr, saddr, th, th->doff << 2))
goto clear_hash;
if (tcp_md5_hash_key(hp, key))
goto clear_hash;
ahash_request_set_crypt(req, NULL, md5_hash, 0);
if (crypto_ahash_final(req))
goto clear_hash;
tcp_put_md5sig_pool();
return 0;
clear_hash:
tcp_put_md5sig_pool();
clear_hash_noput:
memset(md5_hash, 0, 16);
return 1;
}
int tcp_v4_md5_hash_skb(char *md5_hash, const struct tcp_md5sig_key *key,
const struct sock *sk,
const struct sk_buff *skb)
{
struct tcp_md5sig_pool *hp;
struct ahash_request *req;
const struct tcphdr *th = tcp_hdr(skb);
__be32 saddr, daddr;
if (sk) { /* valid for establish/request sockets */
saddr = sk->sk_rcv_saddr;
daddr = sk->sk_daddr;
} else {
const struct iphdr *iph = ip_hdr(skb);
saddr = iph->saddr;
daddr = iph->daddr;
}
hp = tcp_get_md5sig_pool();
if (!hp)
goto clear_hash_noput;
req = hp->md5_req;
if (crypto_ahash_init(req))
goto clear_hash;
if (tcp_v4_md5_hash_headers(hp, daddr, saddr, th, skb->len))
goto clear_hash;
if (tcp_md5_hash_skb_data(hp, skb, th->doff << 2))
goto clear_hash;
if (tcp_md5_hash_key(hp, key))
goto clear_hash;
ahash_request_set_crypt(req, NULL, md5_hash, 0);
if (crypto_ahash_final(req))
goto clear_hash;
tcp_put_md5sig_pool();
return 0;
clear_hash:
tcp_put_md5sig_pool();
clear_hash_noput:
memset(md5_hash, 0, 16);
return 1;
}
EXPORT_SYMBOL(tcp_v4_md5_hash_skb);
#endif
static void tcp_v4_init_req(struct request_sock *req,
const struct sock *sk_listener,
struct sk_buff *skb)
{
struct inet_request_sock *ireq = inet_rsk(req);
tcp/dccp: fix ireq->opt races syzkaller found another bug in DCCP/TCP stacks [1] For the reasons explained in commit ce1050089c96 ("tcp/dccp: fix ireq->pktopts race"), we need to make sure we do not access ireq->opt unless we own the request sock. Note the opt field is renamed to ireq_opt to ease grep games. [1] BUG: KASAN: use-after-free in ip_queue_xmit+0x1687/0x18e0 net/ipv4/ip_output.c:474 Read of size 1 at addr ffff8801c951039c by task syz-executor5/3295 CPU: 1 PID: 3295 Comm: syz-executor5 Not tainted 4.14.0-rc4+ #80 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 01/01/2011 Call Trace: __dump_stack lib/dump_stack.c:16 [inline] dump_stack+0x194/0x257 lib/dump_stack.c:52 print_address_description+0x73/0x250 mm/kasan/report.c:252 kasan_report_error mm/kasan/report.c:351 [inline] kasan_report+0x25b/0x340 mm/kasan/report.c:409 __asan_report_load1_noabort+0x14/0x20 mm/kasan/report.c:427 ip_queue_xmit+0x1687/0x18e0 net/ipv4/ip_output.c:474 tcp_transmit_skb+0x1ab7/0x3840 net/ipv4/tcp_output.c:1135 tcp_send_ack.part.37+0x3bb/0x650 net/ipv4/tcp_output.c:3587 tcp_send_ack+0x49/0x60 net/ipv4/tcp_output.c:3557 __tcp_ack_snd_check+0x2c6/0x4b0 net/ipv4/tcp_input.c:5072 tcp_ack_snd_check net/ipv4/tcp_input.c:5085 [inline] tcp_rcv_state_process+0x2eff/0x4850 net/ipv4/tcp_input.c:6071 tcp_child_process+0x342/0x990 net/ipv4/tcp_minisocks.c:816 tcp_v4_rcv+0x1827/0x2f80 net/ipv4/tcp_ipv4.c:1682 ip_local_deliver_finish+0x2e2/0xba0 net/ipv4/ip_input.c:216 NF_HOOK include/linux/netfilter.h:249 [inline] ip_local_deliver+0x1ce/0x6e0 net/ipv4/ip_input.c:257 dst_input include/net/dst.h:464 [inline] ip_rcv_finish+0x887/0x19a0 net/ipv4/ip_input.c:397 NF_HOOK include/linux/netfilter.h:249 [inline] ip_rcv+0xc3f/0x1820 net/ipv4/ip_input.c:493 __netif_receive_skb_core+0x1a3e/0x34b0 net/core/dev.c:4476 __netif_receive_skb+0x2c/0x1b0 net/core/dev.c:4514 netif_receive_skb_internal+0x10b/0x670 net/core/dev.c:4587 netif_receive_skb+0xae/0x390 net/core/dev.c:4611 tun_rx_batched.isra.50+0x5ed/0x860 drivers/net/tun.c:1372 tun_get_user+0x249c/0x36d0 drivers/net/tun.c:1766 tun_chr_write_iter+0xbf/0x160 drivers/net/tun.c:1792 call_write_iter include/linux/fs.h:1770 [inline] new_sync_write fs/read_write.c:468 [inline] __vfs_write+0x68a/0x970 fs/read_write.c:481 vfs_write+0x18f/0x510 fs/read_write.c:543 SYSC_write fs/read_write.c:588 [inline] SyS_write+0xef/0x220 fs/read_write.c:580 entry_SYSCALL_64_fastpath+0x1f/0xbe RIP: 0033:0x40c341 RSP: 002b:00007f469523ec10 EFLAGS: 00000293 ORIG_RAX: 0000000000000001 RAX: ffffffffffffffda RBX: 0000000000718000 RCX: 000000000040c341 RDX: 0000000000000037 RSI: 0000000020004000 RDI: 0000000000000015 RBP: 0000000000000086 R08: 0000000000000000 R09: 0000000000000000 R10: 00000000000f4240 R11: 0000000000000293 R12: 00000000004b7fd1 R13: 00000000ffffffff R14: 0000000020000000 R15: 0000000000025000 Allocated by task 3295: save_stack_trace+0x16/0x20 arch/x86/kernel/stacktrace.c:59 save_stack+0x43/0xd0 mm/kasan/kasan.c:447 set_track mm/kasan/kasan.c:459 [inline] kasan_kmalloc+0xad/0xe0 mm/kasan/kasan.c:551 __do_kmalloc mm/slab.c:3725 [inline] __kmalloc+0x162/0x760 mm/slab.c:3734 kmalloc include/linux/slab.h:498 [inline] tcp_v4_save_options include/net/tcp.h:1962 [inline] tcp_v4_init_req+0x2d3/0x3e0 net/ipv4/tcp_ipv4.c:1271 tcp_conn_request+0xf6d/0x3410 net/ipv4/tcp_input.c:6283 tcp_v4_conn_request+0x157/0x210 net/ipv4/tcp_ipv4.c:1313 tcp_rcv_state_process+0x8ea/0x4850 net/ipv4/tcp_input.c:5857 tcp_v4_do_rcv+0x55c/0x7d0 net/ipv4/tcp_ipv4.c:1482 tcp_v4_rcv+0x2d10/0x2f80 net/ipv4/tcp_ipv4.c:1711 ip_local_deliver_finish+0x2e2/0xba0 net/ipv4/ip_input.c:216 NF_HOOK include/linux/netfilter.h:249 [inline] ip_local_deliver+0x1ce/0x6e0 net/ipv4/ip_input.c:257 dst_input include/net/dst.h:464 [inline] ip_rcv_finish+0x887/0x19a0 net/ipv4/ip_input.c:397 NF_HOOK include/linux/netfilter.h:249 [inline] ip_rcv+0xc3f/0x1820 net/ipv4/ip_input.c:493 __netif_receive_skb_core+0x1a3e/0x34b0 net/core/dev.c:4476 __netif_receive_skb+0x2c/0x1b0 net/core/dev.c:4514 netif_receive_skb_internal+0x10b/0x670 net/core/dev.c:4587 netif_receive_skb+0xae/0x390 net/core/dev.c:4611 tun_rx_batched.isra.50+0x5ed/0x860 drivers/net/tun.c:1372 tun_get_user+0x249c/0x36d0 drivers/net/tun.c:1766 tun_chr_write_iter+0xbf/0x160 drivers/net/tun.c:1792 call_write_iter include/linux/fs.h:1770 [inline] new_sync_write fs/read_write.c:468 [inline] __vfs_write+0x68a/0x970 fs/read_write.c:481 vfs_write+0x18f/0x510 fs/read_write.c:543 SYSC_write fs/read_write.c:588 [inline] SyS_write+0xef/0x220 fs/read_write.c:580 entry_SYSCALL_64_fastpath+0x1f/0xbe Freed by task 3306: save_stack_trace+0x16/0x20 arch/x86/kernel/stacktrace.c:59 save_stack+0x43/0xd0 mm/kasan/kasan.c:447 set_track mm/kasan/kasan.c:459 [inline] kasan_slab_free+0x71/0xc0 mm/kasan/kasan.c:524 __cache_free mm/slab.c:3503 [inline] kfree+0xca/0x250 mm/slab.c:3820 inet_sock_destruct+0x59d/0x950 net/ipv4/af_inet.c:157 __sk_destruct+0xfd/0x910 net/core/sock.c:1560 sk_destruct+0x47/0x80 net/core/sock.c:1595 __sk_free+0x57/0x230 net/core/sock.c:1603 sk_free+0x2a/0x40 net/core/sock.c:1614 sock_put include/net/sock.h:1652 [inline] inet_csk_complete_hashdance+0xd5/0xf0 net/ipv4/inet_connection_sock.c:959 tcp_check_req+0xf4d/0x1620 net/ipv4/tcp_minisocks.c:765 tcp_v4_rcv+0x17f6/0x2f80 net/ipv4/tcp_ipv4.c:1675 ip_local_deliver_finish+0x2e2/0xba0 net/ipv4/ip_input.c:216 NF_HOOK include/linux/netfilter.h:249 [inline] ip_local_deliver+0x1ce/0x6e0 net/ipv4/ip_input.c:257 dst_input include/net/dst.h:464 [inline] ip_rcv_finish+0x887/0x19a0 net/ipv4/ip_input.c:397 NF_HOOK include/linux/netfilter.h:249 [inline] ip_rcv+0xc3f/0x1820 net/ipv4/ip_input.c:493 __netif_receive_skb_core+0x1a3e/0x34b0 net/core/dev.c:4476 __netif_receive_skb+0x2c/0x1b0 net/core/dev.c:4514 netif_receive_skb_internal+0x10b/0x670 net/core/dev.c:4587 netif_receive_skb+0xae/0x390 net/core/dev.c:4611 tun_rx_batched.isra.50+0x5ed/0x860 drivers/net/tun.c:1372 tun_get_user+0x249c/0x36d0 drivers/net/tun.c:1766 tun_chr_write_iter+0xbf/0x160 drivers/net/tun.c:1792 call_write_iter include/linux/fs.h:1770 [inline] new_sync_write fs/read_write.c:468 [inline] __vfs_write+0x68a/0x970 fs/read_write.c:481 vfs_write+0x18f/0x510 fs/read_write.c:543 SYSC_write fs/read_write.c:588 [inline] SyS_write+0xef/0x220 fs/read_write.c:580 entry_SYSCALL_64_fastpath+0x1f/0xbe Fixes: e994b2f0fb92 ("tcp: do not lock listener to process SYN packets") Fixes: 079096f103fa ("tcp/dccp: install syn_recv requests into ehash table") Signed-off-by: Eric Dumazet <edumazet@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-10-20 19:04:13 +03:00
struct net *net = sock_net(sk_listener);
sk_rcv_saddr_set(req_to_sk(req), ip_hdr(skb)->daddr);
sk_daddr_set(req_to_sk(req), ip_hdr(skb)->saddr);
tcp/dccp: fix ireq->opt races syzkaller found another bug in DCCP/TCP stacks [1] For the reasons explained in commit ce1050089c96 ("tcp/dccp: fix ireq->pktopts race"), we need to make sure we do not access ireq->opt unless we own the request sock. Note the opt field is renamed to ireq_opt to ease grep games. [1] BUG: KASAN: use-after-free in ip_queue_xmit+0x1687/0x18e0 net/ipv4/ip_output.c:474 Read of size 1 at addr ffff8801c951039c by task syz-executor5/3295 CPU: 1 PID: 3295 Comm: syz-executor5 Not tainted 4.14.0-rc4+ #80 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 01/01/2011 Call Trace: __dump_stack lib/dump_stack.c:16 [inline] dump_stack+0x194/0x257 lib/dump_stack.c:52 print_address_description+0x73/0x250 mm/kasan/report.c:252 kasan_report_error mm/kasan/report.c:351 [inline] kasan_report+0x25b/0x340 mm/kasan/report.c:409 __asan_report_load1_noabort+0x14/0x20 mm/kasan/report.c:427 ip_queue_xmit+0x1687/0x18e0 net/ipv4/ip_output.c:474 tcp_transmit_skb+0x1ab7/0x3840 net/ipv4/tcp_output.c:1135 tcp_send_ack.part.37+0x3bb/0x650 net/ipv4/tcp_output.c:3587 tcp_send_ack+0x49/0x60 net/ipv4/tcp_output.c:3557 __tcp_ack_snd_check+0x2c6/0x4b0 net/ipv4/tcp_input.c:5072 tcp_ack_snd_check net/ipv4/tcp_input.c:5085 [inline] tcp_rcv_state_process+0x2eff/0x4850 net/ipv4/tcp_input.c:6071 tcp_child_process+0x342/0x990 net/ipv4/tcp_minisocks.c:816 tcp_v4_rcv+0x1827/0x2f80 net/ipv4/tcp_ipv4.c:1682 ip_local_deliver_finish+0x2e2/0xba0 net/ipv4/ip_input.c:216 NF_HOOK include/linux/netfilter.h:249 [inline] ip_local_deliver+0x1ce/0x6e0 net/ipv4/ip_input.c:257 dst_input include/net/dst.h:464 [inline] ip_rcv_finish+0x887/0x19a0 net/ipv4/ip_input.c:397 NF_HOOK include/linux/netfilter.h:249 [inline] ip_rcv+0xc3f/0x1820 net/ipv4/ip_input.c:493 __netif_receive_skb_core+0x1a3e/0x34b0 net/core/dev.c:4476 __netif_receive_skb+0x2c/0x1b0 net/core/dev.c:4514 netif_receive_skb_internal+0x10b/0x670 net/core/dev.c:4587 netif_receive_skb+0xae/0x390 net/core/dev.c:4611 tun_rx_batched.isra.50+0x5ed/0x860 drivers/net/tun.c:1372 tun_get_user+0x249c/0x36d0 drivers/net/tun.c:1766 tun_chr_write_iter+0xbf/0x160 drivers/net/tun.c:1792 call_write_iter include/linux/fs.h:1770 [inline] new_sync_write fs/read_write.c:468 [inline] __vfs_write+0x68a/0x970 fs/read_write.c:481 vfs_write+0x18f/0x510 fs/read_write.c:543 SYSC_write fs/read_write.c:588 [inline] SyS_write+0xef/0x220 fs/read_write.c:580 entry_SYSCALL_64_fastpath+0x1f/0xbe RIP: 0033:0x40c341 RSP: 002b:00007f469523ec10 EFLAGS: 00000293 ORIG_RAX: 0000000000000001 RAX: ffffffffffffffda RBX: 0000000000718000 RCX: 000000000040c341 RDX: 0000000000000037 RSI: 0000000020004000 RDI: 0000000000000015 RBP: 0000000000000086 R08: 0000000000000000 R09: 0000000000000000 R10: 00000000000f4240 R11: 0000000000000293 R12: 00000000004b7fd1 R13: 00000000ffffffff R14: 0000000020000000 R15: 0000000000025000 Allocated by task 3295: save_stack_trace+0x16/0x20 arch/x86/kernel/stacktrace.c:59 save_stack+0x43/0xd0 mm/kasan/kasan.c:447 set_track mm/kasan/kasan.c:459 [inline] kasan_kmalloc+0xad/0xe0 mm/kasan/kasan.c:551 __do_kmalloc mm/slab.c:3725 [inline] __kmalloc+0x162/0x760 mm/slab.c:3734 kmalloc include/linux/slab.h:498 [inline] tcp_v4_save_options include/net/tcp.h:1962 [inline] tcp_v4_init_req+0x2d3/0x3e0 net/ipv4/tcp_ipv4.c:1271 tcp_conn_request+0xf6d/0x3410 net/ipv4/tcp_input.c:6283 tcp_v4_conn_request+0x157/0x210 net/ipv4/tcp_ipv4.c:1313 tcp_rcv_state_process+0x8ea/0x4850 net/ipv4/tcp_input.c:5857 tcp_v4_do_rcv+0x55c/0x7d0 net/ipv4/tcp_ipv4.c:1482 tcp_v4_rcv+0x2d10/0x2f80 net/ipv4/tcp_ipv4.c:1711 ip_local_deliver_finish+0x2e2/0xba0 net/ipv4/ip_input.c:216 NF_HOOK include/linux/netfilter.h:249 [inline] ip_local_deliver+0x1ce/0x6e0 net/ipv4/ip_input.c:257 dst_input include/net/dst.h:464 [inline] ip_rcv_finish+0x887/0x19a0 net/ipv4/ip_input.c:397 NF_HOOK include/linux/netfilter.h:249 [inline] ip_rcv+0xc3f/0x1820 net/ipv4/ip_input.c:493 __netif_receive_skb_core+0x1a3e/0x34b0 net/core/dev.c:4476 __netif_receive_skb+0x2c/0x1b0 net/core/dev.c:4514 netif_receive_skb_internal+0x10b/0x670 net/core/dev.c:4587 netif_receive_skb+0xae/0x390 net/core/dev.c:4611 tun_rx_batched.isra.50+0x5ed/0x860 drivers/net/tun.c:1372 tun_get_user+0x249c/0x36d0 drivers/net/tun.c:1766 tun_chr_write_iter+0xbf/0x160 drivers/net/tun.c:1792 call_write_iter include/linux/fs.h:1770 [inline] new_sync_write fs/read_write.c:468 [inline] __vfs_write+0x68a/0x970 fs/read_write.c:481 vfs_write+0x18f/0x510 fs/read_write.c:543 SYSC_write fs/read_write.c:588 [inline] SyS_write+0xef/0x220 fs/read_write.c:580 entry_SYSCALL_64_fastpath+0x1f/0xbe Freed by task 3306: save_stack_trace+0x16/0x20 arch/x86/kernel/stacktrace.c:59 save_stack+0x43/0xd0 mm/kasan/kasan.c:447 set_track mm/kasan/kasan.c:459 [inline] kasan_slab_free+0x71/0xc0 mm/kasan/kasan.c:524 __cache_free mm/slab.c:3503 [inline] kfree+0xca/0x250 mm/slab.c:3820 inet_sock_destruct+0x59d/0x950 net/ipv4/af_inet.c:157 __sk_destruct+0xfd/0x910 net/core/sock.c:1560 sk_destruct+0x47/0x80 net/core/sock.c:1595 __sk_free+0x57/0x230 net/core/sock.c:1603 sk_free+0x2a/0x40 net/core/sock.c:1614 sock_put include/net/sock.h:1652 [inline] inet_csk_complete_hashdance+0xd5/0xf0 net/ipv4/inet_connection_sock.c:959 tcp_check_req+0xf4d/0x1620 net/ipv4/tcp_minisocks.c:765 tcp_v4_rcv+0x17f6/0x2f80 net/ipv4/tcp_ipv4.c:1675 ip_local_deliver_finish+0x2e2/0xba0 net/ipv4/ip_input.c:216 NF_HOOK include/linux/netfilter.h:249 [inline] ip_local_deliver+0x1ce/0x6e0 net/ipv4/ip_input.c:257 dst_input include/net/dst.h:464 [inline] ip_rcv_finish+0x887/0x19a0 net/ipv4/ip_input.c:397 NF_HOOK include/linux/netfilter.h:249 [inline] ip_rcv+0xc3f/0x1820 net/ipv4/ip_input.c:493 __netif_receive_skb_core+0x1a3e/0x34b0 net/core/dev.c:4476 __netif_receive_skb+0x2c/0x1b0 net/core/dev.c:4514 netif_receive_skb_internal+0x10b/0x670 net/core/dev.c:4587 netif_receive_skb+0xae/0x390 net/core/dev.c:4611 tun_rx_batched.isra.50+0x5ed/0x860 drivers/net/tun.c:1372 tun_get_user+0x249c/0x36d0 drivers/net/tun.c:1766 tun_chr_write_iter+0xbf/0x160 drivers/net/tun.c:1792 call_write_iter include/linux/fs.h:1770 [inline] new_sync_write fs/read_write.c:468 [inline] __vfs_write+0x68a/0x970 fs/read_write.c:481 vfs_write+0x18f/0x510 fs/read_write.c:543 SYSC_write fs/read_write.c:588 [inline] SyS_write+0xef/0x220 fs/read_write.c:580 entry_SYSCALL_64_fastpath+0x1f/0xbe Fixes: e994b2f0fb92 ("tcp: do not lock listener to process SYN packets") Fixes: 079096f103fa ("tcp/dccp: install syn_recv requests into ehash table") Signed-off-by: Eric Dumazet <edumazet@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-10-20 19:04:13 +03:00
RCU_INIT_POINTER(ireq->ireq_opt, tcp_v4_save_options(net, skb));
}
static struct dst_entry *tcp_v4_route_req(const struct sock *sk,
struct sk_buff *skb,
struct flowi *fl,
struct request_sock *req)
{
tcp_v4_init_req(req, sk, skb);
if (security_inet_conn_request(sk, skb, req))
return NULL;
return inet_csk_route_req(sk, &fl->u.ip4, req);
}
struct request_sock_ops tcp_request_sock_ops __read_mostly = {
.family = PF_INET,
.obj_size = sizeof(struct tcp_request_sock),
.rtx_syn_ack = tcp_rtx_synack,
.send_ack = tcp_v4_reqsk_send_ack,
.destructor = tcp_v4_reqsk_destructor,
.send_reset = tcp_v4_send_reset,
.syn_ack_timeout = tcp_syn_ack_timeout,
};
const struct tcp_request_sock_ops tcp_request_sock_ipv4_ops = {
.mss_clamp = TCP_MSS_DEFAULT,
#ifdef CONFIG_TCP_MD5SIG
.req_md5_lookup = tcp_v4_md5_lookup,
.calc_md5_hash = tcp_v4_md5_hash_skb,
#endif
#ifdef CONFIG_SYN_COOKIES
.cookie_init_seq = cookie_v4_init_sequence,
#endif
.route_req = tcp_v4_route_req,
.init_seq = tcp_v4_init_seq,
.init_ts_off = tcp_v4_init_ts_off,
.send_synack = tcp_v4_send_synack,
};
int tcp_v4_conn_request(struct sock *sk, struct sk_buff *skb)
{
/* Never answer to SYNs send to broadcast or multicast */
if (skb_rtable(skb)->rt_flags & (RTCF_BROADCAST | RTCF_MULTICAST))
goto drop;
return tcp_conn_request(&tcp_request_sock_ops,
&tcp_request_sock_ipv4_ops, sk, skb);
drop:
tcp_listendrop(sk);
return 0;
}
EXPORT_SYMBOL(tcp_v4_conn_request);
/*
* The three way handshake has completed - we got a valid synack -
* now create the new socket.
*/
struct sock *tcp_v4_syn_recv_sock(const struct sock *sk, struct sk_buff *skb,
struct request_sock *req,
struct dst_entry *dst,
struct request_sock *req_unhash,
bool *own_req)
{
struct inet_request_sock *ireq;
tcp: fix race condition when creating child sockets from syncookies When the TCP stack is in SYN flood mode, the server child socket is created from the SYN cookie received in a TCP packet with the ACK flag set. The child socket is created when the server receives the first TCP packet with a valid SYN cookie from the client. Usually, this packet corresponds to the final step of the TCP 3-way handshake, the ACK packet. But is also possible to receive a valid SYN cookie from the first TCP data packet sent by the client, and thus create a child socket from that SYN cookie. Since a client socket is ready to send data as soon as it receives the SYN+ACK packet from the server, the client can send the ACK packet (sent by the TCP stack code), and the first data packet (sent by the userspace program) almost at the same time, and thus the server will equally receive the two TCP packets with valid SYN cookies almost at the same instant. When such event happens, the TCP stack code has a race condition that occurs between the momement a lookup is done to the established connections hashtable to check for the existence of a connection for the same client, and the moment that the child socket is added to the established connections hashtable. As a consequence, this race condition can lead to a situation where we add two child sockets to the established connections hashtable and deliver two sockets to the userspace program to the same client. This patch fixes the race condition by checking if an existing child socket exists for the same client when we are adding the second child socket to the established connections socket. If an existing child socket exists, we drop the packet and discard the second child socket to the same client. Signed-off-by: Ricardo Dias <rdias@singlestore.com> Signed-off-by: Eric Dumazet <edumazet@google.com> Link: https://lore.kernel.org/r/20201120111133.GA67501@rdias-suse-pc.lan Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2020-11-20 14:11:33 +03:00
bool found_dup_sk = false;
struct inet_sock *newinet;
struct tcp_sock *newtp;
struct sock *newsk;
#ifdef CONFIG_TCP_MD5SIG
const union tcp_md5_addr *addr;
struct tcp_md5sig_key *key;
int l3index;
#endif
struct ip_options_rcu *inet_opt;
if (sk_acceptq_is_full(sk))
goto exit_overflow;
newsk = tcp_create_openreq_child(sk, req, skb);
if (!newsk)
goto exit_nonewsk;
newsk->sk_gso_type = SKB_GSO_TCPV4;
inet_sk_rx_dst_set(newsk, skb);
newtp = tcp_sk(newsk);
newinet = inet_sk(newsk);
ireq = inet_rsk(req);
sk_daddr_set(newsk, ireq->ir_rmt_addr);
sk_rcv_saddr_set(newsk, ireq->ir_loc_addr);
newsk->sk_bound_dev_if = ireq->ir_iif;
tcp/dccp: fix ireq->opt races syzkaller found another bug in DCCP/TCP stacks [1] For the reasons explained in commit ce1050089c96 ("tcp/dccp: fix ireq->pktopts race"), we need to make sure we do not access ireq->opt unless we own the request sock. Note the opt field is renamed to ireq_opt to ease grep games. [1] BUG: KASAN: use-after-free in ip_queue_xmit+0x1687/0x18e0 net/ipv4/ip_output.c:474 Read of size 1 at addr ffff8801c951039c by task syz-executor5/3295 CPU: 1 PID: 3295 Comm: syz-executor5 Not tainted 4.14.0-rc4+ #80 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 01/01/2011 Call Trace: __dump_stack lib/dump_stack.c:16 [inline] dump_stack+0x194/0x257 lib/dump_stack.c:52 print_address_description+0x73/0x250 mm/kasan/report.c:252 kasan_report_error mm/kasan/report.c:351 [inline] kasan_report+0x25b/0x340 mm/kasan/report.c:409 __asan_report_load1_noabort+0x14/0x20 mm/kasan/report.c:427 ip_queue_xmit+0x1687/0x18e0 net/ipv4/ip_output.c:474 tcp_transmit_skb+0x1ab7/0x3840 net/ipv4/tcp_output.c:1135 tcp_send_ack.part.37+0x3bb/0x650 net/ipv4/tcp_output.c:3587 tcp_send_ack+0x49/0x60 net/ipv4/tcp_output.c:3557 __tcp_ack_snd_check+0x2c6/0x4b0 net/ipv4/tcp_input.c:5072 tcp_ack_snd_check net/ipv4/tcp_input.c:5085 [inline] tcp_rcv_state_process+0x2eff/0x4850 net/ipv4/tcp_input.c:6071 tcp_child_process+0x342/0x990 net/ipv4/tcp_minisocks.c:816 tcp_v4_rcv+0x1827/0x2f80 net/ipv4/tcp_ipv4.c:1682 ip_local_deliver_finish+0x2e2/0xba0 net/ipv4/ip_input.c:216 NF_HOOK include/linux/netfilter.h:249 [inline] ip_local_deliver+0x1ce/0x6e0 net/ipv4/ip_input.c:257 dst_input include/net/dst.h:464 [inline] ip_rcv_finish+0x887/0x19a0 net/ipv4/ip_input.c:397 NF_HOOK include/linux/netfilter.h:249 [inline] ip_rcv+0xc3f/0x1820 net/ipv4/ip_input.c:493 __netif_receive_skb_core+0x1a3e/0x34b0 net/core/dev.c:4476 __netif_receive_skb+0x2c/0x1b0 net/core/dev.c:4514 netif_receive_skb_internal+0x10b/0x670 net/core/dev.c:4587 netif_receive_skb+0xae/0x390 net/core/dev.c:4611 tun_rx_batched.isra.50+0x5ed/0x860 drivers/net/tun.c:1372 tun_get_user+0x249c/0x36d0 drivers/net/tun.c:1766 tun_chr_write_iter+0xbf/0x160 drivers/net/tun.c:1792 call_write_iter include/linux/fs.h:1770 [inline] new_sync_write fs/read_write.c:468 [inline] __vfs_write+0x68a/0x970 fs/read_write.c:481 vfs_write+0x18f/0x510 fs/read_write.c:543 SYSC_write fs/read_write.c:588 [inline] SyS_write+0xef/0x220 fs/read_write.c:580 entry_SYSCALL_64_fastpath+0x1f/0xbe RIP: 0033:0x40c341 RSP: 002b:00007f469523ec10 EFLAGS: 00000293 ORIG_RAX: 0000000000000001 RAX: ffffffffffffffda RBX: 0000000000718000 RCX: 000000000040c341 RDX: 0000000000000037 RSI: 0000000020004000 RDI: 0000000000000015 RBP: 0000000000000086 R08: 0000000000000000 R09: 0000000000000000 R10: 00000000000f4240 R11: 0000000000000293 R12: 00000000004b7fd1 R13: 00000000ffffffff R14: 0000000020000000 R15: 0000000000025000 Allocated by task 3295: save_stack_trace+0x16/0x20 arch/x86/kernel/stacktrace.c:59 save_stack+0x43/0xd0 mm/kasan/kasan.c:447 set_track mm/kasan/kasan.c:459 [inline] kasan_kmalloc+0xad/0xe0 mm/kasan/kasan.c:551 __do_kmalloc mm/slab.c:3725 [inline] __kmalloc+0x162/0x760 mm/slab.c:3734 kmalloc include/linux/slab.h:498 [inline] tcp_v4_save_options include/net/tcp.h:1962 [inline] tcp_v4_init_req+0x2d3/0x3e0 net/ipv4/tcp_ipv4.c:1271 tcp_conn_request+0xf6d/0x3410 net/ipv4/tcp_input.c:6283 tcp_v4_conn_request+0x157/0x210 net/ipv4/tcp_ipv4.c:1313 tcp_rcv_state_process+0x8ea/0x4850 net/ipv4/tcp_input.c:5857 tcp_v4_do_rcv+0x55c/0x7d0 net/ipv4/tcp_ipv4.c:1482 tcp_v4_rcv+0x2d10/0x2f80 net/ipv4/tcp_ipv4.c:1711 ip_local_deliver_finish+0x2e2/0xba0 net/ipv4/ip_input.c:216 NF_HOOK include/linux/netfilter.h:249 [inline] ip_local_deliver+0x1ce/0x6e0 net/ipv4/ip_input.c:257 dst_input include/net/dst.h:464 [inline] ip_rcv_finish+0x887/0x19a0 net/ipv4/ip_input.c:397 NF_HOOK include/linux/netfilter.h:249 [inline] ip_rcv+0xc3f/0x1820 net/ipv4/ip_input.c:493 __netif_receive_skb_core+0x1a3e/0x34b0 net/core/dev.c:4476 __netif_receive_skb+0x2c/0x1b0 net/core/dev.c:4514 netif_receive_skb_internal+0x10b/0x670 net/core/dev.c:4587 netif_receive_skb+0xae/0x390 net/core/dev.c:4611 tun_rx_batched.isra.50+0x5ed/0x860 drivers/net/tun.c:1372 tun_get_user+0x249c/0x36d0 drivers/net/tun.c:1766 tun_chr_write_iter+0xbf/0x160 drivers/net/tun.c:1792 call_write_iter include/linux/fs.h:1770 [inline] new_sync_write fs/read_write.c:468 [inline] __vfs_write+0x68a/0x970 fs/read_write.c:481 vfs_write+0x18f/0x510 fs/read_write.c:543 SYSC_write fs/read_write.c:588 [inline] SyS_write+0xef/0x220 fs/read_write.c:580 entry_SYSCALL_64_fastpath+0x1f/0xbe Freed by task 3306: save_stack_trace+0x16/0x20 arch/x86/kernel/stacktrace.c:59 save_stack+0x43/0xd0 mm/kasan/kasan.c:447 set_track mm/kasan/kasan.c:459 [inline] kasan_slab_free+0x71/0xc0 mm/kasan/kasan.c:524 __cache_free mm/slab.c:3503 [inline] kfree+0xca/0x250 mm/slab.c:3820 inet_sock_destruct+0x59d/0x950 net/ipv4/af_inet.c:157 __sk_destruct+0xfd/0x910 net/core/sock.c:1560 sk_destruct+0x47/0x80 net/core/sock.c:1595 __sk_free+0x57/0x230 net/core/sock.c:1603 sk_free+0x2a/0x40 net/core/sock.c:1614 sock_put include/net/sock.h:1652 [inline] inet_csk_complete_hashdance+0xd5/0xf0 net/ipv4/inet_connection_sock.c:959 tcp_check_req+0xf4d/0x1620 net/ipv4/tcp_minisocks.c:765 tcp_v4_rcv+0x17f6/0x2f80 net/ipv4/tcp_ipv4.c:1675 ip_local_deliver_finish+0x2e2/0xba0 net/ipv4/ip_input.c:216 NF_HOOK include/linux/netfilter.h:249 [inline] ip_local_deliver+0x1ce/0x6e0 net/ipv4/ip_input.c:257 dst_input include/net/dst.h:464 [inline] ip_rcv_finish+0x887/0x19a0 net/ipv4/ip_input.c:397 NF_HOOK include/linux/netfilter.h:249 [inline] ip_rcv+0xc3f/0x1820 net/ipv4/ip_input.c:493 __netif_receive_skb_core+0x1a3e/0x34b0 net/core/dev.c:4476 __netif_receive_skb+0x2c/0x1b0 net/core/dev.c:4514 netif_receive_skb_internal+0x10b/0x670 net/core/dev.c:4587 netif_receive_skb+0xae/0x390 net/core/dev.c:4611 tun_rx_batched.isra.50+0x5ed/0x860 drivers/net/tun.c:1372 tun_get_user+0x249c/0x36d0 drivers/net/tun.c:1766 tun_chr_write_iter+0xbf/0x160 drivers/net/tun.c:1792 call_write_iter include/linux/fs.h:1770 [inline] new_sync_write fs/read_write.c:468 [inline] __vfs_write+0x68a/0x970 fs/read_write.c:481 vfs_write+0x18f/0x510 fs/read_write.c:543 SYSC_write fs/read_write.c:588 [inline] SyS_write+0xef/0x220 fs/read_write.c:580 entry_SYSCALL_64_fastpath+0x1f/0xbe Fixes: e994b2f0fb92 ("tcp: do not lock listener to process SYN packets") Fixes: 079096f103fa ("tcp/dccp: install syn_recv requests into ehash table") Signed-off-by: Eric Dumazet <edumazet@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-10-20 19:04:13 +03:00
newinet->inet_saddr = ireq->ir_loc_addr;
inet_opt = rcu_dereference(ireq->ireq_opt);
RCU_INIT_POINTER(newinet->inet_opt, inet_opt);
newinet->mc_index = inet_iif(skb);
newinet->mc_ttl = ip_hdr(skb)->ttl;
newinet->rcv_tos = ip_hdr(skb)->tos;
inet_csk(newsk)->icsk_ext_hdr_len = 0;
if (inet_opt)
inet_csk(newsk)->icsk_ext_hdr_len = inet_opt->opt.optlen;
treewide: use get_random_{u8,u16}() when possible, part 1 Rather than truncate a 32-bit value to a 16-bit value or an 8-bit value, simply use the get_random_{u8,u16}() functions, which are faster than wasting the additional bytes from a 32-bit value. This was done mechanically with this coccinelle script: @@ expression E; identifier get_random_u32 =~ "get_random_int|prandom_u32|get_random_u32"; typedef u16; typedef __be16; typedef __le16; typedef u8; @@ ( - (get_random_u32() & 0xffff) + get_random_u16() | - (get_random_u32() & 0xff) + get_random_u8() | - (get_random_u32() % 65536) + get_random_u16() | - (get_random_u32() % 256) + get_random_u8() | - (get_random_u32() >> 16) + get_random_u16() | - (get_random_u32() >> 24) + get_random_u8() | - (u16)get_random_u32() + get_random_u16() | - (u8)get_random_u32() + get_random_u8() | - (__be16)get_random_u32() + (__be16)get_random_u16() | - (__le16)get_random_u32() + (__le16)get_random_u16() | - prandom_u32_max(65536) + get_random_u16() | - prandom_u32_max(256) + get_random_u8() | - E->inet_id = get_random_u32() + E->inet_id = get_random_u16() ) @@ identifier get_random_u32 =~ "get_random_int|prandom_u32|get_random_u32"; typedef u16; identifier v; @@ - u16 v = get_random_u32(); + u16 v = get_random_u16(); @@ identifier get_random_u32 =~ "get_random_int|prandom_u32|get_random_u32"; typedef u8; identifier v; @@ - u8 v = get_random_u32(); + u8 v = get_random_u8(); @@ identifier get_random_u32 =~ "get_random_int|prandom_u32|get_random_u32"; typedef u16; u16 v; @@ - v = get_random_u32(); + v = get_random_u16(); @@ identifier get_random_u32 =~ "get_random_int|prandom_u32|get_random_u32"; typedef u8; u8 v; @@ - v = get_random_u32(); + v = get_random_u8(); // Find a potential literal @literal_mask@ expression LITERAL; type T; identifier get_random_u32 =~ "get_random_int|prandom_u32|get_random_u32"; position p; @@ ((T)get_random_u32()@p & (LITERAL)) // Examine limits @script:python add_one@ literal << literal_mask.LITERAL; RESULT; @@ value = None if literal.startswith('0x'): value = int(literal, 16) elif literal[0] in '123456789': value = int(literal, 10) if value is None: print("I don't know how to handle %s" % (literal)) cocci.include_match(False) elif value < 256: coccinelle.RESULT = cocci.make_ident("get_random_u8") elif value < 65536: coccinelle.RESULT = cocci.make_ident("get_random_u16") else: print("Skipping large mask of %s" % (literal)) cocci.include_match(False) // Replace the literal mask with the calculated result. @plus_one@ expression literal_mask.LITERAL; position literal_mask.p; identifier add_one.RESULT; identifier FUNC; @@ - (FUNC()@p & (LITERAL)) + (RESULT() & LITERAL) Reviewed-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Reviewed-by: Kees Cook <keescook@chromium.org> Reviewed-by: Yury Norov <yury.norov@gmail.com> Acked-by: Jakub Kicinski <kuba@kernel.org> Acked-by: Toke Høiland-Jørgensen <toke@toke.dk> # for sch_cake Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
2022-10-05 18:23:53 +03:00
newinet->inet_id = get_random_u16();
/* Set ToS of the new socket based upon the value of incoming SYN.
* ECT bits are set later in tcp_init_transfer().
*/
if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_reflect_tos))
newinet->tos = tcp_rsk(req)->syn_tos & ~INET_ECN_MASK;
if (!dst) {
dst = inet_csk_route_child_sock(sk, newsk, req);
if (!dst)
goto put_and_exit;
} else {
/* syncookie case : see end of cookie_v4_check() */
}
sk_setup_caps(newsk, dst);
net: tcp: add per route congestion control This work adds the possibility to define a per route/destination congestion control algorithm. Generally, this opens up the possibility for a machine with different links to enforce specific congestion control algorithms with optimal strategies for each of them based on their network characteristics, even transparently for a single application listening on all links. For our specific use case, this additionally facilitates deployment of DCTCP, for example, applications can easily serve internal traffic/dsts in DCTCP and external one with CUBIC. Other scenarios would also allow for utilizing e.g. long living, low priority background flows for certain destinations/routes while still being able for normal traffic to utilize the default congestion control algorithm. We also thought about a per netns setting (where different defaults are possible), but given its actually a link specific property, we argue that a per route/destination setting is the most natural and flexible. The administrator can utilize this through ip-route(8) by appending "congctl [lock] <name>", where <name> denotes the name of a congestion control algorithm and the optional lock parameter allows to enforce the given algorithm so that applications in user space would not be allowed to overwrite that algorithm for that destination. The dst metric lookups are being done when a dst entry is already available in order to avoid a costly lookup and still before the algorithms are being initialized, thus overhead is very low when the feature is not being used. While the client side would need to drop the current reference on the module, on server side this can actually even be avoided as we just got a flat-copied socket clone. Joint work with Florian Westphal. Suggested-by: Hannes Frederic Sowa <hannes@stressinduktion.org> Signed-off-by: Florian Westphal <fw@strlen.de> Signed-off-by: Daniel Borkmann <dborkman@redhat.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2015-01-06 01:57:48 +03:00
tcp_ca_openreq_child(newsk, dst);
tcp_sync_mss(newsk, dst_mtu(dst));
newtp->advmss = tcp_mss_clamp(tcp_sk(sk), dst_metric_advmss(dst));
tcp_initialize_rcv_mss(newsk);
#ifdef CONFIG_TCP_MD5SIG
l3index = l3mdev_master_ifindex_by_index(sock_net(sk), ireq->ir_iif);
/* Copy over the MD5 key from the original socket */
addr = (union tcp_md5_addr *)&newinet->inet_daddr;
key = tcp_md5_do_lookup(sk, l3index, addr, AF_INET);
if (key) {
/*
* We're using one, so create a matching key
* on the newsk structure. If we fail to get
* memory, then we end up not copying the key
* across. Shucks.
*/
tcp_md5_do_add(newsk, addr, AF_INET, 32, l3index, key->flags,
key->key, key->keylen, GFP_ATOMIC);
sk_gso_disable(newsk);
}
#endif
if (__inet_inherit_port(sk, newsk) < 0)
goto put_and_exit;
tcp: fix race condition when creating child sockets from syncookies When the TCP stack is in SYN flood mode, the server child socket is created from the SYN cookie received in a TCP packet with the ACK flag set. The child socket is created when the server receives the first TCP packet with a valid SYN cookie from the client. Usually, this packet corresponds to the final step of the TCP 3-way handshake, the ACK packet. But is also possible to receive a valid SYN cookie from the first TCP data packet sent by the client, and thus create a child socket from that SYN cookie. Since a client socket is ready to send data as soon as it receives the SYN+ACK packet from the server, the client can send the ACK packet (sent by the TCP stack code), and the first data packet (sent by the userspace program) almost at the same time, and thus the server will equally receive the two TCP packets with valid SYN cookies almost at the same instant. When such event happens, the TCP stack code has a race condition that occurs between the momement a lookup is done to the established connections hashtable to check for the existence of a connection for the same client, and the moment that the child socket is added to the established connections hashtable. As a consequence, this race condition can lead to a situation where we add two child sockets to the established connections hashtable and deliver two sockets to the userspace program to the same client. This patch fixes the race condition by checking if an existing child socket exists for the same client when we are adding the second child socket to the established connections socket. If an existing child socket exists, we drop the packet and discard the second child socket to the same client. Signed-off-by: Ricardo Dias <rdias@singlestore.com> Signed-off-by: Eric Dumazet <edumazet@google.com> Link: https://lore.kernel.org/r/20201120111133.GA67501@rdias-suse-pc.lan Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2020-11-20 14:11:33 +03:00
*own_req = inet_ehash_nolisten(newsk, req_to_sk(req_unhash),
&found_dup_sk);
tcp/dccp: fix ireq->opt races syzkaller found another bug in DCCP/TCP stacks [1] For the reasons explained in commit ce1050089c96 ("tcp/dccp: fix ireq->pktopts race"), we need to make sure we do not access ireq->opt unless we own the request sock. Note the opt field is renamed to ireq_opt to ease grep games. [1] BUG: KASAN: use-after-free in ip_queue_xmit+0x1687/0x18e0 net/ipv4/ip_output.c:474 Read of size 1 at addr ffff8801c951039c by task syz-executor5/3295 CPU: 1 PID: 3295 Comm: syz-executor5 Not tainted 4.14.0-rc4+ #80 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 01/01/2011 Call Trace: __dump_stack lib/dump_stack.c:16 [inline] dump_stack+0x194/0x257 lib/dump_stack.c:52 print_address_description+0x73/0x250 mm/kasan/report.c:252 kasan_report_error mm/kasan/report.c:351 [inline] kasan_report+0x25b/0x340 mm/kasan/report.c:409 __asan_report_load1_noabort+0x14/0x20 mm/kasan/report.c:427 ip_queue_xmit+0x1687/0x18e0 net/ipv4/ip_output.c:474 tcp_transmit_skb+0x1ab7/0x3840 net/ipv4/tcp_output.c:1135 tcp_send_ack.part.37+0x3bb/0x650 net/ipv4/tcp_output.c:3587 tcp_send_ack+0x49/0x60 net/ipv4/tcp_output.c:3557 __tcp_ack_snd_check+0x2c6/0x4b0 net/ipv4/tcp_input.c:5072 tcp_ack_snd_check net/ipv4/tcp_input.c:5085 [inline] tcp_rcv_state_process+0x2eff/0x4850 net/ipv4/tcp_input.c:6071 tcp_child_process+0x342/0x990 net/ipv4/tcp_minisocks.c:816 tcp_v4_rcv+0x1827/0x2f80 net/ipv4/tcp_ipv4.c:1682 ip_local_deliver_finish+0x2e2/0xba0 net/ipv4/ip_input.c:216 NF_HOOK include/linux/netfilter.h:249 [inline] ip_local_deliver+0x1ce/0x6e0 net/ipv4/ip_input.c:257 dst_input include/net/dst.h:464 [inline] ip_rcv_finish+0x887/0x19a0 net/ipv4/ip_input.c:397 NF_HOOK include/linux/netfilter.h:249 [inline] ip_rcv+0xc3f/0x1820 net/ipv4/ip_input.c:493 __netif_receive_skb_core+0x1a3e/0x34b0 net/core/dev.c:4476 __netif_receive_skb+0x2c/0x1b0 net/core/dev.c:4514 netif_receive_skb_internal+0x10b/0x670 net/core/dev.c:4587 netif_receive_skb+0xae/0x390 net/core/dev.c:4611 tun_rx_batched.isra.50+0x5ed/0x860 drivers/net/tun.c:1372 tun_get_user+0x249c/0x36d0 drivers/net/tun.c:1766 tun_chr_write_iter+0xbf/0x160 drivers/net/tun.c:1792 call_write_iter include/linux/fs.h:1770 [inline] new_sync_write fs/read_write.c:468 [inline] __vfs_write+0x68a/0x970 fs/read_write.c:481 vfs_write+0x18f/0x510 fs/read_write.c:543 SYSC_write fs/read_write.c:588 [inline] SyS_write+0xef/0x220 fs/read_write.c:580 entry_SYSCALL_64_fastpath+0x1f/0xbe RIP: 0033:0x40c341 RSP: 002b:00007f469523ec10 EFLAGS: 00000293 ORIG_RAX: 0000000000000001 RAX: ffffffffffffffda RBX: 0000000000718000 RCX: 000000000040c341 RDX: 0000000000000037 RSI: 0000000020004000 RDI: 0000000000000015 RBP: 0000000000000086 R08: 0000000000000000 R09: 0000000000000000 R10: 00000000000f4240 R11: 0000000000000293 R12: 00000000004b7fd1 R13: 00000000ffffffff R14: 0000000020000000 R15: 0000000000025000 Allocated by task 3295: save_stack_trace+0x16/0x20 arch/x86/kernel/stacktrace.c:59 save_stack+0x43/0xd0 mm/kasan/kasan.c:447 set_track mm/kasan/kasan.c:459 [inline] kasan_kmalloc+0xad/0xe0 mm/kasan/kasan.c:551 __do_kmalloc mm/slab.c:3725 [inline] __kmalloc+0x162/0x760 mm/slab.c:3734 kmalloc include/linux/slab.h:498 [inline] tcp_v4_save_options include/net/tcp.h:1962 [inline] tcp_v4_init_req+0x2d3/0x3e0 net/ipv4/tcp_ipv4.c:1271 tcp_conn_request+0xf6d/0x3410 net/ipv4/tcp_input.c:6283 tcp_v4_conn_request+0x157/0x210 net/ipv4/tcp_ipv4.c:1313 tcp_rcv_state_process+0x8ea/0x4850 net/ipv4/tcp_input.c:5857 tcp_v4_do_rcv+0x55c/0x7d0 net/ipv4/tcp_ipv4.c:1482 tcp_v4_rcv+0x2d10/0x2f80 net/ipv4/tcp_ipv4.c:1711 ip_local_deliver_finish+0x2e2/0xba0 net/ipv4/ip_input.c:216 NF_HOOK include/linux/netfilter.h:249 [inline] ip_local_deliver+0x1ce/0x6e0 net/ipv4/ip_input.c:257 dst_input include/net/dst.h:464 [inline] ip_rcv_finish+0x887/0x19a0 net/ipv4/ip_input.c:397 NF_HOOK include/linux/netfilter.h:249 [inline] ip_rcv+0xc3f/0x1820 net/ipv4/ip_input.c:493 __netif_receive_skb_core+0x1a3e/0x34b0 net/core/dev.c:4476 __netif_receive_skb+0x2c/0x1b0 net/core/dev.c:4514 netif_receive_skb_internal+0x10b/0x670 net/core/dev.c:4587 netif_receive_skb+0xae/0x390 net/core/dev.c:4611 tun_rx_batched.isra.50+0x5ed/0x860 drivers/net/tun.c:1372 tun_get_user+0x249c/0x36d0 drivers/net/tun.c:1766 tun_chr_write_iter+0xbf/0x160 drivers/net/tun.c:1792 call_write_iter include/linux/fs.h:1770 [inline] new_sync_write fs/read_write.c:468 [inline] __vfs_write+0x68a/0x970 fs/read_write.c:481 vfs_write+0x18f/0x510 fs/read_write.c:543 SYSC_write fs/read_write.c:588 [inline] SyS_write+0xef/0x220 fs/read_write.c:580 entry_SYSCALL_64_fastpath+0x1f/0xbe Freed by task 3306: save_stack_trace+0x16/0x20 arch/x86/kernel/stacktrace.c:59 save_stack+0x43/0xd0 mm/kasan/kasan.c:447 set_track mm/kasan/kasan.c:459 [inline] kasan_slab_free+0x71/0xc0 mm/kasan/kasan.c:524 __cache_free mm/slab.c:3503 [inline] kfree+0xca/0x250 mm/slab.c:3820 inet_sock_destruct+0x59d/0x950 net/ipv4/af_inet.c:157 __sk_destruct+0xfd/0x910 net/core/sock.c:1560 sk_destruct+0x47/0x80 net/core/sock.c:1595 __sk_free+0x57/0x230 net/core/sock.c:1603 sk_free+0x2a/0x40 net/core/sock.c:1614 sock_put include/net/sock.h:1652 [inline] inet_csk_complete_hashdance+0xd5/0xf0 net/ipv4/inet_connection_sock.c:959 tcp_check_req+0xf4d/0x1620 net/ipv4/tcp_minisocks.c:765 tcp_v4_rcv+0x17f6/0x2f80 net/ipv4/tcp_ipv4.c:1675 ip_local_deliver_finish+0x2e2/0xba0 net/ipv4/ip_input.c:216 NF_HOOK include/linux/netfilter.h:249 [inline] ip_local_deliver+0x1ce/0x6e0 net/ipv4/ip_input.c:257 dst_input include/net/dst.h:464 [inline] ip_rcv_finish+0x887/0x19a0 net/ipv4/ip_input.c:397 NF_HOOK include/linux/netfilter.h:249 [inline] ip_rcv+0xc3f/0x1820 net/ipv4/ip_input.c:493 __netif_receive_skb_core+0x1a3e/0x34b0 net/core/dev.c:4476 __netif_receive_skb+0x2c/0x1b0 net/core/dev.c:4514 netif_receive_skb_internal+0x10b/0x670 net/core/dev.c:4587 netif_receive_skb+0xae/0x390 net/core/dev.c:4611 tun_rx_batched.isra.50+0x5ed/0x860 drivers/net/tun.c:1372 tun_get_user+0x249c/0x36d0 drivers/net/tun.c:1766 tun_chr_write_iter+0xbf/0x160 drivers/net/tun.c:1792 call_write_iter include/linux/fs.h:1770 [inline] new_sync_write fs/read_write.c:468 [inline] __vfs_write+0x68a/0x970 fs/read_write.c:481 vfs_write+0x18f/0x510 fs/read_write.c:543 SYSC_write fs/read_write.c:588 [inline] SyS_write+0xef/0x220 fs/read_write.c:580 entry_SYSCALL_64_fastpath+0x1f/0xbe Fixes: e994b2f0fb92 ("tcp: do not lock listener to process SYN packets") Fixes: 079096f103fa ("tcp/dccp: install syn_recv requests into ehash table") Signed-off-by: Eric Dumazet <edumazet@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-10-20 19:04:13 +03:00
if (likely(*own_req)) {
tcp_move_syn(newtp, req);
tcp/dccp: fix ireq->opt races syzkaller found another bug in DCCP/TCP stacks [1] For the reasons explained in commit ce1050089c96 ("tcp/dccp: fix ireq->pktopts race"), we need to make sure we do not access ireq->opt unless we own the request sock. Note the opt field is renamed to ireq_opt to ease grep games. [1] BUG: KASAN: use-after-free in ip_queue_xmit+0x1687/0x18e0 net/ipv4/ip_output.c:474 Read of size 1 at addr ffff8801c951039c by task syz-executor5/3295 CPU: 1 PID: 3295 Comm: syz-executor5 Not tainted 4.14.0-rc4+ #80 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 01/01/2011 Call Trace: __dump_stack lib/dump_stack.c:16 [inline] dump_stack+0x194/0x257 lib/dump_stack.c:52 print_address_description+0x73/0x250 mm/kasan/report.c:252 kasan_report_error mm/kasan/report.c:351 [inline] kasan_report+0x25b/0x340 mm/kasan/report.c:409 __asan_report_load1_noabort+0x14/0x20 mm/kasan/report.c:427 ip_queue_xmit+0x1687/0x18e0 net/ipv4/ip_output.c:474 tcp_transmit_skb+0x1ab7/0x3840 net/ipv4/tcp_output.c:1135 tcp_send_ack.part.37+0x3bb/0x650 net/ipv4/tcp_output.c:3587 tcp_send_ack+0x49/0x60 net/ipv4/tcp_output.c:3557 __tcp_ack_snd_check+0x2c6/0x4b0 net/ipv4/tcp_input.c:5072 tcp_ack_snd_check net/ipv4/tcp_input.c:5085 [inline] tcp_rcv_state_process+0x2eff/0x4850 net/ipv4/tcp_input.c:6071 tcp_child_process+0x342/0x990 net/ipv4/tcp_minisocks.c:816 tcp_v4_rcv+0x1827/0x2f80 net/ipv4/tcp_ipv4.c:1682 ip_local_deliver_finish+0x2e2/0xba0 net/ipv4/ip_input.c:216 NF_HOOK include/linux/netfilter.h:249 [inline] ip_local_deliver+0x1ce/0x6e0 net/ipv4/ip_input.c:257 dst_input include/net/dst.h:464 [inline] ip_rcv_finish+0x887/0x19a0 net/ipv4/ip_input.c:397 NF_HOOK include/linux/netfilter.h:249 [inline] ip_rcv+0xc3f/0x1820 net/ipv4/ip_input.c:493 __netif_receive_skb_core+0x1a3e/0x34b0 net/core/dev.c:4476 __netif_receive_skb+0x2c/0x1b0 net/core/dev.c:4514 netif_receive_skb_internal+0x10b/0x670 net/core/dev.c:4587 netif_receive_skb+0xae/0x390 net/core/dev.c:4611 tun_rx_batched.isra.50+0x5ed/0x860 drivers/net/tun.c:1372 tun_get_user+0x249c/0x36d0 drivers/net/tun.c:1766 tun_chr_write_iter+0xbf/0x160 drivers/net/tun.c:1792 call_write_iter include/linux/fs.h:1770 [inline] new_sync_write fs/read_write.c:468 [inline] __vfs_write+0x68a/0x970 fs/read_write.c:481 vfs_write+0x18f/0x510 fs/read_write.c:543 SYSC_write fs/read_write.c:588 [inline] SyS_write+0xef/0x220 fs/read_write.c:580 entry_SYSCALL_64_fastpath+0x1f/0xbe RIP: 0033:0x40c341 RSP: 002b:00007f469523ec10 EFLAGS: 00000293 ORIG_RAX: 0000000000000001 RAX: ffffffffffffffda RBX: 0000000000718000 RCX: 000000000040c341 RDX: 0000000000000037 RSI: 0000000020004000 RDI: 0000000000000015 RBP: 0000000000000086 R08: 0000000000000000 R09: 0000000000000000 R10: 00000000000f4240 R11: 0000000000000293 R12: 00000000004b7fd1 R13: 00000000ffffffff R14: 0000000020000000 R15: 0000000000025000 Allocated by task 3295: save_stack_trace+0x16/0x20 arch/x86/kernel/stacktrace.c:59 save_stack+0x43/0xd0 mm/kasan/kasan.c:447 set_track mm/kasan/kasan.c:459 [inline] kasan_kmalloc+0xad/0xe0 mm/kasan/kasan.c:551 __do_kmalloc mm/slab.c:3725 [inline] __kmalloc+0x162/0x760 mm/slab.c:3734 kmalloc include/linux/slab.h:498 [inline] tcp_v4_save_options include/net/tcp.h:1962 [inline] tcp_v4_init_req+0x2d3/0x3e0 net/ipv4/tcp_ipv4.c:1271 tcp_conn_request+0xf6d/0x3410 net/ipv4/tcp_input.c:6283 tcp_v4_conn_request+0x157/0x210 net/ipv4/tcp_ipv4.c:1313 tcp_rcv_state_process+0x8ea/0x4850 net/ipv4/tcp_input.c:5857 tcp_v4_do_rcv+0x55c/0x7d0 net/ipv4/tcp_ipv4.c:1482 tcp_v4_rcv+0x2d10/0x2f80 net/ipv4/tcp_ipv4.c:1711 ip_local_deliver_finish+0x2e2/0xba0 net/ipv4/ip_input.c:216 NF_HOOK include/linux/netfilter.h:249 [inline] ip_local_deliver+0x1ce/0x6e0 net/ipv4/ip_input.c:257 dst_input include/net/dst.h:464 [inline] ip_rcv_finish+0x887/0x19a0 net/ipv4/ip_input.c:397 NF_HOOK include/linux/netfilter.h:249 [inline] ip_rcv+0xc3f/0x1820 net/ipv4/ip_input.c:493 __netif_receive_skb_core+0x1a3e/0x34b0 net/core/dev.c:4476 __netif_receive_skb+0x2c/0x1b0 net/core/dev.c:4514 netif_receive_skb_internal+0x10b/0x670 net/core/dev.c:4587 netif_receive_skb+0xae/0x390 net/core/dev.c:4611 tun_rx_batched.isra.50+0x5ed/0x860 drivers/net/tun.c:1372 tun_get_user+0x249c/0x36d0 drivers/net/tun.c:1766 tun_chr_write_iter+0xbf/0x160 drivers/net/tun.c:1792 call_write_iter include/linux/fs.h:1770 [inline] new_sync_write fs/read_write.c:468 [inline] __vfs_write+0x68a/0x970 fs/read_write.c:481 vfs_write+0x18f/0x510 fs/read_write.c:543 SYSC_write fs/read_write.c:588 [inline] SyS_write+0xef/0x220 fs/read_write.c:580 entry_SYSCALL_64_fastpath+0x1f/0xbe Freed by task 3306: save_stack_trace+0x16/0x20 arch/x86/kernel/stacktrace.c:59 save_stack+0x43/0xd0 mm/kasan/kasan.c:447 set_track mm/kasan/kasan.c:459 [inline] kasan_slab_free+0x71/0xc0 mm/kasan/kasan.c:524 __cache_free mm/slab.c:3503 [inline] kfree+0xca/0x250 mm/slab.c:3820 inet_sock_destruct+0x59d/0x950 net/ipv4/af_inet.c:157 __sk_destruct+0xfd/0x910 net/core/sock.c:1560 sk_destruct+0x47/0x80 net/core/sock.c:1595 __sk_free+0x57/0x230 net/core/sock.c:1603 sk_free+0x2a/0x40 net/core/sock.c:1614 sock_put include/net/sock.h:1652 [inline] inet_csk_complete_hashdance+0xd5/0xf0 net/ipv4/inet_connection_sock.c:959 tcp_check_req+0xf4d/0x1620 net/ipv4/tcp_minisocks.c:765 tcp_v4_rcv+0x17f6/0x2f80 net/ipv4/tcp_ipv4.c:1675 ip_local_deliver_finish+0x2e2/0xba0 net/ipv4/ip_input.c:216 NF_HOOK include/linux/netfilter.h:249 [inline] ip_local_deliver+0x1ce/0x6e0 net/ipv4/ip_input.c:257 dst_input include/net/dst.h:464 [inline] ip_rcv_finish+0x887/0x19a0 net/ipv4/ip_input.c:397 NF_HOOK include/linux/netfilter.h:249 [inline] ip_rcv+0xc3f/0x1820 net/ipv4/ip_input.c:493 __netif_receive_skb_core+0x1a3e/0x34b0 net/core/dev.c:4476 __netif_receive_skb+0x2c/0x1b0 net/core/dev.c:4514 netif_receive_skb_internal+0x10b/0x670 net/core/dev.c:4587 netif_receive_skb+0xae/0x390 net/core/dev.c:4611 tun_rx_batched.isra.50+0x5ed/0x860 drivers/net/tun.c:1372 tun_get_user+0x249c/0x36d0 drivers/net/tun.c:1766 tun_chr_write_iter+0xbf/0x160 drivers/net/tun.c:1792 call_write_iter include/linux/fs.h:1770 [inline] new_sync_write fs/read_write.c:468 [inline] __vfs_write+0x68a/0x970 fs/read_write.c:481 vfs_write+0x18f/0x510 fs/read_write.c:543 SYSC_write fs/read_write.c:588 [inline] SyS_write+0xef/0x220 fs/read_write.c:580 entry_SYSCALL_64_fastpath+0x1f/0xbe Fixes: e994b2f0fb92 ("tcp: do not lock listener to process SYN packets") Fixes: 079096f103fa ("tcp/dccp: install syn_recv requests into ehash table") Signed-off-by: Eric Dumazet <edumazet@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-10-20 19:04:13 +03:00
ireq->ireq_opt = NULL;
} else {
tcp: Fix potential use-after-free due to double kfree() Receiving ACK with a valid SYN cookie, cookie_v4_check() allocates struct request_sock and then can allocate inet_rsk(req)->ireq_opt. After that, tcp_v4_syn_recv_sock() allocates struct sock and copies ireq_opt to inet_sk(sk)->inet_opt. Normally, tcp_v4_syn_recv_sock() inserts the full socket into ehash and sets NULL to ireq_opt. Otherwise, tcp_v4_syn_recv_sock() has to reset inet_opt by NULL and free the full socket. The commit 01770a1661657 ("tcp: fix race condition when creating child sockets from syncookies") added a new path, in which more than one cores create full sockets for the same SYN cookie. Currently, the core which loses the race frees the full socket without resetting inet_opt, resulting in that both sock_put() and reqsk_put() call kfree() for the same memory: sock_put sk_free __sk_free sk_destruct __sk_destruct sk->sk_destruct/inet_sock_destruct kfree(rcu_dereference_protected(inet->inet_opt, 1)); reqsk_put reqsk_free __reqsk_free req->rsk_ops->destructor/tcp_v4_reqsk_destructor kfree(rcu_dereference_protected(inet_rsk(req)->ireq_opt, 1)); Calling kmalloc() between the double kfree() can lead to use-after-free, so this patch fixes it by setting NULL to inet_opt before sock_put(). As a side note, this kind of issue does not happen for IPv6. This is because tcp_v6_syn_recv_sock() clones both ipv6_opt and pktopts which correspond to ireq_opt in IPv4. Fixes: 01770a166165 ("tcp: fix race condition when creating child sockets from syncookies") CC: Ricardo Dias <rdias@singlestore.com> Signed-off-by: Kuniyuki Iwashima <kuniyu@amazon.co.jp> Reviewed-by: Benjamin Herrenschmidt <benh@amazon.com> Reviewed-by: Eric Dumazet <edumazet@google.com> Link: https://lore.kernel.org/r/20210118055920.82516-1-kuniyu@amazon.co.jp Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2021-01-18 08:59:20 +03:00
newinet->inet_opt = NULL;
tcp: fix race condition when creating child sockets from syncookies When the TCP stack is in SYN flood mode, the server child socket is created from the SYN cookie received in a TCP packet with the ACK flag set. The child socket is created when the server receives the first TCP packet with a valid SYN cookie from the client. Usually, this packet corresponds to the final step of the TCP 3-way handshake, the ACK packet. But is also possible to receive a valid SYN cookie from the first TCP data packet sent by the client, and thus create a child socket from that SYN cookie. Since a client socket is ready to send data as soon as it receives the SYN+ACK packet from the server, the client can send the ACK packet (sent by the TCP stack code), and the first data packet (sent by the userspace program) almost at the same time, and thus the server will equally receive the two TCP packets with valid SYN cookies almost at the same instant. When such event happens, the TCP stack code has a race condition that occurs between the momement a lookup is done to the established connections hashtable to check for the existence of a connection for the same client, and the moment that the child socket is added to the established connections hashtable. As a consequence, this race condition can lead to a situation where we add two child sockets to the established connections hashtable and deliver two sockets to the userspace program to the same client. This patch fixes the race condition by checking if an existing child socket exists for the same client when we are adding the second child socket to the established connections socket. If an existing child socket exists, we drop the packet and discard the second child socket to the same client. Signed-off-by: Ricardo Dias <rdias@singlestore.com> Signed-off-by: Eric Dumazet <edumazet@google.com> Link: https://lore.kernel.org/r/20201120111133.GA67501@rdias-suse-pc.lan Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2020-11-20 14:11:33 +03:00
if (!req_unhash && found_dup_sk) {
/* This code path should only be executed in the
* syncookie case only
*/
bh_unlock_sock(newsk);
sock_put(newsk);
newsk = NULL;
}
tcp/dccp: fix ireq->opt races syzkaller found another bug in DCCP/TCP stacks [1] For the reasons explained in commit ce1050089c96 ("tcp/dccp: fix ireq->pktopts race"), we need to make sure we do not access ireq->opt unless we own the request sock. Note the opt field is renamed to ireq_opt to ease grep games. [1] BUG: KASAN: use-after-free in ip_queue_xmit+0x1687/0x18e0 net/ipv4/ip_output.c:474 Read of size 1 at addr ffff8801c951039c by task syz-executor5/3295 CPU: 1 PID: 3295 Comm: syz-executor5 Not tainted 4.14.0-rc4+ #80 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 01/01/2011 Call Trace: __dump_stack lib/dump_stack.c:16 [inline] dump_stack+0x194/0x257 lib/dump_stack.c:52 print_address_description+0x73/0x250 mm/kasan/report.c:252 kasan_report_error mm/kasan/report.c:351 [inline] kasan_report+0x25b/0x340 mm/kasan/report.c:409 __asan_report_load1_noabort+0x14/0x20 mm/kasan/report.c:427 ip_queue_xmit+0x1687/0x18e0 net/ipv4/ip_output.c:474 tcp_transmit_skb+0x1ab7/0x3840 net/ipv4/tcp_output.c:1135 tcp_send_ack.part.37+0x3bb/0x650 net/ipv4/tcp_output.c:3587 tcp_send_ack+0x49/0x60 net/ipv4/tcp_output.c:3557 __tcp_ack_snd_check+0x2c6/0x4b0 net/ipv4/tcp_input.c:5072 tcp_ack_snd_check net/ipv4/tcp_input.c:5085 [inline] tcp_rcv_state_process+0x2eff/0x4850 net/ipv4/tcp_input.c:6071 tcp_child_process+0x342/0x990 net/ipv4/tcp_minisocks.c:816 tcp_v4_rcv+0x1827/0x2f80 net/ipv4/tcp_ipv4.c:1682 ip_local_deliver_finish+0x2e2/0xba0 net/ipv4/ip_input.c:216 NF_HOOK include/linux/netfilter.h:249 [inline] ip_local_deliver+0x1ce/0x6e0 net/ipv4/ip_input.c:257 dst_input include/net/dst.h:464 [inline] ip_rcv_finish+0x887/0x19a0 net/ipv4/ip_input.c:397 NF_HOOK include/linux/netfilter.h:249 [inline] ip_rcv+0xc3f/0x1820 net/ipv4/ip_input.c:493 __netif_receive_skb_core+0x1a3e/0x34b0 net/core/dev.c:4476 __netif_receive_skb+0x2c/0x1b0 net/core/dev.c:4514 netif_receive_skb_internal+0x10b/0x670 net/core/dev.c:4587 netif_receive_skb+0xae/0x390 net/core/dev.c:4611 tun_rx_batched.isra.50+0x5ed/0x860 drivers/net/tun.c:1372 tun_get_user+0x249c/0x36d0 drivers/net/tun.c:1766 tun_chr_write_iter+0xbf/0x160 drivers/net/tun.c:1792 call_write_iter include/linux/fs.h:1770 [inline] new_sync_write fs/read_write.c:468 [inline] __vfs_write+0x68a/0x970 fs/read_write.c:481 vfs_write+0x18f/0x510 fs/read_write.c:543 SYSC_write fs/read_write.c:588 [inline] SyS_write+0xef/0x220 fs/read_write.c:580 entry_SYSCALL_64_fastpath+0x1f/0xbe RIP: 0033:0x40c341 RSP: 002b:00007f469523ec10 EFLAGS: 00000293 ORIG_RAX: 0000000000000001 RAX: ffffffffffffffda RBX: 0000000000718000 RCX: 000000000040c341 RDX: 0000000000000037 RSI: 0000000020004000 RDI: 0000000000000015 RBP: 0000000000000086 R08: 0000000000000000 R09: 0000000000000000 R10: 00000000000f4240 R11: 0000000000000293 R12: 00000000004b7fd1 R13: 00000000ffffffff R14: 0000000020000000 R15: 0000000000025000 Allocated by task 3295: save_stack_trace+0x16/0x20 arch/x86/kernel/stacktrace.c:59 save_stack+0x43/0xd0 mm/kasan/kasan.c:447 set_track mm/kasan/kasan.c:459 [inline] kasan_kmalloc+0xad/0xe0 mm/kasan/kasan.c:551 __do_kmalloc mm/slab.c:3725 [inline] __kmalloc+0x162/0x760 mm/slab.c:3734 kmalloc include/linux/slab.h:498 [inline] tcp_v4_save_options include/net/tcp.h:1962 [inline] tcp_v4_init_req+0x2d3/0x3e0 net/ipv4/tcp_ipv4.c:1271 tcp_conn_request+0xf6d/0x3410 net/ipv4/tcp_input.c:6283 tcp_v4_conn_request+0x157/0x210 net/ipv4/tcp_ipv4.c:1313 tcp_rcv_state_process+0x8ea/0x4850 net/ipv4/tcp_input.c:5857 tcp_v4_do_rcv+0x55c/0x7d0 net/ipv4/tcp_ipv4.c:1482 tcp_v4_rcv+0x2d10/0x2f80 net/ipv4/tcp_ipv4.c:1711 ip_local_deliver_finish+0x2e2/0xba0 net/ipv4/ip_input.c:216 NF_HOOK include/linux/netfilter.h:249 [inline] ip_local_deliver+0x1ce/0x6e0 net/ipv4/ip_input.c:257 dst_input include/net/dst.h:464 [inline] ip_rcv_finish+0x887/0x19a0 net/ipv4/ip_input.c:397 NF_HOOK include/linux/netfilter.h:249 [inline] ip_rcv+0xc3f/0x1820 net/ipv4/ip_input.c:493 __netif_receive_skb_core+0x1a3e/0x34b0 net/core/dev.c:4476 __netif_receive_skb+0x2c/0x1b0 net/core/dev.c:4514 netif_receive_skb_internal+0x10b/0x670 net/core/dev.c:4587 netif_receive_skb+0xae/0x390 net/core/dev.c:4611 tun_rx_batched.isra.50+0x5ed/0x860 drivers/net/tun.c:1372 tun_get_user+0x249c/0x36d0 drivers/net/tun.c:1766 tun_chr_write_iter+0xbf/0x160 drivers/net/tun.c:1792 call_write_iter include/linux/fs.h:1770 [inline] new_sync_write fs/read_write.c:468 [inline] __vfs_write+0x68a/0x970 fs/read_write.c:481 vfs_write+0x18f/0x510 fs/read_write.c:543 SYSC_write fs/read_write.c:588 [inline] SyS_write+0xef/0x220 fs/read_write.c:580 entry_SYSCALL_64_fastpath+0x1f/0xbe Freed by task 3306: save_stack_trace+0x16/0x20 arch/x86/kernel/stacktrace.c:59 save_stack+0x43/0xd0 mm/kasan/kasan.c:447 set_track mm/kasan/kasan.c:459 [inline] kasan_slab_free+0x71/0xc0 mm/kasan/kasan.c:524 __cache_free mm/slab.c:3503 [inline] kfree+0xca/0x250 mm/slab.c:3820 inet_sock_destruct+0x59d/0x950 net/ipv4/af_inet.c:157 __sk_destruct+0xfd/0x910 net/core/sock.c:1560 sk_destruct+0x47/0x80 net/core/sock.c:1595 __sk_free+0x57/0x230 net/core/sock.c:1603 sk_free+0x2a/0x40 net/core/sock.c:1614 sock_put include/net/sock.h:1652 [inline] inet_csk_complete_hashdance+0xd5/0xf0 net/ipv4/inet_connection_sock.c:959 tcp_check_req+0xf4d/0x1620 net/ipv4/tcp_minisocks.c:765 tcp_v4_rcv+0x17f6/0x2f80 net/ipv4/tcp_ipv4.c:1675 ip_local_deliver_finish+0x2e2/0xba0 net/ipv4/ip_input.c:216 NF_HOOK include/linux/netfilter.h:249 [inline] ip_local_deliver+0x1ce/0x6e0 net/ipv4/ip_input.c:257 dst_input include/net/dst.h:464 [inline] ip_rcv_finish+0x887/0x19a0 net/ipv4/ip_input.c:397 NF_HOOK include/linux/netfilter.h:249 [inline] ip_rcv+0xc3f/0x1820 net/ipv4/ip_input.c:493 __netif_receive_skb_core+0x1a3e/0x34b0 net/core/dev.c:4476 __netif_receive_skb+0x2c/0x1b0 net/core/dev.c:4514 netif_receive_skb_internal+0x10b/0x670 net/core/dev.c:4587 netif_receive_skb+0xae/0x390 net/core/dev.c:4611 tun_rx_batched.isra.50+0x5ed/0x860 drivers/net/tun.c:1372 tun_get_user+0x249c/0x36d0 drivers/net/tun.c:1766 tun_chr_write_iter+0xbf/0x160 drivers/net/tun.c:1792 call_write_iter include/linux/fs.h:1770 [inline] new_sync_write fs/read_write.c:468 [inline] __vfs_write+0x68a/0x970 fs/read_write.c:481 vfs_write+0x18f/0x510 fs/read_write.c:543 SYSC_write fs/read_write.c:588 [inline] SyS_write+0xef/0x220 fs/read_write.c:580 entry_SYSCALL_64_fastpath+0x1f/0xbe Fixes: e994b2f0fb92 ("tcp: do not lock listener to process SYN packets") Fixes: 079096f103fa ("tcp/dccp: install syn_recv requests into ehash table") Signed-off-by: Eric Dumazet <edumazet@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-10-20 19:04:13 +03:00
}
return newsk;
exit_overflow:
NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS);
exit_nonewsk:
dst_release(dst);
exit:
tcp_listendrop(sk);
return NULL;
put_and_exit:
tcp/dccp: fix ireq->opt races syzkaller found another bug in DCCP/TCP stacks [1] For the reasons explained in commit ce1050089c96 ("tcp/dccp: fix ireq->pktopts race"), we need to make sure we do not access ireq->opt unless we own the request sock. Note the opt field is renamed to ireq_opt to ease grep games. [1] BUG: KASAN: use-after-free in ip_queue_xmit+0x1687/0x18e0 net/ipv4/ip_output.c:474 Read of size 1 at addr ffff8801c951039c by task syz-executor5/3295 CPU: 1 PID: 3295 Comm: syz-executor5 Not tainted 4.14.0-rc4+ #80 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 01/01/2011 Call Trace: __dump_stack lib/dump_stack.c:16 [inline] dump_stack+0x194/0x257 lib/dump_stack.c:52 print_address_description+0x73/0x250 mm/kasan/report.c:252 kasan_report_error mm/kasan/report.c:351 [inline] kasan_report+0x25b/0x340 mm/kasan/report.c:409 __asan_report_load1_noabort+0x14/0x20 mm/kasan/report.c:427 ip_queue_xmit+0x1687/0x18e0 net/ipv4/ip_output.c:474 tcp_transmit_skb+0x1ab7/0x3840 net/ipv4/tcp_output.c:1135 tcp_send_ack.part.37+0x3bb/0x650 net/ipv4/tcp_output.c:3587 tcp_send_ack+0x49/0x60 net/ipv4/tcp_output.c:3557 __tcp_ack_snd_check+0x2c6/0x4b0 net/ipv4/tcp_input.c:5072 tcp_ack_snd_check net/ipv4/tcp_input.c:5085 [inline] tcp_rcv_state_process+0x2eff/0x4850 net/ipv4/tcp_input.c:6071 tcp_child_process+0x342/0x990 net/ipv4/tcp_minisocks.c:816 tcp_v4_rcv+0x1827/0x2f80 net/ipv4/tcp_ipv4.c:1682 ip_local_deliver_finish+0x2e2/0xba0 net/ipv4/ip_input.c:216 NF_HOOK include/linux/netfilter.h:249 [inline] ip_local_deliver+0x1ce/0x6e0 net/ipv4/ip_input.c:257 dst_input include/net/dst.h:464 [inline] ip_rcv_finish+0x887/0x19a0 net/ipv4/ip_input.c:397 NF_HOOK include/linux/netfilter.h:249 [inline] ip_rcv+0xc3f/0x1820 net/ipv4/ip_input.c:493 __netif_receive_skb_core+0x1a3e/0x34b0 net/core/dev.c:4476 __netif_receive_skb+0x2c/0x1b0 net/core/dev.c:4514 netif_receive_skb_internal+0x10b/0x670 net/core/dev.c:4587 netif_receive_skb+0xae/0x390 net/core/dev.c:4611 tun_rx_batched.isra.50+0x5ed/0x860 drivers/net/tun.c:1372 tun_get_user+0x249c/0x36d0 drivers/net/tun.c:1766 tun_chr_write_iter+0xbf/0x160 drivers/net/tun.c:1792 call_write_iter include/linux/fs.h:1770 [inline] new_sync_write fs/read_write.c:468 [inline] __vfs_write+0x68a/0x970 fs/read_write.c:481 vfs_write+0x18f/0x510 fs/read_write.c:543 SYSC_write fs/read_write.c:588 [inline] SyS_write+0xef/0x220 fs/read_write.c:580 entry_SYSCALL_64_fastpath+0x1f/0xbe RIP: 0033:0x40c341 RSP: 002b:00007f469523ec10 EFLAGS: 00000293 ORIG_RAX: 0000000000000001 RAX: ffffffffffffffda RBX: 0000000000718000 RCX: 000000000040c341 RDX: 0000000000000037 RSI: 0000000020004000 RDI: 0000000000000015 RBP: 0000000000000086 R08: 0000000000000000 R09: 0000000000000000 R10: 00000000000f4240 R11: 0000000000000293 R12: 00000000004b7fd1 R13: 00000000ffffffff R14: 0000000020000000 R15: 0000000000025000 Allocated by task 3295: save_stack_trace+0x16/0x20 arch/x86/kernel/stacktrace.c:59 save_stack+0x43/0xd0 mm/kasan/kasan.c:447 set_track mm/kasan/kasan.c:459 [inline] kasan_kmalloc+0xad/0xe0 mm/kasan/kasan.c:551 __do_kmalloc mm/slab.c:3725 [inline] __kmalloc+0x162/0x760 mm/slab.c:3734 kmalloc include/linux/slab.h:498 [inline] tcp_v4_save_options include/net/tcp.h:1962 [inline] tcp_v4_init_req+0x2d3/0x3e0 net/ipv4/tcp_ipv4.c:1271 tcp_conn_request+0xf6d/0x3410 net/ipv4/tcp_input.c:6283 tcp_v4_conn_request+0x157/0x210 net/ipv4/tcp_ipv4.c:1313 tcp_rcv_state_process+0x8ea/0x4850 net/ipv4/tcp_input.c:5857 tcp_v4_do_rcv+0x55c/0x7d0 net/ipv4/tcp_ipv4.c:1482 tcp_v4_rcv+0x2d10/0x2f80 net/ipv4/tcp_ipv4.c:1711 ip_local_deliver_finish+0x2e2/0xba0 net/ipv4/ip_input.c:216 NF_HOOK include/linux/netfilter.h:249 [inline] ip_local_deliver+0x1ce/0x6e0 net/ipv4/ip_input.c:257 dst_input include/net/dst.h:464 [inline] ip_rcv_finish+0x887/0x19a0 net/ipv4/ip_input.c:397 NF_HOOK include/linux/netfilter.h:249 [inline] ip_rcv+0xc3f/0x1820 net/ipv4/ip_input.c:493 __netif_receive_skb_core+0x1a3e/0x34b0 net/core/dev.c:4476 __netif_receive_skb+0x2c/0x1b0 net/core/dev.c:4514 netif_receive_skb_internal+0x10b/0x670 net/core/dev.c:4587 netif_receive_skb+0xae/0x390 net/core/dev.c:4611 tun_rx_batched.isra.50+0x5ed/0x860 drivers/net/tun.c:1372 tun_get_user+0x249c/0x36d0 drivers/net/tun.c:1766 tun_chr_write_iter+0xbf/0x160 drivers/net/tun.c:1792 call_write_iter include/linux/fs.h:1770 [inline] new_sync_write fs/read_write.c:468 [inline] __vfs_write+0x68a/0x970 fs/read_write.c:481 vfs_write+0x18f/0x510 fs/read_write.c:543 SYSC_write fs/read_write.c:588 [inline] SyS_write+0xef/0x220 fs/read_write.c:580 entry_SYSCALL_64_fastpath+0x1f/0xbe Freed by task 3306: save_stack_trace+0x16/0x20 arch/x86/kernel/stacktrace.c:59 save_stack+0x43/0xd0 mm/kasan/kasan.c:447 set_track mm/kasan/kasan.c:459 [inline] kasan_slab_free+0x71/0xc0 mm/kasan/kasan.c:524 __cache_free mm/slab.c:3503 [inline] kfree+0xca/0x250 mm/slab.c:3820 inet_sock_destruct+0x59d/0x950 net/ipv4/af_inet.c:157 __sk_destruct+0xfd/0x910 net/core/sock.c:1560 sk_destruct+0x47/0x80 net/core/sock.c:1595 __sk_free+0x57/0x230 net/core/sock.c:1603 sk_free+0x2a/0x40 net/core/sock.c:1614 sock_put include/net/sock.h:1652 [inline] inet_csk_complete_hashdance+0xd5/0xf0 net/ipv4/inet_connection_sock.c:959 tcp_check_req+0xf4d/0x1620 net/ipv4/tcp_minisocks.c:765 tcp_v4_rcv+0x17f6/0x2f80 net/ipv4/tcp_ipv4.c:1675 ip_local_deliver_finish+0x2e2/0xba0 net/ipv4/ip_input.c:216 NF_HOOK include/linux/netfilter.h:249 [inline] ip_local_deliver+0x1ce/0x6e0 net/ipv4/ip_input.c:257 dst_input include/net/dst.h:464 [inline] ip_rcv_finish+0x887/0x19a0 net/ipv4/ip_input.c:397 NF_HOOK include/linux/netfilter.h:249 [inline] ip_rcv+0xc3f/0x1820 net/ipv4/ip_input.c:493 __netif_receive_skb_core+0x1a3e/0x34b0 net/core/dev.c:4476 __netif_receive_skb+0x2c/0x1b0 net/core/dev.c:4514 netif_receive_skb_internal+0x10b/0x670 net/core/dev.c:4587 netif_receive_skb+0xae/0x390 net/core/dev.c:4611 tun_rx_batched.isra.50+0x5ed/0x860 drivers/net/tun.c:1372 tun_get_user+0x249c/0x36d0 drivers/net/tun.c:1766 tun_chr_write_iter+0xbf/0x160 drivers/net/tun.c:1792 call_write_iter include/linux/fs.h:1770 [inline] new_sync_write fs/read_write.c:468 [inline] __vfs_write+0x68a/0x970 fs/read_write.c:481 vfs_write+0x18f/0x510 fs/read_write.c:543 SYSC_write fs/read_write.c:588 [inline] SyS_write+0xef/0x220 fs/read_write.c:580 entry_SYSCALL_64_fastpath+0x1f/0xbe Fixes: e994b2f0fb92 ("tcp: do not lock listener to process SYN packets") Fixes: 079096f103fa ("tcp/dccp: install syn_recv requests into ehash table") Signed-off-by: Eric Dumazet <edumazet@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-10-20 19:04:13 +03:00
newinet->inet_opt = NULL;
inet: Fix kmemleak in tcp_v4/6_syn_recv_sock and dccp_v4/6_request_recv_sock If in either of the above functions inet_csk_route_child_sock() or __inet_inherit_port() fails, the newsk will not be freed: unreferenced object 0xffff88022e8a92c0 (size 1592): comm "softirq", pid 0, jiffies 4294946244 (age 726.160s) hex dump (first 32 bytes): 0a 01 01 01 0a 01 01 02 00 00 00 00 a7 cc 16 00 ................ 02 00 03 01 00 00 00 00 00 00 00 00 00 00 00 00 ................ backtrace: [<ffffffff8153d190>] kmemleak_alloc+0x21/0x3e [<ffffffff810ab3e7>] kmem_cache_alloc+0xb5/0xc5 [<ffffffff8149b65b>] sk_prot_alloc.isra.53+0x2b/0xcd [<ffffffff8149b784>] sk_clone_lock+0x16/0x21e [<ffffffff814d711a>] inet_csk_clone_lock+0x10/0x7b [<ffffffff814ebbc3>] tcp_create_openreq_child+0x21/0x481 [<ffffffff814e8fa5>] tcp_v4_syn_recv_sock+0x3a/0x23b [<ffffffff814ec5ba>] tcp_check_req+0x29f/0x416 [<ffffffff814e8e10>] tcp_v4_do_rcv+0x161/0x2bc [<ffffffff814eb917>] tcp_v4_rcv+0x6c9/0x701 [<ffffffff814cea9f>] ip_local_deliver_finish+0x70/0xc4 [<ffffffff814cec20>] ip_local_deliver+0x4e/0x7f [<ffffffff814ce9f8>] ip_rcv_finish+0x1fc/0x233 [<ffffffff814cee68>] ip_rcv+0x217/0x267 [<ffffffff814a7bbe>] __netif_receive_skb+0x49e/0x553 [<ffffffff814a7cc3>] netif_receive_skb+0x50/0x82 This happens, because sk_clone_lock initializes sk_refcnt to 2, and thus a single sock_put() is not enough to free the memory. Additionally, things like xfrm, memcg, cookie_values,... may have been initialized. We have to free them properly. This is fixed by forcing a call to tcp_done(), ending up in inet_csk_destroy_sock, doing the final sock_put(). tcp_done() is necessary, because it ends up doing all the cleanup on xfrm, memcg, cookie_values, xfrm,... Before calling tcp_done, we have to set the socket to SOCK_DEAD, to force it entering inet_csk_destroy_sock. To avoid the warning in inet_csk_destroy_sock, inet_num has to be set to 0. As inet_csk_destroy_sock does a dec on orphan_count, we first have to increase it. Calling tcp_done() allows us to remove the calls to tcp_clear_xmit_timer() and tcp_cleanup_congestion_control(). A similar approach is taken for dccp by calling dccp_done(). This is in the kernel since 093d282321 (tproxy: fix hash locking issue when using port redirection in __inet_inherit_port()), thus since version >= 2.6.37. Signed-off-by: Christoph Paasch <christoph.paasch@uclouvain.be> Signed-off-by: David S. Miller <davem@davemloft.net>
2012-12-14 08:07:58 +04:00
inet_csk_prepare_forced_close(newsk);
tcp_done(newsk);
goto exit;
}
EXPORT_SYMBOL(tcp_v4_syn_recv_sock);
static struct sock *tcp_v4_cookie_check(struct sock *sk, struct sk_buff *skb)
{
#ifdef CONFIG_SYN_COOKIES
const struct tcphdr *th = tcp_hdr(skb);
if (!th->syn)
sk = cookie_v4_check(sk, skb);
#endif
return sk;
}
u16 tcp_v4_get_syncookie(struct sock *sk, struct iphdr *iph,
struct tcphdr *th, u32 *cookie)
{
u16 mss = 0;
#ifdef CONFIG_SYN_COOKIES
mss = tcp_get_syncookie_mss(&tcp_request_sock_ops,
&tcp_request_sock_ipv4_ops, sk, th);
if (mss) {
*cookie = __cookie_v4_init_sequence(iph, th, &mss);
tcp_synq_overflow(sk);
}
#endif
return mss;
}
INDIRECT_CALLABLE_DECLARE(struct dst_entry *ipv4_dst_check(struct dst_entry *,
u32));
/* The socket must have it's spinlock held when we get
* here, unless it is a TCP_LISTEN socket.
*
* We have a potential double-lock case here, so even when
* doing backlog processing we use the BH locking scheme.
* This is because we cannot sleep with the original spinlock
* held.
*/
int tcp_v4_do_rcv(struct sock *sk, struct sk_buff *skb)
{
enum skb_drop_reason reason;
struct sock *rsk;
if (sk->sk_state == TCP_ESTABLISHED) { /* Fast path */
inet: fully convert sk->sk_rx_dst to RCU rules syzbot reported various issues around early demux, one being included in this changelog [1] sk->sk_rx_dst is using RCU protection without clearly documenting it. And following sequences in tcp_v4_do_rcv()/tcp_v6_do_rcv() are not following standard RCU rules. [a] dst_release(dst); [b] sk->sk_rx_dst = NULL; They look wrong because a delete operation of RCU protected pointer is supposed to clear the pointer before the call_rcu()/synchronize_rcu() guarding actual memory freeing. In some cases indeed, dst could be freed before [b] is done. We could cheat by clearing sk_rx_dst before calling dst_release(), but this seems the right time to stick to standard RCU annotations and debugging facilities. [1] BUG: KASAN: use-after-free in dst_check include/net/dst.h:470 [inline] BUG: KASAN: use-after-free in tcp_v4_early_demux+0x95b/0x960 net/ipv4/tcp_ipv4.c:1792 Read of size 2 at addr ffff88807f1cb73a by task syz-executor.5/9204 CPU: 0 PID: 9204 Comm: syz-executor.5 Not tainted 5.16.0-rc5-syzkaller #0 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 01/01/2011 Call Trace: <TASK> __dump_stack lib/dump_stack.c:88 [inline] dump_stack_lvl+0xcd/0x134 lib/dump_stack.c:106 print_address_description.constprop.0.cold+0x8d/0x320 mm/kasan/report.c:247 __kasan_report mm/kasan/report.c:433 [inline] kasan_report.cold+0x83/0xdf mm/kasan/report.c:450 dst_check include/net/dst.h:470 [inline] tcp_v4_early_demux+0x95b/0x960 net/ipv4/tcp_ipv4.c:1792 ip_rcv_finish_core.constprop.0+0x15de/0x1e80 net/ipv4/ip_input.c:340 ip_list_rcv_finish.constprop.0+0x1b2/0x6e0 net/ipv4/ip_input.c:583 ip_sublist_rcv net/ipv4/ip_input.c:609 [inline] ip_list_rcv+0x34e/0x490 net/ipv4/ip_input.c:644 __netif_receive_skb_list_ptype net/core/dev.c:5508 [inline] __netif_receive_skb_list_core+0x549/0x8e0 net/core/dev.c:5556 __netif_receive_skb_list net/core/dev.c:5608 [inline] netif_receive_skb_list_internal+0x75e/0xd80 net/core/dev.c:5699 gro_normal_list net/core/dev.c:5853 [inline] gro_normal_list net/core/dev.c:5849 [inline] napi_complete_done+0x1f1/0x880 net/core/dev.c:6590 virtqueue_napi_complete drivers/net/virtio_net.c:339 [inline] virtnet_poll+0xca2/0x11b0 drivers/net/virtio_net.c:1557 __napi_poll+0xaf/0x440 net/core/dev.c:7023 napi_poll net/core/dev.c:7090 [inline] net_rx_action+0x801/0xb40 net/core/dev.c:7177 __do_softirq+0x29b/0x9c2 kernel/softirq.c:558 invoke_softirq kernel/softirq.c:432 [inline] __irq_exit_rcu+0x123/0x180 kernel/softirq.c:637 irq_exit_rcu+0x5/0x20 kernel/softirq.c:649 common_interrupt+0x52/0xc0 arch/x86/kernel/irq.c:240 asm_common_interrupt+0x1e/0x40 arch/x86/include/asm/idtentry.h:629 RIP: 0033:0x7f5e972bfd57 Code: 39 d1 73 14 0f 1f 80 00 00 00 00 48 8b 50 f8 48 83 e8 08 48 39 ca 77 f3 48 39 c3 73 3e 48 89 13 48 8b 50 f8 48 89 38 49 8b 0e <48> 8b 3e 48 83 c3 08 48 83 c6 08 eb bc 48 39 d1 72 9e 48 39 d0 73 RSP: 002b:00007fff8a413210 EFLAGS: 00000283 RAX: 00007f5e97108990 RBX: 00007f5e97108338 RCX: ffffffff81d3aa45 RDX: ffffffff81d3aa45 RSI: 00007f5e97108340 RDI: ffffffff81d3aa45 RBP: 00007f5e97107eb8 R08: 00007f5e97108d88 R09: 0000000093c2e8d9 R10: 0000000000000000 R11: 0000000000000000 R12: 00007f5e97107eb0 R13: 00007f5e97108338 R14: 00007f5e97107ea8 R15: 0000000000000019 </TASK> Allocated by task 13: kasan_save_stack+0x1e/0x50 mm/kasan/common.c:38 kasan_set_track mm/kasan/common.c:46 [inline] set_alloc_info mm/kasan/common.c:434 [inline] __kasan_slab_alloc+0x90/0xc0 mm/kasan/common.c:467 kasan_slab_alloc include/linux/kasan.h:259 [inline] slab_post_alloc_hook mm/slab.h:519 [inline] slab_alloc_node mm/slub.c:3234 [inline] slab_alloc mm/slub.c:3242 [inline] kmem_cache_alloc+0x202/0x3a0 mm/slub.c:3247 dst_alloc+0x146/0x1f0 net/core/dst.c:92 rt_dst_alloc+0x73/0x430 net/ipv4/route.c:1613 ip_route_input_slow+0x1817/0x3a20 net/ipv4/route.c:2340 ip_route_input_rcu net/ipv4/route.c:2470 [inline] ip_route_input_noref+0x116/0x2a0 net/ipv4/route.c:2415 ip_rcv_finish_core.constprop.0+0x288/0x1e80 net/ipv4/ip_input.c:354 ip_list_rcv_finish.constprop.0+0x1b2/0x6e0 net/ipv4/ip_input.c:583 ip_sublist_rcv net/ipv4/ip_input.c:609 [inline] ip_list_rcv+0x34e/0x490 net/ipv4/ip_input.c:644 __netif_receive_skb_list_ptype net/core/dev.c:5508 [inline] __netif_receive_skb_list_core+0x549/0x8e0 net/core/dev.c:5556 __netif_receive_skb_list net/core/dev.c:5608 [inline] netif_receive_skb_list_internal+0x75e/0xd80 net/core/dev.c:5699 gro_normal_list net/core/dev.c:5853 [inline] gro_normal_list net/core/dev.c:5849 [inline] napi_complete_done+0x1f1/0x880 net/core/dev.c:6590 virtqueue_napi_complete drivers/net/virtio_net.c:339 [inline] virtnet_poll+0xca2/0x11b0 drivers/net/virtio_net.c:1557 __napi_poll+0xaf/0x440 net/core/dev.c:7023 napi_poll net/core/dev.c:7090 [inline] net_rx_action+0x801/0xb40 net/core/dev.c:7177 __do_softirq+0x29b/0x9c2 kernel/softirq.c:558 Freed by task 13: kasan_save_stack+0x1e/0x50 mm/kasan/common.c:38 kasan_set_track+0x21/0x30 mm/kasan/common.c:46 kasan_set_free_info+0x20/0x30 mm/kasan/generic.c:370 ____kasan_slab_free mm/kasan/common.c:366 [inline] ____kasan_slab_free mm/kasan/common.c:328 [inline] __kasan_slab_free+0xff/0x130 mm/kasan/common.c:374 kasan_slab_free include/linux/kasan.h:235 [inline] slab_free_hook mm/slub.c:1723 [inline] slab_free_freelist_hook+0x8b/0x1c0 mm/slub.c:1749 slab_free mm/slub.c:3513 [inline] kmem_cache_free+0xbd/0x5d0 mm/slub.c:3530 dst_destroy+0x2d6/0x3f0 net/core/dst.c:127 rcu_do_batch kernel/rcu/tree.c:2506 [inline] rcu_core+0x7ab/0x1470 kernel/rcu/tree.c:2741 __do_softirq+0x29b/0x9c2 kernel/softirq.c:558 Last potentially related work creation: kasan_save_stack+0x1e/0x50 mm/kasan/common.c:38 __kasan_record_aux_stack+0xf5/0x120 mm/kasan/generic.c:348 __call_rcu kernel/rcu/tree.c:2985 [inline] call_rcu+0xb1/0x740 kernel/rcu/tree.c:3065 dst_release net/core/dst.c:177 [inline] dst_release+0x79/0xe0 net/core/dst.c:167 tcp_v4_do_rcv+0x612/0x8d0 net/ipv4/tcp_ipv4.c:1712 sk_backlog_rcv include/net/sock.h:1030 [inline] __release_sock+0x134/0x3b0 net/core/sock.c:2768 release_sock+0x54/0x1b0 net/core/sock.c:3300 tcp_sendmsg+0x36/0x40 net/ipv4/tcp.c:1441 inet_sendmsg+0x99/0xe0 net/ipv4/af_inet.c:819 sock_sendmsg_nosec net/socket.c:704 [inline] sock_sendmsg+0xcf/0x120 net/socket.c:724 sock_write_iter+0x289/0x3c0 net/socket.c:1057 call_write_iter include/linux/fs.h:2162 [inline] new_sync_write+0x429/0x660 fs/read_write.c:503 vfs_write+0x7cd/0xae0 fs/read_write.c:590 ksys_write+0x1ee/0x250 fs/read_write.c:643 do_syscall_x64 arch/x86/entry/common.c:50 [inline] do_syscall_64+0x35/0xb0 arch/x86/entry/common.c:80 entry_SYSCALL_64_after_hwframe+0x44/0xae The buggy address belongs to the object at ffff88807f1cb700 which belongs to the cache ip_dst_cache of size 176 The buggy address is located 58 bytes inside of 176-byte region [ffff88807f1cb700, ffff88807f1cb7b0) The buggy address belongs to the page: page:ffffea0001fc72c0 refcount:1 mapcount:0 mapping:0000000000000000 index:0x0 pfn:0x7f1cb flags: 0xfff00000000200(slab|node=0|zone=1|lastcpupid=0x7ff) raw: 00fff00000000200 dead000000000100 dead000000000122 ffff8881413bb780 raw: 0000000000000000 0000000000100010 00000001ffffffff 0000000000000000 page dumped because: kasan: bad access detected page_owner tracks the page as allocated page last allocated via order 0, migratetype Unmovable, gfp_mask 0x112a20(GFP_ATOMIC|__GFP_NOWARN|__GFP_NORETRY|__GFP_HARDWALL), pid 5, ts 108466983062, free_ts 108048976062 prep_new_page mm/page_alloc.c:2418 [inline] get_page_from_freelist+0xa72/0x2f50 mm/page_alloc.c:4149 __alloc_pages+0x1b2/0x500 mm/page_alloc.c:5369 alloc_pages+0x1a7/0x300 mm/mempolicy.c:2191 alloc_slab_page mm/slub.c:1793 [inline] allocate_slab mm/slub.c:1930 [inline] new_slab+0x32d/0x4a0 mm/slub.c:1993 ___slab_alloc+0x918/0xfe0 mm/slub.c:3022 __slab_alloc.constprop.0+0x4d/0xa0 mm/slub.c:3109 slab_alloc_node mm/slub.c:3200 [inline] slab_alloc mm/slub.c:3242 [inline] kmem_cache_alloc+0x35c/0x3a0 mm/slub.c:3247 dst_alloc+0x146/0x1f0 net/core/dst.c:92 rt_dst_alloc+0x73/0x430 net/ipv4/route.c:1613 __mkroute_output net/ipv4/route.c:2564 [inline] ip_route_output_key_hash_rcu+0x921/0x2d00 net/ipv4/route.c:2791 ip_route_output_key_hash+0x18b/0x300 net/ipv4/route.c:2619 __ip_route_output_key include/net/route.h:126 [inline] ip_route_output_flow+0x23/0x150 net/ipv4/route.c:2850 ip_route_output_key include/net/route.h:142 [inline] geneve_get_v4_rt+0x3a6/0x830 drivers/net/geneve.c:809 geneve_xmit_skb drivers/net/geneve.c:899 [inline] geneve_xmit+0xc4a/0x3540 drivers/net/geneve.c:1082 __netdev_start_xmit include/linux/netdevice.h:4994 [inline] netdev_start_xmit include/linux/netdevice.h:5008 [inline] xmit_one net/core/dev.c:3590 [inline] dev_hard_start_xmit+0x1eb/0x920 net/core/dev.c:3606 __dev_queue_xmit+0x299a/0x3650 net/core/dev.c:4229 page last free stack trace: reset_page_owner include/linux/page_owner.h:24 [inline] free_pages_prepare mm/page_alloc.c:1338 [inline] free_pcp_prepare+0x374/0x870 mm/page_alloc.c:1389 free_unref_page_prepare mm/page_alloc.c:3309 [inline] free_unref_page+0x19/0x690 mm/page_alloc.c:3388 qlink_free mm/kasan/quarantine.c:146 [inline] qlist_free_all+0x5a/0xc0 mm/kasan/quarantine.c:165 kasan_quarantine_reduce+0x180/0x200 mm/kasan/quarantine.c:272 __kasan_slab_alloc+0xa2/0xc0 mm/kasan/common.c:444 kasan_slab_alloc include/linux/kasan.h:259 [inline] slab_post_alloc_hook mm/slab.h:519 [inline] slab_alloc_node mm/slub.c:3234 [inline] kmem_cache_alloc_node+0x255/0x3f0 mm/slub.c:3270 __alloc_skb+0x215/0x340 net/core/skbuff.c:414 alloc_skb include/linux/skbuff.h:1126 [inline] alloc_skb_with_frags+0x93/0x620 net/core/skbuff.c:6078 sock_alloc_send_pskb+0x783/0x910 net/core/sock.c:2575 mld_newpack+0x1df/0x770 net/ipv6/mcast.c:1754 add_grhead+0x265/0x330 net/ipv6/mcast.c:1857 add_grec+0x1053/0x14e0 net/ipv6/mcast.c:1995 mld_send_initial_cr.part.0+0xf6/0x230 net/ipv6/mcast.c:2242 mld_send_initial_cr net/ipv6/mcast.c:1232 [inline] mld_dad_work+0x1d3/0x690 net/ipv6/mcast.c:2268 process_one_work+0x9b2/0x1690 kernel/workqueue.c:2298 worker_thread+0x658/0x11f0 kernel/workqueue.c:2445 Memory state around the buggy address: ffff88807f1cb600: fa fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb ffff88807f1cb680: fb fb fb fb fb fb fc fc fc fc fc fc fc fc fc fc >ffff88807f1cb700: fa fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb ^ ffff88807f1cb780: fb fb fb fb fb fb fc fc fc fc fc fc fc fc fc fc ffff88807f1cb800: fa fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb Fixes: 41063e9dd119 ("ipv4: Early TCP socket demux.") Signed-off-by: Eric Dumazet <edumazet@google.com> Link: https://lore.kernel.org/r/20211220143330.680945-1-eric.dumazet@gmail.com Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2021-12-20 17:33:30 +03:00
struct dst_entry *dst;
dst = rcu_dereference_protected(sk->sk_rx_dst,
lockdep_sock_is_held(sk));
sock_rps_save_rxhash(sk, skb);
sk_mark_napi_id(sk, skb);
if (dst) {
if (sk->sk_rx_dst_ifindex != skb->skb_iif ||
!INDIRECT_CALL_1(dst->ops->check, ipv4_dst_check,
dst, 0)) {
inet: fully convert sk->sk_rx_dst to RCU rules syzbot reported various issues around early demux, one being included in this changelog [1] sk->sk_rx_dst is using RCU protection without clearly documenting it. And following sequences in tcp_v4_do_rcv()/tcp_v6_do_rcv() are not following standard RCU rules. [a] dst_release(dst); [b] sk->sk_rx_dst = NULL; They look wrong because a delete operation of RCU protected pointer is supposed to clear the pointer before the call_rcu()/synchronize_rcu() guarding actual memory freeing. In some cases indeed, dst could be freed before [b] is done. We could cheat by clearing sk_rx_dst before calling dst_release(), but this seems the right time to stick to standard RCU annotations and debugging facilities. [1] BUG: KASAN: use-after-free in dst_check include/net/dst.h:470 [inline] BUG: KASAN: use-after-free in tcp_v4_early_demux+0x95b/0x960 net/ipv4/tcp_ipv4.c:1792 Read of size 2 at addr ffff88807f1cb73a by task syz-executor.5/9204 CPU: 0 PID: 9204 Comm: syz-executor.5 Not tainted 5.16.0-rc5-syzkaller #0 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 01/01/2011 Call Trace: <TASK> __dump_stack lib/dump_stack.c:88 [inline] dump_stack_lvl+0xcd/0x134 lib/dump_stack.c:106 print_address_description.constprop.0.cold+0x8d/0x320 mm/kasan/report.c:247 __kasan_report mm/kasan/report.c:433 [inline] kasan_report.cold+0x83/0xdf mm/kasan/report.c:450 dst_check include/net/dst.h:470 [inline] tcp_v4_early_demux+0x95b/0x960 net/ipv4/tcp_ipv4.c:1792 ip_rcv_finish_core.constprop.0+0x15de/0x1e80 net/ipv4/ip_input.c:340 ip_list_rcv_finish.constprop.0+0x1b2/0x6e0 net/ipv4/ip_input.c:583 ip_sublist_rcv net/ipv4/ip_input.c:609 [inline] ip_list_rcv+0x34e/0x490 net/ipv4/ip_input.c:644 __netif_receive_skb_list_ptype net/core/dev.c:5508 [inline] __netif_receive_skb_list_core+0x549/0x8e0 net/core/dev.c:5556 __netif_receive_skb_list net/core/dev.c:5608 [inline] netif_receive_skb_list_internal+0x75e/0xd80 net/core/dev.c:5699 gro_normal_list net/core/dev.c:5853 [inline] gro_normal_list net/core/dev.c:5849 [inline] napi_complete_done+0x1f1/0x880 net/core/dev.c:6590 virtqueue_napi_complete drivers/net/virtio_net.c:339 [inline] virtnet_poll+0xca2/0x11b0 drivers/net/virtio_net.c:1557 __napi_poll+0xaf/0x440 net/core/dev.c:7023 napi_poll net/core/dev.c:7090 [inline] net_rx_action+0x801/0xb40 net/core/dev.c:7177 __do_softirq+0x29b/0x9c2 kernel/softirq.c:558 invoke_softirq kernel/softirq.c:432 [inline] __irq_exit_rcu+0x123/0x180 kernel/softirq.c:637 irq_exit_rcu+0x5/0x20 kernel/softirq.c:649 common_interrupt+0x52/0xc0 arch/x86/kernel/irq.c:240 asm_common_interrupt+0x1e/0x40 arch/x86/include/asm/idtentry.h:629 RIP: 0033:0x7f5e972bfd57 Code: 39 d1 73 14 0f 1f 80 00 00 00 00 48 8b 50 f8 48 83 e8 08 48 39 ca 77 f3 48 39 c3 73 3e 48 89 13 48 8b 50 f8 48 89 38 49 8b 0e <48> 8b 3e 48 83 c3 08 48 83 c6 08 eb bc 48 39 d1 72 9e 48 39 d0 73 RSP: 002b:00007fff8a413210 EFLAGS: 00000283 RAX: 00007f5e97108990 RBX: 00007f5e97108338 RCX: ffffffff81d3aa45 RDX: ffffffff81d3aa45 RSI: 00007f5e97108340 RDI: ffffffff81d3aa45 RBP: 00007f5e97107eb8 R08: 00007f5e97108d88 R09: 0000000093c2e8d9 R10: 0000000000000000 R11: 0000000000000000 R12: 00007f5e97107eb0 R13: 00007f5e97108338 R14: 00007f5e97107ea8 R15: 0000000000000019 </TASK> Allocated by task 13: kasan_save_stack+0x1e/0x50 mm/kasan/common.c:38 kasan_set_track mm/kasan/common.c:46 [inline] set_alloc_info mm/kasan/common.c:434 [inline] __kasan_slab_alloc+0x90/0xc0 mm/kasan/common.c:467 kasan_slab_alloc include/linux/kasan.h:259 [inline] slab_post_alloc_hook mm/slab.h:519 [inline] slab_alloc_node mm/slub.c:3234 [inline] slab_alloc mm/slub.c:3242 [inline] kmem_cache_alloc+0x202/0x3a0 mm/slub.c:3247 dst_alloc+0x146/0x1f0 net/core/dst.c:92 rt_dst_alloc+0x73/0x430 net/ipv4/route.c:1613 ip_route_input_slow+0x1817/0x3a20 net/ipv4/route.c:2340 ip_route_input_rcu net/ipv4/route.c:2470 [inline] ip_route_input_noref+0x116/0x2a0 net/ipv4/route.c:2415 ip_rcv_finish_core.constprop.0+0x288/0x1e80 net/ipv4/ip_input.c:354 ip_list_rcv_finish.constprop.0+0x1b2/0x6e0 net/ipv4/ip_input.c:583 ip_sublist_rcv net/ipv4/ip_input.c:609 [inline] ip_list_rcv+0x34e/0x490 net/ipv4/ip_input.c:644 __netif_receive_skb_list_ptype net/core/dev.c:5508 [inline] __netif_receive_skb_list_core+0x549/0x8e0 net/core/dev.c:5556 __netif_receive_skb_list net/core/dev.c:5608 [inline] netif_receive_skb_list_internal+0x75e/0xd80 net/core/dev.c:5699 gro_normal_list net/core/dev.c:5853 [inline] gro_normal_list net/core/dev.c:5849 [inline] napi_complete_done+0x1f1/0x880 net/core/dev.c:6590 virtqueue_napi_complete drivers/net/virtio_net.c:339 [inline] virtnet_poll+0xca2/0x11b0 drivers/net/virtio_net.c:1557 __napi_poll+0xaf/0x440 net/core/dev.c:7023 napi_poll net/core/dev.c:7090 [inline] net_rx_action+0x801/0xb40 net/core/dev.c:7177 __do_softirq+0x29b/0x9c2 kernel/softirq.c:558 Freed by task 13: kasan_save_stack+0x1e/0x50 mm/kasan/common.c:38 kasan_set_track+0x21/0x30 mm/kasan/common.c:46 kasan_set_free_info+0x20/0x30 mm/kasan/generic.c:370 ____kasan_slab_free mm/kasan/common.c:366 [inline] ____kasan_slab_free mm/kasan/common.c:328 [inline] __kasan_slab_free+0xff/0x130 mm/kasan/common.c:374 kasan_slab_free include/linux/kasan.h:235 [inline] slab_free_hook mm/slub.c:1723 [inline] slab_free_freelist_hook+0x8b/0x1c0 mm/slub.c:1749 slab_free mm/slub.c:3513 [inline] kmem_cache_free+0xbd/0x5d0 mm/slub.c:3530 dst_destroy+0x2d6/0x3f0 net/core/dst.c:127 rcu_do_batch kernel/rcu/tree.c:2506 [inline] rcu_core+0x7ab/0x1470 kernel/rcu/tree.c:2741 __do_softirq+0x29b/0x9c2 kernel/softirq.c:558 Last potentially related work creation: kasan_save_stack+0x1e/0x50 mm/kasan/common.c:38 __kasan_record_aux_stack+0xf5/0x120 mm/kasan/generic.c:348 __call_rcu kernel/rcu/tree.c:2985 [inline] call_rcu+0xb1/0x740 kernel/rcu/tree.c:3065 dst_release net/core/dst.c:177 [inline] dst_release+0x79/0xe0 net/core/dst.c:167 tcp_v4_do_rcv+0x612/0x8d0 net/ipv4/tcp_ipv4.c:1712 sk_backlog_rcv include/net/sock.h:1030 [inline] __release_sock+0x134/0x3b0 net/core/sock.c:2768 release_sock+0x54/0x1b0 net/core/sock.c:3300 tcp_sendmsg+0x36/0x40 net/ipv4/tcp.c:1441 inet_sendmsg+0x99/0xe0 net/ipv4/af_inet.c:819 sock_sendmsg_nosec net/socket.c:704 [inline] sock_sendmsg+0xcf/0x120 net/socket.c:724 sock_write_iter+0x289/0x3c0 net/socket.c:1057 call_write_iter include/linux/fs.h:2162 [inline] new_sync_write+0x429/0x660 fs/read_write.c:503 vfs_write+0x7cd/0xae0 fs/read_write.c:590 ksys_write+0x1ee/0x250 fs/read_write.c:643 do_syscall_x64 arch/x86/entry/common.c:50 [inline] do_syscall_64+0x35/0xb0 arch/x86/entry/common.c:80 entry_SYSCALL_64_after_hwframe+0x44/0xae The buggy address belongs to the object at ffff88807f1cb700 which belongs to the cache ip_dst_cache of size 176 The buggy address is located 58 bytes inside of 176-byte region [ffff88807f1cb700, ffff88807f1cb7b0) The buggy address belongs to the page: page:ffffea0001fc72c0 refcount:1 mapcount:0 mapping:0000000000000000 index:0x0 pfn:0x7f1cb flags: 0xfff00000000200(slab|node=0|zone=1|lastcpupid=0x7ff) raw: 00fff00000000200 dead000000000100 dead000000000122 ffff8881413bb780 raw: 0000000000000000 0000000000100010 00000001ffffffff 0000000000000000 page dumped because: kasan: bad access detected page_owner tracks the page as allocated page last allocated via order 0, migratetype Unmovable, gfp_mask 0x112a20(GFP_ATOMIC|__GFP_NOWARN|__GFP_NORETRY|__GFP_HARDWALL), pid 5, ts 108466983062, free_ts 108048976062 prep_new_page mm/page_alloc.c:2418 [inline] get_page_from_freelist+0xa72/0x2f50 mm/page_alloc.c:4149 __alloc_pages+0x1b2/0x500 mm/page_alloc.c:5369 alloc_pages+0x1a7/0x300 mm/mempolicy.c:2191 alloc_slab_page mm/slub.c:1793 [inline] allocate_slab mm/slub.c:1930 [inline] new_slab+0x32d/0x4a0 mm/slub.c:1993 ___slab_alloc+0x918/0xfe0 mm/slub.c:3022 __slab_alloc.constprop.0+0x4d/0xa0 mm/slub.c:3109 slab_alloc_node mm/slub.c:3200 [inline] slab_alloc mm/slub.c:3242 [inline] kmem_cache_alloc+0x35c/0x3a0 mm/slub.c:3247 dst_alloc+0x146/0x1f0 net/core/dst.c:92 rt_dst_alloc+0x73/0x430 net/ipv4/route.c:1613 __mkroute_output net/ipv4/route.c:2564 [inline] ip_route_output_key_hash_rcu+0x921/0x2d00 net/ipv4/route.c:2791 ip_route_output_key_hash+0x18b/0x300 net/ipv4/route.c:2619 __ip_route_output_key include/net/route.h:126 [inline] ip_route_output_flow+0x23/0x150 net/ipv4/route.c:2850 ip_route_output_key include/net/route.h:142 [inline] geneve_get_v4_rt+0x3a6/0x830 drivers/net/geneve.c:809 geneve_xmit_skb drivers/net/geneve.c:899 [inline] geneve_xmit+0xc4a/0x3540 drivers/net/geneve.c:1082 __netdev_start_xmit include/linux/netdevice.h:4994 [inline] netdev_start_xmit include/linux/netdevice.h:5008 [inline] xmit_one net/core/dev.c:3590 [inline] dev_hard_start_xmit+0x1eb/0x920 net/core/dev.c:3606 __dev_queue_xmit+0x299a/0x3650 net/core/dev.c:4229 page last free stack trace: reset_page_owner include/linux/page_owner.h:24 [inline] free_pages_prepare mm/page_alloc.c:1338 [inline] free_pcp_prepare+0x374/0x870 mm/page_alloc.c:1389 free_unref_page_prepare mm/page_alloc.c:3309 [inline] free_unref_page+0x19/0x690 mm/page_alloc.c:3388 qlink_free mm/kasan/quarantine.c:146 [inline] qlist_free_all+0x5a/0xc0 mm/kasan/quarantine.c:165 kasan_quarantine_reduce+0x180/0x200 mm/kasan/quarantine.c:272 __kasan_slab_alloc+0xa2/0xc0 mm/kasan/common.c:444 kasan_slab_alloc include/linux/kasan.h:259 [inline] slab_post_alloc_hook mm/slab.h:519 [inline] slab_alloc_node mm/slub.c:3234 [inline] kmem_cache_alloc_node+0x255/0x3f0 mm/slub.c:3270 __alloc_skb+0x215/0x340 net/core/skbuff.c:414 alloc_skb include/linux/skbuff.h:1126 [inline] alloc_skb_with_frags+0x93/0x620 net/core/skbuff.c:6078 sock_alloc_send_pskb+0x783/0x910 net/core/sock.c:2575 mld_newpack+0x1df/0x770 net/ipv6/mcast.c:1754 add_grhead+0x265/0x330 net/ipv6/mcast.c:1857 add_grec+0x1053/0x14e0 net/ipv6/mcast.c:1995 mld_send_initial_cr.part.0+0xf6/0x230 net/ipv6/mcast.c:2242 mld_send_initial_cr net/ipv6/mcast.c:1232 [inline] mld_dad_work+0x1d3/0x690 net/ipv6/mcast.c:2268 process_one_work+0x9b2/0x1690 kernel/workqueue.c:2298 worker_thread+0x658/0x11f0 kernel/workqueue.c:2445 Memory state around the buggy address: ffff88807f1cb600: fa fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb ffff88807f1cb680: fb fb fb fb fb fb fc fc fc fc fc fc fc fc fc fc >ffff88807f1cb700: fa fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb ^ ffff88807f1cb780: fb fb fb fb fb fb fc fc fc fc fc fc fc fc fc fc ffff88807f1cb800: fa fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb Fixes: 41063e9dd119 ("ipv4: Early TCP socket demux.") Signed-off-by: Eric Dumazet <edumazet@google.com> Link: https://lore.kernel.org/r/20211220143330.680945-1-eric.dumazet@gmail.com Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2021-12-20 17:33:30 +03:00
RCU_INIT_POINTER(sk->sk_rx_dst, NULL);
dst_release(dst);
}
}
tcp_rcv_established(sk, skb);
return 0;
}
reason = SKB_DROP_REASON_NOT_SPECIFIED;
if (tcp_checksum_complete(skb))
goto csum_err;
if (sk->sk_state == TCP_LISTEN) {
struct sock *nsk = tcp_v4_cookie_check(sk, skb);
if (!nsk)
goto discard;
if (nsk != sk) {
if (tcp_child_process(sk, nsk, skb)) {
rsk = nsk;
goto reset;
}
return 0;
}
} else
sock_rps_save_rxhash(sk, skb);
if (tcp_rcv_state_process(sk, skb)) {
rsk = sk;
goto reset;
}
return 0;
reset:
tcp_v4_send_reset(rsk, skb);
discard:
kfree_skb_reason(skb, reason);
/* Be careful here. If this function gets more complicated and
* gcc suffers from register pressure on the x86, sk (in %ebx)
* might be destroyed here. This current version compiles correctly,
* but you have been warned.
*/
return 0;
csum_err:
reason = SKB_DROP_REASON_TCP_CSUM;
trace_tcp_bad_csum(skb);
TCP_INC_STATS(sock_net(sk), TCP_MIB_CSUMERRORS);
TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
goto discard;
}
EXPORT_SYMBOL(tcp_v4_do_rcv);
int tcp_v4_early_demux(struct sk_buff *skb)
{
struct net *net = dev_net(skb->dev);
const struct iphdr *iph;
const struct tcphdr *th;
struct sock *sk;
if (skb->pkt_type != PACKET_HOST)
return 0;
if (!pskb_may_pull(skb, skb_transport_offset(skb) + sizeof(struct tcphdr)))
return 0;
iph = ip_hdr(skb);
th = tcp_hdr(skb);
if (th->doff < sizeof(struct tcphdr) / 4)
return 0;
sk = __inet_lookup_established(net, net->ipv4.tcp_death_row.hashinfo,
iph->saddr, th->source,
iph->daddr, ntohs(th->dest),
skb->skb_iif, inet_sdif(skb));
if (sk) {
skb->sk = sk;
skb->destructor = sock_edemux;
if (sk_fullsock(sk)) {
inet: fully convert sk->sk_rx_dst to RCU rules syzbot reported various issues around early demux, one being included in this changelog [1] sk->sk_rx_dst is using RCU protection without clearly documenting it. And following sequences in tcp_v4_do_rcv()/tcp_v6_do_rcv() are not following standard RCU rules. [a] dst_release(dst); [b] sk->sk_rx_dst = NULL; They look wrong because a delete operation of RCU protected pointer is supposed to clear the pointer before the call_rcu()/synchronize_rcu() guarding actual memory freeing. In some cases indeed, dst could be freed before [b] is done. We could cheat by clearing sk_rx_dst before calling dst_release(), but this seems the right time to stick to standard RCU annotations and debugging facilities. [1] BUG: KASAN: use-after-free in dst_check include/net/dst.h:470 [inline] BUG: KASAN: use-after-free in tcp_v4_early_demux+0x95b/0x960 net/ipv4/tcp_ipv4.c:1792 Read of size 2 at addr ffff88807f1cb73a by task syz-executor.5/9204 CPU: 0 PID: 9204 Comm: syz-executor.5 Not tainted 5.16.0-rc5-syzkaller #0 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 01/01/2011 Call Trace: <TASK> __dump_stack lib/dump_stack.c:88 [inline] dump_stack_lvl+0xcd/0x134 lib/dump_stack.c:106 print_address_description.constprop.0.cold+0x8d/0x320 mm/kasan/report.c:247 __kasan_report mm/kasan/report.c:433 [inline] kasan_report.cold+0x83/0xdf mm/kasan/report.c:450 dst_check include/net/dst.h:470 [inline] tcp_v4_early_demux+0x95b/0x960 net/ipv4/tcp_ipv4.c:1792 ip_rcv_finish_core.constprop.0+0x15de/0x1e80 net/ipv4/ip_input.c:340 ip_list_rcv_finish.constprop.0+0x1b2/0x6e0 net/ipv4/ip_input.c:583 ip_sublist_rcv net/ipv4/ip_input.c:609 [inline] ip_list_rcv+0x34e/0x490 net/ipv4/ip_input.c:644 __netif_receive_skb_list_ptype net/core/dev.c:5508 [inline] __netif_receive_skb_list_core+0x549/0x8e0 net/core/dev.c:5556 __netif_receive_skb_list net/core/dev.c:5608 [inline] netif_receive_skb_list_internal+0x75e/0xd80 net/core/dev.c:5699 gro_normal_list net/core/dev.c:5853 [inline] gro_normal_list net/core/dev.c:5849 [inline] napi_complete_done+0x1f1/0x880 net/core/dev.c:6590 virtqueue_napi_complete drivers/net/virtio_net.c:339 [inline] virtnet_poll+0xca2/0x11b0 drivers/net/virtio_net.c:1557 __napi_poll+0xaf/0x440 net/core/dev.c:7023 napi_poll net/core/dev.c:7090 [inline] net_rx_action+0x801/0xb40 net/core/dev.c:7177 __do_softirq+0x29b/0x9c2 kernel/softirq.c:558 invoke_softirq kernel/softirq.c:432 [inline] __irq_exit_rcu+0x123/0x180 kernel/softirq.c:637 irq_exit_rcu+0x5/0x20 kernel/softirq.c:649 common_interrupt+0x52/0xc0 arch/x86/kernel/irq.c:240 asm_common_interrupt+0x1e/0x40 arch/x86/include/asm/idtentry.h:629 RIP: 0033:0x7f5e972bfd57 Code: 39 d1 73 14 0f 1f 80 00 00 00 00 48 8b 50 f8 48 83 e8 08 48 39 ca 77 f3 48 39 c3 73 3e 48 89 13 48 8b 50 f8 48 89 38 49 8b 0e <48> 8b 3e 48 83 c3 08 48 83 c6 08 eb bc 48 39 d1 72 9e 48 39 d0 73 RSP: 002b:00007fff8a413210 EFLAGS: 00000283 RAX: 00007f5e97108990 RBX: 00007f5e97108338 RCX: ffffffff81d3aa45 RDX: ffffffff81d3aa45 RSI: 00007f5e97108340 RDI: ffffffff81d3aa45 RBP: 00007f5e97107eb8 R08: 00007f5e97108d88 R09: 0000000093c2e8d9 R10: 0000000000000000 R11: 0000000000000000 R12: 00007f5e97107eb0 R13: 00007f5e97108338 R14: 00007f5e97107ea8 R15: 0000000000000019 </TASK> Allocated by task 13: kasan_save_stack+0x1e/0x50 mm/kasan/common.c:38 kasan_set_track mm/kasan/common.c:46 [inline] set_alloc_info mm/kasan/common.c:434 [inline] __kasan_slab_alloc+0x90/0xc0 mm/kasan/common.c:467 kasan_slab_alloc include/linux/kasan.h:259 [inline] slab_post_alloc_hook mm/slab.h:519 [inline] slab_alloc_node mm/slub.c:3234 [inline] slab_alloc mm/slub.c:3242 [inline] kmem_cache_alloc+0x202/0x3a0 mm/slub.c:3247 dst_alloc+0x146/0x1f0 net/core/dst.c:92 rt_dst_alloc+0x73/0x430 net/ipv4/route.c:1613 ip_route_input_slow+0x1817/0x3a20 net/ipv4/route.c:2340 ip_route_input_rcu net/ipv4/route.c:2470 [inline] ip_route_input_noref+0x116/0x2a0 net/ipv4/route.c:2415 ip_rcv_finish_core.constprop.0+0x288/0x1e80 net/ipv4/ip_input.c:354 ip_list_rcv_finish.constprop.0+0x1b2/0x6e0 net/ipv4/ip_input.c:583 ip_sublist_rcv net/ipv4/ip_input.c:609 [inline] ip_list_rcv+0x34e/0x490 net/ipv4/ip_input.c:644 __netif_receive_skb_list_ptype net/core/dev.c:5508 [inline] __netif_receive_skb_list_core+0x549/0x8e0 net/core/dev.c:5556 __netif_receive_skb_list net/core/dev.c:5608 [inline] netif_receive_skb_list_internal+0x75e/0xd80 net/core/dev.c:5699 gro_normal_list net/core/dev.c:5853 [inline] gro_normal_list net/core/dev.c:5849 [inline] napi_complete_done+0x1f1/0x880 net/core/dev.c:6590 virtqueue_napi_complete drivers/net/virtio_net.c:339 [inline] virtnet_poll+0xca2/0x11b0 drivers/net/virtio_net.c:1557 __napi_poll+0xaf/0x440 net/core/dev.c:7023 napi_poll net/core/dev.c:7090 [inline] net_rx_action+0x801/0xb40 net/core/dev.c:7177 __do_softirq+0x29b/0x9c2 kernel/softirq.c:558 Freed by task 13: kasan_save_stack+0x1e/0x50 mm/kasan/common.c:38 kasan_set_track+0x21/0x30 mm/kasan/common.c:46 kasan_set_free_info+0x20/0x30 mm/kasan/generic.c:370 ____kasan_slab_free mm/kasan/common.c:366 [inline] ____kasan_slab_free mm/kasan/common.c:328 [inline] __kasan_slab_free+0xff/0x130 mm/kasan/common.c:374 kasan_slab_free include/linux/kasan.h:235 [inline] slab_free_hook mm/slub.c:1723 [inline] slab_free_freelist_hook+0x8b/0x1c0 mm/slub.c:1749 slab_free mm/slub.c:3513 [inline] kmem_cache_free+0xbd/0x5d0 mm/slub.c:3530 dst_destroy+0x2d6/0x3f0 net/core/dst.c:127 rcu_do_batch kernel/rcu/tree.c:2506 [inline] rcu_core+0x7ab/0x1470 kernel/rcu/tree.c:2741 __do_softirq+0x29b/0x9c2 kernel/softirq.c:558 Last potentially related work creation: kasan_save_stack+0x1e/0x50 mm/kasan/common.c:38 __kasan_record_aux_stack+0xf5/0x120 mm/kasan/generic.c:348 __call_rcu kernel/rcu/tree.c:2985 [inline] call_rcu+0xb1/0x740 kernel/rcu/tree.c:3065 dst_release net/core/dst.c:177 [inline] dst_release+0x79/0xe0 net/core/dst.c:167 tcp_v4_do_rcv+0x612/0x8d0 net/ipv4/tcp_ipv4.c:1712 sk_backlog_rcv include/net/sock.h:1030 [inline] __release_sock+0x134/0x3b0 net/core/sock.c:2768 release_sock+0x54/0x1b0 net/core/sock.c:3300 tcp_sendmsg+0x36/0x40 net/ipv4/tcp.c:1441 inet_sendmsg+0x99/0xe0 net/ipv4/af_inet.c:819 sock_sendmsg_nosec net/socket.c:704 [inline] sock_sendmsg+0xcf/0x120 net/socket.c:724 sock_write_iter+0x289/0x3c0 net/socket.c:1057 call_write_iter include/linux/fs.h:2162 [inline] new_sync_write+0x429/0x660 fs/read_write.c:503 vfs_write+0x7cd/0xae0 fs/read_write.c:590 ksys_write+0x1ee/0x250 fs/read_write.c:643 do_syscall_x64 arch/x86/entry/common.c:50 [inline] do_syscall_64+0x35/0xb0 arch/x86/entry/common.c:80 entry_SYSCALL_64_after_hwframe+0x44/0xae The buggy address belongs to the object at ffff88807f1cb700 which belongs to the cache ip_dst_cache of size 176 The buggy address is located 58 bytes inside of 176-byte region [ffff88807f1cb700, ffff88807f1cb7b0) The buggy address belongs to the page: page:ffffea0001fc72c0 refcount:1 mapcount:0 mapping:0000000000000000 index:0x0 pfn:0x7f1cb flags: 0xfff00000000200(slab|node=0|zone=1|lastcpupid=0x7ff) raw: 00fff00000000200 dead000000000100 dead000000000122 ffff8881413bb780 raw: 0000000000000000 0000000000100010 00000001ffffffff 0000000000000000 page dumped because: kasan: bad access detected page_owner tracks the page as allocated page last allocated via order 0, migratetype Unmovable, gfp_mask 0x112a20(GFP_ATOMIC|__GFP_NOWARN|__GFP_NORETRY|__GFP_HARDWALL), pid 5, ts 108466983062, free_ts 108048976062 prep_new_page mm/page_alloc.c:2418 [inline] get_page_from_freelist+0xa72/0x2f50 mm/page_alloc.c:4149 __alloc_pages+0x1b2/0x500 mm/page_alloc.c:5369 alloc_pages+0x1a7/0x300 mm/mempolicy.c:2191 alloc_slab_page mm/slub.c:1793 [inline] allocate_slab mm/slub.c:1930 [inline] new_slab+0x32d/0x4a0 mm/slub.c:1993 ___slab_alloc+0x918/0xfe0 mm/slub.c:3022 __slab_alloc.constprop.0+0x4d/0xa0 mm/slub.c:3109 slab_alloc_node mm/slub.c:3200 [inline] slab_alloc mm/slub.c:3242 [inline] kmem_cache_alloc+0x35c/0x3a0 mm/slub.c:3247 dst_alloc+0x146/0x1f0 net/core/dst.c:92 rt_dst_alloc+0x73/0x430 net/ipv4/route.c:1613 __mkroute_output net/ipv4/route.c:2564 [inline] ip_route_output_key_hash_rcu+0x921/0x2d00 net/ipv4/route.c:2791 ip_route_output_key_hash+0x18b/0x300 net/ipv4/route.c:2619 __ip_route_output_key include/net/route.h:126 [inline] ip_route_output_flow+0x23/0x150 net/ipv4/route.c:2850 ip_route_output_key include/net/route.h:142 [inline] geneve_get_v4_rt+0x3a6/0x830 drivers/net/geneve.c:809 geneve_xmit_skb drivers/net/geneve.c:899 [inline] geneve_xmit+0xc4a/0x3540 drivers/net/geneve.c:1082 __netdev_start_xmit include/linux/netdevice.h:4994 [inline] netdev_start_xmit include/linux/netdevice.h:5008 [inline] xmit_one net/core/dev.c:3590 [inline] dev_hard_start_xmit+0x1eb/0x920 net/core/dev.c:3606 __dev_queue_xmit+0x299a/0x3650 net/core/dev.c:4229 page last free stack trace: reset_page_owner include/linux/page_owner.h:24 [inline] free_pages_prepare mm/page_alloc.c:1338 [inline] free_pcp_prepare+0x374/0x870 mm/page_alloc.c:1389 free_unref_page_prepare mm/page_alloc.c:3309 [inline] free_unref_page+0x19/0x690 mm/page_alloc.c:3388 qlink_free mm/kasan/quarantine.c:146 [inline] qlist_free_all+0x5a/0xc0 mm/kasan/quarantine.c:165 kasan_quarantine_reduce+0x180/0x200 mm/kasan/quarantine.c:272 __kasan_slab_alloc+0xa2/0xc0 mm/kasan/common.c:444 kasan_slab_alloc include/linux/kasan.h:259 [inline] slab_post_alloc_hook mm/slab.h:519 [inline] slab_alloc_node mm/slub.c:3234 [inline] kmem_cache_alloc_node+0x255/0x3f0 mm/slub.c:3270 __alloc_skb+0x215/0x340 net/core/skbuff.c:414 alloc_skb include/linux/skbuff.h:1126 [inline] alloc_skb_with_frags+0x93/0x620 net/core/skbuff.c:6078 sock_alloc_send_pskb+0x783/0x910 net/core/sock.c:2575 mld_newpack+0x1df/0x770 net/ipv6/mcast.c:1754 add_grhead+0x265/0x330 net/ipv6/mcast.c:1857 add_grec+0x1053/0x14e0 net/ipv6/mcast.c:1995 mld_send_initial_cr.part.0+0xf6/0x230 net/ipv6/mcast.c:2242 mld_send_initial_cr net/ipv6/mcast.c:1232 [inline] mld_dad_work+0x1d3/0x690 net/ipv6/mcast.c:2268 process_one_work+0x9b2/0x1690 kernel/workqueue.c:2298 worker_thread+0x658/0x11f0 kernel/workqueue.c:2445 Memory state around the buggy address: ffff88807f1cb600: fa fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb ffff88807f1cb680: fb fb fb fb fb fb fc fc fc fc fc fc fc fc fc fc >ffff88807f1cb700: fa fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb ^ ffff88807f1cb780: fb fb fb fb fb fb fc fc fc fc fc fc fc fc fc fc ffff88807f1cb800: fa fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb Fixes: 41063e9dd119 ("ipv4: Early TCP socket demux.") Signed-off-by: Eric Dumazet <edumazet@google.com> Link: https://lore.kernel.org/r/20211220143330.680945-1-eric.dumazet@gmail.com Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2021-12-20 17:33:30 +03:00
struct dst_entry *dst = rcu_dereference(sk->sk_rx_dst);
if (dst)
dst = dst_check(dst, 0);
if (dst &&
sk->sk_rx_dst_ifindex == skb->skb_iif)
skb_dst_set_noref(skb, dst);
}
}
return 0;
}
bool tcp_add_backlog(struct sock *sk, struct sk_buff *skb,
enum skb_drop_reason *reason)
{
u32 limit, tail_gso_size, tail_gso_segs;
struct skb_shared_info *shinfo;
const struct tcphdr *th;
struct tcphdr *thtail;
struct sk_buff *tail;
unsigned int hdrlen;
bool fragstolen;
u32 gso_segs;
tcp: do not mess with cloned skbs in tcp_add_backlog() Heiner Kallweit reported that some skbs were sent with the following invalid GSO properties : - gso_size > 0 - gso_type == 0 This was triggerring a WARN_ON_ONCE() in rtl8169_tso_csum_v2. Juerg Haefliger was able to reproduce a similar issue using a lan78xx NIC and a workload mixing TCP incoming traffic and forwarded packets. The problem is that tcp_add_backlog() is writing over gso_segs and gso_size even if the incoming packet will not be coalesced to the backlog tail packet. While skb_try_coalesce() would bail out if tail packet is cloned, this overwriting would lead to corruptions of other packets cooked by lan78xx, sharing a common super-packet. The strategy used by lan78xx is to use a big skb, and split it into all received packets using skb_clone() to avoid copies. The drawback of this strategy is that all the small skb share a common struct skb_shared_info. This patch rewrites TCP gso_size/gso_segs handling to only happen on the tail skb, since skb_try_coalesce() made sure it was not cloned. Fixes: 4f693b55c3d2 ("tcp: implement coalescing on backlog queue") Signed-off-by: Eric Dumazet <edumazet@google.com> Bisected-by: Juerg Haefliger <juergh@canonical.com> Tested-by: Juerg Haefliger <juergh@canonical.com> Reported-by: Heiner Kallweit <hkallweit1@gmail.com> Link: https://bugzilla.kernel.org/show_bug.cgi?id=209423 Link: https://lore.kernel.org/r/20210119164900.766957-1-eric.dumazet@gmail.com Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2021-01-19 19:49:00 +03:00
u32 gso_size;
int delta;
/* In case all data was pulled from skb frags (in __pskb_pull_tail()),
* we can fix skb->truesize to its real value to avoid future drops.
* This is valid because skb is not yet charged to the socket.
* It has been noticed pure SACK packets were sometimes dropped
* (if cooked by drivers without copybreak feature).
*/
skb_condense(skb);
skb_dst_drop(skb);
if (unlikely(tcp_checksum_complete(skb))) {
bh_unlock_sock(sk);
trace_tcp_bad_csum(skb);
*reason = SKB_DROP_REASON_TCP_CSUM;
__TCP_INC_STATS(sock_net(sk), TCP_MIB_CSUMERRORS);
__TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
return true;
}
/* Attempt coalescing to last skb in backlog, even if we are
* above the limits.
* This is okay because skb capacity is limited to MAX_SKB_FRAGS.
*/
th = (const struct tcphdr *)skb->data;
hdrlen = th->doff * 4;
tail = sk->sk_backlog.tail;
if (!tail)
goto no_coalesce;
thtail = (struct tcphdr *)tail->data;
if (TCP_SKB_CB(tail)->end_seq != TCP_SKB_CB(skb)->seq ||
TCP_SKB_CB(tail)->ip_dsfield != TCP_SKB_CB(skb)->ip_dsfield ||
((TCP_SKB_CB(tail)->tcp_flags |
TCP_SKB_CB(skb)->tcp_flags) & (TCPHDR_SYN | TCPHDR_RST | TCPHDR_URG)) ||
!((TCP_SKB_CB(tail)->tcp_flags &
TCP_SKB_CB(skb)->tcp_flags) & TCPHDR_ACK) ||
((TCP_SKB_CB(tail)->tcp_flags ^
TCP_SKB_CB(skb)->tcp_flags) & (TCPHDR_ECE | TCPHDR_CWR)) ||
#ifdef CONFIG_TLS_DEVICE
tail->decrypted != skb->decrypted ||
#endif
thtail->doff != th->doff ||
memcmp(thtail + 1, th + 1, hdrlen - sizeof(*th)))
goto no_coalesce;
__skb_pull(skb, hdrlen);
tcp: do not mess with cloned skbs in tcp_add_backlog() Heiner Kallweit reported that some skbs were sent with the following invalid GSO properties : - gso_size > 0 - gso_type == 0 This was triggerring a WARN_ON_ONCE() in rtl8169_tso_csum_v2. Juerg Haefliger was able to reproduce a similar issue using a lan78xx NIC and a workload mixing TCP incoming traffic and forwarded packets. The problem is that tcp_add_backlog() is writing over gso_segs and gso_size even if the incoming packet will not be coalesced to the backlog tail packet. While skb_try_coalesce() would bail out if tail packet is cloned, this overwriting would lead to corruptions of other packets cooked by lan78xx, sharing a common super-packet. The strategy used by lan78xx is to use a big skb, and split it into all received packets using skb_clone() to avoid copies. The drawback of this strategy is that all the small skb share a common struct skb_shared_info. This patch rewrites TCP gso_size/gso_segs handling to only happen on the tail skb, since skb_try_coalesce() made sure it was not cloned. Fixes: 4f693b55c3d2 ("tcp: implement coalescing on backlog queue") Signed-off-by: Eric Dumazet <edumazet@google.com> Bisected-by: Juerg Haefliger <juergh@canonical.com> Tested-by: Juerg Haefliger <juergh@canonical.com> Reported-by: Heiner Kallweit <hkallweit1@gmail.com> Link: https://bugzilla.kernel.org/show_bug.cgi?id=209423 Link: https://lore.kernel.org/r/20210119164900.766957-1-eric.dumazet@gmail.com Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2021-01-19 19:49:00 +03:00
shinfo = skb_shinfo(skb);
gso_size = shinfo->gso_size ?: skb->len;
gso_segs = shinfo->gso_segs ?: 1;
shinfo = skb_shinfo(tail);
tail_gso_size = shinfo->gso_size ?: (tail->len - hdrlen);
tail_gso_segs = shinfo->gso_segs ?: 1;
if (skb_try_coalesce(tail, skb, &fragstolen, &delta)) {
TCP_SKB_CB(tail)->end_seq = TCP_SKB_CB(skb)->end_seq;
tcp: fix receive window update in tcp_add_backlog() We got reports from GKE customers flows being reset by netfilter conntrack unless nf_conntrack_tcp_be_liberal is set to 1. Traces seemed to suggest ACK packet being dropped by the packet capture, or more likely that ACK were received in the wrong order. wscale=7, SYN and SYNACK not shown here. This ACK allows the sender to send 1871*128 bytes from seq 51359321 : New right edge of the window -> 51359321+1871*128=51598809 09:17:23.389210 IP A > B: Flags [.], ack 51359321, win 1871, options [nop,nop,TS val 10 ecr 999], length 0 09:17:23.389212 IP B > A: Flags [.], seq 51422681:51424089, ack 1577, win 268, options [nop,nop,TS val 999 ecr 10], length 1408 09:17:23.389214 IP A > B: Flags [.], ack 51422681, win 1376, options [nop,nop,TS val 10 ecr 999], length 0 09:17:23.389253 IP B > A: Flags [.], seq 51424089:51488857, ack 1577, win 268, options [nop,nop,TS val 999 ecr 10], length 64768 09:17:23.389272 IP A > B: Flags [.], ack 51488857, win 859, options [nop,nop,TS val 10 ecr 999], length 0 09:17:23.389275 IP B > A: Flags [.], seq 51488857:51521241, ack 1577, win 268, options [nop,nop,TS val 999 ecr 10], length 32384 Receiver now allows to send 606*128=77568 from seq 51521241 : New right edge of the window -> 51521241+606*128=51598809 09:17:23.389296 IP A > B: Flags [.], ack 51521241, win 606, options [nop,nop,TS val 10 ecr 999], length 0 09:17:23.389308 IP B > A: Flags [.], seq 51521241:51553625, ack 1577, win 268, options [nop,nop,TS val 999 ecr 10], length 32384 It seems the sender exceeds RWIN allowance, since 51611353 > 51598809 09:17:23.389346 IP B > A: Flags [.], seq 51553625:51611353, ack 1577, win 268, options [nop,nop,TS val 999 ecr 10], length 57728 09:17:23.389356 IP B > A: Flags [.], seq 51611353:51618393, ack 1577, win 268, options [nop,nop,TS val 999 ecr 10], length 7040 09:17:23.389367 IP A > B: Flags [.], ack 51611353, win 0, options [nop,nop,TS val 10 ecr 999], length 0 netfilter conntrack is not happy and sends RST 09:17:23.389389 IP A > B: Flags [R], seq 92176528, win 0, length 0 09:17:23.389488 IP B > A: Flags [R], seq 174478967, win 0, length 0 Now imagine ACK were delivered out of order and tcp_add_backlog() sets window based on wrong packet. New right edge of the window -> 51521241+859*128=51631193 Normally TCP stack handles OOO packets just fine, but it turns out tcp_add_backlog() does not. It can update the window field of the aggregated packet even if the ACK sequence of the last received packet is too old. Many thanks to Alexandre Ferrieux for independently reporting the issue and suggesting a fix. Fixes: 4f693b55c3d2 ("tcp: implement coalescing on backlog queue") Signed-off-by: Eric Dumazet <edumazet@google.com> Reported-by: Alexandre Ferrieux <alexandre.ferrieux@orange.com> Acked-by: Soheil Hassas Yeganeh <soheil@google.com> Acked-by: Neal Cardwell <ncardwell@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2020-10-05 16:48:13 +03:00
if (likely(!before(TCP_SKB_CB(skb)->ack_seq, TCP_SKB_CB(tail)->ack_seq))) {
TCP_SKB_CB(tail)->ack_seq = TCP_SKB_CB(skb)->ack_seq;
tcp: fix receive window update in tcp_add_backlog() We got reports from GKE customers flows being reset by netfilter conntrack unless nf_conntrack_tcp_be_liberal is set to 1. Traces seemed to suggest ACK packet being dropped by the packet capture, or more likely that ACK were received in the wrong order. wscale=7, SYN and SYNACK not shown here. This ACK allows the sender to send 1871*128 bytes from seq 51359321 : New right edge of the window -> 51359321+1871*128=51598809 09:17:23.389210 IP A > B: Flags [.], ack 51359321, win 1871, options [nop,nop,TS val 10 ecr 999], length 0 09:17:23.389212 IP B > A: Flags [.], seq 51422681:51424089, ack 1577, win 268, options [nop,nop,TS val 999 ecr 10], length 1408 09:17:23.389214 IP A > B: Flags [.], ack 51422681, win 1376, options [nop,nop,TS val 10 ecr 999], length 0 09:17:23.389253 IP B > A: Flags [.], seq 51424089:51488857, ack 1577, win 268, options [nop,nop,TS val 999 ecr 10], length 64768 09:17:23.389272 IP A > B: Flags [.], ack 51488857, win 859, options [nop,nop,TS val 10 ecr 999], length 0 09:17:23.389275 IP B > A: Flags [.], seq 51488857:51521241, ack 1577, win 268, options [nop,nop,TS val 999 ecr 10], length 32384 Receiver now allows to send 606*128=77568 from seq 51521241 : New right edge of the window -> 51521241+606*128=51598809 09:17:23.389296 IP A > B: Flags [.], ack 51521241, win 606, options [nop,nop,TS val 10 ecr 999], length 0 09:17:23.389308 IP B > A: Flags [.], seq 51521241:51553625, ack 1577, win 268, options [nop,nop,TS val 999 ecr 10], length 32384 It seems the sender exceeds RWIN allowance, since 51611353 > 51598809 09:17:23.389346 IP B > A: Flags [.], seq 51553625:51611353, ack 1577, win 268, options [nop,nop,TS val 999 ecr 10], length 57728 09:17:23.389356 IP B > A: Flags [.], seq 51611353:51618393, ack 1577, win 268, options [nop,nop,TS val 999 ecr 10], length 7040 09:17:23.389367 IP A > B: Flags [.], ack 51611353, win 0, options [nop,nop,TS val 10 ecr 999], length 0 netfilter conntrack is not happy and sends RST 09:17:23.389389 IP A > B: Flags [R], seq 92176528, win 0, length 0 09:17:23.389488 IP B > A: Flags [R], seq 174478967, win 0, length 0 Now imagine ACK were delivered out of order and tcp_add_backlog() sets window based on wrong packet. New right edge of the window -> 51521241+859*128=51631193 Normally TCP stack handles OOO packets just fine, but it turns out tcp_add_backlog() does not. It can update the window field of the aggregated packet even if the ACK sequence of the last received packet is too old. Many thanks to Alexandre Ferrieux for independently reporting the issue and suggesting a fix. Fixes: 4f693b55c3d2 ("tcp: implement coalescing on backlog queue") Signed-off-by: Eric Dumazet <edumazet@google.com> Reported-by: Alexandre Ferrieux <alexandre.ferrieux@orange.com> Acked-by: Soheil Hassas Yeganeh <soheil@google.com> Acked-by: Neal Cardwell <ncardwell@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2020-10-05 16:48:13 +03:00
thtail->window = th->window;
}
/* We have to update both TCP_SKB_CB(tail)->tcp_flags and
* thtail->fin, so that the fast path in tcp_rcv_established()
* is not entered if we append a packet with a FIN.
* SYN, RST, URG are not present.
* ACK is set on both packets.
* PSH : we do not really care in TCP stack,
* at least for 'GRO' packets.
*/
thtail->fin |= th->fin;
TCP_SKB_CB(tail)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags;
if (TCP_SKB_CB(skb)->has_rxtstamp) {
TCP_SKB_CB(tail)->has_rxtstamp = true;
tail->tstamp = skb->tstamp;
skb_hwtstamps(tail)->hwtstamp = skb_hwtstamps(skb)->hwtstamp;
}
/* Not as strict as GRO. We only need to carry mss max value */
tcp: do not mess with cloned skbs in tcp_add_backlog() Heiner Kallweit reported that some skbs were sent with the following invalid GSO properties : - gso_size > 0 - gso_type == 0 This was triggerring a WARN_ON_ONCE() in rtl8169_tso_csum_v2. Juerg Haefliger was able to reproduce a similar issue using a lan78xx NIC and a workload mixing TCP incoming traffic and forwarded packets. The problem is that tcp_add_backlog() is writing over gso_segs and gso_size even if the incoming packet will not be coalesced to the backlog tail packet. While skb_try_coalesce() would bail out if tail packet is cloned, this overwriting would lead to corruptions of other packets cooked by lan78xx, sharing a common super-packet. The strategy used by lan78xx is to use a big skb, and split it into all received packets using skb_clone() to avoid copies. The drawback of this strategy is that all the small skb share a common struct skb_shared_info. This patch rewrites TCP gso_size/gso_segs handling to only happen on the tail skb, since skb_try_coalesce() made sure it was not cloned. Fixes: 4f693b55c3d2 ("tcp: implement coalescing on backlog queue") Signed-off-by: Eric Dumazet <edumazet@google.com> Bisected-by: Juerg Haefliger <juergh@canonical.com> Tested-by: Juerg Haefliger <juergh@canonical.com> Reported-by: Heiner Kallweit <hkallweit1@gmail.com> Link: https://bugzilla.kernel.org/show_bug.cgi?id=209423 Link: https://lore.kernel.org/r/20210119164900.766957-1-eric.dumazet@gmail.com Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2021-01-19 19:49:00 +03:00
shinfo->gso_size = max(gso_size, tail_gso_size);
shinfo->gso_segs = min_t(u32, gso_segs + tail_gso_segs, 0xFFFF);
sk->sk_backlog.len += delta;
__NET_INC_STATS(sock_net(sk),
LINUX_MIB_TCPBACKLOGCOALESCE);
kfree_skb_partial(skb, fragstolen);
return false;
}
__skb_push(skb, hdrlen);
no_coalesce:
limit = (u32)READ_ONCE(sk->sk_rcvbuf) + (u32)(READ_ONCE(sk->sk_sndbuf) >> 1);
/* Only socket owner can try to collapse/prune rx queues
* to reduce memory overhead, so add a little headroom here.
* Few sockets backlog are possibly concurrently non empty.
*/
limit += 64 * 1024;
if (unlikely(sk_add_backlog(sk, skb, limit))) {
bh_unlock_sock(sk);
*reason = SKB_DROP_REASON_SOCKET_BACKLOG;
__NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPBACKLOGDROP);
return true;
}
return false;
}
EXPORT_SYMBOL(tcp_add_backlog);
int tcp_filter(struct sock *sk, struct sk_buff *skb)
{
struct tcphdr *th = (struct tcphdr *)skb->data;
return sk_filter_trim_cap(sk, skb, th->doff * 4);
}
EXPORT_SYMBOL(tcp_filter);
tcp: add tcp_v4_fill_cb()/tcp_v4_restore_cb() James Morris reported kernel stack corruption bug [1] while running the SELinux testsuite, and bisected to a recent commit bffa72cf7f9d ("net: sk_buff rbnode reorg") We believe this commit is fine, but exposes an older bug. SELinux code runs from tcp_filter() and might send an ICMP, expecting IP options to be found in skb->cb[] using regular IPCB placement. We need to defer TCP mangling of skb->cb[] after tcp_filter() calls. This patch adds tcp_v4_fill_cb()/tcp_v4_restore_cb() in a very similar way we added them for IPv6. [1] [ 339.806024] SELinux: failure in selinux_parse_skb(), unable to parse packet [ 339.822505] Kernel panic - not syncing: stack-protector: Kernel stack is corrupted in: ffffffff81745af5 [ 339.822505] [ 339.852250] CPU: 4 PID: 3642 Comm: client Not tainted 4.15.0-rc1-test #15 [ 339.868498] Hardware name: LENOVO 10FGS0VA1L/30BC, BIOS FWKT68A 01/19/2017 [ 339.885060] Call Trace: [ 339.896875] <IRQ> [ 339.908103] dump_stack+0x63/0x87 [ 339.920645] panic+0xe8/0x248 [ 339.932668] ? ip_push_pending_frames+0x33/0x40 [ 339.946328] ? icmp_send+0x525/0x530 [ 339.958861] ? kfree_skbmem+0x60/0x70 [ 339.971431] __stack_chk_fail+0x1b/0x20 [ 339.984049] icmp_send+0x525/0x530 [ 339.996205] ? netlbl_skbuff_err+0x36/0x40 [ 340.008997] ? selinux_netlbl_err+0x11/0x20 [ 340.021816] ? selinux_socket_sock_rcv_skb+0x211/0x230 [ 340.035529] ? security_sock_rcv_skb+0x3b/0x50 [ 340.048471] ? sk_filter_trim_cap+0x44/0x1c0 [ 340.061246] ? tcp_v4_inbound_md5_hash+0x69/0x1b0 [ 340.074562] ? tcp_filter+0x2c/0x40 [ 340.086400] ? tcp_v4_rcv+0x820/0xa20 [ 340.098329] ? ip_local_deliver_finish+0x71/0x1a0 [ 340.111279] ? ip_local_deliver+0x6f/0xe0 [ 340.123535] ? ip_rcv_finish+0x3a0/0x3a0 [ 340.135523] ? ip_rcv_finish+0xdb/0x3a0 [ 340.147442] ? ip_rcv+0x27c/0x3c0 [ 340.158668] ? inet_del_offload+0x40/0x40 [ 340.170580] ? __netif_receive_skb_core+0x4ac/0x900 [ 340.183285] ? rcu_accelerate_cbs+0x5b/0x80 [ 340.195282] ? __netif_receive_skb+0x18/0x60 [ 340.207288] ? process_backlog+0x95/0x140 [ 340.218948] ? net_rx_action+0x26c/0x3b0 [ 340.230416] ? __do_softirq+0xc9/0x26a [ 340.241625] ? do_softirq_own_stack+0x2a/0x40 [ 340.253368] </IRQ> [ 340.262673] ? do_softirq+0x50/0x60 [ 340.273450] ? __local_bh_enable_ip+0x57/0x60 [ 340.285045] ? ip_finish_output2+0x175/0x350 [ 340.296403] ? ip_finish_output+0x127/0x1d0 [ 340.307665] ? nf_hook_slow+0x3c/0xb0 [ 340.318230] ? ip_output+0x72/0xe0 [ 340.328524] ? ip_fragment.constprop.54+0x80/0x80 [ 340.340070] ? ip_local_out+0x35/0x40 [ 340.350497] ? ip_queue_xmit+0x15c/0x3f0 [ 340.361060] ? __kmalloc_reserve.isra.40+0x31/0x90 [ 340.372484] ? __skb_clone+0x2e/0x130 [ 340.382633] ? tcp_transmit_skb+0x558/0xa10 [ 340.393262] ? tcp_connect+0x938/0xad0 [ 340.403370] ? ktime_get_with_offset+0x4c/0xb0 [ 340.414206] ? tcp_v4_connect+0x457/0x4e0 [ 340.424471] ? __inet_stream_connect+0xb3/0x300 [ 340.435195] ? inet_stream_connect+0x3b/0x60 [ 340.445607] ? SYSC_connect+0xd9/0x110 [ 340.455455] ? __audit_syscall_entry+0xaf/0x100 [ 340.466112] ? syscall_trace_enter+0x1d0/0x2b0 [ 340.476636] ? __audit_syscall_exit+0x209/0x290 [ 340.487151] ? SyS_connect+0xe/0x10 [ 340.496453] ? do_syscall_64+0x67/0x1b0 [ 340.506078] ? entry_SYSCALL64_slow_path+0x25/0x25 Fixes: 971f10eca186 ("tcp: better TCP_SKB_CB layout to reduce cache line misses") Signed-off-by: Eric Dumazet <edumazet@google.com> Reported-by: James Morris <james.l.morris@oracle.com> Tested-by: James Morris <james.l.morris@oracle.com> Tested-by: Casey Schaufler <casey@schaufler-ca.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-12-03 20:32:59 +03:00
static void tcp_v4_restore_cb(struct sk_buff *skb)
{
memmove(IPCB(skb), &TCP_SKB_CB(skb)->header.h4,
sizeof(struct inet_skb_parm));
}
static void tcp_v4_fill_cb(struct sk_buff *skb, const struct iphdr *iph,
const struct tcphdr *th)
{
/* This is tricky : We move IPCB at its correct location into TCP_SKB_CB()
* barrier() makes sure compiler wont play fool^Waliasing games.
*/
memmove(&TCP_SKB_CB(skb)->header.h4, IPCB(skb),
sizeof(struct inet_skb_parm));
barrier();
TCP_SKB_CB(skb)->seq = ntohl(th->seq);
TCP_SKB_CB(skb)->end_seq = (TCP_SKB_CB(skb)->seq + th->syn + th->fin +
skb->len - th->doff * 4);
TCP_SKB_CB(skb)->ack_seq = ntohl(th->ack_seq);
TCP_SKB_CB(skb)->tcp_flags = tcp_flag_byte(th);
TCP_SKB_CB(skb)->tcp_tw_isn = 0;
TCP_SKB_CB(skb)->ip_dsfield = ipv4_get_dsfield(iph);
TCP_SKB_CB(skb)->sacked = 0;
TCP_SKB_CB(skb)->has_rxtstamp =
skb->tstamp || skb_hwtstamps(skb)->hwtstamp;
}
/*
* From tcp_input.c
*/
int tcp_v4_rcv(struct sk_buff *skb)
{
struct net *net = dev_net(skb->dev);
enum skb_drop_reason drop_reason;
int sdif = inet_sdif(skb);
int dif = inet_iif(skb);
const struct iphdr *iph;
const struct tcphdr *th;
bool refcounted;
struct sock *sk;
int ret;
drop_reason = SKB_DROP_REASON_NOT_SPECIFIED;
if (skb->pkt_type != PACKET_HOST)
goto discard_it;
/* Count it even if it's bad */
__TCP_INC_STATS(net, TCP_MIB_INSEGS);
if (!pskb_may_pull(skb, sizeof(struct tcphdr)))
goto discard_it;
th = (const struct tcphdr *)skb->data;
if (unlikely(th->doff < sizeof(struct tcphdr) / 4)) {
drop_reason = SKB_DROP_REASON_PKT_TOO_SMALL;
goto bad_packet;
}
if (!pskb_may_pull(skb, th->doff * 4))
goto discard_it;
/* An explanation is required here, I think.
* Packet length and doff are validated by header prediction,
* provided case of th->doff==0 is eliminated.
* So, we defer the checks. */
if (skb_checksum_init(skb, IPPROTO_TCP, inet_compute_pseudo))
goto csum_error;
th = (const struct tcphdr *)skb->data;
iph = ip_hdr(skb);
lookup:
sk = __inet_lookup_skb(net->ipv4.tcp_death_row.hashinfo,
skb, __tcp_hdrlen(th), th->source,
th->dest, sdif, &refcounted);
if (!sk)
goto no_tcp_socket;
process:
if (sk->sk_state == TCP_TIME_WAIT)
goto do_time_wait;
if (sk->sk_state == TCP_NEW_SYN_RECV) {
struct request_sock *req = inet_reqsk(sk);
bool req_stolen = false;
struct sock *nsk;
sk = req->rsk_listener;
tcp: add a missing nf_reset_ct() in 3WHS handling When the third packet of 3WHS connection establishment contains payload, it is added into socket receive queue without the XFRM check and the drop of connection tracking context. This means that if the data is left unread in the socket receive queue, conntrack module can not be unloaded. As most applications usually reads the incoming data immediately after accept(), bug has been hiding for quite a long time. Commit 68822bdf76f1 ("net: generalize skb freeing deferral to per-cpu lists") exposed this bug because even if the application reads this data, the skb with nfct state could stay in a per-cpu cache for an arbitrary time, if said cpu no longer process RX softirqs. Many thanks to Ilya Maximets for reporting this issue, and for testing various patches: https://lore.kernel.org/netdev/20220619003919.394622-1-i.maximets@ovn.org/ Note that I also added a missing xfrm4_policy_check() call, although this is probably not a big issue, as the SYN packet should have been dropped earlier. Fixes: b59c270104f0 ("[NETFILTER]: Keep conntrack reference until IPsec policy checks are done") Reported-by: Ilya Maximets <i.maximets@ovn.org> Signed-off-by: Eric Dumazet <edumazet@google.com> Cc: Florian Westphal <fw@strlen.de> Cc: Pablo Neira Ayuso <pablo@netfilter.org> Cc: Steffen Klassert <steffen.klassert@secunet.com> Tested-by: Ilya Maximets <i.maximets@ovn.org> Reviewed-by: Ilya Maximets <i.maximets@ovn.org> Link: https://lore.kernel.org/r/20220623050436.1290307-1-edumazet@google.com Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2022-06-23 08:04:36 +03:00
if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb))
drop_reason = SKB_DROP_REASON_XFRM_POLICY;
else
drop_reason = tcp_inbound_md5_hash(sk, skb,
&iph->saddr, &iph->daddr,
AF_INET, dif, sdif);
if (unlikely(drop_reason)) {
sk_drops_add(sk, skb);
reqsk_put(req);
goto discard_it;
}
if (tcp_checksum_complete(skb)) {
reqsk_put(req);
goto csum_error;
}
if (unlikely(sk->sk_state != TCP_LISTEN)) {
tcp: Migrate TCP_NEW_SYN_RECV requests at receiving the final ACK. This patch also changes the code to call reuseport_migrate_sock() and inet_reqsk_clone(), but unlike the other cases, we do not call inet_reqsk_clone() right after reuseport_migrate_sock(). Currently, in the receive path for TCP_NEW_SYN_RECV sockets, its listener has three kinds of refcnt: (A) for listener itself (B) carried by reuqest_sock (C) sock_hold() in tcp_v[46]_rcv() While processing the req, (A) may disappear by close(listener). Also, (B) can disappear by accept(listener) once we put the req into the accept queue. So, we have to hold another refcnt (C) for the listener to prevent use-after-free. For socket migration, we call reuseport_migrate_sock() to select a listener with (A) and to increment the new listener's refcnt in tcp_v[46]_rcv(). This refcnt corresponds to (C) and is cleaned up later in tcp_v[46]_rcv(). Thus we have to take another refcnt (B) for the newly cloned request_sock. In inet_csk_complete_hashdance(), we hold the count (B), clone the req, and try to put the new req into the accept queue. By migrating req after winning the "own_req" race, we can avoid such a worst situation: CPU 1 looks up req1 CPU 2 looks up req1, unhashes it, then CPU 1 loses the race CPU 3 looks up req2, unhashes it, then CPU 2 loses the race ... Signed-off-by: Kuniyuki Iwashima <kuniyu@amazon.co.jp> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Reviewed-by: Eric Dumazet <edumazet@google.com> Acked-by: Martin KaFai Lau <kafai@fb.com> Link: https://lore.kernel.org/bpf/20210612123224.12525-8-kuniyu@amazon.co.jp
2021-06-12 15:32:20 +03:00
nsk = reuseport_migrate_sock(sk, req_to_sk(req), skb);
if (!nsk) {
inet_csk_reqsk_queue_drop_and_put(sk, req);
goto lookup;
}
sk = nsk;
/* reuseport_migrate_sock() has already held one sk_refcnt
* before returning.
*/
} else {
/* We own a reference on the listener, increase it again
* as we might lose it too soon.
*/
sock_hold(sk);
}
refcounted = true;
nsk = NULL;
tcp: add tcp_v4_fill_cb()/tcp_v4_restore_cb() James Morris reported kernel stack corruption bug [1] while running the SELinux testsuite, and bisected to a recent commit bffa72cf7f9d ("net: sk_buff rbnode reorg") We believe this commit is fine, but exposes an older bug. SELinux code runs from tcp_filter() and might send an ICMP, expecting IP options to be found in skb->cb[] using regular IPCB placement. We need to defer TCP mangling of skb->cb[] after tcp_filter() calls. This patch adds tcp_v4_fill_cb()/tcp_v4_restore_cb() in a very similar way we added them for IPv6. [1] [ 339.806024] SELinux: failure in selinux_parse_skb(), unable to parse packet [ 339.822505] Kernel panic - not syncing: stack-protector: Kernel stack is corrupted in: ffffffff81745af5 [ 339.822505] [ 339.852250] CPU: 4 PID: 3642 Comm: client Not tainted 4.15.0-rc1-test #15 [ 339.868498] Hardware name: LENOVO 10FGS0VA1L/30BC, BIOS FWKT68A 01/19/2017 [ 339.885060] Call Trace: [ 339.896875] <IRQ> [ 339.908103] dump_stack+0x63/0x87 [ 339.920645] panic+0xe8/0x248 [ 339.932668] ? ip_push_pending_frames+0x33/0x40 [ 339.946328] ? icmp_send+0x525/0x530 [ 339.958861] ? kfree_skbmem+0x60/0x70 [ 339.971431] __stack_chk_fail+0x1b/0x20 [ 339.984049] icmp_send+0x525/0x530 [ 339.996205] ? netlbl_skbuff_err+0x36/0x40 [ 340.008997] ? selinux_netlbl_err+0x11/0x20 [ 340.021816] ? selinux_socket_sock_rcv_skb+0x211/0x230 [ 340.035529] ? security_sock_rcv_skb+0x3b/0x50 [ 340.048471] ? sk_filter_trim_cap+0x44/0x1c0 [ 340.061246] ? tcp_v4_inbound_md5_hash+0x69/0x1b0 [ 340.074562] ? tcp_filter+0x2c/0x40 [ 340.086400] ? tcp_v4_rcv+0x820/0xa20 [ 340.098329] ? ip_local_deliver_finish+0x71/0x1a0 [ 340.111279] ? ip_local_deliver+0x6f/0xe0 [ 340.123535] ? ip_rcv_finish+0x3a0/0x3a0 [ 340.135523] ? ip_rcv_finish+0xdb/0x3a0 [ 340.147442] ? ip_rcv+0x27c/0x3c0 [ 340.158668] ? inet_del_offload+0x40/0x40 [ 340.170580] ? __netif_receive_skb_core+0x4ac/0x900 [ 340.183285] ? rcu_accelerate_cbs+0x5b/0x80 [ 340.195282] ? __netif_receive_skb+0x18/0x60 [ 340.207288] ? process_backlog+0x95/0x140 [ 340.218948] ? net_rx_action+0x26c/0x3b0 [ 340.230416] ? __do_softirq+0xc9/0x26a [ 340.241625] ? do_softirq_own_stack+0x2a/0x40 [ 340.253368] </IRQ> [ 340.262673] ? do_softirq+0x50/0x60 [ 340.273450] ? __local_bh_enable_ip+0x57/0x60 [ 340.285045] ? ip_finish_output2+0x175/0x350 [ 340.296403] ? ip_finish_output+0x127/0x1d0 [ 340.307665] ? nf_hook_slow+0x3c/0xb0 [ 340.318230] ? ip_output+0x72/0xe0 [ 340.328524] ? ip_fragment.constprop.54+0x80/0x80 [ 340.340070] ? ip_local_out+0x35/0x40 [ 340.350497] ? ip_queue_xmit+0x15c/0x3f0 [ 340.361060] ? __kmalloc_reserve.isra.40+0x31/0x90 [ 340.372484] ? __skb_clone+0x2e/0x130 [ 340.382633] ? tcp_transmit_skb+0x558/0xa10 [ 340.393262] ? tcp_connect+0x938/0xad0 [ 340.403370] ? ktime_get_with_offset+0x4c/0xb0 [ 340.414206] ? tcp_v4_connect+0x457/0x4e0 [ 340.424471] ? __inet_stream_connect+0xb3/0x300 [ 340.435195] ? inet_stream_connect+0x3b/0x60 [ 340.445607] ? SYSC_connect+0xd9/0x110 [ 340.455455] ? __audit_syscall_entry+0xaf/0x100 [ 340.466112] ? syscall_trace_enter+0x1d0/0x2b0 [ 340.476636] ? __audit_syscall_exit+0x209/0x290 [ 340.487151] ? SyS_connect+0xe/0x10 [ 340.496453] ? do_syscall_64+0x67/0x1b0 [ 340.506078] ? entry_SYSCALL64_slow_path+0x25/0x25 Fixes: 971f10eca186 ("tcp: better TCP_SKB_CB layout to reduce cache line misses") Signed-off-by: Eric Dumazet <edumazet@google.com> Reported-by: James Morris <james.l.morris@oracle.com> Tested-by: James Morris <james.l.morris@oracle.com> Tested-by: Casey Schaufler <casey@schaufler-ca.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-12-03 20:32:59 +03:00
if (!tcp_filter(sk, skb)) {
th = (const struct tcphdr *)skb->data;
iph = ip_hdr(skb);
tcp_v4_fill_cb(skb, iph, th);
nsk = tcp_check_req(sk, skb, req, false, &req_stolen);
} else {
drop_reason = SKB_DROP_REASON_SOCKET_FILTER;
tcp: add tcp_v4_fill_cb()/tcp_v4_restore_cb() James Morris reported kernel stack corruption bug [1] while running the SELinux testsuite, and bisected to a recent commit bffa72cf7f9d ("net: sk_buff rbnode reorg") We believe this commit is fine, but exposes an older bug. SELinux code runs from tcp_filter() and might send an ICMP, expecting IP options to be found in skb->cb[] using regular IPCB placement. We need to defer TCP mangling of skb->cb[] after tcp_filter() calls. This patch adds tcp_v4_fill_cb()/tcp_v4_restore_cb() in a very similar way we added them for IPv6. [1] [ 339.806024] SELinux: failure in selinux_parse_skb(), unable to parse packet [ 339.822505] Kernel panic - not syncing: stack-protector: Kernel stack is corrupted in: ffffffff81745af5 [ 339.822505] [ 339.852250] CPU: 4 PID: 3642 Comm: client Not tainted 4.15.0-rc1-test #15 [ 339.868498] Hardware name: LENOVO 10FGS0VA1L/30BC, BIOS FWKT68A 01/19/2017 [ 339.885060] Call Trace: [ 339.896875] <IRQ> [ 339.908103] dump_stack+0x63/0x87 [ 339.920645] panic+0xe8/0x248 [ 339.932668] ? ip_push_pending_frames+0x33/0x40 [ 339.946328] ? icmp_send+0x525/0x530 [ 339.958861] ? kfree_skbmem+0x60/0x70 [ 339.971431] __stack_chk_fail+0x1b/0x20 [ 339.984049] icmp_send+0x525/0x530 [ 339.996205] ? netlbl_skbuff_err+0x36/0x40 [ 340.008997] ? selinux_netlbl_err+0x11/0x20 [ 340.021816] ? selinux_socket_sock_rcv_skb+0x211/0x230 [ 340.035529] ? security_sock_rcv_skb+0x3b/0x50 [ 340.048471] ? sk_filter_trim_cap+0x44/0x1c0 [ 340.061246] ? tcp_v4_inbound_md5_hash+0x69/0x1b0 [ 340.074562] ? tcp_filter+0x2c/0x40 [ 340.086400] ? tcp_v4_rcv+0x820/0xa20 [ 340.098329] ? ip_local_deliver_finish+0x71/0x1a0 [ 340.111279] ? ip_local_deliver+0x6f/0xe0 [ 340.123535] ? ip_rcv_finish+0x3a0/0x3a0 [ 340.135523] ? ip_rcv_finish+0xdb/0x3a0 [ 340.147442] ? ip_rcv+0x27c/0x3c0 [ 340.158668] ? inet_del_offload+0x40/0x40 [ 340.170580] ? __netif_receive_skb_core+0x4ac/0x900 [ 340.183285] ? rcu_accelerate_cbs+0x5b/0x80 [ 340.195282] ? __netif_receive_skb+0x18/0x60 [ 340.207288] ? process_backlog+0x95/0x140 [ 340.218948] ? net_rx_action+0x26c/0x3b0 [ 340.230416] ? __do_softirq+0xc9/0x26a [ 340.241625] ? do_softirq_own_stack+0x2a/0x40 [ 340.253368] </IRQ> [ 340.262673] ? do_softirq+0x50/0x60 [ 340.273450] ? __local_bh_enable_ip+0x57/0x60 [ 340.285045] ? ip_finish_output2+0x175/0x350 [ 340.296403] ? ip_finish_output+0x127/0x1d0 [ 340.307665] ? nf_hook_slow+0x3c/0xb0 [ 340.318230] ? ip_output+0x72/0xe0 [ 340.328524] ? ip_fragment.constprop.54+0x80/0x80 [ 340.340070] ? ip_local_out+0x35/0x40 [ 340.350497] ? ip_queue_xmit+0x15c/0x3f0 [ 340.361060] ? __kmalloc_reserve.isra.40+0x31/0x90 [ 340.372484] ? __skb_clone+0x2e/0x130 [ 340.382633] ? tcp_transmit_skb+0x558/0xa10 [ 340.393262] ? tcp_connect+0x938/0xad0 [ 340.403370] ? ktime_get_with_offset+0x4c/0xb0 [ 340.414206] ? tcp_v4_connect+0x457/0x4e0 [ 340.424471] ? __inet_stream_connect+0xb3/0x300 [ 340.435195] ? inet_stream_connect+0x3b/0x60 [ 340.445607] ? SYSC_connect+0xd9/0x110 [ 340.455455] ? __audit_syscall_entry+0xaf/0x100 [ 340.466112] ? syscall_trace_enter+0x1d0/0x2b0 [ 340.476636] ? __audit_syscall_exit+0x209/0x290 [ 340.487151] ? SyS_connect+0xe/0x10 [ 340.496453] ? do_syscall_64+0x67/0x1b0 [ 340.506078] ? entry_SYSCALL64_slow_path+0x25/0x25 Fixes: 971f10eca186 ("tcp: better TCP_SKB_CB layout to reduce cache line misses") Signed-off-by: Eric Dumazet <edumazet@google.com> Reported-by: James Morris <james.l.morris@oracle.com> Tested-by: James Morris <james.l.morris@oracle.com> Tested-by: Casey Schaufler <casey@schaufler-ca.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-12-03 20:32:59 +03:00
}
if (!nsk) {
reqsk_put(req);
if (req_stolen) {
/* Another cpu got exclusive access to req
* and created a full blown socket.
* Try to feed this packet to this socket
* instead of discarding it.
*/
tcp_v4_restore_cb(skb);
sock_put(sk);
goto lookup;
}
goto discard_and_relse;
}
tcp: add a missing nf_reset_ct() in 3WHS handling When the third packet of 3WHS connection establishment contains payload, it is added into socket receive queue without the XFRM check and the drop of connection tracking context. This means that if the data is left unread in the socket receive queue, conntrack module can not be unloaded. As most applications usually reads the incoming data immediately after accept(), bug has been hiding for quite a long time. Commit 68822bdf76f1 ("net: generalize skb freeing deferral to per-cpu lists") exposed this bug because even if the application reads this data, the skb with nfct state could stay in a per-cpu cache for an arbitrary time, if said cpu no longer process RX softirqs. Many thanks to Ilya Maximets for reporting this issue, and for testing various patches: https://lore.kernel.org/netdev/20220619003919.394622-1-i.maximets@ovn.org/ Note that I also added a missing xfrm4_policy_check() call, although this is probably not a big issue, as the SYN packet should have been dropped earlier. Fixes: b59c270104f0 ("[NETFILTER]: Keep conntrack reference until IPsec policy checks are done") Reported-by: Ilya Maximets <i.maximets@ovn.org> Signed-off-by: Eric Dumazet <edumazet@google.com> Cc: Florian Westphal <fw@strlen.de> Cc: Pablo Neira Ayuso <pablo@netfilter.org> Cc: Steffen Klassert <steffen.klassert@secunet.com> Tested-by: Ilya Maximets <i.maximets@ovn.org> Reviewed-by: Ilya Maximets <i.maximets@ovn.org> Link: https://lore.kernel.org/r/20220623050436.1290307-1-edumazet@google.com Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2022-06-23 08:04:36 +03:00
nf_reset_ct(skb);
if (nsk == sk) {
reqsk_put(req);
tcp: add tcp_v4_fill_cb()/tcp_v4_restore_cb() James Morris reported kernel stack corruption bug [1] while running the SELinux testsuite, and bisected to a recent commit bffa72cf7f9d ("net: sk_buff rbnode reorg") We believe this commit is fine, but exposes an older bug. SELinux code runs from tcp_filter() and might send an ICMP, expecting IP options to be found in skb->cb[] using regular IPCB placement. We need to defer TCP mangling of skb->cb[] after tcp_filter() calls. This patch adds tcp_v4_fill_cb()/tcp_v4_restore_cb() in a very similar way we added them for IPv6. [1] [ 339.806024] SELinux: failure in selinux_parse_skb(), unable to parse packet [ 339.822505] Kernel panic - not syncing: stack-protector: Kernel stack is corrupted in: ffffffff81745af5 [ 339.822505] [ 339.852250] CPU: 4 PID: 3642 Comm: client Not tainted 4.15.0-rc1-test #15 [ 339.868498] Hardware name: LENOVO 10FGS0VA1L/30BC, BIOS FWKT68A 01/19/2017 [ 339.885060] Call Trace: [ 339.896875] <IRQ> [ 339.908103] dump_stack+0x63/0x87 [ 339.920645] panic+0xe8/0x248 [ 339.932668] ? ip_push_pending_frames+0x33/0x40 [ 339.946328] ? icmp_send+0x525/0x530 [ 339.958861] ? kfree_skbmem+0x60/0x70 [ 339.971431] __stack_chk_fail+0x1b/0x20 [ 339.984049] icmp_send+0x525/0x530 [ 339.996205] ? netlbl_skbuff_err+0x36/0x40 [ 340.008997] ? selinux_netlbl_err+0x11/0x20 [ 340.021816] ? selinux_socket_sock_rcv_skb+0x211/0x230 [ 340.035529] ? security_sock_rcv_skb+0x3b/0x50 [ 340.048471] ? sk_filter_trim_cap+0x44/0x1c0 [ 340.061246] ? tcp_v4_inbound_md5_hash+0x69/0x1b0 [ 340.074562] ? tcp_filter+0x2c/0x40 [ 340.086400] ? tcp_v4_rcv+0x820/0xa20 [ 340.098329] ? ip_local_deliver_finish+0x71/0x1a0 [ 340.111279] ? ip_local_deliver+0x6f/0xe0 [ 340.123535] ? ip_rcv_finish+0x3a0/0x3a0 [ 340.135523] ? ip_rcv_finish+0xdb/0x3a0 [ 340.147442] ? ip_rcv+0x27c/0x3c0 [ 340.158668] ? inet_del_offload+0x40/0x40 [ 340.170580] ? __netif_receive_skb_core+0x4ac/0x900 [ 340.183285] ? rcu_accelerate_cbs+0x5b/0x80 [ 340.195282] ? __netif_receive_skb+0x18/0x60 [ 340.207288] ? process_backlog+0x95/0x140 [ 340.218948] ? net_rx_action+0x26c/0x3b0 [ 340.230416] ? __do_softirq+0xc9/0x26a [ 340.241625] ? do_softirq_own_stack+0x2a/0x40 [ 340.253368] </IRQ> [ 340.262673] ? do_softirq+0x50/0x60 [ 340.273450] ? __local_bh_enable_ip+0x57/0x60 [ 340.285045] ? ip_finish_output2+0x175/0x350 [ 340.296403] ? ip_finish_output+0x127/0x1d0 [ 340.307665] ? nf_hook_slow+0x3c/0xb0 [ 340.318230] ? ip_output+0x72/0xe0 [ 340.328524] ? ip_fragment.constprop.54+0x80/0x80 [ 340.340070] ? ip_local_out+0x35/0x40 [ 340.350497] ? ip_queue_xmit+0x15c/0x3f0 [ 340.361060] ? __kmalloc_reserve.isra.40+0x31/0x90 [ 340.372484] ? __skb_clone+0x2e/0x130 [ 340.382633] ? tcp_transmit_skb+0x558/0xa10 [ 340.393262] ? tcp_connect+0x938/0xad0 [ 340.403370] ? ktime_get_with_offset+0x4c/0xb0 [ 340.414206] ? tcp_v4_connect+0x457/0x4e0 [ 340.424471] ? __inet_stream_connect+0xb3/0x300 [ 340.435195] ? inet_stream_connect+0x3b/0x60 [ 340.445607] ? SYSC_connect+0xd9/0x110 [ 340.455455] ? __audit_syscall_entry+0xaf/0x100 [ 340.466112] ? syscall_trace_enter+0x1d0/0x2b0 [ 340.476636] ? __audit_syscall_exit+0x209/0x290 [ 340.487151] ? SyS_connect+0xe/0x10 [ 340.496453] ? do_syscall_64+0x67/0x1b0 [ 340.506078] ? entry_SYSCALL64_slow_path+0x25/0x25 Fixes: 971f10eca186 ("tcp: better TCP_SKB_CB layout to reduce cache line misses") Signed-off-by: Eric Dumazet <edumazet@google.com> Reported-by: James Morris <james.l.morris@oracle.com> Tested-by: James Morris <james.l.morris@oracle.com> Tested-by: Casey Schaufler <casey@schaufler-ca.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-12-03 20:32:59 +03:00
tcp_v4_restore_cb(skb);
} else if (tcp_child_process(sk, nsk, skb)) {
tcp_v4_send_reset(nsk, skb);
goto discard_and_relse;
} else {
sock_put(sk);
return 0;
}
}
if (static_branch_unlikely(&ip4_min_ttl)) {
/* min_ttl can be changed concurrently from do_ip_setsockopt() */
if (unlikely(iph->ttl < READ_ONCE(inet_sk(sk)->min_ttl))) {
__NET_INC_STATS(net, LINUX_MIB_TCPMINTTLDROP);
goto discard_and_relse;
}
}
if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb)) {
drop_reason = SKB_DROP_REASON_XFRM_POLICY;
goto discard_and_relse;
}
drop_reason = tcp_inbound_md5_hash(sk, skb, &iph->saddr,
&iph->daddr, AF_INET, dif, sdif);
if (drop_reason)
goto discard_and_relse;
nf_reset_ct(skb);
if (tcp_filter(sk, skb)) {
drop_reason = SKB_DROP_REASON_SOCKET_FILTER;
goto discard_and_relse;
}
th = (const struct tcphdr *)skb->data;
iph = ip_hdr(skb);
tcp: add tcp_v4_fill_cb()/tcp_v4_restore_cb() James Morris reported kernel stack corruption bug [1] while running the SELinux testsuite, and bisected to a recent commit bffa72cf7f9d ("net: sk_buff rbnode reorg") We believe this commit is fine, but exposes an older bug. SELinux code runs from tcp_filter() and might send an ICMP, expecting IP options to be found in skb->cb[] using regular IPCB placement. We need to defer TCP mangling of skb->cb[] after tcp_filter() calls. This patch adds tcp_v4_fill_cb()/tcp_v4_restore_cb() in a very similar way we added them for IPv6. [1] [ 339.806024] SELinux: failure in selinux_parse_skb(), unable to parse packet [ 339.822505] Kernel panic - not syncing: stack-protector: Kernel stack is corrupted in: ffffffff81745af5 [ 339.822505] [ 339.852250] CPU: 4 PID: 3642 Comm: client Not tainted 4.15.0-rc1-test #15 [ 339.868498] Hardware name: LENOVO 10FGS0VA1L/30BC, BIOS FWKT68A 01/19/2017 [ 339.885060] Call Trace: [ 339.896875] <IRQ> [ 339.908103] dump_stack+0x63/0x87 [ 339.920645] panic+0xe8/0x248 [ 339.932668] ? ip_push_pending_frames+0x33/0x40 [ 339.946328] ? icmp_send+0x525/0x530 [ 339.958861] ? kfree_skbmem+0x60/0x70 [ 339.971431] __stack_chk_fail+0x1b/0x20 [ 339.984049] icmp_send+0x525/0x530 [ 339.996205] ? netlbl_skbuff_err+0x36/0x40 [ 340.008997] ? selinux_netlbl_err+0x11/0x20 [ 340.021816] ? selinux_socket_sock_rcv_skb+0x211/0x230 [ 340.035529] ? security_sock_rcv_skb+0x3b/0x50 [ 340.048471] ? sk_filter_trim_cap+0x44/0x1c0 [ 340.061246] ? tcp_v4_inbound_md5_hash+0x69/0x1b0 [ 340.074562] ? tcp_filter+0x2c/0x40 [ 340.086400] ? tcp_v4_rcv+0x820/0xa20 [ 340.098329] ? ip_local_deliver_finish+0x71/0x1a0 [ 340.111279] ? ip_local_deliver+0x6f/0xe0 [ 340.123535] ? ip_rcv_finish+0x3a0/0x3a0 [ 340.135523] ? ip_rcv_finish+0xdb/0x3a0 [ 340.147442] ? ip_rcv+0x27c/0x3c0 [ 340.158668] ? inet_del_offload+0x40/0x40 [ 340.170580] ? __netif_receive_skb_core+0x4ac/0x900 [ 340.183285] ? rcu_accelerate_cbs+0x5b/0x80 [ 340.195282] ? __netif_receive_skb+0x18/0x60 [ 340.207288] ? process_backlog+0x95/0x140 [ 340.218948] ? net_rx_action+0x26c/0x3b0 [ 340.230416] ? __do_softirq+0xc9/0x26a [ 340.241625] ? do_softirq_own_stack+0x2a/0x40 [ 340.253368] </IRQ> [ 340.262673] ? do_softirq+0x50/0x60 [ 340.273450] ? __local_bh_enable_ip+0x57/0x60 [ 340.285045] ? ip_finish_output2+0x175/0x350 [ 340.296403] ? ip_finish_output+0x127/0x1d0 [ 340.307665] ? nf_hook_slow+0x3c/0xb0 [ 340.318230] ? ip_output+0x72/0xe0 [ 340.328524] ? ip_fragment.constprop.54+0x80/0x80 [ 340.340070] ? ip_local_out+0x35/0x40 [ 340.350497] ? ip_queue_xmit+0x15c/0x3f0 [ 340.361060] ? __kmalloc_reserve.isra.40+0x31/0x90 [ 340.372484] ? __skb_clone+0x2e/0x130 [ 340.382633] ? tcp_transmit_skb+0x558/0xa10 [ 340.393262] ? tcp_connect+0x938/0xad0 [ 340.403370] ? ktime_get_with_offset+0x4c/0xb0 [ 340.414206] ? tcp_v4_connect+0x457/0x4e0 [ 340.424471] ? __inet_stream_connect+0xb3/0x300 [ 340.435195] ? inet_stream_connect+0x3b/0x60 [ 340.445607] ? SYSC_connect+0xd9/0x110 [ 340.455455] ? __audit_syscall_entry+0xaf/0x100 [ 340.466112] ? syscall_trace_enter+0x1d0/0x2b0 [ 340.476636] ? __audit_syscall_exit+0x209/0x290 [ 340.487151] ? SyS_connect+0xe/0x10 [ 340.496453] ? do_syscall_64+0x67/0x1b0 [ 340.506078] ? entry_SYSCALL64_slow_path+0x25/0x25 Fixes: 971f10eca186 ("tcp: better TCP_SKB_CB layout to reduce cache line misses") Signed-off-by: Eric Dumazet <edumazet@google.com> Reported-by: James Morris <james.l.morris@oracle.com> Tested-by: James Morris <james.l.morris@oracle.com> Tested-by: Casey Schaufler <casey@schaufler-ca.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-12-03 20:32:59 +03:00
tcp_v4_fill_cb(skb, iph, th);
skb->dev = NULL;
if (sk->sk_state == TCP_LISTEN) {
ret = tcp_v4_do_rcv(sk, skb);
goto put_and_return;
}
sk_incoming_cpu_update(sk);
bh_lock_sock_nested(sk);
tcp: Add RFC4898 tcpEStatsPerfDataSegsOut/In Per RFC4898, they count segments sent/received containing a positive length data segment (that includes retransmission segments carrying data). Unlike tcpi_segs_out/in, tcpi_data_segs_out/in excludes segments carrying no data (e.g. pure ack). The patch also updates the segs_in in tcp_fastopen_add_skb() so that segs_in >= data_segs_in property is kept. Together with retransmission data, tcpi_data_segs_out gives a better signal on the rxmit rate. v6: Rebase on the latest net-next v5: Eric pointed out that checking skb->len is still needed in tcp_fastopen_add_skb() because skb can carry a FIN without data. Hence, instead of open coding segs_in and data_segs_in, tcp_segs_in() helper is used. Comment is added to the fastopen case to explain why segs_in has to be reset and tcp_segs_in() has to be called before __skb_pull(). v4: Add comment to the changes in tcp_fastopen_add_skb() and also add remark on this case in the commit message. v3: Add const modifier to the skb parameter in tcp_segs_in() v2: Rework based on recent fix by Eric: commit a9d99ce28ed3 ("tcp: fix tcpi_segs_in after connection establishment") Signed-off-by: Martin KaFai Lau <kafai@fb.com> Cc: Chris Rapier <rapier@psc.edu> Cc: Eric Dumazet <edumazet@google.com> Cc: Marcelo Ricardo Leitner <mleitner@redhat.com> Cc: Neal Cardwell <ncardwell@google.com> Cc: Yuchung Cheng <ycheng@google.com> Acked-by: Eric Dumazet <edumazet@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-03-14 20:52:15 +03:00
tcp_segs_in(tcp_sk(sk), skb);
ret = 0;
if (!sock_owned_by_user(sk)) {
ret = tcp_v4_do_rcv(sk, skb);
tcp: add one skb cache for rx Often times, recvmsg() system calls and BH handling for a particular TCP socket are done on different cpus. This means the incoming skb had to be allocated on a cpu, but freed on another. This incurs a high spinlock contention in slab layer for small rpc, but also a high number of cache line ping pongs for larger packets. A full size GRO packet might use 45 page fragments, meaning that up to 45 put_page() can be involved. More over performing the __kfree_skb() in the recvmsg() context adds a latency for user applications, and increase probability of trapping them in backlog processing, since the BH handler might found the socket owned by the user. This patch, combined with the prior one increases the rpc performance by about 10 % on servers with large number of cores. (tcp_rr workload with 10,000 flows and 112 threads reach 9 Mpps instead of 8 Mpps) This also increases single bulk flow performance on 40Gbit+ links, since in this case there are often two cpus working in tandem : - CPU handling the NIC rx interrupts, feeding the receive queue, and (after this patch) freeing the skbs that were consumed. - CPU in recvmsg() system call, essentially 100 % busy copying out data to user space. Having at most one skb in a per-socket cache has very little risk of memory exhaustion, and since it is protected by socket lock, its management is essentially free. Note that if rps/rfs is used, we do not enable this feature, because there is high chance that the same cpu is handling both the recvmsg() system call and the TCP rx path, but that another cpu did the skb allocations in the device driver right before the RPS/RFS logic. To properly handle this case, it seems we would need to record on which cpu skb was allocated, and use a different channel to give skbs back to this cpu. Signed-off-by: Eric Dumazet <edumazet@google.com> Acked-by: Soheil Hassas Yeganeh <soheil@google.com> Acked-by: Willem de Bruijn <willemb@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-03-22 18:56:40 +03:00
} else {
if (tcp_add_backlog(sk, skb, &drop_reason))
tcp: add one skb cache for rx Often times, recvmsg() system calls and BH handling for a particular TCP socket are done on different cpus. This means the incoming skb had to be allocated on a cpu, but freed on another. This incurs a high spinlock contention in slab layer for small rpc, but also a high number of cache line ping pongs for larger packets. A full size GRO packet might use 45 page fragments, meaning that up to 45 put_page() can be involved. More over performing the __kfree_skb() in the recvmsg() context adds a latency for user applications, and increase probability of trapping them in backlog processing, since the BH handler might found the socket owned by the user. This patch, combined with the prior one increases the rpc performance by about 10 % on servers with large number of cores. (tcp_rr workload with 10,000 flows and 112 threads reach 9 Mpps instead of 8 Mpps) This also increases single bulk flow performance on 40Gbit+ links, since in this case there are often two cpus working in tandem : - CPU handling the NIC rx interrupts, feeding the receive queue, and (after this patch) freeing the skbs that were consumed. - CPU in recvmsg() system call, essentially 100 % busy copying out data to user space. Having at most one skb in a per-socket cache has very little risk of memory exhaustion, and since it is protected by socket lock, its management is essentially free. Note that if rps/rfs is used, we do not enable this feature, because there is high chance that the same cpu is handling both the recvmsg() system call and the TCP rx path, but that another cpu did the skb allocations in the device driver right before the RPS/RFS logic. To properly handle this case, it seems we would need to record on which cpu skb was allocated, and use a different channel to give skbs back to this cpu. Signed-off-by: Eric Dumazet <edumazet@google.com> Acked-by: Soheil Hassas Yeganeh <soheil@google.com> Acked-by: Willem de Bruijn <willemb@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-03-22 18:56:40 +03:00
goto discard_and_relse;
}
bh_unlock_sock(sk);
put_and_return:
if (refcounted)
sock_put(sk);
return ret;
no_tcp_socket:
drop_reason = SKB_DROP_REASON_NO_SOCKET;
if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb))
goto discard_it;
tcp: add tcp_v4_fill_cb()/tcp_v4_restore_cb() James Morris reported kernel stack corruption bug [1] while running the SELinux testsuite, and bisected to a recent commit bffa72cf7f9d ("net: sk_buff rbnode reorg") We believe this commit is fine, but exposes an older bug. SELinux code runs from tcp_filter() and might send an ICMP, expecting IP options to be found in skb->cb[] using regular IPCB placement. We need to defer TCP mangling of skb->cb[] after tcp_filter() calls. This patch adds tcp_v4_fill_cb()/tcp_v4_restore_cb() in a very similar way we added them for IPv6. [1] [ 339.806024] SELinux: failure in selinux_parse_skb(), unable to parse packet [ 339.822505] Kernel panic - not syncing: stack-protector: Kernel stack is corrupted in: ffffffff81745af5 [ 339.822505] [ 339.852250] CPU: 4 PID: 3642 Comm: client Not tainted 4.15.0-rc1-test #15 [ 339.868498] Hardware name: LENOVO 10FGS0VA1L/30BC, BIOS FWKT68A 01/19/2017 [ 339.885060] Call Trace: [ 339.896875] <IRQ> [ 339.908103] dump_stack+0x63/0x87 [ 339.920645] panic+0xe8/0x248 [ 339.932668] ? ip_push_pending_frames+0x33/0x40 [ 339.946328] ? icmp_send+0x525/0x530 [ 339.958861] ? kfree_skbmem+0x60/0x70 [ 339.971431] __stack_chk_fail+0x1b/0x20 [ 339.984049] icmp_send+0x525/0x530 [ 339.996205] ? netlbl_skbuff_err+0x36/0x40 [ 340.008997] ? selinux_netlbl_err+0x11/0x20 [ 340.021816] ? selinux_socket_sock_rcv_skb+0x211/0x230 [ 340.035529] ? security_sock_rcv_skb+0x3b/0x50 [ 340.048471] ? sk_filter_trim_cap+0x44/0x1c0 [ 340.061246] ? tcp_v4_inbound_md5_hash+0x69/0x1b0 [ 340.074562] ? tcp_filter+0x2c/0x40 [ 340.086400] ? tcp_v4_rcv+0x820/0xa20 [ 340.098329] ? ip_local_deliver_finish+0x71/0x1a0 [ 340.111279] ? ip_local_deliver+0x6f/0xe0 [ 340.123535] ? ip_rcv_finish+0x3a0/0x3a0 [ 340.135523] ? ip_rcv_finish+0xdb/0x3a0 [ 340.147442] ? ip_rcv+0x27c/0x3c0 [ 340.158668] ? inet_del_offload+0x40/0x40 [ 340.170580] ? __netif_receive_skb_core+0x4ac/0x900 [ 340.183285] ? rcu_accelerate_cbs+0x5b/0x80 [ 340.195282] ? __netif_receive_skb+0x18/0x60 [ 340.207288] ? process_backlog+0x95/0x140 [ 340.218948] ? net_rx_action+0x26c/0x3b0 [ 340.230416] ? __do_softirq+0xc9/0x26a [ 340.241625] ? do_softirq_own_stack+0x2a/0x40 [ 340.253368] </IRQ> [ 340.262673] ? do_softirq+0x50/0x60 [ 340.273450] ? __local_bh_enable_ip+0x57/0x60 [ 340.285045] ? ip_finish_output2+0x175/0x350 [ 340.296403] ? ip_finish_output+0x127/0x1d0 [ 340.307665] ? nf_hook_slow+0x3c/0xb0 [ 340.318230] ? ip_output+0x72/0xe0 [ 340.328524] ? ip_fragment.constprop.54+0x80/0x80 [ 340.340070] ? ip_local_out+0x35/0x40 [ 340.350497] ? ip_queue_xmit+0x15c/0x3f0 [ 340.361060] ? __kmalloc_reserve.isra.40+0x31/0x90 [ 340.372484] ? __skb_clone+0x2e/0x130 [ 340.382633] ? tcp_transmit_skb+0x558/0xa10 [ 340.393262] ? tcp_connect+0x938/0xad0 [ 340.403370] ? ktime_get_with_offset+0x4c/0xb0 [ 340.414206] ? tcp_v4_connect+0x457/0x4e0 [ 340.424471] ? __inet_stream_connect+0xb3/0x300 [ 340.435195] ? inet_stream_connect+0x3b/0x60 [ 340.445607] ? SYSC_connect+0xd9/0x110 [ 340.455455] ? __audit_syscall_entry+0xaf/0x100 [ 340.466112] ? syscall_trace_enter+0x1d0/0x2b0 [ 340.476636] ? __audit_syscall_exit+0x209/0x290 [ 340.487151] ? SyS_connect+0xe/0x10 [ 340.496453] ? do_syscall_64+0x67/0x1b0 [ 340.506078] ? entry_SYSCALL64_slow_path+0x25/0x25 Fixes: 971f10eca186 ("tcp: better TCP_SKB_CB layout to reduce cache line misses") Signed-off-by: Eric Dumazet <edumazet@google.com> Reported-by: James Morris <james.l.morris@oracle.com> Tested-by: James Morris <james.l.morris@oracle.com> Tested-by: Casey Schaufler <casey@schaufler-ca.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-12-03 20:32:59 +03:00
tcp_v4_fill_cb(skb, iph, th);
if (tcp_checksum_complete(skb)) {
csum_error:
drop_reason = SKB_DROP_REASON_TCP_CSUM;
trace_tcp_bad_csum(skb);
__TCP_INC_STATS(net, TCP_MIB_CSUMERRORS);
bad_packet:
__TCP_INC_STATS(net, TCP_MIB_INERRS);
} else {
tcp_v4_send_reset(NULL, skb);
}
discard_it:
SKB_DR_OR(drop_reason, NOT_SPECIFIED);
/* Discard frame. */
kfree_skb_reason(skb, drop_reason);
return 0;
discard_and_relse:
sk_drops_add(sk, skb);
if (refcounted)
sock_put(sk);
goto discard_it;
do_time_wait:
if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb)) {
drop_reason = SKB_DROP_REASON_XFRM_POLICY;
inet_twsk_put(inet_twsk(sk));
goto discard_it;
}
tcp: add tcp_v4_fill_cb()/tcp_v4_restore_cb() James Morris reported kernel stack corruption bug [1] while running the SELinux testsuite, and bisected to a recent commit bffa72cf7f9d ("net: sk_buff rbnode reorg") We believe this commit is fine, but exposes an older bug. SELinux code runs from tcp_filter() and might send an ICMP, expecting IP options to be found in skb->cb[] using regular IPCB placement. We need to defer TCP mangling of skb->cb[] after tcp_filter() calls. This patch adds tcp_v4_fill_cb()/tcp_v4_restore_cb() in a very similar way we added them for IPv6. [1] [ 339.806024] SELinux: failure in selinux_parse_skb(), unable to parse packet [ 339.822505] Kernel panic - not syncing: stack-protector: Kernel stack is corrupted in: ffffffff81745af5 [ 339.822505] [ 339.852250] CPU: 4 PID: 3642 Comm: client Not tainted 4.15.0-rc1-test #15 [ 339.868498] Hardware name: LENOVO 10FGS0VA1L/30BC, BIOS FWKT68A 01/19/2017 [ 339.885060] Call Trace: [ 339.896875] <IRQ> [ 339.908103] dump_stack+0x63/0x87 [ 339.920645] panic+0xe8/0x248 [ 339.932668] ? ip_push_pending_frames+0x33/0x40 [ 339.946328] ? icmp_send+0x525/0x530 [ 339.958861] ? kfree_skbmem+0x60/0x70 [ 339.971431] __stack_chk_fail+0x1b/0x20 [ 339.984049] icmp_send+0x525/0x530 [ 339.996205] ? netlbl_skbuff_err+0x36/0x40 [ 340.008997] ? selinux_netlbl_err+0x11/0x20 [ 340.021816] ? selinux_socket_sock_rcv_skb+0x211/0x230 [ 340.035529] ? security_sock_rcv_skb+0x3b/0x50 [ 340.048471] ? sk_filter_trim_cap+0x44/0x1c0 [ 340.061246] ? tcp_v4_inbound_md5_hash+0x69/0x1b0 [ 340.074562] ? tcp_filter+0x2c/0x40 [ 340.086400] ? tcp_v4_rcv+0x820/0xa20 [ 340.098329] ? ip_local_deliver_finish+0x71/0x1a0 [ 340.111279] ? ip_local_deliver+0x6f/0xe0 [ 340.123535] ? ip_rcv_finish+0x3a0/0x3a0 [ 340.135523] ? ip_rcv_finish+0xdb/0x3a0 [ 340.147442] ? ip_rcv+0x27c/0x3c0 [ 340.158668] ? inet_del_offload+0x40/0x40 [ 340.170580] ? __netif_receive_skb_core+0x4ac/0x900 [ 340.183285] ? rcu_accelerate_cbs+0x5b/0x80 [ 340.195282] ? __netif_receive_skb+0x18/0x60 [ 340.207288] ? process_backlog+0x95/0x140 [ 340.218948] ? net_rx_action+0x26c/0x3b0 [ 340.230416] ? __do_softirq+0xc9/0x26a [ 340.241625] ? do_softirq_own_stack+0x2a/0x40 [ 340.253368] </IRQ> [ 340.262673] ? do_softirq+0x50/0x60 [ 340.273450] ? __local_bh_enable_ip+0x57/0x60 [ 340.285045] ? ip_finish_output2+0x175/0x350 [ 340.296403] ? ip_finish_output+0x127/0x1d0 [ 340.307665] ? nf_hook_slow+0x3c/0xb0 [ 340.318230] ? ip_output+0x72/0xe0 [ 340.328524] ? ip_fragment.constprop.54+0x80/0x80 [ 340.340070] ? ip_local_out+0x35/0x40 [ 340.350497] ? ip_queue_xmit+0x15c/0x3f0 [ 340.361060] ? __kmalloc_reserve.isra.40+0x31/0x90 [ 340.372484] ? __skb_clone+0x2e/0x130 [ 340.382633] ? tcp_transmit_skb+0x558/0xa10 [ 340.393262] ? tcp_connect+0x938/0xad0 [ 340.403370] ? ktime_get_with_offset+0x4c/0xb0 [ 340.414206] ? tcp_v4_connect+0x457/0x4e0 [ 340.424471] ? __inet_stream_connect+0xb3/0x300 [ 340.435195] ? inet_stream_connect+0x3b/0x60 [ 340.445607] ? SYSC_connect+0xd9/0x110 [ 340.455455] ? __audit_syscall_entry+0xaf/0x100 [ 340.466112] ? syscall_trace_enter+0x1d0/0x2b0 [ 340.476636] ? __audit_syscall_exit+0x209/0x290 [ 340.487151] ? SyS_connect+0xe/0x10 [ 340.496453] ? do_syscall_64+0x67/0x1b0 [ 340.506078] ? entry_SYSCALL64_slow_path+0x25/0x25 Fixes: 971f10eca186 ("tcp: better TCP_SKB_CB layout to reduce cache line misses") Signed-off-by: Eric Dumazet <edumazet@google.com> Reported-by: James Morris <james.l.morris@oracle.com> Tested-by: James Morris <james.l.morris@oracle.com> Tested-by: Casey Schaufler <casey@schaufler-ca.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-12-03 20:32:59 +03:00
tcp_v4_fill_cb(skb, iph, th);
if (tcp_checksum_complete(skb)) {
inet_twsk_put(inet_twsk(sk));
goto csum_error;
}
switch (tcp_timewait_state_process(inet_twsk(sk), skb, th)) {
case TCP_TW_SYN: {
struct sock *sk2 = inet_lookup_listener(net,
net->ipv4.tcp_death_row.hashinfo,
skb, __tcp_hdrlen(th),
iph->saddr, th->source,
iph->daddr, th->dest,
inet_iif(skb),
sdif);
if (sk2) {
inet_twsk_deschedule_put(inet_twsk(sk));
sk = sk2;
tcp: add tcp_v4_fill_cb()/tcp_v4_restore_cb() James Morris reported kernel stack corruption bug [1] while running the SELinux testsuite, and bisected to a recent commit bffa72cf7f9d ("net: sk_buff rbnode reorg") We believe this commit is fine, but exposes an older bug. SELinux code runs from tcp_filter() and might send an ICMP, expecting IP options to be found in skb->cb[] using regular IPCB placement. We need to defer TCP mangling of skb->cb[] after tcp_filter() calls. This patch adds tcp_v4_fill_cb()/tcp_v4_restore_cb() in a very similar way we added them for IPv6. [1] [ 339.806024] SELinux: failure in selinux_parse_skb(), unable to parse packet [ 339.822505] Kernel panic - not syncing: stack-protector: Kernel stack is corrupted in: ffffffff81745af5 [ 339.822505] [ 339.852250] CPU: 4 PID: 3642 Comm: client Not tainted 4.15.0-rc1-test #15 [ 339.868498] Hardware name: LENOVO 10FGS0VA1L/30BC, BIOS FWKT68A 01/19/2017 [ 339.885060] Call Trace: [ 339.896875] <IRQ> [ 339.908103] dump_stack+0x63/0x87 [ 339.920645] panic+0xe8/0x248 [ 339.932668] ? ip_push_pending_frames+0x33/0x40 [ 339.946328] ? icmp_send+0x525/0x530 [ 339.958861] ? kfree_skbmem+0x60/0x70 [ 339.971431] __stack_chk_fail+0x1b/0x20 [ 339.984049] icmp_send+0x525/0x530 [ 339.996205] ? netlbl_skbuff_err+0x36/0x40 [ 340.008997] ? selinux_netlbl_err+0x11/0x20 [ 340.021816] ? selinux_socket_sock_rcv_skb+0x211/0x230 [ 340.035529] ? security_sock_rcv_skb+0x3b/0x50 [ 340.048471] ? sk_filter_trim_cap+0x44/0x1c0 [ 340.061246] ? tcp_v4_inbound_md5_hash+0x69/0x1b0 [ 340.074562] ? tcp_filter+0x2c/0x40 [ 340.086400] ? tcp_v4_rcv+0x820/0xa20 [ 340.098329] ? ip_local_deliver_finish+0x71/0x1a0 [ 340.111279] ? ip_local_deliver+0x6f/0xe0 [ 340.123535] ? ip_rcv_finish+0x3a0/0x3a0 [ 340.135523] ? ip_rcv_finish+0xdb/0x3a0 [ 340.147442] ? ip_rcv+0x27c/0x3c0 [ 340.158668] ? inet_del_offload+0x40/0x40 [ 340.170580] ? __netif_receive_skb_core+0x4ac/0x900 [ 340.183285] ? rcu_accelerate_cbs+0x5b/0x80 [ 340.195282] ? __netif_receive_skb+0x18/0x60 [ 340.207288] ? process_backlog+0x95/0x140 [ 340.218948] ? net_rx_action+0x26c/0x3b0 [ 340.230416] ? __do_softirq+0xc9/0x26a [ 340.241625] ? do_softirq_own_stack+0x2a/0x40 [ 340.253368] </IRQ> [ 340.262673] ? do_softirq+0x50/0x60 [ 340.273450] ? __local_bh_enable_ip+0x57/0x60 [ 340.285045] ? ip_finish_output2+0x175/0x350 [ 340.296403] ? ip_finish_output+0x127/0x1d0 [ 340.307665] ? nf_hook_slow+0x3c/0xb0 [ 340.318230] ? ip_output+0x72/0xe0 [ 340.328524] ? ip_fragment.constprop.54+0x80/0x80 [ 340.340070] ? ip_local_out+0x35/0x40 [ 340.350497] ? ip_queue_xmit+0x15c/0x3f0 [ 340.361060] ? __kmalloc_reserve.isra.40+0x31/0x90 [ 340.372484] ? __skb_clone+0x2e/0x130 [ 340.382633] ? tcp_transmit_skb+0x558/0xa10 [ 340.393262] ? tcp_connect+0x938/0xad0 [ 340.403370] ? ktime_get_with_offset+0x4c/0xb0 [ 340.414206] ? tcp_v4_connect+0x457/0x4e0 [ 340.424471] ? __inet_stream_connect+0xb3/0x300 [ 340.435195] ? inet_stream_connect+0x3b/0x60 [ 340.445607] ? SYSC_connect+0xd9/0x110 [ 340.455455] ? __audit_syscall_entry+0xaf/0x100 [ 340.466112] ? syscall_trace_enter+0x1d0/0x2b0 [ 340.476636] ? __audit_syscall_exit+0x209/0x290 [ 340.487151] ? SyS_connect+0xe/0x10 [ 340.496453] ? do_syscall_64+0x67/0x1b0 [ 340.506078] ? entry_SYSCALL64_slow_path+0x25/0x25 Fixes: 971f10eca186 ("tcp: better TCP_SKB_CB layout to reduce cache line misses") Signed-off-by: Eric Dumazet <edumazet@google.com> Reported-by: James Morris <james.l.morris@oracle.com> Tested-by: James Morris <james.l.morris@oracle.com> Tested-by: Casey Schaufler <casey@schaufler-ca.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-12-03 20:32:59 +03:00
tcp_v4_restore_cb(skb);
refcounted = false;
goto process;
}
}
/* to ACK */
fallthrough;
case TCP_TW_ACK:
tcp_v4_timewait_ack(sk, skb);
break;
case TCP_TW_RST:
tcp_v4_send_reset(sk, skb);
inet_twsk_deschedule_put(inet_twsk(sk));
goto discard_it;
case TCP_TW_SUCCESS:;
}
goto discard_it;
}
static struct timewait_sock_ops tcp_timewait_sock_ops = {
.twsk_obj_size = sizeof(struct tcp_timewait_sock),
.twsk_unique = tcp_twsk_unique,
.twsk_destructor= tcp_twsk_destructor,
};
net: tcp: ipv6_mapped needs sk_rx_dst_set method commit 5d299f3d3c8a2fb (net: ipv6: fix TCP early demux) added a regression for ipv6_mapped case. [ 67.422369] SELinux: initialized (dev autofs, type autofs), uses genfs_contexts [ 67.449678] SELinux: initialized (dev autofs, type autofs), uses genfs_contexts [ 92.631060] BUG: unable to handle kernel NULL pointer dereference at (null) [ 92.631435] IP: [< (null)>] (null) [ 92.631645] PGD 0 [ 92.631846] Oops: 0010 [#1] SMP [ 92.632095] Modules linked in: autofs4 sunrpc ipv6 dm_mirror dm_region_hash dm_log dm_multipath dm_mod video sbs sbshc battery ac lp parport sg snd_hda_intel snd_hda_codec snd_seq_oss snd_seq_midi_event snd_seq snd_seq_device pcspkr snd_pcm_oss snd_mixer_oss snd_pcm snd_timer serio_raw button floppy snd i2c_i801 i2c_core soundcore snd_page_alloc shpchp ide_cd_mod cdrom microcode ehci_hcd ohci_hcd uhci_hcd [ 92.634294] CPU 0 [ 92.634294] Pid: 4469, comm: sendmail Not tainted 3.6.0-rc1 #3 [ 92.634294] RIP: 0010:[<0000000000000000>] [< (null)>] (null) [ 92.634294] RSP: 0018:ffff880245fc7cb0 EFLAGS: 00010282 [ 92.634294] RAX: ffffffffa01985f0 RBX: ffff88024827ad00 RCX: 0000000000000000 [ 92.634294] RDX: 0000000000000218 RSI: ffff880254735380 RDI: ffff88024827ad00 [ 92.634294] RBP: ffff880245fc7cc8 R08: 0000000000000001 R09: 0000000000000000 [ 92.634294] R10: 0000000000000000 R11: ffff880245fc7bf8 R12: ffff880254735380 [ 92.634294] R13: ffff880254735380 R14: 0000000000000000 R15: 7fffffffffff0218 [ 92.634294] FS: 00007f4516ccd6f0(0000) GS:ffff880256600000(0000) knlGS:0000000000000000 [ 92.634294] CS: 0010 DS: 0000 ES: 0000 CR0: 000000008005003b [ 92.634294] CR2: 0000000000000000 CR3: 0000000245ed1000 CR4: 00000000000007f0 [ 92.634294] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 [ 92.634294] DR3: 0000000000000000 DR6: 00000000ffff0ff0 DR7: 0000000000000400 [ 92.634294] Process sendmail (pid: 4469, threadinfo ffff880245fc6000, task ffff880254b8cac0) [ 92.634294] Stack: [ 92.634294] ffffffff813837a7 ffff88024827ad00 ffff880254b6b0e8 ffff880245fc7d68 [ 92.634294] ffffffff81385083 00000000001d2680 ffff8802547353a8 ffff880245fc7d18 [ 92.634294] ffffffff8105903a ffff88024827ad60 0000000000000002 00000000000000ff [ 92.634294] Call Trace: [ 92.634294] [<ffffffff813837a7>] ? tcp_finish_connect+0x2c/0xfa [ 92.634294] [<ffffffff81385083>] tcp_rcv_state_process+0x2b6/0x9c6 [ 92.634294] [<ffffffff8105903a>] ? sched_clock_cpu+0xc3/0xd1 [ 92.634294] [<ffffffff81059073>] ? local_clock+0x2b/0x3c [ 92.634294] [<ffffffff8138caf3>] tcp_v4_do_rcv+0x63a/0x670 [ 92.634294] [<ffffffff8133278e>] release_sock+0x128/0x1bd [ 92.634294] [<ffffffff8139f060>] __inet_stream_connect+0x1b1/0x352 [ 92.634294] [<ffffffff813325f5>] ? lock_sock_nested+0x74/0x7f [ 92.634294] [<ffffffff8104b333>] ? wake_up_bit+0x25/0x25 [ 92.634294] [<ffffffff813325f5>] ? lock_sock_nested+0x74/0x7f [ 92.634294] [<ffffffff8139f223>] ? inet_stream_connect+0x22/0x4b [ 92.634294] [<ffffffff8139f234>] inet_stream_connect+0x33/0x4b [ 92.634294] [<ffffffff8132e8cf>] sys_connect+0x78/0x9e [ 92.634294] [<ffffffff813fd407>] ? sysret_check+0x1b/0x56 [ 92.634294] [<ffffffff81088503>] ? __audit_syscall_entry+0x195/0x1c8 [ 92.634294] [<ffffffff811cc26e>] ? trace_hardirqs_on_thunk+0x3a/0x3f [ 92.634294] [<ffffffff813fd3e2>] system_call_fastpath+0x16/0x1b [ 92.634294] Code: Bad RIP value. [ 92.634294] RIP [< (null)>] (null) [ 92.634294] RSP <ffff880245fc7cb0> [ 92.634294] CR2: 0000000000000000 [ 92.648982] ---[ end trace 24e2bed94314c8d9 ]--- [ 92.649146] Kernel panic - not syncing: Fatal exception in interrupt Fix this using inet_sk_rx_dst_set(), and export this function in case IPv6 is modular. Reported-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Eric Dumazet <edumazet@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2012-08-09 18:11:00 +04:00
void inet_sk_rx_dst_set(struct sock *sk, const struct sk_buff *skb)
{
struct dst_entry *dst = skb_dst(skb);
net: fix IP early demux races David Wilder reported crashes caused by dst reuse. <quote David> I am seeing a crash on a distro V4.2.3 kernel caused by a double release of a dst_entry. In ipv4_dst_destroy() the call to list_empty() finds a poisoned next pointer, indicating the dst_entry has already been removed from the list and freed. The crash occurs 18 to 24 hours into a run of a network stress exerciser. </quote> Thanks to his detailed report and analysis, we were able to understand the core issue. IP early demux can associate a dst to skb, after a lookup in TCP/UDP sockets. When socket cache is not properly set, we want to store into sk->sk_dst_cache the dst for future IP early demux lookups, by acquiring a stable refcount on the dst. Problem is this acquisition is simply using an atomic_inc(), which works well, unless the dst was queued for destruction from dst_release() noticing dst refcount went to zero, if DST_NOCACHE was set on dst. We need to make sure current refcount is not zero before incrementing it, or risk double free as David reported. This patch, being a stable candidate, adds two new helpers, and use them only from IP early demux problematic paths. It might be possible to merge in net-next skb_dst_force() and skb_dst_force_safe(), but I prefer having the smallest patch for stable kernels : Maybe some skb_dst_force() callers do not expect skb->dst can suddenly be cleared. Can probably be backported back to linux-3.6 kernels Reported-by: David J. Wilder <dwilder@us.ibm.com> Tested-by: David J. Wilder <dwilder@us.ibm.com> Signed-off-by: Eric Dumazet <edumazet@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2015-12-15 01:08:53 +03:00
if (dst && dst_hold_safe(dst)) {
inet: fully convert sk->sk_rx_dst to RCU rules syzbot reported various issues around early demux, one being included in this changelog [1] sk->sk_rx_dst is using RCU protection without clearly documenting it. And following sequences in tcp_v4_do_rcv()/tcp_v6_do_rcv() are not following standard RCU rules. [a] dst_release(dst); [b] sk->sk_rx_dst = NULL; They look wrong because a delete operation of RCU protected pointer is supposed to clear the pointer before the call_rcu()/synchronize_rcu() guarding actual memory freeing. In some cases indeed, dst could be freed before [b] is done. We could cheat by clearing sk_rx_dst before calling dst_release(), but this seems the right time to stick to standard RCU annotations and debugging facilities. [1] BUG: KASAN: use-after-free in dst_check include/net/dst.h:470 [inline] BUG: KASAN: use-after-free in tcp_v4_early_demux+0x95b/0x960 net/ipv4/tcp_ipv4.c:1792 Read of size 2 at addr ffff88807f1cb73a by task syz-executor.5/9204 CPU: 0 PID: 9204 Comm: syz-executor.5 Not tainted 5.16.0-rc5-syzkaller #0 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 01/01/2011 Call Trace: <TASK> __dump_stack lib/dump_stack.c:88 [inline] dump_stack_lvl+0xcd/0x134 lib/dump_stack.c:106 print_address_description.constprop.0.cold+0x8d/0x320 mm/kasan/report.c:247 __kasan_report mm/kasan/report.c:433 [inline] kasan_report.cold+0x83/0xdf mm/kasan/report.c:450 dst_check include/net/dst.h:470 [inline] tcp_v4_early_demux+0x95b/0x960 net/ipv4/tcp_ipv4.c:1792 ip_rcv_finish_core.constprop.0+0x15de/0x1e80 net/ipv4/ip_input.c:340 ip_list_rcv_finish.constprop.0+0x1b2/0x6e0 net/ipv4/ip_input.c:583 ip_sublist_rcv net/ipv4/ip_input.c:609 [inline] ip_list_rcv+0x34e/0x490 net/ipv4/ip_input.c:644 __netif_receive_skb_list_ptype net/core/dev.c:5508 [inline] __netif_receive_skb_list_core+0x549/0x8e0 net/core/dev.c:5556 __netif_receive_skb_list net/core/dev.c:5608 [inline] netif_receive_skb_list_internal+0x75e/0xd80 net/core/dev.c:5699 gro_normal_list net/core/dev.c:5853 [inline] gro_normal_list net/core/dev.c:5849 [inline] napi_complete_done+0x1f1/0x880 net/core/dev.c:6590 virtqueue_napi_complete drivers/net/virtio_net.c:339 [inline] virtnet_poll+0xca2/0x11b0 drivers/net/virtio_net.c:1557 __napi_poll+0xaf/0x440 net/core/dev.c:7023 napi_poll net/core/dev.c:7090 [inline] net_rx_action+0x801/0xb40 net/core/dev.c:7177 __do_softirq+0x29b/0x9c2 kernel/softirq.c:558 invoke_softirq kernel/softirq.c:432 [inline] __irq_exit_rcu+0x123/0x180 kernel/softirq.c:637 irq_exit_rcu+0x5/0x20 kernel/softirq.c:649 common_interrupt+0x52/0xc0 arch/x86/kernel/irq.c:240 asm_common_interrupt+0x1e/0x40 arch/x86/include/asm/idtentry.h:629 RIP: 0033:0x7f5e972bfd57 Code: 39 d1 73 14 0f 1f 80 00 00 00 00 48 8b 50 f8 48 83 e8 08 48 39 ca 77 f3 48 39 c3 73 3e 48 89 13 48 8b 50 f8 48 89 38 49 8b 0e <48> 8b 3e 48 83 c3 08 48 83 c6 08 eb bc 48 39 d1 72 9e 48 39 d0 73 RSP: 002b:00007fff8a413210 EFLAGS: 00000283 RAX: 00007f5e97108990 RBX: 00007f5e97108338 RCX: ffffffff81d3aa45 RDX: ffffffff81d3aa45 RSI: 00007f5e97108340 RDI: ffffffff81d3aa45 RBP: 00007f5e97107eb8 R08: 00007f5e97108d88 R09: 0000000093c2e8d9 R10: 0000000000000000 R11: 0000000000000000 R12: 00007f5e97107eb0 R13: 00007f5e97108338 R14: 00007f5e97107ea8 R15: 0000000000000019 </TASK> Allocated by task 13: kasan_save_stack+0x1e/0x50 mm/kasan/common.c:38 kasan_set_track mm/kasan/common.c:46 [inline] set_alloc_info mm/kasan/common.c:434 [inline] __kasan_slab_alloc+0x90/0xc0 mm/kasan/common.c:467 kasan_slab_alloc include/linux/kasan.h:259 [inline] slab_post_alloc_hook mm/slab.h:519 [inline] slab_alloc_node mm/slub.c:3234 [inline] slab_alloc mm/slub.c:3242 [inline] kmem_cache_alloc+0x202/0x3a0 mm/slub.c:3247 dst_alloc+0x146/0x1f0 net/core/dst.c:92 rt_dst_alloc+0x73/0x430 net/ipv4/route.c:1613 ip_route_input_slow+0x1817/0x3a20 net/ipv4/route.c:2340 ip_route_input_rcu net/ipv4/route.c:2470 [inline] ip_route_input_noref+0x116/0x2a0 net/ipv4/route.c:2415 ip_rcv_finish_core.constprop.0+0x288/0x1e80 net/ipv4/ip_input.c:354 ip_list_rcv_finish.constprop.0+0x1b2/0x6e0 net/ipv4/ip_input.c:583 ip_sublist_rcv net/ipv4/ip_input.c:609 [inline] ip_list_rcv+0x34e/0x490 net/ipv4/ip_input.c:644 __netif_receive_skb_list_ptype net/core/dev.c:5508 [inline] __netif_receive_skb_list_core+0x549/0x8e0 net/core/dev.c:5556 __netif_receive_skb_list net/core/dev.c:5608 [inline] netif_receive_skb_list_internal+0x75e/0xd80 net/core/dev.c:5699 gro_normal_list net/core/dev.c:5853 [inline] gro_normal_list net/core/dev.c:5849 [inline] napi_complete_done+0x1f1/0x880 net/core/dev.c:6590 virtqueue_napi_complete drivers/net/virtio_net.c:339 [inline] virtnet_poll+0xca2/0x11b0 drivers/net/virtio_net.c:1557 __napi_poll+0xaf/0x440 net/core/dev.c:7023 napi_poll net/core/dev.c:7090 [inline] net_rx_action+0x801/0xb40 net/core/dev.c:7177 __do_softirq+0x29b/0x9c2 kernel/softirq.c:558 Freed by task 13: kasan_save_stack+0x1e/0x50 mm/kasan/common.c:38 kasan_set_track+0x21/0x30 mm/kasan/common.c:46 kasan_set_free_info+0x20/0x30 mm/kasan/generic.c:370 ____kasan_slab_free mm/kasan/common.c:366 [inline] ____kasan_slab_free mm/kasan/common.c:328 [inline] __kasan_slab_free+0xff/0x130 mm/kasan/common.c:374 kasan_slab_free include/linux/kasan.h:235 [inline] slab_free_hook mm/slub.c:1723 [inline] slab_free_freelist_hook+0x8b/0x1c0 mm/slub.c:1749 slab_free mm/slub.c:3513 [inline] kmem_cache_free+0xbd/0x5d0 mm/slub.c:3530 dst_destroy+0x2d6/0x3f0 net/core/dst.c:127 rcu_do_batch kernel/rcu/tree.c:2506 [inline] rcu_core+0x7ab/0x1470 kernel/rcu/tree.c:2741 __do_softirq+0x29b/0x9c2 kernel/softirq.c:558 Last potentially related work creation: kasan_save_stack+0x1e/0x50 mm/kasan/common.c:38 __kasan_record_aux_stack+0xf5/0x120 mm/kasan/generic.c:348 __call_rcu kernel/rcu/tree.c:2985 [inline] call_rcu+0xb1/0x740 kernel/rcu/tree.c:3065 dst_release net/core/dst.c:177 [inline] dst_release+0x79/0xe0 net/core/dst.c:167 tcp_v4_do_rcv+0x612/0x8d0 net/ipv4/tcp_ipv4.c:1712 sk_backlog_rcv include/net/sock.h:1030 [inline] __release_sock+0x134/0x3b0 net/core/sock.c:2768 release_sock+0x54/0x1b0 net/core/sock.c:3300 tcp_sendmsg+0x36/0x40 net/ipv4/tcp.c:1441 inet_sendmsg+0x99/0xe0 net/ipv4/af_inet.c:819 sock_sendmsg_nosec net/socket.c:704 [inline] sock_sendmsg+0xcf/0x120 net/socket.c:724 sock_write_iter+0x289/0x3c0 net/socket.c:1057 call_write_iter include/linux/fs.h:2162 [inline] new_sync_write+0x429/0x660 fs/read_write.c:503 vfs_write+0x7cd/0xae0 fs/read_write.c:590 ksys_write+0x1ee/0x250 fs/read_write.c:643 do_syscall_x64 arch/x86/entry/common.c:50 [inline] do_syscall_64+0x35/0xb0 arch/x86/entry/common.c:80 entry_SYSCALL_64_after_hwframe+0x44/0xae The buggy address belongs to the object at ffff88807f1cb700 which belongs to the cache ip_dst_cache of size 176 The buggy address is located 58 bytes inside of 176-byte region [ffff88807f1cb700, ffff88807f1cb7b0) The buggy address belongs to the page: page:ffffea0001fc72c0 refcount:1 mapcount:0 mapping:0000000000000000 index:0x0 pfn:0x7f1cb flags: 0xfff00000000200(slab|node=0|zone=1|lastcpupid=0x7ff) raw: 00fff00000000200 dead000000000100 dead000000000122 ffff8881413bb780 raw: 0000000000000000 0000000000100010 00000001ffffffff 0000000000000000 page dumped because: kasan: bad access detected page_owner tracks the page as allocated page last allocated via order 0, migratetype Unmovable, gfp_mask 0x112a20(GFP_ATOMIC|__GFP_NOWARN|__GFP_NORETRY|__GFP_HARDWALL), pid 5, ts 108466983062, free_ts 108048976062 prep_new_page mm/page_alloc.c:2418 [inline] get_page_from_freelist+0xa72/0x2f50 mm/page_alloc.c:4149 __alloc_pages+0x1b2/0x500 mm/page_alloc.c:5369 alloc_pages+0x1a7/0x300 mm/mempolicy.c:2191 alloc_slab_page mm/slub.c:1793 [inline] allocate_slab mm/slub.c:1930 [inline] new_slab+0x32d/0x4a0 mm/slub.c:1993 ___slab_alloc+0x918/0xfe0 mm/slub.c:3022 __slab_alloc.constprop.0+0x4d/0xa0 mm/slub.c:3109 slab_alloc_node mm/slub.c:3200 [inline] slab_alloc mm/slub.c:3242 [inline] kmem_cache_alloc+0x35c/0x3a0 mm/slub.c:3247 dst_alloc+0x146/0x1f0 net/core/dst.c:92 rt_dst_alloc+0x73/0x430 net/ipv4/route.c:1613 __mkroute_output net/ipv4/route.c:2564 [inline] ip_route_output_key_hash_rcu+0x921/0x2d00 net/ipv4/route.c:2791 ip_route_output_key_hash+0x18b/0x300 net/ipv4/route.c:2619 __ip_route_output_key include/net/route.h:126 [inline] ip_route_output_flow+0x23/0x150 net/ipv4/route.c:2850 ip_route_output_key include/net/route.h:142 [inline] geneve_get_v4_rt+0x3a6/0x830 drivers/net/geneve.c:809 geneve_xmit_skb drivers/net/geneve.c:899 [inline] geneve_xmit+0xc4a/0x3540 drivers/net/geneve.c:1082 __netdev_start_xmit include/linux/netdevice.h:4994 [inline] netdev_start_xmit include/linux/netdevice.h:5008 [inline] xmit_one net/core/dev.c:3590 [inline] dev_hard_start_xmit+0x1eb/0x920 net/core/dev.c:3606 __dev_queue_xmit+0x299a/0x3650 net/core/dev.c:4229 page last free stack trace: reset_page_owner include/linux/page_owner.h:24 [inline] free_pages_prepare mm/page_alloc.c:1338 [inline] free_pcp_prepare+0x374/0x870 mm/page_alloc.c:1389 free_unref_page_prepare mm/page_alloc.c:3309 [inline] free_unref_page+0x19/0x690 mm/page_alloc.c:3388 qlink_free mm/kasan/quarantine.c:146 [inline] qlist_free_all+0x5a/0xc0 mm/kasan/quarantine.c:165 kasan_quarantine_reduce+0x180/0x200 mm/kasan/quarantine.c:272 __kasan_slab_alloc+0xa2/0xc0 mm/kasan/common.c:444 kasan_slab_alloc include/linux/kasan.h:259 [inline] slab_post_alloc_hook mm/slab.h:519 [inline] slab_alloc_node mm/slub.c:3234 [inline] kmem_cache_alloc_node+0x255/0x3f0 mm/slub.c:3270 __alloc_skb+0x215/0x340 net/core/skbuff.c:414 alloc_skb include/linux/skbuff.h:1126 [inline] alloc_skb_with_frags+0x93/0x620 net/core/skbuff.c:6078 sock_alloc_send_pskb+0x783/0x910 net/core/sock.c:2575 mld_newpack+0x1df/0x770 net/ipv6/mcast.c:1754 add_grhead+0x265/0x330 net/ipv6/mcast.c:1857 add_grec+0x1053/0x14e0 net/ipv6/mcast.c:1995 mld_send_initial_cr.part.0+0xf6/0x230 net/ipv6/mcast.c:2242 mld_send_initial_cr net/ipv6/mcast.c:1232 [inline] mld_dad_work+0x1d3/0x690 net/ipv6/mcast.c:2268 process_one_work+0x9b2/0x1690 kernel/workqueue.c:2298 worker_thread+0x658/0x11f0 kernel/workqueue.c:2445 Memory state around the buggy address: ffff88807f1cb600: fa fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb ffff88807f1cb680: fb fb fb fb fb fb fc fc fc fc fc fc fc fc fc fc >ffff88807f1cb700: fa fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb ^ ffff88807f1cb780: fb fb fb fb fb fb fc fc fc fc fc fc fc fc fc fc ffff88807f1cb800: fa fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb Fixes: 41063e9dd119 ("ipv4: Early TCP socket demux.") Signed-off-by: Eric Dumazet <edumazet@google.com> Link: https://lore.kernel.org/r/20211220143330.680945-1-eric.dumazet@gmail.com Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2021-12-20 17:33:30 +03:00
rcu_assign_pointer(sk->sk_rx_dst, dst);
sk->sk_rx_dst_ifindex = skb->skb_iif;
tcp: remove dst refcount false sharing for prequeue mode Alexander Duyck reported high false sharing on dst refcount in tcp stack when prequeue is used. prequeue is the mechanism used when a thread is blocked in recvmsg()/read() on a TCP socket, using a blocking model rather than select()/poll()/epoll() non blocking one. We already try to use RCU in input path as much as possible, but we were forced to take a refcount on the dst when skb escaped RCU protected region. When/if the user thread runs on different cpu, dst_release() will then touch dst refcount again. Commit 093162553c33 (tcp: force a dst refcount when prequeue packet) was an example of a race fix. It turns out the only remaining usage of skb->dst for a packet stored in a TCP socket prequeue is IP early demux. We can add a logic to detect when IP early demux is probably going to use skb->dst. Because we do an optimistic check rather than duplicate existing logic, we need to guard inet_sk_rx_dst_set() and inet6_sk_rx_dst_set() from using a NULL dst. Many thanks to Alexander for providing a nice bug report, git bisection, and reproducer. Tested using Alexander script on a 40Gb NIC, 8 RX queues. Hosts have 24 cores, 48 hyper threads. echo 0 >/proc/sys/net/ipv4/tcp_autocorking for i in `seq 0 47` do for j in `seq 0 2` do netperf -H $DEST -t TCP_STREAM -l 1000 \ -c -C -T $i,$i -P 0 -- \ -m 64 -s 64K -D & done done Before patch : ~6Mpps and ~95% cpu usage on receiver After patch : ~9Mpps and ~35% cpu usage on receiver. Signed-off-by: Eric Dumazet <edumazet@google.com> Reported-by: Alexander Duyck <alexander.h.duyck@intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-09-08 19:06:07 +04:00
}
}
net: tcp: ipv6_mapped needs sk_rx_dst_set method commit 5d299f3d3c8a2fb (net: ipv6: fix TCP early demux) added a regression for ipv6_mapped case. [ 67.422369] SELinux: initialized (dev autofs, type autofs), uses genfs_contexts [ 67.449678] SELinux: initialized (dev autofs, type autofs), uses genfs_contexts [ 92.631060] BUG: unable to handle kernel NULL pointer dereference at (null) [ 92.631435] IP: [< (null)>] (null) [ 92.631645] PGD 0 [ 92.631846] Oops: 0010 [#1] SMP [ 92.632095] Modules linked in: autofs4 sunrpc ipv6 dm_mirror dm_region_hash dm_log dm_multipath dm_mod video sbs sbshc battery ac lp parport sg snd_hda_intel snd_hda_codec snd_seq_oss snd_seq_midi_event snd_seq snd_seq_device pcspkr snd_pcm_oss snd_mixer_oss snd_pcm snd_timer serio_raw button floppy snd i2c_i801 i2c_core soundcore snd_page_alloc shpchp ide_cd_mod cdrom microcode ehci_hcd ohci_hcd uhci_hcd [ 92.634294] CPU 0 [ 92.634294] Pid: 4469, comm: sendmail Not tainted 3.6.0-rc1 #3 [ 92.634294] RIP: 0010:[<0000000000000000>] [< (null)>] (null) [ 92.634294] RSP: 0018:ffff880245fc7cb0 EFLAGS: 00010282 [ 92.634294] RAX: ffffffffa01985f0 RBX: ffff88024827ad00 RCX: 0000000000000000 [ 92.634294] RDX: 0000000000000218 RSI: ffff880254735380 RDI: ffff88024827ad00 [ 92.634294] RBP: ffff880245fc7cc8 R08: 0000000000000001 R09: 0000000000000000 [ 92.634294] R10: 0000000000000000 R11: ffff880245fc7bf8 R12: ffff880254735380 [ 92.634294] R13: ffff880254735380 R14: 0000000000000000 R15: 7fffffffffff0218 [ 92.634294] FS: 00007f4516ccd6f0(0000) GS:ffff880256600000(0000) knlGS:0000000000000000 [ 92.634294] CS: 0010 DS: 0000 ES: 0000 CR0: 000000008005003b [ 92.634294] CR2: 0000000000000000 CR3: 0000000245ed1000 CR4: 00000000000007f0 [ 92.634294] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 [ 92.634294] DR3: 0000000000000000 DR6: 00000000ffff0ff0 DR7: 0000000000000400 [ 92.634294] Process sendmail (pid: 4469, threadinfo ffff880245fc6000, task ffff880254b8cac0) [ 92.634294] Stack: [ 92.634294] ffffffff813837a7 ffff88024827ad00 ffff880254b6b0e8 ffff880245fc7d68 [ 92.634294] ffffffff81385083 00000000001d2680 ffff8802547353a8 ffff880245fc7d18 [ 92.634294] ffffffff8105903a ffff88024827ad60 0000000000000002 00000000000000ff [ 92.634294] Call Trace: [ 92.634294] [<ffffffff813837a7>] ? tcp_finish_connect+0x2c/0xfa [ 92.634294] [<ffffffff81385083>] tcp_rcv_state_process+0x2b6/0x9c6 [ 92.634294] [<ffffffff8105903a>] ? sched_clock_cpu+0xc3/0xd1 [ 92.634294] [<ffffffff81059073>] ? local_clock+0x2b/0x3c [ 92.634294] [<ffffffff8138caf3>] tcp_v4_do_rcv+0x63a/0x670 [ 92.634294] [<ffffffff8133278e>] release_sock+0x128/0x1bd [ 92.634294] [<ffffffff8139f060>] __inet_stream_connect+0x1b1/0x352 [ 92.634294] [<ffffffff813325f5>] ? lock_sock_nested+0x74/0x7f [ 92.634294] [<ffffffff8104b333>] ? wake_up_bit+0x25/0x25 [ 92.634294] [<ffffffff813325f5>] ? lock_sock_nested+0x74/0x7f [ 92.634294] [<ffffffff8139f223>] ? inet_stream_connect+0x22/0x4b [ 92.634294] [<ffffffff8139f234>] inet_stream_connect+0x33/0x4b [ 92.634294] [<ffffffff8132e8cf>] sys_connect+0x78/0x9e [ 92.634294] [<ffffffff813fd407>] ? sysret_check+0x1b/0x56 [ 92.634294] [<ffffffff81088503>] ? __audit_syscall_entry+0x195/0x1c8 [ 92.634294] [<ffffffff811cc26e>] ? trace_hardirqs_on_thunk+0x3a/0x3f [ 92.634294] [<ffffffff813fd3e2>] system_call_fastpath+0x16/0x1b [ 92.634294] Code: Bad RIP value. [ 92.634294] RIP [< (null)>] (null) [ 92.634294] RSP <ffff880245fc7cb0> [ 92.634294] CR2: 0000000000000000 [ 92.648982] ---[ end trace 24e2bed94314c8d9 ]--- [ 92.649146] Kernel panic - not syncing: Fatal exception in interrupt Fix this using inet_sk_rx_dst_set(), and export this function in case IPv6 is modular. Reported-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Eric Dumazet <edumazet@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2012-08-09 18:11:00 +04:00
EXPORT_SYMBOL(inet_sk_rx_dst_set);
const struct inet_connection_sock_af_ops ipv4_specific = {
.queue_xmit = ip_queue_xmit,
.send_check = tcp_v4_send_check,
.rebuild_header = inet_sk_rebuild_header,
.sk_rx_dst_set = inet_sk_rx_dst_set,
.conn_request = tcp_v4_conn_request,
.syn_recv_sock = tcp_v4_syn_recv_sock,
.net_header_len = sizeof(struct iphdr),
.setsockopt = ip_setsockopt,
.getsockopt = ip_getsockopt,
.addr2sockaddr = inet_csk_addr2sockaddr,
.sockaddr_len = sizeof(struct sockaddr_in),
.mtu_reduced = tcp_v4_mtu_reduced,
};
EXPORT_SYMBOL(ipv4_specific);
#ifdef CONFIG_TCP_MD5SIG
static const struct tcp_sock_af_ops tcp_sock_ipv4_specific = {
.md5_lookup = tcp_v4_md5_lookup,
.calc_md5_hash = tcp_v4_md5_hash_skb,
.md5_parse = tcp_v4_parse_md5_keys,
};
#endif
/* NOTE: A lot of things set to zero explicitly by call to
* sk_alloc() so need not be done here.
*/
static int tcp_v4_init_sock(struct sock *sk)
{
struct inet_connection_sock *icsk = inet_csk(sk);
tcp_init_sock(sk);
icsk->icsk_af_ops = &ipv4_specific;
#ifdef CONFIG_TCP_MD5SIG
tcp_sk(sk)->af_specific = &tcp_sock_ipv4_specific;
#endif
return 0;
}
void tcp_v4_destroy_sock(struct sock *sk)
{
struct tcp_sock *tp = tcp_sk(sk);
trace_tcp_destroy_sock(sk);
tcp_clear_xmit_timers(sk);
tcp_cleanup_congestion_control(sk);
tcp_cleanup_ulp(sk);
/* Cleanup up the write buffer. */
tcp_write_queue_purge(sk);
net/tcp_fastopen: Disable active side TFO in certain scenarios Middlebox firewall issues can potentially cause server's data being blackholed after a successful 3WHS using TFO. Following are the related reports from Apple: https://www.nanog.org/sites/default/files/Paasch_Network_Support.pdf Slide 31 identifies an issue where the client ACK to the server's data sent during a TFO'd handshake is dropped. C ---> syn-data ---> S C <--- syn/ack ----- S C (accept & write) C <---- data ------- S C ----- ACK -> X S [retry and timeout] https://www.ietf.org/proceedings/94/slides/slides-94-tcpm-13.pdf Slide 5 shows a similar situation that the server's data gets dropped after 3WHS. C ---- syn-data ---> S C <--- syn/ack ----- S C ---- ack --------> S S (accept & write) C? X <- data ------ S [retry and timeout] This is the worst failure b/c the client can not detect such behavior to mitigate the situation (such as disabling TFO). Failing to proceed, the application (e.g., SSL library) may simply timeout and retry with TFO again, and the process repeats indefinitely. The proposed solution is to disable active TFO globally under the following circumstances: 1. client side TFO socket detects out of order FIN 2. client side TFO socket receives out of order RST We disable active side TFO globally for 1hr at first. Then if it happens again, we disable it for 2h, then 4h, 8h, ... And we reset the timeout to 1hr if a client side TFO sockets not opened on loopback has successfully received data segs from server. And we examine this condition during close(). The rational behind it is that when such firewall issue happens, application running on the client should eventually close the socket as it is not able to get the data it is expecting. Or application running on the server should close the socket as it is not able to receive any response from client. In both cases, out of order FIN or RST will get received on the client given that the firewall will not block them as no data are in those frames. And we want to disable active TFO globally as it helps if the middle box is very close to the client and most of the connections are likely to fail. Also, add a debug sysctl: tcp_fastopen_blackhole_detect_timeout_sec: the initial timeout to use when firewall blackhole issue happens. This can be set and read. When setting it to 0, it means to disable the active disable logic. Signed-off-by: Wei Wang <weiwan@google.com> Acked-by: Yuchung Cheng <ycheng@google.com> Acked-by: Neal Cardwell <ncardwell@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-04-21 00:45:46 +03:00
/* Check if we want to disable active TFO */
tcp_fastopen_active_disable_ofo_check(sk);
/* Cleans up our, hopefully empty, out_of_order_queue. */
2016-09-08 00:49:28 +03:00
skb_rbtree_purge(&tp->out_of_order_queue);
#ifdef CONFIG_TCP_MD5SIG
/* Clean up the MD5 key list, if any */
if (tp->md5sig_info) {
tcp_clear_md5_list(sk);
kfree_rcu(rcu_dereference_protected(tp->md5sig_info, 1), rcu);
tp->md5sig_info = NULL;
}
#endif
/* Clean up a referenced TCP bind bucket. */
if (inet_csk(sk)->icsk_bind_hash)
[SOCK] proto: Add hashinfo member to struct proto This way we can remove TCP and DCCP specific versions of sk->sk_prot->get_port: both v4 and v6 use inet_csk_get_port sk->sk_prot->hash: inet_hash is directly used, only v6 need a specific version to deal with mapped sockets sk->sk_prot->unhash: both v4 and v6 use inet_hash directly struct inet_connection_sock_af_ops also gets a new member, bind_conflict, so that inet_csk_get_port can find the per family routine. Now only the lookup routines receive as a parameter a struct inet_hashtable. With this we further reuse code, reducing the difference among INET transport protocols. Eventually work has to be done on UDP and SCTP to make them share this infrastructure and get as a bonus inet_diag interfaces so that iproute can be used with these protocols. net-2.6/net/ipv4/inet_hashtables.c: struct proto | +8 struct inet_connection_sock_af_ops | +8 2 structs changed __inet_hash_nolisten | +18 __inet_hash | -210 inet_put_port | +8 inet_bind_bucket_create | +1 __inet_hash_connect | -8 5 functions changed, 27 bytes added, 218 bytes removed, diff: -191 net-2.6/net/core/sock.c: proto_seq_show | +3 1 function changed, 3 bytes added, diff: +3 net-2.6/net/ipv4/inet_connection_sock.c: inet_csk_get_port | +15 1 function changed, 15 bytes added, diff: +15 net-2.6/net/ipv4/tcp.c: tcp_set_state | -7 1 function changed, 7 bytes removed, diff: -7 net-2.6/net/ipv4/tcp_ipv4.c: tcp_v4_get_port | -31 tcp_v4_hash | -48 tcp_v4_destroy_sock | -7 tcp_v4_syn_recv_sock | -2 tcp_unhash | -179 5 functions changed, 267 bytes removed, diff: -267 net-2.6/net/ipv6/inet6_hashtables.c: __inet6_hash | +8 1 function changed, 8 bytes added, diff: +8 net-2.6/net/ipv4/inet_hashtables.c: inet_unhash | +190 inet_hash | +242 2 functions changed, 432 bytes added, diff: +432 vmlinux: 16 functions changed, 485 bytes added, 492 bytes removed, diff: -7 /home/acme/git/net-2.6/net/ipv6/tcp_ipv6.c: tcp_v6_get_port | -31 tcp_v6_hash | -7 tcp_v6_syn_recv_sock | -9 3 functions changed, 47 bytes removed, diff: -47 /home/acme/git/net-2.6/net/dccp/proto.c: dccp_destroy_sock | -7 dccp_unhash | -179 dccp_hash | -49 dccp_set_state | -7 dccp_done | +1 5 functions changed, 1 bytes added, 242 bytes removed, diff: -241 /home/acme/git/net-2.6/net/dccp/ipv4.c: dccp_v4_get_port | -31 dccp_v4_request_recv_sock | -2 2 functions changed, 33 bytes removed, diff: -33 /home/acme/git/net-2.6/net/dccp/ipv6.c: dccp_v6_get_port | -31 dccp_v6_hash | -7 dccp_v6_request_recv_sock | +5 3 functions changed, 5 bytes added, 38 bytes removed, diff: -33 Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2008-02-03 15:06:04 +03:00
inet_put_port(sk);
BUG_ON(rcu_access_pointer(tp->fastopen_rsk));
TCPCT part 1d: define TCP cookie option, extend existing struct's Data structures are carefully composed to require minimal additions. For example, the struct tcp_options_received cookie_plus variable fits between existing 16-bit and 8-bit variables, requiring no additional space (taking alignment into consideration). There are no additions to tcp_request_sock, and only 1 pointer in tcp_sock. This is a significantly revised implementation of an earlier (year-old) patch that no longer applies cleanly, with permission of the original author (Adam Langley): http://thread.gmane.org/gmane.linux.network/102586 The principle difference is using a TCP option to carry the cookie nonce, instead of a user configured offset in the data. This is more flexible and less subject to user configuration error. Such a cookie option has been suggested for many years, and is also useful without SYN data, allowing several related concepts to use the same extension option. "Re: SYN floods (was: does history repeat itself?)", September 9, 1996. http://www.merit.net/mail.archives/nanog/1996-09/msg00235.html "Re: what a new TCP header might look like", May 12, 1998. ftp://ftp.isi.edu/end2end/end2end-interest-1998.mail These functions will also be used in subsequent patches that implement additional features. Requires: TCPCT part 1a: add request_values parameter for sending SYNACK TCPCT part 1b: generate Responder Cookie secret TCPCT part 1c: sysctl_tcp_cookie_size, socket option TCP_COOKIE_TRANSACTIONS Signed-off-by: William.Allen.Simpson@gmail.com Signed-off-by: David S. Miller <davem@davemloft.net>
2009-12-02 21:17:05 +03:00
/* If socket is aborted during connect operation */
tcp_free_fastopen_req(tp);
tcp_fastopen_destroy_cipher(sk);
tcp_saved_syn_free(tp);
sk_sockets_allocated_dec(sk);
}
EXPORT_SYMBOL(tcp_v4_destroy_sock);
#ifdef CONFIG_PROC_FS
/* Proc filesystem TCP sock list dumping. */
static unsigned short seq_file_family(const struct seq_file *seq);
static bool seq_sk_match(struct seq_file *seq, const struct sock *sk)
{
unsigned short family = seq_file_family(seq);
/* AF_UNSPEC is used as a match all */
return ((family == AF_UNSPEC || family == sk->sk_family) &&
net_eq(sock_net(sk), seq_file_net(seq)));
}
/* Find a non empty bucket (starting from st->bucket)
* and return the first sk from it.
*/
static void *listening_get_first(struct seq_file *seq)
{
struct inet_hashinfo *hinfo = seq_file_net(seq)->ipv4.tcp_death_row.hashinfo;
struct tcp_iter_state *st = seq->private;
st->offset = 0;
for (; st->bucket <= hinfo->lhash2_mask; st->bucket++) {
tcp: seq_file: Replace listening_hash with lhash2 This patch moves the tcp seq_file iteration on listeners from the port only listening_hash to the port+addr lhash2. When iterating from the bpf iter, the next patch will need to lock the socket such that the bpf iter can call setsockopt (e.g. to change the TCP_CONGESTION). To avoid locking the bucket and then locking the sock, the bpf iter will first batch some sockets from the same bucket and then unlock the bucket. If the bucket size is small (which usually is), it is easier to batch the whole bucket such that it is less likely to miss a setsockopt on a socket due to changes in the bucket. However, the port only listening_hash could have many listeners hashed to a bucket (e.g. many individual VIP(s):443 and also multiple by the number of SO_REUSEPORT). We have seen bucket size in tens of thousands range. Also, the chance of having changes in some popular port buckets (e.g. 443) is also high. The port+addr lhash2 was introduced to solve this large listener bucket issue. Also, the listening_hash usage has already been replaced with lhash2 in the fast path inet[6]_lookup_listener(). This patch follows the same direction on moving to lhash2 and iterates the lhash2 instead of listening_hash. Signed-off-by: Martin KaFai Lau <kafai@fb.com> Signed-off-by: Andrii Nakryiko <andrii@kernel.org> Reviewed-by: Eric Dumazet <edumazet@google.com> Acked-by: Kuniyuki Iwashima <kuniyu@amazon.co.jp> Acked-by: Yonghong Song <yhs@fb.com> Link: https://lore.kernel.org/bpf/20210701200606.1035783-1-kafai@fb.com
2021-07-01 23:06:06 +03:00
struct inet_listen_hashbucket *ilb2;
net: inet: Retire port only listening_hash The listen sk is currently stored in two hash tables, listening_hash (hashed by port) and lhash2 (hashed by port and address). After commit 0ee58dad5b06 ("net: tcp6: prefer listeners bound to an address") and commit d9fbc7f6431f ("net: tcp: prefer listeners bound to an address"), the TCP-SYN lookup fast path does not use listening_hash. The commit 05c0b35709c5 ("tcp: seq_file: Replace listening_hash with lhash2") also moved the seq_file (/proc/net/tcp) iteration usage from listening_hash to lhash2. There are still a few listening_hash usages left. One of them is inet_reuseport_add_sock() which uses the listening_hash to search a listen sk during the listen() system call. This turns out to be very slow on use cases that listen on many different VIPs at a popular port (e.g. 443). [ On top of the slowness in adding to the tail in the IPv6 case ]. The latter patch has a selftest to demonstrate this case. This patch takes this chance to move all remaining listening_hash usages to lhash2 and then retire listening_hash. Since most changes need to be done together, it is hard to cut the listening_hash to lhash2 switch into small patches. The changes in this patch is highlighted here for the review purpose. 1. Because of the listening_hash removal, lhash2 can use the sk->sk_nulls_node instead of the icsk->icsk_listen_portaddr_node. This will also keep the sk_unhashed() check to work as is after stop adding sk to listening_hash. The union is removed from inet_listen_hashbucket because only nulls_head is needed. 2. icsk->icsk_listen_portaddr_node and its helpers are removed. 3. The current lhash2 users needs to iterate with sk_nulls_node instead of icsk_listen_portaddr_node. One case is in the inet[6]_lhash2_lookup(). Another case is the seq_file iterator in tcp_ipv4.c. One thing to note is sk_nulls_next() is needed because the old inet_lhash2_for_each_icsk_continue() does a "next" first before iterating. 4. Move the remaining listening_hash usage to lhash2 inet_reuseport_add_sock() which this series is trying to improve. inet_diag.c and mptcp_diag.c are the final two remaining use cases and is moved to lhash2 now also. Signed-off-by: Martin KaFai Lau <kafai@fb.com> Reviewed-by: Eric Dumazet <edumazet@google.com> Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2022-05-12 03:06:05 +03:00
struct hlist_nulls_node *node;
struct sock *sk;
ilb2 = &hinfo->lhash2[st->bucket];
net: inet: Retire port only listening_hash The listen sk is currently stored in two hash tables, listening_hash (hashed by port) and lhash2 (hashed by port and address). After commit 0ee58dad5b06 ("net: tcp6: prefer listeners bound to an address") and commit d9fbc7f6431f ("net: tcp: prefer listeners bound to an address"), the TCP-SYN lookup fast path does not use listening_hash. The commit 05c0b35709c5 ("tcp: seq_file: Replace listening_hash with lhash2") also moved the seq_file (/proc/net/tcp) iteration usage from listening_hash to lhash2. There are still a few listening_hash usages left. One of them is inet_reuseport_add_sock() which uses the listening_hash to search a listen sk during the listen() system call. This turns out to be very slow on use cases that listen on many different VIPs at a popular port (e.g. 443). [ On top of the slowness in adding to the tail in the IPv6 case ]. The latter patch has a selftest to demonstrate this case. This patch takes this chance to move all remaining listening_hash usages to lhash2 and then retire listening_hash. Since most changes need to be done together, it is hard to cut the listening_hash to lhash2 switch into small patches. The changes in this patch is highlighted here for the review purpose. 1. Because of the listening_hash removal, lhash2 can use the sk->sk_nulls_node instead of the icsk->icsk_listen_portaddr_node. This will also keep the sk_unhashed() check to work as is after stop adding sk to listening_hash. The union is removed from inet_listen_hashbucket because only nulls_head is needed. 2. icsk->icsk_listen_portaddr_node and its helpers are removed. 3. The current lhash2 users needs to iterate with sk_nulls_node instead of icsk_listen_portaddr_node. One case is in the inet[6]_lhash2_lookup(). Another case is the seq_file iterator in tcp_ipv4.c. One thing to note is sk_nulls_next() is needed because the old inet_lhash2_for_each_icsk_continue() does a "next" first before iterating. 4. Move the remaining listening_hash usage to lhash2 inet_reuseport_add_sock() which this series is trying to improve. inet_diag.c and mptcp_diag.c are the final two remaining use cases and is moved to lhash2 now also. Signed-off-by: Martin KaFai Lau <kafai@fb.com> Reviewed-by: Eric Dumazet <edumazet@google.com> Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2022-05-12 03:06:05 +03:00
if (hlist_nulls_empty(&ilb2->nulls_head))
continue;
tcp: seq_file: Replace listening_hash with lhash2 This patch moves the tcp seq_file iteration on listeners from the port only listening_hash to the port+addr lhash2. When iterating from the bpf iter, the next patch will need to lock the socket such that the bpf iter can call setsockopt (e.g. to change the TCP_CONGESTION). To avoid locking the bucket and then locking the sock, the bpf iter will first batch some sockets from the same bucket and then unlock the bucket. If the bucket size is small (which usually is), it is easier to batch the whole bucket such that it is less likely to miss a setsockopt on a socket due to changes in the bucket. However, the port only listening_hash could have many listeners hashed to a bucket (e.g. many individual VIP(s):443 and also multiple by the number of SO_REUSEPORT). We have seen bucket size in tens of thousands range. Also, the chance of having changes in some popular port buckets (e.g. 443) is also high. The port+addr lhash2 was introduced to solve this large listener bucket issue. Also, the listening_hash usage has already been replaced with lhash2 in the fast path inet[6]_lookup_listener(). This patch follows the same direction on moving to lhash2 and iterates the lhash2 instead of listening_hash. Signed-off-by: Martin KaFai Lau <kafai@fb.com> Signed-off-by: Andrii Nakryiko <andrii@kernel.org> Reviewed-by: Eric Dumazet <edumazet@google.com> Acked-by: Kuniyuki Iwashima <kuniyu@amazon.co.jp> Acked-by: Yonghong Song <yhs@fb.com> Link: https://lore.kernel.org/bpf/20210701200606.1035783-1-kafai@fb.com
2021-07-01 23:06:06 +03:00
spin_lock(&ilb2->lock);
net: inet: Retire port only listening_hash The listen sk is currently stored in two hash tables, listening_hash (hashed by port) and lhash2 (hashed by port and address). After commit 0ee58dad5b06 ("net: tcp6: prefer listeners bound to an address") and commit d9fbc7f6431f ("net: tcp: prefer listeners bound to an address"), the TCP-SYN lookup fast path does not use listening_hash. The commit 05c0b35709c5 ("tcp: seq_file: Replace listening_hash with lhash2") also moved the seq_file (/proc/net/tcp) iteration usage from listening_hash to lhash2. There are still a few listening_hash usages left. One of them is inet_reuseport_add_sock() which uses the listening_hash to search a listen sk during the listen() system call. This turns out to be very slow on use cases that listen on many different VIPs at a popular port (e.g. 443). [ On top of the slowness in adding to the tail in the IPv6 case ]. The latter patch has a selftest to demonstrate this case. This patch takes this chance to move all remaining listening_hash usages to lhash2 and then retire listening_hash. Since most changes need to be done together, it is hard to cut the listening_hash to lhash2 switch into small patches. The changes in this patch is highlighted here for the review purpose. 1. Because of the listening_hash removal, lhash2 can use the sk->sk_nulls_node instead of the icsk->icsk_listen_portaddr_node. This will also keep the sk_unhashed() check to work as is after stop adding sk to listening_hash. The union is removed from inet_listen_hashbucket because only nulls_head is needed. 2. icsk->icsk_listen_portaddr_node and its helpers are removed. 3. The current lhash2 users needs to iterate with sk_nulls_node instead of icsk_listen_portaddr_node. One case is in the inet[6]_lhash2_lookup(). Another case is the seq_file iterator in tcp_ipv4.c. One thing to note is sk_nulls_next() is needed because the old inet_lhash2_for_each_icsk_continue() does a "next" first before iterating. 4. Move the remaining listening_hash usage to lhash2 inet_reuseport_add_sock() which this series is trying to improve. inet_diag.c and mptcp_diag.c are the final two remaining use cases and is moved to lhash2 now also. Signed-off-by: Martin KaFai Lau <kafai@fb.com> Reviewed-by: Eric Dumazet <edumazet@google.com> Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2022-05-12 03:06:05 +03:00
sk_nulls_for_each(sk, node, &ilb2->nulls_head) {
if (seq_sk_match(seq, sk))
return sk;
}
tcp: seq_file: Replace listening_hash with lhash2 This patch moves the tcp seq_file iteration on listeners from the port only listening_hash to the port+addr lhash2. When iterating from the bpf iter, the next patch will need to lock the socket such that the bpf iter can call setsockopt (e.g. to change the TCP_CONGESTION). To avoid locking the bucket and then locking the sock, the bpf iter will first batch some sockets from the same bucket and then unlock the bucket. If the bucket size is small (which usually is), it is easier to batch the whole bucket such that it is less likely to miss a setsockopt on a socket due to changes in the bucket. However, the port only listening_hash could have many listeners hashed to a bucket (e.g. many individual VIP(s):443 and also multiple by the number of SO_REUSEPORT). We have seen bucket size in tens of thousands range. Also, the chance of having changes in some popular port buckets (e.g. 443) is also high. The port+addr lhash2 was introduced to solve this large listener bucket issue. Also, the listening_hash usage has already been replaced with lhash2 in the fast path inet[6]_lookup_listener(). This patch follows the same direction on moving to lhash2 and iterates the lhash2 instead of listening_hash. Signed-off-by: Martin KaFai Lau <kafai@fb.com> Signed-off-by: Andrii Nakryiko <andrii@kernel.org> Reviewed-by: Eric Dumazet <edumazet@google.com> Acked-by: Kuniyuki Iwashima <kuniyu@amazon.co.jp> Acked-by: Yonghong Song <yhs@fb.com> Link: https://lore.kernel.org/bpf/20210701200606.1035783-1-kafai@fb.com
2021-07-01 23:06:06 +03:00
spin_unlock(&ilb2->lock);
}
return NULL;
}
/* Find the next sk of "cur" within the same bucket (i.e. st->bucket).
* If "cur" is the last one in the st->bucket,
* call listening_get_first() to return the first sk of the next
* non empty bucket.
*/
static void *listening_get_next(struct seq_file *seq, void *cur)
{
struct tcp_iter_state *st = seq->private;
tcp: seq_file: Replace listening_hash with lhash2 This patch moves the tcp seq_file iteration on listeners from the port only listening_hash to the port+addr lhash2. When iterating from the bpf iter, the next patch will need to lock the socket such that the bpf iter can call setsockopt (e.g. to change the TCP_CONGESTION). To avoid locking the bucket and then locking the sock, the bpf iter will first batch some sockets from the same bucket and then unlock the bucket. If the bucket size is small (which usually is), it is easier to batch the whole bucket such that it is less likely to miss a setsockopt on a socket due to changes in the bucket. However, the port only listening_hash could have many listeners hashed to a bucket (e.g. many individual VIP(s):443 and also multiple by the number of SO_REUSEPORT). We have seen bucket size in tens of thousands range. Also, the chance of having changes in some popular port buckets (e.g. 443) is also high. The port+addr lhash2 was introduced to solve this large listener bucket issue. Also, the listening_hash usage has already been replaced with lhash2 in the fast path inet[6]_lookup_listener(). This patch follows the same direction on moving to lhash2 and iterates the lhash2 instead of listening_hash. Signed-off-by: Martin KaFai Lau <kafai@fb.com> Signed-off-by: Andrii Nakryiko <andrii@kernel.org> Reviewed-by: Eric Dumazet <edumazet@google.com> Acked-by: Kuniyuki Iwashima <kuniyu@amazon.co.jp> Acked-by: Yonghong Song <yhs@fb.com> Link: https://lore.kernel.org/bpf/20210701200606.1035783-1-kafai@fb.com
2021-07-01 23:06:06 +03:00
struct inet_listen_hashbucket *ilb2;
net: inet: Retire port only listening_hash The listen sk is currently stored in two hash tables, listening_hash (hashed by port) and lhash2 (hashed by port and address). After commit 0ee58dad5b06 ("net: tcp6: prefer listeners bound to an address") and commit d9fbc7f6431f ("net: tcp: prefer listeners bound to an address"), the TCP-SYN lookup fast path does not use listening_hash. The commit 05c0b35709c5 ("tcp: seq_file: Replace listening_hash with lhash2") also moved the seq_file (/proc/net/tcp) iteration usage from listening_hash to lhash2. There are still a few listening_hash usages left. One of them is inet_reuseport_add_sock() which uses the listening_hash to search a listen sk during the listen() system call. This turns out to be very slow on use cases that listen on many different VIPs at a popular port (e.g. 443). [ On top of the slowness in adding to the tail in the IPv6 case ]. The latter patch has a selftest to demonstrate this case. This patch takes this chance to move all remaining listening_hash usages to lhash2 and then retire listening_hash. Since most changes need to be done together, it is hard to cut the listening_hash to lhash2 switch into small patches. The changes in this patch is highlighted here for the review purpose. 1. Because of the listening_hash removal, lhash2 can use the sk->sk_nulls_node instead of the icsk->icsk_listen_portaddr_node. This will also keep the sk_unhashed() check to work as is after stop adding sk to listening_hash. The union is removed from inet_listen_hashbucket because only nulls_head is needed. 2. icsk->icsk_listen_portaddr_node and its helpers are removed. 3. The current lhash2 users needs to iterate with sk_nulls_node instead of icsk_listen_portaddr_node. One case is in the inet[6]_lhash2_lookup(). Another case is the seq_file iterator in tcp_ipv4.c. One thing to note is sk_nulls_next() is needed because the old inet_lhash2_for_each_icsk_continue() does a "next" first before iterating. 4. Move the remaining listening_hash usage to lhash2 inet_reuseport_add_sock() which this series is trying to improve. inet_diag.c and mptcp_diag.c are the final two remaining use cases and is moved to lhash2 now also. Signed-off-by: Martin KaFai Lau <kafai@fb.com> Reviewed-by: Eric Dumazet <edumazet@google.com> Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2022-05-12 03:06:05 +03:00
struct hlist_nulls_node *node;
struct inet_hashinfo *hinfo;
struct sock *sk = cur;
++st->num;
++st->offset;
net: inet: Retire port only listening_hash The listen sk is currently stored in two hash tables, listening_hash (hashed by port) and lhash2 (hashed by port and address). After commit 0ee58dad5b06 ("net: tcp6: prefer listeners bound to an address") and commit d9fbc7f6431f ("net: tcp: prefer listeners bound to an address"), the TCP-SYN lookup fast path does not use listening_hash. The commit 05c0b35709c5 ("tcp: seq_file: Replace listening_hash with lhash2") also moved the seq_file (/proc/net/tcp) iteration usage from listening_hash to lhash2. There are still a few listening_hash usages left. One of them is inet_reuseport_add_sock() which uses the listening_hash to search a listen sk during the listen() system call. This turns out to be very slow on use cases that listen on many different VIPs at a popular port (e.g. 443). [ On top of the slowness in adding to the tail in the IPv6 case ]. The latter patch has a selftest to demonstrate this case. This patch takes this chance to move all remaining listening_hash usages to lhash2 and then retire listening_hash. Since most changes need to be done together, it is hard to cut the listening_hash to lhash2 switch into small patches. The changes in this patch is highlighted here for the review purpose. 1. Because of the listening_hash removal, lhash2 can use the sk->sk_nulls_node instead of the icsk->icsk_listen_portaddr_node. This will also keep the sk_unhashed() check to work as is after stop adding sk to listening_hash. The union is removed from inet_listen_hashbucket because only nulls_head is needed. 2. icsk->icsk_listen_portaddr_node and its helpers are removed. 3. The current lhash2 users needs to iterate with sk_nulls_node instead of icsk_listen_portaddr_node. One case is in the inet[6]_lhash2_lookup(). Another case is the seq_file iterator in tcp_ipv4.c. One thing to note is sk_nulls_next() is needed because the old inet_lhash2_for_each_icsk_continue() does a "next" first before iterating. 4. Move the remaining listening_hash usage to lhash2 inet_reuseport_add_sock() which this series is trying to improve. inet_diag.c and mptcp_diag.c are the final two remaining use cases and is moved to lhash2 now also. Signed-off-by: Martin KaFai Lau <kafai@fb.com> Reviewed-by: Eric Dumazet <edumazet@google.com> Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2022-05-12 03:06:05 +03:00
sk = sk_nulls_next(sk);
sk_nulls_for_each_from(sk, node) {
if (seq_sk_match(seq, sk))
return sk;
}
hinfo = seq_file_net(seq)->ipv4.tcp_death_row.hashinfo;
ilb2 = &hinfo->lhash2[st->bucket];
tcp: seq_file: Replace listening_hash with lhash2 This patch moves the tcp seq_file iteration on listeners from the port only listening_hash to the port+addr lhash2. When iterating from the bpf iter, the next patch will need to lock the socket such that the bpf iter can call setsockopt (e.g. to change the TCP_CONGESTION). To avoid locking the bucket and then locking the sock, the bpf iter will first batch some sockets from the same bucket and then unlock the bucket. If the bucket size is small (which usually is), it is easier to batch the whole bucket such that it is less likely to miss a setsockopt on a socket due to changes in the bucket. However, the port only listening_hash could have many listeners hashed to a bucket (e.g. many individual VIP(s):443 and also multiple by the number of SO_REUSEPORT). We have seen bucket size in tens of thousands range. Also, the chance of having changes in some popular port buckets (e.g. 443) is also high. The port+addr lhash2 was introduced to solve this large listener bucket issue. Also, the listening_hash usage has already been replaced with lhash2 in the fast path inet[6]_lookup_listener(). This patch follows the same direction on moving to lhash2 and iterates the lhash2 instead of listening_hash. Signed-off-by: Martin KaFai Lau <kafai@fb.com> Signed-off-by: Andrii Nakryiko <andrii@kernel.org> Reviewed-by: Eric Dumazet <edumazet@google.com> Acked-by: Kuniyuki Iwashima <kuniyu@amazon.co.jp> Acked-by: Yonghong Song <yhs@fb.com> Link: https://lore.kernel.org/bpf/20210701200606.1035783-1-kafai@fb.com
2021-07-01 23:06:06 +03:00
spin_unlock(&ilb2->lock);
++st->bucket;
return listening_get_first(seq);
}
static void *listening_get_idx(struct seq_file *seq, loff_t *pos)
{
struct tcp_iter_state *st = seq->private;
void *rc;
st->bucket = 0;
st->offset = 0;
rc = listening_get_first(seq);
while (rc && *pos) {
rc = listening_get_next(seq, rc);
--*pos;
}
return rc;
}
static inline bool empty_bucket(struct inet_hashinfo *hinfo,
const struct tcp_iter_state *st)
{
return hlist_nulls_empty(&hinfo->ehash[st->bucket].chain);
}
/*
* Get first established socket starting from bucket given in st->bucket.
* If st->bucket is zero, the very first socket in the hash is returned.
*/
static void *established_get_first(struct seq_file *seq)
{
struct inet_hashinfo *hinfo = seq_file_net(seq)->ipv4.tcp_death_row.hashinfo;
struct tcp_iter_state *st = seq->private;
st->offset = 0;
for (; st->bucket <= hinfo->ehash_mask; ++st->bucket) {
struct sock *sk;
struct hlist_nulls_node *node;
spinlock_t *lock = inet_ehash_lockp(hinfo, st->bucket);
/* Lockless fast path for the common case of empty buckets */
if (empty_bucket(hinfo, st))
continue;
spin_lock_bh(lock);
sk_nulls_for_each(sk, node, &hinfo->ehash[st->bucket].chain) {
if (seq_sk_match(seq, sk))
return sk;
}
spin_unlock_bh(lock);
}
return NULL;
}
static void *established_get_next(struct seq_file *seq, void *cur)
{
struct inet_hashinfo *hinfo = seq_file_net(seq)->ipv4.tcp_death_row.hashinfo;
struct tcp_iter_state *st = seq->private;
struct hlist_nulls_node *node;
struct sock *sk = cur;
++st->num;
++st->offset;
tcp/dccp: remove twchain TCP listener refactoring, part 3 : Our goal is to hash SYN_RECV sockets into main ehash for fast lookup, and parallel SYN processing. Current inet_ehash_bucket contains two chains, one for ESTABLISH (and friend states) sockets, another for TIME_WAIT sockets only. As the hash table is sized to get at most one socket per bucket, it makes little sense to have separate twchain, as it makes the lookup slightly more complicated, and doubles hash table memory usage. If we make sure all socket types have the lookup keys at the same offsets, we can use a generic and faster lookup. It turns out TIME_WAIT and ESTABLISHED sockets already have common lookup fields for IPv4. [ INET_TW_MATCH() is no longer needed ] I'll provide a follow-up to factorize IPv6 lookup as well, to remove INET6_TW_MATCH() This way, SYN_RECV pseudo sockets will be supported the same. A new sock_gen_put() helper is added, doing either a sock_put() or inet_twsk_put() [ and will support SYN_RECV later ]. Note this helper should only be called in real slow path, when rcu lookup found a socket that was moved to another identity (freed/reused immediately), but could eventually be used in other contexts, like sock_edemux() Before patch : dmesg | grep "TCP established" TCP established hash table entries: 524288 (order: 11, 8388608 bytes) After patch : TCP established hash table entries: 524288 (order: 10, 4194304 bytes) Signed-off-by: Eric Dumazet <edumazet@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2013-10-03 11:22:02 +04:00
sk = sk_nulls_next(sk);
sk_nulls_for_each_from(sk, node) {
if (seq_sk_match(seq, sk))
tcp/dccp: remove twchain TCP listener refactoring, part 3 : Our goal is to hash SYN_RECV sockets into main ehash for fast lookup, and parallel SYN processing. Current inet_ehash_bucket contains two chains, one for ESTABLISH (and friend states) sockets, another for TIME_WAIT sockets only. As the hash table is sized to get at most one socket per bucket, it makes little sense to have separate twchain, as it makes the lookup slightly more complicated, and doubles hash table memory usage. If we make sure all socket types have the lookup keys at the same offsets, we can use a generic and faster lookup. It turns out TIME_WAIT and ESTABLISHED sockets already have common lookup fields for IPv4. [ INET_TW_MATCH() is no longer needed ] I'll provide a follow-up to factorize IPv6 lookup as well, to remove INET6_TW_MATCH() This way, SYN_RECV pseudo sockets will be supported the same. A new sock_gen_put() helper is added, doing either a sock_put() or inet_twsk_put() [ and will support SYN_RECV later ]. Note this helper should only be called in real slow path, when rcu lookup found a socket that was moved to another identity (freed/reused immediately), but could eventually be used in other contexts, like sock_edemux() Before patch : dmesg | grep "TCP established" TCP established hash table entries: 524288 (order: 11, 8388608 bytes) After patch : TCP established hash table entries: 524288 (order: 10, 4194304 bytes) Signed-off-by: Eric Dumazet <edumazet@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2013-10-03 11:22:02 +04:00
return sk;
}
spin_unlock_bh(inet_ehash_lockp(hinfo, st->bucket));
tcp/dccp: remove twchain TCP listener refactoring, part 3 : Our goal is to hash SYN_RECV sockets into main ehash for fast lookup, and parallel SYN processing. Current inet_ehash_bucket contains two chains, one for ESTABLISH (and friend states) sockets, another for TIME_WAIT sockets only. As the hash table is sized to get at most one socket per bucket, it makes little sense to have separate twchain, as it makes the lookup slightly more complicated, and doubles hash table memory usage. If we make sure all socket types have the lookup keys at the same offsets, we can use a generic and faster lookup. It turns out TIME_WAIT and ESTABLISHED sockets already have common lookup fields for IPv4. [ INET_TW_MATCH() is no longer needed ] I'll provide a follow-up to factorize IPv6 lookup as well, to remove INET6_TW_MATCH() This way, SYN_RECV pseudo sockets will be supported the same. A new sock_gen_put() helper is added, doing either a sock_put() or inet_twsk_put() [ and will support SYN_RECV later ]. Note this helper should only be called in real slow path, when rcu lookup found a socket that was moved to another identity (freed/reused immediately), but could eventually be used in other contexts, like sock_edemux() Before patch : dmesg | grep "TCP established" TCP established hash table entries: 524288 (order: 11, 8388608 bytes) After patch : TCP established hash table entries: 524288 (order: 10, 4194304 bytes) Signed-off-by: Eric Dumazet <edumazet@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2013-10-03 11:22:02 +04:00
++st->bucket;
return established_get_first(seq);
}
static void *established_get_idx(struct seq_file *seq, loff_t pos)
{
struct tcp_iter_state *st = seq->private;
void *rc;
st->bucket = 0;
rc = established_get_first(seq);
while (rc && pos) {
rc = established_get_next(seq, rc);
--pos;
}
return rc;
}
static void *tcp_get_idx(struct seq_file *seq, loff_t pos)
{
void *rc;
struct tcp_iter_state *st = seq->private;
st->state = TCP_SEQ_STATE_LISTENING;
rc = listening_get_idx(seq, &pos);
if (!rc) {
st->state = TCP_SEQ_STATE_ESTABLISHED;
rc = established_get_idx(seq, pos);
}
return rc;
}
static void *tcp_seek_last_pos(struct seq_file *seq)
{
struct inet_hashinfo *hinfo = seq_file_net(seq)->ipv4.tcp_death_row.hashinfo;
struct tcp_iter_state *st = seq->private;
int bucket = st->bucket;
int offset = st->offset;
int orig_num = st->num;
void *rc = NULL;
switch (st->state) {
case TCP_SEQ_STATE_LISTENING:
if (st->bucket > hinfo->lhash2_mask)
break;
rc = listening_get_first(seq);
while (offset-- && rc && bucket == st->bucket)
rc = listening_get_next(seq, rc);
if (rc)
break;
st->bucket = 0;
tcp/dccp: remove twchain TCP listener refactoring, part 3 : Our goal is to hash SYN_RECV sockets into main ehash for fast lookup, and parallel SYN processing. Current inet_ehash_bucket contains two chains, one for ESTABLISH (and friend states) sockets, another for TIME_WAIT sockets only. As the hash table is sized to get at most one socket per bucket, it makes little sense to have separate twchain, as it makes the lookup slightly more complicated, and doubles hash table memory usage. If we make sure all socket types have the lookup keys at the same offsets, we can use a generic and faster lookup. It turns out TIME_WAIT and ESTABLISHED sockets already have common lookup fields for IPv4. [ INET_TW_MATCH() is no longer needed ] I'll provide a follow-up to factorize IPv6 lookup as well, to remove INET6_TW_MATCH() This way, SYN_RECV pseudo sockets will be supported the same. A new sock_gen_put() helper is added, doing either a sock_put() or inet_twsk_put() [ and will support SYN_RECV later ]. Note this helper should only be called in real slow path, when rcu lookup found a socket that was moved to another identity (freed/reused immediately), but could eventually be used in other contexts, like sock_edemux() Before patch : dmesg | grep "TCP established" TCP established hash table entries: 524288 (order: 11, 8388608 bytes) After patch : TCP established hash table entries: 524288 (order: 10, 4194304 bytes) Signed-off-by: Eric Dumazet <edumazet@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2013-10-03 11:22:02 +04:00
st->state = TCP_SEQ_STATE_ESTABLISHED;
fallthrough;
case TCP_SEQ_STATE_ESTABLISHED:
if (st->bucket > hinfo->ehash_mask)
break;
rc = established_get_first(seq);
while (offset-- && rc && bucket == st->bucket)
rc = established_get_next(seq, rc);
}
st->num = orig_num;
return rc;
}
void *tcp_seq_start(struct seq_file *seq, loff_t *pos)
{
struct tcp_iter_state *st = seq->private;
void *rc;
if (*pos && *pos == st->last_pos) {
rc = tcp_seek_last_pos(seq);
if (rc)
goto out;
}
st->state = TCP_SEQ_STATE_LISTENING;
st->num = 0;
st->bucket = 0;
st->offset = 0;
rc = *pos ? tcp_get_idx(seq, *pos - 1) : SEQ_START_TOKEN;
out:
st->last_pos = *pos;
return rc;
}
EXPORT_SYMBOL(tcp_seq_start);
void *tcp_seq_next(struct seq_file *seq, void *v, loff_t *pos)
{
struct tcp_iter_state *st = seq->private;
void *rc = NULL;
if (v == SEQ_START_TOKEN) {
rc = tcp_get_idx(seq, 0);
goto out;
}
switch (st->state) {
case TCP_SEQ_STATE_LISTENING:
rc = listening_get_next(seq, v);
if (!rc) {
st->state = TCP_SEQ_STATE_ESTABLISHED;
st->bucket = 0;
st->offset = 0;
rc = established_get_first(seq);
}
break;
case TCP_SEQ_STATE_ESTABLISHED:
rc = established_get_next(seq, v);
break;
}
out:
++*pos;
st->last_pos = *pos;
return rc;
}
EXPORT_SYMBOL(tcp_seq_next);
void tcp_seq_stop(struct seq_file *seq, void *v)
{
struct inet_hashinfo *hinfo = seq_file_net(seq)->ipv4.tcp_death_row.hashinfo;
struct tcp_iter_state *st = seq->private;
switch (st->state) {
case TCP_SEQ_STATE_LISTENING:
if (v != SEQ_START_TOKEN)
spin_unlock(&hinfo->lhash2[st->bucket].lock);
break;
case TCP_SEQ_STATE_ESTABLISHED:
if (v)
spin_unlock_bh(inet_ehash_lockp(hinfo, st->bucket));
break;
}
}
EXPORT_SYMBOL(tcp_seq_stop);
static void get_openreq4(const struct request_sock *req,
struct seq_file *f, int i)
{
const struct inet_request_sock *ireq = inet_rsk(req);
long delta = req->rsk_timer.expires - jiffies;
seq_printf(f, "%4d: %08X:%04X %08X:%04X"
" %02X %08X:%08X %02X:%08lX %08X %5u %8d %u %d %pK",
i,
ireq->ir_loc_addr,
ireq->ir_num,
ireq->ir_rmt_addr,
ntohs(ireq->ir_rmt_port),
TCP_SYN_RECV,
0, 0, /* could print option size, but that is af dependent. */
1, /* timers active (only the expire timer) */
jiffies_delta_to_clock_t(delta),
tcp: better retrans tracking for defer-accept For passive TCP connections using TCP_DEFER_ACCEPT facility, we incorrectly increment req->retrans each time timeout triggers while no SYNACK is sent. SYNACK are not sent for TCP_DEFER_ACCEPT that were established (for which we received the ACK from client). Only the last SYNACK is sent so that we can receive again an ACK from client, to move the req into accept queue. We plan to change this later to avoid the useless retransmit (and potential problem as this SYNACK could be lost) TCP_INFO later gives wrong information to user, claiming imaginary retransmits. Decouple req->retrans field into two independent fields : num_retrans : number of retransmit num_timeout : number of timeouts num_timeout is the counter that is incremented at each timeout, regardless of actual SYNACK being sent or not, and used to compute the exponential timeout. Introduce inet_rtx_syn_ack() helper to increment num_retrans only if ->rtx_syn_ack() succeeded. Use inet_rtx_syn_ack() from tcp_check_req() to increment num_retrans when we re-send a SYNACK in answer to a (retransmitted) SYN. Prior to this patch, we were not counting these retransmits. Change tcp_v[46]_rtx_synack() to increment TCP_MIB_RETRANSSEGS only if a synack packet was successfully queued. Reported-by: Yuchung Cheng <ycheng@google.com> Signed-off-by: Eric Dumazet <edumazet@google.com> Cc: Julian Anastasov <ja@ssi.bg> Cc: Vijay Subramanian <subramanian.vijay@gmail.com> Cc: Elliott Hughes <enh@google.com> Cc: Neal Cardwell <ncardwell@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2012-10-28 03:16:46 +04:00
req->num_timeout,
from_kuid_munged(seq_user_ns(f),
sock_i_uid(req->rsk_listener)),
0, /* non standard timer */
0, /* open_requests have no inode */
0,
req);
}
static void get_tcp4_sock(struct sock *sk, struct seq_file *f, int i)
{
int timer_active;
unsigned long timer_expires;
const struct tcp_sock *tp = tcp_sk(sk);
const struct inet_connection_sock *icsk = inet_csk(sk);
const struct inet_sock *inet = inet_sk(sk);
const struct fastopen_queue *fastopenq = &icsk->icsk_accept_queue.fastopenq;
__be32 dest = inet->inet_daddr;
__be32 src = inet->inet_rcv_saddr;
__u16 destp = ntohs(inet->inet_dport);
__u16 srcp = ntohs(inet->inet_sport);
int rx_queue;
int state;
tcp: Tail loss probe (TLP) This patch series implement the Tail loss probe (TLP) algorithm described in http://tools.ietf.org/html/draft-dukkipati-tcpm-tcp-loss-probe-01. The first patch implements the basic algorithm. TLP's goal is to reduce tail latency of short transactions. It achieves this by converting retransmission timeouts (RTOs) occuring due to tail losses (losses at end of transactions) into fast recovery. TLP transmits one packet in two round-trips when a connection is in Open state and isn't receiving any ACKs. The transmitted packet, aka loss probe, can be either new or a retransmission. When there is tail loss, the ACK from a loss probe triggers FACK/early-retransmit based fast recovery, thus avoiding a costly RTO. In the absence of loss, there is no change in the connection state. PTO stands for probe timeout. It is a timer event indicating that an ACK is overdue and triggers a loss probe packet. The PTO value is set to max(2*SRTT, 10ms) and is adjusted to account for delayed ACK timer when there is only one oustanding packet. TLP Algorithm On transmission of new data in Open state: -> packets_out > 1: schedule PTO in max(2*SRTT, 10ms). -> packets_out == 1: schedule PTO in max(2*RTT, 1.5*RTT + 200ms) -> PTO = min(PTO, RTO) Conditions for scheduling PTO: -> Connection is in Open state. -> Connection is either cwnd limited or no new data to send. -> Number of probes per tail loss episode is limited to one. -> Connection is SACK enabled. When PTO fires: new_segment_exists: -> transmit new segment. -> packets_out++. cwnd remains same. no_new_packet: -> retransmit the last segment. Its ACK triggers FACK or early retransmit based recovery. ACK path: -> rearm RTO at start of ACK processing. -> reschedule PTO if need be. In addition, the patch includes a small variation to the Early Retransmit (ER) algorithm, such that ER and TLP together can in principle recover any N-degree of tail loss through fast recovery. TLP is controlled by the same sysctl as ER, tcp_early_retrans sysctl. tcp_early_retrans==0; disables TLP and ER. ==1; enables RFC5827 ER. ==2; delayed ER. ==3; TLP and delayed ER. [DEFAULT] ==4; TLP only. The TLP patch series have been extensively tested on Google Web servers. It is most effective for short Web trasactions, where it reduced RTOs by 15% and improved HTTP response time (average by 6%, 99th percentile by 10%). The transmitted probes account for <0.5% of the overall transmissions. Signed-off-by: Nandita Dukkipati <nanditad@google.com> Acked-by: Neal Cardwell <ncardwell@google.com> Acked-by: Yuchung Cheng <ycheng@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2013-03-11 14:00:43 +04:00
if (icsk->icsk_pending == ICSK_TIME_RETRANS ||
tcp: add reordering timer in RACK loss detection This patch makes RACK install a reordering timer when it suspects some packets might be lost, but wants to delay the decision a little bit to accomodate reordering. It does not create a new timer but instead repurposes the existing RTO timer, because both are meant to retransmit packets. Specifically it arms a timer ICSK_TIME_REO_TIMEOUT when the RACK timing check fails. The wait time is set to RACK.RTT + RACK.reo_wnd - (NOW - Packet.xmit_time) + fudge This translates to expecting a packet (Packet) should take (RACK.RTT + RACK.reo_wnd + fudge) to deliver after it was sent. When there are multiple packets that need a timer, we use one timer with the maximum timeout. Therefore the timer conservatively uses the maximum window to expire N packets by one timeout, instead of N timeouts to expire N packets sent at different times. The fudge factor is 2 jiffies to ensure when the timer fires, all the suspected packets would exceed the deadline and be marked lost by tcp_rack_detect_loss(). It has to be at least 1 jiffy because the clock may tick between calling icsk_reset_xmit_timer(timeout) and actually hang the timer. The next jiffy is to lower-bound the timeout to 2 jiffies when reo_wnd is < 1ms. When the reordering timer fires (tcp_rack_reo_timeout): If we aren't in Recovery we'll enter fast recovery and force fast retransmit. This is very similar to the early retransmit (RFC5827) except RACK is not constrained to only enter recovery for small outstanding flights. Signed-off-by: Yuchung Cheng <ycheng@google.com> Signed-off-by: Neal Cardwell <ncardwell@google.com> Acked-by: Eric Dumazet <edumazet@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-01-13 09:11:33 +03:00
icsk->icsk_pending == ICSK_TIME_REO_TIMEOUT ||
tcp: Tail loss probe (TLP) This patch series implement the Tail loss probe (TLP) algorithm described in http://tools.ietf.org/html/draft-dukkipati-tcpm-tcp-loss-probe-01. The first patch implements the basic algorithm. TLP's goal is to reduce tail latency of short transactions. It achieves this by converting retransmission timeouts (RTOs) occuring due to tail losses (losses at end of transactions) into fast recovery. TLP transmits one packet in two round-trips when a connection is in Open state and isn't receiving any ACKs. The transmitted packet, aka loss probe, can be either new or a retransmission. When there is tail loss, the ACK from a loss probe triggers FACK/early-retransmit based fast recovery, thus avoiding a costly RTO. In the absence of loss, there is no change in the connection state. PTO stands for probe timeout. It is a timer event indicating that an ACK is overdue and triggers a loss probe packet. The PTO value is set to max(2*SRTT, 10ms) and is adjusted to account for delayed ACK timer when there is only one oustanding packet. TLP Algorithm On transmission of new data in Open state: -> packets_out > 1: schedule PTO in max(2*SRTT, 10ms). -> packets_out == 1: schedule PTO in max(2*RTT, 1.5*RTT + 200ms) -> PTO = min(PTO, RTO) Conditions for scheduling PTO: -> Connection is in Open state. -> Connection is either cwnd limited or no new data to send. -> Number of probes per tail loss episode is limited to one. -> Connection is SACK enabled. When PTO fires: new_segment_exists: -> transmit new segment. -> packets_out++. cwnd remains same. no_new_packet: -> retransmit the last segment. Its ACK triggers FACK or early retransmit based recovery. ACK path: -> rearm RTO at start of ACK processing. -> reschedule PTO if need be. In addition, the patch includes a small variation to the Early Retransmit (ER) algorithm, such that ER and TLP together can in principle recover any N-degree of tail loss through fast recovery. TLP is controlled by the same sysctl as ER, tcp_early_retrans sysctl. tcp_early_retrans==0; disables TLP and ER. ==1; enables RFC5827 ER. ==2; delayed ER. ==3; TLP and delayed ER. [DEFAULT] ==4; TLP only. The TLP patch series have been extensively tested on Google Web servers. It is most effective for short Web trasactions, where it reduced RTOs by 15% and improved HTTP response time (average by 6%, 99th percentile by 10%). The transmitted probes account for <0.5% of the overall transmissions. Signed-off-by: Nandita Dukkipati <nanditad@google.com> Acked-by: Neal Cardwell <ncardwell@google.com> Acked-by: Yuchung Cheng <ycheng@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2013-03-11 14:00:43 +04:00
icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) {
timer_active = 1;
timer_expires = icsk->icsk_timeout;
} else if (icsk->icsk_pending == ICSK_TIME_PROBE0) {
timer_active = 4;
timer_expires = icsk->icsk_timeout;
} else if (timer_pending(&sk->sk_timer)) {
timer_active = 2;
timer_expires = sk->sk_timer.expires;
} else {
timer_active = 0;
timer_expires = jiffies;
}
state = inet_sk_state_load(sk);
if (state == TCP_LISTEN)
rx_queue = READ_ONCE(sk->sk_ack_backlog);
else
/* Because we don't lock the socket,
* we might find a transient negative value.
*/
tcp: annotate tp->rcv_nxt lockless reads There are few places where we fetch tp->rcv_nxt while this field can change from IRQ or other cpu. We need to add READ_ONCE() annotations, and also make sure write sides use corresponding WRITE_ONCE() to avoid store-tearing. Note that tcp_inq_hint() was already using READ_ONCE(tp->rcv_nxt) syzbot reported : BUG: KCSAN: data-race in tcp_poll / tcp_queue_rcv write to 0xffff888120425770 of 4 bytes by interrupt on cpu 0: tcp_rcv_nxt_update net/ipv4/tcp_input.c:3365 [inline] tcp_queue_rcv+0x180/0x380 net/ipv4/tcp_input.c:4638 tcp_rcv_established+0xbf1/0xf50 net/ipv4/tcp_input.c:5616 tcp_v4_do_rcv+0x381/0x4e0 net/ipv4/tcp_ipv4.c:1542 tcp_v4_rcv+0x1a03/0x1bf0 net/ipv4/tcp_ipv4.c:1923 ip_protocol_deliver_rcu+0x51/0x470 net/ipv4/ip_input.c:204 ip_local_deliver_finish+0x110/0x140 net/ipv4/ip_input.c:231 NF_HOOK include/linux/netfilter.h:305 [inline] NF_HOOK include/linux/netfilter.h:299 [inline] ip_local_deliver+0x133/0x210 net/ipv4/ip_input.c:252 dst_input include/net/dst.h:442 [inline] ip_rcv_finish+0x121/0x160 net/ipv4/ip_input.c:413 NF_HOOK include/linux/netfilter.h:305 [inline] NF_HOOK include/linux/netfilter.h:299 [inline] ip_rcv+0x18f/0x1a0 net/ipv4/ip_input.c:523 __netif_receive_skb_one_core+0xa7/0xe0 net/core/dev.c:5004 __netif_receive_skb+0x37/0xf0 net/core/dev.c:5118 netif_receive_skb_internal+0x59/0x190 net/core/dev.c:5208 napi_skb_finish net/core/dev.c:5671 [inline] napi_gro_receive+0x28f/0x330 net/core/dev.c:5704 receive_buf+0x284/0x30b0 drivers/net/virtio_net.c:1061 read to 0xffff888120425770 of 4 bytes by task 7254 on cpu 1: tcp_stream_is_readable net/ipv4/tcp.c:480 [inline] tcp_poll+0x204/0x6b0 net/ipv4/tcp.c:554 sock_poll+0xed/0x250 net/socket.c:1256 vfs_poll include/linux/poll.h:90 [inline] ep_item_poll.isra.0+0x90/0x190 fs/eventpoll.c:892 ep_send_events_proc+0x113/0x5c0 fs/eventpoll.c:1749 ep_scan_ready_list.constprop.0+0x189/0x500 fs/eventpoll.c:704 ep_send_events fs/eventpoll.c:1793 [inline] ep_poll+0xe3/0x900 fs/eventpoll.c:1930 do_epoll_wait+0x162/0x180 fs/eventpoll.c:2294 __do_sys_epoll_pwait fs/eventpoll.c:2325 [inline] __se_sys_epoll_pwait fs/eventpoll.c:2311 [inline] __x64_sys_epoll_pwait+0xcd/0x170 fs/eventpoll.c:2311 do_syscall_64+0xcf/0x2f0 arch/x86/entry/common.c:296 entry_SYSCALL_64_after_hwframe+0x44/0xa9 Reported by Kernel Concurrency Sanitizer on: CPU: 1 PID: 7254 Comm: syz-fuzzer Not tainted 5.3.0+ #0 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 01/01/2011 Signed-off-by: Eric Dumazet <edumazet@google.com> Reported-by: syzbot <syzkaller@googlegroups.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-10-11 06:17:39 +03:00
rx_queue = max_t(int, READ_ONCE(tp->rcv_nxt) -
READ_ONCE(tp->copied_seq), 0);
seq_printf(f, "%4d: %08X:%04X %08X:%04X %02X %08X:%08X %02X:%08lX "
"%08X %5u %8d %lu %d %pK %lu %lu %u %u %d",
i, src, srcp, dest, destp, state,
READ_ONCE(tp->write_seq) - tp->snd_una,
rx_queue,
timer_active,
jiffies_delta_to_clock_t(timer_expires - jiffies),
icsk->icsk_retransmits,
from_kuid_munged(seq_user_ns(f), sock_i_uid(sk)),
icsk->icsk_probes_out,
sock_i_ino(sk),
refcount_read(&sk->sk_refcnt), sk,
jiffies_to_clock_t(icsk->icsk_rto),
jiffies_to_clock_t(icsk->icsk_ack.ato),
(icsk->icsk_ack.quick << 1) | inet_csk_in_pingpong_mode(sk),
tcp_snd_cwnd(tp),
state == TCP_LISTEN ?
fastopenq->max_qlen :
(tcp_in_initial_slowstart(tp) ? -1 : tp->snd_ssthresh));
}
static void get_timewait4_sock(const struct inet_timewait_sock *tw,
struct seq_file *f, int i)
{
tcp/dccp: get rid of central timewait timer Using a timer wheel for timewait sockets was nice ~15 years ago when memory was expensive and machines had a single processor. This does not scale, code is ugly and source of huge latencies (Typically 30 ms have been seen, cpus spinning on death_lock spinlock.) We can afford to use an extra 64 bytes per timewait sock and spread timewait load to all cpus to have better behavior. Tested: On following test, /proc/sys/net/ipv4/tcp_tw_recycle is set to 1 on the target (lpaa24) Before patch : lpaa23:~# ./super_netperf 200 -H lpaa24 -t TCP_CC -l 60 -- -p0,0 419594 lpaa23:~# ./super_netperf 200 -H lpaa24 -t TCP_CC -l 60 -- -p0,0 437171 While test is running, we can observe 25 or even 33 ms latencies. lpaa24:~# ping -c 1000 -i 0.02 -qn lpaa23 ... 1000 packets transmitted, 1000 received, 0% packet loss, time 20601ms rtt min/avg/max/mdev = 0.020/0.217/25.771/1.535 ms, pipe 2 lpaa24:~# ping -c 1000 -i 0.02 -qn lpaa23 ... 1000 packets transmitted, 1000 received, 0% packet loss, time 20702ms rtt min/avg/max/mdev = 0.019/0.183/33.761/1.441 ms, pipe 2 After patch : About 90% increase of throughput : lpaa23:~# ./super_netperf 200 -H lpaa24 -t TCP_CC -l 60 -- -p0,0 810442 lpaa23:~# ./super_netperf 200 -H lpaa24 -t TCP_CC -l 60 -- -p0,0 800992 And latencies are kept to minimal values during this load, even if network utilization is 90% higher : lpaa24:~# ping -c 1000 -i 0.02 -qn lpaa23 ... 1000 packets transmitted, 1000 received, 0% packet loss, time 19991ms rtt min/avg/max/mdev = 0.023/0.064/0.360/0.042 ms Signed-off-by: Eric Dumazet <edumazet@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2015-04-13 04:51:09 +03:00
long delta = tw->tw_timer.expires - jiffies;
__be32 dest, src;
__u16 destp, srcp;
dest = tw->tw_daddr;
src = tw->tw_rcv_saddr;
destp = ntohs(tw->tw_dport);
srcp = ntohs(tw->tw_sport);
seq_printf(f, "%4d: %08X:%04X %08X:%04X"
" %02X %08X:%08X %02X:%08lX %08X %5d %8d %d %d %pK",
i, src, srcp, dest, destp, tw->tw_substate, 0, 0,
3, jiffies_delta_to_clock_t(delta), 0, 0, 0, 0,
refcount_read(&tw->tw_refcnt), tw);
}
#define TMPSZ 150
static int tcp4_seq_show(struct seq_file *seq, void *v)
{
struct tcp_iter_state *st;
tcp/dccp: remove twchain TCP listener refactoring, part 3 : Our goal is to hash SYN_RECV sockets into main ehash for fast lookup, and parallel SYN processing. Current inet_ehash_bucket contains two chains, one for ESTABLISH (and friend states) sockets, another for TIME_WAIT sockets only. As the hash table is sized to get at most one socket per bucket, it makes little sense to have separate twchain, as it makes the lookup slightly more complicated, and doubles hash table memory usage. If we make sure all socket types have the lookup keys at the same offsets, we can use a generic and faster lookup. It turns out TIME_WAIT and ESTABLISHED sockets already have common lookup fields for IPv4. [ INET_TW_MATCH() is no longer needed ] I'll provide a follow-up to factorize IPv6 lookup as well, to remove INET6_TW_MATCH() This way, SYN_RECV pseudo sockets will be supported the same. A new sock_gen_put() helper is added, doing either a sock_put() or inet_twsk_put() [ and will support SYN_RECV later ]. Note this helper should only be called in real slow path, when rcu lookup found a socket that was moved to another identity (freed/reused immediately), but could eventually be used in other contexts, like sock_edemux() Before patch : dmesg | grep "TCP established" TCP established hash table entries: 524288 (order: 11, 8388608 bytes) After patch : TCP established hash table entries: 524288 (order: 10, 4194304 bytes) Signed-off-by: Eric Dumazet <edumazet@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2013-10-03 11:22:02 +04:00
struct sock *sk = v;
seq_setwidth(seq, TMPSZ - 1);
if (v == SEQ_START_TOKEN) {
seq_puts(seq, " sl local_address rem_address st tx_queue "
"rx_queue tr tm->when retrnsmt uid timeout "
"inode");
goto out;
}
st = seq->private;
if (sk->sk_state == TCP_TIME_WAIT)
get_timewait4_sock(v, seq, st->num);
else if (sk->sk_state == TCP_NEW_SYN_RECV)
get_openreq4(v, seq, st->num);
else
get_tcp4_sock(v, seq, st->num);
out:
seq_pad(seq, '\n');
return 0;
}
#ifdef CONFIG_BPF_SYSCALL
bpf: tcp: Bpf iter batching and lock_sock This patch does batching and lock_sock for the bpf tcp iter. It does not affect the proc fs iteration. With bpf-tcp-cc, new algo rollout happens more often. Instead of restarting the application to pick up the new tcp-cc, the next patch will allow bpf iter to do setsockopt(TCP_CONGESTION). This requires locking the sock. Also, unlike the proc iteration (cat /proc/net/tcp[6]), the bpf iter can inspect all fields of a tcp_sock. It will be useful to have a consistent view on some of the fields (e.g. the ones reported in tcp_get_info() that also acquires the sock lock). Double lock: locking the bucket first and then locking the sock could lead to deadlock. This patch takes a batching approach similar to inet_diag. While holding the bucket lock, it batch a number of sockets into an array first and then unlock the bucket. Before doing show(), it then calls lock_sock_fast(). In a machine with ~400k connections, the maximum number of sk in a bucket of the established hashtable is 7. 0.02% of the established connections fall into this bucket size. For listen hash (port+addr lhash2), the bucket is usually very small also except for the SO_REUSEPORT use case which the userspace could have one SO_REUSEPORT socket per thread. While batching is used, it can also minimize the chance of missing sock in the setsockopt use case if the whole bucket is batched. This patch will start with a batch array with INIT_BATCH_SZ (16) which will be enough for the most common cases. bpf_iter_tcp_batch() will try to realloc to a larger array to handle exception case (e.g. the SO_REUSEPORT case in the lhash2). Signed-off-by: Martin KaFai Lau <kafai@fb.com> Signed-off-by: Andrii Nakryiko <andrii@kernel.org> Reviewed-by: Eric Dumazet <edumazet@google.com> Acked-by: Kuniyuki Iwashima <kuniyu@amazon.co.jp> Acked-by: Yonghong Song <yhs@fb.com> Link: https://lore.kernel.org/bpf/20210701200613.1036157-1-kafai@fb.com
2021-07-01 23:06:13 +03:00
struct bpf_tcp_iter_state {
struct tcp_iter_state state;
unsigned int cur_sk;
unsigned int end_sk;
unsigned int max_sk;
struct sock **batch;
bool st_bucket_done;
};
struct bpf_iter__tcp {
__bpf_md_ptr(struct bpf_iter_meta *, meta);
__bpf_md_ptr(struct sock_common *, sk_common);
uid_t uid __aligned(8);
};
static int tcp_prog_seq_show(struct bpf_prog *prog, struct bpf_iter_meta *meta,
struct sock_common *sk_common, uid_t uid)
{
struct bpf_iter__tcp ctx;
meta->seq_num--; /* skip SEQ_START_TOKEN */
ctx.meta = meta;
ctx.sk_common = sk_common;
ctx.uid = uid;
return bpf_iter_run_prog(prog, &ctx);
}
bpf: tcp: Bpf iter batching and lock_sock This patch does batching and lock_sock for the bpf tcp iter. It does not affect the proc fs iteration. With bpf-tcp-cc, new algo rollout happens more often. Instead of restarting the application to pick up the new tcp-cc, the next patch will allow bpf iter to do setsockopt(TCP_CONGESTION). This requires locking the sock. Also, unlike the proc iteration (cat /proc/net/tcp[6]), the bpf iter can inspect all fields of a tcp_sock. It will be useful to have a consistent view on some of the fields (e.g. the ones reported in tcp_get_info() that also acquires the sock lock). Double lock: locking the bucket first and then locking the sock could lead to deadlock. This patch takes a batching approach similar to inet_diag. While holding the bucket lock, it batch a number of sockets into an array first and then unlock the bucket. Before doing show(), it then calls lock_sock_fast(). In a machine with ~400k connections, the maximum number of sk in a bucket of the established hashtable is 7. 0.02% of the established connections fall into this bucket size. For listen hash (port+addr lhash2), the bucket is usually very small also except for the SO_REUSEPORT use case which the userspace could have one SO_REUSEPORT socket per thread. While batching is used, it can also minimize the chance of missing sock in the setsockopt use case if the whole bucket is batched. This patch will start with a batch array with INIT_BATCH_SZ (16) which will be enough for the most common cases. bpf_iter_tcp_batch() will try to realloc to a larger array to handle exception case (e.g. the SO_REUSEPORT case in the lhash2). Signed-off-by: Martin KaFai Lau <kafai@fb.com> Signed-off-by: Andrii Nakryiko <andrii@kernel.org> Reviewed-by: Eric Dumazet <edumazet@google.com> Acked-by: Kuniyuki Iwashima <kuniyu@amazon.co.jp> Acked-by: Yonghong Song <yhs@fb.com> Link: https://lore.kernel.org/bpf/20210701200613.1036157-1-kafai@fb.com
2021-07-01 23:06:13 +03:00
static void bpf_iter_tcp_put_batch(struct bpf_tcp_iter_state *iter)
{
while (iter->cur_sk < iter->end_sk)
sock_put(iter->batch[iter->cur_sk++]);
}
static int bpf_iter_tcp_realloc_batch(struct bpf_tcp_iter_state *iter,
unsigned int new_batch_sz)
{
struct sock **new_batch;
new_batch = kvmalloc(sizeof(*new_batch) * new_batch_sz,
GFP_USER | __GFP_NOWARN);
if (!new_batch)
return -ENOMEM;
bpf_iter_tcp_put_batch(iter);
kvfree(iter->batch);
iter->batch = new_batch;
iter->max_sk = new_batch_sz;
return 0;
}
static unsigned int bpf_iter_tcp_listening_batch(struct seq_file *seq,
struct sock *start_sk)
{
struct inet_hashinfo *hinfo = seq_file_net(seq)->ipv4.tcp_death_row.hashinfo;
bpf: tcp: Bpf iter batching and lock_sock This patch does batching and lock_sock for the bpf tcp iter. It does not affect the proc fs iteration. With bpf-tcp-cc, new algo rollout happens more often. Instead of restarting the application to pick up the new tcp-cc, the next patch will allow bpf iter to do setsockopt(TCP_CONGESTION). This requires locking the sock. Also, unlike the proc iteration (cat /proc/net/tcp[6]), the bpf iter can inspect all fields of a tcp_sock. It will be useful to have a consistent view on some of the fields (e.g. the ones reported in tcp_get_info() that also acquires the sock lock). Double lock: locking the bucket first and then locking the sock could lead to deadlock. This patch takes a batching approach similar to inet_diag. While holding the bucket lock, it batch a number of sockets into an array first and then unlock the bucket. Before doing show(), it then calls lock_sock_fast(). In a machine with ~400k connections, the maximum number of sk in a bucket of the established hashtable is 7. 0.02% of the established connections fall into this bucket size. For listen hash (port+addr lhash2), the bucket is usually very small also except for the SO_REUSEPORT use case which the userspace could have one SO_REUSEPORT socket per thread. While batching is used, it can also minimize the chance of missing sock in the setsockopt use case if the whole bucket is batched. This patch will start with a batch array with INIT_BATCH_SZ (16) which will be enough for the most common cases. bpf_iter_tcp_batch() will try to realloc to a larger array to handle exception case (e.g. the SO_REUSEPORT case in the lhash2). Signed-off-by: Martin KaFai Lau <kafai@fb.com> Signed-off-by: Andrii Nakryiko <andrii@kernel.org> Reviewed-by: Eric Dumazet <edumazet@google.com> Acked-by: Kuniyuki Iwashima <kuniyu@amazon.co.jp> Acked-by: Yonghong Song <yhs@fb.com> Link: https://lore.kernel.org/bpf/20210701200613.1036157-1-kafai@fb.com
2021-07-01 23:06:13 +03:00
struct bpf_tcp_iter_state *iter = seq->private;
struct tcp_iter_state *st = &iter->state;
net: inet: Retire port only listening_hash The listen sk is currently stored in two hash tables, listening_hash (hashed by port) and lhash2 (hashed by port and address). After commit 0ee58dad5b06 ("net: tcp6: prefer listeners bound to an address") and commit d9fbc7f6431f ("net: tcp: prefer listeners bound to an address"), the TCP-SYN lookup fast path does not use listening_hash. The commit 05c0b35709c5 ("tcp: seq_file: Replace listening_hash with lhash2") also moved the seq_file (/proc/net/tcp) iteration usage from listening_hash to lhash2. There are still a few listening_hash usages left. One of them is inet_reuseport_add_sock() which uses the listening_hash to search a listen sk during the listen() system call. This turns out to be very slow on use cases that listen on many different VIPs at a popular port (e.g. 443). [ On top of the slowness in adding to the tail in the IPv6 case ]. The latter patch has a selftest to demonstrate this case. This patch takes this chance to move all remaining listening_hash usages to lhash2 and then retire listening_hash. Since most changes need to be done together, it is hard to cut the listening_hash to lhash2 switch into small patches. The changes in this patch is highlighted here for the review purpose. 1. Because of the listening_hash removal, lhash2 can use the sk->sk_nulls_node instead of the icsk->icsk_listen_portaddr_node. This will also keep the sk_unhashed() check to work as is after stop adding sk to listening_hash. The union is removed from inet_listen_hashbucket because only nulls_head is needed. 2. icsk->icsk_listen_portaddr_node and its helpers are removed. 3. The current lhash2 users needs to iterate with sk_nulls_node instead of icsk_listen_portaddr_node. One case is in the inet[6]_lhash2_lookup(). Another case is the seq_file iterator in tcp_ipv4.c. One thing to note is sk_nulls_next() is needed because the old inet_lhash2_for_each_icsk_continue() does a "next" first before iterating. 4. Move the remaining listening_hash usage to lhash2 inet_reuseport_add_sock() which this series is trying to improve. inet_diag.c and mptcp_diag.c are the final two remaining use cases and is moved to lhash2 now also. Signed-off-by: Martin KaFai Lau <kafai@fb.com> Reviewed-by: Eric Dumazet <edumazet@google.com> Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2022-05-12 03:06:05 +03:00
struct hlist_nulls_node *node;
bpf: tcp: Bpf iter batching and lock_sock This patch does batching and lock_sock for the bpf tcp iter. It does not affect the proc fs iteration. With bpf-tcp-cc, new algo rollout happens more often. Instead of restarting the application to pick up the new tcp-cc, the next patch will allow bpf iter to do setsockopt(TCP_CONGESTION). This requires locking the sock. Also, unlike the proc iteration (cat /proc/net/tcp[6]), the bpf iter can inspect all fields of a tcp_sock. It will be useful to have a consistent view on some of the fields (e.g. the ones reported in tcp_get_info() that also acquires the sock lock). Double lock: locking the bucket first and then locking the sock could lead to deadlock. This patch takes a batching approach similar to inet_diag. While holding the bucket lock, it batch a number of sockets into an array first and then unlock the bucket. Before doing show(), it then calls lock_sock_fast(). In a machine with ~400k connections, the maximum number of sk in a bucket of the established hashtable is 7. 0.02% of the established connections fall into this bucket size. For listen hash (port+addr lhash2), the bucket is usually very small also except for the SO_REUSEPORT use case which the userspace could have one SO_REUSEPORT socket per thread. While batching is used, it can also minimize the chance of missing sock in the setsockopt use case if the whole bucket is batched. This patch will start with a batch array with INIT_BATCH_SZ (16) which will be enough for the most common cases. bpf_iter_tcp_batch() will try to realloc to a larger array to handle exception case (e.g. the SO_REUSEPORT case in the lhash2). Signed-off-by: Martin KaFai Lau <kafai@fb.com> Signed-off-by: Andrii Nakryiko <andrii@kernel.org> Reviewed-by: Eric Dumazet <edumazet@google.com> Acked-by: Kuniyuki Iwashima <kuniyu@amazon.co.jp> Acked-by: Yonghong Song <yhs@fb.com> Link: https://lore.kernel.org/bpf/20210701200613.1036157-1-kafai@fb.com
2021-07-01 23:06:13 +03:00
unsigned int expected = 1;
struct sock *sk;
sock_hold(start_sk);
iter->batch[iter->end_sk++] = start_sk;
net: inet: Retire port only listening_hash The listen sk is currently stored in two hash tables, listening_hash (hashed by port) and lhash2 (hashed by port and address). After commit 0ee58dad5b06 ("net: tcp6: prefer listeners bound to an address") and commit d9fbc7f6431f ("net: tcp: prefer listeners bound to an address"), the TCP-SYN lookup fast path does not use listening_hash. The commit 05c0b35709c5 ("tcp: seq_file: Replace listening_hash with lhash2") also moved the seq_file (/proc/net/tcp) iteration usage from listening_hash to lhash2. There are still a few listening_hash usages left. One of them is inet_reuseport_add_sock() which uses the listening_hash to search a listen sk during the listen() system call. This turns out to be very slow on use cases that listen on many different VIPs at a popular port (e.g. 443). [ On top of the slowness in adding to the tail in the IPv6 case ]. The latter patch has a selftest to demonstrate this case. This patch takes this chance to move all remaining listening_hash usages to lhash2 and then retire listening_hash. Since most changes need to be done together, it is hard to cut the listening_hash to lhash2 switch into small patches. The changes in this patch is highlighted here for the review purpose. 1. Because of the listening_hash removal, lhash2 can use the sk->sk_nulls_node instead of the icsk->icsk_listen_portaddr_node. This will also keep the sk_unhashed() check to work as is after stop adding sk to listening_hash. The union is removed from inet_listen_hashbucket because only nulls_head is needed. 2. icsk->icsk_listen_portaddr_node and its helpers are removed. 3. The current lhash2 users needs to iterate with sk_nulls_node instead of icsk_listen_portaddr_node. One case is in the inet[6]_lhash2_lookup(). Another case is the seq_file iterator in tcp_ipv4.c. One thing to note is sk_nulls_next() is needed because the old inet_lhash2_for_each_icsk_continue() does a "next" first before iterating. 4. Move the remaining listening_hash usage to lhash2 inet_reuseport_add_sock() which this series is trying to improve. inet_diag.c and mptcp_diag.c are the final two remaining use cases and is moved to lhash2 now also. Signed-off-by: Martin KaFai Lau <kafai@fb.com> Reviewed-by: Eric Dumazet <edumazet@google.com> Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2022-05-12 03:06:05 +03:00
sk = sk_nulls_next(start_sk);
sk_nulls_for_each_from(sk, node) {
bpf: tcp: Bpf iter batching and lock_sock This patch does batching and lock_sock for the bpf tcp iter. It does not affect the proc fs iteration. With bpf-tcp-cc, new algo rollout happens more often. Instead of restarting the application to pick up the new tcp-cc, the next patch will allow bpf iter to do setsockopt(TCP_CONGESTION). This requires locking the sock. Also, unlike the proc iteration (cat /proc/net/tcp[6]), the bpf iter can inspect all fields of a tcp_sock. It will be useful to have a consistent view on some of the fields (e.g. the ones reported in tcp_get_info() that also acquires the sock lock). Double lock: locking the bucket first and then locking the sock could lead to deadlock. This patch takes a batching approach similar to inet_diag. While holding the bucket lock, it batch a number of sockets into an array first and then unlock the bucket. Before doing show(), it then calls lock_sock_fast(). In a machine with ~400k connections, the maximum number of sk in a bucket of the established hashtable is 7. 0.02% of the established connections fall into this bucket size. For listen hash (port+addr lhash2), the bucket is usually very small also except for the SO_REUSEPORT use case which the userspace could have one SO_REUSEPORT socket per thread. While batching is used, it can also minimize the chance of missing sock in the setsockopt use case if the whole bucket is batched. This patch will start with a batch array with INIT_BATCH_SZ (16) which will be enough for the most common cases. bpf_iter_tcp_batch() will try to realloc to a larger array to handle exception case (e.g. the SO_REUSEPORT case in the lhash2). Signed-off-by: Martin KaFai Lau <kafai@fb.com> Signed-off-by: Andrii Nakryiko <andrii@kernel.org> Reviewed-by: Eric Dumazet <edumazet@google.com> Acked-by: Kuniyuki Iwashima <kuniyu@amazon.co.jp> Acked-by: Yonghong Song <yhs@fb.com> Link: https://lore.kernel.org/bpf/20210701200613.1036157-1-kafai@fb.com
2021-07-01 23:06:13 +03:00
if (seq_sk_match(seq, sk)) {
if (iter->end_sk < iter->max_sk) {
sock_hold(sk);
iter->batch[iter->end_sk++] = sk;
}
expected++;
}
}
spin_unlock(&hinfo->lhash2[st->bucket].lock);
bpf: tcp: Bpf iter batching and lock_sock This patch does batching and lock_sock for the bpf tcp iter. It does not affect the proc fs iteration. With bpf-tcp-cc, new algo rollout happens more often. Instead of restarting the application to pick up the new tcp-cc, the next patch will allow bpf iter to do setsockopt(TCP_CONGESTION). This requires locking the sock. Also, unlike the proc iteration (cat /proc/net/tcp[6]), the bpf iter can inspect all fields of a tcp_sock. It will be useful to have a consistent view on some of the fields (e.g. the ones reported in tcp_get_info() that also acquires the sock lock). Double lock: locking the bucket first and then locking the sock could lead to deadlock. This patch takes a batching approach similar to inet_diag. While holding the bucket lock, it batch a number of sockets into an array first and then unlock the bucket. Before doing show(), it then calls lock_sock_fast(). In a machine with ~400k connections, the maximum number of sk in a bucket of the established hashtable is 7. 0.02% of the established connections fall into this bucket size. For listen hash (port+addr lhash2), the bucket is usually very small also except for the SO_REUSEPORT use case which the userspace could have one SO_REUSEPORT socket per thread. While batching is used, it can also minimize the chance of missing sock in the setsockopt use case if the whole bucket is batched. This patch will start with a batch array with INIT_BATCH_SZ (16) which will be enough for the most common cases. bpf_iter_tcp_batch() will try to realloc to a larger array to handle exception case (e.g. the SO_REUSEPORT case in the lhash2). Signed-off-by: Martin KaFai Lau <kafai@fb.com> Signed-off-by: Andrii Nakryiko <andrii@kernel.org> Reviewed-by: Eric Dumazet <edumazet@google.com> Acked-by: Kuniyuki Iwashima <kuniyu@amazon.co.jp> Acked-by: Yonghong Song <yhs@fb.com> Link: https://lore.kernel.org/bpf/20210701200613.1036157-1-kafai@fb.com
2021-07-01 23:06:13 +03:00
return expected;
}
static unsigned int bpf_iter_tcp_established_batch(struct seq_file *seq,
struct sock *start_sk)
{
struct inet_hashinfo *hinfo = seq_file_net(seq)->ipv4.tcp_death_row.hashinfo;
bpf: tcp: Bpf iter batching and lock_sock This patch does batching and lock_sock for the bpf tcp iter. It does not affect the proc fs iteration. With bpf-tcp-cc, new algo rollout happens more often. Instead of restarting the application to pick up the new tcp-cc, the next patch will allow bpf iter to do setsockopt(TCP_CONGESTION). This requires locking the sock. Also, unlike the proc iteration (cat /proc/net/tcp[6]), the bpf iter can inspect all fields of a tcp_sock. It will be useful to have a consistent view on some of the fields (e.g. the ones reported in tcp_get_info() that also acquires the sock lock). Double lock: locking the bucket first and then locking the sock could lead to deadlock. This patch takes a batching approach similar to inet_diag. While holding the bucket lock, it batch a number of sockets into an array first and then unlock the bucket. Before doing show(), it then calls lock_sock_fast(). In a machine with ~400k connections, the maximum number of sk in a bucket of the established hashtable is 7. 0.02% of the established connections fall into this bucket size. For listen hash (port+addr lhash2), the bucket is usually very small also except for the SO_REUSEPORT use case which the userspace could have one SO_REUSEPORT socket per thread. While batching is used, it can also minimize the chance of missing sock in the setsockopt use case if the whole bucket is batched. This patch will start with a batch array with INIT_BATCH_SZ (16) which will be enough for the most common cases. bpf_iter_tcp_batch() will try to realloc to a larger array to handle exception case (e.g. the SO_REUSEPORT case in the lhash2). Signed-off-by: Martin KaFai Lau <kafai@fb.com> Signed-off-by: Andrii Nakryiko <andrii@kernel.org> Reviewed-by: Eric Dumazet <edumazet@google.com> Acked-by: Kuniyuki Iwashima <kuniyu@amazon.co.jp> Acked-by: Yonghong Song <yhs@fb.com> Link: https://lore.kernel.org/bpf/20210701200613.1036157-1-kafai@fb.com
2021-07-01 23:06:13 +03:00
struct bpf_tcp_iter_state *iter = seq->private;
struct tcp_iter_state *st = &iter->state;
struct hlist_nulls_node *node;
unsigned int expected = 1;
struct sock *sk;
sock_hold(start_sk);
iter->batch[iter->end_sk++] = start_sk;
sk = sk_nulls_next(start_sk);
sk_nulls_for_each_from(sk, node) {
if (seq_sk_match(seq, sk)) {
if (iter->end_sk < iter->max_sk) {
sock_hold(sk);
iter->batch[iter->end_sk++] = sk;
}
expected++;
}
}
spin_unlock_bh(inet_ehash_lockp(hinfo, st->bucket));
bpf: tcp: Bpf iter batching and lock_sock This patch does batching and lock_sock for the bpf tcp iter. It does not affect the proc fs iteration. With bpf-tcp-cc, new algo rollout happens more often. Instead of restarting the application to pick up the new tcp-cc, the next patch will allow bpf iter to do setsockopt(TCP_CONGESTION). This requires locking the sock. Also, unlike the proc iteration (cat /proc/net/tcp[6]), the bpf iter can inspect all fields of a tcp_sock. It will be useful to have a consistent view on some of the fields (e.g. the ones reported in tcp_get_info() that also acquires the sock lock). Double lock: locking the bucket first and then locking the sock could lead to deadlock. This patch takes a batching approach similar to inet_diag. While holding the bucket lock, it batch a number of sockets into an array first and then unlock the bucket. Before doing show(), it then calls lock_sock_fast(). In a machine with ~400k connections, the maximum number of sk in a bucket of the established hashtable is 7. 0.02% of the established connections fall into this bucket size. For listen hash (port+addr lhash2), the bucket is usually very small also except for the SO_REUSEPORT use case which the userspace could have one SO_REUSEPORT socket per thread. While batching is used, it can also minimize the chance of missing sock in the setsockopt use case if the whole bucket is batched. This patch will start with a batch array with INIT_BATCH_SZ (16) which will be enough for the most common cases. bpf_iter_tcp_batch() will try to realloc to a larger array to handle exception case (e.g. the SO_REUSEPORT case in the lhash2). Signed-off-by: Martin KaFai Lau <kafai@fb.com> Signed-off-by: Andrii Nakryiko <andrii@kernel.org> Reviewed-by: Eric Dumazet <edumazet@google.com> Acked-by: Kuniyuki Iwashima <kuniyu@amazon.co.jp> Acked-by: Yonghong Song <yhs@fb.com> Link: https://lore.kernel.org/bpf/20210701200613.1036157-1-kafai@fb.com
2021-07-01 23:06:13 +03:00
return expected;
}
static struct sock *bpf_iter_tcp_batch(struct seq_file *seq)
{
struct inet_hashinfo *hinfo = seq_file_net(seq)->ipv4.tcp_death_row.hashinfo;
bpf: tcp: Bpf iter batching and lock_sock This patch does batching and lock_sock for the bpf tcp iter. It does not affect the proc fs iteration. With bpf-tcp-cc, new algo rollout happens more often. Instead of restarting the application to pick up the new tcp-cc, the next patch will allow bpf iter to do setsockopt(TCP_CONGESTION). This requires locking the sock. Also, unlike the proc iteration (cat /proc/net/tcp[6]), the bpf iter can inspect all fields of a tcp_sock. It will be useful to have a consistent view on some of the fields (e.g. the ones reported in tcp_get_info() that also acquires the sock lock). Double lock: locking the bucket first and then locking the sock could lead to deadlock. This patch takes a batching approach similar to inet_diag. While holding the bucket lock, it batch a number of sockets into an array first and then unlock the bucket. Before doing show(), it then calls lock_sock_fast(). In a machine with ~400k connections, the maximum number of sk in a bucket of the established hashtable is 7. 0.02% of the established connections fall into this bucket size. For listen hash (port+addr lhash2), the bucket is usually very small also except for the SO_REUSEPORT use case which the userspace could have one SO_REUSEPORT socket per thread. While batching is used, it can also minimize the chance of missing sock in the setsockopt use case if the whole bucket is batched. This patch will start with a batch array with INIT_BATCH_SZ (16) which will be enough for the most common cases. bpf_iter_tcp_batch() will try to realloc to a larger array to handle exception case (e.g. the SO_REUSEPORT case in the lhash2). Signed-off-by: Martin KaFai Lau <kafai@fb.com> Signed-off-by: Andrii Nakryiko <andrii@kernel.org> Reviewed-by: Eric Dumazet <edumazet@google.com> Acked-by: Kuniyuki Iwashima <kuniyu@amazon.co.jp> Acked-by: Yonghong Song <yhs@fb.com> Link: https://lore.kernel.org/bpf/20210701200613.1036157-1-kafai@fb.com
2021-07-01 23:06:13 +03:00
struct bpf_tcp_iter_state *iter = seq->private;
struct tcp_iter_state *st = &iter->state;
unsigned int expected;
bool resized = false;
struct sock *sk;
/* The st->bucket is done. Directly advance to the next
* bucket instead of having the tcp_seek_last_pos() to skip
* one by one in the current bucket and eventually find out
* it has to advance to the next bucket.
*/
if (iter->st_bucket_done) {
st->offset = 0;
st->bucket++;
if (st->state == TCP_SEQ_STATE_LISTENING &&
st->bucket > hinfo->lhash2_mask) {
bpf: tcp: Bpf iter batching and lock_sock This patch does batching and lock_sock for the bpf tcp iter. It does not affect the proc fs iteration. With bpf-tcp-cc, new algo rollout happens more often. Instead of restarting the application to pick up the new tcp-cc, the next patch will allow bpf iter to do setsockopt(TCP_CONGESTION). This requires locking the sock. Also, unlike the proc iteration (cat /proc/net/tcp[6]), the bpf iter can inspect all fields of a tcp_sock. It will be useful to have a consistent view on some of the fields (e.g. the ones reported in tcp_get_info() that also acquires the sock lock). Double lock: locking the bucket first and then locking the sock could lead to deadlock. This patch takes a batching approach similar to inet_diag. While holding the bucket lock, it batch a number of sockets into an array first and then unlock the bucket. Before doing show(), it then calls lock_sock_fast(). In a machine with ~400k connections, the maximum number of sk in a bucket of the established hashtable is 7. 0.02% of the established connections fall into this bucket size. For listen hash (port+addr lhash2), the bucket is usually very small also except for the SO_REUSEPORT use case which the userspace could have one SO_REUSEPORT socket per thread. While batching is used, it can also minimize the chance of missing sock in the setsockopt use case if the whole bucket is batched. This patch will start with a batch array with INIT_BATCH_SZ (16) which will be enough for the most common cases. bpf_iter_tcp_batch() will try to realloc to a larger array to handle exception case (e.g. the SO_REUSEPORT case in the lhash2). Signed-off-by: Martin KaFai Lau <kafai@fb.com> Signed-off-by: Andrii Nakryiko <andrii@kernel.org> Reviewed-by: Eric Dumazet <edumazet@google.com> Acked-by: Kuniyuki Iwashima <kuniyu@amazon.co.jp> Acked-by: Yonghong Song <yhs@fb.com> Link: https://lore.kernel.org/bpf/20210701200613.1036157-1-kafai@fb.com
2021-07-01 23:06:13 +03:00
st->state = TCP_SEQ_STATE_ESTABLISHED;
st->bucket = 0;
}
}
again:
/* Get a new batch */
iter->cur_sk = 0;
iter->end_sk = 0;
iter->st_bucket_done = false;
sk = tcp_seek_last_pos(seq);
if (!sk)
return NULL; /* Done */
if (st->state == TCP_SEQ_STATE_LISTENING)
expected = bpf_iter_tcp_listening_batch(seq, sk);
else
expected = bpf_iter_tcp_established_batch(seq, sk);
if (iter->end_sk == expected) {
iter->st_bucket_done = true;
return sk;
}
if (!resized && !bpf_iter_tcp_realloc_batch(iter, expected * 3 / 2)) {
resized = true;
goto again;
}
return sk;
}
static void *bpf_iter_tcp_seq_start(struct seq_file *seq, loff_t *pos)
{
/* bpf iter does not support lseek, so it always
* continue from where it was stop()-ped.
*/
if (*pos)
return bpf_iter_tcp_batch(seq);
return SEQ_START_TOKEN;
}
static void *bpf_iter_tcp_seq_next(struct seq_file *seq, void *v, loff_t *pos)
{
struct bpf_tcp_iter_state *iter = seq->private;
struct tcp_iter_state *st = &iter->state;
struct sock *sk;
/* Whenever seq_next() is called, the iter->cur_sk is
* done with seq_show(), so advance to the next sk in
* the batch.
*/
if (iter->cur_sk < iter->end_sk) {
/* Keeping st->num consistent in tcp_iter_state.
* bpf_iter_tcp does not use st->num.
* meta.seq_num is used instead.
*/
st->num++;
/* Move st->offset to the next sk in the bucket such that
* the future start() will resume at st->offset in
* st->bucket. See tcp_seek_last_pos().
*/
st->offset++;
sock_put(iter->batch[iter->cur_sk++]);
}
if (iter->cur_sk < iter->end_sk)
sk = iter->batch[iter->cur_sk];
else
sk = bpf_iter_tcp_batch(seq);
++*pos;
/* Keeping st->last_pos consistent in tcp_iter_state.
* bpf iter does not do lseek, so st->last_pos always equals to *pos.
*/
st->last_pos = *pos;
return sk;
}
static int bpf_iter_tcp_seq_show(struct seq_file *seq, void *v)
{
struct bpf_iter_meta meta;
struct bpf_prog *prog;
struct sock *sk = v;
bpf: tcp: Bpf iter batching and lock_sock This patch does batching and lock_sock for the bpf tcp iter. It does not affect the proc fs iteration. With bpf-tcp-cc, new algo rollout happens more often. Instead of restarting the application to pick up the new tcp-cc, the next patch will allow bpf iter to do setsockopt(TCP_CONGESTION). This requires locking the sock. Also, unlike the proc iteration (cat /proc/net/tcp[6]), the bpf iter can inspect all fields of a tcp_sock. It will be useful to have a consistent view on some of the fields (e.g. the ones reported in tcp_get_info() that also acquires the sock lock). Double lock: locking the bucket first and then locking the sock could lead to deadlock. This patch takes a batching approach similar to inet_diag. While holding the bucket lock, it batch a number of sockets into an array first and then unlock the bucket. Before doing show(), it then calls lock_sock_fast(). In a machine with ~400k connections, the maximum number of sk in a bucket of the established hashtable is 7. 0.02% of the established connections fall into this bucket size. For listen hash (port+addr lhash2), the bucket is usually very small also except for the SO_REUSEPORT use case which the userspace could have one SO_REUSEPORT socket per thread. While batching is used, it can also minimize the chance of missing sock in the setsockopt use case if the whole bucket is batched. This patch will start with a batch array with INIT_BATCH_SZ (16) which will be enough for the most common cases. bpf_iter_tcp_batch() will try to realloc to a larger array to handle exception case (e.g. the SO_REUSEPORT case in the lhash2). Signed-off-by: Martin KaFai Lau <kafai@fb.com> Signed-off-by: Andrii Nakryiko <andrii@kernel.org> Reviewed-by: Eric Dumazet <edumazet@google.com> Acked-by: Kuniyuki Iwashima <kuniyu@amazon.co.jp> Acked-by: Yonghong Song <yhs@fb.com> Link: https://lore.kernel.org/bpf/20210701200613.1036157-1-kafai@fb.com
2021-07-01 23:06:13 +03:00
bool slow;
uid_t uid;
bpf: tcp: Bpf iter batching and lock_sock This patch does batching and lock_sock for the bpf tcp iter. It does not affect the proc fs iteration. With bpf-tcp-cc, new algo rollout happens more often. Instead of restarting the application to pick up the new tcp-cc, the next patch will allow bpf iter to do setsockopt(TCP_CONGESTION). This requires locking the sock. Also, unlike the proc iteration (cat /proc/net/tcp[6]), the bpf iter can inspect all fields of a tcp_sock. It will be useful to have a consistent view on some of the fields (e.g. the ones reported in tcp_get_info() that also acquires the sock lock). Double lock: locking the bucket first and then locking the sock could lead to deadlock. This patch takes a batching approach similar to inet_diag. While holding the bucket lock, it batch a number of sockets into an array first and then unlock the bucket. Before doing show(), it then calls lock_sock_fast(). In a machine with ~400k connections, the maximum number of sk in a bucket of the established hashtable is 7. 0.02% of the established connections fall into this bucket size. For listen hash (port+addr lhash2), the bucket is usually very small also except for the SO_REUSEPORT use case which the userspace could have one SO_REUSEPORT socket per thread. While batching is used, it can also minimize the chance of missing sock in the setsockopt use case if the whole bucket is batched. This patch will start with a batch array with INIT_BATCH_SZ (16) which will be enough for the most common cases. bpf_iter_tcp_batch() will try to realloc to a larger array to handle exception case (e.g. the SO_REUSEPORT case in the lhash2). Signed-off-by: Martin KaFai Lau <kafai@fb.com> Signed-off-by: Andrii Nakryiko <andrii@kernel.org> Reviewed-by: Eric Dumazet <edumazet@google.com> Acked-by: Kuniyuki Iwashima <kuniyu@amazon.co.jp> Acked-by: Yonghong Song <yhs@fb.com> Link: https://lore.kernel.org/bpf/20210701200613.1036157-1-kafai@fb.com
2021-07-01 23:06:13 +03:00
int ret;
if (v == SEQ_START_TOKEN)
return 0;
bpf: tcp: Bpf iter batching and lock_sock This patch does batching and lock_sock for the bpf tcp iter. It does not affect the proc fs iteration. With bpf-tcp-cc, new algo rollout happens more often. Instead of restarting the application to pick up the new tcp-cc, the next patch will allow bpf iter to do setsockopt(TCP_CONGESTION). This requires locking the sock. Also, unlike the proc iteration (cat /proc/net/tcp[6]), the bpf iter can inspect all fields of a tcp_sock. It will be useful to have a consistent view on some of the fields (e.g. the ones reported in tcp_get_info() that also acquires the sock lock). Double lock: locking the bucket first and then locking the sock could lead to deadlock. This patch takes a batching approach similar to inet_diag. While holding the bucket lock, it batch a number of sockets into an array first and then unlock the bucket. Before doing show(), it then calls lock_sock_fast(). In a machine with ~400k connections, the maximum number of sk in a bucket of the established hashtable is 7. 0.02% of the established connections fall into this bucket size. For listen hash (port+addr lhash2), the bucket is usually very small also except for the SO_REUSEPORT use case which the userspace could have one SO_REUSEPORT socket per thread. While batching is used, it can also minimize the chance of missing sock in the setsockopt use case if the whole bucket is batched. This patch will start with a batch array with INIT_BATCH_SZ (16) which will be enough for the most common cases. bpf_iter_tcp_batch() will try to realloc to a larger array to handle exception case (e.g. the SO_REUSEPORT case in the lhash2). Signed-off-by: Martin KaFai Lau <kafai@fb.com> Signed-off-by: Andrii Nakryiko <andrii@kernel.org> Reviewed-by: Eric Dumazet <edumazet@google.com> Acked-by: Kuniyuki Iwashima <kuniyu@amazon.co.jp> Acked-by: Yonghong Song <yhs@fb.com> Link: https://lore.kernel.org/bpf/20210701200613.1036157-1-kafai@fb.com
2021-07-01 23:06:13 +03:00
if (sk_fullsock(sk))
slow = lock_sock_fast(sk);
if (unlikely(sk_unhashed(sk))) {
ret = SEQ_SKIP;
goto unlock;
}
if (sk->sk_state == TCP_TIME_WAIT) {
uid = 0;
} else if (sk->sk_state == TCP_NEW_SYN_RECV) {
const struct request_sock *req = v;
uid = from_kuid_munged(seq_user_ns(seq),
sock_i_uid(req->rsk_listener));
} else {
uid = from_kuid_munged(seq_user_ns(seq), sock_i_uid(sk));
}
meta.seq = seq;
prog = bpf_iter_get_info(&meta, false);
bpf: tcp: Bpf iter batching and lock_sock This patch does batching and lock_sock for the bpf tcp iter. It does not affect the proc fs iteration. With bpf-tcp-cc, new algo rollout happens more often. Instead of restarting the application to pick up the new tcp-cc, the next patch will allow bpf iter to do setsockopt(TCP_CONGESTION). This requires locking the sock. Also, unlike the proc iteration (cat /proc/net/tcp[6]), the bpf iter can inspect all fields of a tcp_sock. It will be useful to have a consistent view on some of the fields (e.g. the ones reported in tcp_get_info() that also acquires the sock lock). Double lock: locking the bucket first and then locking the sock could lead to deadlock. This patch takes a batching approach similar to inet_diag. While holding the bucket lock, it batch a number of sockets into an array first and then unlock the bucket. Before doing show(), it then calls lock_sock_fast(). In a machine with ~400k connections, the maximum number of sk in a bucket of the established hashtable is 7. 0.02% of the established connections fall into this bucket size. For listen hash (port+addr lhash2), the bucket is usually very small also except for the SO_REUSEPORT use case which the userspace could have one SO_REUSEPORT socket per thread. While batching is used, it can also minimize the chance of missing sock in the setsockopt use case if the whole bucket is batched. This patch will start with a batch array with INIT_BATCH_SZ (16) which will be enough for the most common cases. bpf_iter_tcp_batch() will try to realloc to a larger array to handle exception case (e.g. the SO_REUSEPORT case in the lhash2). Signed-off-by: Martin KaFai Lau <kafai@fb.com> Signed-off-by: Andrii Nakryiko <andrii@kernel.org> Reviewed-by: Eric Dumazet <edumazet@google.com> Acked-by: Kuniyuki Iwashima <kuniyu@amazon.co.jp> Acked-by: Yonghong Song <yhs@fb.com> Link: https://lore.kernel.org/bpf/20210701200613.1036157-1-kafai@fb.com
2021-07-01 23:06:13 +03:00
ret = tcp_prog_seq_show(prog, &meta, v, uid);
unlock:
if (sk_fullsock(sk))
unlock_sock_fast(sk, slow);
return ret;
}
static void bpf_iter_tcp_seq_stop(struct seq_file *seq, void *v)
{
bpf: tcp: Bpf iter batching and lock_sock This patch does batching and lock_sock for the bpf tcp iter. It does not affect the proc fs iteration. With bpf-tcp-cc, new algo rollout happens more often. Instead of restarting the application to pick up the new tcp-cc, the next patch will allow bpf iter to do setsockopt(TCP_CONGESTION). This requires locking the sock. Also, unlike the proc iteration (cat /proc/net/tcp[6]), the bpf iter can inspect all fields of a tcp_sock. It will be useful to have a consistent view on some of the fields (e.g. the ones reported in tcp_get_info() that also acquires the sock lock). Double lock: locking the bucket first and then locking the sock could lead to deadlock. This patch takes a batching approach similar to inet_diag. While holding the bucket lock, it batch a number of sockets into an array first and then unlock the bucket. Before doing show(), it then calls lock_sock_fast(). In a machine with ~400k connections, the maximum number of sk in a bucket of the established hashtable is 7. 0.02% of the established connections fall into this bucket size. For listen hash (port+addr lhash2), the bucket is usually very small also except for the SO_REUSEPORT use case which the userspace could have one SO_REUSEPORT socket per thread. While batching is used, it can also minimize the chance of missing sock in the setsockopt use case if the whole bucket is batched. This patch will start with a batch array with INIT_BATCH_SZ (16) which will be enough for the most common cases. bpf_iter_tcp_batch() will try to realloc to a larger array to handle exception case (e.g. the SO_REUSEPORT case in the lhash2). Signed-off-by: Martin KaFai Lau <kafai@fb.com> Signed-off-by: Andrii Nakryiko <andrii@kernel.org> Reviewed-by: Eric Dumazet <edumazet@google.com> Acked-by: Kuniyuki Iwashima <kuniyu@amazon.co.jp> Acked-by: Yonghong Song <yhs@fb.com> Link: https://lore.kernel.org/bpf/20210701200613.1036157-1-kafai@fb.com
2021-07-01 23:06:13 +03:00
struct bpf_tcp_iter_state *iter = seq->private;
struct bpf_iter_meta meta;
struct bpf_prog *prog;
if (!v) {
meta.seq = seq;
prog = bpf_iter_get_info(&meta, true);
if (prog)
(void)tcp_prog_seq_show(prog, &meta, v, 0);
}
bpf: tcp: Bpf iter batching and lock_sock This patch does batching and lock_sock for the bpf tcp iter. It does not affect the proc fs iteration. With bpf-tcp-cc, new algo rollout happens more often. Instead of restarting the application to pick up the new tcp-cc, the next patch will allow bpf iter to do setsockopt(TCP_CONGESTION). This requires locking the sock. Also, unlike the proc iteration (cat /proc/net/tcp[6]), the bpf iter can inspect all fields of a tcp_sock. It will be useful to have a consistent view on some of the fields (e.g. the ones reported in tcp_get_info() that also acquires the sock lock). Double lock: locking the bucket first and then locking the sock could lead to deadlock. This patch takes a batching approach similar to inet_diag. While holding the bucket lock, it batch a number of sockets into an array first and then unlock the bucket. Before doing show(), it then calls lock_sock_fast(). In a machine with ~400k connections, the maximum number of sk in a bucket of the established hashtable is 7. 0.02% of the established connections fall into this bucket size. For listen hash (port+addr lhash2), the bucket is usually very small also except for the SO_REUSEPORT use case which the userspace could have one SO_REUSEPORT socket per thread. While batching is used, it can also minimize the chance of missing sock in the setsockopt use case if the whole bucket is batched. This patch will start with a batch array with INIT_BATCH_SZ (16) which will be enough for the most common cases. bpf_iter_tcp_batch() will try to realloc to a larger array to handle exception case (e.g. the SO_REUSEPORT case in the lhash2). Signed-off-by: Martin KaFai Lau <kafai@fb.com> Signed-off-by: Andrii Nakryiko <andrii@kernel.org> Reviewed-by: Eric Dumazet <edumazet@google.com> Acked-by: Kuniyuki Iwashima <kuniyu@amazon.co.jp> Acked-by: Yonghong Song <yhs@fb.com> Link: https://lore.kernel.org/bpf/20210701200613.1036157-1-kafai@fb.com
2021-07-01 23:06:13 +03:00
if (iter->cur_sk < iter->end_sk) {
bpf_iter_tcp_put_batch(iter);
iter->st_bucket_done = false;
}
}
static const struct seq_operations bpf_iter_tcp_seq_ops = {
.show = bpf_iter_tcp_seq_show,
bpf: tcp: Bpf iter batching and lock_sock This patch does batching and lock_sock for the bpf tcp iter. It does not affect the proc fs iteration. With bpf-tcp-cc, new algo rollout happens more often. Instead of restarting the application to pick up the new tcp-cc, the next patch will allow bpf iter to do setsockopt(TCP_CONGESTION). This requires locking the sock. Also, unlike the proc iteration (cat /proc/net/tcp[6]), the bpf iter can inspect all fields of a tcp_sock. It will be useful to have a consistent view on some of the fields (e.g. the ones reported in tcp_get_info() that also acquires the sock lock). Double lock: locking the bucket first and then locking the sock could lead to deadlock. This patch takes a batching approach similar to inet_diag. While holding the bucket lock, it batch a number of sockets into an array first and then unlock the bucket. Before doing show(), it then calls lock_sock_fast(). In a machine with ~400k connections, the maximum number of sk in a bucket of the established hashtable is 7. 0.02% of the established connections fall into this bucket size. For listen hash (port+addr lhash2), the bucket is usually very small also except for the SO_REUSEPORT use case which the userspace could have one SO_REUSEPORT socket per thread. While batching is used, it can also minimize the chance of missing sock in the setsockopt use case if the whole bucket is batched. This patch will start with a batch array with INIT_BATCH_SZ (16) which will be enough for the most common cases. bpf_iter_tcp_batch() will try to realloc to a larger array to handle exception case (e.g. the SO_REUSEPORT case in the lhash2). Signed-off-by: Martin KaFai Lau <kafai@fb.com> Signed-off-by: Andrii Nakryiko <andrii@kernel.org> Reviewed-by: Eric Dumazet <edumazet@google.com> Acked-by: Kuniyuki Iwashima <kuniyu@amazon.co.jp> Acked-by: Yonghong Song <yhs@fb.com> Link: https://lore.kernel.org/bpf/20210701200613.1036157-1-kafai@fb.com
2021-07-01 23:06:13 +03:00
.start = bpf_iter_tcp_seq_start,
.next = bpf_iter_tcp_seq_next,
.stop = bpf_iter_tcp_seq_stop,
};
#endif
static unsigned short seq_file_family(const struct seq_file *seq)
{
const struct tcp_seq_afinfo *afinfo;
#ifdef CONFIG_BPF_SYSCALL
/* Iterated from bpf_iter. Let the bpf prog to filter instead. */
if (seq->op == &bpf_iter_tcp_seq_ops)
return AF_UNSPEC;
#endif
/* Iterated from proc fs */
afinfo = pde_data(file_inode(seq->file));
return afinfo->family;
}
static const struct seq_operations tcp4_seq_ops = {
.show = tcp4_seq_show,
.start = tcp_seq_start,
.next = tcp_seq_next,
.stop = tcp_seq_stop,
};
static struct tcp_seq_afinfo tcp4_seq_afinfo = {
.family = AF_INET,
};
static int __net_init tcp4_proc_init_net(struct net *net)
{
if (!proc_create_net_data("tcp", 0444, net->proc_net, &tcp4_seq_ops,
sizeof(struct tcp_iter_state), &tcp4_seq_afinfo))
return -ENOMEM;
return 0;
}
static void __net_exit tcp4_proc_exit_net(struct net *net)
{
remove_proc_entry("tcp", net->proc_net);
}
static struct pernet_operations tcp4_net_ops = {
.init = tcp4_proc_init_net,
.exit = tcp4_proc_exit_net,
};
int __init tcp4_proc_init(void)
{
return register_pernet_subsys(&tcp4_net_ops);
}
void tcp4_proc_exit(void)
{
unregister_pernet_subsys(&tcp4_net_ops);
}
#endif /* CONFIG_PROC_FS */
/* @wake is one when sk_stream_write_space() calls us.
* This sends EPOLLOUT only if notsent_bytes is half the limit.
* This mimics the strategy used in sock_def_write_space().
*/
bool tcp_stream_memory_free(const struct sock *sk, int wake)
{
const struct tcp_sock *tp = tcp_sk(sk);
u32 notsent_bytes = READ_ONCE(tp->write_seq) -
READ_ONCE(tp->snd_nxt);
return (notsent_bytes << wake) < tcp_notsent_lowat(tp);
}
EXPORT_SYMBOL(tcp_stream_memory_free);
struct proto tcp_prot = {
.name = "TCP",
.owner = THIS_MODULE,
.close = tcp_close,
bpf: Hooks for sys_connect == The problem == See description of the problem in the initial patch of this patch set. == The solution == The patch provides much more reliable in-kernel solution for the 2nd part of the problem: making outgoing connecttion from desired IP. It adds new attach types `BPF_CGROUP_INET4_CONNECT` and `BPF_CGROUP_INET6_CONNECT` for program type `BPF_PROG_TYPE_CGROUP_SOCK_ADDR` that can be used to override both source and destination of a connection at connect(2) time. Local end of connection can be bound to desired IP using newly introduced BPF-helper `bpf_bind()`. It allows to bind to only IP though, and doesn't support binding to port, i.e. leverages `IP_BIND_ADDRESS_NO_PORT` socket option. There are two reasons for this: * looking for a free port is expensive and can affect performance significantly; * there is no use-case for port. As for remote end (`struct sockaddr *` passed by user), both parts of it can be overridden, remote IP and remote port. It's useful if an application inside cgroup wants to connect to another application inside same cgroup or to itself, but knows nothing about IP assigned to the cgroup. Support is added for IPv4 and IPv6, for TCP and UDP. IPv4 and IPv6 have separate attach types for same reason as sys_bind hooks, i.e. to prevent reading from / writing to e.g. user_ip6 fields when user passes sockaddr_in since it'd be out-of-bound. == Implementation notes == The patch introduces new field in `struct proto`: `pre_connect` that is a pointer to a function with same signature as `connect` but is called before it. The reason is in some cases BPF hooks should be called way before control is passed to `sk->sk_prot->connect`. Specifically `inet_dgram_connect` autobinds socket before calling `sk->sk_prot->connect` and there is no way to call `bpf_bind()` from hooks from e.g. `ip4_datagram_connect` or `ip6_datagram_connect` since it'd cause double-bind. On the other hand `proto.pre_connect` provides a flexible way to add BPF hooks for connect only for necessary `proto` and call them at desired time before `connect`. Since `bpf_bind()` is allowed to bind only to IP and autobind in `inet_dgram_connect` binds only port there is no chance of double-bind. bpf_bind() sets `force_bind_address_no_port` to bind to only IP despite of value of `bind_address_no_port` socket field. bpf_bind() sets `with_lock` to `false` when calling to __inet_bind() and __inet6_bind() since all call-sites, where bpf_bind() is called, already hold socket lock. Signed-off-by: Andrey Ignatov <rdna@fb.com> Signed-off-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
2018-03-31 01:08:05 +03:00
.pre_connect = tcp_v4_pre_connect,
.connect = tcp_v4_connect,
.disconnect = tcp_disconnect,
.accept = inet_csk_accept,
.ioctl = tcp_ioctl,
.init = tcp_v4_init_sock,
.destroy = tcp_v4_destroy_sock,
.shutdown = tcp_shutdown,
.setsockopt = tcp_setsockopt,
.getsockopt = tcp_getsockopt,
.bpf_bypass_getsockopt = tcp_bpf_bypass_getsockopt,
.keepalive = tcp_set_keepalive,
.recvmsg = tcp_recvmsg,
.sendmsg = tcp_sendmsg,
.sendpage = tcp_sendpage,
.backlog_rcv = tcp_v4_do_rcv,
tcp: TCP Small Queues This introduce TSQ (TCP Small Queues) TSQ goal is to reduce number of TCP packets in xmit queues (qdisc & device queues), to reduce RTT and cwnd bias, part of the bufferbloat problem. sk->sk_wmem_alloc not allowed to grow above a given limit, allowing no more than ~128KB [1] per tcp socket in qdisc/dev layers at a given time. TSO packets are sized/capped to half the limit, so that we have two TSO packets in flight, allowing better bandwidth use. As a side effect, setting the limit to 40000 automatically reduces the standard gso max limit (65536) to 40000/2 : It can help to reduce latencies of high prio packets, having smaller TSO packets. This means we divert sock_wfree() to a tcp_wfree() handler, to queue/send following frames when skb_orphan() [2] is called for the already queued skbs. Results on my dev machines (tg3/ixgbe nics) are really impressive, using standard pfifo_fast, and with or without TSO/GSO. Without reduction of nominal bandwidth, we have reduction of buffering per bulk sender : < 1ms on Gbit (instead of 50ms with TSO) < 8ms on 100Mbit (instead of 132 ms) I no longer have 4 MBytes backlogged in qdisc by a single netperf session, and both side socket autotuning no longer use 4 Mbytes. As skb destructor cannot restart xmit itself ( as qdisc lock might be taken at this point ), we delegate the work to a tasklet. We use one tasklest per cpu for performance reasons. If tasklet finds a socket owned by the user, it sets TSQ_OWNED flag. This flag is tested in a new protocol method called from release_sock(), to eventually send new segments. [1] New /proc/sys/net/ipv4/tcp_limit_output_bytes tunable [2] skb_orphan() is usually called at TX completion time, but some drivers call it in their start_xmit() handler. These drivers should at least use BQL, or else a single TCP session can still fill the whole NIC TX ring, since TSQ will have no effect. Signed-off-by: Eric Dumazet <edumazet@google.com> Cc: Dave Taht <dave.taht@bufferbloat.net> Cc: Tom Herbert <therbert@google.com> Cc: Matt Mathis <mattmathis@google.com> Cc: Yuchung Cheng <ycheng@google.com> Cc: Nandita Dukkipati <nanditad@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2012-07-11 09:50:31 +04:00
.release_cb = tcp_release_cb,
[SOCK] proto: Add hashinfo member to struct proto This way we can remove TCP and DCCP specific versions of sk->sk_prot->get_port: both v4 and v6 use inet_csk_get_port sk->sk_prot->hash: inet_hash is directly used, only v6 need a specific version to deal with mapped sockets sk->sk_prot->unhash: both v4 and v6 use inet_hash directly struct inet_connection_sock_af_ops also gets a new member, bind_conflict, so that inet_csk_get_port can find the per family routine. Now only the lookup routines receive as a parameter a struct inet_hashtable. With this we further reuse code, reducing the difference among INET transport protocols. Eventually work has to be done on UDP and SCTP to make them share this infrastructure and get as a bonus inet_diag interfaces so that iproute can be used with these protocols. net-2.6/net/ipv4/inet_hashtables.c: struct proto | +8 struct inet_connection_sock_af_ops | +8 2 structs changed __inet_hash_nolisten | +18 __inet_hash | -210 inet_put_port | +8 inet_bind_bucket_create | +1 __inet_hash_connect | -8 5 functions changed, 27 bytes added, 218 bytes removed, diff: -191 net-2.6/net/core/sock.c: proto_seq_show | +3 1 function changed, 3 bytes added, diff: +3 net-2.6/net/ipv4/inet_connection_sock.c: inet_csk_get_port | +15 1 function changed, 15 bytes added, diff: +15 net-2.6/net/ipv4/tcp.c: tcp_set_state | -7 1 function changed, 7 bytes removed, diff: -7 net-2.6/net/ipv4/tcp_ipv4.c: tcp_v4_get_port | -31 tcp_v4_hash | -48 tcp_v4_destroy_sock | -7 tcp_v4_syn_recv_sock | -2 tcp_unhash | -179 5 functions changed, 267 bytes removed, diff: -267 net-2.6/net/ipv6/inet6_hashtables.c: __inet6_hash | +8 1 function changed, 8 bytes added, diff: +8 net-2.6/net/ipv4/inet_hashtables.c: inet_unhash | +190 inet_hash | +242 2 functions changed, 432 bytes added, diff: +432 vmlinux: 16 functions changed, 485 bytes added, 492 bytes removed, diff: -7 /home/acme/git/net-2.6/net/ipv6/tcp_ipv6.c: tcp_v6_get_port | -31 tcp_v6_hash | -7 tcp_v6_syn_recv_sock | -9 3 functions changed, 47 bytes removed, diff: -47 /home/acme/git/net-2.6/net/dccp/proto.c: dccp_destroy_sock | -7 dccp_unhash | -179 dccp_hash | -49 dccp_set_state | -7 dccp_done | +1 5 functions changed, 1 bytes added, 242 bytes removed, diff: -241 /home/acme/git/net-2.6/net/dccp/ipv4.c: dccp_v4_get_port | -31 dccp_v4_request_recv_sock | -2 2 functions changed, 33 bytes removed, diff: -33 /home/acme/git/net-2.6/net/dccp/ipv6.c: dccp_v6_get_port | -31 dccp_v6_hash | -7 dccp_v6_request_recv_sock | +5 3 functions changed, 5 bytes added, 38 bytes removed, diff: -33 Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2008-02-03 15:06:04 +03:00
.hash = inet_hash,
.unhash = inet_unhash,
.get_port = inet_csk_get_port,
net: bpf: Handle return value of BPF_CGROUP_RUN_PROG_INET{4,6}_POST_BIND() The return value of BPF_CGROUP_RUN_PROG_INET{4,6}_POST_BIND() in __inet_bind() is not handled properly. While the return value is non-zero, it will set inet_saddr and inet_rcv_saddr to 0 and exit: err = BPF_CGROUP_RUN_PROG_INET4_POST_BIND(sk); if (err) { inet->inet_saddr = inet->inet_rcv_saddr = 0; goto out_release_sock; } Let's take UDP for example and see what will happen. For UDP socket, it will be added to 'udp_prot.h.udp_table->hash' and 'udp_prot.h.udp_table->hash2' after the sk->sk_prot->get_port() called success. If 'inet->inet_rcv_saddr' is specified here, then 'sk' will be in the 'hslot2' of 'hash2' that it don't belong to (because inet_saddr is changed to 0), and UDP packet received will not be passed to this sock. If 'inet->inet_rcv_saddr' is not specified here, the sock will work fine, as it can receive packet properly, which is wired, as the 'bind()' is already failed. To undo the get_port() operation, introduce the 'put_port' field for 'struct proto'. For TCP proto, it is inet_put_port(); For UDP proto, it is udp_lib_unhash(); For icmp proto, it is ping_unhash(). Therefore, after sys_bind() fail caused by BPF_CGROUP_RUN_PROG_INET4_POST_BIND(), it will be unbinded, which means that it can try to be binded to another port. Signed-off-by: Menglong Dong <imagedong@tencent.com> Signed-off-by: Alexei Starovoitov <ast@kernel.org> Link: https://lore.kernel.org/bpf/20220106132022.3470772-2-imagedong@tencent.com
2022-01-06 16:20:20 +03:00
.put_port = inet_put_port,
#ifdef CONFIG_BPF_SYSCALL
.psock_update_sk_prot = tcp_bpf_update_proto,
#endif
.enter_memory_pressure = tcp_enter_memory_pressure,
.leave_memory_pressure = tcp_leave_memory_pressure,
tcp: TCP_NOTSENT_LOWAT socket option Idea of this patch is to add optional limitation of number of unsent bytes in TCP sockets, to reduce usage of kernel memory. TCP receiver might announce a big window, and TCP sender autotuning might allow a large amount of bytes in write queue, but this has little performance impact if a large part of this buffering is wasted : Write queue needs to be large only to deal with large BDP, not necessarily to cope with scheduling delays (incoming ACKS make room for the application to queue more bytes) For most workloads, using a value of 128 KB or less is OK to give applications enough time to react to POLLOUT events in time (or being awaken in a blocking sendmsg()) This patch adds two ways to set the limit : 1) Per socket option TCP_NOTSENT_LOWAT 2) A sysctl (/proc/sys/net/ipv4/tcp_notsent_lowat) for sockets not using TCP_NOTSENT_LOWAT socket option (or setting a zero value) Default value being UINT_MAX (0xFFFFFFFF), meaning this has no effect. This changes poll()/select()/epoll() to report POLLOUT only if number of unsent bytes is below tp->nosent_lowat Note this might increase number of sendmsg()/sendfile() calls when using non blocking sockets, and increase number of context switches for blocking sockets. Note this is not related to SO_SNDLOWAT (as SO_SNDLOWAT is defined as : Specify the minimum number of bytes in the buffer until the socket layer will pass the data to the protocol) Tested: netperf sessions, and watching /proc/net/protocols "memory" column for TCP With 200 concurrent netperf -t TCP_STREAM sessions, amount of kernel memory used by TCP buffers shrinks by ~55 % (20567 pages instead of 45458) lpq83:~# echo -1 >/proc/sys/net/ipv4/tcp_notsent_lowat lpq83:~# (super_netperf 200 -t TCP_STREAM -H remote -l 90 &); sleep 60 ; grep TCP /proc/net/protocols TCPv6 1880 2 45458 no 208 yes ipv6 y y y y y y y y y y y y y n y y y y y TCP 1696 508 45458 no 208 yes kernel y y y y y y y y y y y y y n y y y y y lpq83:~# echo 131072 >/proc/sys/net/ipv4/tcp_notsent_lowat lpq83:~# (super_netperf 200 -t TCP_STREAM -H remote -l 90 &); sleep 60 ; grep TCP /proc/net/protocols TCPv6 1880 2 20567 no 208 yes ipv6 y y y y y y y y y y y y y n y y y y y TCP 1696 508 20567 no 208 yes kernel y y y y y y y y y y y y y n y y y y y Using 128KB has no bad effect on the throughput or cpu usage of a single flow, although there is an increase of context switches. A bonus is that we hold socket lock for a shorter amount of time and should improve latencies of ACK processing. lpq83:~# echo -1 >/proc/sys/net/ipv4/tcp_notsent_lowat lpq83:~# perf stat -e context-switches ./netperf -H 7.7.7.84 -t omni -l 20 -c -i10,3 OMNI Send TEST from 0.0.0.0 (0.0.0.0) port 0 AF_INET to 7.7.7.84 () port 0 AF_INET : +/-2.500% @ 99% conf. Local Remote Local Elapsed Throughput Throughput Local Local Remote Remote Local Remote Service Send Socket Recv Socket Send Time Units CPU CPU CPU CPU Service Service Demand Size Size Size (sec) Util Util Util Util Demand Demand Units Final Final % Method % Method 1651584 6291456 16384 20.00 17447.90 10^6bits/s 3.13 S -1.00 U 0.353 -1.000 usec/KB Performance counter stats for './netperf -H 7.7.7.84 -t omni -l 20 -c -i10,3': 412,514 context-switches 200.034645535 seconds time elapsed lpq83:~# echo 131072 >/proc/sys/net/ipv4/tcp_notsent_lowat lpq83:~# perf stat -e context-switches ./netperf -H 7.7.7.84 -t omni -l 20 -c -i10,3 OMNI Send TEST from 0.0.0.0 (0.0.0.0) port 0 AF_INET to 7.7.7.84 () port 0 AF_INET : +/-2.500% @ 99% conf. Local Remote Local Elapsed Throughput Throughput Local Local Remote Remote Local Remote Service Send Socket Recv Socket Send Time Units CPU CPU CPU CPU Service Service Demand Size Size Size (sec) Util Util Util Util Demand Demand Units Final Final % Method % Method 1593240 6291456 16384 20.00 17321.16 10^6bits/s 3.35 S -1.00 U 0.381 -1.000 usec/KB Performance counter stats for './netperf -H 7.7.7.84 -t omni -l 20 -c -i10,3': 2,675,818 context-switches 200.029651391 seconds time elapsed Signed-off-by: Eric Dumazet <edumazet@google.com> Cc: Neal Cardwell <ncardwell@google.com> Cc: Yuchung Cheng <ycheng@google.com> Acked-By: Yuchung Cheng <ycheng@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2013-07-23 07:27:07 +04:00
.stream_memory_free = tcp_stream_memory_free,
.sockets_allocated = &tcp_sockets_allocated,
.orphan_count = &tcp_orphan_count,
.memory_allocated = &tcp_memory_allocated,
.per_cpu_fw_alloc = &tcp_memory_per_cpu_fw_alloc,
.memory_pressure = &tcp_memory_pressure,
.sysctl_mem = sysctl_tcp_mem,
.sysctl_wmem_offset = offsetof(struct net, ipv4.sysctl_tcp_wmem),
.sysctl_rmem_offset = offsetof(struct net, ipv4.sysctl_tcp_rmem),
.max_header = MAX_TCP_HEADER,
.obj_size = sizeof(struct tcp_sock),
.slab_flags = SLAB_TYPESAFE_BY_RCU,
.twsk_prot = &tcp_timewait_sock_ops,
.rsk_prot = &tcp_request_sock_ops,
.h.hashinfo = NULL,
.no_autobind = true,
.diag_destroy = tcp_abort,
};
EXPORT_SYMBOL(tcp_prot);
static void __net_exit tcp_sk_exit(struct net *net)
{
if (net->ipv4.tcp_congestion_control)
bpf: tcp: Support tcp_congestion_ops in bpf This patch makes "struct tcp_congestion_ops" to be the first user of BPF STRUCT_OPS. It allows implementing a tcp_congestion_ops in bpf. The BPF implemented tcp_congestion_ops can be used like regular kernel tcp-cc through sysctl and setsockopt. e.g. [root@arch-fb-vm1 bpf]# sysctl -a | egrep congestion net.ipv4.tcp_allowed_congestion_control = reno cubic bpf_cubic net.ipv4.tcp_available_congestion_control = reno bic cubic bpf_cubic net.ipv4.tcp_congestion_control = bpf_cubic There has been attempt to move the TCP CC to the user space (e.g. CCP in TCP). The common arguments are faster turn around, get away from long-tail kernel versions in production...etc, which are legit points. BPF has been the continuous effort to join both kernel and userspace upsides together (e.g. XDP to gain the performance advantage without bypassing the kernel). The recent BPF advancements (in particular BTF-aware verifier, BPF trampoline, BPF CO-RE...) made implementing kernel struct ops (e.g. tcp cc) possible in BPF. It allows a faster turnaround for testing algorithm in the production while leveraging the existing (and continue growing) BPF feature/framework instead of building one specifically for userspace TCP CC. This patch allows write access to a few fields in tcp-sock (in bpf_tcp_ca_btf_struct_access()). The optional "get_info" is unsupported now. It can be added later. One possible way is to output the info with a btf-id to describe the content. Signed-off-by: Martin KaFai Lau <kafai@fb.com> Signed-off-by: Alexei Starovoitov <ast@kernel.org> Acked-by: Andrii Nakryiko <andriin@fb.com> Acked-by: Yonghong Song <yhs@fb.com> Link: https://lore.kernel.org/bpf/20200109003508.3856115-1-kafai@fb.com
2020-01-09 03:35:08 +03:00
bpf_module_put(net->ipv4.tcp_congestion_control,
net->ipv4.tcp_congestion_control->owner);
}
tcp: Introduce optional per-netns ehash. The more sockets we have in the hash table, the longer we spend looking up the socket. While running a number of small workloads on the same host, they penalise each other and cause performance degradation. The root cause might be a single workload that consumes much more resources than the others. It often happens on a cloud service where different workloads share the same computing resource. On EC2 c5.24xlarge instance (196 GiB memory and 524288 (1Mi / 2) ehash entries), after running iperf3 in different netns, creating 24Mi sockets without data transfer in the root netns causes about 10% performance regression for the iperf3's connection. thash_entries sockets length Gbps 524288 1 1 50.7 24Mi 48 45.1 It is basically related to the length of the list of each hash bucket. For testing purposes to see how performance drops along the length, I set 131072 (1Mi / 8) to thash_entries, and here's the result. thash_entries sockets length Gbps 131072 1 1 50.7 1Mi 8 49.9 2Mi 16 48.9 4Mi 32 47.3 8Mi 64 44.6 16Mi 128 40.6 24Mi 192 36.3 32Mi 256 32.5 40Mi 320 27.0 48Mi 384 25.0 To resolve the socket lookup degradation, we introduce an optional per-netns hash table for TCP, but it's just ehash, and we still share the global bhash, bhash2 and lhash2. With a smaller ehash, we can look up non-listener sockets faster and isolate such noisy neighbours. In addition, we can reduce lock contention. We can control the ehash size by a new sysctl knob. However, depending on workloads, it will require very sensitive tuning, so we disable the feature by default (net.ipv4.tcp_child_ehash_entries == 0). Moreover, we can fall back to using the global ehash in case we fail to allocate enough memory for a new ehash. The maximum size is 16Mi, which is large enough that even if we have 48Mi sockets, the average list length is 3, and regression would be less than 1%. We can check the current ehash size by another read-only sysctl knob, net.ipv4.tcp_ehash_entries. A negative value means the netns shares the global ehash (per-netns ehash is disabled or failed to allocate memory). # dmesg | cut -d ' ' -f 5- | grep "established hash" TCP established hash table entries: 524288 (order: 10, 4194304 bytes, vmalloc hugepage) # sysctl net.ipv4.tcp_ehash_entries net.ipv4.tcp_ehash_entries = 524288 # can be changed by thash_entries # sysctl net.ipv4.tcp_child_ehash_entries net.ipv4.tcp_child_ehash_entries = 0 # disabled by default # ip netns add test1 # ip netns exec test1 sysctl net.ipv4.tcp_ehash_entries net.ipv4.tcp_ehash_entries = -524288 # share the global ehash # sysctl -w net.ipv4.tcp_child_ehash_entries=100 net.ipv4.tcp_child_ehash_entries = 100 # ip netns add test2 # ip netns exec test2 sysctl net.ipv4.tcp_ehash_entries net.ipv4.tcp_ehash_entries = 128 # own a per-netns ehash with 2^n buckets When more than two processes in the same netns create per-netns ehash concurrently with different sizes, we need to guarantee the size in one of the following ways: 1) Share the global ehash and create per-netns ehash First, unshare() with tcp_child_ehash_entries==0. It creates dedicated netns sysctl knobs where we can safely change tcp_child_ehash_entries and clone()/unshare() to create a per-netns ehash. 2) Control write on sysctl by BPF We can use BPF_PROG_TYPE_CGROUP_SYSCTL to allow/deny read/write on sysctl knobs. Note that the global ehash allocated at the boot time is spread over available NUMA nodes, but inet_pernet_hashinfo_alloc() will allocate pages for each per-netns ehash depending on the current process's NUMA policy. By default, the allocation is done in the local node only, so the per-netns hash table could fully reside on a random node. Thus, depending on the NUMA policy the netns is created with and the CPU the current thread is running on, we could see some performance differences for highly optimised networking applications. Note also that the default values of two sysctl knobs depend on the ehash size and should be tuned carefully: tcp_max_tw_buckets : tcp_child_ehash_entries / 2 tcp_max_syn_backlog : max(128, tcp_child_ehash_entries / 128) As a bonus, we can dismantle netns faster. Currently, while destroying netns, we call inet_twsk_purge(), which walks through the global ehash. It can be potentially big because it can have many sockets other than TIME_WAIT in all netns. Splitting ehash changes that situation, where it's only necessary for inet_twsk_purge() to clean up TIME_WAIT sockets in each netns. With regard to this, we do not free the per-netns ehash in inet_twsk_kill() to avoid UAF while iterating the per-netns ehash in inet_twsk_purge(). Instead, we do it in tcp_sk_exit_batch() after calling tcp_twsk_purge() to keep it protocol-family-independent. In the future, we could optimise ehash lookup/iteration further by removing netns comparison for the per-netns ehash. Signed-off-by: Kuniyuki Iwashima <kuniyu@amazon.com> Reviewed-by: Eric Dumazet <edumazet@google.com> Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2022-09-08 04:10:22 +03:00
static void __net_init tcp_set_hashinfo(struct net *net)
{
tcp: Introduce optional per-netns ehash. The more sockets we have in the hash table, the longer we spend looking up the socket. While running a number of small workloads on the same host, they penalise each other and cause performance degradation. The root cause might be a single workload that consumes much more resources than the others. It often happens on a cloud service where different workloads share the same computing resource. On EC2 c5.24xlarge instance (196 GiB memory and 524288 (1Mi / 2) ehash entries), after running iperf3 in different netns, creating 24Mi sockets without data transfer in the root netns causes about 10% performance regression for the iperf3's connection. thash_entries sockets length Gbps 524288 1 1 50.7 24Mi 48 45.1 It is basically related to the length of the list of each hash bucket. For testing purposes to see how performance drops along the length, I set 131072 (1Mi / 8) to thash_entries, and here's the result. thash_entries sockets length Gbps 131072 1 1 50.7 1Mi 8 49.9 2Mi 16 48.9 4Mi 32 47.3 8Mi 64 44.6 16Mi 128 40.6 24Mi 192 36.3 32Mi 256 32.5 40Mi 320 27.0 48Mi 384 25.0 To resolve the socket lookup degradation, we introduce an optional per-netns hash table for TCP, but it's just ehash, and we still share the global bhash, bhash2 and lhash2. With a smaller ehash, we can look up non-listener sockets faster and isolate such noisy neighbours. In addition, we can reduce lock contention. We can control the ehash size by a new sysctl knob. However, depending on workloads, it will require very sensitive tuning, so we disable the feature by default (net.ipv4.tcp_child_ehash_entries == 0). Moreover, we can fall back to using the global ehash in case we fail to allocate enough memory for a new ehash. The maximum size is 16Mi, which is large enough that even if we have 48Mi sockets, the average list length is 3, and regression would be less than 1%. We can check the current ehash size by another read-only sysctl knob, net.ipv4.tcp_ehash_entries. A negative value means the netns shares the global ehash (per-netns ehash is disabled or failed to allocate memory). # dmesg | cut -d ' ' -f 5- | grep "established hash" TCP established hash table entries: 524288 (order: 10, 4194304 bytes, vmalloc hugepage) # sysctl net.ipv4.tcp_ehash_entries net.ipv4.tcp_ehash_entries = 524288 # can be changed by thash_entries # sysctl net.ipv4.tcp_child_ehash_entries net.ipv4.tcp_child_ehash_entries = 0 # disabled by default # ip netns add test1 # ip netns exec test1 sysctl net.ipv4.tcp_ehash_entries net.ipv4.tcp_ehash_entries = -524288 # share the global ehash # sysctl -w net.ipv4.tcp_child_ehash_entries=100 net.ipv4.tcp_child_ehash_entries = 100 # ip netns add test2 # ip netns exec test2 sysctl net.ipv4.tcp_ehash_entries net.ipv4.tcp_ehash_entries = 128 # own a per-netns ehash with 2^n buckets When more than two processes in the same netns create per-netns ehash concurrently with different sizes, we need to guarantee the size in one of the following ways: 1) Share the global ehash and create per-netns ehash First, unshare() with tcp_child_ehash_entries==0. It creates dedicated netns sysctl knobs where we can safely change tcp_child_ehash_entries and clone()/unshare() to create a per-netns ehash. 2) Control write on sysctl by BPF We can use BPF_PROG_TYPE_CGROUP_SYSCTL to allow/deny read/write on sysctl knobs. Note that the global ehash allocated at the boot time is spread over available NUMA nodes, but inet_pernet_hashinfo_alloc() will allocate pages for each per-netns ehash depending on the current process's NUMA policy. By default, the allocation is done in the local node only, so the per-netns hash table could fully reside on a random node. Thus, depending on the NUMA policy the netns is created with and the CPU the current thread is running on, we could see some performance differences for highly optimised networking applications. Note also that the default values of two sysctl knobs depend on the ehash size and should be tuned carefully: tcp_max_tw_buckets : tcp_child_ehash_entries / 2 tcp_max_syn_backlog : max(128, tcp_child_ehash_entries / 128) As a bonus, we can dismantle netns faster. Currently, while destroying netns, we call inet_twsk_purge(), which walks through the global ehash. It can be potentially big because it can have many sockets other than TIME_WAIT in all netns. Splitting ehash changes that situation, where it's only necessary for inet_twsk_purge() to clean up TIME_WAIT sockets in each netns. With regard to this, we do not free the per-netns ehash in inet_twsk_kill() to avoid UAF while iterating the per-netns ehash in inet_twsk_purge(). Instead, we do it in tcp_sk_exit_batch() after calling tcp_twsk_purge() to keep it protocol-family-independent. In the future, we could optimise ehash lookup/iteration further by removing netns comparison for the per-netns ehash. Signed-off-by: Kuniyuki Iwashima <kuniyu@amazon.com> Reviewed-by: Eric Dumazet <edumazet@google.com> Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2022-09-08 04:10:22 +03:00
struct inet_hashinfo *hinfo;
unsigned int ehash_entries;
struct net *old_net;
if (net_eq(net, &init_net))
goto fallback;
old_net = current->nsproxy->net_ns;
ehash_entries = READ_ONCE(old_net->ipv4.sysctl_tcp_child_ehash_entries);
if (!ehash_entries)
goto fallback;
ehash_entries = roundup_pow_of_two(ehash_entries);
hinfo = inet_pernet_hashinfo_alloc(&tcp_hashinfo, ehash_entries);
if (!hinfo) {
pr_warn("Failed to allocate TCP ehash (entries: %u) "
"for a netns, fallback to the global one\n",
ehash_entries);
fallback:
hinfo = &tcp_hashinfo;
ehash_entries = tcp_hashinfo.ehash_mask + 1;
}
net->ipv4.tcp_death_row.hashinfo = hinfo;
net->ipv4.tcp_death_row.sysctl_max_tw_buckets = ehash_entries / 2;
net->ipv4.sysctl_max_syn_backlog = max(128U, ehash_entries / 128);
}
tcp: add rfc3168, section 6.1.1.1. fallback This work as a follow-up of commit f7b3bec6f516 ("net: allow setting ecn via routing table") and adds RFC3168 section 6.1.1.1. fallback for outgoing ECN connections. In other words, this work adds a retry with a non-ECN setup SYN packet, as suggested from the RFC on the first timeout: [...] A host that receives no reply to an ECN-setup SYN within the normal SYN retransmission timeout interval MAY resend the SYN and any subsequent SYN retransmissions with CWR and ECE cleared. [...] Schematic client-side view when assuming the server is in tcp_ecn=2 mode, that is, Linux default since 2009 via commit 255cac91c3c9 ("tcp: extend ECN sysctl to allow server-side only ECN"): 1) Normal ECN-capable path: SYN ECE CWR -----> <----- SYN ACK ECE ACK -----> 2) Path with broken middlebox, when client has fallback: SYN ECE CWR ----X crappy middlebox drops packet (timeout, rtx) SYN -----> <----- SYN ACK ACK -----> In case we would not have the fallback implemented, the middlebox drop point would basically end up as: SYN ECE CWR ----X crappy middlebox drops packet (timeout, rtx) SYN ECE CWR ----X crappy middlebox drops packet (timeout, rtx) SYN ECE CWR ----X crappy middlebox drops packet (timeout, rtx) In any case, it's rather a smaller percentage of sites where there would occur such additional setup latency: it was found in end of 2014 that ~56% of IPv4 and 65% of IPv6 servers of Alexa 1 million list would negotiate ECN (aka tcp_ecn=2 default), 0.42% of these webservers will fail to connect when trying to negotiate with ECN (tcp_ecn=1) due to timeouts, which the fallback would mitigate with a slight latency trade-off. Recent related paper on this topic: Brian Trammell, Mirja Kühlewind, Damiano Boppart, Iain Learmonth, Gorry Fairhurst, and Richard Scheffenegger: "Enabling Internet-Wide Deployment of Explicit Congestion Notification." Proc. PAM 2015, New York. http://ecn.ethz.ch/ecn-pam15.pdf Thus, when net.ipv4.tcp_ecn=1 is being set, the patch will perform RFC3168, section 6.1.1.1. fallback on timeout. For users explicitly not wanting this which can be in DC use case, we add a net.ipv4.tcp_ecn_fallback knob that allows for disabling the fallback. tp->ecn_flags are not being cleared in tcp_ecn_clear_syn() on output, but rather we let tcp_ecn_rcv_synack() take that over on input path in case a SYN ACK ECE was delayed. Thus a spurious SYN retransmission will not prevent ECN being negotiated eventually in that case. Reference: https://www.ietf.org/proceedings/92/slides/slides-92-iccrg-1.pdf Reference: https://www.ietf.org/proceedings/89/slides/slides-89-tsvarea-1.pdf Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Signed-off-by: Florian Westphal <fw@strlen.de> Signed-off-by: Mirja Kühlewind <mirja.kuehlewind@tik.ee.ethz.ch> Signed-off-by: Brian Trammell <trammell@tik.ee.ethz.ch> Cc: Eric Dumazet <edumazet@google.com> Cc: Dave That <dave.taht@gmail.com> Acked-by: Eric Dumazet <edumazet@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2015-05-19 22:04:22 +03:00
tcp: Introduce optional per-netns ehash. The more sockets we have in the hash table, the longer we spend looking up the socket. While running a number of small workloads on the same host, they penalise each other and cause performance degradation. The root cause might be a single workload that consumes much more resources than the others. It often happens on a cloud service where different workloads share the same computing resource. On EC2 c5.24xlarge instance (196 GiB memory and 524288 (1Mi / 2) ehash entries), after running iperf3 in different netns, creating 24Mi sockets without data transfer in the root netns causes about 10% performance regression for the iperf3's connection. thash_entries sockets length Gbps 524288 1 1 50.7 24Mi 48 45.1 It is basically related to the length of the list of each hash bucket. For testing purposes to see how performance drops along the length, I set 131072 (1Mi / 8) to thash_entries, and here's the result. thash_entries sockets length Gbps 131072 1 1 50.7 1Mi 8 49.9 2Mi 16 48.9 4Mi 32 47.3 8Mi 64 44.6 16Mi 128 40.6 24Mi 192 36.3 32Mi 256 32.5 40Mi 320 27.0 48Mi 384 25.0 To resolve the socket lookup degradation, we introduce an optional per-netns hash table for TCP, but it's just ehash, and we still share the global bhash, bhash2 and lhash2. With a smaller ehash, we can look up non-listener sockets faster and isolate such noisy neighbours. In addition, we can reduce lock contention. We can control the ehash size by a new sysctl knob. However, depending on workloads, it will require very sensitive tuning, so we disable the feature by default (net.ipv4.tcp_child_ehash_entries == 0). Moreover, we can fall back to using the global ehash in case we fail to allocate enough memory for a new ehash. The maximum size is 16Mi, which is large enough that even if we have 48Mi sockets, the average list length is 3, and regression would be less than 1%. We can check the current ehash size by another read-only sysctl knob, net.ipv4.tcp_ehash_entries. A negative value means the netns shares the global ehash (per-netns ehash is disabled or failed to allocate memory). # dmesg | cut -d ' ' -f 5- | grep "established hash" TCP established hash table entries: 524288 (order: 10, 4194304 bytes, vmalloc hugepage) # sysctl net.ipv4.tcp_ehash_entries net.ipv4.tcp_ehash_entries = 524288 # can be changed by thash_entries # sysctl net.ipv4.tcp_child_ehash_entries net.ipv4.tcp_child_ehash_entries = 0 # disabled by default # ip netns add test1 # ip netns exec test1 sysctl net.ipv4.tcp_ehash_entries net.ipv4.tcp_ehash_entries = -524288 # share the global ehash # sysctl -w net.ipv4.tcp_child_ehash_entries=100 net.ipv4.tcp_child_ehash_entries = 100 # ip netns add test2 # ip netns exec test2 sysctl net.ipv4.tcp_ehash_entries net.ipv4.tcp_ehash_entries = 128 # own a per-netns ehash with 2^n buckets When more than two processes in the same netns create per-netns ehash concurrently with different sizes, we need to guarantee the size in one of the following ways: 1) Share the global ehash and create per-netns ehash First, unshare() with tcp_child_ehash_entries==0. It creates dedicated netns sysctl knobs where we can safely change tcp_child_ehash_entries and clone()/unshare() to create a per-netns ehash. 2) Control write on sysctl by BPF We can use BPF_PROG_TYPE_CGROUP_SYSCTL to allow/deny read/write on sysctl knobs. Note that the global ehash allocated at the boot time is spread over available NUMA nodes, but inet_pernet_hashinfo_alloc() will allocate pages for each per-netns ehash depending on the current process's NUMA policy. By default, the allocation is done in the local node only, so the per-netns hash table could fully reside on a random node. Thus, depending on the NUMA policy the netns is created with and the CPU the current thread is running on, we could see some performance differences for highly optimised networking applications. Note also that the default values of two sysctl knobs depend on the ehash size and should be tuned carefully: tcp_max_tw_buckets : tcp_child_ehash_entries / 2 tcp_max_syn_backlog : max(128, tcp_child_ehash_entries / 128) As a bonus, we can dismantle netns faster. Currently, while destroying netns, we call inet_twsk_purge(), which walks through the global ehash. It can be potentially big because it can have many sockets other than TIME_WAIT in all netns. Splitting ehash changes that situation, where it's only necessary for inet_twsk_purge() to clean up TIME_WAIT sockets in each netns. With regard to this, we do not free the per-netns ehash in inet_twsk_kill() to avoid UAF while iterating the per-netns ehash in inet_twsk_purge(). Instead, we do it in tcp_sk_exit_batch() after calling tcp_twsk_purge() to keep it protocol-family-independent. In the future, we could optimise ehash lookup/iteration further by removing netns comparison for the per-netns ehash. Signed-off-by: Kuniyuki Iwashima <kuniyu@amazon.com> Reviewed-by: Eric Dumazet <edumazet@google.com> Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2022-09-08 04:10:22 +03:00
static int __net_init tcp_sk_init(struct net *net)
{
net->ipv4.sysctl_tcp_ecn = 2;
tcp: add rfc3168, section 6.1.1.1. fallback This work as a follow-up of commit f7b3bec6f516 ("net: allow setting ecn via routing table") and adds RFC3168 section 6.1.1.1. fallback for outgoing ECN connections. In other words, this work adds a retry with a non-ECN setup SYN packet, as suggested from the RFC on the first timeout: [...] A host that receives no reply to an ECN-setup SYN within the normal SYN retransmission timeout interval MAY resend the SYN and any subsequent SYN retransmissions with CWR and ECE cleared. [...] Schematic client-side view when assuming the server is in tcp_ecn=2 mode, that is, Linux default since 2009 via commit 255cac91c3c9 ("tcp: extend ECN sysctl to allow server-side only ECN"): 1) Normal ECN-capable path: SYN ECE CWR -----> <----- SYN ACK ECE ACK -----> 2) Path with broken middlebox, when client has fallback: SYN ECE CWR ----X crappy middlebox drops packet (timeout, rtx) SYN -----> <----- SYN ACK ACK -----> In case we would not have the fallback implemented, the middlebox drop point would basically end up as: SYN ECE CWR ----X crappy middlebox drops packet (timeout, rtx) SYN ECE CWR ----X crappy middlebox drops packet (timeout, rtx) SYN ECE CWR ----X crappy middlebox drops packet (timeout, rtx) In any case, it's rather a smaller percentage of sites where there would occur such additional setup latency: it was found in end of 2014 that ~56% of IPv4 and 65% of IPv6 servers of Alexa 1 million list would negotiate ECN (aka tcp_ecn=2 default), 0.42% of these webservers will fail to connect when trying to negotiate with ECN (tcp_ecn=1) due to timeouts, which the fallback would mitigate with a slight latency trade-off. Recent related paper on this topic: Brian Trammell, Mirja Kühlewind, Damiano Boppart, Iain Learmonth, Gorry Fairhurst, and Richard Scheffenegger: "Enabling Internet-Wide Deployment of Explicit Congestion Notification." Proc. PAM 2015, New York. http://ecn.ethz.ch/ecn-pam15.pdf Thus, when net.ipv4.tcp_ecn=1 is being set, the patch will perform RFC3168, section 6.1.1.1. fallback on timeout. For users explicitly not wanting this which can be in DC use case, we add a net.ipv4.tcp_ecn_fallback knob that allows for disabling the fallback. tp->ecn_flags are not being cleared in tcp_ecn_clear_syn() on output, but rather we let tcp_ecn_rcv_synack() take that over on input path in case a SYN ACK ECE was delayed. Thus a spurious SYN retransmission will not prevent ECN being negotiated eventually in that case. Reference: https://www.ietf.org/proceedings/92/slides/slides-92-iccrg-1.pdf Reference: https://www.ietf.org/proceedings/89/slides/slides-89-tsvarea-1.pdf Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Signed-off-by: Florian Westphal <fw@strlen.de> Signed-off-by: Mirja Kühlewind <mirja.kuehlewind@tik.ee.ethz.ch> Signed-off-by: Brian Trammell <trammell@tik.ee.ethz.ch> Cc: Eric Dumazet <edumazet@google.com> Cc: Dave That <dave.taht@gmail.com> Acked-by: Eric Dumazet <edumazet@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2015-05-19 22:04:22 +03:00
net->ipv4.sysctl_tcp_ecn_fallback = 1;
net->ipv4.sysctl_tcp_base_mss = TCP_BASE_MSS;
net->ipv4.sysctl_tcp_min_snd_mss = TCP_MIN_SND_MSS;
net->ipv4.sysctl_tcp_probe_threshold = TCP_PROBE_THRESHOLD;
net->ipv4.sysctl_tcp_probe_interval = TCP_PROBE_INTERVAL;
net->ipv4.sysctl_tcp_mtu_probe_floor = TCP_MIN_SND_MSS;
net->ipv4.sysctl_tcp_keepalive_time = TCP_KEEPALIVE_TIME;
net->ipv4.sysctl_tcp_keepalive_probes = TCP_KEEPALIVE_PROBES;
net->ipv4.sysctl_tcp_keepalive_intvl = TCP_KEEPALIVE_INTVL;
net->ipv4.sysctl_tcp_syn_retries = TCP_SYN_RETRIES;
net->ipv4.sysctl_tcp_synack_retries = TCP_SYNACK_RETRIES;
net->ipv4.sysctl_tcp_syncookies = 1;
net->ipv4.sysctl_tcp_reordering = TCP_FASTRETRANS_THRESH;
net->ipv4.sysctl_tcp_retries1 = TCP_RETR1;
net->ipv4.sysctl_tcp_retries2 = TCP_RETR2;
net->ipv4.sysctl_tcp_orphan_retries = 0;
net->ipv4.sysctl_tcp_fin_timeout = TCP_FIN_TIMEOUT;
net->ipv4.sysctl_tcp_notsent_lowat = UINT_MAX;
net-tcp: extend tcp_tw_reuse sysctl to enable loopback only optimization This changes the /proc/sys/net/ipv4/tcp_tw_reuse from a boolean to an integer. It now takes the values 0, 1 and 2, where 0 and 1 behave as before, while 2 enables timewait socket reuse only for sockets that we can prove are loopback connections: ie. bound to 'lo' interface or where one of source or destination IPs is 127.0.0.0/8, ::ffff:127.0.0.0/104 or ::1. This enables quicker reuse of ephemeral ports for loopback connections - where tcp_tw_reuse is 100% safe from a protocol perspective (this assumes no artificially induced packet loss on 'lo'). This also makes estblishing many loopback connections *much* faster (allocating ports out of the first half of the ephemeral port range is significantly faster, then allocating from the second half) Without this change in a 32K ephemeral port space my sample program (it just establishes and closes [::1]:ephemeral -> [::1]:server_port connections in a tight loop) fails after 32765 connections in 24 seconds. With it enabled 50000 connections only take 4.7 seconds. This is particularly problematic for IPv6 where we only have one local address and cannot play tricks with varying source IP from 127.0.0.0/8 pool. Signed-off-by: Maciej Żenczykowski <maze@google.com> Cc: Neal Cardwell <ncardwell@google.com> Cc: Yuchung Cheng <ycheng@google.com> Cc: Wei Wang <weiwan@google.com> Change-Id: I0377961749979d0301b7b62871a32a4b34b654e1 Signed-off-by: Eric Dumazet <edumazet@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2018-06-03 20:41:17 +03:00
net->ipv4.sysctl_tcp_tw_reuse = 2;
net->ipv4.sysctl_tcp_no_ssthresh_metrics_save = 1;
refcount_set(&net->ipv4.tcp_death_row.tw_refcount, 1);
tcp: Introduce optional per-netns ehash. The more sockets we have in the hash table, the longer we spend looking up the socket. While running a number of small workloads on the same host, they penalise each other and cause performance degradation. The root cause might be a single workload that consumes much more resources than the others. It often happens on a cloud service where different workloads share the same computing resource. On EC2 c5.24xlarge instance (196 GiB memory and 524288 (1Mi / 2) ehash entries), after running iperf3 in different netns, creating 24Mi sockets without data transfer in the root netns causes about 10% performance regression for the iperf3's connection. thash_entries sockets length Gbps 524288 1 1 50.7 24Mi 48 45.1 It is basically related to the length of the list of each hash bucket. For testing purposes to see how performance drops along the length, I set 131072 (1Mi / 8) to thash_entries, and here's the result. thash_entries sockets length Gbps 131072 1 1 50.7 1Mi 8 49.9 2Mi 16 48.9 4Mi 32 47.3 8Mi 64 44.6 16Mi 128 40.6 24Mi 192 36.3 32Mi 256 32.5 40Mi 320 27.0 48Mi 384 25.0 To resolve the socket lookup degradation, we introduce an optional per-netns hash table for TCP, but it's just ehash, and we still share the global bhash, bhash2 and lhash2. With a smaller ehash, we can look up non-listener sockets faster and isolate such noisy neighbours. In addition, we can reduce lock contention. We can control the ehash size by a new sysctl knob. However, depending on workloads, it will require very sensitive tuning, so we disable the feature by default (net.ipv4.tcp_child_ehash_entries == 0). Moreover, we can fall back to using the global ehash in case we fail to allocate enough memory for a new ehash. The maximum size is 16Mi, which is large enough that even if we have 48Mi sockets, the average list length is 3, and regression would be less than 1%. We can check the current ehash size by another read-only sysctl knob, net.ipv4.tcp_ehash_entries. A negative value means the netns shares the global ehash (per-netns ehash is disabled or failed to allocate memory). # dmesg | cut -d ' ' -f 5- | grep "established hash" TCP established hash table entries: 524288 (order: 10, 4194304 bytes, vmalloc hugepage) # sysctl net.ipv4.tcp_ehash_entries net.ipv4.tcp_ehash_entries = 524288 # can be changed by thash_entries # sysctl net.ipv4.tcp_child_ehash_entries net.ipv4.tcp_child_ehash_entries = 0 # disabled by default # ip netns add test1 # ip netns exec test1 sysctl net.ipv4.tcp_ehash_entries net.ipv4.tcp_ehash_entries = -524288 # share the global ehash # sysctl -w net.ipv4.tcp_child_ehash_entries=100 net.ipv4.tcp_child_ehash_entries = 100 # ip netns add test2 # ip netns exec test2 sysctl net.ipv4.tcp_ehash_entries net.ipv4.tcp_ehash_entries = 128 # own a per-netns ehash with 2^n buckets When more than two processes in the same netns create per-netns ehash concurrently with different sizes, we need to guarantee the size in one of the following ways: 1) Share the global ehash and create per-netns ehash First, unshare() with tcp_child_ehash_entries==0. It creates dedicated netns sysctl knobs where we can safely change tcp_child_ehash_entries and clone()/unshare() to create a per-netns ehash. 2) Control write on sysctl by BPF We can use BPF_PROG_TYPE_CGROUP_SYSCTL to allow/deny read/write on sysctl knobs. Note that the global ehash allocated at the boot time is spread over available NUMA nodes, but inet_pernet_hashinfo_alloc() will allocate pages for each per-netns ehash depending on the current process's NUMA policy. By default, the allocation is done in the local node only, so the per-netns hash table could fully reside on a random node. Thus, depending on the NUMA policy the netns is created with and the CPU the current thread is running on, we could see some performance differences for highly optimised networking applications. Note also that the default values of two sysctl knobs depend on the ehash size and should be tuned carefully: tcp_max_tw_buckets : tcp_child_ehash_entries / 2 tcp_max_syn_backlog : max(128, tcp_child_ehash_entries / 128) As a bonus, we can dismantle netns faster. Currently, while destroying netns, we call inet_twsk_purge(), which walks through the global ehash. It can be potentially big because it can have many sockets other than TIME_WAIT in all netns. Splitting ehash changes that situation, where it's only necessary for inet_twsk_purge() to clean up TIME_WAIT sockets in each netns. With regard to this, we do not free the per-netns ehash in inet_twsk_kill() to avoid UAF while iterating the per-netns ehash in inet_twsk_purge(). Instead, we do it in tcp_sk_exit_batch() after calling tcp_twsk_purge() to keep it protocol-family-independent. In the future, we could optimise ehash lookup/iteration further by removing netns comparison for the per-netns ehash. Signed-off-by: Kuniyuki Iwashima <kuniyu@amazon.com> Reviewed-by: Eric Dumazet <edumazet@google.com> Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2022-09-08 04:10:22 +03:00
tcp_set_hashinfo(net);
net->ipv4.sysctl_tcp_sack = 1;
net->ipv4.sysctl_tcp_window_scaling = 1;
net->ipv4.sysctl_tcp_timestamps = 1;
net->ipv4.sysctl_tcp_early_retrans = 3;
net->ipv4.sysctl_tcp_recovery = TCP_RACK_LOSS_DETECTION;
net->ipv4.sysctl_tcp_slow_start_after_idle = 1; /* By default, RFC2861 behavior. */
net->ipv4.sysctl_tcp_retrans_collapse = 1;
net->ipv4.sysctl_tcp_max_reordering = 300;
net->ipv4.sysctl_tcp_dsack = 1;
net->ipv4.sysctl_tcp_app_win = 31;
net->ipv4.sysctl_tcp_adv_win_scale = 1;
net->ipv4.sysctl_tcp_frto = 2;
net->ipv4.sysctl_tcp_moderate_rcvbuf = 1;
/* This limits the percentage of the congestion window which we
* will allow a single TSO frame to consume. Building TSO frames
* which are too large can cause TCP streams to be bursty.
*/
net->ipv4.sysctl_tcp_tso_win_divisor = 3;
/* Default TSQ limit of 16 TSO segments */
net->ipv4.sysctl_tcp_limit_output_bytes = 16 * 65536;
/* rfc5961 challenge ack rate limiting, per net-ns, disabled by default. */
net->ipv4.sysctl_tcp_challenge_ack_limit = INT_MAX;
net->ipv4.sysctl_tcp_min_tso_segs = 2;
tcp: adjust TSO packet sizes based on min_rtt Back when tcp_tso_autosize() and TCP pacing were introduced, our focus was really to reduce burst sizes for long distance flows. The simple heuristic of using sk_pacing_rate/1024 has worked well, but can lead to too small packets for hosts in the same rack/cluster, when thousands of flows compete for the bottleneck. Neal Cardwell had the idea of making the TSO burst size a function of both sk_pacing_rate and tcp_min_rtt() Indeed, for local flows, sending bigger bursts is better to reduce cpu costs, as occasional losses can be repaired quite fast. This patch is based on Neal Cardwell implementation done more than two years ago. bbr is adjusting max_pacing_rate based on measured bandwidth, while cubic would over estimate max_pacing_rate. /proc/sys/net/ipv4/tcp_tso_rtt_log can be used to tune or disable this new feature, in logarithmic steps. Tested: 100Gbit NIC, two hosts in the same rack, 4K MTU. 600 flows rate-limited to 20000000 bytes per second. Before patch: (TSO sizes would be limited to 20000000/1024/4096 -> 4 segments per TSO) ~# echo 0 >/proc/sys/net/ipv4/tcp_tso_rtt_log ~# nstat -n;perf stat ./super_netperf 600 -H otrv6 -l 20 -- -K dctcp -q 20000000;nstat|egrep "TcpInSegs|TcpOutSegs|TcpRetransSegs|Delivered" 96005 Performance counter stats for './super_netperf 600 -H otrv6 -l 20 -- -K dctcp -q 20000000': 65,945.29 msec task-clock # 2.845 CPUs utilized 1,314,632 context-switches # 19935.279 M/sec 5,292 cpu-migrations # 80.249 M/sec 940,641 page-faults # 14264.023 M/sec 201,117,030,926 cycles # 3049769.216 GHz (83.45%) 17,699,435,405 stalled-cycles-frontend # 8.80% frontend cycles idle (83.48%) 136,584,015,071 stalled-cycles-backend # 67.91% backend cycles idle (83.44%) 53,809,530,436 instructions # 0.27 insn per cycle # 2.54 stalled cycles per insn (83.36%) 9,062,315,523 branches # 137422329.563 M/sec (83.22%) 153,008,621 branch-misses # 1.69% of all branches (83.32%) 23.182970846 seconds time elapsed TcpInSegs 15648792 0.0 TcpOutSegs 58659110 0.0 # Average of 3.7 4K segments per TSO packet TcpExtTCPDelivered 58654791 0.0 TcpExtTCPDeliveredCE 19 0.0 After patch: ~# echo 9 >/proc/sys/net/ipv4/tcp_tso_rtt_log ~# nstat -n;perf stat ./super_netperf 600 -H otrv6 -l 20 -- -K dctcp -q 20000000;nstat|egrep "TcpInSegs|TcpOutSegs|TcpRetransSegs|Delivered" 96046 Performance counter stats for './super_netperf 600 -H otrv6 -l 20 -- -K dctcp -q 20000000': 48,982.58 msec task-clock # 2.104 CPUs utilized 186,014 context-switches # 3797.599 M/sec 3,109 cpu-migrations # 63.472 M/sec 941,180 page-faults # 19214.814 M/sec 153,459,763,868 cycles # 3132982.807 GHz (83.56%) 12,069,861,356 stalled-cycles-frontend # 7.87% frontend cycles idle (83.32%) 120,485,917,953 stalled-cycles-backend # 78.51% backend cycles idle (83.24%) 36,803,672,106 instructions # 0.24 insn per cycle # 3.27 stalled cycles per insn (83.18%) 5,947,266,275 branches # 121417383.427 M/sec (83.64%) 87,984,616 branch-misses # 1.48% of all branches (83.43%) 23.281200256 seconds time elapsed TcpInSegs 1434706 0.0 TcpOutSegs 58883378 0.0 # Average of 41 4K segments per TSO packet TcpExtTCPDelivered 58878971 0.0 TcpExtTCPDeliveredCE 9664 0.0 Signed-off-by: Eric Dumazet <edumazet@google.com> Reviewed-by: Neal Cardwell <ncardwell@google.com> Link: https://lore.kernel.org/r/20220309015757.2532973-1-eric.dumazet@gmail.com Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2022-03-09 04:57:57 +03:00
net->ipv4.sysctl_tcp_tso_rtt_log = 9; /* 2^9 = 512 usec */
net->ipv4.sysctl_tcp_min_rtt_wlen = 300;
net->ipv4.sysctl_tcp_autocorking = 1;
net->ipv4.sysctl_tcp_invalid_ratelimit = HZ/2;
net->ipv4.sysctl_tcp_pacing_ss_ratio = 200;
net->ipv4.sysctl_tcp_pacing_ca_ratio = 120;
if (net != &init_net) {
memcpy(net->ipv4.sysctl_tcp_rmem,
init_net.ipv4.sysctl_tcp_rmem,
sizeof(init_net.ipv4.sysctl_tcp_rmem));
memcpy(net->ipv4.sysctl_tcp_wmem,
init_net.ipv4.sysctl_tcp_wmem,
sizeof(init_net.ipv4.sysctl_tcp_wmem));
}
net->ipv4.sysctl_tcp_comp_sack_delay_ns = NSEC_PER_MSEC;
net->ipv4.sysctl_tcp_comp_sack_slack_ns = 100 * NSEC_PER_USEC;
net->ipv4.sysctl_tcp_comp_sack_nr = 44;
net->ipv4.sysctl_tcp_fastopen = TFO_CLIENT_ENABLE;
net->ipv4.sysctl_tcp_fastopen_blackhole_timeout = 0;
atomic_set(&net->ipv4.tfo_active_disable_times, 0);
/* Set default values for PLB */
net->ipv4.sysctl_tcp_plb_enabled = 0; /* Disabled by default */
net->ipv4.sysctl_tcp_plb_idle_rehash_rounds = 3;
net->ipv4.sysctl_tcp_plb_rehash_rounds = 12;
net->ipv4.sysctl_tcp_plb_suspend_rto_sec = 60;
/* Default congestion threshold for PLB to mark a round is 50% */
net->ipv4.sysctl_tcp_plb_cong_thresh = (1 << TCP_PLB_SCALE) / 2;
/* Reno is always built in */
if (!net_eq(net, &init_net) &&
bpf: tcp: Support tcp_congestion_ops in bpf This patch makes "struct tcp_congestion_ops" to be the first user of BPF STRUCT_OPS. It allows implementing a tcp_congestion_ops in bpf. The BPF implemented tcp_congestion_ops can be used like regular kernel tcp-cc through sysctl and setsockopt. e.g. [root@arch-fb-vm1 bpf]# sysctl -a | egrep congestion net.ipv4.tcp_allowed_congestion_control = reno cubic bpf_cubic net.ipv4.tcp_available_congestion_control = reno bic cubic bpf_cubic net.ipv4.tcp_congestion_control = bpf_cubic There has been attempt to move the TCP CC to the user space (e.g. CCP in TCP). The common arguments are faster turn around, get away from long-tail kernel versions in production...etc, which are legit points. BPF has been the continuous effort to join both kernel and userspace upsides together (e.g. XDP to gain the performance advantage without bypassing the kernel). The recent BPF advancements (in particular BTF-aware verifier, BPF trampoline, BPF CO-RE...) made implementing kernel struct ops (e.g. tcp cc) possible in BPF. It allows a faster turnaround for testing algorithm in the production while leveraging the existing (and continue growing) BPF feature/framework instead of building one specifically for userspace TCP CC. This patch allows write access to a few fields in tcp-sock (in bpf_tcp_ca_btf_struct_access()). The optional "get_info" is unsupported now. It can be added later. One possible way is to output the info with a btf-id to describe the content. Signed-off-by: Martin KaFai Lau <kafai@fb.com> Signed-off-by: Alexei Starovoitov <ast@kernel.org> Acked-by: Andrii Nakryiko <andriin@fb.com> Acked-by: Yonghong Song <yhs@fb.com> Link: https://lore.kernel.org/bpf/20200109003508.3856115-1-kafai@fb.com
2020-01-09 03:35:08 +03:00
bpf_try_module_get(init_net.ipv4.tcp_congestion_control,
init_net.ipv4.tcp_congestion_control->owner))
net->ipv4.tcp_congestion_control = init_net.ipv4.tcp_congestion_control;
else
net->ipv4.tcp_congestion_control = &tcp_reno;
tcp: add rfc3168, section 6.1.1.1. fallback This work as a follow-up of commit f7b3bec6f516 ("net: allow setting ecn via routing table") and adds RFC3168 section 6.1.1.1. fallback for outgoing ECN connections. In other words, this work adds a retry with a non-ECN setup SYN packet, as suggested from the RFC on the first timeout: [...] A host that receives no reply to an ECN-setup SYN within the normal SYN retransmission timeout interval MAY resend the SYN and any subsequent SYN retransmissions with CWR and ECE cleared. [...] Schematic client-side view when assuming the server is in tcp_ecn=2 mode, that is, Linux default since 2009 via commit 255cac91c3c9 ("tcp: extend ECN sysctl to allow server-side only ECN"): 1) Normal ECN-capable path: SYN ECE CWR -----> <----- SYN ACK ECE ACK -----> 2) Path with broken middlebox, when client has fallback: SYN ECE CWR ----X crappy middlebox drops packet (timeout, rtx) SYN -----> <----- SYN ACK ACK -----> In case we would not have the fallback implemented, the middlebox drop point would basically end up as: SYN ECE CWR ----X crappy middlebox drops packet (timeout, rtx) SYN ECE CWR ----X crappy middlebox drops packet (timeout, rtx) SYN ECE CWR ----X crappy middlebox drops packet (timeout, rtx) In any case, it's rather a smaller percentage of sites where there would occur such additional setup latency: it was found in end of 2014 that ~56% of IPv4 and 65% of IPv6 servers of Alexa 1 million list would negotiate ECN (aka tcp_ecn=2 default), 0.42% of these webservers will fail to connect when trying to negotiate with ECN (tcp_ecn=1) due to timeouts, which the fallback would mitigate with a slight latency trade-off. Recent related paper on this topic: Brian Trammell, Mirja Kühlewind, Damiano Boppart, Iain Learmonth, Gorry Fairhurst, and Richard Scheffenegger: "Enabling Internet-Wide Deployment of Explicit Congestion Notification." Proc. PAM 2015, New York. http://ecn.ethz.ch/ecn-pam15.pdf Thus, when net.ipv4.tcp_ecn=1 is being set, the patch will perform RFC3168, section 6.1.1.1. fallback on timeout. For users explicitly not wanting this which can be in DC use case, we add a net.ipv4.tcp_ecn_fallback knob that allows for disabling the fallback. tp->ecn_flags are not being cleared in tcp_ecn_clear_syn() on output, but rather we let tcp_ecn_rcv_synack() take that over on input path in case a SYN ACK ECE was delayed. Thus a spurious SYN retransmission will not prevent ECN being negotiated eventually in that case. Reference: https://www.ietf.org/proceedings/92/slides/slides-92-iccrg-1.pdf Reference: https://www.ietf.org/proceedings/89/slides/slides-89-tsvarea-1.pdf Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Signed-off-by: Florian Westphal <fw@strlen.de> Signed-off-by: Mirja Kühlewind <mirja.kuehlewind@tik.ee.ethz.ch> Signed-off-by: Brian Trammell <trammell@tik.ee.ethz.ch> Cc: Eric Dumazet <edumazet@google.com> Cc: Dave That <dave.taht@gmail.com> Acked-by: Eric Dumazet <edumazet@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2015-05-19 22:04:22 +03:00
return 0;
}
static void __net_exit tcp_sk_exit_batch(struct list_head *net_exit_list)
{
struct net *net;
tcp: Save unnecessary inet_twsk_purge() calls. While destroying netns, we call inet_twsk_purge() in tcp_sk_exit_batch() and tcpv6_net_exit_batch() for AF_INET and AF_INET6. These commands trigger the kernel to walk through the potentially big ehash twice even though the netns has no TIME_WAIT sockets. # ip netns add test # ip netns del test or # unshare -n /bin/true >/dev/null When tw_refcount is 1, we need not call inet_twsk_purge() at least for the net. We can save such unneeded iterations if all netns in net_exit_list have no TIME_WAIT sockets. This change eliminates the tax by the additional unshare() described in the next patch to guarantee the per-netns ehash size. Tested: # mount -t debugfs none /sys/kernel/debug/ # echo cleanup_net > /sys/kernel/debug/tracing/set_ftrace_filter # echo inet_twsk_purge >> /sys/kernel/debug/tracing/set_ftrace_filter # echo function > /sys/kernel/debug/tracing/current_tracer # cat ./add_del_unshare.sh for i in `seq 1 40` do (for j in `seq 1 100` ; do unshare -n /bin/true >/dev/null ; done) & done wait; # ./add_del_unshare.sh Before the patch: # cat /sys/kernel/debug/tracing/trace_pipe kworker/u128:0-8 [031] ...1. 174.162765: cleanup_net <-process_one_work kworker/u128:0-8 [031] ...1. 174.240796: inet_twsk_purge <-cleanup_net kworker/u128:0-8 [032] ...1. 174.244759: inet_twsk_purge <-tcp_sk_exit_batch kworker/u128:0-8 [034] ...1. 174.290861: cleanup_net <-process_one_work kworker/u128:0-8 [039] ...1. 175.245027: inet_twsk_purge <-cleanup_net kworker/u128:0-8 [046] ...1. 175.290541: inet_twsk_purge <-tcp_sk_exit_batch kworker/u128:0-8 [037] ...1. 175.321046: cleanup_net <-process_one_work kworker/u128:0-8 [024] ...1. 175.941633: inet_twsk_purge <-cleanup_net kworker/u128:0-8 [025] ...1. 176.242539: inet_twsk_purge <-tcp_sk_exit_batch After: # cat /sys/kernel/debug/tracing/trace_pipe kworker/u128:0-8 [038] ...1. 428.116174: cleanup_net <-process_one_work kworker/u128:0-8 [038] ...1. 428.262532: cleanup_net <-process_one_work kworker/u128:0-8 [030] ...1. 429.292645: cleanup_net <-process_one_work Signed-off-by: Kuniyuki Iwashima <kuniyu@amazon.com> Reviewed-by: Eric Dumazet <edumazet@google.com> Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2022-09-08 04:10:21 +03:00
tcp_twsk_purge(net_exit_list, AF_INET);
list_for_each_entry(net, net_exit_list, exit_list) {
tcp: Introduce optional per-netns ehash. The more sockets we have in the hash table, the longer we spend looking up the socket. While running a number of small workloads on the same host, they penalise each other and cause performance degradation. The root cause might be a single workload that consumes much more resources than the others. It often happens on a cloud service where different workloads share the same computing resource. On EC2 c5.24xlarge instance (196 GiB memory and 524288 (1Mi / 2) ehash entries), after running iperf3 in different netns, creating 24Mi sockets without data transfer in the root netns causes about 10% performance regression for the iperf3's connection. thash_entries sockets length Gbps 524288 1 1 50.7 24Mi 48 45.1 It is basically related to the length of the list of each hash bucket. For testing purposes to see how performance drops along the length, I set 131072 (1Mi / 8) to thash_entries, and here's the result. thash_entries sockets length Gbps 131072 1 1 50.7 1Mi 8 49.9 2Mi 16 48.9 4Mi 32 47.3 8Mi 64 44.6 16Mi 128 40.6 24Mi 192 36.3 32Mi 256 32.5 40Mi 320 27.0 48Mi 384 25.0 To resolve the socket lookup degradation, we introduce an optional per-netns hash table for TCP, but it's just ehash, and we still share the global bhash, bhash2 and lhash2. With a smaller ehash, we can look up non-listener sockets faster and isolate such noisy neighbours. In addition, we can reduce lock contention. We can control the ehash size by a new sysctl knob. However, depending on workloads, it will require very sensitive tuning, so we disable the feature by default (net.ipv4.tcp_child_ehash_entries == 0). Moreover, we can fall back to using the global ehash in case we fail to allocate enough memory for a new ehash. The maximum size is 16Mi, which is large enough that even if we have 48Mi sockets, the average list length is 3, and regression would be less than 1%. We can check the current ehash size by another read-only sysctl knob, net.ipv4.tcp_ehash_entries. A negative value means the netns shares the global ehash (per-netns ehash is disabled or failed to allocate memory). # dmesg | cut -d ' ' -f 5- | grep "established hash" TCP established hash table entries: 524288 (order: 10, 4194304 bytes, vmalloc hugepage) # sysctl net.ipv4.tcp_ehash_entries net.ipv4.tcp_ehash_entries = 524288 # can be changed by thash_entries # sysctl net.ipv4.tcp_child_ehash_entries net.ipv4.tcp_child_ehash_entries = 0 # disabled by default # ip netns add test1 # ip netns exec test1 sysctl net.ipv4.tcp_ehash_entries net.ipv4.tcp_ehash_entries = -524288 # share the global ehash # sysctl -w net.ipv4.tcp_child_ehash_entries=100 net.ipv4.tcp_child_ehash_entries = 100 # ip netns add test2 # ip netns exec test2 sysctl net.ipv4.tcp_ehash_entries net.ipv4.tcp_ehash_entries = 128 # own a per-netns ehash with 2^n buckets When more than two processes in the same netns create per-netns ehash concurrently with different sizes, we need to guarantee the size in one of the following ways: 1) Share the global ehash and create per-netns ehash First, unshare() with tcp_child_ehash_entries==0. It creates dedicated netns sysctl knobs where we can safely change tcp_child_ehash_entries and clone()/unshare() to create a per-netns ehash. 2) Control write on sysctl by BPF We can use BPF_PROG_TYPE_CGROUP_SYSCTL to allow/deny read/write on sysctl knobs. Note that the global ehash allocated at the boot time is spread over available NUMA nodes, but inet_pernet_hashinfo_alloc() will allocate pages for each per-netns ehash depending on the current process's NUMA policy. By default, the allocation is done in the local node only, so the per-netns hash table could fully reside on a random node. Thus, depending on the NUMA policy the netns is created with and the CPU the current thread is running on, we could see some performance differences for highly optimised networking applications. Note also that the default values of two sysctl knobs depend on the ehash size and should be tuned carefully: tcp_max_tw_buckets : tcp_child_ehash_entries / 2 tcp_max_syn_backlog : max(128, tcp_child_ehash_entries / 128) As a bonus, we can dismantle netns faster. Currently, while destroying netns, we call inet_twsk_purge(), which walks through the global ehash. It can be potentially big because it can have many sockets other than TIME_WAIT in all netns. Splitting ehash changes that situation, where it's only necessary for inet_twsk_purge() to clean up TIME_WAIT sockets in each netns. With regard to this, we do not free the per-netns ehash in inet_twsk_kill() to avoid UAF while iterating the per-netns ehash in inet_twsk_purge(). Instead, we do it in tcp_sk_exit_batch() after calling tcp_twsk_purge() to keep it protocol-family-independent. In the future, we could optimise ehash lookup/iteration further by removing netns comparison for the per-netns ehash. Signed-off-by: Kuniyuki Iwashima <kuniyu@amazon.com> Reviewed-by: Eric Dumazet <edumazet@google.com> Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2022-09-08 04:10:22 +03:00
inet_pernet_hashinfo_free(net->ipv4.tcp_death_row.hashinfo);
WARN_ON_ONCE(!refcount_dec_and_test(&net->ipv4.tcp_death_row.tw_refcount));
tcp_fastopen_ctx_destroy(net);
}
}
static struct pernet_operations __net_initdata tcp_sk_ops = {
.init = tcp_sk_init,
.exit = tcp_sk_exit,
.exit_batch = tcp_sk_exit_batch,
};
#if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_PROC_FS)
DEFINE_BPF_ITER_FUNC(tcp, struct bpf_iter_meta *meta,
struct sock_common *sk_common, uid_t uid)
bpf: tcp: Bpf iter batching and lock_sock This patch does batching and lock_sock for the bpf tcp iter. It does not affect the proc fs iteration. With bpf-tcp-cc, new algo rollout happens more often. Instead of restarting the application to pick up the new tcp-cc, the next patch will allow bpf iter to do setsockopt(TCP_CONGESTION). This requires locking the sock. Also, unlike the proc iteration (cat /proc/net/tcp[6]), the bpf iter can inspect all fields of a tcp_sock. It will be useful to have a consistent view on some of the fields (e.g. the ones reported in tcp_get_info() that also acquires the sock lock). Double lock: locking the bucket first and then locking the sock could lead to deadlock. This patch takes a batching approach similar to inet_diag. While holding the bucket lock, it batch a number of sockets into an array first and then unlock the bucket. Before doing show(), it then calls lock_sock_fast(). In a machine with ~400k connections, the maximum number of sk in a bucket of the established hashtable is 7. 0.02% of the established connections fall into this bucket size. For listen hash (port+addr lhash2), the bucket is usually very small also except for the SO_REUSEPORT use case which the userspace could have one SO_REUSEPORT socket per thread. While batching is used, it can also minimize the chance of missing sock in the setsockopt use case if the whole bucket is batched. This patch will start with a batch array with INIT_BATCH_SZ (16) which will be enough for the most common cases. bpf_iter_tcp_batch() will try to realloc to a larger array to handle exception case (e.g. the SO_REUSEPORT case in the lhash2). Signed-off-by: Martin KaFai Lau <kafai@fb.com> Signed-off-by: Andrii Nakryiko <andrii@kernel.org> Reviewed-by: Eric Dumazet <edumazet@google.com> Acked-by: Kuniyuki Iwashima <kuniyu@amazon.co.jp> Acked-by: Yonghong Song <yhs@fb.com> Link: https://lore.kernel.org/bpf/20210701200613.1036157-1-kafai@fb.com
2021-07-01 23:06:13 +03:00
#define INIT_BATCH_SZ 16
static int bpf_iter_init_tcp(void *priv_data, struct bpf_iter_aux_info *aux)
{
bpf: tcp: Bpf iter batching and lock_sock This patch does batching and lock_sock for the bpf tcp iter. It does not affect the proc fs iteration. With bpf-tcp-cc, new algo rollout happens more often. Instead of restarting the application to pick up the new tcp-cc, the next patch will allow bpf iter to do setsockopt(TCP_CONGESTION). This requires locking the sock. Also, unlike the proc iteration (cat /proc/net/tcp[6]), the bpf iter can inspect all fields of a tcp_sock. It will be useful to have a consistent view on some of the fields (e.g. the ones reported in tcp_get_info() that also acquires the sock lock). Double lock: locking the bucket first and then locking the sock could lead to deadlock. This patch takes a batching approach similar to inet_diag. While holding the bucket lock, it batch a number of sockets into an array first and then unlock the bucket. Before doing show(), it then calls lock_sock_fast(). In a machine with ~400k connections, the maximum number of sk in a bucket of the established hashtable is 7. 0.02% of the established connections fall into this bucket size. For listen hash (port+addr lhash2), the bucket is usually very small also except for the SO_REUSEPORT use case which the userspace could have one SO_REUSEPORT socket per thread. While batching is used, it can also minimize the chance of missing sock in the setsockopt use case if the whole bucket is batched. This patch will start with a batch array with INIT_BATCH_SZ (16) which will be enough for the most common cases. bpf_iter_tcp_batch() will try to realloc to a larger array to handle exception case (e.g. the SO_REUSEPORT case in the lhash2). Signed-off-by: Martin KaFai Lau <kafai@fb.com> Signed-off-by: Andrii Nakryiko <andrii@kernel.org> Reviewed-by: Eric Dumazet <edumazet@google.com> Acked-by: Kuniyuki Iwashima <kuniyu@amazon.co.jp> Acked-by: Yonghong Song <yhs@fb.com> Link: https://lore.kernel.org/bpf/20210701200613.1036157-1-kafai@fb.com
2021-07-01 23:06:13 +03:00
struct bpf_tcp_iter_state *iter = priv_data;
int err;
bpf: tcp: Bpf iter batching and lock_sock This patch does batching and lock_sock for the bpf tcp iter. It does not affect the proc fs iteration. With bpf-tcp-cc, new algo rollout happens more often. Instead of restarting the application to pick up the new tcp-cc, the next patch will allow bpf iter to do setsockopt(TCP_CONGESTION). This requires locking the sock. Also, unlike the proc iteration (cat /proc/net/tcp[6]), the bpf iter can inspect all fields of a tcp_sock. It will be useful to have a consistent view on some of the fields (e.g. the ones reported in tcp_get_info() that also acquires the sock lock). Double lock: locking the bucket first and then locking the sock could lead to deadlock. This patch takes a batching approach similar to inet_diag. While holding the bucket lock, it batch a number of sockets into an array first and then unlock the bucket. Before doing show(), it then calls lock_sock_fast(). In a machine with ~400k connections, the maximum number of sk in a bucket of the established hashtable is 7. 0.02% of the established connections fall into this bucket size. For listen hash (port+addr lhash2), the bucket is usually very small also except for the SO_REUSEPORT use case which the userspace could have one SO_REUSEPORT socket per thread. While batching is used, it can also minimize the chance of missing sock in the setsockopt use case if the whole bucket is batched. This patch will start with a batch array with INIT_BATCH_SZ (16) which will be enough for the most common cases. bpf_iter_tcp_batch() will try to realloc to a larger array to handle exception case (e.g. the SO_REUSEPORT case in the lhash2). Signed-off-by: Martin KaFai Lau <kafai@fb.com> Signed-off-by: Andrii Nakryiko <andrii@kernel.org> Reviewed-by: Eric Dumazet <edumazet@google.com> Acked-by: Kuniyuki Iwashima <kuniyu@amazon.co.jp> Acked-by: Yonghong Song <yhs@fb.com> Link: https://lore.kernel.org/bpf/20210701200613.1036157-1-kafai@fb.com
2021-07-01 23:06:13 +03:00
err = bpf_iter_init_seq_net(priv_data, aux);
if (err)
return err;
bpf: tcp: Bpf iter batching and lock_sock This patch does batching and lock_sock for the bpf tcp iter. It does not affect the proc fs iteration. With bpf-tcp-cc, new algo rollout happens more often. Instead of restarting the application to pick up the new tcp-cc, the next patch will allow bpf iter to do setsockopt(TCP_CONGESTION). This requires locking the sock. Also, unlike the proc iteration (cat /proc/net/tcp[6]), the bpf iter can inspect all fields of a tcp_sock. It will be useful to have a consistent view on some of the fields (e.g. the ones reported in tcp_get_info() that also acquires the sock lock). Double lock: locking the bucket first and then locking the sock could lead to deadlock. This patch takes a batching approach similar to inet_diag. While holding the bucket lock, it batch a number of sockets into an array first and then unlock the bucket. Before doing show(), it then calls lock_sock_fast(). In a machine with ~400k connections, the maximum number of sk in a bucket of the established hashtable is 7. 0.02% of the established connections fall into this bucket size. For listen hash (port+addr lhash2), the bucket is usually very small also except for the SO_REUSEPORT use case which the userspace could have one SO_REUSEPORT socket per thread. While batching is used, it can also minimize the chance of missing sock in the setsockopt use case if the whole bucket is batched. This patch will start with a batch array with INIT_BATCH_SZ (16) which will be enough for the most common cases. bpf_iter_tcp_batch() will try to realloc to a larger array to handle exception case (e.g. the SO_REUSEPORT case in the lhash2). Signed-off-by: Martin KaFai Lau <kafai@fb.com> Signed-off-by: Andrii Nakryiko <andrii@kernel.org> Reviewed-by: Eric Dumazet <edumazet@google.com> Acked-by: Kuniyuki Iwashima <kuniyu@amazon.co.jp> Acked-by: Yonghong Song <yhs@fb.com> Link: https://lore.kernel.org/bpf/20210701200613.1036157-1-kafai@fb.com
2021-07-01 23:06:13 +03:00
err = bpf_iter_tcp_realloc_batch(iter, INIT_BATCH_SZ);
if (err) {
bpf_iter_fini_seq_net(priv_data);
return err;
}
return 0;
}
static void bpf_iter_fini_tcp(void *priv_data)
{
bpf: tcp: Bpf iter batching and lock_sock This patch does batching and lock_sock for the bpf tcp iter. It does not affect the proc fs iteration. With bpf-tcp-cc, new algo rollout happens more often. Instead of restarting the application to pick up the new tcp-cc, the next patch will allow bpf iter to do setsockopt(TCP_CONGESTION). This requires locking the sock. Also, unlike the proc iteration (cat /proc/net/tcp[6]), the bpf iter can inspect all fields of a tcp_sock. It will be useful to have a consistent view on some of the fields (e.g. the ones reported in tcp_get_info() that also acquires the sock lock). Double lock: locking the bucket first and then locking the sock could lead to deadlock. This patch takes a batching approach similar to inet_diag. While holding the bucket lock, it batch a number of sockets into an array first and then unlock the bucket. Before doing show(), it then calls lock_sock_fast(). In a machine with ~400k connections, the maximum number of sk in a bucket of the established hashtable is 7. 0.02% of the established connections fall into this bucket size. For listen hash (port+addr lhash2), the bucket is usually very small also except for the SO_REUSEPORT use case which the userspace could have one SO_REUSEPORT socket per thread. While batching is used, it can also minimize the chance of missing sock in the setsockopt use case if the whole bucket is batched. This patch will start with a batch array with INIT_BATCH_SZ (16) which will be enough for the most common cases. bpf_iter_tcp_batch() will try to realloc to a larger array to handle exception case (e.g. the SO_REUSEPORT case in the lhash2). Signed-off-by: Martin KaFai Lau <kafai@fb.com> Signed-off-by: Andrii Nakryiko <andrii@kernel.org> Reviewed-by: Eric Dumazet <edumazet@google.com> Acked-by: Kuniyuki Iwashima <kuniyu@amazon.co.jp> Acked-by: Yonghong Song <yhs@fb.com> Link: https://lore.kernel.org/bpf/20210701200613.1036157-1-kafai@fb.com
2021-07-01 23:06:13 +03:00
struct bpf_tcp_iter_state *iter = priv_data;
bpf_iter_fini_seq_net(priv_data);
bpf: tcp: Bpf iter batching and lock_sock This patch does batching and lock_sock for the bpf tcp iter. It does not affect the proc fs iteration. With bpf-tcp-cc, new algo rollout happens more often. Instead of restarting the application to pick up the new tcp-cc, the next patch will allow bpf iter to do setsockopt(TCP_CONGESTION). This requires locking the sock. Also, unlike the proc iteration (cat /proc/net/tcp[6]), the bpf iter can inspect all fields of a tcp_sock. It will be useful to have a consistent view on some of the fields (e.g. the ones reported in tcp_get_info() that also acquires the sock lock). Double lock: locking the bucket first and then locking the sock could lead to deadlock. This patch takes a batching approach similar to inet_diag. While holding the bucket lock, it batch a number of sockets into an array first and then unlock the bucket. Before doing show(), it then calls lock_sock_fast(). In a machine with ~400k connections, the maximum number of sk in a bucket of the established hashtable is 7. 0.02% of the established connections fall into this bucket size. For listen hash (port+addr lhash2), the bucket is usually very small also except for the SO_REUSEPORT use case which the userspace could have one SO_REUSEPORT socket per thread. While batching is used, it can also minimize the chance of missing sock in the setsockopt use case if the whole bucket is batched. This patch will start with a batch array with INIT_BATCH_SZ (16) which will be enough for the most common cases. bpf_iter_tcp_batch() will try to realloc to a larger array to handle exception case (e.g. the SO_REUSEPORT case in the lhash2). Signed-off-by: Martin KaFai Lau <kafai@fb.com> Signed-off-by: Andrii Nakryiko <andrii@kernel.org> Reviewed-by: Eric Dumazet <edumazet@google.com> Acked-by: Kuniyuki Iwashima <kuniyu@amazon.co.jp> Acked-by: Yonghong Song <yhs@fb.com> Link: https://lore.kernel.org/bpf/20210701200613.1036157-1-kafai@fb.com
2021-07-01 23:06:13 +03:00
kvfree(iter->batch);
}
static const struct bpf_iter_seq_info tcp_seq_info = {
.seq_ops = &bpf_iter_tcp_seq_ops,
.init_seq_private = bpf_iter_init_tcp,
.fini_seq_private = bpf_iter_fini_tcp,
bpf: tcp: Bpf iter batching and lock_sock This patch does batching and lock_sock for the bpf tcp iter. It does not affect the proc fs iteration. With bpf-tcp-cc, new algo rollout happens more often. Instead of restarting the application to pick up the new tcp-cc, the next patch will allow bpf iter to do setsockopt(TCP_CONGESTION). This requires locking the sock. Also, unlike the proc iteration (cat /proc/net/tcp[6]), the bpf iter can inspect all fields of a tcp_sock. It will be useful to have a consistent view on some of the fields (e.g. the ones reported in tcp_get_info() that also acquires the sock lock). Double lock: locking the bucket first and then locking the sock could lead to deadlock. This patch takes a batching approach similar to inet_diag. While holding the bucket lock, it batch a number of sockets into an array first and then unlock the bucket. Before doing show(), it then calls lock_sock_fast(). In a machine with ~400k connections, the maximum number of sk in a bucket of the established hashtable is 7. 0.02% of the established connections fall into this bucket size. For listen hash (port+addr lhash2), the bucket is usually very small also except for the SO_REUSEPORT use case which the userspace could have one SO_REUSEPORT socket per thread. While batching is used, it can also minimize the chance of missing sock in the setsockopt use case if the whole bucket is batched. This patch will start with a batch array with INIT_BATCH_SZ (16) which will be enough for the most common cases. bpf_iter_tcp_batch() will try to realloc to a larger array to handle exception case (e.g. the SO_REUSEPORT case in the lhash2). Signed-off-by: Martin KaFai Lau <kafai@fb.com> Signed-off-by: Andrii Nakryiko <andrii@kernel.org> Reviewed-by: Eric Dumazet <edumazet@google.com> Acked-by: Kuniyuki Iwashima <kuniyu@amazon.co.jp> Acked-by: Yonghong Song <yhs@fb.com> Link: https://lore.kernel.org/bpf/20210701200613.1036157-1-kafai@fb.com
2021-07-01 23:06:13 +03:00
.seq_priv_size = sizeof(struct bpf_tcp_iter_state),
};
static const struct bpf_func_proto *
bpf_iter_tcp_get_func_proto(enum bpf_func_id func_id,
const struct bpf_prog *prog)
{
switch (func_id) {
case BPF_FUNC_setsockopt:
return &bpf_sk_setsockopt_proto;
case BPF_FUNC_getsockopt:
return &bpf_sk_getsockopt_proto;
default:
return NULL;
}
}
static struct bpf_iter_reg tcp_reg_info = {
.target = "tcp",
.ctx_arg_info_size = 1,
.ctx_arg_info = {
{ offsetof(struct bpf_iter__tcp, sk_common),
PTR_TO_BTF_ID_OR_NULL },
},
.get_func_proto = bpf_iter_tcp_get_func_proto,
.seq_info = &tcp_seq_info,
};
static void __init bpf_iter_register(void)
{
tcp_reg_info.ctx_arg_info[0].btf_id = btf_sock_ids[BTF_SOCK_TYPE_SOCK_COMMON];
if (bpf_iter_reg_target(&tcp_reg_info))
pr_warn("Warning: could not register bpf iterator tcp\n");
}
#endif
void __init tcp_v4_init(void)
{
int cpu, res;
for_each_possible_cpu(cpu) {
struct sock *sk;
res = inet_ctl_sock_create(&sk, PF_INET, SOCK_RAW,
IPPROTO_TCP, &init_net);
if (res)
panic("Failed to create the TCP control socket.\n");
sock_set_flag(sk, SOCK_USE_WRITE_QUEUE);
/* Please enforce IP_DF and IPID==0 for RST and
* ACK sent in SYN-RECV and TIME-WAIT state.
*/
inet_sk(sk)->pmtudisc = IP_PMTUDISC_DO;
per_cpu(ipv4_tcp_sk, cpu) = sk;
}
if (register_pernet_subsys(&tcp_sk_ops))
panic("Failed to create the TCP control socket.\n");
#if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_PROC_FS)
bpf_iter_register();
#endif
}