crypto: amlogic - Add crypto accelerator for amlogic GXL

This patch adds support for the amlogic GXL cryptographic offloader present
on GXL SoCs.

This driver supports AES cipher in CBC/ECB mode.

Signed-off-by: Corentin Labbe <clabbe@baylibre.com>
Reviewed-by: Neil Armstrong <narmstrong@baylibre.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
This commit is contained in:
Corentin Labbe 2019-10-17 05:06:25 +00:00 committed by Herbert Xu
parent f1fb7ea262
commit 48fe583fe5
7 changed files with 911 additions and 0 deletions

View File

@ -808,4 +808,6 @@ config CRYPTO_DEV_CCREE
source "drivers/crypto/hisilicon/Kconfig" source "drivers/crypto/hisilicon/Kconfig"
source "drivers/crypto/amlogic/Kconfig"
endif # CRYPTO_HW endif # CRYPTO_HW

View File

@ -48,3 +48,4 @@ obj-$(CONFIG_CRYPTO_DEV_BCM_SPU) += bcm/
obj-$(CONFIG_CRYPTO_DEV_SAFEXCEL) += inside-secure/ obj-$(CONFIG_CRYPTO_DEV_SAFEXCEL) += inside-secure/
obj-$(CONFIG_CRYPTO_DEV_ARTPEC6) += axis/ obj-$(CONFIG_CRYPTO_DEV_ARTPEC6) += axis/
obj-y += hisilicon/ obj-y += hisilicon/
obj-$(CONFIG_CRYPTO_DEV_AMLOGIC_GXL) += amlogic/

View File

@ -0,0 +1,24 @@
config CRYPTO_DEV_AMLOGIC_GXL
tristate "Support for amlogic cryptographic offloader"
default y if ARCH_MESON
select CRYPTO_BLKCIPHER
select CRYPTO_ENGINE
select CRYPTO_ECB
select CRYPTO_CBC
select CRYPTO_AES
help
Select y here to have support for the cryptographic offloader
available on Amlogic GXL SoC.
This hardware handles AES ciphers in ECB/CBC mode.
To compile this driver as a module, choose M here: the module
will be called amlogic-gxl-crypto.
config CRYPTO_DEV_AMLOGIC_GXL_DEBUG
bool "Enable amlogic stats"
depends on CRYPTO_DEV_AMLOGIC_GXL
depends on DEBUG_FS
help
Say y to enable amlogic-crypto debug stats.
This will create /sys/kernel/debug/gxl-crypto/stats for displaying
the number of requests per flow and per algorithm.

View File

@ -0,0 +1,2 @@
obj-$(CONFIG_CRYPTO_DEV_AMLOGIC_GXL) += amlogic-gxl-crypto.o
amlogic-gxl-crypto-y := amlogic-gxl-core.o amlogic-gxl-cipher.o

View File

@ -0,0 +1,381 @@
// SPDX-License-Identifier: GPL-2.0
/*
* amlogic-cipher.c - hardware cryptographic offloader for Amlogic GXL SoC
*
* Copyright (C) 2018-2019 Corentin LABBE <clabbe@baylibre.com>
*
* This file add support for AES cipher with 128,192,256 bits keysize in
* CBC and ECB mode.
*/
#include <linux/crypto.h>
#include <linux/delay.h>
#include <linux/io.h>
#include <crypto/scatterwalk.h>
#include <linux/scatterlist.h>
#include <linux/dma-mapping.h>
#include <crypto/internal/skcipher.h>
#include "amlogic-gxl.h"
static int get_engine_number(struct meson_dev *mc)
{
return atomic_inc_return(&mc->flow) % MAXFLOW;
}
static bool meson_cipher_need_fallback(struct skcipher_request *areq)
{
struct scatterlist *src_sg = areq->src;
struct scatterlist *dst_sg = areq->dst;
if (areq->cryptlen == 0)
return true;
if (sg_nents(src_sg) != sg_nents(dst_sg))
return true;
/* KEY/IV descriptors use 3 desc */
if (sg_nents(src_sg) > MAXDESC - 3 || sg_nents(dst_sg) > MAXDESC - 3)
return true;
while (src_sg && dst_sg) {
if ((src_sg->length % 16) != 0)
return true;
if ((dst_sg->length % 16) != 0)
return true;
if (src_sg->length != dst_sg->length)
return true;
if (!IS_ALIGNED(src_sg->offset, sizeof(u32)))
return true;
if (!IS_ALIGNED(dst_sg->offset, sizeof(u32)))
return true;
src_sg = sg_next(src_sg);
dst_sg = sg_next(dst_sg);
}
return false;
}
static int meson_cipher_do_fallback(struct skcipher_request *areq)
{
struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(areq);
struct meson_cipher_tfm_ctx *op = crypto_skcipher_ctx(tfm);
struct meson_cipher_req_ctx *rctx = skcipher_request_ctx(areq);
int err;
#ifdef CONFIG_CRYPTO_DEV_AMLOGIC_GXL_DEBUG
struct skcipher_alg *alg = crypto_skcipher_alg(tfm);
struct meson_alg_template *algt;
#endif
SYNC_SKCIPHER_REQUEST_ON_STACK(req, op->fallback_tfm);
#ifdef CONFIG_CRYPTO_DEV_AMLOGIC_GXL_DEBUG
algt = container_of(alg, struct meson_alg_template, alg.skcipher);
algt->stat_fb++;
#endif
skcipher_request_set_sync_tfm(req, op->fallback_tfm);
skcipher_request_set_callback(req, areq->base.flags, NULL, NULL);
skcipher_request_set_crypt(req, areq->src, areq->dst,
areq->cryptlen, areq->iv);
if (rctx->op_dir == MESON_DECRYPT)
err = crypto_skcipher_decrypt(req);
else
err = crypto_skcipher_encrypt(req);
skcipher_request_zero(req);
return err;
}
static int meson_cipher(struct skcipher_request *areq)
{
struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(areq);
struct meson_cipher_tfm_ctx *op = crypto_skcipher_ctx(tfm);
struct meson_cipher_req_ctx *rctx = skcipher_request_ctx(areq);
struct meson_dev *mc = op->mc;
struct skcipher_alg *alg = crypto_skcipher_alg(tfm);
struct meson_alg_template *algt;
int flow = rctx->flow;
unsigned int todo, eat, len;
struct scatterlist *src_sg = areq->src;
struct scatterlist *dst_sg = areq->dst;
struct meson_desc *desc;
int nr_sgs, nr_sgd;
int i, err = 0;
unsigned int keyivlen, ivsize, offset, tloffset;
dma_addr_t phykeyiv;
void *backup_iv = NULL, *bkeyiv;
algt = container_of(alg, struct meson_alg_template, alg.skcipher);
dev_dbg(mc->dev, "%s %s %u %x IV(%u) key=%u flow=%d\n", __func__,
crypto_tfm_alg_name(areq->base.tfm),
areq->cryptlen,
rctx->op_dir, crypto_skcipher_ivsize(tfm),
op->keylen, flow);
#ifdef CONFIG_CRYPTO_DEV_AMLOGIC_GXL_DEBUG
algt->stat_req++;
mc->chanlist[flow].stat_req++;
#endif
/*
* The hardware expect a list of meson_desc structures.
* The 2 first structures store key
* The third stores IV
*/
bkeyiv = kzalloc(48, GFP_KERNEL | GFP_DMA);
if (!bkeyiv)
return -ENOMEM;
memcpy(bkeyiv, op->key, op->keylen);
keyivlen = op->keylen;
ivsize = crypto_skcipher_ivsize(tfm);
if (areq->iv && ivsize > 0) {
if (ivsize > areq->cryptlen) {
dev_err(mc->dev, "invalid ivsize=%d vs len=%d\n", ivsize, areq->cryptlen);
return -EINVAL;
}
memcpy(bkeyiv + 32, areq->iv, ivsize);
keyivlen = 48;
if (rctx->op_dir == MESON_DECRYPT) {
backup_iv = kzalloc(ivsize, GFP_KERNEL);
if (!backup_iv) {
err = -ENOMEM;
goto theend;
}
offset = areq->cryptlen - ivsize;
scatterwalk_map_and_copy(backup_iv, areq->src, offset,
ivsize, 0);
}
}
if (keyivlen == 24)
keyivlen = 32;
phykeyiv = dma_map_single(mc->dev, bkeyiv, keyivlen,
DMA_TO_DEVICE);
if (dma_mapping_error(mc->dev, phykeyiv)) {
dev_err(mc->dev, "Cannot DMA MAP KEY IV\n");
return -EFAULT;
}
tloffset = 0;
eat = 0;
i = 0;
while (keyivlen > eat) {
desc = &mc->chanlist[flow].tl[tloffset];
memset(desc, 0, sizeof(struct meson_desc));
todo = min(keyivlen - eat, 16u);
desc->t_src = phykeyiv + i * 16;
desc->t_dst = i * 16;
desc->len = 16;
desc->mode = MODE_KEY;
desc->owner = 1;
eat += todo;
i++;
tloffset++;
}
if (areq->src == areq->dst) {
nr_sgs = dma_map_sg(mc->dev, areq->src, sg_nents(areq->src),
DMA_BIDIRECTIONAL);
if (nr_sgs < 0) {
dev_err(mc->dev, "Invalid SG count %d\n", nr_sgs);
err = -EINVAL;
goto theend;
}
nr_sgd = nr_sgs;
} else {
nr_sgs = dma_map_sg(mc->dev, areq->src, sg_nents(areq->src),
DMA_TO_DEVICE);
if (nr_sgs < 0 || nr_sgs > MAXDESC - 3) {
dev_err(mc->dev, "Invalid SG count %d\n", nr_sgs);
err = -EINVAL;
goto theend;
}
nr_sgd = dma_map_sg(mc->dev, areq->dst, sg_nents(areq->dst),
DMA_FROM_DEVICE);
if (nr_sgd < 0 || nr_sgd > MAXDESC - 3) {
dev_err(mc->dev, "Invalid SG count %d\n", nr_sgd);
err = -EINVAL;
goto theend;
}
}
src_sg = areq->src;
dst_sg = areq->dst;
len = areq->cryptlen;
while (src_sg) {
desc = &mc->chanlist[flow].tl[tloffset];
memset(desc, 0, sizeof(struct meson_desc));
desc->t_src = sg_dma_address(src_sg);
desc->t_dst = sg_dma_address(dst_sg);
todo = min(len, sg_dma_len(src_sg));
desc->owner = 1;
desc->len = todo;
desc->mode = op->keymode;
desc->op_mode = algt->blockmode;
desc->enc = rctx->op_dir;
len -= todo;
if (!sg_next(src_sg))
desc->eoc = 1;
tloffset++;
src_sg = sg_next(src_sg);
dst_sg = sg_next(dst_sg);
}
reinit_completion(&mc->chanlist[flow].complete);
mc->chanlist[flow].status = 0;
writel(mc->chanlist[flow].t_phy | 2, mc->base + (flow << 2));
wait_for_completion_interruptible_timeout(&mc->chanlist[flow].complete,
msecs_to_jiffies(500));
if (mc->chanlist[flow].status == 0) {
dev_err(mc->dev, "DMA timeout for flow %d\n", flow);
err = -EINVAL;
}
dma_unmap_single(mc->dev, phykeyiv, keyivlen, DMA_TO_DEVICE);
if (areq->src == areq->dst) {
dma_unmap_sg(mc->dev, areq->src, nr_sgs, DMA_BIDIRECTIONAL);
} else {
dma_unmap_sg(mc->dev, areq->src, nr_sgs, DMA_TO_DEVICE);
dma_unmap_sg(mc->dev, areq->dst, nr_sgd, DMA_FROM_DEVICE);
}
if (areq->iv && ivsize > 0) {
if (rctx->op_dir == MESON_DECRYPT) {
memcpy(areq->iv, backup_iv, ivsize);
kzfree(backup_iv);
} else {
scatterwalk_map_and_copy(areq->iv, areq->dst,
areq->cryptlen - ivsize,
ivsize, 0);
}
}
theend:
kzfree(bkeyiv);
return err;
}
static int meson_handle_cipher_request(struct crypto_engine *engine,
void *areq)
{
int err;
struct skcipher_request *breq = container_of(areq, struct skcipher_request, base);
err = meson_cipher(breq);
crypto_finalize_skcipher_request(engine, breq, err);
return 0;
}
int meson_skdecrypt(struct skcipher_request *areq)
{
struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(areq);
struct meson_cipher_tfm_ctx *op = crypto_skcipher_ctx(tfm);
struct meson_cipher_req_ctx *rctx = skcipher_request_ctx(areq);
struct crypto_engine *engine;
int e;
rctx->op_dir = MESON_DECRYPT;
if (meson_cipher_need_fallback(areq))
return meson_cipher_do_fallback(areq);
e = get_engine_number(op->mc);
engine = op->mc->chanlist[e].engine;
rctx->flow = e;
return crypto_transfer_skcipher_request_to_engine(engine, areq);
}
int meson_skencrypt(struct skcipher_request *areq)
{
struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(areq);
struct meson_cipher_tfm_ctx *op = crypto_skcipher_ctx(tfm);
struct meson_cipher_req_ctx *rctx = skcipher_request_ctx(areq);
struct crypto_engine *engine;
int e;
rctx->op_dir = MESON_ENCRYPT;
if (meson_cipher_need_fallback(areq))
return meson_cipher_do_fallback(areq);
e = get_engine_number(op->mc);
engine = op->mc->chanlist[e].engine;
rctx->flow = e;
return crypto_transfer_skcipher_request_to_engine(engine, areq);
}
int meson_cipher_init(struct crypto_tfm *tfm)
{
struct meson_cipher_tfm_ctx *op = crypto_tfm_ctx(tfm);
struct meson_alg_template *algt;
const char *name = crypto_tfm_alg_name(tfm);
struct crypto_skcipher *sktfm = __crypto_skcipher_cast(tfm);
struct skcipher_alg *alg = crypto_skcipher_alg(sktfm);
memset(op, 0, sizeof(struct meson_cipher_tfm_ctx));
algt = container_of(alg, struct meson_alg_template, alg.skcipher);
op->mc = algt->mc;
sktfm->reqsize = sizeof(struct meson_cipher_req_ctx);
op->fallback_tfm = crypto_alloc_sync_skcipher(name, 0, CRYPTO_ALG_NEED_FALLBACK);
if (IS_ERR(op->fallback_tfm)) {
dev_err(op->mc->dev, "ERROR: Cannot allocate fallback for %s %ld\n",
name, PTR_ERR(op->fallback_tfm));
return PTR_ERR(op->fallback_tfm);
}
op->enginectx.op.do_one_request = meson_handle_cipher_request;
op->enginectx.op.prepare_request = NULL;
op->enginectx.op.unprepare_request = NULL;
return 0;
}
void meson_cipher_exit(struct crypto_tfm *tfm)
{
struct meson_cipher_tfm_ctx *op = crypto_tfm_ctx(tfm);
if (op->key) {
memzero_explicit(op->key, op->keylen);
kfree(op->key);
}
crypto_free_sync_skcipher(op->fallback_tfm);
}
int meson_aes_setkey(struct crypto_skcipher *tfm, const u8 *key,
unsigned int keylen)
{
struct meson_cipher_tfm_ctx *op = crypto_skcipher_ctx(tfm);
struct meson_dev *mc = op->mc;
switch (keylen) {
case 128 / 8:
op->keymode = MODE_AES_128;
break;
case 192 / 8:
op->keymode = MODE_AES_192;
break;
case 256 / 8:
op->keymode = MODE_AES_256;
break;
default:
dev_dbg(mc->dev, "ERROR: Invalid keylen %u\n", keylen);
crypto_skcipher_set_flags(tfm, CRYPTO_TFM_RES_BAD_KEY_LEN);
return -EINVAL;
}
if (op->key) {
memzero_explicit(op->key, op->keylen);
kfree(op->key);
}
op->keylen = keylen;
op->key = kmalloc(keylen, GFP_KERNEL | GFP_DMA);
if (!op->key)
return -ENOMEM;
memcpy(op->key, key, keylen);
return crypto_sync_skcipher_setkey(op->fallback_tfm, key, keylen);
}

View File

@ -0,0 +1,331 @@
// SPDX-License-Identifier: GPL-2.0
/*
* amlgoic-core.c - hardware cryptographic offloader for Amlogic GXL SoC
*
* Copyright (C) 2018-2019 Corentin Labbe <clabbe@baylibre.com>
*
* Core file which registers crypto algorithms supported by the hardware.
*/
#include <linux/clk.h>
#include <linux/crypto.h>
#include <linux/io.h>
#include <linux/interrupt.h>
#include <linux/irq.h>
#include <linux/module.h>
#include <linux/of.h>
#include <linux/of_device.h>
#include <linux/platform_device.h>
#include <crypto/internal/skcipher.h>
#include <linux/dma-mapping.h>
#include "amlogic-gxl.h"
static irqreturn_t meson_irq_handler(int irq, void *data)
{
struct meson_dev *mc = (struct meson_dev *)data;
int flow;
u32 p;
for (flow = 0; flow < MAXFLOW; flow++) {
if (mc->irqs[flow] == irq) {
p = readl(mc->base + ((0x04 + flow) << 2));
if (p) {
writel_relaxed(0xF, mc->base + ((0x4 + flow) << 2));
mc->chanlist[flow].status = 1;
complete(&mc->chanlist[flow].complete);
return IRQ_HANDLED;
}
dev_err(mc->dev, "%s %d Got irq for flow %d but ctrl is empty\n", __func__, irq, flow);
}
}
dev_err(mc->dev, "%s %d from unknown irq\n", __func__, irq);
return IRQ_HANDLED;
}
static struct meson_alg_template mc_algs[] = {
{
.type = CRYPTO_ALG_TYPE_SKCIPHER,
.blockmode = MESON_OPMODE_CBC,
.alg.skcipher = {
.base = {
.cra_name = "cbc(aes)",
.cra_driver_name = "cbc-aes-gxl",
.cra_priority = 400,
.cra_blocksize = AES_BLOCK_SIZE,
.cra_flags = CRYPTO_ALG_TYPE_SKCIPHER |
CRYPTO_ALG_ASYNC | CRYPTO_ALG_NEED_FALLBACK,
.cra_ctxsize = sizeof(struct meson_cipher_tfm_ctx),
.cra_module = THIS_MODULE,
.cra_alignmask = 0xf,
.cra_init = meson_cipher_init,
.cra_exit = meson_cipher_exit,
},
.min_keysize = AES_MIN_KEY_SIZE,
.max_keysize = AES_MAX_KEY_SIZE,
.ivsize = AES_BLOCK_SIZE,
.setkey = meson_aes_setkey,
.encrypt = meson_skencrypt,
.decrypt = meson_skdecrypt,
}
},
{
.type = CRYPTO_ALG_TYPE_SKCIPHER,
.blockmode = MESON_OPMODE_ECB,
.alg.skcipher = {
.base = {
.cra_name = "ecb(aes)",
.cra_driver_name = "ecb-aes-gxl",
.cra_priority = 400,
.cra_blocksize = AES_BLOCK_SIZE,
.cra_flags = CRYPTO_ALG_TYPE_SKCIPHER |
CRYPTO_ALG_ASYNC | CRYPTO_ALG_NEED_FALLBACK,
.cra_ctxsize = sizeof(struct meson_cipher_tfm_ctx),
.cra_module = THIS_MODULE,
.cra_alignmask = 0xf,
.cra_init = meson_cipher_init,
.cra_exit = meson_cipher_exit,
},
.min_keysize = AES_MIN_KEY_SIZE,
.max_keysize = AES_MAX_KEY_SIZE,
.setkey = meson_aes_setkey,
.encrypt = meson_skencrypt,
.decrypt = meson_skdecrypt,
}
},
};
#ifdef CONFIG_CRYPTO_DEV_AMLOGIC_GXL_DEBUG
static int meson_dbgfs_read(struct seq_file *seq, void *v)
{
struct meson_dev *mc = seq->private;
int i;
for (i = 0; i < MAXFLOW; i++)
seq_printf(seq, "Channel %d: nreq %lu\n", i, mc->chanlist[i].stat_req);
for (i = 0; i < ARRAY_SIZE(mc_algs); i++) {
switch (mc_algs[i].type) {
case CRYPTO_ALG_TYPE_SKCIPHER:
seq_printf(seq, "%s %s %lu %lu\n",
mc_algs[i].alg.skcipher.base.cra_driver_name,
mc_algs[i].alg.skcipher.base.cra_name,
mc_algs[i].stat_req, mc_algs[i].stat_fb);
break;
}
}
return 0;
}
static int meson_dbgfs_open(struct inode *inode, struct file *file)
{
return single_open(file, meson_dbgfs_read, inode->i_private);
}
static const struct file_operations meson_debugfs_fops = {
.owner = THIS_MODULE,
.open = meson_dbgfs_open,
.read = seq_read,
.llseek = seq_lseek,
.release = single_release,
};
#endif
static void meson_free_chanlist(struct meson_dev *mc, int i)
{
while (i >= 0) {
crypto_engine_exit(mc->chanlist[i].engine);
if (mc->chanlist[i].tl)
dma_free_coherent(mc->dev, sizeof(struct meson_desc) * MAXDESC,
mc->chanlist[i].tl,
mc->chanlist[i].t_phy);
i--;
}
}
/*
* Allocate the channel list structure
*/
static int meson_allocate_chanlist(struct meson_dev *mc)
{
int i, err;
mc->chanlist = devm_kcalloc(mc->dev, MAXFLOW,
sizeof(struct meson_flow), GFP_KERNEL);
if (!mc->chanlist)
return -ENOMEM;
for (i = 0; i < MAXFLOW; i++) {
init_completion(&mc->chanlist[i].complete);
mc->chanlist[i].engine = crypto_engine_alloc_init(mc->dev, true);
if (!mc->chanlist[i].engine) {
dev_err(mc->dev, "Cannot allocate engine\n");
i--;
goto error_engine;
}
err = crypto_engine_start(mc->chanlist[i].engine);
if (err) {
dev_err(mc->dev, "Cannot start engine\n");
goto error_engine;
}
mc->chanlist[i].tl = dma_alloc_coherent(mc->dev,
sizeof(struct meson_desc) * MAXDESC,
&mc->chanlist[i].t_phy,
GFP_KERNEL);
if (!mc->chanlist[i].tl) {
err = -ENOMEM;
goto error_engine;
}
}
return 0;
error_engine:
meson_free_chanlist(mc, i);
return err;
}
static int meson_register_algs(struct meson_dev *mc)
{
int err, i;
for (i = 0; i < ARRAY_SIZE(mc_algs); i++) {
mc_algs[i].mc = mc;
switch (mc_algs[i].type) {
case CRYPTO_ALG_TYPE_SKCIPHER:
err = crypto_register_skcipher(&mc_algs[i].alg.skcipher);
if (err) {
dev_err(mc->dev, "Fail to register %s\n",
mc_algs[i].alg.skcipher.base.cra_name);
mc_algs[i].mc = NULL;
return err;
}
break;
}
}
return 0;
}
static void meson_unregister_algs(struct meson_dev *mc)
{
int i;
for (i = 0; i < ARRAY_SIZE(mc_algs); i++) {
if (!mc_algs[i].mc)
continue;
switch (mc_algs[i].type) {
case CRYPTO_ALG_TYPE_SKCIPHER:
crypto_unregister_skcipher(&mc_algs[i].alg.skcipher);
break;
}
}
}
static int meson_crypto_probe(struct platform_device *pdev)
{
struct meson_dev *mc;
int err, i;
if (!pdev->dev.of_node)
return -ENODEV;
mc = devm_kzalloc(&pdev->dev, sizeof(*mc), GFP_KERNEL);
if (!mc)
return -ENOMEM;
mc->dev = &pdev->dev;
platform_set_drvdata(pdev, mc);
mc->base = devm_platform_ioremap_resource(pdev, 0);
if (IS_ERR(mc->base)) {
err = PTR_ERR(mc->base);
dev_err(&pdev->dev, "Cannot request MMIO err=%d\n", err);
return err;
}
mc->busclk = devm_clk_get(&pdev->dev, "blkmv");
if (IS_ERR(mc->busclk)) {
err = PTR_ERR(mc->busclk);
dev_err(&pdev->dev, "Cannot get core clock err=%d\n", err);
return err;
}
mc->irqs = devm_kcalloc(mc->dev, MAXFLOW, sizeof(int), GFP_KERNEL);
for (i = 0; i < MAXFLOW; i++) {
mc->irqs[i] = platform_get_irq(pdev, i);
if (mc->irqs[i] < 0) {
dev_err(mc->dev, "Cannot get IRQ for flow %d\n", i);
return mc->irqs[i];
}
err = devm_request_irq(&pdev->dev, mc->irqs[i], meson_irq_handler, 0,
"gxl-crypto", mc);
if (err < 0) {
dev_err(mc->dev, "Cannot request IRQ for flow %d\n", i);
return err;
}
}
err = clk_prepare_enable(mc->busclk);
if (err != 0) {
dev_err(&pdev->dev, "Cannot prepare_enable busclk\n");
return err;
}
err = meson_allocate_chanlist(mc);
if (err)
goto error_flow;
err = meson_register_algs(mc);
if (err)
goto error_alg;
#ifdef CONFIG_CRYPTO_DEV_AMLOGIC_GXL_DEBUG
mc->dbgfs_dir = debugfs_create_dir("gxl-crypto", NULL);
debugfs_create_file("stats", 0444, mc->dbgfs_dir, mc, &meson_debugfs_fops);
#endif
return 0;
error_alg:
meson_unregister_algs(mc);
error_flow:
meson_free_chanlist(mc, MAXFLOW);
clk_disable_unprepare(mc->busclk);
return err;
}
static int meson_crypto_remove(struct platform_device *pdev)
{
struct meson_dev *mc = platform_get_drvdata(pdev);
#ifdef CONFIG_CRYPTO_DEV_AMLOGIC_GXL_DEBUG
debugfs_remove_recursive(mc->dbgfs_dir);
#endif
meson_unregister_algs(mc);
meson_free_chanlist(mc, MAXFLOW);
clk_disable_unprepare(mc->busclk);
return 0;
}
static const struct of_device_id meson_crypto_of_match_table[] = {
{ .compatible = "amlogic,gxl-crypto", },
{}
};
MODULE_DEVICE_TABLE(of, meson_crypto_of_match_table);
static struct platform_driver meson_crypto_driver = {
.probe = meson_crypto_probe,
.remove = meson_crypto_remove,
.driver = {
.name = "gxl-crypto",
.of_match_table = meson_crypto_of_match_table,
},
};
module_platform_driver(meson_crypto_driver);
MODULE_DESCRIPTION("Amlogic GXL cryptographic offloader");
MODULE_LICENSE("GPL");
MODULE_AUTHOR("Corentin Labbe <clabbe@baylibre.com>");

View File

@ -0,0 +1,170 @@
/* SPDX-License-Identifier: GPL-2.0 */
/*
* amlogic.h - hardware cryptographic offloader for Amlogic SoC
*
* Copyright (C) 2018-2019 Corentin LABBE <clabbe@baylibre.com>
*/
#include <crypto/aes.h>
#include <crypto/engine.h>
#include <crypto/skcipher.h>
#include <linux/debugfs.h>
#include <linux/crypto.h>
#include <linux/scatterlist.h>
#define MODE_KEY 1
#define MODE_AES_128 0x8
#define MODE_AES_192 0x9
#define MODE_AES_256 0xa
#define MESON_DECRYPT 0
#define MESON_ENCRYPT 1
#define MESON_OPMODE_ECB 0
#define MESON_OPMODE_CBC 1
#define MAXFLOW 2
#define MAXDESC 64
/*
* struct meson_desc - Descriptor for DMA operations
* Note that without datasheet, some are unknown
* @len: length of data to operate
* @irq: Ignored by hardware
* @eoc: End of descriptor
* @loop: Unknown
* @mode: Type of algorithm (AES, SHA)
* @begin: Unknown
* @end: Unknown
* @op_mode: Blockmode (CBC, ECB)
* @block: Unknown
* @error: Unknown
* @owner: owner of the descriptor, 1 own by HW
* @t_src: Physical address of data to read
* @t_dst: Physical address of data to write
*/
struct meson_desc {
union {
u32 t_status;
struct {
u32 len:17;
u32 irq:1;
u32 eoc:1;
u32 loop:1;
u32 mode:4;
u32 begin:1;
u32 end:1;
u32 op_mode:2;
u32 enc:1;
u32 block:1;
u32 error:1;
u32 owner:1;
};
};
u32 t_src;
u32 t_dst;
};
/*
* struct meson_flow - Information used by each flow
* @engine: ptr to the crypto_engine for this flow
* @keylen: keylen for this flow operation
* @complete: completion for the current task on this flow
* @status: set to 1 by interrupt if task is done
* @t_phy: Physical address of task
* @tl: pointer to the current ce_task for this flow
* @stat_req: number of request done by this flow
*/
struct meson_flow {
struct crypto_engine *engine;
struct completion complete;
int status;
unsigned int keylen;
dma_addr_t t_phy;
struct meson_desc *tl;
#ifdef CONFIG_CRYPTO_DEV_AMLOGIC_GXL_DEBUG
unsigned long stat_req;
#endif
};
/*
* struct meson_dev - main container for all this driver information
* @base: base address of amlogic-crypto
* @busclk: bus clock for amlogic-crypto
* @dev: the platform device
* @chanlist: array of all flow
* @flow: flow to use in next request
* @irqs: IRQ numbers for amlogic-crypto
* @dbgfs_dir: Debugfs dentry for statistic directory
* @dbgfs_stats: Debugfs dentry for statistic counters
*/
struct meson_dev {
void __iomem *base;
struct clk *busclk;
struct device *dev;
struct meson_flow *chanlist;
atomic_t flow;
int *irqs;
#ifdef CONFIG_CRYPTO_DEV_AMLOGIC_GXL_DEBUG
struct dentry *dbgfs_dir;
#endif
};
/*
* struct meson_cipher_req_ctx - context for a skcipher request
* @op_dir: direction (encrypt vs decrypt) for this request
* @flow: the flow to use for this request
*/
struct meson_cipher_req_ctx {
u32 op_dir;
int flow;
};
/*
* struct meson_cipher_tfm_ctx - context for a skcipher TFM
* @enginectx: crypto_engine used by this TFM
* @key: pointer to key data
* @keylen: len of the key
* @keymode: The keymode(type and size of key) associated with this TFM
* @mc: pointer to the private data of driver handling this TFM
* @fallback_tfm: pointer to the fallback TFM
*/
struct meson_cipher_tfm_ctx {
struct crypto_engine_ctx enginectx;
u32 *key;
u32 keylen;
u32 keymode;
struct meson_dev *mc;
struct crypto_sync_skcipher *fallback_tfm;
};
/*
* struct meson_alg_template - crypto_alg template
* @type: the CRYPTO_ALG_TYPE for this template
* @blockmode: the type of block operation
* @mc: pointer to the meson_dev structure associated with this template
* @alg: one of sub struct must be used
* @stat_req: number of request done on this template
* @stat_fb: total of all data len done on this template
*/
struct meson_alg_template {
u32 type;
u32 blockmode;
union {
struct skcipher_alg skcipher;
} alg;
struct meson_dev *mc;
#ifdef CONFIG_CRYPTO_DEV_AMLOGIC_GXL_DEBUG
unsigned long stat_req;
unsigned long stat_fb;
#endif
};
int meson_enqueue(struct crypto_async_request *areq, u32 type);
int meson_aes_setkey(struct crypto_skcipher *tfm, const u8 *key,
unsigned int keylen);
int meson_cipher_init(struct crypto_tfm *tfm);
void meson_cipher_exit(struct crypto_tfm *tfm);
int meson_skdecrypt(struct skcipher_request *areq);
int meson_skencrypt(struct skcipher_request *areq);